WorldWideScience

Sample records for syndrome-causing missense mutations

  1. Predicting the impact of Lynch syndrome-causing missense mutations from structural calculations

    DEFF Research Database (Denmark)

    Nielsen, Sofie V,; Stein, Amelie; Dinitzen, Alexander B.

    2017-01-01

    selected the human mismatch repair protein, MSH2, where missense variants are known to cause the hereditary cancer predisposition disease, known as Lynch syndrome. We show that the majority of disease-causing MSH2 mutations give rise to folding defects and proteasome-dependent degradation rather than...... and for diagnosis of Lynch syndrome, and perhaps other hereditary diseases....

  2. Dominant missense mutations in ABCC9 cause Cantu syndrome

    NARCIS (Netherlands)

    Harakalova, M.; van Harssel, J.J.; Terhal, P.A.; van Lieshout, S.; Duran, K.; Renkens, I.; Amor, D.J.; Wilson, L.C.; Kirk, E.P.; Turner, C.L.; Shears, D.; Garcia-Minaur, S.; Lees, M.M.; Ross, A.; Venselaar, H.; Vriend, G.; Takanari, H.; Rook, M.B.; van der Heyden, M.A.; Asselbergs, F.W.; Breur, H.M.; Swinkels, M.E.; Scurr, I.J.; Smithson, S.F.; Knoers, N.V.; van der Smagt, J.J.; Nijman, I.J.; Kloosterman, W.P.; van Haelst, M.M.; van Haaften, G.; Cuppen, E.

    2012-01-01

    Cantu syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the

  3. Dominant missense mutations in ABCC9 cause Cantu syndrome.

    NARCIS (Netherlands)

    Harakalova, M.; Harssel, J.J. van; Terhal, P.A.; Lieshout, S. van; Duran, K.; Renkens, I.; Amor, D.J.; Wilson, L.C.; Kirk, E.P.; Turner, C.L.; Shears, D.; Garcia-Minaur, S.; Lees, M.M.; Ross, A.; Venselaar, H.; Vriend, G.; Takanari, H.; Rook, M.B.; Heyden, M.A. van der; Asselbergs, F.W.; Breur, H.M.; Swinkels, M.E.; Scurr, I.J.; Smithson, S.F.; Knoers, N.V.A.M.; Smagt, J.J. van der; Nijman, IJ; Kloosterman, W.P.; Haelst, M.M. van; Haaften, G. van; Cuppen, E.

    2012-01-01

    Cantu syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the

  4. FATP4 missense and nonsense mutations cause similar features in Ichthyosis Prematurity Syndrome

    Directory of Open Access Journals (Sweden)

    Dahl Niklas

    2011-03-01

    Full Text Available Abstract Background Ichthyosis Prematurity Syndrome (IPS is an autosomal recessive disorder characterized by premature birth, non-scaly ichthyosis and atopic manifestations. The disease was recently shown to be caused by mutations in the gene encoding the fatty acid transport protein 4 (FATP4 and a specific reduction in the incorporation of very long chain fatty acids (VLCFA into cellular lipids. Findings We screened probands from five families segregating IPS for mutations in the FATP4 gene. Four probands were compound heterozygous for four different mutations of which three are novel. Four patients were heterozygous and one patient homozygous for the previously reported non-sense mutation p.C168X (c.504c > a. All patients had clinical characteristics of IPS and a similar clinical course. Conclusions Missense mutations and non-sense mutations in FATP4 are associated with similar clinical features suggesting that missense mutations have a severe impact on FATP4 function. The results broaden the mutational spectrum in FATP4 associated with IPS for molecular diagnosis of and further functional analysis of FATP4.

  5. Predicting the impact of Lynch syndrome-causing missense mutations from structural calculations.

    Directory of Open Access Journals (Sweden)

    Sofie V Nielsen

    2017-04-01

    Full Text Available Accurate methods to assess the pathogenicity of mutations are needed to fully leverage the possibilities of genome sequencing in diagnosis. Current data-driven and bioinformatics approaches are, however, limited by the large number of new variations found in each newly sequenced genome, and often do not provide direct mechanistic insight. Here we demonstrate, for the first time, that saturation mutagenesis, biophysical modeling and co-variation analysis, performed in silico, can predict the abundance, metabolic stability, and function of proteins inside living cells. As a model system, we selected the human mismatch repair protein, MSH2, where missense variants are known to cause the hereditary cancer predisposition disease, known as Lynch syndrome. We show that the majority of disease-causing MSH2 mutations give rise to folding defects and proteasome-dependent degradation rather than inherent loss of function, and accordingly our in silico modeling data accurately identifies disease-causing mutations and outperforms the traditionally used genetic disease predictors. Thus, in conclusion, in silico biophysical modeling should be considered for making genotype-phenotype predictions and for diagnosis of Lynch syndrome, and perhaps other hereditary diseases.

  6. A de novo missense mutation of FGFR2 causes facial dysplasia syndrome in Holstein cattle.

    Science.gov (United States)

    Agerholm, Jørgen S; McEvoy, Fintan J; Heegaard, Steffen; Charlier, Carole; Jagannathan, Vidhya; Drögemüller, Cord

    2017-08-02

    Surveillance for bovine genetic diseases in Denmark identified a hitherto unreported congenital syndrome occurring among progeny of a Holstein sire used for artificial breeding. A genetic aetiology due to a dominant inheritance with incomplete penetrance or a mosaic germline mutation was suspected as all recorded cases were progeny of the same sire. Detailed investigations were performed to characterize the syndrome and to reveal its cause. Seven malformed calves were submitted examination. All cases shared a common morphology with the most striking lesions being severe facial dysplasia and complete prolapse of the eyes. Consequently the syndrome was named facial dysplasia syndrome (FDS). Furthermore, extensive brain malformations, including microencephaly, hydrocephalus, lobation of the cerebral hemispheres and compression of the brain were present. Subsequent data analysis of progeny of the sire revealed that around 0.5% of his offspring suffered from FDS. High density single nucleotide polymorphism (SNP) genotyping data of the seven cases and their parents were used to map the defect in the bovine genome. Significant genetic linkage was obtained for three regions, including chromosome 26 where whole genome sequencing of a case-parent trio revealed two de novo variants perfectly associated with the disease: an intronic SNP in the DMBT1 gene and a single non-synonymous variant in the FGFR2 gene. This FGFR2 missense variant (c.927G>T) affects a gene encoding a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and across species. It is predicted to change an evolutionary conserved tryptophan into a cysteine residue (p.Trp309Cys). Both variant alleles were proven to result from de novo mutation events in the germline of the sire. FDS is a novel genetic disorder of Holstein cattle. Mutations in the human FGFR2 gene are associated with various dominant inherited craniofacial dysostosis syndromes. Given

  7. Missense mutations in the WD40 domain of AHI1 cause non-syndromic retinitis pigmentosa.

    Science.gov (United States)

    Nguyen, Thanh-Minh T; Hull, Sarah; Roepman, Ronald; van den Born, L Ingeborgh; Oud, Machteld M; de Vrieze, Erik; Hetterschijt, Lisette; Letteboer, Stef J F; van Beersum, Sylvia E C; Blokland, Ellen A; Yntema, Helger G; Cremers, Frans P M; van der Zwaag, Paul A; Arno, Gavin; van Wijk, Erwin; Webster, Andrew R; Haer-Wigman, Lonneke

    2017-09-01

    Recent findings suggesting that Abelson helper integration site 1 ( AHI1 ) is involved in non-syndromic retinal disease have been debated, as the functional significance of identified missense variants was uncertain. We assessed whether AHI1 variants cause non-syndromic retinitis pigmentosa (RP). Exome sequencing was performed in three probands with RP. The effects of the identified missense variants in AHI1 were predicted by three-dimensional structure homology modelling. Ciliary parameters were evaluated in patient's fibroblasts, and recombinant mutant proteins were expressed in ciliated retinal pigmented epithelium cells. In the three patients with RP, three sets of compound heterozygous variants were detected in AHI1 (c.2174G>A; p.Trp725* and c.2258A>T; p.Asp753Val, c.660delC; p.Ser221Glnfs*10 and c.2090C>T; p.Pro697Leu, c.2087A>G; p.His696Arg and c.2429C>T; p.Pro810Leu). All four missense variants were present in the conserved WD40 domain of Jouberin, the ciliary protein encoded by AHI1 , with variable predicted implications for the domain structure. No significant changes in the percentage of ciliated cells, nor in cilium length or intraflagellar transport were detected. However, expression of mutant recombinant Jouberin in ciliated cells showed a significantly decreased enrichment at the ciliary base. This report confirms that mutations in AHI1 can underlie autosomal recessive RP. Moreover, it structurally and functionally validates the effect of the RP-associated AHI1 variants on protein function, thus proposing a new genotype-phenotype correlation for AHI1 mutation associated retinal ciliopathies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Usher syndrome type 1 due to missense mutations on both CDH23 alleles: investigation of mRNA splicing.

    Science.gov (United States)

    Becirovic, Elvir; Ebermann, Inga; Nagy, Ditta; Zrenner, Eberhart; Seeliger, Mathias Wolfgang; Bolz, Hanno Jörn

    2008-03-01

    Usher syndrome (USH) is an autosomal recessive condition characterized by sensorineural hearing loss, vestibular dysfunction, and visual impairment due to retinitis pigmentosa. Truncating mutations in the cadherin-23 gene (CDH23) result in Usher syndrome type 1D (USH1D), whereas missense mutations affecting strongly conserved motifs of the CDH23 protein cause non-syndromic deafness (DFNB12). Four missense mutations constitute an exception from this genotype-phenotype correlation: they have been described in USH1 patients in homozygous state. Using a minigene assay, we have investigated these changes (c.1450G>C, p.A484P; c.3625A>G, p.T1209A; c.4520G>A, p.R1507Q; and c.5237G>A, p.R1746Q) for a possible impact on mRNA splicing which could explain the syndromic phenotype. While in silico analysis suggested impairment of splicing in all four cases, we found aberrant splicing for only one mutation, p.R1746Q. However, splicing was normal in case of p.A484P, p.T1209A and p.R1507Q. These three latter CDH23 missense mutations could interfere with functions of both, the auditory and the visual system. Alternatively, they could represent rare non-pathogenic polymorphisms.

  9. Profound, prelingual nonsyndromic deafness maps to chromosome 10q21 and is caused by a novel missense mutation in the Usher syndrome type IF gene PCDH15.

    Science.gov (United States)

    Doucette, Lance; Merner, Nancy D; Cooke, Sandra; Ives, Elizabeth; Galutira, Dante; Walsh, Vanessa; Walsh, Tom; MacLaren, Linda; Cater, Tracey; Fernandez, Bridget; Green, Jane S; Wilcox, Edward R; Shotland, Lawrence I; Shotland, Larry; Li, Xiaoyan Cindy; Li, X C; Lee, Ming; King, Mary-Claire; Young, Terry-Lynn

    2009-05-01

    We studied a consanguineous family (Family A) from the island of Newfoundland with an autosomal recessive form of prelingual, profound, nonsyndromic sensorineural hearing loss. A genome-wide scan mapped the deafness trait to 10q21-22 (max LOD score of 4.0; D10S196) and fine mapping revealed a 16 Mb ancestral haplotype in deaf relatives. The PCDH15 gene was mapped within the critical region and was an interesting candidate because truncating mutations cause Usher syndrome type IF (USH1F) and two missense mutations have been previously associated with isolated deafness (DFNB23). Sequencing of the PCDH15 gene revealed 33 sequencing variants. Three of these variants were homozygous exclusively in deaf siblings but only one of them was not seen in ethnically matched controls. This novel c.1583 T>A transversion predicts an amino-acid substitution of a valine with an aspartic acid at codon 528 (V528D). Like the two DFNB23 mutations, the V528D mutation in Family A occurs in a highly conserved extracellular cadherin (EC) domain of PCDH15 and is predicted to be more deleterious than the previously identified DFNB23 missense mutations (R134G and G262D). Physical assessment, vestibular and visual function testing in deaf adults ruled out syndromic deafness because of Usher syndrome. This study validates the DFNB23 designation and supports the hypothesis that missense mutations in conserved motifs of PCDH15 cause nonsyndromic hearing loss. This emerging genotype-phenotype correlation in USH1F is similar to that in several other USH1 genes and cautions against a prognosis of a dual sensory loss in deaf children found to be homozygous for hypomorphic mutations at the USH1F locus.

  10. A novel rasopathy caused by recurrent de novo missense mutations in PPP1CB closely resembles Noonan syndrome with loose anagen hair.

    Science.gov (United States)

    Gripp, Karen W; Aldinger, Kimberly A; Bennett, James T; Baker, Laura; Tusi, Jessica; Powell-Hamilton, Nina; Stabley, Deborah; Sol-Church, Katia; Timms, Andrew E; Dobyns, William B

    2016-09-01

    Noonan syndrome is a rasopathy caused by mutations in multiple genes encoding components of the RAS/MAPK pathway. Despite its variable phenotype, limited genotype-phenotype correlations exist. Noonan syndrome with loose anagen hair (NS-LAH) is characterized by its distinctive hair anomalies, developmental differences, and structural brain abnormalities and is caused by a single recurrent missense SHOC2 mutation. SHOC2 forms a complex with protein phosphatase 1 (PP1C). Protein phosphatases counterbalance kinases and control activation of signaling proteins, such as the mitogen-activated protein kinases of the RAS/MAPK pathway. Here we report four patients with de novo missense mutations in protein phosphatase one catalytic subunit beta (PPP1CB), sharing a recognizable phenotype. Three individuals had the recurrent PPP1CB c.146G>C, p.Pro49Arg mutation, the fourth had a c.166G>C, p.Ala56Pro change. All had relative or absolute macrocephaly, low-set and posteriorly angulated ears, and developmental delay. Slow growing and/or sparse hair and/or an unruly hair texture was present in all. Three individuals had feeding difficulties requiring feeding tubes. One of two males had cryptorchidism, another had pectus excavatum. Short stature was present in three. A female with the recurrent mutation had a Dandy-Walker malformation and optic nerve hypoplasia. Mild ventriculomegaly occurred in all, cerebellar tonsillar ectopia was seen in two and progressed to Chiari 1 malformation in one individual. Based on the combination of phenotypic findings and PPP1CB's effect on RAF dephosphorylation within the RAS/MAPK pathway, this novel condition can be considered a rasopathy, most similar to NS-LAH. Collectively, these mutations meet the standardized criteria for pathogenicity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. WDR73 missense mutation causes infantile onset intellectual disability and cerebellar hypoplasia in a consanguineous family.

    Science.gov (United States)

    Jiang, Chen; Gai, Nan; Zou, Yongyi; Zheng, Yu; Ma, Ruiyu; Wei, Xianda; Liang, Desheng; Wu, Lingqian

    2017-01-01

    Galloway-Mowat syndrome (GMS) is a very rare autosomal-recessive disorder characterized by nephrotic syndrome associated with microcephaly, and various central nervous system abnormalities, mostly cerebral hypoplasia or cerebellar atrophy, intellectual disability and neural-migration defects. WDR73 is the only gene known to cause GMS, and has never been implicated in other disease. Here we present a Chinese consanguineous family with infantile onset intellectual disability and cerebellar hypoplasia but no microcephaly. Whole exome sequencing identified a WDR73 p.W371G missense mutation. The mutation is confirmed to be segregated in this family by Sanger sequencing according to a recessive inheritance pattern. It is predicted to be deleterious by multiple algorithms and affect highly conserved site. Structural modeling revealed conformational differences between the wild type protein and the p.W371G protein. Real-time PCR and Western blotting revealed altered mRNA and protein levels in mutated samples. Our study indicates the novel WDR73 p.W371G missense mutation causes infantile onset intellectual disability and cerebellar hypoplasia in recessive mode of inheritance. Our findings imply that microcephaly is a variable phenotype in WDR73-related disease, suggest WDR73 to be a candidate gene of severe intellectual disability and cerebellar hypoplasia, and expand the molecular spectrum of WDR73-related disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Brugada syndrome with a novel missense mutation in SCN5A gene: A case report from Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Zahidus Sayeed

    2014-01-01

    Full Text Available Brugada syndrome is an inherited cardiac arrhythmia that follows autosomal dominant transmission and can cause sudden death. We report a case of Brugada syndrome in a 55-year-old male patient presented with recurrent palpitation, atypical chest pain and presyncope. ECG changes were consistent with type 1 Brugada. Gene analysis revealed a novel missense mutation in SCN5A gene with a genetic variation of D785N and a nucleotide change at 2353G-A. One of his children also had the same mutation. To our knowledge this is the first genetically proved case of Brugada syndrome in Bangladesh.

  13. In silico investigation of molecular effects caused by missense mutations in creatine transporter protein

    Science.gov (United States)

    Zhang, Zhe; Schwatz, Charles; Alexov, Emil

    2011-03-01

    Creatine transporter (CT) protein, which is encoded by SLC6A8 gene, is essential for taking up the creatine in the cell, which in turn plays a key role in the spatial and temporal maintenance of energy in skeletal and cardiac muscle cells. It was shown that some missense mutations in CT cause mental retardation, while others are harmless non-synonymous single nucleoside polymorphism (nsSNP). Currently fifteen missense mutations in CT are known, among which twelve are disease-causing. Sequence analysis reveals that there is no clear trend distinguishing disease-causing from harmless missense mutations. Because of that, we built 3D model of the CT using highly homologous template and use the model to investigate the effects of mutations of CT stability and hydrogen bond network. It is demonstrated that disease-causing mutations affect the folding free energy and ionization states of titratable group in much greater extend as compared with harmless mutations. Supported by grants from NLM, NIH, grant numbers 1R03LM009748 and 1R03LM009748-S1.

  14. A de novo missense mutation of FGFR2 causes facial dysplasia syndrome in Holstein cattle

    DEFF Research Database (Denmark)

    Agerholm, Jørgen Steen; McEvoy, Fintan; Heegaard, Steffen

    2017-01-01

    was suspected as all recorded cases were progeny of the same sire. Detailed investigations were performed to characterize the syndrome and to reveal its cause. Results Seven malformed calves were submitted examination. All cases shared a common morphology with the most striking lesions being severe facial...... chromosome 26 where whole genome sequencing of a case-parent trio revealed two de novo variants perfectly associated with the disease: an intronic SNP in the DMBT1 gene and a single non-synonymous variant in the FGFR2 gene. This FGFR2 missense variant (c.927G>T) affects a gene encoding a member...... of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and across species. It is predicted to change an evolutionary conserved tryptophan into a cysteine residue (p.Trp309Cys). Both variant alleles were proven to result from de novo mutation events...

  15. Identification and functional analysis of SOX10 missense mutations in different subtypes of Waardenburg syndrome.

    Science.gov (United States)

    Chaoui, Asma; Watanabe, Yuli; Touraine, Renaud; Baral, Viviane; Goossens, Michel; Pingault, Veronique; Bondurand, Nadege

    2011-12-01

    Waardenburg syndrome (WS) is a rare disorder characterized by pigmentation defects and sensorineural deafness, classified into four clinical subtypes, WS1-S4. Whereas the absence of additional features characterizes WS2, association with Hirschsprung disease defines WS4. WS is genetically heterogeneous, with six genes already identified, including SOX10. About 50 heterozygous SOX10 mutations have been described in patients presenting with WS2 or WS4, with or without myelination defects of the peripheral and central nervous system (PCWH, Peripheral demyelinating neuropathy-Central dysmyelinating leukodystrophy-Waardenburg syndrome-Hirschsprung disease, or PCW, PCWH without HD). The majority are truncating mutations that most often remove the main functional domains of the protein. Only three missense mutations have been thus far reported. In the present study, novel SOX10 missense mutations were found in 11 patients and were examined for effects on SOX10 characteristics and functions. The mutations were associated with various phenotypes, ranging from WS2 to PCWH. All tested mutations were found to be deleterious. Some mutants presented with partial cytoplasmic redistribution, some lost their DNA-binding and/or transactivation capabilities on various tissue-specific target genes. Intriguingly, several mutants were redistributed in nuclear foci. Whether this phenomenon is a cause or a consequence of mutation-associated pathogenicity remains to be determined, but this observation could help to identify new SOX10 modes of action. © 2011 Wiley-Liss, Inc.

  16. Splicing Analysis of Exonic OCRL Mutations Causing Lowe Syndrome or Dent-2 Disease

    Directory of Open Access Journals (Sweden)

    Lorena Suarez-Artiles

    2018-01-01

    Full Text Available Mutations in the OCRL gene are associated with both Lowe syndrome and Dent-2 disease. Patients with Lowe syndrome present congenital cataracts, mental disabilities and a renal proximal tubulopathy, whereas patients with Dent-2 disease exhibit similar proximal tubule dysfunction but only mild, or no additional clinical defects. It is not yet understood why some OCRL mutations cause the phenotype of Lowe syndrome, while others develop the milder phenotype of Dent-2 disease. Our goal was to gain new insights into the consequences of OCRL exonic mutations on pre-mRNA splicing. Using predictive bioinformatics tools, we selected thirteen missense mutations and one synonymous mutation based on their potential effects on splicing regulatory elements or splice sites. These mutations were analyzed in a minigene splicing assay. Results of the RNA analysis showed that three presumed missense mutations caused alterations in pre-mRNA splicing. Mutation c.741G>T; p.(Trp247Cys generated splicing silencer sequences and disrupted splicing enhancer motifs that resulted in skipping of exon 9, while mutations c.2581G>A; p.(Ala861Thr and c.2581G>C; p.(Ala861Pro abolished a 5′ splice site leading to skipping of exon 23. Mutation c.741G>T represents the first OCRL exonic variant outside the conserved splice site dinucleotides that results in alteration of pre-mRNA splicing. Our results highlight the importance of evaluating the effects of OCRL exonic mutations at the mRNA level.

  17. The first missense mutation of NHS gene in a Tunisian family with clinical features of NHS syndrome including cardiac anomaly.

    Science.gov (United States)

    Chograni, Manèl; Rejeb, Imen; Jemaa, Lamia Ben; Châabouni, Myriam; Bouhamed, Habiba Chaabouni

    2011-08-01

    Nance-Horan Syndrome (NHS) or X-linked cataract-dental syndrome is a disease of unknown gene action mechanism, characterized by congenital cataract, dental anomalies, dysmorphic features and, in some cases, mental retardation. We performed linkage analysis in a Tunisian family with NHS in which affected males and obligate carrier female share a common haplotype in the Xp22.32-p11.21 region that contains the NHS gene. Direct sequencing of NHS coding exons and flanking intronic sequences allowed us to identify the first missense mutation (P551S) and a reported SNP-polymorphism (L1319F) in exon 6, a reported UTR-SNP (c.7422 C>T) and a novel one (c.8239 T>A) in exon 8. Both variations P551S and c.8239 T>A segregate with NHS phenotype in this family. Although truncations, frame-shift and copy number variants have been reported in this gene, no missense mutations have been found to segregate previously. This is the first report of a missense NHS mutation causing NHS phenotype (including cardiac defects). We hypothesize also that the non-reported UTR-SNP of the exon 8 (3'-UTR) is specific to the Tunisian population.

  18. Dominant de novo DSP mutations cause erythrokeratodermia-cardiomyopathy syndrome.

    Science.gov (United States)

    Boyden, Lynn M; Kam, Chen Y; Hernández-Martín, Angela; Zhou, Jing; Craiglow, Brittany G; Sidbury, Robert; Mathes, Erin F; Maguiness, Sheilagh M; Crumrine, Debra A; Williams, Mary L; Hu, Ronghua; Lifton, Richard P; Elias, Peter M; Green, Kathleen J; Choate, Keith A

    2016-01-15

    Disorders of keratinization (DOK) show marked genotypic and phenotypic heterogeneity. In most cases, disease is primarily cutaneous, and further clinical evaluation is therefore rarely pursued. We have identified subjects with a novel DOK featuring erythrokeratodermia and initially-asymptomatic, progressive, potentially fatal cardiomyopathy, a finding not previously associated with erythrokeratodermia. We show that de novo missense mutations clustered tightly within a single spectrin repeat of DSP cause this novel cardio-cutaneous disorder, which we term erythrokeratodermia-cardiomyopathy (EKC) syndrome. We demonstrate that DSP mutations in our EKC syndrome subjects affect localization of desmosomal proteins and connexin 43 in the skin, and result in desmosome aggregation, widening of intercellular spaces, and lipid secretory defects. DSP encodes desmoplakin, a primary component of desmosomes, intercellular adhesion junctions most abundant in the epidermis and heart. Though mutations in DSP are known to cause other disorders, our cohort features the unique clinical finding of severe whole-body erythrokeratodermia, with distinct effects on localization of desmosomal proteins and connexin 43. These findings add a severe, previously undescribed syndrome featuring erythrokeratodermia and cardiomyopathy to the spectrum of disease caused by mutation in DSP, and identify a specific region of the protein critical to the pathobiology of EKC syndrome and to DSP function in the heart and skin. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome.

    Science.gov (United States)

    Aoki, Yoko; Niihori, Tetsuya; Banjo, Toshihiro; Okamoto, Nobuhiko; Mizuno, Seiji; Kurosawa, Kenji; Ogata, Tsutomu; Takada, Fumio; Yano, Michihiro; Ando, Toru; Hoshika, Tadataka; Barnett, Christopher; Ohashi, Hirofumi; Kawame, Hiroshi; Hasegawa, Tomonobu; Okutani, Takahiro; Nagashima, Tatsuo; Hasegawa, Satoshi; Funayama, Ryo; Nagashima, Takeshi; Nakayama, Keiko; Inoue, Shin-Ichi; Watanabe, Yusuke; Ogura, Toshihiko; Matsubara, Yoichi

    2013-07-11

    RAS GTPases mediate a wide variety of cellular functions, including cell proliferation, survival, and differentiation. Recent studies have revealed that germline mutations and mosaicism for classical RAS mutations, including those in HRAS, KRAS, and NRAS, cause a wide spectrum of genetic disorders. These include Noonan syndrome and related disorders (RAS/mitogen-activated protein kinase [RAS/MAPK] pathway syndromes, or RASopathies), nevus sebaceous, and Schimmelpenning syndrome. In the present study, we identified a total of nine missense, nonsynonymous mutations in RIT1, encoding a member of the RAS subfamily, in 17 of 180 individuals (9%) with Noonan syndrome or a related condition but with no detectable mutations in known Noonan-related genes. Clinical manifestations in the RIT1-mutation-positive individuals are consistent with those of Noonan syndrome, which is characterized by distinctive facial features, short stature, and congenital heart defects. Seventy percent of mutation-positive individuals presented with hypertrophic cardiomyopathy; this frequency is high relative to the overall 20% incidence in individuals with Noonan syndrome. Luciferase assays in NIH 3T3 cells showed that five RIT1 alterations identified in children with Noonan syndrome enhanced ELK1 transactivation. The introduction of mRNAs of mutant RIT1 into 1-cell-stage zebrafish embryos was found to result in a significant increase of embryos with craniofacial abnormalities, incomplete looping, a hypoplastic chamber in the heart, and an elongated yolk sac. These results demonstrate that gain-of-function mutations in RIT1 cause Noonan syndrome and show a similar biological effect to mutations in other RASopathy-related genes. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. Familial Mediterranean fever, Inflammation and Nephrotic Syndrome: Fibrillary Glomerulopathy and the M680I Missense Mutation

    Directory of Open Access Journals (Sweden)

    Semerdjian Ronald J

    2003-08-01

    Full Text Available Abstract Background Familial Mediterranean fever (FMF is an autosomal recessive disease characterized by inflammatory serositis (fever, peritonitis, synovitis and pleuritis. The gene locus responsible for FMF was identified in 1992 and localized to the short arm of chromosome 16. In 1997, a specific FMF gene locus, MEFV, was discovered to encode for a protein, pyrin that mediates inflammation. To date, more than forty missense mutations are known to exist. The diversity of mutations identified has provided insight into the variability of clinical presentation and disease progression. Case Report We report an individual heterozygous for the M680I gene mutation with a clinical diagnosis of FMF using the Tel-Hashomer criteria. Subsequently, the patient developed nephrotic syndrome with biopsy-confirmed fibrillary glomerulonephritis (FGN. Further diagnostic studies were unremarkable with clinical workup negative for amyloidosis or other secondary causes of nephrotic syndrome. Discussion Individuals with FMF are at greater risk for developing nephrotic syndrome. The most serious etiology is amyloidosis (AA variant with renal involvement, ultimately progressing to end-stage renal disease. Other known renal diseases in the FMF population include IgA nephropathy, IgM nephropathy, Henoch-Schönlein purpura as well as polyarteritis nodosa. Conclusion To our knowledge, this is the first association between FMF and the M680I mutation later complicated by nephrotic syndrome and fibrillary glomerulonephritis.

  1. Two missense mutations in KCNQ1 cause pituitary hormone deficiency and maternally inherited gingival fibromatosis

    DEFF Research Database (Denmark)

    Tommiska, Johanna; Känsäkoski, Johanna; Skibsbye, Lasse

    2017-01-01

    unrelated families harbor either of two missense mutations, c.347G>T p.(Arg116Leu) or c.1106C>T p.(Pro369Leu), in KCNQ1, a gene previously implicated in the long QT interval syndrome. Kcnq1 is expressed in hypothalamic GHRH neurons and pituitary somatotropes. Co-expressing KCNQ1 with the KCNE2 β...

  2. A novel missense mutation of the paired box 3 gene in a Turkish family with Waardenburg syndrome type 1.

    Science.gov (United States)

    Hazan, Filiz; Ozturk, A Taylan; Adibelli, Hamit; Unal, Nurettin; Tukun, Ajlan

    2013-01-01

    Screening of mutations in the paired box 3 (PAX3) gene in three generations of a Turkish family with Waardenburg syndrome type 1 (WS1). WS1 was diagnosed in a 13-month-old girl according to the WS Consortium criteria. Detailed family history of the proband revealed eight affected members in three generations. Routine clinical and audiological examination and ophthalmologic evaluation were performed on eight affected and five healthy members of the study family. Dystopia canthorum was detected in all affected patients; however, a brilliant blue iris was present in five patients who also had mild retinal hypopigmentation. Genomic DNA was extracted from the peripheral blood of affected and unaffected individuals in the family as well as 50 unrelated healthy volunteers. All coding exons and adjacent intronic regions of PAX3 were sequenced directly. A novel missense heterozygous c.788T>G mutation was identified in eight patients. This nucleotide alteration was not found in unaffected members of the study family or in the 50 unrelated control subjects. The mutation causes V263G amino-acid substitution in the homeodomain of the PAX3 protein, which represents the 45(th) residue of helix 3. We identified a novel missense c.788T>G mutation in PAX3 in a family with Waardenburg syndrome with intrafamilial phenotypic heterogeneity.

  3. Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome

    DEFF Research Database (Denmark)

    Vega, H; Trainer, A H; Gordillo, M

    2010-01-01

    Roberts syndrome (RBS) and SC phocomelia are caused by mutations in ESCO2, which codes for an acetyltransferase involved in the regulation of sister chromatid cohesion. Of 26 mutations described to date, only one missense mutation has been reported and all others are predicted to be truncating...

  4. Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome

    NARCIS (Netherlands)

    Vega, H.; Trainer, A.H.; Gordillo, M.; Crosier, M.; Kayserili, H.; Skovby, F.; Uzielli, M.L.G.; Schnur, R.E.; Manouvrier, S.; Blair, E.; Hurst, J.A.; Forzano, F.; Meins, M.; Simola, K.O.J.; Raas-Rothschild, A; Hennekam, R.C.M.; Jabs, E.W.

    2010-01-01

    Background Roberts syndrome (RBS) and SC phocomelia are caused by mutations in ESCO2, which codes for an acetyltransferase involved in the regulation of sister chromatid cohesion. Of 26 mutations described to date, only one missense mutation has been reported and all others are predicted to be

  5. A missense mutation in ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome.

    Science.gov (United States)

    Bicknell, Louise S; Pitt, James; Aftimos, Salim; Ramadas, Ram; Maw, Marion A; Robertson, Stephen P

    2008-10-01

    There are several rare syndromes combining wrinkled, redundant skin and neurological abnormalities. Although phenotypic overlap between conditions has suggested that some might be allelic to one another, the aetiology for many of them remains unknown. A consanguineous New Zealand Maori family has been characterised that segregates an autosomal recessive connective tissue disorder (joint dislocations, lax skin) associated with neurological abnormalities (severe global developmental delay, choreoathetosis) without metabolic abnormalities in four affected children. A genome-screen performed under a hypothesis of homozygosity by descent for an ancestral mutation, identified a locus at 10q23 (Z = 3.63). One gene within the candidate interval, ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), was considered a plausible disease gene since a missense mutation had previously been shown to cause progressive neurodegeneration, cataracts, skin laxity, joint dislocations and metabolic derangement in a consanguineous Algerian family. A missense mutation, 2350C>T, was identified in ALDH18A1, which predicts the substitution H784Y. H784 is invariant across all phyla and lies within a previously unrecognised, conserved C-terminal motif in P5CS. In an in vivo assay of flux through this metabolic pathway using dermal fibroblasts obtained from an affected individual, proline and ornithine biosynthetic activity of P5CS was not affected by the H784Y substitution. These data suggest that P5CS may possess additional uncharacterised functions that affect connective tissue and central nervous system function.

  6. Mutations in EXTL3 Cause Neuro-immuno-skeletal Dysplasia Syndrome.

    Science.gov (United States)

    Oud, Machteld M; Tuijnenburg, Paul; Hempel, Maja; van Vlies, Naomi; Ren, Zemin; Ferdinandusse, Sacha; Jansen, Machiel H; Santer, René; Johannsen, Jessika; Bacchelli, Chiara; Alders, Marielle; Li, Rui; Davies, Rosalind; Dupuis, Lucie; Cale, Catherine M; Wanders, Ronald J A; Pals, Steven T; Ocaka, Louise; James, Chela; Müller, Ingo; Lehmberg, Kai; Strom, Tim; Engels, Hartmut; Williams, Hywel J; Beales, Phil; Roepman, Ronald; Dias, Patricia; Brunner, Han G; Cobben, Jan-Maarten; Hall, Christine; Hartley, Taila; Le Quesne Stabej, Polona; Mendoza-Londono, Roberto; Davies, E Graham; de Sousa, Sérgio B; Lessel, Davor; Arts, Heleen H; Kuijpers, Taco W

    2017-02-02

    EXTL3 regulates the biosynthesis of heparan sulfate (HS), important for both skeletal development and hematopoiesis, through the formation of HS proteoglycans (HSPGs). By whole-exome sequencing, we identified homozygous missense mutations c.1382C>T, c.1537C>T, c.1970A>G, and c.2008T>G in EXTL3 in nine affected individuals from five unrelated families. Notably, we found the identical homozygous missense mutation c.1382C>T (p.Pro461Leu) in four affected individuals from two unrelated families. Affected individuals presented with variable skeletal abnormalities and neurodevelopmental defects. Severe combined immunodeficiency (SCID) with a complete absence of T cells was observed in three families. EXTL3 was most abundant in hematopoietic stem cells and early progenitor T cells, which is in line with a SCID phenotype at the level of early T cell development in the thymus. To provide further support for the hypothesis that mutations in EXTL3 cause a neuro-immuno-skeletal dysplasia syndrome, and to gain insight into the pathogenesis of the disorder, we analyzed the localization of EXTL3 in fibroblasts derived from affected individuals and determined glycosaminoglycan concentrations in these cells as well as in urine and blood. We observed abnormal glycosaminoglycan concentrations and increased concentrations of the non-sulfated chondroitin disaccharide D0a0 and the disaccharide D0a4 in serum and urine of all analyzed affected individuals. In summary, we show that biallelic mutations in EXTL3 disturb glycosaminoglycan synthesis and thus lead to a recognizable syndrome characterized by variable expression of skeletal, neurological, and immunological abnormalities. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. Allelic hierarchy of CDH23 mutations causing non-syndromic deafness DFNB12 or Usher syndrome USH1D in compound heterozygotes.

    Science.gov (United States)

    Schultz, Julie M; Bhatti, Rashid; Madeo, Anne C; Turriff, Amy; Muskett, Julie A; Zalewski, Christopher K; King, Kelly A; Ahmed, Zubair M; Riazuddin, Saima; Ahmad, Nazir; Hussain, Zawar; Qasim, Muhammad; Kahn, Shaheen N; Meltzer, Meira R; Liu, Xue Z; Munisamy, Murali; Ghosh, Manju; Rehm, Heidi L; Tsilou, Ekaterini T; Griffith, Andrew J; Zein, Wadih M; Brewer, Carmen C; Riazuddin, Sheikh; Friedman, Thomas B

    2011-11-01

    Recessive mutant alleles of MYO7A, USH1C, CDH23, and PCDH15 cause non-syndromic deafness or type 1 Usher syndrome (USH1) characterised by deafness, vestibular areflexia, and vision loss due to retinitis pigmentosa. For CDH23, encoding cadherin 23, non-syndromic DFNB12 deafness is associated primarily with missense mutations hypothesised to have residual function. In contrast, homozygous nonsense, frame shift, splice site, and some missense mutations of CDH23, all of which are presumably functional null alleles, cause USH1D. The phenotype of a CDH23 compound heterozygote for a DFNB12 allele in trans configuration to an USH1D allele is not known and cannot be predicted from current understanding of cadherin 23 function in the retina and vestibular labyrinth. To address this issue, this study sought CDH23 compound heterozygotes by sequencing this gene in USH1 probands, and families segregating USH1D or DFNB12. Five non-syndromic deaf individuals were identified with normal retinal and vestibular phenotypes that segregate compound heterozygous mutations of CDH23, where one mutation is a known or predicted USH1 allele. One DFNB12 allele in trans configuration to an USH1D allele of CDH23 preserves vision and balance in deaf individuals, indicating that the DFNB12 allele is phenotypically dominant to an USH1D allele. This finding has implications for genetic counselling and the development of therapies for retinitis pigmentosa in Usher syndrome. ACCESSION NUMBERS: The cDNA and protein Genbank accession numbers for CDH23 and cadherin 23 used in this paper are AY010111.2 and AAG27034.2, respectively.

  8. Mutations in WNT7A cause a range of limb malformations, including Fuhrmann syndrome and Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome.

    Science.gov (United States)

    Woods, C G; Stricker, S; Seemann, P; Stern, R; Cox, J; Sherridan, E; Roberts, E; Springell, K; Scott, S; Karbani, G; Sharif, S M; Toomes, C; Bond, J; Kumar, D; Al-Gazali, L; Mundlos, S

    2006-08-01

    Fuhrmann syndrome and the Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome are considered to be distinct limb-malformation disorders characterized by various degrees of limb aplasia/hypoplasia and joint dysplasia in humans. In families with these syndromes, we found homozygous missense mutations in the dorsoventral-patterning gene WNT7A and confirmed their functional significance in retroviral-mediated transfection of chicken mesenchyme cell cultures and developing limbs. The results suggest that a partial loss of WNT7A function causes Fuhrmann syndrome (and a phenotype similar to mouse Wnt7a knockout), whereas the more-severe limb truncation phenotypes observed in Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome result from null mutations (and cause a phenotype similar to mouse Shh knockout). These findings illustrate the specific and conserved importance of WNT7A in multiple aspects of vertebrate limb development.

  9. A novel MKRN3 missense mutation causing familial precocious puberty.

    Science.gov (United States)

    de Vries, L; Gat-Yablonski, G; Dror, N; Singer, A; Phillip, M

    2014-12-01

    Central precocious puberty may be familial in about a quarter of the idiopathic cases. However, little is known about the genetic causes responsible for the disorder. In this report we describe a family with central precocious puberty associated with a mutation in the makorin RING-finger protein 3 (MKRN3) gene. A novel missense mutation (p.H420Q) in the imprinted MKRN3 gene was identified in the four affected siblings, in their unaffected father and in his affected mother. An in silico mutant MKRN3 model predicts that the mutation p.H420Q leads to reduced zinc binding and, subsequently, impaired RNA binding. These findings support the fundamental role of the MKRN3 protein in determining pubertal timing. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Autosomal recessive mutations in THOC6 cause intellectual disability: syndrome delineation requiring forward and reverse phenotyping.

    Science.gov (United States)

    Amos, J S; Huang, L; Thevenon, J; Kariminedjad, A; Beaulieu, C L; Masurel-Paulet, A; Najmabadi, H; Fattahi, Z; Beheshtian, M; Tonekaboni, S H; Tang, S; Helbig, K L; Alcaraz, W; Rivière, J-B; Faivre, L; Innes, A M; Lebel, R R; Boycott, K M

    2017-01-01

    THOC6 is a part of the THO complex, which is involved in coordinating mRNA processing with export. The THO complex interacts with additional components to form the larger TREX complex (transcription export complex). Previously, a homozygous missense mutation in THOC6 in the Hutterite population was reported in association with syndromic intellectual disability. Using exome sequencing, we identified three unrelated patients with bi-allelic mutations in THOC6 associated with intellectual disability and additional clinical features. Two of the patients were compound heterozygous for a stop and a missense mutation, and the third was homozygous for a missense mutation; the missense mutations were predicted to be pathogenic by in silico analysis and modeling. Clinical features of the three newly identified patients and those previously reported are reviewed; intellectual disability is moderate to severe, and malformations are variable including renal and heart defects, cleft palate, microcephaly, and corpus callosum dysgenesis. Facial features are variable and include tall forehead, short upslanting palpebral fissures +/- deep set eyes, and a long nose with overhanging columella. These subtle facial features render the diagnosis difficult to make in isolation with certainty. Our results expand the mutational and clinical spectrum of this rare disease, confirm that THOC6 is an intellectual disability causing gene, while providing insight into the importance of the THO complex in neurodevelopment. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Genotype-Phenotype Correlations Emerging from the Identification of Missense Mutations in MBTPS2

    NARCIS (Netherlands)

    Bornholdt, D.; Atkinson, T.P.; Bouadjar, B.; Catteau, B.; Cox, H.; Silva, D. De; Fischer, J.; Gunasekera, C.N.; Hadj-Rabia, S.; Happle, R.; Holder-Espinasse, M.; Kaminski, E.; Konig, A.; Megarbane, A.; Megarbane, H.; Neidel, U.; Oeffner, F.; Oji, V.; Theos, A.; Traupe, H.; Vahlquist, A.; Bon, B.W. van; Virtanen, M.; Grzeschik, K.H.

    2013-01-01

    Missense mutations affecting membrane-bound transcription factor protease site 2 (MBTPS2) have been associated with Ichthyosis Follicularis with Atrichia and Photophobia (IFAP) syndrome with or without BRESHECK syndrome, with keratosis follicularis spinulosa decalvans, and Olmsted syndrome. This

  12. Common pathogenic effects of missense mutations in the P-type ATPase ATP13A2 (PARK9) associated with early-onset parkinsonism.

    Science.gov (United States)

    Podhajska, Agata; Musso, Alessandra; Trancikova, Alzbeta; Stafa, Klodjan; Moser, Roger; Sonnay, Sarah; Glauser, Liliane; Moore, Darren J

    2012-01-01

    Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s) by which missense mutations potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum. Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and heterozygous missense

  13. WNT10A missense mutation associated with a complete odonto-onycho-dermal dysplasia syndrome.

    Science.gov (United States)

    Nawaz, Sadia; Klar, Joakim; Wajid, Muhammad; Aslam, Muhammad; Tariq, Muhammad; Schuster, Jens; Baig, Shahid Mahmood; Dahl, Niklas

    2009-12-01

    Wnt signalling is one of a few pathways that are crucial for controlling genetic programs during embryonic development as well as in adult tissues. WNT10A is expressed in the skin and epidermis and it has shown to be critical for the development of ectodermal appendages. A nonsense mutation in WNT10A was recently identified in odonto-onycho-dermal dysplasia (OODD; MIM 257980), a rare syndrome characterised by severe hypodontia, nail dystrophy, smooth tongue, dry skin, keratoderma and hyperhydrosis of palms and soles. We identified a large consanguineous Pakistani pedigree comprising six individuals affected by a complete OODD syndrome. Autozygosity mapping using SNP array analysis showed that the affected individuals are homozygous for the WNT10A gene region. Subsequent mutation screening showed a homozygous c.392C>T transition in exon 3 of WNT10A, which predicts a p.A131V substitution in a conserved alpha-helix domain. We report here on the first inherited missense mutation in WNT10A with associated ectodermal features.

  14. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome.

    Science.gov (United States)

    Sousa, Sérgio B; Jenkins, Dagan; Chanudet, Estelle; Tasseva, Guergana; Ishida, Miho; Anderson, Glenn; Docker, James; Ryten, Mina; Sa, Joaquim; Saraiva, Jorge M; Barnicoat, Angela; Scott, Richard; Calder, Alistair; Wattanasirichaigoon, Duangrurdee; Chrzanowska, Krystyna; Simandlová, Martina; Van Maldergem, Lionel; Stanier, Philip; Beales, Philip L; Vance, Jean E; Moore, Gudrun E

    2014-01-01

    Lenz-Majewski syndrome (LMS) is a syndrome of intellectual disability and multiple congenital anomalies that features generalized craniotubular hyperostosis. By using whole-exome sequencing and selecting variants consistent with the predicted dominant de novo etiology of LMS, we identified causative heterozygous missense mutations in PTDSS1, which encodes phosphatidylserine synthase 1 (PSS1). PSS1 is one of two enzymes involved in the production of phosphatidylserine. Phosphatidylserine synthesis was increased in intact fibroblasts from affected individuals, and end-product inhibition of PSS1 by phosphatidylserine was markedly reduced. Therefore, these mutations cause a gain-of-function effect associated with regulatory dysfunction of PSS1. We have identified LMS as the first human disease, to our knowledge, caused by disrupted phosphatidylserine metabolism. Our results point to an unexplored link between phosphatidylserine synthesis and bone metabolism.

  15. Spectrum of MECP2 gene mutations in a cohort of Indian patients with Rett syndrome: report of two novel mutations.

    Science.gov (United States)

    Das, Dhanjit Kumar; Raha, Sarbani; Sanghavi, Daksha; Maitra, Anurupa; Udani, Vrajesh

    2013-02-15

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females and characterized by developmental regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. Rett syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 270 individual nucleotide changes which cause pathogenic mutations have been reported. However, eight most commonly occurring missense and nonsense mutations account for almost 70% of all patients. We screened 90 individuals with Rett syndrome phenotype. A total of 19 different MECP2 mutations and polymorphisms were identified in 27 patients. Of the 19 mutations, we identified 7 (37%) frameshift, 6 (31%) nonsense, 14 (74%) missense mutations and one duplication (5%). The most frequent pathogenic changes were: missense p.T158M (11%), p.R133C (7.4%), and p.R306C (7.4%) and nonsense p.R168X (11%), p.R255X (7.4%) mutations. We have identified two novel mutations namely p.385-388delPLPP present in atypical patients and p.Glu290AlafsX38 present in a classical patient of Rett syndrome. Sequence homology for p.385-388delPLPP mutation revealed that these 4 amino acids were conserved across mammalian species. This indicated the importance of these 4 amino acids in structure and function of the protein. A novel variant p.T479T has also been identified in a patient with atypical Rett syndrome. A total of 62 (69%) patients remained without molecular genetics diagnosis that necessitates further search for mutations in other genes like CDKL5 and FOXG1 that are known to cause Rett phenotype. The majority of mutations are detected in exon 4 and only one mutation was present in exon 3. Therefore, our study suggests the need for screening exon 4 of MECP2 as first line of diagnosis in these patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Mutation in filamin A causes periventricular heterotopia, developmental regression, and West syndrome in males.

    Science.gov (United States)

    Masruha, Marcelo R; Caboclo, Luis O S F; Carrete, Henrique; Cendes, Iscia L; Rodrigues, Murilo G; Garzon, Eliana; Yacubian, Elza M T; Sakamoto, Américo C; Sheen, Volney; Harney, Megan; Neal, Jason; Hill, R Sean; Bodell, Adria; Walsh, Christopher; Vilanova, Luiz C P

    2006-01-01

    Familial periventricular heterotopia (PH) represents a disorder of neuronal migration resulting in multiple gray-matter nodules along the lateral ventricular walls. Prior studies have shown that mutations in the filamin A (FLNA) gene can cause PH through an X-linked dominant pattern. Heterozygotic female patients usually remain asymptomatic until the second or third decade of life, when they may have predominantly focal seizures, whereas hemizygotic male fetuses typically die in utero. Recent studies have also reported mutations in FLNA in male patients with PH who are cognitively normal. We describe PH in three male siblings with PH due to FLNA, severe developmental regression, and West syndrome. The study includes the three affected brothers and their parents. Video-EEG recordings and magnetic resonance image (MRI) scanning were performed on all individuals. Mutations for FLNA were detected by using polymerase chain reaction (PCR) on genomic DNA followed by single-stranded conformational polymorphism (SSCP) analysis or sequencing. Two of the siblings are monozygotic twins, and all had West syndrome with hypsarrhythmia on EEG. MRI of the brain revealed periventricular nodules of cerebral gray-matter intensity, typical for PH. Mutational analyses demonstrated a cytosine-to-thymidine missense mutation (c. C1286T), resulting in a threonine-to-methionine amino acid substitution in exon 9 of the FLNA gene. The association between PH and West syndrome, to our knowledge, has not been previously reported. Males with PH have been known to harbor FLNA mutations, although uniformly, they either show early lethality or survive and have a normal intellect. The current studies show that FLNA mutations can cause periventricular heterotopia, developmental regression, and West syndrome in male patients, suggesting that this type of FLNA mutation may contribute to severe neurologic deficits.

  17. Compound heterozygosity for two GHR missense mutations in a patient affected by Laron Syndrome: a case report.

    Science.gov (United States)

    Moia, Stefania; Tessaris, Daniele; Einaudi, Silvia; de Sanctis, Luisa; Bona, Gianni; Bellone, Simonetta; Prodam, Flavia

    2017-10-12

    Mutations localized in the Growth Hormone Receptor (GHR) gene are often associated with the pathogenesis of Laron Syndrome, an autosomal recessive hereditary disorder characterized by severe growth retardation. Biochemically, patients present normal to high circulating GH levels, in presence of very low or undetectable IGF-I levels, which do not rise after rhGH treatment. We describe the case of a 3.8 years old girl with symmetrical short stature (-3.76 SDS), low IGF-1 and IGFBP-3, in presence of normal GH levels. Parents were not relatives and there was no family history of short stature. During the second day of birth, she developed severe hypoglycaemia that required glucose infusion. She presented frontal bossing and depressed nasal bridge. IGF-1 generation test showed no response, suggesting a GH resistance evidence. In the hypothesis of Laron Syndrome, we decided to perform a molecular analysis of Growth Hormone Receptor (GHR) gene. This analysis demonstrated that the patient was compound heterozygote for two missense mutations. GHR gene mutations are a well demonstrated cause of GH insensitivity. In heterozygous patients, probably the normal stature may be achieved by a compensatory mechanism of GH secretion or signalling. On the contrary, in homozygous or compound heterozygous patients these compensatory mechanisms are inadequate, and short stature may be the consequence.

  18. Brittle Cornea Syndrome Associated with a Missense Mutation in the Zinc-Finger 469 Gene

    DEFF Research Database (Denmark)

    Christensen, Anne Elisabeth; Knappskog, Per Morten; Midtbø, Marit

    2010-01-01

    Purpose: To investigate the diverse clinical manifestations, identify the causative mutation and explain the association with red hair in a family with brittle cornea syndrome (BCS). Methods: Eight family members in three generations underwent ophthalmic, dental, and general medical examination...... mapping with SNP markers, DNA sequencing, and MC1R genotyping. Results: At 42 and 48 years of age, respectively, both affected individuals were blind due to retinal detachment and secondary glaucoma. They had extremely thin and bulging corneas, velvety skin, chestnut colored hair, scoliosis, reduced BMD......, dental anomalies, hearing loss and minor cardiac defects. The morphologies of the skin biopsies were normal except that in some areas slightly thinner collagen fibrils were seen in one of the affected individuals. Molecular genetic analysis revealed a novel missense mutation of ZNF469, c.10016G...

  19. Severe manifestation of Bartter syndrome Type IV caused by a novel insertion mutation in the BSND gene.

    Science.gov (United States)

    de Pablos, Augusto Luque; García-Nieto, Victor; López-Menchero, Jesús C; Ramos-Trujillo, Elena; González-Acosta, Hilaria; Claverie-Martín, Félix

    2014-05-01

    Bartter syndrome Type IV is a rare subtype of the Bartter syndromes that leads to both severe renal salt wasting and sensorineural deafness. This autosomal recessive disease is caused by mutations in the gene encoding barttin, BSND, an essential subunit of the ClC-K chloride channels expressed in renal and inner ear epithelia. Patients differ in the severity of renal symptoms, which appears to depend on the modification of channel function by the mutant barttin. To date, only a few BSND mutations have been reported, most of which are missense or nonsense mutations. In this study, we report the identification of the first insertion mutation, p.W102Vfs*7, in the BSND gene of a newborn girl with acute clinical symptoms including early-onset chronic renal failure. The results support previous data indicating that mutations that are predicted to abolish barttin expression are associated with a severe phenotype and early onset renal failure.

  20. A Homozygous Missense Mutation in TGM5 Abolishes Epidermal Transglutaminase 5 Activity and Causes Acral Peeling Skin Syndrome

    Science.gov (United States)

    Cassidy, Andrew J.; van Steensel, Maurice A. M.; Steijlen, Peter M.; van Geel, Michel; Velden, Jaap van der; Morley, Susan M.; Terrinoni, Alessandro; Melino, Gerry; Candi, Eleonora; McLean, W. H. Irwin

    2005-01-01

    Peeling skin syndrome is an autosomal recessive genodermatosis characterized by the shedding of the outer epidermis. In the acral form, the dorsa of the hands and feet are predominantly affected. Ultrastructural analysis has revealed tissue separation at the junction between the granular cells and the stratum corneum in the outer epidermis. Genomewide linkage analysis in a consanguineous Dutch kindred mapped the gene to 15q15.2 in the interval between markers D15S1040 and D15S1016. Two homozygous missense mutations, T109M and G113C, were found in TGM5, which encodes transglutaminase 5 (TG5), in all affected persons in two unrelated families. The mutation was present on the same haplotype in both kindreds, indicating a probable ancestral mutation. TG5 is strongly expressed in the epidermal granular cells, where it cross-links a variety of structural proteins in the terminal differentiation of the epidermis to form the cornified cell envelope. An established, in vitro, biochemical cross-linking assay revealed that, although T109M is not pathogenic, G113C completely abolishes TG5 activity. Three-dimensional modeling of TG5 showed that G113C lies close to the catalytic domain, and, furthermore, that this glycine residue is conserved in all known transglutaminases, which is consistent with pathogenicity. Other families with more-widespread peeling skin phenotypes lacked TGM5 mutations. This study identifies the first causative gene in this heterogeneous group of skin disorders and demonstrates that the protein cross-linking function performed by TG5 is vital for maintaining cell-cell adhesion between the outermost layers of the epidermis. PMID:16380904

  1. A mutation in KIF7 is responsible for the autosomal recessive syndrome of macrocephaly, multiple epiphyseal dysplasia and distinctive facial appearance

    Directory of Open Access Journals (Sweden)

    Ali Bassam R

    2012-05-01

    Full Text Available Abstract Background We previously reported the existence of a unique autosomal recessive syndrome consisting of macrocephaly, multiple epiphyseal dysplasia and distinctive facial appearance mapping to chromosome 15q26. Methods In this manuscript, we have used whole exome sequencing on two affected members of a consanguineous family with this condition and carried out detailed bioinformatics analysis to elucidate the causative mutation. Results Our analysis resulted in the identification of a homozygous p.N1060S missense mutation in a highly conserved residue in KIF7, a regulator of Hedgehog signaling that has been recently found to be causing Joubert syndrome, fetal hydrolethalus and acrocallosal syndromes. The phenotype in our patients partially overlaps with the phenotypes associated with those syndromes but they also exhibit some distinctive features including multiple epiphyseal dysplasia. Conclusions We report the first missense homozygous disease-causing mutation in KIF7 and expand the clinical spectrum associated with mutations in this gene to include multiple epiphyseal dysplasia. The missense nature of the mutation might account for the unique presentation in our patients.

  2. Waardenburg syndrome: a rare cause of inherited neuropathy due to SOX10 mutation.

    Science.gov (United States)

    Bogdanova-Mihaylova, Petya; Alexander, Michael D; Murphy, Raymond P J; Murphy, Sinéad M

    2017-09-01

    Waardenburg syndrome (WS) is a rare disorder comprising sensorineural deafness and pigmentation abnormalities. Four distinct subtypes are defined based on the presence or absence of additional symptoms. Mutations in six genes have been described in WS. SOX10 mutations are usually associated with a more severe phenotype of WS with peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, and Hirschsprung disease. Here we report a 32-year-old man with a novel heterozygous missense variant in SOX10 gene, who presented with congenital deafness, Hirschsprung disease, iris heterochromia, foot deformity, and intermediate conduction velocity length-dependent sensorimotor neuropathy. This case highlights that the presence of other non-neuropathic features in a patient with presumed hereditary neuropathy should alert the clinician to possible atypical rare causes. © 2017 Peripheral Nerve Society.

  3. Missense Mutation in the USH2A Gene: Association with Recessive Retinitis Pigmentosa without Hearing Loss

    OpenAIRE

    Rivolta, Carlo; Sweklo, Elizabeth A.; Berson, Eliot L.; Dryja, Thaddeus P.

    2000-01-01

    Microdeletions Glu767(1-bp del), Thr967(1-bp del), and Leu1446(2-bp del) in the human USH2A gene have been reported to cause Usher syndrome type II, a disorder characterized by retinitis pigmentosa (RP) and mild-to-severe hearing loss. Each of these three frameshift mutations is predicted to lead to an unstable mRNA transcript that, if translated, would result in a truncated protein lacking the carboxy terminus. Here, we report Cys759Phe, a novel missense mutation in this gene that changes an...

  4. Ubiquitin ligases of the N-end rule pathway: assessment of mutations in UBR1 that cause the Johanson-Blizzard syndrome.

    Directory of Open Access Journals (Sweden)

    Cheol-Sang Hwang

    Full Text Available Johanson-Blizzard syndrome (JBS; OMIM 243800 is an autosomal recessive disorder that includes congenital exocrine pancreatic insufficiency, facial dysmorphism with the characteristic nasal wing hypoplasia, multiple malformations, and frequent mental retardation. Our previous work has shown that JBS is caused by mutations in human UBR1, which encodes one of the E3 ubiquitin ligases of the N-end rule pathway. The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. One class of degradation signals (degrons recognized by UBR1 are destabilizing N-terminal residues of protein substrates.Most JBS-causing alterations of UBR1 are nonsense, frameshift or splice-site mutations that abolish UBR1 activity. We report here missense mutations of human UBR1 in patients with milder variants of JBS. These single-residue changes, including a previously reported missense mutation, involve positions in the RING-H2 and UBR domains of UBR1 that are conserved among eukaryotes. Taking advantage of this conservation, we constructed alleles of the yeast Saccharomyces cerevisiae UBR1 that were counterparts of missense JBS-UBR1 alleles. Among these yeast Ubr1 mutants, one of them (H160R was inactive in yeast-based activity assays, the other one (Q1224E had a detectable but weak activity, and the third one (V146L exhibited a decreased but significant activity, in agreement with manifestations of JBS in the corresponding JBS patients.These results, made possible by modeling defects of a human ubiquitin ligase in its yeast counterpart, verified and confirmed the relevance of specific missense UBR1 alleles to JBS, and suggested that a residual activity of a missense allele is causally associated with milder variants of JBS.

  5. A case of recurrent encephalopathy with SCN2A missense mutation.

    Science.gov (United States)

    Fukasawa, Tatsuya; Kubota, Tetsuo; Negoro, Tamiko; Saitoh, Makiko; Mizuguchi, Masashi; Ihara, Yukiko; Ishii, Atsushi; Hirose, Shinichi

    2015-06-01

    Voltage-gated sodium channels regulate neuronal excitability, as well as survival and the patterning of neuronal connectivity during development. Mutations in SCN2A, which encodes the Na(+) channel Nav1.2, cause epilepsy syndromes and predispose children to acute encephalopathy. Here, we report the case of a young male with recurrent acute encephalopathy who carried a novel missense mutation in the SCN2A gene. He was born by normal delivery and developed repetitive apneic episodes at 2days of age. Diffusion-weighted imaging revealed high-intensity areas in diffuse subcortical white matter, bilateral thalami, and basal nuclei. His symptoms improved gradually without any specific treatment, but he exhibited a motor milestone delay after the episode. At the age of 10months, he developed acute cerebellopathy associated with a respiratory syncytial viral infection. He received high-dose intravenous gammaglobulin and methylprednisolone pulse therapy and seemed to have no obvious sequelae after the episode. He then developed severe diffuse encephalopathy associated with gastroenteritis at the age of 14months. He received high-dose intravenous gammaglobulin and methylprednisolone pulse therapy but was left with severe neurological sequelae. PCR-based analysis revealed a novel de novo missense mutation, c.4979T>G (p.Leu1660Trp), in the SCN2A gene. This case suggests that SCN2A mutations might predispose children to repetitive encephalopathy with variable clinical and imaging findings. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  6. Vascular-type Ehlers-Danlos syndrome caused by a hitherto unknown genetic mutation: a case report

    Directory of Open Access Journals (Sweden)

    Kashizaki Fumihiro

    2013-02-01

    Full Text Available Abstract Introduction Vascular-type Ehlers-Danlos syndrome is an autosomal dominant disease that causes arterial spurting, intestinal perforation, uterine rupture and hemopneumothorax due to decreased production of type III collagen. The average age at death is 48 years old, and it is considered to be the most severe form of Ehlers-Danlos syndrome. We report the case of a 64-year-old Japanese woman and her 38-year-old daughter who were diagnosed with this disease. Case presentation A 64-year-old Japanese woman was referred to our hospital because of right anterior chest pain following cough and pharyngeal discomfort. Pleurisy was suspected due to the presence of right pleural effusion, so the next day she was referred to our department, where a detailed examination led to the diagnosis of hemothorax. The bleeding that caused the right hemothorax was difficult to control, so our patient was transferred to the Department of Thoracic Surgery for hemostasis control. Our patient’s personal history of uterine hemorrhage and skin ulcers, as well as the finding of skin fragility during surgery, were indicative of a weak connective tissue disease; therefore, after improvement of the hemothorax, a genetic analysis was performed. This revealed a heterozygous missense mutation in COL3A1, c.2411 G>T p.Gly804Val (exon 36. A detailed investigation conducted at a later date revealed that her daughter also had the same genetic mutation. This led to the diagnosis of vascular-type Ehlers-Danlos syndrome characterized by a new gene mutation. Conclusion We report a new genetic mutation associated with vascular-type Ehlers-Danlos syndrome. We present the clinical and imaging findings, and the disease and treatment course in this patient. We believe this information will be important in treating future cases of vascular-type Ehlers-Danlos syndrome in patients with this mutation.

  7. A novel COL11A1 missense mutation in siblings with non-ocular Stickler syndrome.

    Science.gov (United States)

    Kohmoto, Tomohiro; Tsuji, Atsumi; Morita, Kei-Ichi; Naruto, Takuya; Masuda, Kiyoshi; Kashimada, Kenichi; Enomoto, Keisuke; Morio, Tomohiro; Harada, Hiroyuki; Imoto, Issei

    2016-01-01

    Stickler syndrome (STL) is an autosomal, dominantly inherited, clinically variable and genetically heterogeneous connective tissue disorder characterized by ocular, auditory, orofacial and skeletal abnormalities. We conducted targeted resequencing using a next-generation sequencer for molecular diagnosis of a 2-year-old girl who was clinically suspected of having STL with Pierre Robin sequence. We detected a novel heterozygous missense mutation, NM_001854.3:n.4838G>A [NM_001854.3 (COL11A1_v001):c.4520G>A], in COL11A1, resulting in a Gly to Asp substitution at position 1507 [NM_001854.3(COL11A1_i001)] within one of the collagen-like domains of the triple helical region. The same mutation was detected in her 4-year-old brother with cleft palate and high-frequency sensorineural hearing loss.

  8. Short-Rib Polydactyly and Jeune Syndromes Are Caused by Mutations in WDR60

    Science.gov (United States)

    McInerney-Leo, Aideen M.; Schmidts, Miriam; Cortés, Claudio R.; Leo, Paul J.; Gener, Blanca; Courtney, Andrew D.; Gardiner, Brooke; Harris, Jessica A.; Lu, Yeping; Marshall, Mhairi; Scambler, Peter J.; Beales, Philip L.; Brown, Matthew A.; Zankl, Andreas; Mitchison, Hannah M.; Duncan, Emma L.; Wicking, Carol

    2013-01-01

    Short-rib polydactyly syndromes (SRPS I–V) are a group of lethal congenital disorders characterized by shortening of the ribs and long bones, polydactyly, and a range of extraskeletal phenotypes. A number of other disorders in this grouping, including Jeune and Ellis-van Creveld syndromes, have an overlapping but generally milder phenotype. Collectively, these short-rib dysplasias (with or without polydactyly) share a common underlying defect in primary cilium function and form a subset of the ciliopathy disease spectrum. By using whole-exome capture and massive parallel sequencing of DNA from an affected Australian individual with SRPS type III, we detected two novel heterozygous mutations in WDR60, a relatively uncharacterized gene. These mutations segregated appropriately in the unaffected parents and another affected family member, confirming compound heterozygosity, and both were predicted to have a damaging effect on the protein. Analysis of an additional 54 skeletal ciliopathy exomes identified compound heterozygous mutations in WDR60 in a Spanish individual with Jeune syndrome of relatively mild presentation. Of note, these two families share one novel WDR60 missense mutation, although haplotype analysis suggested no shared ancestry. We further show that WDR60 localizes at the base of the primary cilium in wild-type human chondrocytes, and analysis of fibroblasts from affected individuals revealed a defect in ciliogenesis and aberrant accumulation of the GLI2 transcription factor at the centrosome or basal body in the absence of an obvious axoneme. These findings show that WDR60 mutations can cause skeletal ciliopathies and suggest a role for WDR60 in ciliogenesis. PMID:23910462

  9. A Case of Inflammatory Generalized Type of Peeling Skin Syndrome Possibly Caused by a Homozygous Missense Mutation of CDSN

    Directory of Open Access Journals (Sweden)

    Hiroshi Kawakami

    2014-10-01

    Full Text Available A 54-year-old Japanese woman had repetitive superficial skin peeling and ensuing erythematous changes in the sites since infancy. Her parents had a consanguineous marriage, and she was the only individual affected in her family tree. The erythematous changes seemed to worsen in the summer. Histologically, hyperkeratosis and splitting of the epidermis within the stratum corneum was noted, and electron microscopy revealed shedding of corneal cells in the horny layer and normal-looking corneodesmosomes. Gene analysis revealed a homozygous missense mutation at c.1358G>A in CDSN. Electron microscopic examination of the length and number of corneodesmosomes revealed statistically significant shortness and sparsity in the affected individual (mean ± SD 386.2 ± 149.5 nm compared with that of an age- and site-matched control (406.6 ± 182.3 nm. We speculate that this size shrinkage of corneodesmosomes might be the result of a missense mutation of CDSN and that this could be one of the factors contributing to the pathological process of skin peeling.

  10. A Case of Inflammatory Generalized Type of Peeling Skin Syndrome Possibly Caused by a Homozygous Missense Mutation of CDSN.

    Science.gov (United States)

    Kawakami, Hiroshi; Uchiyama, Masaki; Maeda, Tatsuo; Tsunoda, Takahiko; Mitsuhashi, Yoshihiko; Tsuboi, Ryoji

    2014-09-01

    A 54-year-old Japanese woman had repetitive superficial skin peeling and ensuing erythematous changes in the sites since infancy. Her parents had a consanguineous marriage, and she was the only individual affected in her family tree. The erythematous changes seemed to worsen in the summer. Histologically, hyperkeratosis and splitting of the epidermis within the stratum corneum was noted, and electron microscopy revealed shedding of corneal cells in the horny layer and normal-looking corneodesmosomes. Gene analysis revealed a homozygous missense mutation at c.1358G>A in CDSN. Electron microscopic examination of the length and number of corneodesmosomes revealed statistically significant shortness and sparsity in the affected individual (mean ± SD 386.2 ± 149.5 nm) compared with that of an age- and site-matched control (406.6 ± 182.3 nm). We speculate that this size shrinkage of corneodesmosomes might be the result of a missense mutation of CDSN and that this could be one of the factors contributing to the pathological process of skin peeling.

  11. Germline KRAS mutations cause Noonan syndrome.

    NARCIS (Netherlands)

    Schubbert, S.; Zenker, M.; Rowe, S.L.; Boll, S.; Klein, C.; Bollag, G.; Burgt, I. van der; Musante, L.; Kalscheuer, V.M.M.; Wehner, L.E.; Nguyen, H.; West, B.; Zhang, K.Y.; Sistermans, E.A.; Rauch, A.; Niemeyer, C.M.; Shannon, K.; Kratz, C.P.

    2006-01-01

    Noonan syndrome (MIM 163950) is characterized by short stature, facial dysmorphism and cardiac defects. Heterozygous mutations in PTPN11, which encodes SHP-2, cause approximately 50% of cases of Noonan syndrome. The SHP-2 phosphatase relays signals from activated receptor complexes to downstream

  12. Missense variants in plakophilin-2 in arrhythmogenic right ventricular cardiomyopathy patients--disease-causing or innocent bystanders?

    Science.gov (United States)

    Christensen, Alex Hørby; Benn, Marianne; Tybjaerg-Hansen, Anne; Haunso, Stig; Svendsen, Jesper Hastrup

    2010-01-01

    Mutations in genes encoding desmosomal proteins have been linked to arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). We hypothesized that a Scandinavian ARVC/D population would have a different spectrum of plakophilin-2 (PKP2) mutations and that some of the reported missense mutations may not be pathogenic. We screened 53 unrelated patients fulfilling Task Force criteria for ARVC/D for mutations in PKP2 by direct sequencing. Seven different mutations were identified: two insertion/deletions (E329fsX352, P401fsX406), 1 splice site (2146-2A>T), 1 non-sense (R79X) and 4 missense mutations (Q62K in 2 patients, G489R, G673V) of undeterminable pathogeneity. None of these mutations was present in 650 controls. Five of the mutations were novel. Seven patients carried reported missense mutations (D26N, S140F, V587I); however, these mutations were identified in our healthy controls, although at a lower frequency. Evaluation of all reported missense mutations in PKP2 showed unclear pathogeneity of several reported mutations. Fifteen percent of Danish ARVC/D patients carried PKP2 mutations. Our finding of reported disease-causing mutations at a low frequency among healthy controls suggests that these variants are disease modifying but not directly disease causing. We recommend conservative interpretation of missense variants in PKP2, functional characterization and large-scale sequencing to clarify normal variation in the gene.

  13. Novel homozygous missense mutation in ALDH7A1 causes neonatal pyridoxine dependent epilepsy.

    Science.gov (United States)

    Coci, Emanuele G; Codutti, Luca; Fink, Christian; Bartsch, Sophie; Grüning, Gunnar; Lücke, Thomas; Kurth, Ingo; Riedel, Joachim

    2017-04-01

    Pyridoxine dependent epilepsy (PDE) (OMIM#266100) is a neonatal form of epilepsy, caused by dysfunction of the enzyme α-aminoadipic semialdehyde dehydrogenase (ALDH7A1 or Antiquitin). This enzyme converts α-aminoadipic semialdehyde (α-AASA) into α-aminoadipate (AAA), a critical step in the lysine metabolism of the brain. ALDH7A1 dysfunction causes an accumulation of α-AASA and δ 1 -piperideine-6-carboxylic acid (P6C), which are in equilibrium with each other. P6C binds and inactivates pyridoxal 5'-phosphate (PLP), the active form of pyridoxine. Individuals affected by ALDH7A1 deficiency show pre-natal and post-natal seizures, which respond to oral pyridoxine but not to other pediatric anti-epileptic drugs. We discovered a novel missense mutation (c.566G > A, p.Gly189Glu) in homozygous state residing in the NAD+ binding domain coding region of exon 6 and affecting an highly conserved amino acid residue. The seizures stopped under post-natal pyridoxine therapy, nevertheless a longer follow-up is needed to evaluate the intellectual development of the child, who is additionally treated with oral l-arginine since the 13th month of life. Developmental delay with or without structural cortex abnormalities were reported in several patients. A brain MRI scan revealed hyperintense white matter in the right cerebellum compatible with cerebellar gliosis. Taken together, our studies enlarge the group of missense pathogenic mutations of ALDH7A1 gene and reveal a novel cerebellar finding within the PDE patients cohort. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Cortical synaptic transmission in CaV2.1 knockin mice with the S218L missense mutation which causes a severe familial hemiplegic migraine syndrome in humans.

    Directory of Open Access Journals (Sweden)

    Dania eVecchia

    2015-02-01

    Full Text Available Familial hemiplegic migraine type 1 (FHM1 is caused by gain-of-function mutations in CaV2.1 (P/Q-type Ca2+ channels. Knockin (KI mice carrying the FHM1 R192Q missense mutation show enhanced cortical excitatory synaptic transmission at pyramidal cell synapses but unaltered cortical inhibitory neurotransmission at fast-spiking interneuron synapses. Enhanced cortical glutamate release was shown to cause the facilitation of cortical spreading depression (CSD in R192Q KI mice. It, however, remains unknown how other FHM1 mutations affect cortical synaptic transmission. Here, we studied neurotransmission in cortical neurons in microculture from KI mice carrying the S218L mutation, which causes a severe FHM syndrome in humans and an allele-dosage dependent facilitation of experimental CSD in KI mice, which is larger than that caused by the R192Q mutation. We show gain-of-function of excitatory neurotransmission, due to increased action-potential evoked Ca2+ influx and increased probability of glutamate release at pyramidal cell synapses, but unaltered inhibitory neurotransmission at multipolar interneuron synapses in S218L KI mice. In contrast with the larger gain-of-function of neuronal CaV2.1 current in homozygous than heterozygous S218L KI mice, the gain-of-function of evoked glutamate release, the paired-pulse ratio and the Ca2+ dependence of the EPSC were all similar in homozygous and heterozygous S218L KI mice, suggesting compensatory changes in the homozygous mice. Furthermore, we reveal a unique feature of S218L KI cortical synapses which is the presence of a fraction of mutant CaV2.1 channels being open at resting potential. Our data suggest that, while the gain-of-function of evoked glutamate release may explain the facilitation of CSD in heterozygous S218L KI mice, the further facilitation of CSD in homozygous S218L KI mice is due to other CaV2.1-dependent mechanisms, that likely include Ca2+ influx at voltages sub-threshold for action

  15. Short-rib polydactyly and Jeune syndromes are caused by mutations in WDR60.

    Science.gov (United States)

    McInerney-Leo, Aideen M; Schmidts, Miriam; Cortés, Claudio R; Leo, Paul J; Gener, Blanca; Courtney, Andrew D; Gardiner, Brooke; Harris, Jessica A; Lu, Yeping; Marshall, Mhairi; Scambler, Peter J; Beales, Philip L; Brown, Matthew A; Zankl, Andreas; Mitchison, Hannah M; Duncan, Emma L; Wicking, Carol

    2013-09-05

    Short-rib polydactyly syndromes (SRPS I-V) are a group of lethal congenital disorders characterized by shortening of the ribs and long bones, polydactyly, and a range of extraskeletal phenotypes. A number of other disorders in this grouping, including Jeune and Ellis-van Creveld syndromes, have an overlapping but generally milder phenotype. Collectively, these short-rib dysplasias (with or without polydactyly) share a common underlying defect in primary cilium function and form a subset of the ciliopathy disease spectrum. By using whole-exome capture and massive parallel sequencing of DNA from an affected Australian individual with SRPS type III, we detected two novel heterozygous mutations in WDR60, a relatively uncharacterized gene. These mutations segregated appropriately in the unaffected parents and another affected family member, confirming compound heterozygosity, and both were predicted to have a damaging effect on the protein. Analysis of an additional 54 skeletal ciliopathy exomes identified compound heterozygous mutations in WDR60 in a Spanish individual with Jeune syndrome of relatively mild presentation. Of note, these two families share one novel WDR60 missense mutation, although haplotype analysis suggested no shared ancestry. We further show that WDR60 localizes at the base of the primary cilium in wild-type human chondrocytes, and analysis of fibroblasts from affected individuals revealed a defect in ciliogenesis and aberrant accumulation of the GLI2 transcription factor at the centrosome or basal body in the absence of an obvious axoneme. These findings show that WDR60 mutations can cause skeletal ciliopathies and suggest a role for WDR60 in ciliogenesis. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. A missense mutation in ALDH1A3 causes isolated microphthalmia/anophthalmia in nine individuals from an inbred Muslim kindred.

    Science.gov (United States)

    Mory, Adi; Ruiz, Francesc X; Dagan, Efrat; Yakovtseva, Evgenia A; Kurolap, Alina; Parés, Xavier; Farrés, Jaume; Gershoni-Baruch, Ruth

    2014-03-01

    Nine affected individuals with isolated anophthalmia/microphthalmia from a large Muslim-inbred kindred were investigated. Assuming autosomal-recessive mode of inheritance, whole-genome linkage analysis, on DNA samples from four affected individuals, was undertaken. Homozygosity mapping techniques were employed and a 1.5-Mbp region, homozygous in all affected individuals, was delineated. The region contained nine genes, one of which, aldehyde dehydrogenase 1 (ALDH1A3), was a clear candidate. This gene seems to encode a key enzyme in the formation of a retinoic-acid gradient along the dorsoventral axis during an early eye development and the development of the olfactory system. Sanger sequence analysis revealed a missense mutation, causing a substitution of valine (Val) to methionine (Met) at position 71. Analyzing the p.Val71Met missense mutation using standard open access software (MutationTaster online, PolyPhen, SIFT/PROVEAN) predicts this variant to be damaging. Enzymatic activity, studied in vitro, showed no changes between the mutated and the wild-type ALDH1A3 protein.

  17. De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome.

    Science.gov (United States)

    Burrage, Lindsay C; Charng, Wu-Lin; Eldomery, Mohammad K; Willer, Jason R; Davis, Erica E; Lugtenberg, Dorien; Zhu, Wenmiao; Leduc, Magalie S; Akdemir, Zeynep C; Azamian, Mahshid; Zapata, Gladys; Hernandez, Patricia P; Schoots, Jeroen; de Munnik, Sonja A; Roepman, Ronald; Pearring, Jillian N; Jhangiani, Shalini; Katsanis, Nicholas; Vissers, Lisenka E L M; Brunner, Han G; Beaudet, Arthur L; Rosenfeld, Jill A; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Xia, Fan; Lalani, Seema R; Lupski, James R; Bongers, Ernie M H F; Yang, Yaping

    2015-12-03

    Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5' end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1(st) coding exon), c.16A>T (p.Lys6(∗)) and c.35_38delTCAA (p.Ile12Lysfs(∗)4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5' end of the geminin protein. All three GMNN mutations identified alter sites 5' to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. UMD-USHbases: a comprehensive set of databases to record and analyse pathogenic mutations and unclassified variants in seven Usher syndrome causing genes.

    Science.gov (United States)

    Baux, David; Faugère, Valérie; Larrieu, Lise; Le Guédard-Méreuze, Sandie; Hamroun, Dalil; Béroud, Christophe; Malcolm, Sue; Claustres, Mireille; Roux, Anne-Françoise

    2008-08-01

    Using the Universal Mutation Database (UMD) software, we have constructed "UMD-USHbases", a set of relational databases of nucleotide variations for seven genes involved in Usher syndrome (MYO7A, CDH23, PCDH15, USH1C, USH1G, USH3A and USH2A). Mutations in the Usher syndrome type I causing genes are also recorded in non-syndromic hearing loss cases and mutations in USH2A in non-syndromic retinitis pigmentosa. Usher syndrome provides a particular challenge for molecular diagnostics because of the clinical and molecular heterogeneity. As many mutations are missense changes, and all the genes also contain apparently non-pathogenic polymorphisms, well-curated databases are crucial for accurate interpretation of pathogenicity. Tools are provided to assess the pathogenicity of mutations, including conservation of amino acids and analysis of splice-sites. Reference amino acid alignments are provided. Apparently non-pathogenic variants in patients with Usher syndrome, at both the nucleotide and amino acid level, are included. The UMD-USHbases currently contain more than 2,830 entries including disease causing mutations, unclassified variants or non-pathogenic polymorphisms identified in over 938 patients. In addition to data collected from 89 publications, 15 novel mutations identified in our laboratory are recorded in MYO7A (6), CDH23 (8), or PCDH15 (1) genes. Information is given on the relative involvement of the seven genes, the number and distribution of variants in each gene. UMD-USHbases give access to a software package that provides specific routines and optimized multicriteria research and sorting tools. These databases should assist clinicians and geneticists seeking information about mutations responsible for Usher syndrome.

  19. Selected missense mutations impair frataxin processing in Friedreich ataxia.

    Science.gov (United States)

    Clark, Elisia; Butler, Jill S; Isaacs, Charles J; Napierala, Marek; Lynch, David R

    2017-08-01

    Frataxin (FXN) is a highly conserved mitochondrial protein. Reduced FXN levels cause Friedreich ataxia, a recessive neurodegenerative disease. Typical patients carry GAA repeat expansions on both alleles, while a subgroup of patients carry a missense mutation on one allele and a GAA repeat expansion on the other. Here, we report that selected disease-related FXN missense mutations impair FXN localization, interaction with mitochondria processing peptidase, and processing. Immunocytochemical studies and subcellular fractionation were performed to study FXN import into the mitochondria and examine the mechanism by which mutations impair FXN processing. Coimmunoprecipitation was performed to study the interaction between FXN and mitochondrial processing peptidase. A proteasome inhibitor was used to model traditional therapeutic strategies. In addition, clinical profiles of subjects with and without point mutations were compared in a large natural history study. FXN I 154F and FXN G 130V missense mutations decrease FXN 81-210 levels compared with FXN WT , FXN R 165C , and FXN W 155R , but do not block its association with mitochondria. FXN I 154F and FXN G 130V also impair FXN maturation and enhance the binding between FXN 42-210 and mitochondria processing peptidase. Furthermore, blocking proteosomal degradation does not increase FXN 81-210 levels. Additionally, impaired FXN processing also occurs in fibroblasts from patients with FXN G 130V . Finally, clinical data from patients with FXN G 130V and FXN I 154F mutations demonstrates a lower severity compared with other individuals with Friedreich ataxia. These data suggest that the effects on processing associated with FXN G 130V and FXN I 154F mutations lead to higher levels of partially processed FXN, which may contribute to the milder clinical phenotypes in these patients.

  20. Abnormal cortical synaptic transmission in CaV2.1 knockin mice with the S218L missense mutation which causes a severe familial hemiplegic migraine syndrome in humans

    Science.gov (United States)

    Vecchia, Dania; Tottene, Angelita; van den Maagdenberg, Arn M.J.M.; Pietrobon, Daniela

    2015-01-01

    Familial hemiplegic migraine type 1 (FHM1) is caused by gain-of-function mutations in CaV2.1 (P/Q-type) Ca2+ channels. Knockin (KI) mice carrying the FHM1 R192Q missense mutation show enhanced cortical excitatory synaptic transmission at pyramidal cell synapses but unaltered cortical inhibitory neurotransmission at fast-spiking interneuron synapses. Enhanced cortical glutamate release was shown to cause the facilitation of cortical spreading depression (CSD) in R192Q KI mice. It, however, remains unknown how other FHM1 mutations affect cortical synaptic transmission. Here, we studied neurotransmission in cortical neurons in microculture from KI mice carrying the S218L mutation, which causes a severe FHM syndrome in humans and an allele-dosage dependent facilitation of experimental CSD in KI mice, which is larger than that caused by the R192Q mutation. We show gain-of-function of excitatory neurotransmission, due to increased action-potential evoked Ca2+ influx and increased probability of glutamate release at pyramidal cell synapses, but unaltered inhibitory neurotransmission at multipolar interneuron synapses in S218L KI mice. In contrast with the larger gain-of-function of neuronal CaV2.1 current in homozygous than heterozygous S218L KI mice, the gain-of-function of evoked glutamate release, the paired-pulse ratio and the Ca2+ dependence of the excitatory postsynaptic current were similar in homozygous and heterozygous S218L KI mice, suggesting compensatory changes in the homozygous mice. Furthermore, we reveal a unique feature of S218L KI cortical synapses which is the presence of a fraction of mutant CaV2.1 channels being open at resting potential. Our data suggest that, while the gain-of-function of evoked glutamate release may explain the facilitation of CSD in heterozygous S218L KI mice, the further facilitation of CSD in homozygous S218L KI mice is due to other CaV2.1-dependent mechanisms, that likely include Ca2+ influx at voltages sub-threshold for action

  1. Report of a patient with a constitutional missense mutation in SMARCB1, Coffin-Siris phenotype, and schwannomatosis.

    Science.gov (United States)

    Gossai, Nathan; Biegel, Jaclyn A; Messiaen, Ludwine; Berry, Susan A; Moertel, Christopher L

    2015-12-01

    We report a patient with a constitutional missense mutation in SMARCB1, Coffin-Siris Syndrome (CSS), and schwannomatosis. CSS is a rare congenital syndrome with characteristic clinical findings. This thirty-three-year-old man was diagnosed early in life with the constellation of moderate intellectual disability, hypotonia, mild microcephaly, coarse facies, wide mouth with full lips, hypoplasia of the digits, and general hirsutism. At age 26, he was found to have schwannomatosis after presenting with acute spinal cord compression. Blood and tissue analysis of multiple subsequent schwannoma resections revealed a germline missense mutation of SMARCB1, acquired loss of 22q including SMARCB1 and NF2 and mutation of the remaining NF2 wild-type allele-thus completing the four-hit, three-event mechanism associated with schwannomatosis. Variations in five genes have been associated with the Coffin-Siris phenotype: ARID1A, ARID1B, SMARCA4, SMARCB1, and SMARCE1. Of these genes, SMARCB1 has a well-established association with schwannomatosis and malignancy. This is the first report of a patient with a constitutional missense mutation of SMARCB1 resulting in CSS and subsequent development of schwannomatosis. This finding demonstrates that a SMARCB1 mutation may be the initial "hit" (constitutional) for a genetic disorder with subsequent risk of developing schwannomas and other malignancies, and raises the possibility that other patients with switch/sucrose non-fermenting (SWI/SNF) mutations may be at increased risk for tumors. © 2015 Wiley Periodicals, Inc.

  2. Familial tumoral calcinosis and hyperostosis-hyperphosphataemia syndrome are different manifestations of the same disease: novel missense mutations in GALNT3

    International Nuclear Information System (INIS)

    Joseph, Leo; Joseph, Selvanayagam; Hing, Sandra N.; Idowu, Bernadine D.; Delaney, David; Presneau, Nadege; O'Donnell, Paul; Diss, Tim; Flanagan, Adrienne Margaret

    2010-01-01

    To report on the biochemistry and clinical and genetic findings of two siblings, the younger sister presenting with recurrent bone pain of the radius and ulna, and medullary sclerosis, and the older brother with soft tissue calcific deposits (tumoral calcinosis) but who later developed bone pain. Both were found to be hyperphosphaturic. The index family comprised four individuals (father, mother, brother, sister). The affected siblings were the offspring of a non-consanguineous Indian family of Tamil origin. Bidirectional sequencing was performed on the DNA from the index family and on 160 alleles from a population of 80 unrelated unaffected control individuals of Tamil extraction and 72 alleles from individuals of non-Tamil origin. Two symptomatic siblings were found to harbour previously unreported compound heterozygous missense UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 3 (GalNAc-transferase; GALNT3) mutations in exon 4 c.842A>G and exon 5 c.1097T>G. This sequence variation was not detected in the control DNA. This is the first report of siblings exhibiting stigmata of familial tumoral calcinosis and hyperostosis-hyperphosphataemia syndrome with documented evidence of autosomal recessive missense GALNT3 mutations. The findings from this family add further evidence to the literature that familial tumoral calcinosis and hyperostosis-hyperphosphataemia syndrome are manifestations of the same disease and highlight the importance of appropriate metabolic and genetic investigations. (orig.)

  3. Familial tumoral calcinosis and hyperostosis-hyperphosphataemia syndrome are different manifestations of the same disease: novel missense mutations in GALNT3

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Leo; Joseph, Selvanayagam [Vinodhagan Memorial Hospital and Dr. Joseph' s Ortho Clinic, Department of Orthopaedic Surgery, Thanjavur (India); Hing, Sandra N.; Idowu, Bernadine D.; Delaney, David [Royal National Orthopaedic Hospital NHS Trust, Department of Histopathology, Stanmore, Middlesex (United Kingdom); Presneau, Nadege [University College London (UCL), Cancer Institute, London (United Kingdom); O' Donnell, Paul [Royal National Orthopaedic Hospital NHS Trust, Department of Radiology, Stanmore, Middlesex (United Kingdom); University College London (UCL), Institute of Orthopaedics and Musculoskeletal Science, Stanmore (United Kingdom); University College London (UCL), The Institute of Orthopaedics and Musculoskeletal Science, London (United Kingdom); Diss, Tim [University College London Hospital (UCLH) NHS Trust, Rockefeller Building, Department of Histopathology, London (United Kingdom); Flanagan, Adrienne Margaret [Royal National Orthopaedic Hospital NHS Trust, Department of Histopathology, Stanmore, Middlesex (United Kingdom); University College London (UCL), Cancer Institute, London (United Kingdom); University College London Hospital (UCLH) NHS Trust, Rockefeller Building, Department of Histopathology, London (United Kingdom); University College London (UCL), Institute of Orthopaedics and Musculoskeletal Science, Stanmore (United Kingdom); Institute of Orthopaedics and Musculoskeletal Science, Stanmore, Middlesex (United Kingdom)

    2010-01-15

    To report on the biochemistry and clinical and genetic findings of two siblings, the younger sister presenting with recurrent bone pain of the radius and ulna, and medullary sclerosis, and the older brother with soft tissue calcific deposits (tumoral calcinosis) but who later developed bone pain. Both were found to be hyperphosphaturic. The index family comprised four individuals (father, mother, brother, sister). The affected siblings were the offspring of a non-consanguineous Indian family of Tamil origin. Bidirectional sequencing was performed on the DNA from the index family and on 160 alleles from a population of 80 unrelated unaffected control individuals of Tamil extraction and 72 alleles from individuals of non-Tamil origin. Two symptomatic siblings were found to harbour previously unreported compound heterozygous missense UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 3 (GalNAc-transferase; GALNT3) mutations in exon 4 c.842A>G and exon 5 c.1097T>G. This sequence variation was not detected in the control DNA. This is the first report of siblings exhibiting stigmata of familial tumoral calcinosis and hyperostosis-hyperphosphataemia syndrome with documented evidence of autosomal recessive missense GALNT3 mutations. The findings from this family add further evidence to the literature that familial tumoral calcinosis and hyperostosis-hyperphosphataemia syndrome are manifestations of the same disease and highlight the importance of appropriate metabolic and genetic investigations. (orig.)

  4. Structure-Function Correlation Analysis of Connexin50 Missense Mutations Causing Congenital Cataract: Electrostatic Potential Alteration Could Determine Intracellular Trafficking Fate of Mutants

    Directory of Open Access Journals (Sweden)

    Devroop Sarkar

    2014-01-01

    Full Text Available Connexin50 (Cx50 mutations are reported to cause congenital cataract probably through the disruption of intercellular transport in the lens. Cx50 mutants that undergo mistrafficking have generally been associated with failure to form functional gap junction channels; however, sometimes even properly trafficked mutants were found to undergo similar consequences. We hereby wanted to elucidate any structural bases of the varied functional consequences of Cx50 missense mutations through in silico approach. Computational studies have been done based on a Cx50 homology model to assess conservation, solvent accessibility, and 3-dimensional localization of mutated residues as well as mutation-induced changes in surface electrostatic potential, H-bonding, and steric clash. This was supplemented with meta-analysis of published literature on the functional properties of connexin missense mutations. Analyses revealed that the mutation-induced critical alterations of surface electrostatic potential in Cx50 mutants could determine their fate in intracellular trafficking. A similar pattern was observed in case of mutations involving corresponding conserved residues in other connexins also. Based on these results the trafficking fates of 10 uncharacterized Cx50 mutations have been predicted. Further experimental analyses are needed to validate the observed correlation.

  5. Abnormal fibrinogen Zlín (.gamma.Thr21Ile) with missense mutation causing hypofibrinogenemia

    Czech Academy of Sciences Publication Activity Database

    Riedelová-Reicheltová, Z.; Riedel, Tomáš; Májek, P.; Kotlín, R.; Geierová, V.; Suttnar, J.; Dyr, J. E.

    2014-01-01

    Roč. 132, č. 2 (2014), s. 140-143 ISSN 0001-5792 R&D Projects: GA ČR GBP205/12/G118 Institutional support: RVO:61389013 Keywords : fibrinogen * missense mutation * hypofibrinogenemia Subject RIV: BO - Biophysics Impact factor: 1.116, year: 2014

  6. Novel association of neurofibromatosis type 1-causing mutations in families with neurofibromatosis-Noonan syndrome.

    Science.gov (United States)

    Ekvall, Sara; Sjörs, Kerstin; Jonzon, Anders; Vihinen, Mauno; Annerén, Göran; Bondeson, Marie-Louise

    2014-03-01

    Neurofibromatosis-Noonan syndrome (NFNS) is a rare condition with clinical features of both neurofibromatosis type 1 (NF1) and Noonan syndrome (NS). All three syndromes belong to the RASopathies, which are caused by dysregulation of the RAS-MAPK pathway. The major gene involved in NFNS is NF1, but co-occurring NF1 and PTPN11 mutations in NFNS have been reported. Knowledge about possible involvement of additional RASopathy-associated genes in NFNS is, however, very limited. We present a comprehensive clinical and molecular analysis of eight affected individuals from three unrelated families displaying features of NF1 and NFNS. The genetic etiology of the clinical phenotypes was investigated by mutation analysis, including NF1, PTPN11, SOS1, KRAS, NRAS, BRAF, RAF1, SHOC2, SPRED1, MAP2K1, MAP2K2, and CBL. All three families harbored a heterozygous NF1 variant, where the first family had a missense variant, c.5425C>T;p.R1809C, the second family a recurrent 4bp-deletion, c.6789_6792delTTAC;p.Y2264Tfs*6, and the third family a splice-site variant, c.2991-1G>A, resulting in skipping of exon 18 and an in-frame deletion of 41 amino acids. These NF1 variants have all previously been reported in NF1 patients. Surprisingly, both c.6789_6792delTTAC and c.2991-1G>A are frequently associated with NF1, but association to NFNS has, to our knowledge, not previously been reported. Our results support the notion that NFNS represents a variant of NF1, genetically distinct from NS, and is caused by mutations in NF1, some of which also cause classical NF1. Due to phenotypic overlap between NFNS and NS, we propose screening for NF1 mutations in NS patients, preferentially when café-au-lait spots are present. © 2013 Wiley Periodicals, Inc.

  7. Mutation Spectrum and Phenotypic Features in Noonan Syndrome with PTPN11 Mutations: Definition of Two Novel Mutations.

    Science.gov (United States)

    Atik, Tahir; Aykut, Ayca; Hazan, Filiz; Onay, Huseyin; Goksen, Damla; Darcan, Sukran; Tukun, Ajlan; Ozkinay, Ferda

    2016-06-01

    To evaluate the spectrum of PTPN11 gene mutations in Noonan syndrome patients and to study the genotype-phenotype associations. In this study, twenty Noonan syndrome patients with PTPN11 mutations were included. The patients underwent a detailed clinical and physical evaluation. To identify inherited cases, parents of all mutation positive patients were analyzed. Thirteen different PTPN11 mutations, two of them being novel, were detected in the study group. These mutations included eleven missense mutations: p.G60A, p.D61N, p.Y62D, p.Y63C, p.E69Q, p.Q79R, p.Y279C,p.N308D, p.N308S, p.M504V, p.Q510R and two novel missense mutations: p.I56V and p.I282M. The frequency of cardiac abnormalities and short stature were found to be 80 % and 80 %, respectively. Mental retardation was not observed in patients having exon 8 mutations. No significant correlations were detected between other phenotypic features and genotypes. By identifying genotype-phenotype correlations, this study provides information on phenotypes observed in NS patients with different PTPN11 mutations.

  8. Novel mutations in the long isoform of the USH2A gene in patients with Usher syndrome type II or non-syndromic retinitis pigmentosa.

    Science.gov (United States)

    McGee, Terri L; Seyedahmadi, Babak Jian; Sweeney, Meredith O; Dryja, Thaddeus P; Berson, Eliot L

    2010-07-01

    Usher syndrome type II (USH2) is an autosomal recessive disorder characterised by retinitis pigmentosa (RP) and mild to moderate sensorineural hearing loss. Mutations in the USH2A gene are the most common cause of USH2 and are also a cause of some forms of RP without hearing loss (ie, non-syndromic RP). The USH2A gene was initially identified as a transcript comprised of 21 exons but subsequently a longer isoform containing 72 exons was identified. The 51 exons unique to the long isoform of USH2A were screened for mutations among a core set of 108 patients diagnosed with USH2 and 80 patients with non-syndromic RP who were all included in a previously reported screen of the short isoform of USH2A. For several exons, additional patients were screened. In total, 35 deleterious mutations were identified including 17 nonsense mutations, 9 frameshift mutations, 5 splice-site mutations, and 4 small in-frame deletions or insertions. Twenty-seven mutations were novel. In addition, 65 rare missense changes were identified. A method of classifying the deleterious effect of the missense changes was developed using the summed results of four different mutation assessment algorithms, SIFT, pMUT, PolyPhen, and AGVGD. This system classified 8 of the 65 changes as 'likely deleterious' and 9 as 'possibly deleterious'. At least one mutation was identified in 57-63% of USH2 cases and 19-23% of cases of non-syndromic recessive RP (calculated without and including probable/possible deleterious changes) thus supporting that USH2A is the most common known cause of RP in the USA.

  9. Defective nucleolar localization and dominant interfering properties of a parafibromin L95P missense mutant causing the hyperparathyroidism-jaw tumor syndrome

    Science.gov (United States)

    Panicker, Leelamma M.; Zhang, Jian-Hua; Dagur, Pradeep K.; Gastinger, Matthew J.; Simonds, William F.

    2011-01-01

    The hyperparathyroidism-jaw tumor syndrome (HPT-JT) is a familial cancer syndrome that can result from germline inactivation of HRPT2/CDC73, a putative tumor suppressor gene that encodes parafibromin, a component of the transcriptional regulatory PAF1 complex with homology to the yeast protein Cdc73p. The vast majority of HRPT2/CDC73 germline mutations identified have been truncation or frameshift mutations, and loss-of-function due to missense mutation is rare. We report here a kindred with HPT-JT due to a germline L95P missense mutation in parafibromin. The mutant parafibromin was studied in vitro to understand the basis of its presumed loss-of-function. When transfected in cultured cells the L95P mutant was expressed to a lower level than wild-type parafibromin, a difference that was not overcome by inhibition of the proteasome degradation pathway. The L95P mutant parafibromin retained the ability to assemble with endogenous PAF1 complex components as evidenced by co-immunoprecipitation. Analysis of subcellular localization showed that the L95P mutant was markedly deficient in nucleolar localization compared to the wild-type, an impairment likely resulting from disruption of a putative nucleolar localization signal immediately upstream of the L95P mutation. Transfection of the L95P parafibromin mutant, but not the wild type, enhanced cell-cycle progression and increased cell survival in NIH-3T3 and HEK 293 cells, resulting apparently from dominant interference with endogenous parafibromin action. The simultaneous loss of nucleolar localization and acquisition of a growth stimulatory phenotype with the L95P mutation raise the possibility that parafibromin must interact with targets in the nucleolus to fully execute its tumor suppressor functions. PMID:20304979

  10. Missense mutation in the USH2A gene: association with recessive retinitis pigmentosa without hearing loss.

    Science.gov (United States)

    Rivolta, C; Sweklo, E A; Berson, E L; Dryja, T P

    2000-06-01

    Microdeletions Glu767(1-bp del), Thr967(1-bp del), and Leu1446(2-bp del) in the human USH2A gene have been reported to cause Usher syndrome type II, a disorder characterized by retinitis pigmentosa (RP) and mild-to-severe hearing loss. Each of these three frameshift mutations is predicted to lead to an unstable mRNA transcript that, if translated, would result in a truncated protein lacking the carboxy terminus. Here, we report Cys759Phe, a novel missense mutation in this gene that changes an amino-acid residue within the fifth laminin-epidermal growth factor-like domain of the USH2A gene and that is associated with recessive RP without hearing loss. This single mutation was found in 4.5% of 224 patients with recessive RP, suggesting that USH2A could cause more cases of nonsyndromic recessive RP than does any other gene identified to date.

  11. A novel missense HGD gene mutation, K57N, in a patient with alkaptonuria.

    Science.gov (United States)

    Grasko, Jonathan M; Hooper, Amanda J; Brown, Jeffrey W; McKnight, C James; Burnett, John R

    2009-05-01

    Alkaptonuria is a rare recessive disorder of phenylalanine/tyrosine metabolism due to a defect in the enzyme homogentisate 1,2-dioxygenase (HGD) caused by mutations in the HGD gene. We report the case of a 38 year-old male with known alkaptonuria who was referred to an adult metabolic clinic after initially presenting to an emergency department with renal colic and subsequently passing black ureteric calculi. He complained of severe debilitating lower back pain, worsening over the last few years. A CT scan revealed marked degenerative changes and severe narrowing of the disc spaces along the entire lumbar spine. Sequencing of the HGD gene revealed that he was a compound heterozygote for a previously described missense mutation in exon 13 (G360R) and a novel missense mutation in exon 3 (K57N). Lys(57) is conserved among species and mutation of this residue is predicted to affect HGD protein function by interfering with substrate traffic at the active site. In summary, we describe an alkaptonuric patient and report a novel missense HGD mutation, K57N.

  12. Hotspots of missense mutation identify novel neurodevelopmental disorder genes and functional domains

    Science.gov (United States)

    Geisheker, Madeleine R.; Heymann, Gabriel; Wang, Tianyun; Coe, Bradley P.; Turner, Tychele N.; Stessman, Holly A.F.; Hoekzema, Kendra; Kvarnung, Malin; Shaw, Marie; Friend, Kathryn; Liebelt, Jan; Barnett, Christopher; Thompson, Elizabeth M.; Haan, Eric; Guo, Hui; Anderlid, Britt-Marie; Nordgren, Ann; Lindstrand, Anna; Vandeweyer, Geert; Alberti, Antonino; Avola, Emanuela; Vinci, Mirella; Giusto, Stefania; Pramparo, Tiziano; Pierce, Karen; Nalabolu, Srinivasa; Michaelson, Jacob J.; Sedlacek, Zdenek; Santen, Gijs W.E.; Peeters, Hilde; Hakonarson, Hakon; Courchesne, Eric; Romano, Corrado; Kooy, R. Frank; Bernier, Raphael A.; Nordenskjöld, Magnus; Gecz, Jozef; Xia, Kun; Zweifel, Larry S.; Eichler, Evan E.

    2017-01-01

    Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,689 NDD patients identified 21 new patients with identical missense mutations. One recurrent site (p.Ala636Thr) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology. PMID:28628100

  13. A Novel Missense Mutation in Oncostatin M Receptor Beta Causing Primary Localized Cutaneous Amyloidosis

    Directory of Open Access Journals (Sweden)

    Marjan Saeedi

    2014-01-01

    Full Text Available Primary localized cutaneous amyloidosis (PLCA is a chronic skin disorder, caused by amyloid material deposition in the upper dermis. Autosomal dominant PLCA has been mapped earlier to pathogenic missense mutations in the OSMR gene, which encodes the oncostatin M receptor ß subunit (OSMRß. OSMRß is interleukin-6 family cytokine receptors and possesses two ligands, oncostatin M and interleukin-31, which both have biologic roles in inflammation and keratinocyte cell proliferation, differentiation, and apoptosis. Here, we identified a new OSMR mutation in a Kurdish family for the first time. Blood samples were taken from all the affected individuals in the family. DNA extraction was performed using salting out technique. Primers were designed for intron flanking individual exons of OSMR gene which were subjected to direct sequencing after PCR amplification for each sample. Sequencing showed a C/T substitution at position 613 in the proband. This mutation results in an L613S (leucine 613 to serine amino acid change. The identified mutation was observed in all affected family members but not in 100 ethnically matched healthy controls. Elucidating the molecular basis of familial PLCA provides new insight into mechanisms of itch in human skin and may lead to new therapeutic targets for pruritus.

  14. Diverse growth hormone receptor gene mutations in Laron syndrome.

    Science.gov (United States)

    Berg, M A; Argente, J; Chernausek, S; Gracia, R; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo, S P; Francke, U

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. Images Figure 1 Figure 2 PMID:8488849

  15. SKIV2L Mutations Cause Syndromic Diarrhea, or Trichohepatoenteric Syndrome

    Science.gov (United States)

    Fabre, Alexandre; Charroux, Bernard; Martinez-Vinson, Christine; Roquelaure, Bertrand; Odul, Egritas; Sayar, Ersin; Smith, Hilary; Colomb, Virginie; Andre, Nicolas; Hugot, Jean-Pierre; Goulet, Olivier; Lacoste, Caroline; Sarles, Jacques; Royet, Julien; Levy, Nicolas; Badens, Catherine

    2012-01-01

    Syndromic diarrhea (or trichohepatoenteric syndrome) is a rare congenital bowel disorder characterized by intractable diarrhea and woolly hair, and it has recently been associated with mutations in TTC37. Although databases report TTC37 as being the human ortholog of Ski3p, one of the yeast Ski-complex cofactors, this lead was not investigated in initial studies. The Ski complex is a multiprotein complex required for exosome-mediated RNA surveillance, including the regulation of normal mRNA and the decay of nonfunctional mRNA. Considering the fact that TTC37 is homologous to Ski3p, we explored a gene encoding another Ski-complex cofactor, SKIV2L, in six individuals presenting with typical syndromic diarrhea without variation in TTC37. We identified mutations in all six individuals. Our results show that mutations in genes encoding cofactors of the human Ski complex cause syndromic diarrhea, establishing a link between defects of the human exosome complex and a Mendelian disease. PMID:22444670

  16. Mutations in the G6PC3 gene cause Dursun syndrome.

    Science.gov (United States)

    Banka, Siddharth; Newman, William G; Ozgül, R Koksal; Dursun, Ali

    2010-10-01

    Dursun syndrome is a triad of familial primary pulmonary hypertension, leucopenia, and atrial septal defect. Here we demonstrate that mutations in G6PC3 cause Dursun syndrome. Mutations in G6PC3 are known to also cause severe congenital neutropenia type 4. Identification of the genetic basis of Dursun syndrome expands the pre-existing knowledge about the phenotypic effects of mutations in G6PC3. We propose that Dursun syndrome should now be considered as a subset of severe congenital neutropenia type 4 with pulmonary hypertension as an important clinical feature. Copyright © 2010 Wiley-Liss, Inc.

  17. Novel USH2A mutations in Israeli patients with retinitis pigmentosa and Usher syndrome type 2.

    Science.gov (United States)

    Kaiserman, Nadia; Obolensky, Alexey; Banin, Eyal; Sharon, Dror

    2007-02-01

    To identify USH2A mutations in Israeli patients with autosomal-recessive Usher syndrome type 2 (USH2) and retinitis pigmentosa (RP). Patients from 95 families with RP and 4 with USH2 were clinically evaluated. USH2A exons 2-72 were scanned for mutations using single-strand conformation and sequencing analyses. The frequency of novel missense changes was determined in patients and controls using restriction endonucleases. The analysis revealed 3 USH2A mutations, 2 of which are novel, in 2 families with USH2 and a large family (MOL0051) with both USH2 and RP. Compound heterozygotes for 2 null mutations (Thr80fs and Arg737stop) in MOL0051 suffered from USH2 while compound heterozygotes for 1 of the null mutations and a novel missense mutation (Gly4674Arg) had nonsyndromic RP. Our results support the involvement of USH2A in nonsyndromic RP and we report here of a second, novel, missense mutation in this gene causing autosomal-recessive RP. Possible involvement of USH2A should be considered in the molecular genetic evaluation of patients with autosomal-recessive RP. Understanding the mechanism by which different USH2A mutations cause either USH2 or RP may assist in the development of novel therapeutic approaches.

  18. A novel mutation in the connexin 26 gene (GJB2) in a child with clinical and histological features of keratitis-ichthyosis-deafness (KID) syndrome

    DEFF Research Database (Denmark)

    Koppelhus, Uffe; Tranebjaerg, L; Esberg, G

    2011-01-01

    Keratitis-ichthyosis-deafness (KID) syndrome is a rare congenital ectodermal disorder, caused by heterozygous missense mutation in GJB2, encoding the gap junction protein connexin 26. The commonest mutation is the p.Asp50Asn mutation, and only a few other mutations have been described to date....

  19. Phenotype and genotype in 52 patients with Rubinstein-Taybi syndrome caused by EP300 mutations.

    Science.gov (United States)

    Fergelot, Patricia; Van Belzen, Martine; Van Gils, Julien; Afenjar, Alexandra; Armour, Christine M; Arveiler, Benoit; Beets, Lex; Burglen, Lydie; Busa, Tiffany; Collet, Marie; Deforges, Julie; de Vries, Bert B A; Dominguez Garrido, Elena; Dorison, Nathalie; Dupont, Juliette; Francannet, Christine; Garciá-Minaúr, Sixto; Gabau Vila, Elisabeth; Gebre-Medhin, Samuel; Gener Querol, Blanca; Geneviève, David; Gérard, Marion; Gervasini, Cristina Giovanna; Goldenberg, Alice; Josifova, Dragana; Lachlan, Katherine; Maas, Saskia; Maranda, Bruno; Moilanen, Jukka S; Nordgren, Ann; Parent, Philippe; Rankin, Julia; Reardon, Willie; Rio, Marlène; Roume, Joëlle; Shaw, Adam; Smigiel, Robert; Sojo, Amaia; Solomon, Benjamin; Stembalska, Agnieszka; Stumpel, Constance; Suarez, Francisco; Terhal, Paulien; Thomas, Simon; Touraine, Renaud; Verloes, Alain; Vincent-Delorme, Catherine; Wincent, Josephine; Peters, Dorien J M; Bartsch, Oliver; Larizza, Lidia; Lacombe, Didier; Hennekam, Raoul C

    2016-12-01

    Rubinstein-Taybi syndrome (RSTS) is a developmental disorder characterized by a typical face and distal limbs abnormalities, intellectual disability, and a vast number of other features. Two genes are known to cause RSTS, CREBBP in 60% and EP300 in 8-10% of clinically diagnosed cases. Both paralogs act in chromatin remodeling and encode for transcriptional co-activators interacting with >400 proteins. Up to now 26 individuals with an EP300 mutation have been published. Here, we describe the phenotype and genotype of 42 unpublished RSTS patients carrying EP300 mutations and intragenic deletions and offer an update on another 10 patients. We compare the data to 308 individuals with CREBBP mutations. We demonstrate that EP300 mutations cause a phenotype that typically resembles the classical RSTS phenotype due to CREBBP mutations to a great extent, although most facial signs are less marked with the exception of a low-hanging columella. The limb anomalies are more similar to those in CREBBP mutated individuals except for angulation of thumbs and halluces which is very uncommon in EP300 mutated individuals. The intellectual disability is variable but typically less marked whereas the microcephaly is more common. All types of mutations occur but truncating mutations and small rearrangements are most common (86%). Missense mutations in the HAT domain are associated with a classical RSTS phenotype but otherwise no genotype-phenotype correlation is detected. Pre-eclampsia occurs in 12/52 mothers of EP300 mutated individuals versus in 2/59 mothers of CREBBP mutated individuals, making pregnancy with an EP300 mutated fetus the strongest known predictor for pre-eclampsia. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Heterozygous Germline Mutations in the CBL Tumor-Suppressor Gene Cause a Noonan Syndrome-like Phenotype

    Science.gov (United States)

    Martinelli, Simone; De Luca, Alessandro; Stellacci, Emilia; Rossi, Cesare; Checquolo, Saula; Lepri, Francesca; Caputo, Viviana; Silvano, Marianna; Buscherini, Francesco; Consoli, Federica; Ferrara, Grazia; Digilio, Maria C.; Cavaliere, Maria L.; van Hagen, Johanna M.; Zampino, Giuseppe; van der Burgt, Ineke; Ferrero, Giovanni B.; Mazzanti, Laura; Screpanti, Isabella; Yntema, Helger G.; Nillesen, Willy M.; Savarirayan, Ravi; Zenker, Martin; Dallapiccola, Bruno; Gelb, Bruce D.; Tartaglia, Marco

    2010-01-01

    RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies. PMID:20619386

  1. Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Huang Lijia

    2012-09-01

    Full Text Available Abstract Background Congenital nonprogressive spinocerebellar ataxia is characterized by early gross motor delay, hypotonia, gait ataxia, mild dysarthria and dysmetria. The clinical presentation remains fairly stable and may be associated with cerebellar atrophy. To date, only a few families with autosomal dominant congenital nonprogressive spinocerebellar ataxia have been reported. Linkage to 3pter was demonstrated in one large Australian family and this locus was designated spinocerebellar ataxia type 29. The objective of this study is to describe an unreported Canadian family with autosomal dominant congenital nonprogressive spinocerebellar ataxia and to identify the underlying genetic causes in this family and the original Australian family. Methods and Results Exome sequencing was performed for the Australian family, resulting in the identification of a heterozygous mutation in the ITPR1 gene. For the Canadian family, genotyping with microsatellite markers and Sanger sequencing of ITPR1 gene were performed; a heterozygous missense mutation in ITPR1 was identified. Conclusions ITPR1 encodes inositol 1,4,5-trisphosphate receptor, type 1, a ligand-gated ion channel that mediates calcium release from the endoplasmic reticulum. Deletions of ITPR1 are known to cause spinocerebellar ataxia type 15, a distinct and very slowly progressive form of cerebellar ataxia with onset in adulthood. Our study demonstrates for the first time that, in addition to spinocerebellar ataxia type 15, alteration of ITPR1 function can cause a distinct congenital nonprogressive ataxia; highlighting important clinical heterogeneity associated with the ITPR1 gene and a significant role of the ITPR1-related pathway in the development and maintenance of the normal functions of the cerebellum.

  2. De novo mutations in ARID1B associated with both syndromic and non-syndromic short stature.

    Science.gov (United States)

    Yu, Yongguo; Yao, RuEn; Wang, Lili; Fan, Yanjie; Huang, Xiaodong; Hirschhorn, Joel; Dauber, Andrew; Shen, Yiping

    2015-09-16

    Human height is a complex trait with a strong genetic basis. Recently, a significant association between rare copy number variations (CNVs) and short stature has been identified, and candidate genes in these rare CNVs are being explored. This study aims to evaluate the association between mutations in ARID1B gene and short stature, both the syndromic and non-syndromic form. Based on a case-control study of whole genome chromosome microarray analysis (CMA), three overlapping CNVs were identified in patients with developmental disorders who exhibited short stature. ARID1B, a causal gene for Coffin Siris syndrome, is the only gene encompassed by all three CNVs. A following retrospective genotype-phenotype analysis based on a literature review confirmed that short stature is a frequent feature in those Coffin-Siris syndrome patients with ARID1B mutations. Mutation screening of ARID1B coding regions was further conducted in a cohort of 48 non-syndromic short stature patients,andfour novel missense variants including two de novo mutations were found. These results suggest that haploinsufficient mutations of ARID1B are associated with syndromic short stature including Coffin-Siris syndrome and intellectual disability, while rare missense variants in ARID1B are associated with non-syndromic short stature. This study supports the notion that mutations in genes related to syndromic short stature may exert milder effect and contribute to short stature in the general population.

  3. A nonsense mutation in FMR1 causing fragile X syndrome

    DEFF Research Database (Denmark)

    Grønskov, Karen; Brøndum-Nielsen, Karen; Dedic, Alma

    2011-01-01

    Fragile X syndrome is a common cause of inherited intellectual disability. It is caused by lack of the FMR1 gene product FMRP. The most frequent cause is the expansion of a CGG repeat located in the 5'UTR of FMR1. Alleles with 200 or more repeats become hypermethylated and transcriptionally silent....... Only few patients with intragenic point mutations in FMR1 have been reported and, currently, routine analysis of patients referred for fragile X syndrome includes solely analysis for repeat expansion and methylation status. We identified a substitution in exon 2 of FMR1, c.80C>A, causing a nonsense...... mutation p.Ser27X, in a patient with classical clinical symptoms of fragile X syndrome. The mother who carried the mutation in heterozygous form presented with mild intellectual impairment. We conclude that further studies including western blot and DNA sequence analysis of the FMR1 gene should...

  4. A novel missense mutation (G43S) in the switch I region of Rab27A causing Griscelli syndrome

    DEFF Research Database (Denmark)

    Westbroek, W.; Tuchman, M.; Tinloy, B.

    2008-01-01

    The autosomal recessive Griscelli syndrome type II (GSII) is caused by mutations in the RAB27A gene. Typical clinical features include immunological impairment, silver-gray scalp hair, eyelashes and eyebrows and hypomelanosis of the skin. Rabs help determine the specificity of membrane trafficking......-immunoprecipitation studies showed that Rab27A(G43S) fails to interact with its effector Melanophilin, indicating that the switch I region functions in the recruitment of Rab effector proteins Udgivelsesdato: 2008/6...

  5. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis

    Science.gov (United States)

    Ichikawa, Shoji; Imel, Erik A.; Kreiter, Mary L.; Yu, Xijie; Mackenzie, Donald S.; Sorenson, Andrea H.; Goetz, Regina; Mohammadi, Moosa; White, Kenneth E.; Econs, Michael J.

    2007-01-01

    Familial tumoral calcinosis is characterized by ectopic calcifications and hyperphosphatemia due to inactivating mutations in FGF23 or UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3). Herein we report a homozygous missense mutation (H193R) in the KLOTHO (KL) gene of a 13-year-old girl who presented with severe tumoral calcinosis with dural and carotid artery calcifications. This patient exhibited defects in mineral ion homeostasis with marked hyperphosphatemia and hypercalcemia as well as elevated serum levels of parathyroid hormone and FGF23. Mapping of H193R mutation onto the crystal structure of myrosinase, a plant homolog of KL, revealed that this histidine residue was at the base of the deep catalytic cleft and mutation of this histidine to arginine should destabilize the putative glycosidase domain (KL1) of KL, thereby attenuating production of membrane-bound and secreted KL. Indeed, compared with wild-type KL, expression and secretion of H193R KL were markedly reduced in vitro, resulting in diminished ability of FGF23 to signal via its cognate FGF receptors. Taken together, our findings provide what we believe to be the first evidence that loss-of-function mutations in human KL impair FGF23 bioactivity, underscoring the essential role of KL in FGF23-mediated phosphate and vitamin D homeostasis in humans. PMID:17710231

  6. A Novel Missense Mutation of Doublecortin: Mutation Analysis of Korean Patients with Subcortical Band Heterotopia

    Science.gov (United States)

    Kim, Myeong-Kyu; Park, Man-Seok; Kim, Byeong-Chae; Cho, Ki-Hyun; Kim, Young-Seon; Kim, Jin-Hee; Heo, Tag; Kim, Eun-Young

    2005-01-01

    The neuronal migration disorders, X-linked lissencephaly syndrome (XLIS) and subcortical band heterotopia (SBH), also called "double cortex", have been linked to missense, nonsense, aberrant splicing, deletion, and insertion mutations in doublecortin (DCX) in families and sporadic cases. Most DCX mutations identified to date are located in two evolutionarily conserved domains. We performed mutation analysis of DCX in two Korean patients with SBH. The SBH patients had mild to moderate developmental delays, drug-resistant generalized seizures, and diffuse thick SBH upon brain MRI. Sequence analysis of the DCX coding region in Patient 1 revealed a c.386 C>T change in exon 3. The sequence variation results in a serine to leucine amino acid change at position 129 (S129L), which has not been found in other family members of Patient 1 or in a large panel of 120 control X-chromosomes. We report here a novel c.386 C>T mutation of DCX that is responsible for SBH. PMID:16100463

  7. A functional alternative splicing mutation in AIRE gene causes autoimmune polyendocrine syndrome type 1.

    Directory of Open Access Journals (Sweden)

    Junyu Zhang

    Full Text Available Autoimmune polyendocrine syndrome type 1 (APS-1 is a rare autosomal recessive disease defined by the presence of two of the three conditions: mucocutaneous candidiasis, hypoparathyroidism, and Addison's disease. Loss-of-function mutations of the autoimmune regulator (AIRE gene have been linked to APS-1. Here we report mutational analysis and functional characterization of an AIRE mutation in a consanguineous Chinese family with APS-1. All exons of the AIRE gene and adjacent exon-intron sequences were amplified by PCR and subsequently sequenced. We identified a homozygous missense AIRE mutation c.463G>A (p.Gly155Ser in two siblings with different clinical features of APS-1. In silico splice-site prediction and minigene analysis were carried out to study the potential pathological consequence. Minigene splicing analysis and subsequent cDNA sequencing revealed that the AIRE mutation potentially compromised the recognition of the splice donor of intron 3, causing alternative pre-mRNA splicing by intron 3 retention. Furthermore, the aberrant AIRE transcript was identified in a heterozygous carrier of the c.463G>A mutation. The aberrant intron 3-retaining transcript generated a truncated protein (p.G155fsX203 containing the first 154 AIRE amino acids and followed by 48 aberrant amino acids. Therefore, our study represents the first functional characterization of the alternatively spliced AIRE mutation that may explain the pathogenetic role in APS-1.

  8. A novel homozygous Arg222Trp missense mutation in WNT7A in two sisters with severe Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome.

    Science.gov (United States)

    Kantaputra, Piranit N; Mundlos, Stefan; Sripathomsawat, Warissara

    2010-11-01

    Al-Awadi/Raas-Rothschild/Schinzel phocomelia (AARRS) syndrome, a rare autosomal recessive disorder, comprises malformations of upper and lower limbs with severely hypoplastic pelvis and abnormal genitalia. Mutations in WNT7A have been reported as cause of the syndrome. We report on two sisters in a Thai family with short and malformed long bones, absent fibulae, flexion contracture of digits, and a/hypoplastic nails. Fusion between severely malformed femora and slender tibiae has never been reported in patients with WNT7A mutations. Lower limbs were more severely malformed than the upper ones and the pelvis was also severely affected. Multiple fusions of long bones and of the femoral heads to the acetabula were evident. A novel homozygous missense mutation in coding exon 4 of the WNT7A was detected in both affected daughters (c.664C > T) leading to an amino acid exchange from arginine to tryptophan (p.Arg222Trp; R222W). The phenotype is likely to result from an abnormality of all three signaling centers in the developing limb resulting in ventralization with a loss of dorsal structures (aplasia/hypoplasia of nails) a loss of anterior-posterior identity (single distal bones in lower limb without polarity) and an outgrowth defect resulting in distal truncations. © 2010 Wiley-Liss, Inc.

  9. Null missense ABCR (ABCA4) mutations in a family with stargardt disease and retinitis pigmentosa.

    Science.gov (United States)

    Shroyer, N F; Lewis, R A; Yatsenko, A N; Lupski, J R

    2001-11-01

    To determine the type of ABCR mutations that segregate in a family that manifests both Stargardt disease (STGD) and retinitis pigmentosa (RP), and the functional consequences of the underlying mutations. Direct sequencing of all 50 exons and flanking intronic regions of ABCR was performed for the STGD- and RP-affected relatives. RNA hybridization, Western blot analysis, and azido-adenosine triphosphate (ATP) labeling was used to determine the effect of disease-associated ABCR mutations in an in vitro assay system. Compound heterozygous missense mutations were identified in patients with STGD and RP. STGD-affected individual AR682-03 was compound heterozygous for the mutation 2588G-->C and a complex allele, [W1408R; R1640W]. RP-affected individuals AR682-04 and-05 were compound heterozygous for the complex allele [W1408R; R1640W] and the missense mutation V767D. Functional analysis of the mutation V767D by Western blot and ATP binding revealed a severe reduction in protein expression. In vitro analysis of ABCR protein with the mutations W1408R and R1640W showed a moderate effect of these individual mutations on expression and ATP-binding; the complex allele [W1408R; R1640W] caused a severe reduction in protein expression. These data reveal that missense ABCR mutations may be associated with RP. Functional analysis reveals that the RP-associated missense ABCR mutations are likely to be functionally null. These studies of the complex allele W1408R; R1640W suggest a synergistic effect of the individual mutations. These data are congruent with a model in which RP is associated with homozygous null mutations and with the notion that severity of retinal disease is inversely related to residual ABCR activity.

  10. CDH23 mutation and phenotype heterogeneity: a profile of 107 diverse families with Usher syndrome and nonsyndromic deafness.

    Science.gov (United States)

    Astuto, L M; Bork, J M; Weston, M D; Askew, J W; Fields, R R; Orten, D J; Ohliger, S J; Riazuddin, S; Morell, R J; Khan, S; Riazuddin, S; Kremer, H; van Hauwe, P; Moller, C G; Cremers, C W R J; Ayuso, C; Heckenlively, J R; Rohrschneider, K; Spandau, U; Greenberg, J; Ramesar, R; Reardon, W; Bitoun, P; Millan, J; Legge, R; Friedman, T B; Kimberling, W J

    2002-08-01

    Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deafness. Specific CDH23 mutational defects have been identified that differentiate these two phenotypes. Only missense mutations of CDH23 have been observed in families with nonsyndromic deafness, whereas nonsense, frameshift, splice-site, and missense mutations have been identified in families with Usher syndrome. In the present study, a panel of 69 probands with Usher syndrome and 38 probands with recessive nonsyndromic deafness were screened for the presence of mutations in the entire coding region of CDH23, by heteroduplex, single-strand conformation polymorphism, and direct sequence analyses. A total of 36 different CDH23 mutations were detected in 45 families; 33 of these mutations were novel, including 18 missense, 3 nonsense, 5 splicing defects, 5 microdeletions, and 2 insertions. A total of seven mutations were common to more than one family. Numerous exonic and intronic polymorphisms also were detected. Results of ophthalmologic examinations of the patients with nonsyndromic deafness have found asymptomatic RP-like manifestations, indicating that missense mutations may have a subtle effect in the retina. Furthermore, patients with mutations in CDH23 display a wide range of hearing loss and RP phenotypes, differing in severity, age at onset, type, and the presence or absence of vestibular areflexia.

  11. CDH23 Mutation and Phenotype Heterogeneity: A Profile of 107 Diverse Families with Usher Syndrome and Nonsyndromic Deafness

    Science.gov (United States)

    Astuto, L. M.; Bork, J. M.; Weston, M. D.; Askew, J. W.; Fields, R. R.; Orten, D. J.; Ohliger, S. J.; Riazuddin, S.; Morell, R. J.; Khan, S.; Riazuddin, S.; Kremer, H.; van Hauwe, P.; Moller, C. G.; Cremers, C. W. R. J.; Ayuso, C.; Heckenlively, J. R.; Rohrschneider, K.; Spandau, U.; Greenberg, J.; Ramesar, R.; Reardon, W.; Bitoun, P.; Millan, J.; Legge, R.; Friedman, T. B.; Kimberling, W. J.

    2002-01-01

    Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deafness. Specific CDH23 mutational defects have been identified that differentiate these two phenotypes. Only missense mutations of CDH23 have been observed in families with nonsyndromic deafness, whereas nonsense, frameshift, splice-site, and missense mutations have been identified in families with Usher syndrome. In the present study, a panel of 69 probands with Usher syndrome and 38 probands with recessive nonsyndromic deafness were screened for the presence of mutations in the entire coding region of CDH23, by heteroduplex, single-strand conformation polymorphism, and direct sequence analyses. A total of 36 different CDH23 mutations were detected in 45 families; 33 of these mutations were novel, including 18 missense, 3 nonsense, 5 splicing defects, 5 microdeletions, and 2 insertions. A total of seven mutations were common to more than one family. Numerous exonic and intronic polymorphisms also were detected. Results of ophthalmologic examinations of the patients with nonsyndromic deafness have found asymptomatic RP–like manifestations, indicating that missense mutations may have a subtle effect in the retina. Furthermore, patients with mutations in CDH23 display a wide range of hearing loss and RP phenotypes, differing in severity, age at onset, type, and the presence or absence of vestibular areflexia. PMID:12075507

  12. Germinal mosaicism of PAX3 mutation caused Waardenburg syndrome type I.

    Science.gov (United States)

    Chen, Kaitian; Zhan, Yuan; Wu, Xuan; Zong, Ling; Jiang, Hongyan

    2018-01-01

    Waardenburg syndrome mutations are most often recurrent or de novo. The rate of familial recurrence is low and families with several affected children are extremely rare. In this study, we aimed to clarify the underlying hereditary cause of Waardenburg syndrome type I in two siblings in a Chinese family, with a mother affected by prelingual mild hearing loss and a father who was negative for clinical symptoms of Waardenburg syndrome and had a normal hearing threshold. Complete characteristic features of the family members were recorded and genetic sequencing and parent-child relationship analyses were performed. The two probands were found to share double mutations in the PAX3/GJB2 genes that caused concurrent hearing loss in Waardenburg syndrome type I. Their mother carried the GJB2 c.109G > A homozygous mutation; however, neither the novel PAX3 c.592delG mutation, nor the Waardenburg syndrome phenotype, was observed in either parent. These previously unreported digenic mutations in PAX3/GJB2 resulted in deafness associated with Waardenburg syndrome type I in this family. To our knowledge, this is the first report describing germinal mosaicism in Waardenburg syndrome. This concept is important because it complicates genetic counseling of this family regarding the risk of recurrence of the mutations in subsequent pregnancies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. EDNRB mutations cause Waardenburg syndrome type II in the heterozygous state.

    Science.gov (United States)

    Issa, Sarah; Bondurand, Nadege; Faubert, Emmanuelle; Poisson, Sylvain; Lecerf, Laure; Nitschke, Patrick; Deggouj, Naima; Loundon, Natalie; Jonard, Laurence; David, Albert; Sznajer, Yves; Blanchet, Patricia; Marlin, Sandrine; Pingault, Veronique

    2017-05-01

    Waardenburg syndrome (WS) is a genetic disorder characterized by sensorineural hearing loss and pigmentation anomalies. The clinical definition of four WS types is based on additional features due to defects in structures mostly arising from the neural crest, with type I and type II being the most frequent. While type I is tightly associated to PAX3 mutations, WS type II (WS2) remains partly enigmatic with mutations in known genes (MITF, SOX10) accounting for only 30% of the cases. We performed exome sequencing in a WS2 index case and identified a heterozygous missense variation in EDNRB. Interestingly, homozygous (and very rare heterozygous) EDNRB mutations are already described in type IV WS (i.e., in association with Hirschsprung disease [HD]) and heterozygous mutations in isolated HD. Screening of a WS2 cohort led to the identification of an overall of six heterozygous EDNRB variations. Clinical phenotypes, pedigrees and molecular segregation investigations unraveled a dominant mode of inheritance with incomplete penetrance. In parallel, cellular and functional studies showed that each of the mutations impairs the subcellular localization of the receptor or induces a defective downstream signaling pathway. Based on our results, we now estimate EDNRB mutations to be responsible for 5%-6% of WS2. © 2017 Wiley Periodicals, Inc.

  14. Functional Studies of Missense TREM2 Mutations in Human Stem Cell-Derived Microglia

    Directory of Open Access Journals (Sweden)

    Philip W. Brownjohn

    2018-04-01

    Full Text Available Summary: The derivation of microglia from human stem cells provides systems for understanding microglial biology and enables functional studies of disease-causing mutations. We describe a robust method for the derivation of human microglia from stem cells, which are phenotypically and functionally comparable with primary microglia. We used stem cell-derived microglia to study the consequences of missense mutations in the microglial-expressed protein triggering receptor expressed on myeloid cells 2 (TREM2, which are causal for frontotemporal dementia-like syndrome and Nasu-Hakola disease. We find that mutant TREM2 accumulates in its immature form, does not undergo typical proteolysis, and is not trafficked to the plasma membrane. However, in the absence of plasma membrane TREM2, microglia differentiate normally, respond to stimulation with lipopolysaccharide, and are phagocytically competent. These data indicate that dementia-associated TREM2 mutations have subtle effects on microglia biology, consistent with the adult onset of disease in individuals with these mutations. : Brownjohn and colleagues report methods to generate microglia from induced pluripotent human stem cells, which they demonstrate are highly similar to cultured primary human microglia. Microglia differentiated from patient-derived stem cells carrying neurological disease-causing mutations in the TREM2 receptor differentiate normally and respond appropriately to pathogenic stimuli, despite the absence of functional TREM2 receptor on the plasma membrane. Keywords: dementia, microglia, TREM2, Nasu-Hakola disease, frontotemporal dementia, iPSC-microglia, neuroinflammation

  15. Functional analysis of HNPCC-related missense mutations in MSH2

    International Nuclear Information System (INIS)

    Luetzen, Anne; Wind, Niels de; Georgijevic, Dubravka; Nielsen, Finn Cilius; Rasmussen, Lene Juel

    2008-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions

  16. Functional analysis of HNPCC-related missense mutations in MSH2

    Energy Technology Data Exchange (ETDEWEB)

    Luetzen, Anne [Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Wind, Niels de; Georgijevic, Dubravka [Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden (Netherlands); Nielsen, Finn Cilius [Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen (Denmark); Rasmussen, Lene Juel [Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark)], E-mail: ljr@ruc.dk

    2008-10-14

    Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions.

  17. The Chemical Chaperone, PBA, Reduces ER Stress and Autophagy and Increases Collagen IV α5 Expression in Cultured Fibroblasts From Men With X-Linked Alport Syndrome and Missense Mutations

    Directory of Open Access Journals (Sweden)

    Dongmao Wang

    2017-07-01

    Discussion: Sodium 4-phenylbutyrate increases collagen IV α5 mRNA levels, reduces ER stress and autophagy, and possibly facilitates collagen IV α5 extracellular transport. Whether these actions delay end-stage renal failure in men with X-linked Alport syndrome and missense mutations will only be determined with clinical trials.

  18. A novel homozygous missense variant in NECTIN4 (PVRL4) causing ectodermal dysplasia cutaneous syndactyly syndrome.

    Science.gov (United States)

    Ahmad, Farooq; Nasir, Abdul; Thiele, Holger; Umair, Muhammad; Borck, Guntram; Ahmad, Wasim

    2018-02-12

    Ectodermal dysplasia syndactyly syndrome 1 (EDSS1) is a rare form of ectodermal dysplasia including anomalies of hair, nails, and teeth along with bilateral cutaneous syndactyly of hands and feet. In the present report, we performed a clinical and genetic characterization of a consanguineous Pakistani family with four individuals affected by EDSS1. We performed exome sequencing using DNA of one affected individual. Exome data analysis identified a novel homozygous missense variant (c.242T>C; p.(Leu81Pro)) in NECTIN4 (PVRL4). Sanger sequencing validated this variant and confirmed its cosegregation with the disease phenotype in the family members. Thus, our report adds a novel variant to the NECTIN4 mutation spectrum and contributes to the NECTIN4-related clinical characterization. © 2018 John Wiley & Sons Ltd/University College London.

  19. Simultaneous Occurence of an Autosomal Dominant Inherited MSX1 Mutation and an X-linked Recessive Inherited EDA Mutation in One Chinese Family with Non-syndromic Oligodontia.

    Science.gov (United States)

    Zhang, Xiao Xia; Wong, Sing Wai; Han, Dong; Feng, Hai Lan

    2015-01-01

    To describe the simultaneous occurence of an autosomal dominant inherited MSX1 mutation and an X-linked recessive inherited EDA mutation in one Chinese family with nonsyndromic oligodontia. Clinical data of characteristics of tooth agenesis were collected. MSX1 and EDA gene mutations were detected in a Chinese family of non-syndromic oligodontia. Mild hypodontia in the parents and severe oligodontia in the son was recorded. A novel missense heterozygous mutation c.517C>A (p.Arg173Ser) was detected in the MSX1 gene in the boy and the father. A homozygous missense mutation c.1001G>A (p.Arg334His) was detected in the EDA gene in the boy and the same mutant occurred heterozygously in the mother. Simultaneous occurence of two different gene mutations with different inheritence patterns, which both caused oligodontia, which occurred in one subject and in one family, was reported.

  20. Mutations in ROGDI Cause Kohlschutter-Tonz Syndrome

    NARCIS (Netherlands)

    Schossig, A.; Wolf, N.I.; Fischer, C.; Fischer, M.; Stocker, G.; Pabinger, S.; Dander, A.; Steiner, B.; Tonz, O.; Kotzot, D.; Haberlandt, E.; Amberger, A.; Burwinkel, B.; Wimmer, K.; Fauth, C.; Grond-Ginsbach, C.; Koch, M.J.; Deichmann, A.; von Kalle, C.; Bartram, C.R.; Kohlschutter, A.; Trajanoski, Z.; Zschocke, J.

    2012-01-01

    Kohlschütter-Tönz syndrome (KTS) is an autosomal-recessive disease characterized by the combination of epilepsy, psychomotor regression, and amelogenesis imperfecta. The molecular basis has not yet been elucidated. Here, we report that KTS is caused by mutations in ROGDI. Using a combination of

  1. Mutations in RIT1 cause Noonan syndrome - additional functional evidence and expanding the clinical phenotype.

    Science.gov (United States)

    Koenighofer, M; Hung, C Y; McCauley, J L; Dallman, J; Back, E J; Mihalek, I; Gripp, K W; Sol-Church, K; Rusconi, P; Zhang, Z; Shi, G-X; Andres, D A; Bodamer, O A

    2016-03-01

    RASopathies are a clinically heterogeneous group of conditions caused by mutations in 1 of 16 proteins in the RAS-mitogen activated protein kinase (RAS-MAPK) pathway. Recently, mutations in RIT1 were identified as a novel cause for Noonan syndrome. Here we provide additional functional evidence for a causal role of RIT1 mutations and expand the associated phenotypic spectrum. We identified two de novo missense variants p.Met90Ile and p.Ala57Gly. Both variants resulted in increased MEK-ERK signaling compared to wild-type, underscoring gain-of-function as the primary functional mechanism. Introduction of p.Met90Ile and p.Ala57Gly into zebrafish embryos reproduced not only aspects of the human phenotype but also revealed abnormalities of eye development, emphasizing the importance of RIT1 for spatial and temporal organization of the growing organism. In addition, we observed severe lymphedema of the lower extremity and genitalia in one patient. We provide additional evidence for a causal relationship between pathogenic mutations in RIT1, increased RAS-MAPK/MEK-ERK signaling and the clinical phenotype. The mutant RIT1 protein may possess reduced GTPase activity or a diminished ability to interact with cellular GTPase activating proteins; however the precise mechanism remains unknown. The phenotypic spectrum is likely to expand and includes lymphedema of the lower extremities in addition to nuchal hygroma. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. LRIG2 mutations cause urofacial syndrome.

    Science.gov (United States)

    Stuart, Helen M; Roberts, Neil A; Burgu, Berk; Daly, Sarah B; Urquhart, Jill E; Bhaskar, Sanjeev; Dickerson, Jonathan E; Mermerkaya, Murat; Silay, Mesrur Selcuk; Lewis, Malcolm A; Olondriz, M Beatriz Orive; Gener, Blanca; Beetz, Christian; Varga, Rita E; Gülpınar, Omer; Süer, Evren; Soygür, Tarkan; Ozçakar, Zeynep B; Yalçınkaya, Fatoş; Kavaz, Aslı; Bulum, Burcu; Gücük, Adnan; Yue, Wyatt W; Erdogan, Firat; Berry, Andrew; Hanley, Neil A; McKenzie, Edward A; Hilton, Emma N; Woolf, Adrian S; Newman, William G

    2013-02-07

    Urofacial syndrome (UFS) (or Ochoa syndrome) is an autosomal-recessive disease characterized by congenital urinary bladder dysfunction, associated with a significant risk of kidney failure, and an abnormal facial expression upon smiling, laughing, and crying. We report that a subset of UFS-affected individuals have biallelic mutations in LRIG2, encoding leucine-rich repeats and immunoglobulin-like domains 2, a protein implicated in neural cell signaling and tumorigenesis. Importantly, we have demonstrated that rare variants in LRIG2 might be relevant to nonsyndromic bladder disease. We have previously shown that UFS is also caused by mutations in HPSE2, encoding heparanase-2. LRIG2 and heparanase-2 were immunodetected in nerve fascicles growing between muscle bundles within the human fetal bladder, directly implicating both molecules in neural development in the lower urinary tract. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. In silico analysis of a novel MKRN3 missense mutation in familial central precocious puberty.

    Science.gov (United States)

    Neocleous, Vassos; Shammas, Christos; Phelan, Marie M; Nicolaou, Stella; Phylactou, Leonidas A; Skordis, Nicos

    2016-01-01

    The onset of puberty is influenced by the interplay of stimulating and restraining factors, many of which have a genetic origin. Premature activation of the GnRH secretion in central precocious puberty (CPP) may arise either from gain-of-function mutations of the KISS1 and KISS1R genes or from loss-of-function manner mutations of the MKRN3 gene leading to MKRN3 deficiency. To explore the genetic causes responsible for CPP and the potential role of the RING finger protein 3 (MKRN3) gene. We investigated potential sequence variations in the intronless MKRN3 gene by Sanger sequencing of the entire 507 amino acid coding region of exon 1 in a family with two affected girls presented with CPP at the age of 6 and 5·7 years, respectively. A novel heterozygous g.Gly312Asp missense mutation in the MKRN3 gene was identified in these siblings. The imprinted MKRN3 missense mutation was also identified as expected in the unaffected father and followed as expected an imprinted mode of inheritance. In silico analysis of the altered missense variant using the computational algorithms Polyphen2, SIFT and Mutation Taster predicted a damage and pathogenic alteration causing CPP. The pathogenicity of the alteration at the protein level via an in silico structural model is also explored. A novel mutation in the MKRN3 gene in two sisters with CPP was identified, supporting the fundamental role of this gene in the suppression of the hypothalamic GnRH neurons. © 2015 John Wiley & Sons Ltd.

  4. Identification of SCN1A and PCDH19 mutations in Chinese children with Dravet syndrome.

    Directory of Open Access Journals (Sweden)

    Anna Ka-Yee Kwong

    Full Text Available BACKGROUND: Dravet syndrome is a severe form of epilepsy. Majority of patients have a mutation in SCN1A gene, which encodes a voltage-gated sodium channel. A recent study has demonstrated that 16% of SCN1A-negative patients have a mutation in PCDH19, the gene encoding protocadherin-19. Mutations in other genes account for only a very small proportion of families. TSPYL4 is a novel candidate gene within the locus 6q16.3-q22.31 identified by linkage study. OBJECTIVE: The present study examined the mutations in epileptic Chinese children with emphasis on Dravet syndrome. METHODS: A hundred children with severe epilepsy were divided into Dravet syndrome and non-Dravet syndrome groups and screened for SCN1A mutations by direct sequencing. SCN1A-negative Dravet syndrome patients and patients with phenotypes resembling Dravet syndrome were checked for PCDH19 and TSPYL4 mutations. RESULTS: Eighteen patients (9 males, 9 females were diagnosed to have Dravet syndrome. Among them, 83% (15/18 had SCN1A mutations including truncating (7, splice site (2 and missense mutations (6. The truncating/splice site mutations were associated with moderate to severe degree of intellectual disability (p<0.05. During the progression of disease, 73% (11/15 had features fitting into the diagnostic criteria of autism spectrum disorder and 53% (8/15 had history of vaccination-induced seizures. A novel PCDH19 p.D377N mutation was identified in one SCN1A-negative female patient with Dravet syndrome and a known PCDH19 p.N340S mutation in a female non-Dravet syndrome patient. The former also inherited a TSPYL4 p.G60R variant. CONCLUSION: A high percentage of SCN1A mutations was identified in our Chinese cohort of Dravet syndrome patients but none in the rest of patients. We demonstrated that truncating/splice site mutations were linked to moderate to severe intellectual disability in these patients. A de novo PCDH19 missense mutation together with an inherited TSPYL4 missense

  5. The FTD-like syndrome causing TREM2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism.

    Science.gov (United States)

    Kleinberger, Gernot; Brendel, Matthias; Mracsko, Eva; Wefers, Benedikt; Groeneweg, Linda; Xiang, Xianyuan; Focke, Carola; Deußing, Maximilian; Suárez-Calvet, Marc; Mazaheri, Fargol; Parhizkar, Samira; Pettkus, Nadine; Wurst, Wolfgang; Feederle, Regina; Bartenstein, Peter; Mueggler, Thomas; Arzberger, Thomas; Knuesel, Irene; Rominger, Axel; Haass, Christian

    2017-07-03

    Genetic variants in the triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk for several neurodegenerative diseases including Alzheimer's disease and frontotemporal dementia (FTD). Homozygous TREM2 missense mutations, such as p.T66M, lead to the FTD-like syndrome, but how they cause pathology is unknown. Using CRISPR/Cas9 genome editing, we generated a knock-in mouse model for the disease-associated Trem2 p.T66M mutation. Consistent with a loss-of-function mutation, we observe an intracellular accumulation of immature mutant Trem2 and reduced generation of soluble Trem2 similar to patients with the homozygous p.T66M mutation. Trem2 p.T66M knock-in mice show delayed resolution of inflammation upon in vivo lipopolysaccharide stimulation and cultured macrophages display significantly reduced phagocytic activity. Immunohistochemistry together with in vivo TSPO small animal positron emission tomography (μPET) demonstrates an age-dependent reduction in microglial activity. Surprisingly, perfusion magnetic resonance imaging and FDG-μPET imaging reveal a significant reduction in cerebral blood flow and brain glucose metabolism. Thus, we demonstrate that a TREM2 loss-of-function mutation causes brain-wide metabolic alterations pointing toward a possible function of microglia in regulating brain glucose metabolism. © 2017 The Authors.

  6. Severe Clinical Course in a Patient with Congenital Amegakaryocytic Thrombocytopenia Due to a Missense Mutation of the c-MPL Gene.

    Science.gov (United States)

    Ok Bozkaya, İkbal; Yaralı, Neşe; Işık, Pamir; Ünsal Saç, Rukiye; Tavil, Betül; Tunç, Bahattin

    2015-06-01

    Congenital amegakaryocytic thrombocytopenia (CAMT) generally begins at birth with severe thrombocytopenia and progresses to pancytopenia. It is caused by mutations in the thrombopoietin receptor gene, the myeloproliferative leukemia virus oncogene (c-MPL). The association between CAMT and c-MPL mutation type has been reported in the literature. Patients with CAMT have been categorized according to their clinical symptoms caused by different mutations. Missense mutations of c-MPL have been classified as type II and these patients have delayed onset of bone marrow failure compared to type I patients. Here we present a girl with severe clinical course of CAMT II having a missense mutation in exon 4 of the c-MPL gene who was admitted to our hospital with intracranial hemorrhage during the newborn period.

  7. AR mutations in 28 patients with androgen insensitivity syndrome (Prader grade 0-3).

    Science.gov (United States)

    Wang, Yi; Gong, Chunxiu; Wang, Xiou; Qin, Miao

    2017-07-01

    We investigated the androgen receptor (AR) gene mutation profiles of Chinese patients exhibiting severe androgen insensitivity syndrome (AIS) phenotypes. The present study enrolled 28 patients with genetically diagnosed AIS, who presented with severe phenotypes (Prader grade 0-3). Patients and some family members were screened via amplification and sequencing of their AR exons 1-8, including the corresponding intronic flanking regions. Luteinizing (LH), follicle-stimulating (FSH), and testosterone (T) hormone levels were found to be slightly, but not significantly, higher in patients with complete androgen insensitivity syndrome (CAIS) than in patients with partial androgen insensitivity syndrome (PAIS) (P>0.05). We identified 24 different AR mutations, including 12 that were novel. Ten patients (cases 2, 3, 10, 28, 11, 12, 19, 20, 24, and 25) were found to carry five recurrent mutations (p.Y572S, p.P914S, p.S176R, p.Y782N, and p.R841H); of these, p.Y572S, p.S176R, and p.Y782N were novel. Among the mutations identified in patients with CAIS, six (66.7%) were characterized as single-nucleotide missense mutations, and six (66.7%) were found to be located in the AR ligand-binding domain (LBD). Among the mutations identified in patients with PAIS, 15 (93.8%) were found to be missense, and 11 (68.8%) were found to be located in the LBD. Patients 10 and 28 were determined to harbor the same missense mutation (p.P914S), but were diagnosed with CAIS and PAIS, respectively. Sex hormone levels were slightly, but not significantly, elevated in patients with CAIS compared to those with PAIS. Missense mutations spanning AR exons 1-8 were the predominant form of identified mutations, and these were mostly located in the AR LBD. Approximately 50% of the identified mutations were novel, and have enriched the AR gene-mutation database. Patients harboring identical mutations were in some instances found to exhibit divergent phenotypes.

  8. Urine screening for patients with developmental disabilities detected a patient with creatine transporter deficiency due to a novel missense mutation in SLC6A8.

    Science.gov (United States)

    Kato, Hidekazu; Miyake, Fuyu; Shimbo, Hiroko; Ohya, Makoto; Sugawara, Hidenori; Aida, Noriko; Anzai, Rie; Takagi, Mariko; Okuda, Mitsuko; Takano, Kyoko; Wada, Takahito; Iai, Mizue; Yamashita, Sumimasa; Osaka, Hitoshi

    2014-08-01

    Creatine transporter deficiency (CTD) is an example of X-linked intellectual disability syndromes, caused by mutations in SLC6A8 on Xq28. Although this is the second most frequent genetic cause of intellectual disabilities in Europe or America after Fragile X syndrome, information on the morbidity of this disease is limited in Japan. Using the HPLC screening method we have established recently, we examined samples of urine of 105 patients (73 males and 32 females) with developmental disabilities at our medical center. And we have found a family with three ID boys with a novel missense mutation in SLC6A8. This is the second report of a Japanese family case of CTD. A systematic diagnostic system of this syndrome should be established in Japan to enable us to estimate its frequency and treatment. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  9. A novel mutation in MED12 causes FG syndrome (Opitz-Kaveggia syndrome)

    NARCIS (Netherlands)

    Rump, P.; Niessen, R. C.; Verbruggen, K. T.; Brouwer, O. F.; de Raad, M.; Hordijk, R.

    Opitz-Kaveggia syndrome is a rare X-linked multiple congenital anomalies and intellectual disability disorder caused by the recurrent p.R961W mutation in the MED12 gene. Twenty-three affected males from 10 families with this mutation in the MED12 gene have been described so far. Here we report on a

  10. Recurrent missense mutations in TMEM43 (ARVD5) due to founder effects cause arrhythmogenic cardiomyopathies in the UK and Canada

    KAUST Repository

    Haywood, Annika; Merner, Nancy D.; Hodgkinson, Kathy A.; Houston, Jim; Syrris, Petros; Booth, Valerie; Connors, Sean; Pantazis, Antonios; Quarta, Giovanni; Elliott, Perry; McKenna, William; Young, Terry Lynn

    2012-01-01

    AimsAutosomal dominant arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) (in the group of arrhythmogenic cardiomyopathies) is a common cause of sudden cardiac death in young adults. It is both clinically and genetically heterogeneous, with 12 loci (ARVC/D1-12) and eight genes identified, the majority of which encode structural proteins of cardiac desmosomes. The most recent gene identified, TMEM43, causes disease due to a missense mutation in a non-desmosomal gene (p.S358L) in 15 extended families from Newfoundland, Canada. To determine whether mutations in TMEM43 cause ARVC/D and arrhythmogenic cardiomyopathy in other populations, we fully re-sequenced TMEM43 on 143 ARVC/D probands (families) from the UK and 55 probands (from 55 families) from Newfoundland.Methods and resultsBidirectional sequencing of TMEM43 including intron-exon boundaries revealed 33 variants, the majority located in non-coding regions of TMEM43. For the purpose of validation, families of probands with rare, potentially deleterious coding variants were subjected to clinical and molecular follow-up. Three missense variants of uncertain significance (p.R28W, p.E142K, p.R312W) were located in highly conserved regions of the TMEM43 protein. One variant (p.R312W) also co-segregated with relatives showing clinical signs of disease. Genotyping and expansion of the disease-associated haplotype in subjects with the p.R312W variant from Newfoundland, Canada, and the UK suggest common ancestry.ConclusionAlthough the p.R312W variant was found in controls (3/378), identification of an ancestral disease p R312W haplotype suggests that the p.R312W variant is a pathogenic founder mutation. © 2012 The Author.

  11. Recurrent missense mutations in TMEM43 (ARVD5) due to founder effects cause arrhythmogenic cardiomyopathies in the UK and Canada

    KAUST Repository

    Haywood, Annika

    2012-11-15

    AimsAutosomal dominant arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) (in the group of arrhythmogenic cardiomyopathies) is a common cause of sudden cardiac death in young adults. It is both clinically and genetically heterogeneous, with 12 loci (ARVC/D1-12) and eight genes identified, the majority of which encode structural proteins of cardiac desmosomes. The most recent gene identified, TMEM43, causes disease due to a missense mutation in a non-desmosomal gene (p.S358L) in 15 extended families from Newfoundland, Canada. To determine whether mutations in TMEM43 cause ARVC/D and arrhythmogenic cardiomyopathy in other populations, we fully re-sequenced TMEM43 on 143 ARVC/D probands (families) from the UK and 55 probands (from 55 families) from Newfoundland.Methods and resultsBidirectional sequencing of TMEM43 including intron-exon boundaries revealed 33 variants, the majority located in non-coding regions of TMEM43. For the purpose of validation, families of probands with rare, potentially deleterious coding variants were subjected to clinical and molecular follow-up. Three missense variants of uncertain significance (p.R28W, p.E142K, p.R312W) were located in highly conserved regions of the TMEM43 protein. One variant (p.R312W) also co-segregated with relatives showing clinical signs of disease. Genotyping and expansion of the disease-associated haplotype in subjects with the p.R312W variant from Newfoundland, Canada, and the UK suggest common ancestry.ConclusionAlthough the p.R312W variant was found in controls (3/378), identification of an ancestral disease p R312W haplotype suggests that the p.R312W variant is a pathogenic founder mutation. © 2012 The Author.

  12. Impaired riboflavin transport due to missense mutations in SLC52A2 causes Brown-Vialetto-Van Laere syndrome.

    Science.gov (United States)

    Haack, Tobias B; Makowski, Christine; Yao, Yoshiaki; Graf, Elisabeth; Hempel, Maja; Wieland, Thomas; Tauer, Ulrike; Ahting, Uwe; Mayr, Johannes A; Freisinger, Peter; Yoshimatsu, Hiroki; Inui, Ken; Strom, Tim M; Meitinger, Thomas; Yonezawa, Atsushi; Prokisch, Holger

    2012-11-01

    Brown-Vialetto-Van Laere syndrome (BVVLS [MIM 211530]) is a rare neurological disorder characterized by infancy onset sensorineural deafness and ponto-bulbar palsy. Mutations in SLC52A3 (formerly C20orf54), coding for riboflavin transporter 2 (hRFT2), have been identified as the molecular genetic correlate in several individuals with BVVLS. Exome sequencing of just one single case revealed that compound heterozygosity for two pathogenic mutations in the SLC52A2 gene coding for riboflavin transporter 3 (hRFT3), another member of the riboflavin transporter family, is also associated with BVVLS. Overexpression studies confirmed that the gene products of both mutant alleles have reduced riboflavin transport activities. While mutations in SLC52A3 cause decreased plasma riboflavin levels, concordant with a role of SLC52A3 in riboflavin uptake from food, the SLC52A2-mutant individual had normal plasma riboflavin concentrations, a finding in line with a postulated function of SLC52A2 in riboflavin uptake from blood into target cells. Our results contribute to the understanding of human riboflavin metabolism and underscore its role in the pathogenesis of BVVLS, thereby providing a rational basis for a high-dose riboflavin treatment.

  13. A novel D458V mutation in the SANS PDZ binding motif causes atypical Usher syndrome.

    Science.gov (United States)

    Kalay, E; de Brouwer, A P M; Caylan, R; Nabuurs, S B; Wollnik, B; Karaguzel, A; Heister, J G A M; Erdol, H; Cremers, F P M; Cremers, C W R J; Brunner, H G; Kremer, H

    2005-12-01

    Homozygosity mapping and linkage analysis in a Turkish family with autosomal recessive prelingual sensorineural hearing loss revealed a 15-cM critical region at 17q25.1-25.3 flanked by the polymorphic markers D17S1807 and D17S1806. The maximum two-point lod score was 4.07 at theta=0.0 for the marker D17S801. The linkage interval contains the Usher syndrome 1G gene (USH1G) that is mutated in patients with Usher syndrome (USH) type 1g and encodes the SANS protein. Mutation analysis of USH1G led to the identification of a homozygous missense mutation D458V at the -3 position of the PDZ binding motif of SANS. This mutation was also present homozygously in one out of 64 additional families from Turkey with autosomal recessive nonsyndromic hearing loss and heterozygously in one out of 498 control chromosomes. By molecular modeling, we provide evidence that this mutation impairs the interaction of SANS with harmonin. Ophthalmologic examination and vestibular evaluation of patients from both families revealed mild retinitis pigmentosa and normal vestibular function. These results suggest that these patients suffer from atypical USH.

  14. MLL2 mutation detection in 86 patients with Kabuki syndrome: a genotype-phenotype study.

    Science.gov (United States)

    Makrythanasis, P; van Bon, B W; Steehouwer, M; Rodríguez-Santiago, B; Simpson, M; Dias, P; Anderlid, B M; Arts, P; Bhat, M; Augello, B; Biamino, E; Bongers, E M H F; Del Campo, M; Cordeiro, I; Cueto-González, A M; Cuscó, I; Deshpande, C; Frysira, E; Izatt, L; Flores, R; Galán, E; Gener, B; Gilissen, C; Granneman, S M; Hoyer, J; Yntema, H G; Kets, C M; Koolen, D A; Marcelis, C l; Medeira, A; Micale, L; Mohammed, S; de Munnik, S A; Nordgren, A; Psoni, S; Reardon, W; Revencu, N; Roscioli, T; Ruiterkamp-Versteeg, M; Santos, H G; Schoumans, J; Schuurs-Hoeijmakers, J H M; Silengo, M C; Toledo, L; Vendrell, T; van der Burgt, I; van Lier, B; Zweier, C; Reymond, A; Trembath, R C; Perez-Jurado, L; Dupont, J; de Vries, B B A; Brunner, H G; Veltman, J A; Merla, G; Antonarakis, S E; Hoischen, A

    2013-12-01

    Recently, pathogenic variants in the MLL2 gene were identified as the most common cause of Kabuki (Niikawa-Kuroki) syndrome (MIM#147920). To further elucidate the genotype-phenotype correlation, we studied a large cohort of 86 clinically defined patients with Kabuki syndrome (KS) for mutations in MLL2. All patients were assessed using a standardized phenotype list and all were scored using a newly developed clinical score list for KS (MLL2-Kabuki score 0-10). Sequencing of the full coding region and intron-exon boundaries of MLL2 identified a total of 45 likely pathogenic mutations (52%): 31 nonsense, 10 missense and four splice-site mutations, 34 of which were novel. In five additional patients, novel, i.e. non-dbSNP132 variants of clinically unknown relevance, were identified. Patients with likely pathogenic nonsense or missense MLL2 mutations were usually more severely affected (median 'MLL2-Kabuki score' of 6) as compared to the patients without MLL2 mutations (median 'MLL2-Kabuki score' of 5), a significant difference (p < 0.0014). Several typical facial features such as large dysplastic ears, arched eyebrows with sparse lateral third, blue sclerae, a flat nasal tip with a broad nasal root, and a thin upper and a full lower lip were observed more often in mutation positive patients. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Identification of novel FBN1 and TGFBR2 mutations in 65 probands with Marfan syndrome or Marfan-like phenotypes.

    Science.gov (United States)

    Chung, Brian Hon-Yin; Lam, Stephen Tak-Sum; Tong, Tony Ming-For; Li, Susanna Yuk-Han; Lun, Kin-Shing; Chan, Daniel Hon-Chuen; Fok, Susanna Fung-Shan; Or, June Siu-Fong; Smith, David Keith; Yang, Wanling; Lau, Yu-Lung

    2009-07-01

    Marfan syndrome is an autosomal dominant connective tissue disorder, and mutations in the FBN1 and TGFBR2 genes have been identified in probands with MFS and related phenotypes. Using DHPLC and sequencing, we studied the mutation spectrum in 65 probands with Marfan syndrome and related phenotypes. A total of 24 mutations in FBN1 were identified, of which 19 (nine missense, six frameshift, two nonsense and two affecting splice junctions) were novel. In the remaining 41 probands, six were identified to have novel TGFBR2 mutations (one frameshift and five missense mutations). All novel mutations found in this study were confirmed to be absent in 50 unrelated normal individuals of the same ethnic background. In probands who fulfilled the Ghent criteria (n = 16), mutations in FBN1 were found in 81% of cases. None of those with TGFBR2 mutations fulfilled the Ghent criteria. Novel missense mutations of unknown significance were classified according to the latest ACMG guidelines and their likelihood to be causative was evaluated.

  16. Novel Missense Mitochondrial ND4L Gene Mutations in Friedreich's Ataxia

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Heidari

    2011-05-01

    Full Text Available AbstractObjective(sThe mitochondrial defects in Friedreich's ataxia have been reported in many researches. Mitochondrial DNA is one of the candidates for defects in mitochondrion, and complex I is the first and one of the largest catalytic complexes of oxidative phosphorylation (OXPHOS system. Materials and MethodsWe searched the mitochondrial ND4L gene for mutations by TTGE and sequencing on 30 FRDA patients and 35 healthy controls.ResultsWe found 3 missense mutations [m.10506A>G (T13A, m.10530G>A (V21M, and m.10653G>A (A62T] in four patients whose m.10530G>A and m.10653G>A were not reported previously. In two patients, heteroplasmic m.10530G>A mutation was detected. They showed a very early ataxia syndrome. Our results showed that the number of mutations in FRDA patients was higher than that in the control cases (P= 0.0287.ConclusionAlthough this disease is due to nuclear gene mutation, the presence of these mutations might be responsible for further mitochondrial defects and the increase of the gravity of the disease. Thus, it should be considered in patients with this disorder.

  17. Systemic vascular phenotypes of Loeys-Dietz syndrome in a child carrying a de novo R381P mutation in TGFBR2: a case report

    OpenAIRE

    Uike, Kiyoshi; Matsushita, Yuki; Sakai, Yasunari; Togao, Osamu; Nagao, Michinobu; Ishizaki, Yoshito; Nagata, Hazumu; Yamamura, Kenichiro; Torisu, Hiroyuki; Hara, Toshiro

    2013-01-01

    Background Loeys?Dietz syndrome, also known as Marfan syndrome type II, is a rare connective tissue disorder caused by dominant mutations in transforming growth factor-beta receptors (TGFBR1 and 2). Case presentation We report a 7-year-old Japanese boy with Loeys?Dietz syndrome who carried a novel, de novo missense mutation in TGFBR2 (c.1142g?>?c, R381P). He showed dysmorphic faces and skeletal malformations that were typical in previous cases with Loeys-Dietz syndrome. The cardiac studies di...

  18. Wiedemann-Steiner Syndrome With 2 Novel KMT2A Mutations.

    Science.gov (United States)

    Min Ko, Jung; Cho, Jae So; Yoo, Yongjin; Seo, Jieun; Choi, Murim; Chae, Jong-Hee; Lee, Hye-Ran; Cho, Tae-Joon

    2017-02-01

    Wiedemann-Steiner syndrome is a rare genetic disorder characterized by short stature, hairy elbows, facial dysmorphism, and developmental delay. It can also be accompanied by musculoskeletal anomalies such as muscular hypotonia and small hands and feet. Mutations in the KMT2A gene have only recently been identified as the cause of Wiedemann-Steiner syndrome; therefore, only 16 patients from 15 families have been described, and new phenotypic features continue to be added. In this report, we describe 2 newly identified patients with Wiedemann-Steiner syndrome who presented with variable severity. One girl exhibited developmental dysplasia of the hip and fibromatosis colli accompanied by other clinical features, including facial dysmorphism, hypertrichosis, patent ductus arteriosus, growth retardation, and borderline intellectual disability. The other patient, a boy, showed severe developmental retardation with automatic self-mutilation, facial dysmorphism, and hypertrichosis at a later age. Exome sequencing analysis of these patients and their parents revealed a de novo nonsense mutation, p.Gln1978*, of KMT2A in the former, and a missense mutation, p.Gly1168Asp, in the latter, which molecularly confirmed the diagnosis of Wiedemann-Steiner syndrome.

  19. Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females.

    Directory of Open Access Journals (Sweden)

    Christel Depienne

    2009-02-01

    Full Text Available Dravet syndrome (DS is a genetically determined epileptic encephalopathy mainly caused by de novo mutations in the SCN1A gene. Since 2003, we have performed molecular analyses in a large series of patients with DS, 27% of whom were negative for mutations or rearrangements in SCN1A. In order to identify new genes responsible for the disorder in the SCN1A-negative patients, 41 probands were screened for micro-rearrangements with Illumina high-density SNP microarrays. A hemizygous deletion on chromosome Xq22.1, encompassing the PCDH19 gene, was found in one male patient. To confirm that PCDH19 is responsible for a Dravet-like syndrome, we sequenced its coding region in 73 additional SCN1A-negative patients. Nine different point mutations (four missense and five truncating mutations were identified in 11 unrelated female patients. In addition, we demonstrated that the fibroblasts of our male patient were mosaic for the PCDH19 deletion. Patients with PCDH19 and SCN1A mutations had very similar clinical features including the association of early febrile and afebrile seizures, seizures occurring in clusters, developmental and language delays, behavioural disturbances, and cognitive regression. There were, however, slight but constant differences in the evolution of the patients, including fewer polymorphic seizures (in particular rare myoclonic jerks and atypical absences in those with PCDH19 mutations. These results suggest that PCDH19 plays a major role in epileptic encephalopathies, with a clinical spectrum overlapping that of DS. This disorder mainly affects females. The identification of an affected mosaic male strongly supports the hypothesis that cellular interference is the pathogenic mechanism.

  20. CtIP Mutations Cause Seckel and Jawad Syndromes.

    Directory of Open Access Journals (Sweden)

    Per Qvist

    2011-10-01

    Full Text Available Seckel syndrome is a recessively inherited dwarfism disorder characterized by microcephaly and a unique head profile. Genetically, it constitutes a heterogeneous condition, with several loci mapped (SCKL1-5 but only three disease genes identified: the ATR, CENPJ, and CEP152 genes that control cellular responses to DNA damage. We previously mapped a Seckel syndrome locus to chromosome 18p11.31-q11.2 (SCKL2. Here, we report two mutations in the CtIP (RBBP8 gene within this locus that result in expression of C-terminally truncated forms of CtIP. We propose that these mutations are the molecular cause of the disease observed in the previously described SCKL2 family and in an additional unrelated family diagnosed with a similar form of congenital microcephaly termed Jawad syndrome. While an exonic frameshift mutation was found in the Jawad family, the SCKL2 family carries a splicing mutation that yields a dominant-negative form of CtIP. Further characterization of cell lines derived from the SCKL2 family revealed defective DNA damage induced formation of single-stranded DNA, a critical co-factor for ATR activation. Accordingly, SCKL2 cells present a lowered apoptopic threshold and hypersensitivity to DNA damage. Notably, over-expression of a comparable truncated CtIP variant in non-Seckel cells recapitulates SCKL2 cellular phenotypes in a dose-dependent manner. This work thus identifies CtIP as a disease gene for Seckel and Jawad syndromes and defines a new type of genetic disease mechanism in which a dominant negative mutation yields a recessively inherited disorder.

  1. Mutational Analysis of PTPN11 Gene in Taiwanese Children with Noonan Syndrome

    Directory of Open Access Journals (Sweden)

    Chia-Sui Hung

    2007-01-01

    Full Text Available Noonan syndrome (NS is an autosomal dominant disorder presenting with characteristic facies, short stature, skeletal anomalies, and congenital heart defects. Mutations in protein-tyrosine phosphatase, nonreceptor-type 11 (PTPN11, encoding SHP-2, account for 33-50% of NS. This study screened for mutations in the PTPN11 gene in 34 Taiwanese patients with NS. Mutation analysis of the 15 coding exons and exon/intron boundaries was performed by polymerase chain reaction and direct sequencing of the PTPN11 gene. We identified 10 different missense mutations in 13 (38% patients, including a novel missense mutation (855T > G, F285L. These mutations were clustered in exon 3 (n = 6 encoding the N-SH2 domain, exon 4 (n = 2 encoding the C-SH2 domain, and in exons 8 (n = 2 and 13 (n = 3 encoding the PTP domain. In conclusion, this study provides further support that PTPN11 mutations are responsible for Noonan syndrome in Taiwanese patients. [J Formos Med Assoc 2007;106(2:169-172

  2. Mitchell-Riley Syndrome: A Novel Mutation in RFX6 Gene

    Directory of Open Access Journals (Sweden)

    Marta Zegre Amorim

    2015-01-01

    Full Text Available A novel RFX6 homozygous missense mutation was identified in an infant with Mitchell-Riley syndrome. The most common features of Mitchell-Riley syndrome were present, including severe neonatal diabetes associated with annular pancreas, intestinal malrotation, gallbladder agenesis, cholestatic disease, chronic diarrhea, and severe intrauterine growth restriction. Perijejunal tissue similar to pancreatic tissue was found in the submucosa, a finding that has not been previously reported in this syndrome. This case associating RFX6 mutation with structural and functional pancreatic abnormalities reinforces the RFX6 gene role in pancreas development and β-cell function, adding information to the existent mutation databases.

  3. PYCR2 Mutations cause a lethal syndrome of microcephaly and failure to thrive.

    Science.gov (United States)

    Zaki, Maha S; Bhat, Gifty; Sultan, Tipu; Issa, Mahmoud; Jung, Hea-Jin; Dikoglu, Esra; Selim, Laila; G Mahmoud, Imam; Abdel-Hamid, Mohamed S; Abdel-Salam, Ghada; Marin-Valencia, Isaac; Gleeson, Joseph G

    2016-07-01

    A study was undertaken to characterize the clinical features of the newly described hypomyelinating leukodystrophy type 10 with microcephaly. This is an autosomal recessive disorder mapped to chromosome 1q42.12 due to mutations in the PYCR2 gene, encoding an enzyme involved in proline synthesis in mitochondria. From several international clinics, 11 consanguineous families were identified with PYCR2 mutations by whole exome or targeted sequencing, with detailed clinical and radiological phenotyping. Selective mutations from patients were tested for effect on protein function. The characteristic clinical presentation of patients with PYCR2 mutations included failure to thrive, microcephaly, craniofacial dysmorphism, progressive psychomotor disability, hyperkinetic movements, and axial hypotonia with variable appendicular spasticity. Patients did not survive beyond the first decade of life. Brain magnetic resonance imaging showed global brain atrophy and white matter T2 hyperintensities. Routine serum metabolic profiles were unremarkable. Both nonsense and missense mutations were identified, which impaired protein multimerization. PYCR2-related syndrome represents a clinically recognizable condition in which PYCR2 mutations lead to protein dysfunction, not detectable on routine biochemical assessments. Mutations predict a poor outcome, probably as a result of impaired mitochondrial function. Ann Neurol 2016;80:59-70. © 2016 American Neurological Association.

  4. NDST1 missense mutations in autosomal recessive intellectual disability.

    Science.gov (United States)

    Reuter, Miriam S; Musante, Luciana; Hu, Hao; Diederich, Stefan; Sticht, Heinrich; Ekici, Arif B; Uebe, Steffen; Wienker, Thomas F; Bartsch, Oliver; Zechner, Ulrich; Oppitz, Cornelia; Keleman, Krystyna; Jamra, Rami Abou; Najmabadi, Hossein; Schweiger, Susann; Reis, André; Kahrizi, Kimia

    2014-11-01

    NDST1 was recently proposed as a candidate gene for autosomal recessive intellectual disability in two families. It encodes a bifunctional GlcNAc N-deacetylase/N-sulfotransferase with important functions in heparan sulfate biosynthesis. In mice, Ndst1 is crucial for embryonic development and homozygous null mutations are perinatally lethal. We now report on two additional unrelated families with homozygous missense NDST1 mutations. All mutations described to date predict the substitution of conserved amino acids in the sulfotransferase domain, and mutation modeling predicts drastic alterations in the local protein conformation. Comparing the four families, we noticed significant overlap in the clinical features, including both demonstrated and apparent intellectual disability, muscular hypotonia, epilepsy, and postnatal growth deficiency. Furthermore, in Drosophila, knockdown of sulfateless, the NDST ortholog, impairs long-term memory, highlighting its function in cognition. Our data confirm NDST1 mutations as a cause of autosomal recessive intellectual disability with a distinctive phenotype, and support an important function of NDST1 in human development. © 2014 Wiley Periodicals, Inc.

  5. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes

    DEFF Research Database (Denmark)

    Schubert, J.; Siekierska, A.; Langlois, M.

    2014-01-01

    Febrile seizures affect 2-4% of all children(1) and have a strong genetic component(2). Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2)(3-5) have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding...... syntaxin-1B(6), that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees(7,8) identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations...... and a de novo microdeletion encompassing STX1B were then identified in 449 familial or sporadic cases. Video and local field potential analyses of zebrafish larvae with antisense knockdown of stx1b showed seizure-like behavior and epileptiform discharges that were highly sensitive to increased temperature...

  6. Mutation spectrum of Chinese patients with Bartter syndrome.

    Science.gov (United States)

    Han, Yue; Lin, Yi; Sun, Qing; Wang, Shujuan; Gao, Yanxia; Shao, Leping

    2017-11-24

    Bartter syndrome (BS) has been rarely reported in Chinese population except for a few case reports. This investigation was aimed to analyze the mutations of the causal genes in sixteen Chinese patients with BS, and review their followup and treatment. Identify mutations by the next generation sequencing and the multiplex ligation-dependent probe amplification (MLPA). Clinical characteristics and biochemical findings at the first presentation as well as follow-up were reviewed. 15 different CLCNKB gene mutations were identified in fourteen patients with BS, including 11 novel ones. A novel missense mutation and a novel small deletion were found from SLC12A1 gene. A novel gross deletion was found in CLCNKA gene. A recurrent missense mutation was identified from BSND gene. We found that the whole gene deletion mutation of CLCNKB gene was the most frequent mutation (32%), and the rate of gross deletion was up to 50 percent in this group of Chinese patients. The present study has found 19 mutations, including 14 novel ones, which would enrich the human gene mutation database (HGMD) and provide valuable references to the genetic counseling and diagnosis of the Chinese population.

  7. BRCA1/2 missense mutations and the value of in-silico analyses.

    Science.gov (United States)

    Sadowski, Carolin E; Kohlstedt, Daniela; Meisel, Cornelia; Keller, Katja; Becker, Kerstin; Mackenroth, Luisa; Rump, Andreas; Schröck, Evelin; Wimberger, Pauline; Kast, Karin

    2017-11-01

    The clinical implications of genetic variants in BRCA1/2 in healthy and affected individuals are considerable. Variant interpretation, however, is especially challenging for missense variants. The majority of them are classified as variants of unknown clinical significance (VUS). Computational (in-silico) predictive programs are easy to access, but represent only one tool out of a wide range of complemental approaches to classify VUS. With this single-center study, we aimed to evaluate the impact of in-silico analyses in a spectrum of different BRCA1/2 missense variants. We conducted mutation analysis of BRCA1/2 in 523 index patients with suspected hereditary breast and ovarian cancer (HBOC). Classification of the genetic variants was performed according to the German Consortium (GC)-HBOC database. Additionally, all missense variants were classified by the following three in-silico prediction tools: SIFT, Mutation Taster (MT2) and PolyPhen2 (PPH2). Overall 201 different variants, 68 of which constituted missense variants were ranked as pathogenic, neutral, or unknown. The classification of missense variants by in-silico tools resulted in a higher amount of pathogenic mutations (25% vs. 13.2%) compared to the GC-HBOC-classification. Altogether, more than fifty percent (38/68, 55.9%) of missense variants were ranked differently. Sensitivity of in-silico-tools for mutation prediction was 88.9% (PPH2), 100% (SIFT) and 100% (MT2). We found a relevant discrepancy in variant classification by using in-silico prediction tools, resulting in potential overestimation and/or underestimation of cancer risk. More reliable, notably gene-specific, prediction tools and functional tests are needed to improve clinical counseling. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Café-au-lait macules and pediatric malignancy caused by biallelic mutations in the DNA mismatch repair (MMR) gene PMS2.

    Science.gov (United States)

    Jackson, Carl-Christian; Holter, Spring; Pollett, Aaron; Clendenning, Mark; Chou, Shirley; Senter, Leigha; Ramphal, Raveena; Gallinger, Steven; Boycott, Kym

    2008-06-01

    A 14-year-old male presented with a T4 sigmoid adenocarcinoma, PMS2 protein and high frequency microsatellite instability. Germline analysis identified biallelic PMS2 missense mutations. A new cancer syndrome caused by biallelic mutations in the mismatch repair genes, including PMS2, is now emerging and is characterized by café-au-lait macules, colonic polyps and a distinctive tumor spectrum. (c) 2007 Wiley-Liss, Inc.

  9. A novel AMELX mutation causes hypoplastic amelogenesis imperfecta.

    Science.gov (United States)

    Kim, Young-Jae; Kim, Youn Jung; Kang, Jenny; Shin, Teo Jeon; Hyun, Hong-Keun; Lee, Sang-Hoon; Lee, Zang Hee; Kim, Jung-Wook

    2017-04-01

    Amelogenesis imperfecta (AI) is a hereditary genetic defect affecting tooth enamel. AI is heterogeneous in clinical phenotype as well as in genetic etiology. To date, more than 10 genes have been associated with the etiology of AI. Amelogenin is the most abundant enamel matrix protein, most of which is encoded by the amelogenin gene in the X-chromosome (AMELX). More than 16 alternative splicing transcripts have been identified in the murine Amelx gene. The purpose of this study was to identify the genetic cause of an AI family. We recruited a family with hypoplastic AI and performed mutational analysis on the candidate gene based on the clinical phenotype. Mutational analysis revealed a missense mutation in exon 6 (NM_182680.1; c.242C > T), which changes a sequence in a highly conserved amino acid (NP_872621.1; p.Pro81Leu). Furthermore, a splicing assay using a minigene displayed that the mutation changed the mRNA splicing repertory. In this study, we identified a novel AMELX missense mutation causing hypoplastic AI, and this mutation also resulted in altered mRNA splicing. These results will not only expand the mutation spectrum causing AI but also broaden our understanding of the biological mechanism of enamel formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Prevalence of Novel MAGED2 Mutations in Antenatal Bartter Syndrome.

    Science.gov (United States)

    Legrand, Anne; Treard, Cyrielle; Roncelin, Isabelle; Dreux, Sophie; Bertholet-Thomas, Aurélia; Broux, Françoise; Bruno, Daniele; Decramer, Stéphane; Deschenes, Georges; Djeddi, Djamal; Guigonis, Vincent; Jay, Nadine; Khalifeh, Tackwa; Llanas, Brigitte; Morin, Denis; Morin, Gilles; Nobili, François; Pietrement, Christine; Ryckewaert, Amélie; Salomon, Rémi; Vrillon, Isabelle; Blanchard, Anne; Vargas-Poussou, Rosa

    2018-02-07

    Mutations in the MAGED2 gene, located on the X chromosome, have been recently detected in males with a transient form of antenatal Bartter syndrome or with idiopathic polyhydramnios. The aim of this study is to analyze the proportion of the population with mutations in this gene in a French cohort of patients with antenatal Bartter syndrome. The French cohort of patients with antenatal Bartter syndrome encompasses 171 families. Mutations in genes responsible for types 1-4 have been detected in 75% of cases. In patients without identified genetic cause ( n =42), transient antenatal Bartter syndrome was reported in 12 cases. We analyzed the MAGED2 gene in the entire cohort of negative cases by Sanger sequencing and retrospectively collected clinical data regarding pregnancy as well as the postnatal outcome for positive cases. We detected mutations in MAGED2 in 17 patients, including the 12 with transient antenatal Bartter syndrome, from 16 families. Fifteen different mutations were detected (one whole deletion, three frameshift, three splicing, three nonsense, two inframe deletions, and three missense); 13 of these mutations had not been previously described. Interestingly, two patients are females; in one of these patients our data are consistent with selective inactivation of chromosome X explaining the severity. The phenotypic presentation in our patients was variable and less severe than that of the originally described cases. MAGED2 mutations explained 9% of cases of antenatal Bartter syndrome in a French cohort, and accounted for 38% of patients without other characterized mutations and for 44% of male probands of negative cases. Our study confirmed previously published data and showed that females can be affected. As a result, this gene must be included in the screening of the most severe clinical form of Bartter syndrome. Copyright © 2018 by the American Society of Nephrology.

  11. Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency Syndrome.

    Science.gov (United States)

    van der Klift, Heleen M; Mensenkamp, Arjen R; Drost, Mark; Bik, Elsa C; Vos, Yvonne J; Gille, Hans J J P; Redeker, Bert E J W; Tiersma, Yvonne; Zonneveld, José B M; García, Encarna Gómez; Letteboer, Tom G W; Olderode-Berends, Maran J W; van Hest, Liselotte P; van Os, Theo A; Verhoef, Senno; Wagner, Anja; van Asperen, Christi J; Ten Broeke, Sanne W; Hes, Frederik J; de Wind, Niels; Nielsen, Maartje; Devilee, Peter; Ligtenberg, Marjolijn J L; Wijnen, Juul T; Tops, Carli M J

    2016-11-01

    Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are applied to overcome problematic PMS2 mutation analysis due to the presence of pseudogenes and frequent gene conversion events. Here, we determined PMS2 mutation detection yield and mutation spectrum in a nationwide cohort of 396 probands. Furthermore, we studied concordance between tumor IHC/MSI (immunohistochemistry/microsatellite instability) profile and mutation carrier state. Overall, we found 52 different pathogenic PMS2 variants explaining 121 Lynch syndrome and nine CMMRD patients. In vitro mismatch repair assays suggested pathogenicity for three missense variants. Ninety-one PMS2 mutation carriers (70%) showed isolated loss of PMS2 in their tumors, for 31 (24%) no or inconclusive IHC was available, and eight carriers (6%) showed discordant IHC (presence of PMS2 or loss of both MLH1 and PMS2). Ten cases with isolated PMS2 loss (10%; 10/97) harbored MLH1 mutations. We confirmed that recently improved mutation analysis provides a high yield of PMS2 mutations in patients with isolated loss of PMS2 expression. Application of universal tumor prescreening methods will however miss some PMS2 germline mutation carriers. © 2016 WILEY PERIODICALS, INC.

  12. E-cadherin destabilization accounts for the pathogenicity of missense mutations in hereditary diffuse gastric cancer.

    Directory of Open Access Journals (Sweden)

    Joana Simões-Correia

    Full Text Available E-cadherin is critical for the maintenance of tissue architecture due to its role in cell-cell adhesion. E-cadherin mutations are the genetic cause of Hereditary Diffuse Gastric Cancer (HDGC and missense mutations represent a clinical burden, due to the uncertainty of their pathogenic role. In vitro and in vivo, most mutations lead to loss-of-function, although the causal factor is unknown for the majority. We hypothesized that destabilization could account for the pathogenicity of E-cadherin missense mutations in HDGC, and tested our hypothesis using in silico and in vitro tools. FoldX algorithm was used to calculate the impact of each mutation in E-cadherin native-state stability, and the analysis was complemented with evolutionary conservation, by SIFT. Interestingly, HDGC patients harbouring germline E-cadherin destabilizing mutants present a younger age at diagnosis or death, suggesting that the loss of native-state stability of E-cadherin accounts for the disease phenotype. To elucidate the biological relevance of E-cadherin destabilization in HDGC, we investigated a group of newly identified HDGC-associated mutations (E185V, S232C and L583R, of which L583R is predicted to be destabilizing. We show that this mutation is not functional in vitro, exhibits shorter half-life and is unable to mature, due to premature proteasome-dependent degradation, a phenotype reverted by stabilization with the artificial mutation L583I (structurally tolerated. Herein we report E-cadherin structural models suitable to predict the impact of the majority of cancer-associated missense mutations and we show that E-cadherin destabilization leads to loss-of-function in vitro and increased pathogenicity in vivo.

  13. Splice, insertion-deletion and nonsense mutations that perturb the phenylalanine hydroxylase transcript cause phenylketonuria in India.

    Science.gov (United States)

    Bashyam, Murali D; Chaudhary, Ajay K; Kiran, Manjari; Nagarajaram, Hampapathalu A; Devi, Radha Rama; Ranganath, Prajnya; Dalal, Ashwin; Bashyam, Leena; Gupta, Neerja; Kabra, Madhulika; Muranjan, Mamta; Puri, Ratna D; Verma, Ishwar C; Nampoothiri, Sheela; Kadandale, Jayarama S

    2014-03-01

    Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by mutational inactivation of the phenylalanine hydroxylase (PAH) gene. Missense mutations are the most common PAH mutation type detected in PKU patients worldwide. We performed PAH mutation analysis in 27 suspected Indian PKU families (including 7 from our previous study) followed by structure and function analysis of specific missense and splice/insertion-deletion/nonsense mutations, respectively. Of the 27 families, disease-causing mutations were detected in 25. A total of 20 different mutations were identified of which 7 "unique" mutations accounted for 13 of 25 mutation positive families. The unique mutations detected exclusively in Indian PKU patients included three recurrent mutations detected in three families each. The 20 mutations included only 5 missense mutations in addition to 5 splice, 4 each nonsense and insertion-deletion mutations, a silent variant in coding region and a 3'UTR mutation. One deletion and two nonsense mutations were characterized to confirm significant reduction in mutant transcript levels possibly through activation of nonsense mediated decay. All missense mutations affected conserved amino acid residues and sequence and structure analysis suggested significant perturbations in the enzyme activity of respective mutant proteins. This is probably the first report of identification of a significantly low proportion of missense PAH mutations from PKU families and together with the presence of a high proportion of splice, insertion-deletion, and nonsense mutations, points to a unique PAH mutation profile in Indian PKU patients. © 2013 Wiley Periodicals, Inc.

  14. In-frame mutations in exon 1 of SKI cause dominant Shprintzen-Goldberg syndrome.

    Science.gov (United States)

    Carmignac, Virginie; Thevenon, Julien; Adès, Lesley; Callewaert, Bert; Julia, Sophie; Thauvin-Robinet, Christel; Gueneau, Lucie; Courcet, Jean-Benoit; Lopez, Estelle; Holman, Katherine; Renard, Marjolijn; Plauchu, Henri; Plessis, Ghislaine; De Backer, Julie; Child, Anne; Arno, Gavin; Duplomb, Laurence; Callier, Patrick; Aral, Bernard; Vabres, Pierre; Gigot, Nadège; Arbustini, Eloisa; Grasso, Maurizia; Robinson, Peter N; Goizet, Cyril; Baumann, Clarisse; Di Rocco, Maja; Sanchez Del Pozo, Jaime; Huet, Frédéric; Jondeau, Guillaume; Collod-Beroud, Gwenaëlle; Beroud, Christophe; Amiel, Jeanne; Cormier-Daire, Valérie; Rivière, Jean-Baptiste; Boileau, Catherine; De Paepe, Anne; Faivre, Laurence

    2012-11-02

    Shprintzen-Goldberg syndrome (SGS) is characterized by severe marfanoid habitus, intellectual disability, camptodactyly, typical facial dysmorphism, and craniosynostosis. Using family-based exome sequencing, we identified a dominantly inherited heterozygous in-frame deletion in exon 1 of SKI. Direct sequencing of SKI further identified one overlapping heterozygous in-frame deletion and ten heterozygous missense mutations affecting recurrent residues in 18 of the 19 individuals screened for SGS; these individuals included one family affected by somatic mosaicism. All mutations were located in a restricted area of exon 1, within the R-SMAD binding domain of SKI. No mutation was found in a cohort of 11 individuals with other marfanoid-craniosynostosis phenotypes. The interaction between SKI and Smad2/3 and Smad 4 regulates TGF-β signaling, and the pattern of anomalies in Ski-deficient mice corresponds to the clinical manifestations of SGS. These findings define SGS as a member of the family of diseases associated with the TGF-β-signaling pathway. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. A restricted spectrum of NRAS mutations causes Noonan syndrome

    NARCIS (Netherlands)

    Cirstea, Ion C.; Kutsche, Kerstin; Dvorsky, Radovan; Gremer, Lothar; Carta, Claudio; Horn, Denise; Roberts, Amy E.; Lepri, Francesca; Merbitz-Zahradnik, Torsten; Koenig, Rainer; Kratz, Christian P.; Pantaleoni, Francesca; Dentici, Maria L.; Joshi, Victoria A.; Kucherlapati, Raju S.; Mazzanti, Laura; Mundlos, Stefan; Patton, Michael A.; Silengo, Margherita Cirillo; Rossi, Cesare; Zampino, Giuseppe; Digilio, Cristina; Stuppia, Liborio; Seemanova, Eva; Pennacchio, Len A.; Gelb, Bruce D.; Dallapiccola, Bruno; Wittinghofer, Alfred; Ahmadian, Mohammad R.; Tartaglia, Marco; Zenker, Martin

    Noonan syndrome, a developmental disorder characterized by congenital heart defects, reduced growth, facial dysmorphism and variable cognitive deficits, is caused by constitutional dysregulation of the RAS-MAPK signaling pathway. Here we report that germline NRAS mutations conferring enhanced

  16. A missense mutation in the alpha-actinin 1 gene (ACTN1 is the cause of autosomal dominant macrothrombocytopenia in a large French family.

    Directory of Open Access Journals (Sweden)

    Paul Guéguen

    Full Text Available Inherited thrombocytopenia is a heterogeneous group of disorders characterized by a reduced number of blood platelets. Despite the identification of nearly 20 causative genes in the past decade, approximately half of all subjects with inherited thrombocytopenia still remain unexplained in terms of the underlying pathogenic mechanisms. Here we report a six-generation French pedigree with an autosomal dominant mode of inheritance and the identification of its genetic basis. Of the 55 subjects available for analysis, 26 were diagnosed with isolated macrothrombocytopenia. Genome-wide linkage analysis mapped a 10.9 Mb locus to chromosome 14 (14q22 with a LOD score of 7.6. Candidate gene analysis complemented by targeted next-generation sequencing identified a missense mutation (c.137GA; p.Arg46Gln in the alpha-actinin 1 gene (ACTN1 that segregated with macrothrombocytopenia in this large pedigree. The missense mutation occurred within actin-binding domain of alpha-actinin 1, a functionally critical domain that crosslinks actin filaments into bundles. The evaluation of cultured mutation-harboring megakaryocytes by electron microscopy and the immunofluorescence examination of transfected COS-7 cells suggested that the mutation causes disorganization of the cellular cytoplasm. Our study concurred with a recently published whole-exome sequence analysis of six small Japanese families with congenital macrothrombocytopenia, adding ACTN1 to the growing list of thrombocytopenia genes.

  17. A frame-shift mutation of PMS2 is a widespread cause of Lynch syndrome

    DEFF Research Database (Denmark)

    Clendenning, Mark; Senter, Leigha; Hampel, Heather

    2008-01-01

    BACKGROUND: When compared to the other mismatch repair genes involved in Lynch syndrome, the identification of mutations within PMS2 has been limited (Lynch syndrome cases...... on immunohistochemical analysis. RESULTS: We have identified a frequently occurring frame-shift mutation (c.736_741del6ins11) in 12 ostensibly unrelated Lynch syndrome patients (20% of patients we have identified with a deleterious mutation in PMS2, n=61). These individuals all display the rare allele (population...... are caused by PMS2. This disparity is primarily due to complications in the study of this gene caused by interference from pseudogene sequences. METHODS: Using a recently developed method for detecting PMS2 specific mutations, we have screened 99 patients who are likely candidates for PMS2 mutations based...

  18. De novo mutations in HCN1 cause early infantile epileptic encephalopathy.

    Science.gov (United States)

    Nava, Caroline; Dalle, Carine; Rastetter, Agnès; Striano, Pasquale; de Kovel, Carolien G F; Nabbout, Rima; Cancès, Claude; Ville, Dorothée; Brilstra, Eva H; Gobbi, Giuseppe; Raffo, Emmanuel; Bouteiller, Delphine; Marie, Yannick; Trouillard, Oriane; Robbiano, Angela; Keren, Boris; Agher, Dahbia; Roze, Emmanuel; Lesage, Suzanne; Nicolas, Aude; Brice, Alexis; Baulac, Michel; Vogt, Cornelia; El Hajj, Nady; Schneider, Eberhard; Suls, Arvid; Weckhuysen, Sarah; Gormley, Padhraig; Lehesjoki, Anna-Elina; De Jonghe, Peter; Helbig, Ingo; Baulac, Stéphanie; Zara, Federico; Koeleman, Bobby P C; Haaf, Thomas; LeGuern, Eric; Depienne, Christel

    2014-06-01

    Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels contribute to cationic Ih current in neurons and regulate the excitability of neuronal networks. Studies in rat models have shown that the Hcn1 gene has a key role in epilepsy, but clinical evidence implicating HCN1 mutations in human epilepsy is lacking. We carried out exome sequencing for parent-offspring trios with fever-sensitive, intractable epileptic encephalopathy, leading to the discovery of two de novo missense HCN1 mutations. Screening of follow-up cohorts comprising 157 cases in total identified 4 additional amino acid substitutions. Patch-clamp recordings of Ih currents in cells expressing wild-type or mutant human HCN1 channels showed that the mutations had striking but divergent effects on homomeric channels. Individuals with mutations had clinical features resembling those of Dravet syndrome with progression toward atypical absences, intellectual disability and autistic traits. These findings provide clear evidence that de novo HCN1 point mutations cause a recognizable early-onset epileptic encephalopathy in humans.

  19. Hot-spot KIF5A mutations cause familial ALS

    Science.gov (United States)

    Yilmaz, Rüstem; Müller, Kathrin; Grehl, Torsten; Petri, Susanne; Meyer, Thomas; Grosskreutz, Julian; Weydt, Patrick; Ruf, Wolfgang; Neuwirth, Christoph; Weber, Markus; Pinto, Susana; Claeys, Kristl G; Schrank, Berthold; Jordan, Berit; Knehr, Antje; Günther, Kornelia; Hübers, Annemarie; Zeller, Daniel; Kubisch, Christian; Jablonka, Sibylle; Klopstock, Thomas; de Carvalho, Mamede; Sperfeld, Anne; Borck, Guntram; Volk, Alexander E; Dorst, Johannes; Weis, Joachim; Otto, Markus; Schuster, Joachim; Del Tredici, Kelly; Braak, Heiko; Danzer, Karin M; Freischmidt, Axel; Meitinger, Thomas; Strom, Tim M; Ludolph, Albert C; Andersen, Peter M; Weishaupt, Jochen H; Weyen, Ute; Hermann, Andreas; Hagenacker, Tim; Koch, Jan Christoph; Lingor, Paul; Göricke, Bettina; Zierz, Stephan; Baum, Petra; Wolf, Joachim; Winkler, Andrea; Young, Peter; Bogdahn, Ulrich; Prudlo, Johannes; Kassubek., Jan

    2018-01-01

    Abstract Heterozygous missense mutations in the N-terminal motor or coiled-coil domains of the kinesin family member 5A (KIF5A) gene cause monogenic spastic paraplegia (HSP10) and Charcot-Marie-Tooth disease type 2 (CMT2). Moreover, heterozygous de novo frame-shift mutations in the C-terminal domain of KIF5A are associated with neonatal intractable myoclonus, a neurodevelopmental syndrome. These findings, together with the observation that many of the disease genes associated with amyotrophic lateral sclerosis disrupt cytoskeletal function and intracellular transport, led us to hypothesize that mutations in KIF5A are also a cause of amyotrophic lateral sclerosis. Using whole exome sequencing followed by rare variant analysis of 426 patients with familial amyotrophic lateral sclerosis and 6137 control subjects, we detected an enrichment of KIF5A splice-site mutations in amyotrophic lateral sclerosis (2/426 compared to 0/6137 in controls; P = 4.2 × 10−3), both located in a hot-spot in the C-terminus of the protein and predicted to affect splicing exon 27. We additionally show co-segregation with amyotrophic lateral sclerosis of two canonical splice-site mutations in two families. Investigation of lymphoblast cell lines from patients with KIF5A splice-site mutations revealed the loss of mutant RNA expression and suggested haploinsufficiency as the most probable underlying molecular mechanism. Furthermore, mRNA sequencing of a rare non-synonymous missense mutation (predicting p.Arg1007Gly) located in the C-terminus of the protein shortly upstream of the splice donor of exon 27 revealed defective KIF5A pre-mRNA splicing in respective patient-derived cell lines owing to abrogation of the donor site. Finally, the non-synonymous single nucleotide variant rs113247976 (minor allele frequency = 1.00% in controls, n = 6137), also located in the C-terminal region [p.(Pro986Leu) in exon 26], was significantly enriched in familial amyotrophic lateral sclerosis patients (minor

  20. Impaired riboflavin transport due to missense mutations in SLC52A2 causes Brown-Vialetto-Van Laere syndrome

    OpenAIRE

    Haack, Tobias B.; Makowski, Christine; Yao, Yoshiaki; Graf, Elisabeth; Hempel, Maja; Wieland, Thomas; Tauer, Ulrike; Ahting, Uwe; Mayr, Johannes A.; Freisinger, Peter; Yoshimatsu, Hiroki; Inui, Ken; Strom, Tim M.; Meitinger, Thomas; Yonezawa, Atsushi

    2012-01-01

    Brown-Vialetto-Van Laere syndrome (BVVLS [MIM 211530]) is a rare neurological disorder characterized by infancy onset sensorineural deafness and ponto-bulbar palsy. Mutations in SLC52A3 (formerly C20orf54), coding for riboflavin transporter 2 (hRFT2), have been identified as the molecular genetic correlate in several individuals with BVVLS. Exome sequencing of just one single case revealed that compound heterozygosity for two pathogenic mutations in the SLC52A2 gene coding for riboflavin tran...

  1. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D.

    Science.gov (United States)

    Bolz, H; von Brederlow, B; Ramírez, A; Bryda, E C; Kutsche, K; Nothwang, H G; Seeliger, M; del C-Salcedó Cabrera, M; Vila, M C; Molina, O P; Gal, A; Kubisch, C

    2001-01-01

    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss, vestibular dysfunction and visual impairment due to early onset retinitis pigmentosa (RP). So far, six loci (USH1A-USH1F) have been mapped, but only two USH1 genes have been identified: MYO7A for USH1B and the gene encoding harmonin for USH1C. We identified a Cuban pedigree linked to the locus for Usher syndrome type 1D (MIM 601067) within the q2 region of chromosome 10). Affected individuals present with congenital deafness and a highly variable degree of retinal degeneration. Using a positional candidate approach, we identified a new member of the cadherin gene superfamily, CDH23. It encodes a protein of 3,354 amino acids with a single transmembrane domain and 27 cadherin repeats. In the Cuban family, we detected two different mutations: a severe course of the retinal disease was observed in individuals homozygous for what is probably a truncating splice-site mutation (c.4488G-->C), whereas mild RP is present in individuals carrying the homozygous missense mutation R1746Q. A variable expression of the retinal phenotype was seen in patients with a combination of both mutations. In addition, we identified two mutations, Delta M1281 and IVS51+5G-->A, in a German USH1 patient. Our data show that different mutations in CDH23 result in USH1D with a variable retinal phenotype. In an accompanying paper, it is shown that mutations in the mouse ortholog cause disorganization of inner ear stereocilia and deafness in the waltzer mouse.

  2. Alagille syndrome in a Vietnamese cohort: mutation analysis and assessment of facial features.

    Science.gov (United States)

    Lin, Henry C; Le Hoang, Phuc; Hutchinson, Anne; Chao, Grace; Gerfen, Jennifer; Loomes, Kathleen M; Krantz, Ian; Kamath, Binita M; Spinner, Nancy B

    2012-05-01

    Alagille syndrome (ALGS, OMIM #118450) is an autosomal dominant disorder that affects multiple organ systems including the liver, heart, eyes, vertebrae, and face. ALGS is caused by mutations in one of two genes in the Notch Signaling Pathway, Jagged1 (JAG1) or NOTCH2. In this study, analysis of 21 Vietnamese ALGS individuals led to the identification of 19 different mutations (18 JAG1 and 1 NOTCH2), 17 of which are novel, including the third reported NOTCH2 mutation in Alagille Syndrome. The spectrum of JAG1 mutations in the Vietnamese patients is similar to that previously reported, including nine frameshift, three missense, two splice site, one nonsense, two whole gene, and one partial gene deletion. The missense mutations are all likely to be disease causing, as two are loss of cysteines (C22R and C78G) and the third creates a cryptic splice site in exon 9 (G386R). No correlation between genotype and phenotype was observed. Assessment of clinical phenotype revealed that skeletal manifestations occur with a higher frequency than in previously reported Alagille cohorts. Facial features were difficult to assess and a Vietnamese pediatric gastroenterologist was only able to identify the facial phenotype in 61% of the cohort. To assess the agreement among North American dysmorphologists at detecting the presence of ALGS facial features in the Vietnamese patients, 37 clinical dysmorphologists evaluated a photographic panel of 20 Vietnamese children with and without ALGS. The dysmorphologists were unable to identify the individuals with ALGS in the majority of cases, suggesting that evaluation of facial features should not be used in the diagnosis of ALGS in this population. This is the first report of mutations and phenotypic spectrum of ALGS in a Vietnamese population. Copyright © 2012 Wiley Periodicals, Inc.

  3. X-Linked Dyskeratosis Congenita Is Predominantly Caused by Missense Mutations in the DKC1 Gene

    OpenAIRE

    Knight, S.W.; Heiss, N.S.; Vulliamy, T.J.; Greschner, S.; Stavrides, G.; Pai, G.S.; Lestringant, G.; Varma, N.; Mason, P.J.; Dokal, I.; Poustka, A.

    1999-01-01

    Dyskeratosis congenita is a rare inherited bone marrow-failure syndrome characterized by abnormal skin pigmentation, nail dystrophy, and mucosal leukoplakia. More than 80% of patients develop bone-marrow failure, and this is the major cause of premature death. The X-linked form of the disease (MIM 305000) has been shown to be caused by mutations in the DKC1 gene. The gene encodes a 514-amino-acid protein, dyskerin, that is homologous to Saccharomyces cerevisiae Cbf5p and rat Nap57 proteins. B...

  4. Lamb–Shaffer syndrome, deferred outside not described by SOX5 mutation

    Directory of Open Access Journals (Sweden)

    I. V. Sharkova

    2018-01-01

    Full Text Available Clinical and genetic characteristics of a patient with Lamb–Shaffer syndrome due to the newly discovered heterozygous missense mutation p.1868A>C in the 14 exon of the SOX5 gene are presented in the next generation sequencing of exom. It is shown that, in contrast to the previously described patients due to the presence of a deletion in the region of the gene or segment of chromosome 12p12.1, in the presence of missense mutation, the intellectual deficit and the dysmorphic features of the structure are not pronounced sharply and there is no anomaly in the development of other organs and systems.

  5. A novel RUNX2 missense mutation predicted to disrupt DNA binding causes cleidocranial dysplasia in a large Chinese family with hyperplastic nails

    Directory of Open Access Journals (Sweden)

    Wang Xiaoqin

    2007-12-01

    Full Text Available Abstract Background Cleidocranial dysplasia (CCD is a dominantly inherited disease characterized by hypoplastic or absent clavicles, large fontanels, dental dysplasia, and delayed skeletal development. The purpose of this study is to investigate the genetic basis of Chinese family with CCD. Methods Here, a large Chinese family with CCD and hyperplastic nails was recruited. The clinical features displayed a significant intrafamilial variation. We sequenced the coding region of the RUNX2 gene for the mutation and phenotype analysis. Results The family carries a c.T407C (p.L136P mutation in the DNA- and CBFβ-binding Runt domain of RUNX2. Based on the crystal structure, we predict this novel missense mutation is likely to disrupt DNA binding by RUNX2, and at least locally affect the Runt domain structure. Conclusion A novel missense mutation was identified in a large Chinese family with CCD with hyperplastic nails. This report further extends the mutation spectrum and clinical features of CCD. The identification of this mutation will facilitate prenatal diagnosis and preimplantation genetic diagnosis.

  6. Mutations in CDK5RAP2 cause Seckel syndrome.

    Science.gov (United States)

    Yigit, Gökhan; Brown, Karen E; Kayserili, Hülya; Pohl, Esther; Caliebe, Almuth; Zahnleiter, Diana; Rosser, Elisabeth; Bögershausen, Nina; Uyguner, Zehra Oya; Altunoglu, Umut; Nürnberg, Gudrun; Nürnberg, Peter; Rauch, Anita; Li, Yun; Thiel, Christian Thomas; Wollnik, Bernd

    2015-09-01

    Seckel syndrome is a heterogeneous, autosomal recessive disorder marked by prenatal proportionate short stature, severe microcephaly, intellectual disability, and characteristic facial features. Here, we describe the novel homozygous splice-site mutations c.383+1G>C and c.4005-9A>G in CDK5RAP2 in two consanguineous families with Seckel syndrome. CDK5RAP2 (CEP215) encodes a centrosomal protein which is known to be essential for centrosomal cohesion and proper spindle formation and has been shown to be causally involved in autosomal recessive primary microcephaly. We establish CDK5RAP2 as a disease-causing gene for Seckel syndrome and show that loss of functional CDK5RAP2 leads to severe defects in mitosis and spindle organization, resulting in cells with abnormal nuclei and centrosomal pattern, which underlines the important role of centrosomal and mitotic proteins in the pathogenesis of the disease. Additionally, we present an intriguing case of possible digenic inheritance in Seckel syndrome: A severely affected child of nonconsanguineous German parents was found to carry heterozygous mutations in CDK5RAP2 and CEP152. This finding points toward a potential additive genetic effect of mutations in CDK5RAP2 and CEP152.

  7. Mutations in CDK5RAP2 cause Seckel syndrome

    Science.gov (United States)

    Yigit, Gökhan; Brown, Karen E; Kayserili, Hülya; Pohl, Esther; Caliebe, Almuth; Zahnleiter, Diana; Rosser, Elisabeth; Bögershausen, Nina; Uyguner, Zehra Oya; Altunoglu, Umut; Nürnberg, Gudrun; Nürnberg, Peter; Rauch, Anita; Li, Yun; Thiel, Christian Thomas; Wollnik, Bernd

    2015-01-01

    Seckel syndrome is a heterogeneous, autosomal recessive disorder marked by prenatal proportionate short stature, severe microcephaly, intellectual disability, and characteristic facial features. Here, we describe the novel homozygous splice-site mutations c.383+1G>C and c.4005-9A>G in CDK5RAP2 in two consanguineous families with Seckel syndrome. CDK5RAP2 (CEP215) encodes a centrosomal protein which is known to be essential for centrosomal cohesion and proper spindle formation and has been shown to be causally involved in autosomal recessive primary microcephaly. We establish CDK5RAP2 as a disease-causing gene for Seckel syndrome and show that loss of functional CDK5RAP2 leads to severe defects in mitosis and spindle organization, resulting in cells with abnormal nuclei and centrosomal pattern, which underlines the important role of centrosomal and mitotic proteins in the pathogenesis of the disease. Additionally, we present an intriguing case of possible digenic inheritance in Seckel syndrome: A severely affected child of nonconsanguineous German parents was found to carry heterozygous mutations in CDK5RAP2 and CEP152. This finding points toward a potential additive genetic effect of mutations in CDK5RAP2 and CEP152. PMID:26436113

  8. Variable expressivity of FGF3 mutations associated with deafness and LAMM syndrome

    Directory of Open Access Journals (Sweden)

    Griffith Andrew J

    2011-02-01

    Full Text Available Abstract Background Recessive mutations of fibroblast growth factor 3 (FGF3 can cause LAMM syndrome (OMIM 610706, characterized by fully penetrant complete labyrinthine aplasia, microtia and microdontia. Methods We performed a prospective molecular genetic and clinical study of families segregating hearing loss linked to FGF3 mutations. Ten affected individuals from three large Pakistani families segregating FGF3 mutations were imaged with CT, MRI, or both to detect inner ear abnormalities. We also modeled the three dimensional structure of FGF3 to better understand the structural consequences of the three missense mutations. Results Two families segregated reported mutations (p.R104X and p.R95W and one family segregated a novel mutation (p.R132GfsX26 of FGF3. All individuals homozygous for p.R104X or p.R132GfsX26 had fully penetrant features of LAMM syndrome. However, recessive p.R95W mutations were associated with nearly normal looking auricles and variable inner ear structural phenotypes, similar to that reported for a Somali family also segregating p.R95W. This suggests that the mild phenotype is not entirely due to genetic background. Molecular modeling result suggests a less drastic effect of p.R95W on FGF3 function compared with known missense mutations detected in fully penetrant LAMM syndrome. Since we detected significant intrafamilial variability of the inner ear structural phenotype in the family segregating p.R95W, we also sequenced FGF10 as a likely candidate for a modifier. However, we did not find any sequence variation, pointing out that a larger sample size will be needed to map and identify a modifier. We also observed a mild to moderate bilateral conductive hearing loss in three carriers of p.R95W, suggesting either a semi-dominant effect of this mutant allele of FGF3, otitis media, or a consequence of genetic background in these three family members. Conclusions We noted a less prominent dental and external ear phenotype in

  9. A novel NHS mutation causes Nance-Horan Syndrome in a Chinese family.

    Science.gov (United States)

    Tian, Qi; Li, Yunping; Kousar, Rizwana; Guo, Hui; Peng, Fenglan; Zheng, Yu; Yang, Xiaohua; Long, Zhigao; Tian, Runyi; Xia, Kun; Lin, Haiying; Pan, Qian

    2017-01-07

    Nance-Horan Syndrome (NHS) (OMIM: 302350) is a rare X-linked developmental disorder characterized by bilateral congenital cataracts, with occasional dental anomalies, characteristic dysmorphic features, brachymetacarpia and mental retardation. Carrier females exhibit similar manifestations that are less severe than in affected males. Here, we report a four-generation Chinese family with multiple affected individuals presenting Nance-Horan Syndrome. Whole-exome sequencing combined with RT-PCR and Sanger sequencing was used to search for a genetic cause underlying the disease phenotype. Whole-exome sequencing identified in all affected individuals of the family a novel donor splicing site mutation (NM_198270: c.1045 + 2T > A) in intron 4 of the gene NHS, which maps to chromosome Xp22.13. The identified mutation results in an RNA processing defect causing a 416-nucleotide addition to exon 4 of the mRNA transcript, likely producing a truncated NHS protein. The donor splicing site mutation NM_198270: c.1045 + 2T > A of the NHS gene is the causative mutation in this Nance-Horan Syndrome family. This research broadens the spectrum of NHS gene mutations, contributing to our understanding of the molecular genetics of NHS.

  10. Mutation screening of the PCDH15 gene in Spanish patients with Usher syndrome type I.

    Science.gov (United States)

    Jaijo, Teresa; Oshima, Aki; Aller, Elena; Carney, Carol; Usami, Shin-ichi; Millán, José M; Kimberling, William J

    2012-01-01

    PCDH15 codes for protocadherin-15, a cell-cell adhesion protein essential in the morphogenesis and cohesion of stereocilia bundles and in the function or preservation of photoreceptor cells. Mutations in the PCDH15 gene are responsible for Usher syndrome type I (USH1F) and non-syndromic hearing loss (DFNB23). The purpose of this work was to perform PCDH15 mutation screening to identify the genetic cause of the disease in a cohort of Spanish patients with Usher syndrome type I and establish phenotype-genotype correlation. Mutation analysis of PCDH15 included additional exons recently identified and was performed by direct sequencing. The screening was performed in 19 probands with USH already screened for mutations in the most prevalent USH1 genes, myosin VIIA (MYO7A) and cadherin-23 (CDH23), and for copy number variants in PCDH15. Seven different point mutations, five novel, were detected. Including the large PCDH15 rearrangements previously reported in our cohort of patients, a total of seven of 19 patients (36.8%) were carriers of at least one pathogenic allele. Thirteen out of the 38 screened alleles carried pathogenic PCDH15 variants (34.2%). Five out of the seven point mutations reported in the present study are novel, supporting the idea that most PCDH15 mutations are private. Furthermore, no mutational hotspots have been identified. In most patients, detected mutations led to a truncated protein, reinforcing the hypothesis that severe mutations cause the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.

  11. Noonan syndrome: Severe phenotype and PTPN11 mutations.

    Science.gov (United States)

    Carrasco Salas, Pilar; Gómez-Molina, Gertrudis; Carreto-Alba, Páxedes; Granell-Escobar, Reyes; Vázquez-Rico, Ignacio; León-Justel, Antonio

    2018-04-24

    Noonan syndrome (NS) is a genetic disorder characterized by a wide range of distinctive features and health problems. It caused in 50% of cases by missense mutations in PTPN11 gene. It has been postulated that it is possible to predict the disease course based into the impact of mutations on the protein. We report two cases of severe NS phenotype including hydrops fetalis. PTPN11 gene was studied in germinal cells of both patients by sequencing. Two different mutations (p.Gly503Arg and p.Met504Val) was detected in PTPN11 gene. These mutations have been reported previously, and when they were germinal variants, patients presented classic NS, NS with other malignancies and recently, p.Gly503Arg has been also observed in a patient with severe NS and hydrops fetalis, as our cases. Therefore, these observations shade light on that it is not always possibly to determine the genotype-phenotype relation based into the impact of mutations on the protein in NS patients with PTPN11 mutations. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  12. The prevalence of CHD7 missense versus truncating mutations is higher in patients with Kallmann syndrome than in typical CHARGE patients

    DEFF Research Database (Denmark)

    Marcos, Séverine; Sarfati, Julie; Leroy, Chrystel

    2014-01-01

    CONTEXT: Mutations in CHD7, a gene previously implicated in CHARGE (coloboma, heart defect, choanal atresia, retardation of growth and/or development, genital hypoplasia, ear anomalies) syndrome, have been reported in patients presenting with Kallmann syndrome (KS) or congenital hypogonadotropic...... hypogonadism (CHH). Most mutations causing CHARGE syndrome result in premature stop codons and occur de novo, but the proportion of truncating vs nontruncating mutations in KS and CHH patients is still unknown. OBJECTIVE: The objective of the study was to determine the nature, prevalence, mode of transmission......, and clinical spectrum of CHD7 mutations in a large series of patients. DESIGN: We studied 209 KS and 94 CHH patients. These patients had not been diagnosed with CHARGE syndrome according to the current criteria. We searched for mutations in 16 KS and CHH genes including CHD7. RESULTS: We found presumably...

  13. Noonan syndrome gain-of-function mutations in NRAS cause zebrafish gastrulation defects

    Directory of Open Access Journals (Sweden)

    Vincent Runtuwene

    2011-05-01

    Noonan syndrome is a relatively common developmental disorder that is characterized by reduced growth, wide-set eyes and congenital heart defects. Noonan syndrome is associated with dysregulation of the Ras–mitogen-activated-protein-kinase (MAPK signaling pathway. Recently, two mutations in NRAS were reported to be associated with Noonan syndrome, T50I and G60E. Here, we report a mutation in NRAS, resulting in an I24N amino acid substitution, that we identified in an individual bearing typical Noonan syndrome features. The I24N mutation activates N-Ras, resulting in enhanced downstream signaling. Expression of N-Ras-I24N, N-Ras-G60E or the strongly activating mutant N-Ras-G12V, which we included as a positive control, results in developmental defects in zebrafish embryos, demonstrating that these activating N-Ras mutants are sufficient to induce developmental disorders. The defects in zebrafish embryos are reminiscent of symptoms in individuals with Noonan syndrome and phenocopy the defects that other Noonan-syndrome-associated genes induce in zebrafish embryos. MEK inhibition completely rescued the activated N-Ras-induced phenotypes, demonstrating that these defects are mediated exclusively by Ras-MAPK signaling. In conclusion, mutations in NRAS from individuals with Noonan syndrome activated N-Ras signaling and induced developmental defects in zebrafish embryos, indicating that activating mutations in NRAS cause Noonan syndrome.

  14. Noonan syndrome gain-of-function mutations in NRAS cause zebrafish gastrulation defects

    Science.gov (United States)

    Runtuwene, Vincent; van Eekelen, Mark; Overvoorde, John; Rehmann, Holger; Yntema, Helger G.; Nillesen, Willy M.; van Haeringen, Arie; van der Burgt, Ineke; Burgering, Boudewijn; den Hertog, Jeroen

    2011-01-01

    SUMMARY Noonan syndrome is a relatively common developmental disorder that is characterized by reduced growth, wide-set eyes and congenital heart defects. Noonan syndrome is associated with dysregulation of the Ras–mitogen-activated-protein-kinase (MAPK) signaling pathway. Recently, two mutations in NRAS were reported to be associated with Noonan syndrome, T50I and G60E. Here, we report a mutation in NRAS, resulting in an I24N amino acid substitution, that we identified in an individual bearing typical Noonan syndrome features. The I24N mutation activates N-Ras, resulting in enhanced downstream signaling. Expression of N-Ras-I24N, N-Ras-G60E or the strongly activating mutant N-Ras-G12V, which we included as a positive control, results in developmental defects in zebrafish embryos, demonstrating that these activating N-Ras mutants are sufficient to induce developmental disorders. The defects in zebrafish embryos are reminiscent of symptoms in individuals with Noonan syndrome and phenocopy the defects that other Noonan-syndrome-associated genes induce in zebrafish embryos. MEK inhibition completely rescued the activated N-Ras-induced phenotypes, demonstrating that these defects are mediated exclusively by Ras-MAPK signaling. In conclusion, mutations in NRAS from individuals with Noonan syndrome activated N-Ras signaling and induced developmental defects in zebrafish embryos, indicating that activating mutations in NRAS cause Noonan syndrome. PMID:21263000

  15. A novel COL4A3 mutation causes autosomal-recessive Alport syndrome in a large Turkish family.

    Science.gov (United States)

    Uzak, Asli Subasioglu; Tokgoz, Bulent; Dundar, Munis; Tekin, Mustafa

    2013-03-01

    Alport syndrome (AS) is a genetically heterogeneous disorder that is characterized by hematuria, progressive renal failure typically resulting in end-stage renal disease, sensorineural hearing loss, and variable ocular abnormalities. Only 15% of cases with AS are autosomal recessive and are caused by mutations in the COL4A3 or COL4A4 genes, encoding type IV collagen. Clinical data in a large consanguineous family with four affected members were reviewed, and genomic DNA was extracted. For mapping, 15 microsatellite markers flanking COL4A3, COL4A4, and COL4A5 in 16 family members were typed. For mutation screening, all coding exons of COL4A3 were polymerase chain reaction- amplified and Sanger-sequenced from genomic DNA. The disease locus was mapped to chromosome 2q36.3, where COL4A3 and COL4A4 reside. Sanger sequencing revealed a novel mis-sense mutation (c.2T>C; p.M1T) in exon 1 of COL4A3. The identified nucleotide change was not found in 100 healthy ethnicity-matched controls via Sanger sequencing. We present a large consanguineous Turkish family with AS that was found to have a COL4A3 mutation as the cause of the disease. Although the relationship between the various genotypes and phenotypes in AS has not been fully elucidated, detailed clinical and molecular analyses are helpful for providing data to be used in genetic counseling. It is important to identify new mutations to clarify their clinical importance, to assess the prognosis of the disease, and to avoid renal biopsy for final diagnosis.

  16. Atypical Clinical Presentation of Xeroderma Pigmentosum in a Patient Harboring a Novel Missense Mutation in the XPC Gene: The Importance of Clinical Suspicion.

    Science.gov (United States)

    Meneses, Marina; Chavez-Bourgeois, Marion; Badenas, Celia; Villablanca, Salvador; Aguilera, Paula; Bennàssar, Antoni; Alos, Llucia; Puig, Susana; Malvehy, Josep; Carrera, Cristina

    2015-01-01

    Xeroderma pigmentosum (XP) is a genodermatosis caused by abnormal DNA repair. XP complementation group C (XPC) is the most frequent type in Mediterranean countries. We describe a case with a novel mutation in the XPC gene. A healthy Caucasian male patient was diagnosed with multiple primary melanomas. Digital follow-up and molecular studies were carried out. During digital follow-up 8 more additional melanomas were diagnosed. Molecular studies did not identify mutations in CDKN2A, CDK4 or MITF genes. Two heterozygous mutations in the XPC gene were detected: c.2287delC (p.Leu763Cysfs*4) frameshift and c.2212A>G (p.Thr738Ala) missense mutations. The p.Thr738Ala missense mutation has not been previously described. Missense mutations in the XPC gene may allow partial functionality that could explain this unusual late onset XP. Atypical clinical presentation of XPC could be misdiagnosed when genetic aberrations allow partial DNA repair capacity. © 2015 S. Karger AG, Basel.

  17. Involvement of ER Stress in Dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 Missense Mutations Shown by iPSC-Derived Oligodendrocytes

    Directory of Open Access Journals (Sweden)

    Yuko Numasawa-Kuroiwa

    2014-05-01

    Full Text Available Pelizaeus-Merzbacher disease (PMD is a form of X-linked leukodystrophy caused by mutations in the proteolipid protein 1 (PLP1 gene. Although PLP1 proteins with missense mutations have been shown to accumulate in the rough endoplasmic reticulum (ER in disease model animals and cell lines transfected with mutant PLP1 genes, the exact pathogenetic mechanism of PMD has not previously been clarified. In this study, we established induced pluripotent stem cells (iPSCs from two PMD patients carrying missense mutation and differentiated them into oligodendrocytes in vitro. In the PMD iPSC-derived oligodendrocytes, mislocalization of mutant PLP1 proteins to the ER and an association between increased susceptibility to ER stress and increased numbers of apoptotic oligodendrocytes were observed. Moreover, electron microscopic analysis demonstrated drastically reduced myelin formation accompanied by abnormal ER morphology. Thus, this study demonstrates the involvement of ER stress in pathogenic dysmyelination in the oligodendrocytes of PMD patients with the PLP1 missense mutation.

  18. A novel ICK mutation causes ciliary disruption and lethal endocrine-cerebro-osteodysplasia syndrome.

    Science.gov (United States)

    Oud, Machteld M; Bonnard, Carine; Mans, Dorus A; Altunoglu, Umut; Tohari, Sumanty; Ng, Alvin Yu Jin; Eskin, Ascia; Lee, Hane; Rupar, C Anthony; de Wagenaar, Nathalie P; Wu, Ka Man; Lahiry, Piya; Pazour, Gregory J; Nelson, Stanley F; Hegele, Robert A; Roepman, Ronald; Kayserili, Hülya; Venkatesh, Byrappa; Siu, Victoria M; Reversade, Bruno; Arts, Heleen H

    2016-01-01

    Endocrine-cerebro-osteodysplasia (ECO) syndrome [MIM:612651] caused by a recessive mutation (p.R272Q) in Intestinal cell kinase (ICK) shows significant clinical overlap with ciliary disorders. Similarities are strongest between ECO syndrome, the Majewski and Mohr-Majewski short-rib thoracic dysplasia (SRTD) with polydactyly syndromes, and hydrolethalus syndrome. In this study, we present a novel homozygous ICK mutation in a fetus with ECO syndrome and compare the effect of this mutation with the previously reported ICK variant on ciliogenesis and cilium morphology. Through homozygosity mapping and whole-exome sequencing, we identified a second variant (c.358G > T; p.G120C) in ICK in a Turkish fetus presenting with ECO syndrome. In vitro studies of wild-type and mutant mRFP-ICK (p.G120C and p.R272Q) revealed that, in contrast to the wild-type protein that localizes along the ciliary axoneme and/or is present in the ciliary base, mutant proteins rather enrich in the ciliary tip. In addition, immunocytochemistry revealed a decreased number of cilia in ICK p.R272Q-affected cells. Through identification of a novel ICK mutation, we confirm that disruption of ICK causes ECO syndrome, which clinically overlaps with the spectrum of ciliopathies. Expression of ICK-mutated proteins result in an abnormal ciliary localization compared to wild-type protein. Primary fibroblasts derived from an individual with ECO syndrome display ciliogenesis defects. In aggregate, our findings are consistent with recent reports that show that ICK regulates ciliary biology in vitro and in mice, confirming that ECO syndrome is a severe ciliopathy.

  19. A missense mutation in the CRBN gene that segregates with intellectual disability and self-mutilating behaviour in a consanguineous Saudi family.

    Science.gov (United States)

    Sheereen, Atia; Alaamery, Manal; Bawazeer, Shahad; Al Yafee, Yusra; Massadeh, Salam; Eyaid, Wafaa

    2017-04-01

    Autosomal-recessive non-syndromic intellectual disability (ARNS-ID) is an aetiologically heterogeneous disorder. Although little is known about the function of human cereblon (CRBN), its relationship to mild cognitive deficits suggests that it is involved in the basic processes of human memory and learning. We aim to identify the genetic cause of intellectual disability and self-mutilation in a consanguineous Saudi family with five affected members. Clinical whole-exome sequencing was performed on the proband patient, and Sanger sequencing was done to validate and confirm segregation in other family members. A missense variant (c. 1171T>C) in the CRBN gene was identified in five individuals with severe intellectual disability (ID) in a consanguineous Saudi family. The homozygous variant was co-segregating in the family with the phenotype of severe ID, seizures and self-mutilating behaviour. The missense mutation (p.C391R) reported here results in the replacement of a conserved cysteine residue by an arginine in the CULT (cereblon domain of unknown activity, binding cellular ligands and thalidomide) domain of CRBN, which contains a zinc-binding site. These findings thus contribute to a growing list of ID disorders caused by CRBN mutations, broaden the spectrum of phenotypes attributable to ARNS-ID and provide new insight into genotype-phenotype correlations between CRBN mutations and the aetiology of ARNS-ID. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome

    NARCIS (Netherlands)

    Van Houdt, Jeroen K. J.; Nowakowska, Beata Anna; Sousa, Sergio B.; van Schaik, Barbera D. C.; Seuntjens, Eve; Avonce, Nelson; Sifrim, Alejandro; Abdul-Rahman, Omar A.; van den Boogaard, Marie-Jose H.; Bottani, Armand; Castori, Marco; Cormier-Daire, Valerie; Deardorff, Matthew A.; Filges, Isabel; Fryer, Alan; Fryns, Jean-Pierre; Gana, Simone; Garavelli, Livia; Gillessen-Kaesbach, Gabriele; Hall, Bryan D.; Horn, Denise; Huylebroeck, Danny; Klapecki, Jakub; Krajewska-Walasek, Malgorzata; Kuechler, Alma; Lines, Matthew A.; Maas, Saskia; MacDermot, Kay D.; McKee, Shane; Magee, Alex; de Man, Stella A.; Moreau, Yves; Morice-Picard, Fanny; Obersztyn, Ewa; Pilch, Jacek; Rosser, Elizabeth; Shannon, Nora; Stolte-Dijkstra, Irene; Van Dijck, Patrick; Vilain, Catheline; Vogels, Annick; Wakeling, Emma; Wieczorek, Dagmar; Wilson, Louise; Zuffardi, Orsetta; van Kampen, Antoine H. C.; Devriendt, Koenraad; Hennekam, Raoul; Vermeesch, Joris Robert

    Nicolaides-Baraitser syndrome (NBS) is characterized by sparse hair, distinctive facial morphology, distal-limb anomalies and intellectual disability. We sequenced the exomes of ten individuals with NBS and identified heterozygous variants in SMARCA2 in eight of them. Extended molecular screening

  1. Systemic vascular phenotypes of Loeys-Dietz syndrome in a child carrying a de novo R381P mutation in TGFBR2: a case report.

    Science.gov (United States)

    Uike, Kiyoshi; Matsushita, Yuki; Sakai, Yasunari; Togao, Osamu; Nagao, Michinobu; Ishizaki, Yoshito; Nagata, Hazumu; Yamamura, Kenichiro; Torisu, Hiroyuki; Hara, Toshiro

    2013-11-12

    Loeys-Dietz syndrome, also known as Marfan syndrome type II, is a rare connective tissue disorder caused by dominant mutations in transforming growth factor-beta receptors (TGFBR1 and 2). We report a 7-year-old Japanese boy with Loeys-Dietz syndrome who carried a novel, de novo missense mutation in TGFBR2 (c.1142g > c, R381P). He showed dysmorphic faces and skeletal malformations that were typical in previous cases with Loeys-Dietz syndrome. The cardiac studies disclosed the presence of markedly dilated aortic root and patent ductus aorteriosus. The cranial magnetic resonance imaging (MRI) and angiography (MRA) detected the tortuous appearances of the bilateral middle cerebral and carotid arteries. This study depicts the systemic vascular phenotypes of a child with Loeys-Dietz syndrome that were caused by a novel heterozygous mutation of TGFR2. A large cohort with serial imaging studies for vascular phenotypes will be useful for delineating the genotype-phenotype correlations of Loeys-Dietz syndrome.

  2. c.376G>A mutation in WFS1 gene causes Wolfram syndrome without deafness.

    Science.gov (United States)

    Safarpour Lima, Behnam; Ghaedi, Hamid; Daftarian, Narsis; Ahmadieh, Hamid; Jamshidi, Javad; Khorrami, Mehdi; Noroozi, Rezvan; Sohrabifar, Nasim; Assarzadegan, Farhad; Hesami, Omid; Taghavi, Shaghayegh; Ahmadifard, Azadeh; Atakhorrami, Minoo; Rahimi-Aliabadi, Simin; Shahmohammadibeni, Neda; Alehabib, Elham; Andarva, Monavvar; Darvish, Hossein; Emamalizadeh, Babak

    2016-02-01

    Wolfram syndrome is one of the rare autosomal recessive, progressive, neurodegenerative disorders, characterized by diabetes mellitus and optic atrophy. Several other features are observed in patients including deafness, ataxia, and peripheral neuropathy. A gene called WFS1 is identified on chromosome 4p, responsible for Wolfram syndrome. We investigated a family consisted of parents and 8 children, which 5 of them have been diagnosed for Wolfram syndrome. WFS1 gene in all family members was sequenced for causative mutations. A mutation (c.376G>A, p.A126T) was found in all affected members in homozygous state and in both parents in heterozygous state. The bioinformatics analysis showed the deleterious effects of this nucleotide change on the structure and function of the protein product. As all of the patients in the family showed the homozygote mutation, and parents were both heterozygote, this mutation is probably the cause of the disease. We identified this mutation in homozygous state for the first time as Wolfram syndrome causation. We also showed that this mutation probably doesn't cause deafness in affected individuals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Raine Syndrome (OMIM #259775), Caused By FAM20C Mutation, Is Congenital Sclerosing Osteomalacia With Cerebral Calcification (OMIM 259660).

    Science.gov (United States)

    Whyte, Michael P; McAlister, William H; Fallon, Michael D; Pierpont, Mary Ella; Bijanki, Vinieth N; Duan, Shenghui; Otaify, Ghada A; Sly, William S; Mumm, Steven

    2017-04-01

    In 1985, we briefly reported infant sisters with a unique, lethal, autosomal recessive disorder designated congenital sclerosing osteomalacia with cerebral calcification. In 1986, this condition was entered into Mendelian Inheritance In Man (MIM) as osteomalacia, sclerosing, with cerebral calcification (MIM 259660). However, no attestations followed. Instead, in 1989 Raine and colleagues published an affected neonate considering unprecedented the striking clinical and radiographic features. In 1992, "Raine syndrome" entered MIM formally as osteosclerotic bone dysplasia, lethal (MIM #259775). In 2007, the etiology emerged as loss-of-function mutation of FAM20C that encodes family with sequence similarity 20, member C. FAM20C is highly expressed in embryonic calcified tissues and encodes a kinase (dentin matrix protein 4) for most of the secreted phosphoproteome including FGF23, osteopontin, and other regulators of skeletal mineralization. Herein, we detail the clinical, radiological, biochemical, histopathological, and FAM20C findings of our patients. Following premortem tetracycline labeling, the proposita's non-decalcified skeletal histopathology after autopsy indicated no rickets but documented severe osteomalacia. Archival DNA revealed the sisters were compound heterozygotes for a unique missense mutation and a novel deletion in FAM20C. Individuals heterozygous for the missense mutation seemed to prematurely fuse their metopic suture and develop a metopic ridge sometimes including trigonocephaly. Our findings clarify FAM20C's role in hard tissue formation and mineralization, and show that Raine syndrome is congenital sclerosing osteomalacia with cerebral calcification. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  4. Mouse models of two missense mutations in actin-binding domain 1 of dystrophin associated with Duchenne or Becker muscular dystrophy.

    Science.gov (United States)

    McCourt, Jackie L; Talsness, Dana M; Lindsay, Angus; Arpke, Robert W; Chatterton, Paul D; Nelson, D'anna M; Chamberlain, Christopher M; Olthoff, John T; Belanto, Joseph J; McCourt, Preston M; Kyba, Michael; Lowe, Dawn A; Ervasti, James M

    2018-02-01

    Missense mutations in the dystrophin protein can cause Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) through an undefined pathomechanism. In vitro studies suggest that missense mutations in the N-terminal actin-binding domain (ABD1) cause protein instability, and cultured myoblast studies reveal decreased expression levels that can be restored to wild-type with proteasome inhibitors. To further elucidate the pathophysiology of missense dystrophin in vivo, we generated two transgenic mdx mouse lines expressing L54R or L172H mutant dystrophin, which correspond to missense mutations identified in human patients with DMD or BMD, respectively. Our biochemical, histologic and physiologic analysis of the L54R and L172H mice show decreased levels of dystrophin which are proportional to the phenotypic severity. Proteasome inhibitors were ineffective in both the L54R and L172H mice, yet mice homozygous for the L172H transgene were able to express even higher levels of dystrophin which caused further improvements in muscle histology and physiology. Given that missense dystrophin is likely being degraded by the proteasome but whole body proteasome inhibition was not possible, we screened for ubiquitin-conjugating enzymes involved in targeting dystrophin to the proteasome. A myoblast cell line expressing L54R mutant dystrophin was screened with an siRNA library targeting E1, E2 and E3 ligases which identified Amn1, FBXO33, Zfand5 and Trim75. Our study establishes new mouse models of dystrophinopathy and identifies candidate E3 ligases that may specifically regulate dystrophin protein turnover in vivo. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Hot-spot KIF5A mutations cause familial ALS.

    Science.gov (United States)

    Brenner, David; Yilmaz, Rüstem; Müller, Kathrin; Grehl, Torsten; Petri, Susanne; Meyer, Thomas; Grosskreutz, Julian; Weydt, Patrick; Ruf, Wolfgang; Neuwirth, Christoph; Weber, Markus; Pinto, Susana; Claeys, Kristl G; Schrank, Berthold; Jordan, Berit; Knehr, Antje; Günther, Kornelia; Hübers, Annemarie; Zeller, Daniel; Kubisch, Christian; Jablonka, Sibylle; Sendtner, Michael; Klopstock, Thomas; de Carvalho, Mamede; Sperfeld, Anne; Borck, Guntram; Volk, Alexander E; Dorst, Johannes; Weis, Joachim; Otto, Markus; Schuster, Joachim; Del Tredici, Kelly; Braak, Heiko; Danzer, Karin M; Freischmidt, Axel; Meitinger, Thomas; Strom, Tim M; Ludolph, Albert C; Andersen, Peter M; Weishaupt, Jochen H

    2018-01-12

    Heterozygous missense mutations in the N-terminal motor or coiled-coil domains of the kinesin family member 5A (KIF5A) gene cause monogenic spastic paraplegia (HSP10) and Charcot-Marie-Tooth disease type 2 (CMT2). Moreover, heterozygous de novo frame-shift mutations in the C-terminal domain of KIF5A are associated with neonatal intractable myoclonus, a neurodevelopmental syndrome. These findings, together with the observation that many of the disease genes associated with amyotrophic lateral sclerosis disrupt cytoskeletal function and intracellular transport, led us to hypothesize that mutations in KIF5A are also a cause of amyotrophic lateral sclerosis. Using whole exome sequencing followed by rare variant analysis of 426 patients with familial amyotrophic lateral sclerosis and 6137 control subjects, we detected an enrichment of KIF5A splice-site mutations in amyotrophic lateral sclerosis (2/426 compared to 0/6137 in controls; P = 4.2 × 10-3), both located in a hot-spot in the C-terminus of the protein and predicted to affect splicing exon 27. We additionally show co-segregation with amyotrophic lateral sclerosis of two canonical splice-site mutations in two families. Investigation of lymphoblast cell lines from patients with KIF5A splice-site mutations revealed the loss of mutant RNA expression and suggested haploinsufficiency as the most probable underlying molecular mechanism. Furthermore, mRNA sequencing of a rare non-synonymous missense mutation (predicting p.Arg1007Gly) located in the C-terminus of the protein shortly upstream of the splice donor of exon 27 revealed defective KIF5A pre-mRNA splicing in respective patient-derived cell lines owing to abrogation of the donor site. Finally, the non-synonymous single nucleotide variant rs113247976 (minor allele frequency = 1.00% in controls, n = 6137), also located in the C-terminal region [p.(Pro986Leu) in exon 26], was significantly enriched in familial amyotrophic lateral sclerosis patients (minor allele

  6. A COLQ missense mutation in Labrador Retrievers having congenital myasthenic syndrome.

    Directory of Open Access Journals (Sweden)

    Caitlin J Rinz

    Full Text Available Congenital myasthenic syndromes (CMSs are heterogeneous neuromuscular disorders characterized by skeletal muscle weakness caused by disruption of signal transmission across the neuromuscular junction (NMJ. CMSs are rarely encountered in veterinary medicine, and causative mutations have only been identified in Old Danish Pointing Dogs and Brahman cattle to date. Herein, we characterize a novel CMS in 2 Labrador Retriever littermates with an early onset of marked generalized muscle weakness. Because the sire and dam share 2 recent common ancestors, CMS is likely the result of recessive alleles inherited identical by descent (IBD. Genome-wide SNP profiles generated from the Illumina HD array for 9 nuclear family members were used to determine genomic inheritance patterns in chromosomal regions encompassing 18 functional candidate genes. SNP haplotypes spanning 3 genes were consistent with autosomal recessive transmission, and microsatellite data showed that only the segment encompassing COLQ was inherited IBD. COLQ encodes the collagenous tail of acetylcholinesterase, the enzyme responsible for termination of signal transduction in the NMJ. Sequences from COLQ revealed a variant in exon 14 (c.1010T>C that results in the substitution of a conserved amino acid (I337T within the C-terminal domain. Both affected puppies were homozygous for this variant, and 16 relatives were heterozygous, while 288 unrelated Labrador Retrievers and 112 dogs of other breeds were wild-type. A recent study in which 2 human CMS patients were found to be homozygous for an identical COLQ mutation (c.1010T>C; I337T provides further evidence that this mutation is pathogenic. This report describes the first COLQ mutation in canine CMS and demonstrates the utility of SNP profiles from nuclear family members for the identification of private mutations.

  7. Gain-of-function SOS1 mutations cause a distinctive form of noonansyndrome

    Energy Technology Data Exchange (ETDEWEB)

    Tartaglia, Marco; Pennacchio, Len A.; Zhao, Chen; Yadav, KamleshK.; Fodale, Valentina; Sarkozy, Anna; Pandit, Bhaswati; Oishi, Kimihiko; Martinelli, Simone; Schackwitz, Wendy; Ustaszewska, Anna; Martin, Joes; Bristow, James; Carta, Claudio; Lepri, Francesca; Neri, Cinzia; Vasta,Isabella; Gibson, Kate; Curry, Cynthia J.; Lopez Siguero, Juan Pedro; Digilio, Maria Cristina; Zampino, Giuseppe; Dallapiccola, Bruno; Bar-Sagi, Dafna; Gelb, Brude D.

    2006-09-01

    Noonan syndrome (NS) is a developmental disordercharacterized by short stature, facial dysmorphia, congenital heartdefects and skeletal anomalies1. Increased RAS-mitogenactivated proteinkinase (MAPK) signaling due to PTPN11 and KRAS mutations cause 50 percentof NS2-6. Here, we report that 22 of 129 NS patients without PTPN11 orKRAS mutation (17 percent) have missense mutations in SOS1, which encodesa RAS-specific guanine nucleotide exchange factor (GEF). SOS1 mutationscluster at residues implicated in the maintenance of SOS1 in itsautoinhibited form and ectopic expression of two NS-associated mutantsinduced enhanced RAS activation. The phenotype associated with SOS1defects is distinctive, although within NS spectrum, with a highprevalence of ectodermal abnormalities but generally normal developmentand linear growth. Our findings implicate for the first timegain-of-function mutations in a RAS GEF in inherited disease and define anew mechanism by which upregulation of the RAS pathway can profoundlychange human development.

  8. In silico analysis of a disease-causing mutation in PCDH15 gene in a consanguineous Pakistani family with Usher phenotype

    Directory of Open Access Journals (Sweden)

    Shamim Saleha

    2016-05-01

    Full Text Available AIM: To map Usher phenotype in a consanguineous Pakistani family and identify disease-associated mutation in a causative gene to establish phenotype-genotype correlation. METHODS: A consanguineous Pakistani family in which Usher phenotype was segregating as an autosomal recessive trait was ascertained. On the basis of results of clinical investigations of affected members of this family disease was diagnosed as Usher syndrome (USH. To identify the locus responsible for the Usher phenotype in this family, genomic DNA from blood sample of each individual was genotyped using microsatellite Short Tandem Repeat (STR markers for the known Usher syndrome loci. Then direct sequencing was performed to find out disease associated mutations in the candidate gene. RESULTS: By genetic linkage analysis, the USH phenotype of this family was mapped to PCDH15 locus on chromosome 10q21.1. Three different point mutations in exon 11 of PCDH15 were identified and one of them, c.1304A>C was found to be segregating with the disease phenotype in Pakistani family with Usher phenotype. This, c.1304A>C transversion mutation predicts an amino-acid substitution of aspartic acid with an alanine at residue number 435 (p.D435A of its protein product. Moreover, in silico analysis revealed conservation of aspartic acid at position 435 and predicated this change as pathogenic. CONCLUSION: The identification of c.1304A>C pathogenic mutation in PCDH15 gene and its association with Usher syndrome in a consanguineous Pakistani family is the first example of a missense mutation of PCDH15 causing USH1 phenotype. In previous reports, it was hypothesized that severe mutations such as truncated protein of PCDH15 led to the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.

  9. In silico analysis of a disease-causing mutation in PCDH15 gene in a consanguineous Pakistani family with Usher phenotype.

    Science.gov (United States)

    Saleha, Shamim; Ajmal, Muhammad; Jamil, Muhammad; Nasir, Muhammad; Hameed, Abdul

    2016-01-01

    To map Usher phenotype in a consanguineous Pakistani family and identify disease-associated mutation in a causative gene to establish phenotype-genotype correlation. A consanguineous Pakistani family in which Usher phenotype was segregating as an autosomal recessive trait was ascertained. On the basis of results of clinical investigations of affected members of this family disease was diagnosed as Usher syndrome (USH). To identify the locus responsible for the Usher phenotype in this family, genomic DNA from blood sample of each individual was genotyped using microsatellite Short Tandem Repeat (STR) markers for the known Usher syndrome loci. Then direct sequencing was performed to find out disease associated mutations in the candidate gene. By genetic linkage analysis, the USH phenotype of this family was mapped to PCDH15 locus on chromosome 10q21.1. Three different point mutations in exon 11 of PCDH15 were identified and one of them, c.1304A>C was found to be segregating with the disease phenotype in Pakistani family with Usher phenotype. This, c.1304A>C transversion mutation predicts an amino-acid substitution of aspartic acid with an alanine at residue number 435 (p.D435A) of its protein product. Moreover, in silico analysis revealed conservation of aspartic acid at position 435 and predicated this change as pathogenic. The identification of c.1304A>C pathogenic mutation in PCDH15 gene and its association with Usher syndrome in a consanguineous Pakistani family is the first example of a missense mutation of PCDH15 causing USH1 phenotype. In previous reports, it was hypothesized that severe mutations such as truncated protein of PCDH15 led to the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.

  10. Heterozygous Mutations in TREX1 Cause Familial Chilblain Lupus and Dominant Aicardi-Goutières Syndrome

    Science.gov (United States)

    Rice, Gillian; Newman, William G.; Dean, John; Patrick, Teresa; Parmar, Rekha; Flintoff, Kim; Robins, Peter; Harvey, Scott; Hollis, Thomas; O’Hara, Ann; Herrick, Ariane L.; Bowden, Andrew P.; Perrino, Fred W.; Lindahl, Tomas; Barnes, Deborah E.; Crow, Yanick J.

    2007-01-01

    TREX1 constitutes the major 3′→5′ DNA exonuclease activity measured in mammalian cells. Recently, biallelic mutations in TREX1 have been shown to cause Aicardi-Goutières syndrome at the AGS1 locus. Interestingly, Aicardi-Goutières syndrome shows overlap with systemic lupus erythematosus at both clinical and pathological levels. Here, we report a heterozygous TREX1 mutation causing familial chilblain lupus. Additionally, we describe a de novo heterozygous mutation, affecting a critical catalytic residue in TREX1, that results in typical Aicardi-Goutières syndrome. PMID:17357087

  11. cDNA sequencing improves the detection of P53 missense mutations in colorectal cancer

    International Nuclear Information System (INIS)

    Szybka, Malgorzata; Kordek, Radzislaw; Zakrzewska, Magdalena; Rieske, Piotr; Pasz-Walczak, Grazyna; Kulczycka-Wojdala, Dominika; Zawlik, Izabela; Stawski, Robert; Jesionek-Kupnicka, Dorota; Liberski, Pawel P

    2009-01-01

    Recently published data showed discrepancies beteween P53 cDNA and DNA sequencing in glioblastomas. We hypothesised that similar discrepancies may be observed in other human cancers. To this end, we analyzed 23 colorectal cancers for P53 mutations and gene expression using both DNA and cDNA sequencing, real-time PCR and immunohistochemistry. We found P53 gene mutations in 16 cases (15 missense and 1 nonsense). Two of the 15 cases with missense mutations showed alterations based only on cDNA, and not DNA sequencing. Moreover, in 6 of the 15 cases with a cDNA mutation those mutations were difficult to detect in the DNA sequencing, so the results of DNA analysis alone could be misinterpreted if the cDNA sequencing results had not also been available. In all those 15 cases, we observed a higher ratio of the mutated to the wild type template by cDNA analysis, but not by the DNA analysis. Interestingly, a similar overexpression of P53 mRNA was present in samples with and without P53 mutations. In terms of colorectal cancer, those discrepancies might be explained under three conditions: 1, overexpression of mutated P53 mRNA in cancer cells as compared with normal cells; 2, a higher content of cells without P53 mutation (normal cells and cells showing K-RAS and/or APC but not P53 mutation) in samples presenting P53 mutation; 3, heterozygous or hemizygous mutations of P53 gene. Additionally, for heterozygous mutations unknown mechanism(s) causing selective overproduction of mutated allele should also be considered. Our data offer new clues for studying discrepancy in P53 cDNA and DNA sequencing analysis

  12. Norrie-Warburg syndrome: two novel mutations in patients with classical clinical phenotype.

    Science.gov (United States)

    Gal, A; Veske, A; Jojart, G; Grammatico, B; Huber, B; Gu, S; del Porto, G; Senyi, K

    1996-01-01

    Norrie-Warburg syndrome (NWS) is a rare X-linked disorder characterized by blindness, which is invariable, deafness and mental disturbances, which are present occasionally. We describe here two novel mutations, a missense mutation (C126S) and a 1-base pair insertion (insT466/T467), together with a recurrent mutation (M1V), found in patients presenting with the classical clinical phenotype of NWS. All three mutations are likely to result in prominent structural changes of the norrin protein.

  13. Steric Clash in the SET Domain of Histone Methyltransferase NSD1 as a Cause of Sotos Syndrome and Its Genetic Heterogeneity in a Brazilian Cohort

    Directory of Open Access Journals (Sweden)

    Kyungsoo Ha

    2016-11-01

    Full Text Available Most histone methyltransferases (HMTase harbor a predicted Su(var3–9, Enhancer-of-zeste, Trithorax (SET domain, which transfers a methyl group to a lysine residue in their substrates. Mutations of the SET domains were reported to cause intellectual disability syndromes such as Sotos, Weaver, or Kabuki syndromes. Sotos syndrome is an overgrowth syndrome with intellectual disability caused by haploinsufficiency of the nuclear receptor binding SET domain protein 1 (NSD1 gene, an HMTase at 5q35.2–35.3. Here, we analyzed NSD1 in 34 Brazilian Sotos patients and identified three novel and eight known mutations. Using protein modeling and bioinformatic approaches, we evaluated the effects of one novel (I2007F and 21 previously reported missense mutations in the SET domain. For the I2007F mutation, we observed conformational change and loss of structural stability in Molecular Dynamics (MD simulations which may lead to loss-of-function of the SET domain. For six mutations near the ligand-binding site we observed in simulations steric clashes with neighboring side chains near the substrate S-Adenosyl methionine (SAM binding site, which may disrupt the enzymatic activity of NSD1. These results point to a structural mechanism underlying the pathology of the NSD1 missense mutations in the SET domain in Sotos syndrome. NSD1 mutations were identified in only 32% of the Brazilian Sotos patients in our study cohort suggesting other genes (including unknown disease genes underlie the molecular etiology for the majority of these patients. Our studies also found NSD1 expression to be profound in human fetal brain and cerebellum, accounting for prenatal onset and hypoplasia of cerebellar vermis seen in Sotos syndrome.

  14. Exome sequencing reveals a de novo POLD1 mutation causing phenotypic variability in mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome (MDPL).

    Science.gov (United States)

    Elouej, Sahar; Beleza-Meireles, Ana; Caswell, Richard; Colclough, Kevin; Ellard, Sian; Desvignes, Jean Pierre; Béroud, Christophe; Lévy, Nicolas; Mohammed, Shehla; De Sandre-Giovannoli, Annachiara

    2017-06-01

    Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome (MDPL) is an autosomal dominant systemic disorder characterized by prominent loss of subcutaneous fat, a characteristic facial appearance and metabolic abnormalities. This syndrome is caused by heterozygous de novo mutations in the POLD1 gene. To date, 19 patients with MDPL have been reported in the literature and among them 14 patients have been characterized at the molecular level. Twelve unrelated patients carried a recurrent in-frame deletion of a single codon (p.Ser605del) and two other patients carried a novel heterozygous mutation in exon 13 (p.Arg507Cys). Additionally and interestingly, germline mutations of the same gene have been involved in familial polyposis and colorectal cancer (CRC) predisposition. We describe a male and a female patient with MDPL respectively affected with mild and severe phenotypes. Both of them showed mandibular hypoplasia, a beaked nose with bird-like facies, prominent eyes, a small mouth, growth retardation, muscle and skin atrophy, but the female patient showed such a severe and early phenotype that a first working diagnosis of Hutchinson-Gilford Progeria was made. The exploration was performed by direct sequencing of POLD1 gene exon 15 in the male patient with a classical MDPL phenotype and by whole exome sequencing in the female patient and her unaffected parents. Exome sequencing identified in the latter patient a de novo heterozygous undescribed mutation in the POLD1 gene (NM_002691.3: c.3209T>A), predicted to cause the missense change p.Ile1070Asn in the ZnF2 (Zinc Finger 2) domain of the protein. This mutation was not reported in the 1000 Genome Project, dbSNP and Exome sequencing databases. Furthermore, the Isoleucine1070 residue of POLD1 is highly conserved among various species, suggesting that this substitution may cause a major impairment of POLD1 activity. For the second patient, affected with a typical MDPL phenotype, direct sequencing

  15. Functional consequences and rescue potential of pathogenic missense mutations in tripeptidyl peptidase I.

    Science.gov (United States)

    Walus, Mariusz; Kida, Elizabeth; Golabek, Adam A

    2010-06-01

    There are 35 missense mutations among 68 different mutations in the TPP1 gene, which encodes tripeptidyl peptidase I (TPPI), a lysosomal aminopeptidase associated with classic late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). To elucidate the molecular mechanisms underlying TPPI deficiency in patients carrying missense mutations and to test the amenability of mutant proteins to chemical chaperones and permissive temperature treatment, we introduced individually 14 disease-associated missense mutations into human TPP1 cDNA and analyzed the cell biology of these TPPI variants expressed in Chinese hamster ovary cells. Most TPPI variants displayed obstructed transport to the lysosomes, prolonged half-life of the proenzyme, and residual or no enzymatic activity, indicating folding abnormalities. Protein misfolding was produced by mutations located in both the prosegment (p.Gly77Arg) and throughout the length of the mature enzyme. However, the routes of removal of misfolded proteins by the cells varied, ranging from their efficient degradation by the ubiquitin/proteasome system to abundant secretion. Two TPPI variants demonstrated enhanced processing in response to folding improvement treatment, and the activity of one of them, p.Arg447His, showed a fivefold increase under permissive temperature conditions, which suggests that folding improvement strategies may ameliorate the function of some misfolding TPPI mutant proteins.

  16. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome

    Directory of Open Access Journals (Sweden)

    Maryam Taghdiri

    2017-08-01

    Full Text Available Cockayne syndrome (CS is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C in our patient. Another gene (ERCC6, which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.

  17. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome.

    Science.gov (United States)

    Taghdiri, Maryam; Dastsooz, Hassan; Fardaei, Majid; Mohammadi, Sanaz; Farazi Fard, Mohammad Ali; Faghihi, Mohammad Ali

    2017-01-01

    Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene ( ERCC6 ), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.

  18. A Novel Mutation on RAF1 in Association with Fetal Findings Suggestive of Noonan Syndrome.

    Science.gov (United States)

    Kneitel, Anna W; Norby, Audrey; Vettraino, Ivana; Treadwell, Marjorie C

    2015-01-01

    Noonan syndrome is a multisystem genetic disorder caused by genes encoding proteins involved in the RAS-MAPK pathway. Affected fetuses have variable presentations ranging from the absence of prenatal findings to increased nuchal fold, cystic hygromas, pleural effusions, cardiac malformations, or skin edema. We describe a male fetus who had features consistent with Noonan syndrome at the time of fetal anatomic survey, including hydrops and a possible cardiac defect. Subsequent scan revealed persistent bilateral pleural effusions (with predominance of lymphocytes). After bilateral thoracoamniotic shunt placement, the fetus did well and delivered at term. Prenatal testing revealed an S650F missense mutation in the RAF1 gene, which had not previously been associated with Noonan syndrome.

  19. RAC1 Missense Mutations in Developmental Disorders with Diverse Phenotypes.

    Science.gov (United States)

    Reijnders, Margot R F; Ansor, Nurhuda M; Kousi, Maria; Yue, Wyatt W; Tan, Perciliz L; Clarkson, Katie; Clayton-Smith, Jill; Corning, Ken; Jones, Julie R; Lam, Wayne W K; Mancini, Grazia M S; Marcelis, Carlo; Mohammed, Shehla; Pfundt, Rolph; Roifman, Maian; Cohn, Ronald; Chitayat, David; Millard, Tom H; Katsanis, Nicholas; Brunner, Han G; Banka, Siddharth

    2017-09-07

    RAC1 is a widely studied Rho GTPase, a class of molecules that modulate numerous cellular functions essential for normal development. RAC1 is highly conserved across species and is under strict mutational constraint. We report seven individuals with distinct de novo missense RAC1 mutations and varying degrees of developmental delay, brain malformations, and additional phenotypes. Four individuals, each harboring one of c.53G>A (p.Cys18Tyr), c.116A>G (p.Asn39Ser), c.218C>T (p.Pro73Leu), and c.470G>A (p.Cys157Tyr) variants, were microcephalic, with head circumferences between -2.5 to -5 SD. In contrast, two individuals with c.151G>A (p.Val51Met) and c.151G>C (p.Val51Leu) alleles were macrocephalic with head circumferences of +4.16 and +4.5 SD. One individual harboring a c.190T>G (p.Tyr64Asp) allele had head circumference in the normal range. Collectively, we observed an extraordinary spread of ∼10 SD of head circumferences orchestrated by distinct mutations in the same gene. In silico modeling, mouse fibroblasts spreading assays, and in vivo overexpression assays using zebrafish as a surrogate model demonstrated that the p.Cys18Tyr and p.Asn39Ser RAC1 variants function as dominant-negative alleles and result in microcephaly, reduced neuronal proliferation, and cerebellar abnormalities in vivo. Conversely, the p.Tyr64Asp substitution is constitutively active. The remaining mutations are probably weakly dominant negative or their effects are context dependent. These findings highlight the importance of RAC1 in neuronal development. Along with TRIO and HACE1, a sub-category of rare developmental disorders is emerging with RAC1 as the central player. We show that ultra-rare disorders caused by private, non-recurrent missense mutations that result in varying phenotypes are challenging to dissect, but can be delineated through focused international collaboration. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. Functional characterization of rare missense mutations in MLH1 and MSH2 identified in Danish colorectal cancer patients

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Kariola, Reetta; Korhonen, Mari K

    2009-01-01

    Recently, we have performed a population based study to analyse the frequency of colorectal cancer related MLH1 and MSH2 missense mutations in the Danish population. Half of the analyzed mutations were rare and most likely only present in the families where they were identified originally. Some...... of the missense mutations were located in conserved regions in the MLH1 and MSH2 proteins indicating a relation to disease development. In the present study, we functionally characterized 10 rare missense mutations in MLH1 and MSH2 identified in 13 Danish CRC families. To elucidate the pathogenicity...

  1. Structural analysis of eight novel and 112 previously reported missense mutations in the interactive FXI mutation database reveals new insight on FXI deficiency.

    Science.gov (United States)

    Saunders, Rebecca E; Shiltagh, Nuha; Gomez, Keith; Mellars, Gillian; Cooper, Carolyn; Perry, David J; Tuddenham, Edward G; Perkins, Stephen J

    2009-08-01

    Factor XI (FXI) functions in blood coagulation. FXI is composed of four apple (Ap) domains and a serine protease (SP) domain. Deficiency of FXI leads to an injury-related bleeding disorder, which is remarkable for the lack of correlation between bleeding symptoms and FXI coagulant activity (FXI:C). The number of mutations previously reported in our interactive web database (http://www.FactorXI.org) is now significantly increased to 183 through our new patient studies and from literature surveys. Eight novel missense mutations give a total of 120 throughout the FXI gene (F11). The most abundant defects in FXI are revealed to be those from low-protein plasma levels (Type I: CRM-) that originate from protein misfolding, rather than from functional defects (Type II: CRM+). A total of 70 Ap missense mutations were analysed using a consensus Ap domain structure generated from the FXI dimer crystal structure. This showed that all parts of the Ap domain were affected. The 47 SP missense mutations were also distributed throughout the SP domain structure. The periphery of the Ap beta-sheet structure is sensitive to structural perturbation caused by residue changes throughout the Ap domain, yet this beta-sheet is crucial for FXI dimer formation. Residues located at the Ap4:Ap4 interface in the dimer are much less directly involved. We conclude that the abundance of Type I defects in FXI results from the sensitivity of the Ap domain folding to residue changes within this, and discuss how structural knowledge of the mutations improves our understanding of FXI deficiencies.

  2. Novel USH2A compound heterozygous mutations cause RP/USH2 in a Chinese family.

    Science.gov (United States)

    Liu, Xiaowen; Tang, Zhaohui; Li, Chang; Yang, Kangjuan; Gan, Guanqi; Zhang, Zibo; Liu, Jingyu; Jiang, Fagang; Wang, Qing; Liu, Mugen

    2010-03-17

    To identify the disease-causing gene in a four-generation Chinese family affected with retinitis pigmentosa (RP). Linkage analysis was performed with a panel of microsatellite markers flanking the candidate genetic loci of RP. These loci included 38 known RP genes. The complete coding region and exon-intron boundaries of Usher syndrome 2A (USH2A) were sequenced with the proband DNA to screen the disease-causing gene mutation. Restriction fragment length polymorphism (RFLP) analysis and direct DNA sequence analysis were done to demonstrate co-segregation of the USH2A mutations with the family disease. One hundred normal controls were used without the mutations. The disease-causing gene in this Chinese family was linked to the USH2A locus on chromosome 1q41. Direct DNA sequence analysis of USH2A identified two novel mutations in the patients: one missense mutation p.G1734R in exon 26 and a splice site mutation, IVS32+1G>A, which was found in the donor site of intron 32 of USH2A. Neither the p.G1734R nor the IVS32+1G>A mutation was found in the unaffected family members or the 100 normal controls. One patient with a homozygous mutation displayed only RP symptoms until now, while three patients with compound heterozygous mutations in the family of study showed both RP and hearing impairment. This study identified two novel mutations: p.G1734R and IVS32+1G>A of USH2A in a four-generation Chinese RP family. In this study, the heterozygous mutation and the homozygous mutation in USH2A may cause Usher syndrome Type II or RP, respectively. These two mutations expand the mutant spectrum of USH2A.

  3. Functional characterization of a CRH missense mutation identified in an ADNFLE family.

    Directory of Open Access Journals (Sweden)

    Veronica Sansoni

    Full Text Available Nocturnal frontal lobe epilepsy has been historically considered a channelopathy caused by mutations in subunits of the neuronal nicotinic acetylcholine receptor or in a recently reported potassium channel. However, these mutations account for only a minority of patients, and the existence of at least a new locus for the disease has been demonstrated. In 2005, we detected two nucleotide variations in the promoter of the CRH gene coding for the corticotropin releasing hormone in 7 patients. These variations cosegregated with the disease and were demonstrated to alter the cellular levels of this hormone. Here, we report the identification in an Italian affected family of a novel missense mutation (hpreproCRH p.Pro30Arg located in the region of the CRH coding for the protein pro-sequence. The mutation was detected in heterozygosity in the two affected individuals. In vitro assays demonstrated that this mutation results in reduced levels of protein secretion in the short time thus suggesting that mutated people could present an altered capability to respond immediately to stress agents.

  4. Coffin-Siris syndrome: phenotypic evolution of a novel SMARCA4 mutation.

    Science.gov (United States)

    Tzeng, Michael; du Souich, Christèle; Cheung, Helen Wing-Hong; Boerkoel, Cornelius F

    2014-07-01

    Coffin-Siris Syndrome (CSS) is an intellectual disability disorder caused by mutation of components of the SWI/SNF chromatin-remodeling complex. We describe the evolution of the phenotypic features for a male patient with CSS from birth to age 7 years and 9 months and by review of reported CSS patients, we expand the phenotype to include neonatal and infantile hypertonia and upper airway obstruction. The propositus had a novel de novo heterozygous missense mutation in exon 17 of SMARCA4 (NM_001128849.1:c.2434C>T (NP_001122321.1:p.Leu812Phe)). This is the first reported mutation within motif Ia of the SMARCA4 SNF2 domain. In summary, SMARCA4-associated CSS is a pleiotropic disorder in which the pathognomic clinical features evolve and for which the few reported individuals do not demonstrate a clear genotype-phenotype correlation. © 2014 Wiley Periodicals, Inc.

  5. Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma

    International Nuclear Information System (INIS)

    Yuan, Yang; Wang, Weixing; Li, Huizhong; Yu, Yongwei; Tao, Jin; Huang, Shengdong; Zeng, Zhiyong

    2015-01-01

    Previous study showed that mitochondrial ND6 (mitND6) gene missense mutation resulted in NADH dehydrogenase deficiency and was associated with tumor metastasis in several mouse tumor cell lines. In the present study, we investigated the possible role of mitND6 gene nonsense and missense mutations in the metastasis of human lung adenocarcinoma. The presence of mitND6 gene mutations was screened by DNA sequencing of tumor tissues from 87 primary lung adenocarcinoma patients and the correlation of the mutations with the clinical features was analyzed. In addition, we constructed cytoplasmic hybrid cells with denucleared primary lung adenocarcinoma cell as the mitochondria donor and mitochondria depleted lung adenocarcinoma A549 cell as the nuclear donor. Using these cells, we studied the effects of mitND6 gene nonsense and missense mutations on cell migration and invasion through wounding healing and matrigel-coated transwell assay. The effects of mitND6 gene mutations on NADH dehydrogenase activity and ROS production were analyzed by spectrophotometry and flow cytometry. mitND6 gene nonsense and missense mutations were detected in 11 of 87 lung adenocarcinoma specimens and was correlated with the clinical features including age, pathological grade, tumor stage, lymph node metastasis and survival rate. Moreover, A549 cell containing mitND6 gene nonsense and missense mutation exhibited significantly lower activity of NADH dehydrogenase, higher level of ROS, higher capacity of cell migration and invasion, and higher pAKT and pERK1/ERK2 expression level than cells with the wild type mitND6 gene. In addition, NADH dehydrogenase inhibitor rotenone was found to significantly promote the migration and invasion of A549 cells. Our data suggest that mitND6 gene nonsense and missense mutation might promote cell migration and invasion in lung adenocarcinoma, probably by NADH dehydrogenase deficiency induced over-production of ROS

  6. Heterozygous de novo and inherited mutations in the smooth muscle actin (ACTG2 gene underlie megacystis-microcolon-intestinal hypoperistalsis syndrome.

    Directory of Open Access Journals (Sweden)

    Michael F Wangler

    2014-03-01

    Full Text Available Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS is a rare disorder of enteric smooth muscle function affecting the intestine and bladder. Patients with this severe phenotype are dependent on total parenteral nutrition and urinary catheterization. The cause of this syndrome has remained a mystery since Berdon's initial description in 1976. No genes have been clearly linked to MMIHS. We used whole-exome sequencing for gene discovery followed by targeted Sanger sequencing in a cohort of patients with MMIHS and intestinal pseudo-obstruction. We identified heterozygous ACTG2 missense variants in 15 unrelated subjects, ten being apparent de novo mutations. Ten unique variants were detected, of which six affected CpG dinucleotides and resulted in missense mutations at arginine residues, perhaps related to biased usage of CpG containing codons within actin genes. We also found some of the same heterozygous mutations that we observed as apparent de novo mutations in MMIHS segregating in families with intestinal pseudo-obstruction, suggesting that ACTG2 is responsible for a spectrum of smooth muscle disease. ACTG2 encodes γ2 enteric actin and is the first gene to be clearly associated with MMIHS, suggesting an important role for contractile proteins in enteric smooth muscle disease.

  7. The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome.

    Science.gov (United States)

    Garrity, Deborah M; Childs, Sarah; Fishman, Mark C

    2002-10-01

    Holt-Oram syndrome is one of the autosomal dominant human "heart-hand" disorders, with a combination of upper limb malformations and cardiac defects. Holt-Oram syndrome is caused by mutations in the TBX5 gene, a member of a large family of T-box transcription factors that play important roles in cell-type specification and morphogenesis. In a screen for mutations affecting zebrafish cardiac function, we isolated the recessive lethal mutant heartstrings, which lacks pectoral fins and exhibits severe cardiac dysfunction, beginning with a slow heart rate and progressing to a stretched, non-functional heart. We mapped and cloned the heartstrings mutation and find it to encode the zebrafish ortholog of the TBX5 gene. The heartstrings mutation causes premature termination at amino acid 316. Homozygous mutant embryos never develop pectoral fin buds and do not express several markers of early fin differentiation. The total absence of any fin bud differentiation distinguishes heartstrings from most other mutations that affect zebrafish fin development, suggesting that Tbx5 functions very early in the pectoral fin induction pathway. Moderate reduction of Tbx5 by morpholino causes fin malformations, revealing an additional early requirement for Tbx5 in coordinating the axes of fin outgrowth. The heart of heartstrings mutant embryos appears to form and function normally through the early heart tube stage, manifesting only a slight bradycardia compared with wild-type siblings. However, the heart fails to loop and then progressively deteriorates, a process affecting the ventricle as well as the atrium. Relative to mammals, fish require lower levels of Tbx5 to produce malformed appendages and display whole-heart rather than atrial-predominant cardiac defects. However, the syndromic deficiencies of tbx5 mutation are remarkably well retained between fish and mammals.

  8. A Novel Fibrillin-1 Gene Mutation Leading to Marfan Syndrome in a Korean Girl.

    Science.gov (United States)

    Nam, Hyo-Kyoung; Nam, Myung-Hyun; Ha, Kee-Soo; Rhie, Young-Jun; Lee, Kee-Hyoung

    2017-03-01

    Marfan syndrome is an autosomal dominant genetic disorder caused by a connective tissue defect. A nine-year-old girl was referred to our pediatric endocrinology clinic for tall stature. Physical examination revealed a lens dislocation with strabismus, high palate, positive wrist and thumb signs, joint hypermobility, and pes planus. Transthoracic echocardiography revealed dilatation of the aortic root. She was diagnosed with Marfan syndrome based on the revised Ghent diagnostic criteria. Molecular investigation identified a heterozygous c.2810G >A variation in the FBN1 gene in the patient, but not in her parents. To our knowledge, this sequence variant has been reported as a polymorphism (rs113602180), but it is the first report identifying it as the genetic cause of Marfan syndrome. We hypothesize that this de novo novel missense FBN1 mutation disrupts fibrillin-1 function and is probably involved in the development of Marfan syndrome in this patient. © 2017 by the Association of Clinical Scientists, Inc.

  9. Whole-exome sequencing reveals a recurrent mutation in the cathepsin C gene that causes Papillon–Lefevre syndrome in a Saudi family

    Directory of Open Access Journals (Sweden)

    Yaser Mohammad Alkhiary

    2016-09-01

    Full Text Available Papillon–Lefevre syndrome (PALS is a rare, autosomal recessive disorder characterized by periodontitis and hyperkeratosis over the palms and soles. Mutations in the cathepsin C gene (CTSC have been recognized as the cause of PALS since the late 1990s. More than 75 mutations in CTSC have been identified, and phenotypic variability between different mutations has been described. Next generation sequencing is widely used for efficient molecular diagnostics in various clinical practices. Here we investigated a large consanguineous Saudi family with four affected and four unaffected individuals. All of the affected individuals suffered from hyperkeratosis over the palms and soles and had anomalies of both primary and secondary dentition. For molecular diagnostics, we combined whole-exome sequencing and genome-wide homozygosity mapping procedures, and identified a recurrent homozygous missense mutation (c.899G>A; p.Gly300Asp in exon 7 of CTSC. Validation of all eight family members by Sanger sequencing confirmed co-segregation of the pathogenic variant (c.899G>A with the disease phenotype. This is the first report of whole-exome sequencing performed for molecular diagnosis of PALS in Saudi Arabia. Our findings provide further insights into the genotype–phenotype correlation of CTSC pathogenicity in PALS.

  10. Characterization of cancer-associated missense mutations in MDM2

    OpenAIRE

    Chauhan, Krishna M.; Ramakrishnan, Gopalakrishnan; Kollareddy, Madhusudhan; Martinez, Luis A.

    2015-01-01

    MDM2 is an E3 ubiquitin ligase that binds the N-terminus of p53 and promotes its ubiquitin-dependent degradation. Elevated levels of MDM2 due to overexpression or gene amplification can contribute to tumor development by suppressing p53 activity. Since MDM2 is an oncogene, we explored the possibility that other genetic lesions, namely missense mutations, might alter its activities. We selected mutations in MDM2 that reside in one of the 4 key regions of the protein: p53 binding domain, acidic...

  11. A Novel FOXE1 Mutation (R73S) in Bamforth–Lazarus Syndrome Causing Increased Thyroidal Gene Expression

    Science.gov (United States)

    Carré, Aurore; Hamza, Rasha T.; Kariyawasam, Dulanjalee; Guillot, Loïc; Teissier, Raphaël; Tron, Elodie; Castanet, Mireille; Dupuy, Corinne; El Kholy, Mohamed; Polak, Michel

    2014-01-01

    Background: Homozygous loss-of-function mutations in the FOXE1 gene have been reported in several patients with partial or complete Bamforth–Lazarus syndrome: congenital hypothyroidism (CH) with thyroid dysgenesis (usually athyreosis), cleft palate, spiky hair, with or without choanal atresia, and bifid epiglottis. Here, our objective was to evaluate potential functional consequences of a FOXE1 mutation in a patient with a similar clinical phenotype. Methods: FOXE1 was sequenced in eight patients with thyroid dysgenesis and cleft palate. Transient transfection was performed in HEK293 cells using the thyroglobulin (TG) and thyroid peroxidase (TPO) promoters in luciferase reporter plasmids to assess the functional impact of the FOXE1 mutations. Primary human thyrocytes transfected with wild type and mutant FOXE1 served to assess the impact of the mutation on endogenous TG and TPO expression. Results: We identified and characterized the function of a new homozygous FOXE1 missense mutation (p.R73S) in a boy with a typical phenotype (athyreosis, cleft palate, and partial choanal atresia). This new mutation located within the forkhead domain was inherited from the heterozygous healthy consanguineous parents. In vitro functional studies in HEK293 cells showed that this mutant gene enhanced the activity of the TG and TPO gene promoters (1.5-fold and 1.7-fold respectively vs. wild type FOXE1; p<0.05), unlike the five mutations previously reported in Bamforth–Lazarus syndrome. The gain-of-function effect of the FOXE1-p.R73S mutant gene was confirmed by an increase in endogenous TG production in primary human thyrocytes. Conclusion: We identified a new homozygous FOXE1 mutation responsible for enhanced expression of the TG and TPO genes in a boy whose phenotype is similar to that reported previously in patients with loss-of-function FOXE1 mutations. This finding further delineates the role for FOXE1 in both thyroid and palate development, and shows that enhanced gene

  12. A novel missense Norrie disease mutation associated with a severe ocular phenotype.

    Science.gov (United States)

    Khan, Arif O; Shamsi, Farrukh A; Al-Saif, Amr; Kambouris, Marios

    2004-01-01

    Clinical findings and pedigree analysis led to the diagnosis of severe Norrie disease in two brothers. DNA sequencing demonstrated a novel missense mutation (703G>T) that significantly alters predicted protein structure. Less severe retinal developmental disease may be associated with milder mutations in the Norrie disease gene.

  13. Tyr120Asp mutation alters domain flexibility and dynamics of MeCP2 DNA binding domain leading to impaired DNA interaction: Atomistic characterization of a Rett syndrome causing mutation.

    Science.gov (United States)

    D'Annessa, Ilda; Gandaglia, Anna; Brivio, Elena; Stefanelli, Gilda; Frasca, Angelisa; Landsberger, Nicoletta; Di Marino, Daniele

    2018-05-01

    Mutations in the X-linked MECP2 gene represent the main origin of Rett syndrome, causing a profound intellectual disability in females. MeCP2 is an epigenetic transcriptional regulator containing two main functional domains: a methyl-CpG binding domain (MBD) and a transcription repression domain (TRD). Over 600 pathogenic mutations were reported to affect the whole protein; almost half of missense mutations affect the MBD. Understanding the impact of these mutations on the MBD structure and interaction with DNA will foster the comprehension of their pathogenicity and possibly genotype/phenotype correlation studies. Herein, we use molecular dynamics simulations to obtain a detailed view of the dynamics of WT and mutated MBD in the presence and absence of DNA. The pathogenic mutation Y120D is used as paradigm for our studies. Further, since the Y120 residue was previously found to be a phosphorylation site, we characterize the dynamic profile of the MBD also in the presence of Y120 phosphorylation (pY120). We found that addition of a phosphate group to Y120 or mutation in aspartic acid affect domain mobility that samples an alternative conformational space with respect to the WT, leading to impaired ability to interact with DNA. Experimental assays showing a significant reduction in the binding affinity between the mutated MBD and the DNA confirmed our predictions. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Molecular evaluation of a novel missense mutation & an insertional truncating mutation in SUMF1 gene

    Directory of Open Access Journals (Sweden)

    Udhaya H Kotecha

    2014-01-01

    Full Text Available Background & objectives: Multiple suphphatase deficiency (MSD is an autosomal recessive disorder affecting the post translational activation of all enzymes of the sulphatase family. To date, approximately 30 different mutations have been identified in the causative gene, sulfatase modifying factor 1 (SUMF1. We describe here the mutation analysis of a case of MSD. Methods: The proband was a four year old boy with developmental delay followed by neuroregression. He had coarse facies, appendicular hypertonia, truncal ataxia and ichthyosis limited to both lower limbs. Radiographs showed dysostosis multiplex. Clinical suspicion of MSD was confirmed by enzyme analysis of four enzymes of the sulphatase group. Results: The patient was compound heterozygote for a c.451A>G (p.K151E substitution in exon 3 and a single base insertion mutation (c.690_691 InsT in exon 5 in the SUMF1 gene. The bioinformatic analysis of the missense mutation revealed no apparent effect on the overall structure. However, the mutated 151-amino acid residue was found to be adjacent to the substrate binding and the active site residues, thereby affecting the substrate binding and/or catalytic activity, resulting in almost complete loss of enzyme function. Conclusions: The two mutations identified in the present case were novel. This is perhaps the first report of an insertion mutation in SUMF1 causing premature truncation of the protein.

  15. Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syndromes

    DEFF Research Database (Denmark)

    Duchatelet, Sabine; Ostergaard, Elsebet; Cortes, Dina

    2005-01-01

    Eiken syndrome is a rare autosomal recessive skeletal dysplasia. We identified a truncation mutation in the C-terminal cytoplasmic tail of the parathyroid hormone (PTH)/PTH-related peptide (PTHrP) type 1 receptor (PTHR1) gene as the cause of this syndrome. Eiken syndrome differs from Jansen...

  16. A frame-shift mutation of PMS2 is a widespread cause of Lynch syndrome.

    Science.gov (United States)

    Clendenning, M; Senter, L; Hampel, H; Robinson, K Lagerstedt; Sun, S; Buchanan, D; Walsh, M D; Nilbert, M; Green, J; Potter, J; Lindblom, A; de la Chapelle, A

    2008-06-01

    When compared to the other mismatch repair genes involved in Lynch syndrome, the identification of mutations within PMS2 has been limited (PMS2. This disparity is primarily due to complications in the study of this gene caused by interference from pseudogene sequences. Using a recently developed method for detecting PMS2 specific mutations, we have screened 99 patients who are likely candidates for PMS2 mutations based on immunohistochemical analysis. We have identified a frequently occurring frame-shift mutation (c.736_741del6ins11) in 12 ostensibly unrelated Lynch syndrome patients (20% of patients we have identified with a deleterious mutation in PMS2, n = 61). These individuals all display the rare allele (population frequency 10 000 carriers of this mutation in the USA alone. The identification of both the mutation and the common haplotype in one Swedish control sample (n = 225), along with evidence that Lynch syndrome associated cancers are rarer than expected in the probands' families, would suggest that this is a prevalent mutation with reduced penetrance.

  17. Noonan syndrome-causing genes: Molecular update and an assessment of the mutation rate

    Directory of Open Access Journals (Sweden)

    Ihssane El Bouchikhi

    2016-12-01

    Full Text Available Noonan syndrome is a common autosomal dominant disorder characterized by short stature, congenital heart disease and facial dysmorphia with an incidence of 1/1000 to 2500 live births. Up to now, several genes have been proven to be involved in the disturbance of the transduction signal through the RAS-MAP Kinase pathway and the manifestation of Noonan syndrome. The first gene described was PTPN11, followed by SOS1, RAF1, KRAS, BRAF, NRAS, MAP2K1, and RIT1, and recently SOS2, LZTR1, and A2ML1, among others. Progressively, the physiopathology and molecular etiology of most signs of Noonan syndrome have been demonstrated, and inheritance patterns as well as genetic counseling have been established. In this review, we summarize the data concerning clinical features frequently observed in Noonan syndrome, and then, we describe the molecular etiology as well as the physiopathology of most Noonan syndrome-causing genes. In the second part of this review, we assess the mutational rate of Noonan syndrome-causing genes reported up to now in most screening studies. This review should give clinicians as well as geneticists a full view of the molecular aspects of Noonan syndrome and the authentic prevalence of the mutational events of its causing-genes. It will also facilitate laying the groundwork for future molecular diagnosis research, and the development of novel treatment strategies.

  18. A structural systems biology approach for quantifying the systemic consequences of missense mutations in proteins.

    Directory of Open Access Journals (Sweden)

    Tammy M K Cheng

    Full Text Available Gauging the systemic effects of non-synonymous single nucleotide polymorphisms (nsSNPs is an important topic in the pursuit of personalized medicine. However, it is a non-trivial task to understand how a change at the protein structure level eventually affects a cell's behavior. This is because complex information at both the protein and pathway level has to be integrated. Given that the idea of integrating both protein and pathway dynamics to estimate the systemic impact of missense mutations in proteins remains predominantly unexplored, we investigate the practicality of such an approach by formulating mathematical models and comparing them with experimental data to study missense mutations. We present two case studies: (1 interpreting systemic perturbation for mutations within the cell cycle control mechanisms (G2 to mitosis transition for yeast; (2 phenotypic classification of neuron-related human diseases associated with mutations within the mitogen-activated protein kinase (MAPK pathway. We show that the application of simplified mathematical models is feasible for understanding the effects of small sequence changes on cellular behavior. Furthermore, we show that the systemic impact of missense mutations can be effectively quantified as a combination of protein stability change and pathway perturbation.

  19. A novel missense NDP mutation [p.(Cys93Arg)] with a manifesting carrier in an austrian family with Norrie disease.

    Science.gov (United States)

    Parzefall, Thomas; Lucas, Trevor; Ritter, Markus; Ludwig, Martin; Ramsebner, Reinhard; Frohne, Alexandra; Schöfer, Christian; Hengstschläger, Markus; Frei, Klemens

    2014-01-01

    Norrie disease is a rare, X-linked genetic syndrome characterized by combined congenital blindness and progressive hearing impairment. Norrie disease is caused by alterations in the NDP gene encoding the growth factor norrin that plays a key role in vascular development and stabilization of the eye, inner ear and brain. We identified a family with 3 affected deafblind males and a single female carrier presenting with a serous retinal detachment but normal hearing. Genetic analysis revealed a novel c.277T>C missense mutation causing the substitution of a hydrophobic cysteine to a hydrophilic arginine [p.(Cys93Arg)] within the highly conserved cysteine knot domain of the norrin protein. These results should expand the scope for amniocentesis and genetic testing for Norrie disease which is gaining in importance due to novel postnatal therapeutic concepts to alleviate the devastating retinal symptoms of Norrie disease. © 2014 S. Karger AG, Basel.

  20. Pulmonary hypoplasia-diaphragmatic hernia-anophthalmia-cardiac defect (PDAC) syndrome due to STRA6 mutations--what are the minimal criteria?

    Science.gov (United States)

    Segel, Reeval; Levy-Lahad, Ephrat; Pasutto, Francesca; Picard, Elie; Rauch, Anita; Alterescu, Gheona; Schimmel, Michael S

    2009-11-01

    Microphthalmic syndrome 9 (OMIM601186) is a genetically and phenotypically variable condition, comprising anophthalmia, pulmonary hypoplasia, diaphragmatic hernia, and cardiac malformations (PDAC syndrome). Reported cases have all been associated with fetal/neonatal death or developmental delay. Recessive stimulated by retinoic acid gene 6 homolog (STRA6) mutations have recently been identified as the cause of cases of PDAC in which distinct, "bushy" eyebrows have been observed. We describe a patient with clinical anophthalmia, bushy eyebrows, patent ductus arteriosus, and normal development at age 30 months, who is a compound heterozygote for two novel STRA6 missense mutations. This patient's phenotype is consistent with the multisystemic malformations of PDAC syndrome, but is somewhat milder. This is the first living patient with compound heterozygous STRA6 mutations, which may explain her milder phenotype. We conclude that STRA6 analysis should be considered in all patients with clinical anophthalmia. Genetic counseling should be cautious with respect to long-term developmental outcomes. Copyright 2009 Wiley-Liss, Inc.

  1. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita.

    Science.gov (United States)

    Ballew, Bari J; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Boland, Joseph; Burdett, Laurie; Alter, Blanche P; Savage, Sharon A

    2013-04-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. In addition, inheritance of only the missense mutation led to very short telomeres in the proband's brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein-protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC.

  2. Novel compound heterozygous mutations in MYO7A Associated with Usher syndrome 1 in a Chinese family.

    Science.gov (United States)

    Gao, Xue; Wang, Guo-Jian; Yuan, Yong-Yi; Xin, Feng; Han, Ming-Yu; Lu, Jing-Qiao; Zhao, Hui; Yu, Fei; Xu, Jin-Cao; Zhang, Mei-Guang; Dong, Jiang; Lin, Xi; Dai, Pu

    2014-01-01

    Usher syndrome is an autosomal recessive disease characterized by sensorineural hearing loss, age-dependent retinitis pigmentosa (RP), and occasionally vestibular dysfunction. The most severe form is Usher syndrome type 1 (USH1). Mutations in the MYO7A gene are responsible for USH1 and account for 29-55% of USH1 cases. Here, we characterized a Chinese family (no. 7162) with USH1. Combining the targeted capture of 131 known deafness genes, next-generation sequencing, and bioinformatic analysis, we identified two deleterious compound heterozygous mutations in the MYO7A gene: a reported missense mutation c.73G>A (p.G25R) and a novel nonsense mutation c.462C>A (p.C154X). The two compound variants are absent in 219 ethnicity-matched controls, co-segregates with the USH clinical phenotypes, including hearing loss, vestibular dysfunction, and age-dependent penetrance of progressive RP, in family 7162. Therefore, we concluded that the USH1 in this family was caused by compound heterozygous mutations in MYO7A.

  3. Novel compound heterozygous mutations in MYO7A Associated with Usher syndrome 1 in a Chinese family.

    Directory of Open Access Journals (Sweden)

    Xue Gao

    Full Text Available Usher syndrome is an autosomal recessive disease characterized by sensorineural hearing loss, age-dependent retinitis pigmentosa (RP, and occasionally vestibular dysfunction. The most severe form is Usher syndrome type 1 (USH1. Mutations in the MYO7A gene are responsible for USH1 and account for 29-55% of USH1 cases. Here, we characterized a Chinese family (no. 7162 with USH1. Combining the targeted capture of 131 known deafness genes, next-generation sequencing, and bioinformatic analysis, we identified two deleterious compound heterozygous mutations in the MYO7A gene: a reported missense mutation c.73G>A (p.G25R and a novel nonsense mutation c.462C>A (p.C154X. The two compound variants are absent in 219 ethnicity-matched controls, co-segregates with the USH clinical phenotypes, including hearing loss, vestibular dysfunction, and age-dependent penetrance of progressive RP, in family 7162. Therefore, we concluded that the USH1 in this family was caused by compound heterozygous mutations in MYO7A.

  4. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly.

    Science.gov (United States)

    Braun, Daniela A; Rao, Jia; Mollet, Geraldine; Schapiro, David; Daugeron, Marie-Claire; Tan, Weizhen; Gribouval, Olivier; Boyer, Olivia; Revy, Patrick; Jobst-Schwan, Tilman; Schmidt, Johanna Magdalena; Lawson, Jennifer A; Schanze, Denny; Ashraf, Shazia; Ullmann, Jeremy F P; Hoogstraten, Charlotte A; Boddaert, Nathalie; Collinet, Bruno; Martin, Gaëlle; Liger, Dominique; Lovric, Svjetlana; Furlano, Monica; Guerrera, I Chiara; Sanchez-Ferras, Oraly; Hu, Jennifer F; Boschat, Anne-Claire; Sanquer, Sylvia; Menten, Björn; Vergult, Sarah; De Rocker, Nina; Airik, Merlin; Hermle, Tobias; Shril, Shirlee; Widmeier, Eugen; Gee, Heon Yung; Choi, Won-Il; Sadowski, Carolin E; Pabst, Werner L; Warejko, Jillian K; Daga, Ankana; Basta, Tamara; Matejas, Verena; Scharmann, Karin; Kienast, Sandra D; Behnam, Babak; Beeson, Brendan; Begtrup, Amber; Bruce, Malcolm; Ch'ng, Gaik-Siew; Lin, Shuan-Pei; Chang, Jui-Hsing; Chen, Chao-Huei; Cho, Megan T; Gaffney, Patrick M; Gipson, Patrick E; Hsu, Chyong-Hsin; Kari, Jameela A; Ke, Yu-Yuan; Kiraly-Borri, Cathy; Lai, Wai-Ming; Lemyre, Emmanuelle; Littlejohn, Rebecca Okashah; Masri, Amira; Moghtaderi, Mastaneh; Nakamura, Kazuyuki; Ozaltin, Fatih; Praet, Marleen; Prasad, Chitra; Prytula, Agnieszka; Roeder, Elizabeth R; Rump, Patrick; Schnur, Rhonda E; Shiihara, Takashi; Sinha, Manish D; Soliman, Neveen A; Soulami, Kenza; Sweetser, David A; Tsai, Wen-Hui; Tsai, Jeng-Daw; Topaloglu, Rezan; Vester, Udo; Viskochil, David H; Vatanavicharn, Nithiwat; Waxler, Jessica L; Wierenga, Klaas J; Wolf, Matthias T F; Wong, Sik-Nin; Leidel, Sebastian A; Truglio, Gessica; Dedon, Peter C; Poduri, Annapurna; Mane, Shrikant; Lifton, Richard P; Bouchard, Maxime; Kannu, Peter; Chitayat, David; Magen, Daniella; Callewaert, Bert; van Tilbeurgh, Herman; Zenker, Martin; Antignac, Corinne; Hildebrandt, Friedhelm

    2017-10-01

    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.

  5. A novel mutation in PGAP2 gene causes developmental delay, intellectual disability, epilepsy and microcephaly in consanguineous Saudi family.

    Science.gov (United States)

    Naseer, Muhammad Imran; Rasool, Mahmood; Jan, Mohammed M; Chaudhary, Adeel G; Pushparaj, Peter Natesan; Abuzenadah, Adel M; Al-Qahtani, Mohammad H

    2016-12-15

    PGAP2 (Post-GPI Attachment to Proteins 2) gene is involved in lipid remodeling steps of Glycosylphosphatidylinositol (GPI)-anchor maturation. At the surface of the cell this gene is required for proper expression of GPI-anchored proteins. Hyperphosphatasia with mental retardation syndrome-3 is an autosomal recessive disorder usually characterized by severe mental retardation. Mutations in the PGAP2 gene cause hyperphosphatasia mental retardation syndrome-3. We have identified a large consanguineous family from Saudi origin segregating developmental delay, intellectual disability, epilepsy and microcephaly. Whole exome sequencing with 100× coverage was performed on two affected siblings of the family. Data analysis in the patient revealed a novel missense mutation c.191C>T in PGAP2 gene resulting in Alanine to Valine substitution (Ala64Val). The mutation was reconfirmed and validated by subsequent Sanger sequencing method. The mutation was ruled out in 100 unrelated healthy controls. We suggest that this pathogenic mutation disrupts the proper function of the gene proteins resulting in the disease state. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A Single Missense Mutation in 77% of Prostate Cancer Bone Metastases: Novel Opportunity for Genetic Biomarker and Novel Therapeutic Mitochondrial Target

    Science.gov (United States)

    2017-10-01

    goal of this application is to identify targets for the treatment of androgen receptor null castration-resistant prostate cancer in in vitro and pre...AWARD NUMBER: W81XWH-16-1-0584 TITLE : A Single Missense Mutation in 77% of Prostate Cancer Bone Metastases: Novel Opportunity for Genetic...Missense Mutation in 77% of Prostate Cancer Bone Metastases: 5a. CONTRACT NUMBER A Single Missense Mutation in 77% of Prostate Cancer Bone Metastases

  7. Pathological assessment of mismatch repair gene variants in Lynch syndrome

    DEFF Research Database (Denmark)

    Rasmussen, Lene Juel; Heinen, Christopher D; Royer-Pokora, Brigitte

    2012-01-01

    Lynch syndrome (LS) is caused by germline mutations in DNA mismatch repair (MMR) genes and is the most prevalent hereditary colorectal cancer syndrome. A significant proportion of variants identified in MMR and other common cancer susceptibility genes are missense or noncoding changes whose...

  8. De novo SOX11 mutations cause Coffin-Siris syndrome.

    Science.gov (United States)

    Tsurusaki, Yoshinori; Koshimizu, Eriko; Ohashi, Hirofumi; Phadke, Shubha; Kou, Ikuyo; Shiina, Masaaki; Suzuki, Toshifumi; Okamoto, Nobuhiko; Imamura, Shintaro; Yamashita, Michiaki; Watanabe, Satoshi; Yoshiura, Koh-ichiro; Kodera, Hirofumi; Miyatake, Satoko; Nakashima, Mitsuko; Saitsu, Hirotomo; Ogata, Kazuhiro; Ikegawa, Shiro; Miyake, Noriko; Matsumoto, Naomichi

    2014-06-02

    Coffin-Siris syndrome (CSS) is a congenital disorder characterized by growth deficiency, intellectual disability, microcephaly, characteristic facial features and hypoplastic nails of the fifth fingers and/or toes. We previously identified mutations in five genes encoding subunits of the BAF complex, in 55% of CSS patients. Here we perform whole-exome sequencing in additional CSS patients, identifying de novo SOX11 mutations in two patients with a mild CSS phenotype. sox11a/b knockdown in zebrafish causes brain abnormalities, potentially explaining the brain phenotype of CSS. SOX11 is the downstream transcriptional factor of the PAX6-BAF complex, highlighting the importance of the BAF complex and SOX11 transcriptional network in brain development.

  9. Neonatal Marfan syndrome caused by an exon 25 mutation of the fibrillin-1 gene.

    Science.gov (United States)

    Elçioglu, N H; Akalin, F; Elçioglu, M; Comeglio, P; Child, A H

    2004-01-01

    Neonatal Marfan syndrome caused by an exon 25 mutation of the Fibrillin-1 gene: We describe a male infant with severe arachnodactyly, hypermobility of the fingers, flexion contractures of elbows, wrists, hips, and knees, microretrognathia, crumpled ears, rockerbottom feet, loose redundant skin, and lens dislocations. Cardiac valve insufficiency and aortic dilatation resulted in cardiac failure, decompensated with digitalisation and death occurred at the age of 4 months. This case represents the severe end of the clinical spectrum of Marfan syndrome, namely neonatal Marfan syndrome. Molecular diagnostic analyses confirmed a de novo exon 25 mutation in the FBN1 gene.

  10. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Lee

    2006-12-01

    Full Text Available Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy.Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132 of glioblastomas and 12.5% (1/8 of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors.Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.

  11. Identification of a novel CLRN1 gene mutation in Usher syndrome type 3: two case reports.

    Science.gov (United States)

    Yoshimura, Hidekane; Oshikawa, Chie; Nakayama, Jun; Moteki, Hideaki; Usami, Shin-Ichi

    2015-05-01

    This study examines the CLRN1 gene mutation analysis in Japanese patients who were diagnosed with Usher syndrome type 3 (USH3) on the basis of clinical findings. Genetic analysis using massively parallel DNA sequencing (MPS) was conducted to search for 9 causative USH genes in 2 USH3 patients. We identified the novel pathogenic mutation in the CLRN1 gene in 2 patients. The missense mutation was confirmed by functional prediction software and segregation analysis. Both patients were diagnosed as having USH3 caused by the CLRN1 gene mutation. This is the first report of USH3 with a CLRN1 gene mutation in Asian populations. Validating the presence of clinical findings is imperative for properly differentiating among USH subtypes. In addition, mutation screening using MPS enables the identification of causative mutations in USH. The clinical diagnosis of this phenotypically variable disease can then be confirmed. © The Author(s) 2015.

  12. In vivo and in vitro functional characterization of Andersen's syndrome mutations.

    Science.gov (United States)

    Bendahhou, Saïd; Fournier, Emmanuel; Sternberg, Damien; Bassez, Guillaume; Furby, Alain; Sereni, Carole; Donaldson, Matthew R; Larroque, Marie-Madeleine; Fontaine, Bertrand; Barhanin, Jacques

    2005-06-15

    The inward rectifier K(+) channel Kir2.1 carries all Andersen's syndrome mutations identified to date. Patients exhibit symptoms of periodic paralysis, cardiac dysrhythmia and multiple dysmorphic features. Here, we report the clinical manifestations found in three families with Andersen's syndrome. Molecular genetics analysis identified two novel missense mutations in the KCNJ2 gene leading to amino acid changes C154F and T309I of the Kir2.1 open reading frame. Patch clamp experiments showed that the two mutations produced a loss of channel function. When co-expressed with Kir2.1 wild-type (WT) channels, both mutations exerted a dominant-negative effect leading to a loss of the inward rectifying K(+) current. Confocal microscopy imaging in HEK293 cells is consistent with a co-assembly of the EGFP-fused mutant proteins with WT channels and proper traffick to the plasma membrane to produce silent channels alone or as hetero-tetramers with WT. Functional expression in C2C12 muscle cell line of newly as well as previously reported Andersen's syndrome mutations confirmed that these mutations act through a dominant-negative effect by altering channel gating or trafficking. Finally, in vivo electromyographic evaluation showed a decrease in muscle excitability in Andersen's syndrome patients. We hypothesize that Andersen's syndrome-associated mutations and hypokalaemic periodic paralysis-associated calcium channel mutations may lead to muscle membrane hypoexcitability via a common mechanism.

  13. Differential effects of FGFR2 mutations on syndactyly and cleft palate in Apert syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Slaney, S.F.; Oldridge, M.; Wilkie, A.O.M. [Univ. of Oxford (United Kingdom)] [and others

    1996-05-01

    Apert syndrome is a distinctive human malformation characterized by craniosynostosis and severe syndactyly of the hands and feet. It is caused by specific missense substitutions involving adjacent amino acids (Ser252Trp or Pro253Arg) in the linker between the second and third extracellular immunoglobulin domains of fibroblast growth factor receptor 2 (FGFR2). We have developed a simple PCR assay for these mutations in genomic DNA, based on the creation of novel SfiI and BstUI restriction sites. Analysis of DNA from 70 unrelated patients with Apert syndrome showed that 45 had the Ser252Trp mutation and 25 had the Pro253Arg mutation. Phenotypic differences between these two groups of patients were investigated. Significant differences were found for severity of syndactyly and presence of cleft palate. The syndactyly was more severe with the Pro253Arg mutation, for both the hands and the feet. In contrast, cleft palate was significantly more common in the Ser252Trp patients. No convincing differences were found in the prevalence of other malformations associated with Apert syndrome. We conclude that, although the phenotype attributable to the two mutations is very similar, there are subtle differences. The opposite trends for severity of syndactyly and cleft palate in relation to the two mutations may relate to the varying patterns of temporal and tissue-specific expression of different fibroblast growth factors, the ligands for FGFR2. 54 refs., 5 figs., 3 tabs.

  14. Clinical and genetic investigation of a Japanese family with cardiac fabry disease. Identification of a novel α-galactosidase A missense mutation (G195V).

    Science.gov (United States)

    Nakagawa, Naoki; Maruyama, Hiroki; Ishihara, Takayuki; Seino, Utako; Kawabe, Jun-ichi; Takahashi, Fumihiko; Kobayashi, Motoi; Yamauchi, Atsushi; Sasaki, Yukie; Sakamoto, Naka; Ota, Hisanobu; Tanabe, Yasuko; Takeuchi, Toshiharu; Takenaka, Toshihiro; Kikuchi, Kenjiro; Hasebe, Naoyuki

    2011-01-01

    Fabry disease is an X-linked lysosomal storage disorder caused by mutations of the α-galactosidase A gene (GLA), and the disease is a relatively prevalent cause of left ventricular hypertrophy mimicking idiopathic hypertrophic cardiomyopathy. We assessed clinically 5 patients of a three-generation family and also searched for GLA mutations in 10 family members. The proband had left ventricular hypertrophy with localized thinning in the basal posterior wall and late gadolinium enhancement (LGE) in the near-circumferential wall in cardiovascular magnetic resonance images and her sister had vasospastic angina pectoris without organic stenosis of the coronary arteries. LGE notably appeared in parallel with decreased α-galactosidase A activity and increased NT-pro BNP in our patients. We detected a new GLA missense mutation (G195V) in exon 4, resulting in a glycine-to-valine substitution. Of the 10 family members, 5 family members each were positive and negative for this mutation. These new data extend our clinical and molecular knowledge of GLA gene mutations and confirm that a novel missense mutation in the GLA gene is important not only for a precise diagnosis of heterozygous status, but also for confirming relatives who are negative for this mutation.

  15. Structural and functional analysis of rare missense mutations in human chorionic gonadotrophin β-subunit

    DEFF Research Database (Denmark)

    Nagirnaja, Liina; Venclovas, Česlovas; Rull, Kristiina

    2012-01-01

    Heterodimeric hCG is one of the key hormones determining early pregnancy success. We have previously identified rare missense mutations in hCGβ genes with potential pathophysiological importance. The present study assessed the impact of these mutations on the structure and function of hCG by appl...... of intact hCG as also supported by an in silico analysis. In summary, the accumulated data indicate that only mutations with neutral or mild functional consequences might be tolerated in the major hCGβ genes CGB5 and CGB8.......Heterodimeric hCG is one of the key hormones determining early pregnancy success. We have previously identified rare missense mutations in hCGβ genes with potential pathophysiological importance. The present study assessed the impact of these mutations on the structure and function of h......CG by applying a combination of in silico (sequence and structure analysis, molecular dynamics) and in vitro (co-immunoprecipitation, immuno- and bioassays) approaches. The carrier status of each mutation was determined for 1086 North-Europeans [655 patients with recurrent miscarriage (RM)/431 healthy controls...

  16. Three cases with L1 syndrome and two novel mutations in the L1CAM gene.

    Science.gov (United States)

    Marín, Rosario; Ley-Martos, Miriam; Gutiérrez, Gema; Rodríguez-Sánchez, Felicidad; Arroyo, Diego; Mora-López, Francisco

    2015-11-01

    Mutations in the L1CAM gene have been identified in the following various X-linked neurological disorders: congenital hydrocephalus; mental retardation, aphasia, shuffling gait, and adducted thumbs (MASA) syndrome; spastic paraplegia; and agenesis of the corpus callosum. These conditions are currently considered different phenotypes of a single entity known as L1 syndrome. We present three families with L1 syndrome. Sequencing of the L1CAM gene allowed the identification of the following mutations involved: a known splicing mutation (c.3531-12G>A) and two novel ones: a missense mutation (c.1754A>C; p.Asp585Ala) and a nonsense mutation (c.3478C>T; p.Gln1160Stop). The number of affected males and carrier females identified in a relatively small population suggests that L1 syndrome may be under-diagnosed. L1 syndrome should be considered in the differential diagnosis of intellectual disability or mental retardation in children, especially when other signs such as hydrocephalus or adducted thumbs are present.

  17. Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families.

    Science.gov (United States)

    Chang, Wendy; Winder, Thomas L; LeDuc, Charles A; Simpson, Lynn L; Millar, William S; Dungan, Jeffrey; Ginsberg, Norman; Plaga, Stacey; Moore, Steven A; Chung, Wendy K

    2009-06-01

    Walker-Warburg syndrome (WWS) is a genetically heterogeneous congenital muscular dystrophy caused by abnormal glycosylation of alpha-dystroglycan (alpha-DG) that is associated with brain malformations and eye anomalies. The Fukutin (FKTN) gene, which causes autosomal recessively inherited WWS is most often associated with Fukuyama congenital muscular dystrophy in Japan. We describe the clinical features of four nonconsanguinous Ashkenazi Jewish families with WWS and identify the underlying genetic basis for WWS. We screened for mutations in POMGnT1, POMT1, POMT2, and FKTN, genes causing WWS, by dideoxy sequence analysis. We identified an identical homozygous c.1167insA mutation in the FKTN gene on a common haplotype in all four families and identified 2/299 (0.7%) carriers for the c.1167insA mutation among normal American Ashkenazi Jewish adults. These data suggest that the c.1167insA FKTN mutation described by us is a founder mutation that can be used to target diagnostic testing and carrier screening in the Ashkenazi Jewish population. Copyright (c) 2009 John Wiley & Sons, Ltd.

  18. Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families†

    Science.gov (United States)

    Chang, Wendy; Winder, Thomas L.; LeDuc, Charles A.; Simpson, Lynn L.; Millar, William S.; Dungan, Jeffrey; Ginsberg, Norman; Plaga, Stacey; Moore, Steven A.; Chung, Wendy K.

    2009-01-01

    Objective Walker-Warburg syndrome (WWS) is a genetically heterogeneous congenital muscular dystrophy caused by abnormal glycosylation of α-dystroglycan (α-DG) that is associated with brain malformations and eye anomalies. The Fukutin (FKTN) gene, which causes autosomal recessively inherited WWS is most often associated with Fukuyama congenital muscular dystrophy in Japan. We describe the clinical features of four nonconsanguinous Ashkenazi Jewish families with WWS and identify the underlying genetic basis for WWS. Method We screened for mutations in POMGnT1, POMT1, POMT2, and FKTN, genes causing WWS, by dideoxy sequence analysis. Results We identified an identical homozygous c.1167insA mutation in the FKTN gene on a common haplotype in all four families and identified 2/299 (0.7%) carriers for the c.1167insA mutation among normal American Ashkenazi Jewish adults. Conclusion These data suggest that the c.1167insA FKTN mutation described by us is a founder mutation that can be used to target diagnostic testing and carrier screening in the Ashkenazi Jewish population. PMID:19266496

  19. Two novel missense mutations in bovine ATGL gene and their ...

    African Journals Online (AJOL)

    Adipose triglyceride lipase (ATGL) as a triglyceride-specific lipase, plays a key role in the triglyceride liposis mobilization of fat tissue. In this study, based on the pyrosequencing technology, two novel missense mutations were identified, which were 3289 G>C in exon 6 bringing E277Q and 3514 A>T in exon 7 bringing ...

  20. FAM20A mutations can cause enamel-renal syndrome (ERS.

    Directory of Open Access Journals (Sweden)

    Shih-Kai Wang

    Full Text Available Enamel-renal syndrome (ERS is an autosomal recessive disorder characterized by severe enamel hypoplasia, failed tooth eruption, intrapulpal calcifications, enlarged gingiva, and nephrocalcinosis. Recently, mutations in FAM20A were reported to cause amelogenesis imperfecta and gingival fibromatosis syndrome (AIGFS, which closely resembles ERS except for the renal calcifications. We characterized three families with AIGFS and identified, in each case, recessive FAM20A mutations: family 1 (c.992G>A; g.63853G>A; p.Gly331Asp, family 2 (c.720-2A>G; g.62232A>G; p.Gln241_Arg271del, and family 3 (c.406C>T; g.50213C>T; p.Arg136* and c.1432C>T; g.68284C>T; p.Arg478*. Significantly, a kidney ultrasound of the family 2 proband revealed nephrocalcinosis, revising the diagnosis from AIGFS to ERS. By characterizing teeth extracted from the family 3 proband, we demonstrated that FAM20A(-/- molars lacked true enamel, showed extensive crown and root resorption, hypercementosis, and partial replacement of resorbed mineral with bone or coalesced mineral spheres. Supported by the observation of severe ectopic calcifications in the kidneys of Fam20a null mice, we conclude that FAM20A, which has a kinase homology domain and localizes to the Golgi, is a putative Golgi kinase that plays a significant role in the regulation of biomineralization processes, and that mutations in FAM20A cause both AIGFS and ERS.

  1. Hereditary thrombophilia: identification of nonsense and missense mutations in the protein C gene

    International Nuclear Information System (INIS)

    Romeo, G.; Hassan, H.J.; Staempfli, S.

    1987-01-01

    The structure of the gene for protein C, an anticoagulant serine protease, was analyzed in 29 unrelated patients with hereditary thrombophilia and protein C deficiency. Gene deletion(s) or gross rearrangement(s) was not demonstrable by Southern blot hybridization to cDNA probes. However, two unrelated patients showed a variant restriction pattern after Pvu II or BamHi digestion, due to mutations in the last exon: analysis of their pedigrees, including three or seven heterozygotes, respectively, with ∼50% reduction of both enzymatic and antigen level, showed the abnormal restriction pattern in all heterozygous individuals, but not in normal relatives. Cloning of protein C gene and sequencing of the last exon allowed the authors to identify a nonsense and a missense mutation, respectively. In the first case, codon 306 (CGA, arginine) is mutated to an inframe stop codon, thus generating a new Pvu II recognition site. In the second case, a missense mutation in the BamHI palindrome (GGATCC → GCATCC) leads to substitution of a key amino acid (a tryptophan to cysteine substitution at position 402), invariantly conserved in eukaryotic serine proteases. These point mutations may explain the protein C-deficiency phenotype of heterozygotes in the two pedigrees

  2. Alternative splicing of exon 17 and a missense mutation in exon 20 of the insulin receptor gene in two brothers with a novel syndrome of insulin resistance (congenital fiber-type disproportion myopathy)

    DEFF Research Database (Denmark)

    Vorwerk, P; Christoffersen, C T; Müller, J

    1999-01-01

    to be compound heterozygotes for mutations in the IR gene. The maternal allele was alternatively spliced in exon 17 due to a point mutation in the -1 donor splice site of the exon. The abnormal skipping of exon 17 shifts the amino acid reading frame and leads to a truncated IR, missing the entire tyrosine kinase......The insulin receptor (IR) in two brothers with a rare syndrome of congenital muscle fiber type disproportion myopathy (CFTDM) associated with diabetes and severe insulin resistance was studied. By direct sequencing of Epstein-Barr virus-transformed lymphocytes both patients were found...... domain. In the correct spliced variant, the point mutation is silent and results in a normally translated IR. The paternal allele carries a missense mutation in the tyrosine kinase domain. All three cDNA variants were present in the lymphocytes of the patients. Purified IR from 293 cells overexpressing...

  3. A novel STXBP1 mutation causes typical Rett syndrome in a Japanese girl.

    Science.gov (United States)

    Yuge, Kotaro; Iwama, Kazuhiro; Yonee, Chihiro; Matsufuji, Mayumi; Sano, Nozomi; Saikusa, Tomoko; Yae, Yukako; Yamashita, Yushiro; Mizuguchi, Takeshi; Matsumoto, Naomichi; Matsuishi, Toyojiro

    2018-06-01

    Rett syndrome (RTT) is a neurodevelopmental disorder mostly caused by mutations in Methyl-CpG-binding protein 2 (MECP2); however, mutations in various other genes may lead to RTT-like phenotypes. Here, we report the first case of a Japanese girl with RTT caused by a novel syntaxin-binding protein 1 (STXBP1) frameshift mutation (c.60delG, p.Lys21Argfs*16). She showed epilepsy at one year of age, regression of acquired psychomotor abilities thereafter, and exhibited stereotypic hand and limb movements at 3 years of age. Her epilepsy onset was earlier than is typical for RTT patients. However, she fully met the 2010 diagnostic criteria of typical RTT. STXBP1 mutations cause early infantile epileptic encephalopathy (EIEE), various intractable epilepsies, and neurodevelopmental disorders. However, the case described here presented a unique clinical presentation of typical RTT without EIEE and a novel STXBP1 mutation. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  4. Severe early onset retinitis pigmentosa in a Moroccan patient with Heimler syndrome due to novel homozygous mutation of PEX1 gene.

    Science.gov (United States)

    Ratbi, Ilham; Jaouad, Imane Cherkaoui; Elorch, Hamza; Al-Sheqaih, Nada; Elalloussi, Mustapha; Lyahyai, Jaber; Berraho, Amina; Newman, William G; Sefiani, Abdelaziz

    2016-10-01

    Heimler syndrome (HS) is a rare recessive disorder characterized by sensorineural hearing loss (SNHL), amelogenesis imperfecta, nail abnormalities, and occasional or late-onset retinal pigmentation. It is the mildest form known to date of peroxisome biogenesis disorder caused by hypomorphic mutations of PEX1 and PEX6 genes. We report on a second Moroccan family with Heimler syndrome with early onset, severe visual impairment and important phenotypic overlap with Usher syndrome. The patient carried a novel homozygous missense variant c.3140T > C (p.Leu1047Pro) of PEX1 gene. As standard biochemical screening of blood for evidence of a peroxisomal disorder did not provide a diagnosis in the individuals with HS, patients with SNHL and retinal pigmentation should have mutation analysis of PEX1 and PEX6 genes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Novel missense mutations in PNPLA2 causing late onset and clinical heterogeneity of neutral lipid storage disease with myopathy in three siblings.

    Science.gov (United States)

    Missaglia, Sara; Tasca, Elisabetta; Angelini, Corrado; Moro, Laura; Tavian, Daniela

    2015-01-01

    Neutral lipid storage disease with myopathy (NLSD-M) is a rare autosomal recessive disorder characterised by an abnormal accumulation of triacylglycerol into cytoplasmic lipid droplets (LDs). NLSD-M patients are mainly affected by progressive myopathy, cardiomyopathy and hepatomegaly. Mutations in the PNPLA2 gene cause variable phenotypes of NLSD-M. PNPLA2 codes for adipose triglyceride lipase (ATGL), an enzyme that hydrolyses fatty acids from triacylglycerol. This report outlines the clinical and genetic findings in a NLSD-M Italian family with three affected members. In our patients, we identified two novel PNPLA2 missense mutations (p.L56R and p.I193F). Functional data analysis demonstrated that these mutations caused the production of ATGL proteins able to bind to LDs, but with decreased lipase activity. The oldest brother, at the age of 38, had weakness and atrophy of the right upper arm and kyphosis. Now he is 61 years old and is unable to raise arms in the horizontal position. The second brother, from the age of 44, had exercise intolerance, cramps and pain in lower limbs. He is currently 50 years old and has an asymmetric distal amyotrophy. One of the two sisters, 58 years old, presents the same PNPLA2 mutations, but she is still oligo-symptomatic on neuromuscular examination with slight triceps muscle involvement. She suffered from diabetes and liver steatosis. This NLSD-M family shows a wide range of intra-familial phenotypic variability in subjects carrying the same mutations, both in terms of target-organs and in terms of rate of disease progression. Copyright © 2015. Published by Elsevier Inc.

  6. Mutations in plasmalemma vesicle-associated protein cause severe syndromic protein-losing enteropathy.

    Science.gov (United States)

    Broekaert, Ilse Julia; Becker, Kerstin; Gottschalk, Ingo; Körber, Friederike; Dötsch, Jörg; Thiele, Holger; Altmüller, Janine; Nürnberg, Peter; Hünseler, Christoph; Cirak, Sebahattin

    2018-04-16

    Protein-losing enteropathy (PLE) is characterised by gastrointestinal protein leakage due to loss of mucosal integrity or lymphatic abnormalities. PLE can manifest as congenital diarrhoea and should be differentiated from other congenital diarrhoeal disorders. Primary PLEs are genetically heterogeneous and the underlying genetic defects are currently emerging. We report an infant with fatal PLE for whom we aimed to uncover the underlying pathogenic mutation. We performed whole exome sequencing (WES) for the index patient. Variants were classified based on the American College of Medical Genetics and Genomics guidelines. WES results and our detailed clinical description of the patient were compared with the literature. We discovered a novel homozygous stop mutation (c.988C>T, p.Q330*) in the Plasmalemma Vesicle-Associated Protein ( PLVAP ) gene in a newborn with fatal PLE, facial dysmorphism, and renal, ocular and cardiac anomalies. The Q330* mutation is predicted to result in complete loss of PLVAP protein expression leading to deletion of the diaphragms of endothelial fenestrae, resulting in plasma protein extravasation and PLE. Recently, another single homozygous stop mutation in PLVAP causing lethal PLE in an infant was reported. Our findings validate PLVAP mutations as a cause of syndromic PLE. Prenatal anomalies, severe PLE and syndromic features may guide the diagnosis of this rare disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. ALDH1A3 mutations cause recessive anophthalmia and microphthalmia.

    Science.gov (United States)

    Fares-Taie, Lucas; Gerber, Sylvie; Chassaing, Nicolas; Clayton-Smith, Jill; Hanein, Sylvain; Silva, Eduardo; Serey, Margaux; Serre, Valérie; Gérard, Xavier; Baumann, Clarisse; Plessis, Ghislaine; Demeer, Bénédicte; Brétillon, Lionel; Bole, Christine; Nitschke, Patrick; Munnich, Arnold; Lyonnet, Stanislas; Calvas, Patrick; Kaplan, Josseline; Ragge, Nicola; Rozet, Jean-Michel

    2013-02-07

    Anophthalmia and microphthalmia (A/M) are early-eye-development anomalies resulting in absent or small ocular globes, respectively. A/M anomalies occur in syndromic or nonsyndromic forms. They are genetically heterogeneous, some mutations in some genes being responsible for both anophthalmia and microphthalmia. Using a combination of homozygosity mapping, exome sequencing, and Sanger sequencing, we identified homozygosity for one splice-site and two missense mutations in the gene encoding the A3 isoform of the aldehyde dehydrogenase 1 (ALDH1A3) in three consanguineous families segregating A/M with occasional orbital cystic, neurological, and cardiac anomalies. ALDH1A3 is a key enzyme in the formation of a retinoic acid gradient along the dorso-ventral axis during early eye development. Transitory expression of mutant ALDH1A3 open reading frames showed that both missense mutations reduce the accumulation of the enzyme, potentially leading to altered retinoic acid synthesis. Although the role of retinoic acid signaling in eye development is well established, our findings provide genetic evidence of a direct link between retinoic-acid-synthesis dysfunction and early-eye-development anomalies in humans. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. Marfan syndrome--a diagnostic challenge caused by phenotypic and genetic heterogeneity.

    Science.gov (United States)

    Baumgartner, C; Mátyás, G; Steinmann, B; Baumgartner, D

    2005-01-01

    Marfan syndrome (MFS) is an autosomal dominant inherited connective tissue disorder caused by mutations in the fibrillin-1 (FBN1) gene with variable clinical manifestations in the cardiovascular, musculoskeletal and ocular systems. Data of moleculor genetic analysis and a catalogue of clinical manifestations including aortic elastic parameters were mined in order to (i) assess aortic abnormality before and during medical treatment, and to (ii) identify novel correlations between the genotype and phenotype of the disease using hierarchical cluster analysis and logistic regression analysis. A score measure describing the similarity between a patient's clinical symptoms and a characteristic phenotype class was introduced. A probabilistic model for monitoring the loss of aortic elasticity was built on merely aortic parameters of 34 patients with classic MFS and 43 control subjects showing a sensitivity of 82% and a specificity of 96%. The clinical phenotypes of 100 individuals with classical or suspected MFS were clustered yielding four different phenotypic expressions. The highest correlation was found between FBN1 missense mutations, which manifested as ectopia lentis, skeletal major and skin minor criteria, and two out of four clustered phenotypes. The probability of the presence of a missense mutation in both phenotype classes is approximately 70%. Monitoring of aortic elastic properties during medical treatment may serve as additional criterion to indicate elective surgical interventions. Genotype-phenotype correlation may contribute to anticipate the clinical consequences of specific FBN1 mutations more comprehensively and may be helpful to identify MFS patients at risk at on early stage of disease.

  9. Homozygous EDNRB mutation in a patient with Waardenburg syndrome type 1.

    Science.gov (United States)

    Morimoto, Noriko; Mutai, Hideki; Namba, Kazunori; Kaneko, Hiroki; Kosaki, Rika; Matsunaga, Tatsuo

    2018-04-01

    To examine and expand the genetic spectrum of Waardenburg syndrome type 1 (WS1). Clinical features related to Waardenburg syndrome (WS) were examined in a five-year old patient. Mutation analysis of genes related to WS was performed in the proband and her parents. Molecular modeling of EDNRB and the p.R319W mutant was conducted to predict the pathogenicity of the mutation. The proband showed sensorineural hearing loss, heterochromia iridis, and dystopia canthorum, fulfilling the clinical criteria of WS1. Genetic analyses revealed that the proband had no mutation in PAX3 which has been known as the cause of WS1, but had a homozygous missense mutation (p.R319W) in endothelin receptor type B (EDNRB) gene. The asymptomatic parents had the mutation in a heterozygote state. This mutation has been previously reported in a heterozygous state in a patient with Hirschsprung's disease unaccompanied by WS, but the patient and her parents did not show any symptoms in gastrointestinal tract. Molecular modeling of EDNRB with the p.R319W mutation demonstrated reduction of the positively charged surface area in this region, which might reduce binding ability of EDNRB to G protein and lead to abnormal signal transduction underlying the WS phenotype. Our findings suggested that autosomal recessive mutation in EDNRB may underlie a part of WS1 with the current diagnostic criteria, and supported that Hirschsprung's disease is a multifactorial genetic disease which requires additional factors. Further molecular analysis is necessary to elucidate the gene interaction and to reappraise the current WS classification. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yuki [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Eguchi, Takahiro [The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639 (Japan); Kawahara, Kazuko [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Hasegawa, Nanami [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Faculty of Pharmacy, Keio University, Minato, Tokyo 105-8512 (Japan); Nakamura, Kazuaki [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Funakoshi-Tago, Megumi [Faculty of Pharmacy, Keio University, Minato, Tokyo 105-8512 (Japan); Tanoue, Akito [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Tamura, Hiroomi [Faculty of Pharmacy, Keio University, Minato, Tokyo 105-8512 (Japan); Yamauchi, Junji, E-mail: yamauchi-j@ncchd.go.jp [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510 (Japan)

    2015-07-03

    Myelin-forming glial cells undergo dynamic morphological changes in order to produce mature myelin sheaths with multiple layers. In the central nervous system (CNS), oligodendrocytes differentiate to insulate neuronal axons with myelin sheaths. Myelin sheaths play a key role in homeostasis of the nervous system, but their related disorders lead not only to dismyelination and repeated demyelination but also to severe neuropathies. Hereditary hypomyelinating leukodystrophies (HLDs) are a group of such diseases affecting oligodendrocytes and are often caused by missense mutations of the respective responsible genes. Despite increasing identification of gene mutations through advanced nucleotide sequencing technology, studies on the relationships between gene mutations and their effects on cellular and subcellular aberrance have not followed at the same rapid pace. In this study, we report that an HLD4-associated (Asp-29-to-Gly) mutant of mitochondrial heat shock 60-kDa protein 1 (HSPD1) causes short-length morphologies and increases the numbers of mitochondria due to their aberrant fission and fusion cycles. In experiments using a fluorescent dye probe, this mutation decreases the mitochondrial membrane potential. Also, mitochondria accumulate in perinuclear regions. HLD4-associated HSPD1 mutant blunts mitochondrial dynamics, probably resulting in oligodendrocyte malfunction. This study constitutes a first finding concerning the relationship between disease-associated HSPD1 mutation and mitochondrial dynamics, which may be similar to the relationship between another disease-associated HSPD1 mutation (MitCHAP-60 disease) and aberrant mitochondrial dynamics. - Highlights: • The HLD4 mutant of HSPD1 decreases mitochondrial fission frequency. • The HLD4 mutant decreases mitochondrial fusion frequency. • Mitochondria harboring the HLD4 mutant exhibit slow motility. • The HLD4 mutant of HSPD1 decreases mitochondrial membrane potential. • HLD4-related diseases may

  11. Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics

    International Nuclear Information System (INIS)

    Miyamoto, Yuki; Eguchi, Takahiro; Kawahara, Kazuko; Hasegawa, Nanami; Nakamura, Kazuaki; Funakoshi-Tago, Megumi; Tanoue, Akito; Tamura, Hiroomi; Yamauchi, Junji

    2015-01-01

    Myelin-forming glial cells undergo dynamic morphological changes in order to produce mature myelin sheaths with multiple layers. In the central nervous system (CNS), oligodendrocytes differentiate to insulate neuronal axons with myelin sheaths. Myelin sheaths play a key role in homeostasis of the nervous system, but their related disorders lead not only to dismyelination and repeated demyelination but also to severe neuropathies. Hereditary hypomyelinating leukodystrophies (HLDs) are a group of such diseases affecting oligodendrocytes and are often caused by missense mutations of the respective responsible genes. Despite increasing identification of gene mutations through advanced nucleotide sequencing technology, studies on the relationships between gene mutations and their effects on cellular and subcellular aberrance have not followed at the same rapid pace. In this study, we report that an HLD4-associated (Asp-29-to-Gly) mutant of mitochondrial heat shock 60-kDa protein 1 (HSPD1) causes short-length morphologies and increases the numbers of mitochondria due to their aberrant fission and fusion cycles. In experiments using a fluorescent dye probe, this mutation decreases the mitochondrial membrane potential. Also, mitochondria accumulate in perinuclear regions. HLD4-associated HSPD1 mutant blunts mitochondrial dynamics, probably resulting in oligodendrocyte malfunction. This study constitutes a first finding concerning the relationship between disease-associated HSPD1 mutation and mitochondrial dynamics, which may be similar to the relationship between another disease-associated HSPD1 mutation (MitCHAP-60 disease) and aberrant mitochondrial dynamics. - Highlights: • The HLD4 mutant of HSPD1 decreases mitochondrial fission frequency. • The HLD4 mutant decreases mitochondrial fusion frequency. • Mitochondria harboring the HLD4 mutant exhibit slow motility. • The HLD4 mutant of HSPD1 decreases mitochondrial membrane potential. • HLD4-related diseases may

  12. Confirmation that RIPK4 mutations cause not only Bartsocas-Papas syndrome but also CHAND syndrome.

    Science.gov (United States)

    Busa, Tiffany; Jeraiby, Mohammed; Clémenson, Alix; Manouvrier, Sylvie; Granados, Viviana; Philip, Nicole; Touraine, Renaud

    2017-11-01

    CHAND syndrome is an autosomal recessive disorder characterized by curly hair, ankyloblepharon, and nail dysplasia. Only few patients were reported to date. A homozygous RIPK4 mutation was recently identified by homozygosity mapping and whole exome sequencing in three patients from an expanded consanguineous kindred with a clinical diagnosis of CHAND syndrome. RIPK4 was previously known to be implicated in Bartsocas-Papas syndrome, the autosomal recessive form of popliteal pterygium syndrome. We report here two cases of RIPK4 homozygous mutations in a fetus with severe Bartsocas-Papas syndrome and a patient with CHAND syndrome. The patient with CHAND syndrome harbored the same mutation as the one identified in the family previously reported. We thus confirm the implication of RIPK4 gene in CHAND syndrome in addition to Bartsocas-Papas syndrome and discuss genotype/phenotype correlations. © 2017 Wiley Periodicals, Inc.

  13. Coffin-Siris and Nicolaides-Baraitser syndromes are a common well recognizable cause of intellectual disability.

    Science.gov (United States)

    Mari, Francesca; Marozza, Annabella; Mencarelli, Maria Antonietta; Lo Rizzo, Caterina; Fallerini, Chiara; Dosa, Laura; Di Marco, Chiara; Carignani, Giulia; Baldassarri, Margherita; Cianci, Paola; Vivarelli, Rossella; Vascotto, Marina; Grosso, Salvatore; Rubegni, Pietro; Caffarelli, Carla; Pretegiani, Elena; Fimiani, Michele; Garavelli, Livia; Cristofoli, Francesca; Vermeesch, Joris R; Nuti, Ranuccio; Dotti, Maria Teresa; Balestri, Paolo; Hayek, Joussef; Selicorni, Angelo; Renieri, Alessandra

    2015-05-01

    Nicolaides-Baraitser and Coffin-Siris syndromes are emerging conditions with overlapping clinical features including intellectual disability and typical somatic characteristics, especially sparse hair, low frontal hairline, large mouth with thick and everted lips, and hands and feet anomalies. Since 2012, mutations in genes encoding six proteins of the BAF complex were identified in both conditions. We have clinically evaluated a cohort of 1161 patients with intellectual disability from three different Italian centers. A strong clinical suspicion of either Nicolaides-Baraitser syndrome or Coffin-Siris syndrome was proposed in 11 cases who were then molecularly confirmed: 8 having de novo missense mutations in SMARCA2, two frame-shift mutations in ARID1B and one missense mutation in SMARCB1. Given the high frequency of the condition we set up a one-step deep sequencing test for all 6 genes of the BAF complex. These results prove that the frequency of these conditions may be as high as the most common syndromes with intellectual deficit (about 1%). Clinical geneticists should be well aware of this group of disorders in the clinical setting when ascertaining patients with intellectual deficit, the specific facial features being the major diagnostic handle. Finally, this work adds information on the clinical differences of the two conditions and presents a fast and sensitive test for the molecular diagnosis. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  14. An Allelic Series of Trp63 Mutations Defines TAp63 as a Modifier of EEC Syndrome

    Science.gov (United States)

    Lindahl, Emma Vernersson; Garcia, Elvin L.; Mills, Alea A.

    2014-01-01

    Human Ectrodactyly, Ectodermal dysplasia, Clefting (EEC) syndrome is an autosomal dominant developmental disorder defined by limb deformities, skin defects, and craniofacial clefting. Although associated with heterozygous missense mutations in TP63, the genetic basis underlying the variable expressivity and incomplete penetrance of EEC is unknown. Here we show that mice heterozygous for an allele encoding the Trp63 p.Arg318His mutation, which corresponds to the human TP63 p.Arg279His mutation found in patients with EEC, have features of human EEC. Using an allelic series, we discovered that whereas clefting and skin defects are caused by loss of Trp63 function, limb anomalies are due to gain- and/or dominant-negative effects of Trp63. Furthermore, we identify TAp63 as a strong modifier of EEC-associated phenotypes with regard to both penetrance and expressivity. PMID:23775923

  15. Effects of missense mutations in sortase A gene on enzyme activity in Streptococcus mutans.

    Science.gov (United States)

    Zhuang, P L; Yu, L X; Tao, Y; Zhou, Y; Zhi, Q H; Lin, H C

    2016-04-11

    Streptococcus mutans (S. mutans) is the major aetiological agent of dental caries, and the transpeptidase Sortase A (SrtA) plays a major role in cariogenicity. The T168G and G470A missense mutations in the srtA gene may be linked to caries susceptibility, as demonstrated in our previous studies. This study aimed to investigate the effects of these missense mutations of the srtA gene on SrtA enzyme activity in S. mutans. The point mutated recombinant S.mutans T168G and G470A sortases were expressed in expression plasmid pET32a. S. mutans UA159 sortase coding gene srtA was used as the template for point mutation. Enzymatic activity was assessed by quantifying increases in the fluorescence intensity generated when a substrate Dabcyl-QALPNTGEE-Edans was cleaved by SrtA. The kinetic constants were calculated based on the curve fit for the Michaelis-Menten equation. SrtA△N40(UA159) and the mutant enzymes, SrtA△N40(D56E) and SrtA△N40(R157H), were expressed and purified. A kinetic analysis showed that the affinity of SrtA△N40(D56E) and SrtA△N40(R157H) remained approximately equal to the affinity of SrtA△N40(UA159), as determined by the Michaelis constant (K m ). However, the catalytic rate constant (k cat ) and catalytic efficiency (k cat /K m ) of SrtA△N40(D56E) were reduced compared with those of SrtA△N40(R157H) and SrtA△N40(UA159), whereas the k cat and k cat /K m values of SrtA△N40(R157H) were slightly lower than those of SrtA△N40(UA159). The findings of this study indicate that the T168G missense mutation of the srtA gene results in a significant reduction in enzymatic activity compared with S. mutans UA159, suggesting that the T168G missense mutation of the srtA gene may be related to low cariogenicity.

  16. Analysis of patients with atypical hemolytic uremic syndrome treated at the Mie University Hospital: concentration of C3 p.I1157T mutation.

    Science.gov (United States)

    Matsumoto, Takeshi; Fan, Xinping; Ishikawa, Eiji; Ito, Masaaki; Amano, Keishirou; Toyoda, Hidemi; Komada, Yoshihiro; Ohishi, Kohshi; Katayama, Naoyuki; Yoshida, Yoko; Matsumoto, Masanori; Fujimura, Yoshihiro; Ikejiri, Makoto; Wada, Hideo; Miyata, Toshiyuki

    2014-11-01

    Atypical hemolytic uremic syndrome (aHUS) is caused by abnormalities of the complement system and has a significantly poor prognosis. The clinical phenotypes of 12 patients in nine families with aHUS with familial or recurrent onset and ADAMTS13 activity of ≥20 % treated at the Mie University Hospital were examined. In seven of the patients, the first episode of aHUS occurred during childhood and ten patients experienced a relapse. All patients had renal dysfunction and three had been treated with hemodialysis. Seven patients experienced probable triggering events including common cold, influenza, bacterial infection and/or vaccination for influenza. All patients had entered remission, and renal function was improved in 11 patients. DNA sequencing of six candidate genes, identified a C3 p.I1157T missense mutation in all eight patients in six families examined and this mutation was causative for aHUS. A causative mutation THBD p.D486Y was also identified in an aHUS patient. Four missense mutations, CFH p.V837I, p.Y1058H, p.V1060L and THBD p.R403K may predispose to aHUS manifestation; the remaining seven missense mutations were likely neutral. In conclusion, the clinical phenotypes of aHUS are various, and there are often trigger factors. The C3 p.I1157T mutation was identified as the causative mutation for aHUS in all patients examined, and may be geographically concentrated in or around the Mie prefecture in central Japan.

  17. Dural ectasia and FBN1 mutation screening of 40 patients with Marfan syndrome and related disorders: role of dural ectasia for the diagnosis.

    Science.gov (United States)

    Attanasio, Monica; Pratelli, Elisa; Porciani, Maria Cristina; Evangelisti, Lucia; Torricelli, Elena; Pellicanò, Giannantonio; Abbate, Rosanna; Gensini, Gian Franco; Pepe, Guglielmina

    2013-07-01

    Marfan syndrome is an autosomal dominant disorder of connective tissue caused by mutations in the gene encoding fibrillin-1 (FBN1), a matrix component of microfibrils. Dural ectasia, i.e. enlargement of the neural canal mainly located in the lower lumbar and sacral region, frequently occurs in Marfan patients. The aim of our study was to investigate the role of dural ectasia in raising the diagnosis of Marfan syndrome and its association with FBN1 mutations. We studied 40 unrelated patients suspected for MFS, who underwent magnetic resonance imaging searching for dural ectasia. In all of them FBN1 gene analysis was also performed. Thirty-seven patients resulted affected by Marfan syndrome according to the '96 Ghent criteria; in 30 of them the diagnosis was confirmed when revaluated by the recently revised criteria (2010). Thirty-six patients resulted positive for dural ectasia. The degree of dural ectasia was grade 1 in 19 patients, grade 2 in 11 patients, and grade 3 in 6 patients. In 7 (24%) patients, the presence of dural ectasia allowed to reach a positive score for systemic feature criterion. Twenty-four patients carried an FBN1 mutation, that were represented by 13 missense (54%), and 11 (46%) mutations generating a premature termination codon (PTC, frameshifts and stop codons). No mutation was detected in the remaining 16 (6 patients with MFS and 10 with related disorders according to revised Ghent criteria). The prevalence of severe (grade 2 and grade 3) involvement of dura mater was higher in patients harbouring premature termination codon (PTC) mutations than those carrying missense-mutations (8/11 vs 2/13, P = 0.0111). Our data emphasizes the importance of dural ectasia screening to reach the diagnosis of Marfan syndrome especially when it is uncertain and indicates an association between PTC mutations and severe dural ectasia in Marfan patients. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Identification of four novel mutations of the WFS1 gene in Iranian Wolfram syndrome pedigrees.

    Science.gov (United States)

    Ghahraman, Martha; Abbaszadegan, Mohammad Reza; Vakili, Rahim; Hosseini, Sousan; Fardi Golyan, Fatemeh; Ghaemi, Nosrat; Forghanifard, Mohammad Mahdi

    2016-12-01

    Wolfram syndrome is a rare neurodegenerative disorder with an autosomal recessive pattern of inheritance characterized by various clinical manifestations. The related gene, WFS1, encodes a transmembrane glycoprotein, named wolframin. Genetic analyses demonstrated that mutations in this gene are associated with WS type 1. Our aim in this study was to sequence WFS1 coding region in Iranian Wolfram syndrome pedigrees. Genomic DNA was extracted from peripheral blood of 12 WS patients and their healthy parents. Exons 2-8 and the exon-intron junctions of WFS1 were sequenced. DNA sequences were compared to the reference using Sequencher software. Molecular analysis of WFS1 revealed six different mutations. Four novel and two previously reported mutations were identified. One novel mutation, c.1379_1381del, is predicted to produce an aberrant protein. A second novel mutation, c.1384G > T, encodes a truncated protein. Novel mutation, c.1097-1107dup (11 bp), causes a frameshift which results in a premature stop codon. We screened for the novel missense mutation, c.1010C > T, in 100 control alleles. This mutation was not found in any of the healthy controls. Our study increased the spectrum of WFS1 mutations and supported the role of WFS1 in susceptibility to WS. We hope that these findings open new horizons to future molecular investigations which may help to prevent and treat this devastating disease.

  19. Mutational analysis of the PTPN11 gene in Egyptian patients with Noonan syndrome.

    Science.gov (United States)

    Essawi, Mona L; Ismail, Manal F; Afifi, Hanan H; Kobesiy, Maha M; El Kotoury, Ahmed; Barakat, Maged M

    2013-11-01

    Noonan syndrome (NS) is inherited as an autosomal dominant disorder with dysmorphic facies, short stature, and cardiac defects, which can be caused by missense mutations in the protein tyrosine phosphatase nonreceptor type 11 (PTPN11) gene, which encodes src homology region 2 domain containing tyrosine phosphatase-2 (SHP-2), a protein tyrosine phosphatase that acts in signal transduction downstream to growth factors and cytokines. The current study aimed to study the molecular characterization of the PTPN11 gene among Egyptian patients with Noonan syndrome. Eleven exons of the PTPN11 gene were amplified and screened by single stranded conformational polymorphism (SSCP). DNA samples showing band shift in SSCP were subjected to sequencing. Mutational analysis of the PTPN11 gene revealed T→C transition at position 854 in exon 8, predicting Phe285Ser substitution within PTP domain of SHP-2 protein, in one NS patient and -21C→T polymorphism in intron 7 in four other cases. Knowing that NS is phenotypically heterogeneous, molecular characterization of the PTPN11 gene should serve to establish NS diagnosis in patients with atypical features, although lack of a mutation does not exclude the possibility of NS. Copyright © 2012. Published by Elsevier B.V.

  20. A novel missense mutation of the DDHD1 gene associated with juvenile amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Chujun Wu

    2016-12-01

    Full Text Available Background: Juvenile amyotrophic lateral sclerosis (jALS is a rare form of ALS with an onset age of less than 25 years and is frequently thought to be genetic in origin. DDHD1 gene mutations have been reported to be associated with the SPG28 subtype of autosomal recessive HSP but have never been reported in jALS patients.Methods: Gene screens for the causative genes of ALS, HSP and CMT using next-generation sequencing (NGS technologies were performed on a jALS patient. Sanger sequencing was used to validate identified variants and perform segregation analysis.Results: We identified a novel c.1483A>G (p.Met495Val homozygous missense mutation of the DDHD1 gene in the jALS patient. All of his parents and young bother were heterozygous for this mutation. The mutation was not found in 800 Chinese control subjects or the data of dbSNP, ExAC and 1000G.Conclusion: The novel c.1483A>G (p.Met495Val missense mutation of the DDHD1 gene could be a causative mutation of autosomal recessive jALS.

  1. Functional analysis in mouse embryonic stem cells reveals wild-type activity for three MSH6 variants found in suspected Lynch syndrome patients.

    Directory of Open Access Journals (Sweden)

    Eva A L Wielders

    Full Text Available Lynch syndrome confers an increased risk to various types of cancer, in particular early onset colorectal and endometrial cancer. Mutations in mismatch repair (MMR genes underlie Lynch syndrome, with the majority of mutations found in MLH1 and MSH2. Mutations in MSH6 have also been found but these do not always cause a clear cancer predisposition phenotype and MSH6-defective tumors often do not show the standard characteristics of MMR deficiency, such as microsatellite instability. In particular, the consequences of MSH6 missense mutations are challenging to predict, which further complicates genetic counseling. We have previously developed a method for functional characterization of MSH2 missense mutations of unknown significance. This method is based on endogenous gene modification in mouse embryonic stem cells using oligonucleotide-directed gene targeting, followed by a series of functional assays addressing the MMR functions. Here we have adapted this method for the characterization of MSH6 missense mutations. We recreated three MSH6 variants found in suspected Lynch syndrome families, MSH6-P1087R, MSH6-R1095H and MSH6-L1354Q, and found all three to behave like wild type MSH6. Thus, despite suspicion for pathogenicity from clinical observations, our approach indicates these variants are not disease causing. This has important implications for counseling of mutation carriers.

  2. Analysis of Hungarian patients with Rett syndrome phenotype for MECP2, CDKL5 and FOXG1 gene mutations.

    Science.gov (United States)

    Hadzsiev, Kinga; Polgar, Noemi; Bene, Judit; Komlosi, Katalin; Karteszi, Judit; Hollody, Katalin; Kosztolanyi, Gyorgy; Renieri, Alessandra; Melegh, Bela

    2011-03-01

    Rett syndrome (RTT) is characterized by a relatively specific clinical phenotype. We screened 152 individuals with RTT phenotype. A total of 22 different known MECP2 mutations were identified in 42 subjects (27.6%). Of the 22 mutations, we identified 7 (31.8%) frameshift-causing deletions, 4 (18.2%) nonsense, 10 (45.5%) missense mutations and one insertion (4.5%). The most frequent pathologic changes were: p.Thr158Met (14.2%) and p.Arg133Cys (11.9%) missense, and p.Arg255Stop (9.5%) and p.Arg294Stop (9.5%) nonsense mutations. We also detected the c.925C >T (p.Arg309Trp) mutation in an affected patient, whose role in RTT pathogenesis is still unknown. Patients without detectable MECP2 defects were screened for mutations of cyclin-dependent kinase-like 5 (CDKL5) gene, responsible for the early-onset variant of RTT. We discovered two novel mutations: c.607G >T resulting in a termination codon at aa203, disrupting the catalytic domain, and c.1708G >T leading to a stop at aa570 of the C terminus. Both patients with CDKL5 mutation presented therapy-resistant epilepsy and a phenotype fitting with the diagnosis of early-onset variant of RTT. No FOXG1 mutation was detected in any of the remaining patients. A total of 110 (72.5%) patients remained without molecular genetic diagnosis that necessitates further search for novel gene mutations in this phenotype. Our results also suggest the need of screening for CDKL5 mutations in patients with Rett phenotype tested negative for MECP2 mutations.

  3. Translational read-through of a nonsense mutation causing Bartter syndrome.

    Science.gov (United States)

    Cho, Hee Yeon; Lee, Beom Hee; Cheong, Hae Il

    2013-06-01

    Bartter syndrome (BS) is classified into 5 genotypes according to underlying mutant genes and BS III is caused by loss-of-function mutations in the CLCNKB gene encoding for basolateral ClC-Kb. BS III is the most common genotype in Korean patients with BS and W610X is the most common CLCNKB mutation in Korean BS III. In this study, we tested the hypothesis that the CLCNKB W610X mutation can be rescued in vitro using aminoglycoside antibiotics, which are known to induce translational read-through of a nonsense mutation. The CLCNKB cDNA was cloned into a eukaryotic expression vector and the W610X nonsense mutation was generated by site-directed mutagenesis. Cultured polarized MDCK cells were transfected with the vectors, and the read-through was induced using an aminoglycoside derivative, G418. Cellular expression of the target protein was monitored via immunohistochemistry. While cells transfected with the mutant CLCNKB failed to express ClC-Kb, G418 treatment of the cells induced the full-length protein expression, which was localized to the basolateral plasma membranes. It is demonstrated that the W610X mutation in CLCNKB can be a good candidate for trial of translational read-through induction as a therapeutic modality.

  4. A SMARCA2 Mutation in the First Case Report of Nicolaides-Baraitser Syndrome in Latin America: Genotype-Phenotype Correlation

    Directory of Open Access Journals (Sweden)

    Ana Isabel Sánchez

    2017-01-01

    Full Text Available Nicolaides-Baraitser syndrome (NCBRS is a rare and well-recognized entity that was first described in 1993, with a prevalence that is currently not known. It is recognized as a distinctive entity, with some variability in its signs and symptoms. The most important characteristics include intellectual disability, peculiar facial features including sparse scalp hair, coarse facial features, low frontal hairline, and microcephaly, and seizures. Additional features may include epicanthic folds, thin upper lip vermilion with thick lower lip vermilion, skeletal abnormalities, and severe language impairment. The disorder is inherited in an autosomal dominant manner caused by de novo mutations in the SMARCA2 gene, with most being missense mutations. We report a young adult patient with NCBRS and, to our knowledge, the first case report of the syndrome in Latin America with a confirmed molecular diagnosis and a mild-to-moderate phenotype.

  5. A novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia linked to a mutation in the human insulin receptor gene

    DEFF Research Database (Denmark)

    Højlund, Kurt; Hansen, Torben; Lajer, Maria

    2004-01-01

    a missense mutation (Arg1174Gln) in the tyrosine kinase domain of the insulin receptor gene that cosegregated with the disease phenotype (logarithm of odds [LOD] score 3.21). In conclusion, we report a novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia. The findings demonstrate...

  6. Multiple self-healing squamous epithelioma is caused by a disease-specific spectrum of mutations in TGFBR1

    DEFF Research Database (Denmark)

    Goudie, David R; D'Alessandro, Mariella; Merriman, Barry

    2011-01-01

    Multiple self-healing squamous epithelioma (MSSE), also known as Ferguson-Smith disease (FSD), is an autosomal-dominant skin cancer condition characterized by multiple squamous-carcinoma-like locally invasive skin tumors that grow rapidly for a few weeks before spontaneously regressing, leaving s......-of-function TGFBR1 mutations and MSSE. This distinguishes MSSE from the Marfan syndrome-related disorders in which missense mutations in TGFBR1 lead to developmental defects with vascular involvement but no reported predisposition to cancer....

  7. Multiple self-healing squamous epithelioma is caused by a disease-specific spectrum of mutations in TGFBR1

    DEFF Research Database (Denmark)

    Goudie, David R; D'Alessandro, Mariella; Merriman, Barry

    2011-01-01

    Multiple self-healing squamous epithelioma (MSSE), also known as Ferguson-Smith disease (FSD), is an autosomal-dominant skin cancer condition characterized by multiple squamous-carcinoma-like locally invasive skin tumors that grow rapidly for a few weeks before spontaneously regressing, leaving......-of-function TGFBR1 mutations and MSSE. This distinguishes MSSE from the Marfan syndrome-related disorders in which missense mutations in TGFBR1 lead to developmental defects with vascular involvement but no reported predisposition to cancer....

  8. A homozygous founder missense variant in arylsulfatase G abolishes its enzymatic activity causing atypical Usher syndrome in humans.

    Science.gov (United States)

    Khateb, Samer; Kowalewski, Björn; Bedoni, Nicola; Damme, Markus; Pollack, Netta; Saada, Ann; Obolensky, Alexey; Ben-Yosef, Tamar; Gross, Menachem; Dierks, Thomas; Banin, Eyal; Rivolta, Carlo; Sharon, Dror

    2018-01-04

    PurposeWe aimed to identify the cause of disease in patients suffering from a distinctive, atypical form of Usher syndrome.MethodsWhole-exome and genome sequencing were performed in five patients from three families of Yemenite Jewish origin, suffering from distinctive retinal degeneration phenotype and sensorineural hearing loss. Functional analysis of the wild-type and mutant proteins was performed in human fibrosarcoma cells.ResultsWe identified a homozygous founder missense variant, c.133G>T (p.D45Y) in arylsulfatase G (ARSG). All patients shared a distinctive retinal phenotype with ring-shaped atrophy along the arcades engirdling the fovea, resulting in ring scotoma. In addition, patients developed moderate to severe sensorineural hearing loss. Both vision and hearing loss appeared around the age of 40 years. The identified variant affected a fully conserved amino acid that is part of the catalytic site of the enzyme. Functional analysis of the wild-type and mutant proteins showed no basal activity of p.D45Y.ConclusionHomozygosity for ARSG-p.D45Y in humans leads to protein dysfunction, causing an atypical combination of late-onset Usher syndrome. Although there is no evidence for generalized clinical manifestations of lysosomal storage diseases in this set of patients, we cannot rule out the possibility that mild and late-onset symptoms may appear.GENETICS in MEDICINE advance online publication, 4 January 2018; doi:10.1038/gim.2017.227.

  9. Waardenburg Syndrome: description of two novel mutations in the PAX3 gene, one of which incompletely penetrant

    Directory of Open Access Journals (Sweden)

    Eliete Pardono

    2006-01-01

    Full Text Available We describe two different novel mutations in the PAX3 gene, detected in two families with cases of Waardenburg syndrome type I (WSI. The missense mutation detected in one family involved a single substitution in exon 2 (c.142 G > T and was present both in the affected individual and in his clinically normal father. The mutation found in the second family consisted of a deletion of 13 bases, c.764-776del(TTACCCTGACATT, in exon 5.

  10. Limited importance of the dominant-negative effect of TP53 missense mutations

    International Nuclear Information System (INIS)

    Stoczynska-Fidelus, Ewelina; Liberski, Pawel P; Rieske, Piotr; Szybka, Malgorzata; Piaskowski, Sylwester; Bienkowski, Michal; Hulas-Bigoszewska, Krystyna; Banaszczyk, Mateusz; Zawlik, Izabela; Jesionek-Kupnicka, Dorota; Kordek, Radzislaw

    2011-01-01

    Heterozygosity of TP53 missense mutations is related to the phenomenon of the dominant-negative effect (DNE). To estimate the importance of the DNE of TP53 mutations, we analysed the percentage of cancer cases showing a single heterozygous mutation of TP53 and searched for a cell line with a single heterozygous mutation of this gene. This approach was based on the knowledge that genes with evident DNE, such as EGFR and IDH1, represent nearly 100% of single heterozygous mutations in tumour specimens and cell lines. Genetic analyses (LOH and sequencing) performed for early and late passages of several cell lines originally described as showing single heterozygous TP53 mutations (H-318, G-16, PF-382, MOLT-13, ST-486 and LS-123). Statistical analysis of IARC TP53 and SANGER databases. Genetic analyses of N-RAS, FBXW7, PTEN and STR markers to test cross-contamination and cell line identity. Cell cloning, fluorescence-activated cell sorting and SSCP performed for the PF-382 cell line. A database study revealed TP53 single heterozygous mutations in 35% of in vivo (surgical and biopsy) samples and only 10% of cultured cells (in vitro), although those numbers appeared to be overestimated. We deem that published in vivo TP53 mutation analyses are not as rigorous as studies in vitro, and we did not find any cell line showing a stable, single heterozygous mutation. G16, PF-382 and MOLT-13 cells harboured single heterozygous mutations temporarily. ST-486, H-318 and LS-123 cell lines were misclassified. Specific mutations, such as R175H, R273H, R273L or R273P, which are reported in the literature to exert a DNE, showed the lowest percentage of single heterozygous mutations in vitro (about 5%). We suggest that the currently reported percentage of TP53 single heterozygous mutations in tumour samples and cancer cell lines is overestimated. Thus, the magnitude of the DNE of TP53 mutations is questionable. This scepticism is supported by database investigations showing that retention

  11. Missense mutation in GRN gene affecting RNA splicing and plasma progranulin level in a family affected by frontotemporal lobar degeneration.

    Science.gov (United States)

    Luzzi, Simona; Colleoni, Lara; Corbetta, Paola; Baldinelli, Sara; Fiori, Chiara; Girelli, Francesca; Silvestrini, Mauro; Caroppo, Paola; Giaccone, Giorgio; Tagliavini, Fabrizio; Rossi, Giacomina

    2017-06-01

    Gene coding for progranulin, GRN, is a major gene linked to frontotemporal lobar degeneration. While most of pathogenic GRN mutations are null mutations leading to haploinsufficiency, GRN missense mutations do not have an obvious pathogenicity, and only a few have been revealed to act through different pathogenetic mechanisms, such as cytoplasmic missorting, protein degradation, and abnormal cleavage by elastase. The aim of this study was to disclose the pathogenetic mechanisms of the GRN A199V missense mutation, which was previously reported not to alter physiological progranulin features but was associated with a reduced plasma progranulin level. After investigating the family pedigree, we performed genetic and biochemical analysis on its members and performed RNA expression studies. We found that the mutation segregates with the disease and discovered that its pathogenic feature is the alteration of GRN mRNA splicing, actually leading to haploinsufficiency. Thus, when facing with a missense GRN mutation, its pathogenetic effects should be investigated, especially if associated with low plasma progranulin levels, to determine its nature of either benign polymorphism or pathogenic mutation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Massively Parallel Sequencing of a Chinese Family with DFNA9 Identified a Novel Missense Mutation in the LCCL Domain of COCH

    Directory of Open Access Journals (Sweden)

    Xiaodong Gu

    2016-01-01

    Full Text Available DFNA9 is a late-onset, progressive, autosomal dominantly inherited sensorineural hearing loss with vestibular dysfunction, which is caused by mutations in the COCH (coagulation factor C homology gene. In this study, we investigated a Chinese family segregating autosomal dominant nonsyndromic sensorineural hearing loss. We identified a missense mutation c.T275A p.V92D in the LCCL domain of COCH cosegregating with the disease and absent in 100 normal hearing controls. This mutation leads to substitution of the hydrophobic valine to an acidic amino acid aspartic acid. Our data enriched the mutation spectrum of DFNA9 and implied the importance for mutation screening of COCH in age related hearing loss with vestibular dysfunctions.

  13. A novel missense mutation in collagenous domain of EDA gene in a ...

    Indian Academy of Sciences (India)

    Supplementary data: A novel missense mutation in collagenous domain of EDA gene in a. Chinese family with X-linked hypohidrotic ectodermal dysplasia. Daxu Li, Ran Xu, Fumeng Huang, Biyuan Wang, Yu Tao, Zijian Jiang, Hairui Li, Jianfeng Yao,. Peng Xu, Xiaokang Wu, Le Ren, Rui Zhang, John R. Kelsoe and Jie Ma.

  14. SMARCA4 inactivating mutations cause concomitant Coffin–Siris syndrome, microphthalmia and small‐cell carcinoma of the ovary hypercalcaemic type

    Science.gov (United States)

    Mustafa, Noor; Vetro, Annalisa; Notarangelo, Lucia Dora; de Jonge, Hugo; Rinaldi, Berardo; Vergani, Debora; Giglio, Sabrina Rita; Morbini, Patrizia; Zuffardi, Orsetta

    2017-01-01

    Abstract SMARCA4 chromatin remodelling factor is mutated in 11% of Coffin–Siris syndrome (CSS) patients and in almost all small‐cell carcinoma of the ovary hypercalcaemic type (SCCOHT) tumours. Missense mutations with gain‐of‐function or dominant‐negative effects are associated with CSS, whereas inactivating mutations, leading to loss of SMARCA4 expression, have been exclusively found in SCCOHT. We applied whole‐exome sequencing to study a 15‐year‐old patient with mild CSS who concomitantly developed SCCOHT at age 13 years. Interestingly, our patient also showed congenital microphthalmia, which has never previously been reported in CSS patients. We detected a de novo germline heterozygous nonsense mutation in exon 19 of SMARCA4 (c.2935C > T;p.Arg979*), and a somatic frameshift mutation in exon 6 (c.1236_1236delC;p.Gln413Argfs*88), causing complete loss of SMARCA4 immunostaining in the tumour. The immunohistochemical findings are supported by the observation that the c.2935C > T mutant transcript was detected by reverse transcription polymerase chain reaction at a much lower level than the wild‐type allele in whole blood and the lymphoblastoid cell line of the proband, confirming nonsense‐mediated mRNA decay. Accordingly, immunoblotting demonstrated that there was approximately half the amount of SMARCA4 protein in the proband's cells as in controls. This study suggests that SMARCA4 constitutional mutations associated with CSS are not necessarily non‐truncating, and that haploinsufficiency may explain milder CSS phenotypes, as previously reported for haploinsufficient ARID1B. In addition, our case supports the dual role of chromatin remodellers in developmental disorders and cancer, as well as the involvement of SMARCA4 in microphthalmia, confirming previous findings in mouse models and the DECIPHER database. Finally, we speculate that mild CSS might be under‐recognized in a proportion of SCCOHT patients harbouring SMARCA4 mutations

  15. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I

    Directory of Open Access Journals (Sweden)

    Kairong Li

    2016-07-01

    Full Text Available Neurofibromatosis type 1 (NF1 is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681* and a missense mutation (c.2542G>C; p.Gly848Arg. The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1Arg681* and missense NF1Gly848Arg mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1Gly848Arg mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1Arg681* mutation are not viable. Mice with one Nf1Arg681* allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf14F/Arg681*; DhhCre display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1.

  16. Missense Mutations in CRYAB Are Liable for Recessive Congenital Cataracts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Jiao

    Full Text Available This study was initiated to identify causal mutations responsible for autosomal recessive congenital cataracts in consanguineous familial cases.Affected individuals underwent a detailed ophthalmological and clinical examination, and slit-lamp photographs were ascertained for affected individuals who have not yet been operated for the removal of the cataractous lens. Blood samples were obtained, and genomic DNA was extracted from white blood cells. A genome-wide scan was completed with short tandem repeat (STR markers, and the logarithm of odds (LOD scores were calculated. Protein coding exons of CRYAB were sequenced, bi-directionally. Evolutionary conservation was investigated by aligning CRYAB orthologues, and the expression of Cryab in embryonic and postnatal mice lens was investigated with TaqMan probe.The clinical and ophthalmological examinations suggested that all affected individuals had nuclear cataracts. Genome-wide linkage analysis suggested a potential region on chromosome 11q23 harboring CRYAB. DNA sequencing identified a missense variation: c.34C>T (p.R12C in CRYAB that segregated with the disease phenotype in the family. Subsequent interrogation of our entire cohort of familial cases identified a second familial case localized to chromosome 11q23 harboring a c.31C>T (p.R11C mutation. In silico analyses suggested that the mutations identified in familial cases, p.R11C and p.R12C will not be tolerated by the three-dimensional structure of CRYAB. Real-time PCR analysis identified the expression of Cryab in mouse lens as early as embryonic day 15 (E15 that increased significantly until postnatal day 6 (P6 with steady level of expression thereafter.Here, we report two novel missense mutations, p.R11C and p.R12C, in CRYAB associated with autosomal recessive congenital nuclear cataracts.

  17. Prediction of phenotypes of missense mutations in human proteins from biological assemblies.

    Science.gov (United States)

    Wei, Qiong; Xu, Qifang; Dunbrack, Roland L

    2013-02-01

    Single nucleotide polymorphisms (SNPs) are the most frequent variation in the human genome. Nonsynonymous SNPs that lead to missense mutations can be neutral or deleterious, and several computational methods have been presented that predict the phenotype of human missense mutations. These methods use sequence-based and structure-based features in various combinations, relying on different statistical distributions of these features for deleterious and neutral mutations. One structure-based feature that has not been studied significantly is the accessible surface area within biologically relevant oligomeric assemblies. These assemblies are different from the crystallographic asymmetric unit for more than half of X-ray crystal structures. We find that mutations in the core of proteins or in the interfaces in biological assemblies are significantly more likely to be disease-associated than those on the surface of the biological assemblies. For structures with more than one protein in the biological assembly (whether the same sequence or different), we find the accessible surface area from biological assemblies provides a statistically significant improvement in prediction over the accessible surface area of monomers from protein crystal structures (P = 6e-5). When adding this information to sequence-based features such as the difference between wildtype and mutant position-specific profile scores, the improvement from biological assemblies is statistically significant but much smaller (P = 0.018). Combining this information with sequence-based features in a support vector machine leads to 82% accuracy on a balanced dataset of 50% disease-associated mutations from SwissVar and 50% neutral mutations from human/primate sequence differences in orthologous proteins. Copyright © 2012 Wiley Periodicals, Inc.

  18. Molecular pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts: mutations in MLC1 cause folding defects

    NARCIS (Netherlands)

    Duarri, A.; Teijido, O.; Lopez-Hernandez, T.; Scheper, G.C.; Barriere, H.; Boor, P.K.I.; Aguado, F.; Zorzano, A.; Palacin, M.; Martinez, A; Lukacs, G.L.; van der Knaap, M.S.; Nunes, V.; Estevez, R.

    2008-01-01

    Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of leukodystrophy, most often caused by mutations in the MLC1 gene. MLC1 is an oligomeric plasma membrane (PM) protein of unknown function expressed mainly in glial cells and neurons. Most disease-causing missense

  19. Allelic Mutations of KITLG, Encoding KIT Ligand, Cause Asymmetric and Unilateral Hearing Loss and Waardenburg Syndrome Type 2.

    Science.gov (United States)

    Zazo Seco, Celia; Serrão de Castro, Luciana; van Nierop, Josephine W; Morín, Matías; Jhangiani, Shalini; Verver, Eva J J; Schraders, Margit; Maiwald, Nadine; Wesdorp, Mieke; Venselaar, Hanka; Spruijt, Liesbeth; Oostrik, Jaap; Schoots, Jeroen; van Reeuwijk, Jeroen; Lelieveld, Stefan H; Huygen, Patrick L M; Insenser, María; Admiraal, Ronald J C; Pennings, Ronald J E; Hoefsloot, Lies H; Arias-Vásquez, Alejandro; de Ligt, Joep; Yntema, Helger G; Jansen, Joop H; Muzny, Donna M; Huls, Gerwin; van Rossum, Michelle M; Lupski, James R; Moreno-Pelayo, Miguel Angel; Kunst, Henricus P M; Kremer, Hannie

    2015-11-05

    Linkage analysis combined with whole-exome sequencing in a large family with congenital and stable non-syndromic unilateral and asymmetric hearing loss (NS-UHL/AHL) revealed a heterozygous truncating mutation, c.286_303delinsT (p.Ser96Ter), in KITLG. This mutation co-segregated with NS-UHL/AHL as a dominant trait with reduced penetrance. By screening a panel of probands with NS-UHL/AHL, we found an additional mutation, c.200_202del (p.His67_Cys68delinsArg). In vitro studies revealed that the p.His67_Cys68delinsArg transmembrane isoform of KITLG is not detectable at the cell membrane, supporting pathogenicity. KITLG encodes a ligand for the KIT receptor. Also, KITLG-KIT signaling and MITF are suggested to mutually interact in melanocyte development. Because mutations in MITF are causative of Waardenburg syndrome type 2 (WS2), we screened KITLG in suspected WS2-affected probands. A heterozygous missense mutation, c.310C>G (p.Leu104Val), that segregated with WS2 was identified in a small family. In vitro studies revealed that the p.Leu104Val transmembrane isoform of KITLG is located at the cell membrane, as is wild-type KITLG. However, in culture media of transfected cells, the p.Leu104Val soluble isoform of KITLG was reduced, and no soluble p.His67_Cys68delinsArg and p.Ser96Ter KITLG could be detected. These data suggest that mutations in KITLG associated with NS-UHL/AHL have a loss-of-function effect. We speculate that the mechanism of the mutation underlying WS2 and leading to membrane incorporation and reduced secretion of KITLG occurs via a dominant-negative or gain-of-function effect. Our study unveils different phenotypes associated with KITLG, previously associated with pigmentation abnormalities, and will thereby improve the genetic counseling given to individuals with KITLG variants. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. A novel nonsense mutation in the WFS1 gene causes the Wolfram syndrome.

    Science.gov (United States)

    Noorian, Shahab; Savad, Shahram; Mohammadi, Davood Shah

    2016-05-01

    Wolfram syndrome is a rare autosomal recessive neurodegenerative disorder, which is mostly caused by mutations in the WFS1 gene. The WFS1 gene product, which is called wolframin, is thought to regulate the function of endoplasmic reticulum. The endoplasmic reticulum has a critical role in protein folding and material transportation within the cell or to the surface of the cell. Identification of new mutations in WFS1 gene will unravel the molecular pathology of WS. The aim of this case report study is to describe a novel mutation in exon 4 of the WFS1 gene (c.330C>A) in a 9-year-old boy with WS.

  1. Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatin-associated protein ATRX.

    Science.gov (United States)

    Argentaro, Anthony; Yang, Ji-Chun; Chapman, Lynda; Kowalczyk, Monika S; Gibbons, Richard J; Higgs, Douglas R; Neuhaus, David; Rhodes, Daniela

    2007-07-17

    The chromatin-associated protein ATRX was originally identified because mutations in the ATRX gene cause a severe form of syndromal X-linked mental retardation associated with alpha-thalassemia. Half of all of the disease-associated missense mutations cluster in a cysteine-rich region in the N terminus of ATRX. This region was named the ATRX-DNMT3-DNMT3L (ADD) domain, based on sequence homology with a family of DNA methyltransferases. Here, we report the solution structure of the ADD domain of ATRX, which consists of an N-terminal GATA-like zinc finger, a plant homeodomain finger, and a long C-terminal alpha-helix that pack together to form a single globular domain. Interestingly, the alpha-helix of the GATA-like finger is exposed and highly basic, suggesting a DNA-binding function for ATRX. The disease-causing mutations fall into two groups: the majority affect buried residues and hence affect the structural integrity of the ADD domain; another group affects a cluster of surface residues, and these are likely to perturb a potential protein interaction site. The effects of individual point mutations on the folding state and stability of the ADD domain correlate well with the levels of mutant ATRX protein in patients, providing insights into the molecular pathophysiology of ATR-X syndrome.

  2. A Restricted Spectrum of Mutations in the SMAD4 Tumor-Suppressor Gene Underlies Myhre Syndrome

    Science.gov (United States)

    Caputo, Viviana; Cianetti, Luciano; Niceta, Marcello; Carta, Claudio; Ciolfi, Andrea; Bocchinfuso, Gianfranco; Carrani, Eugenio; Dentici, Maria Lisa; Biamino, Elisa; Belligni, Elga; Garavelli, Livia; Boccone, Loredana; Melis, Daniela; Andria, Generoso; Gelb, Bruce D.; Stella, Lorenzo; Silengo, Margherita; Dallapiccola, Bruno; Tartaglia, Marco

    2012-01-01

    Myhre syndrome is a developmental disorder characterized by reduced growth, generalized muscular hypertrophy, facial dysmorphism, deafness, cognitive deficits, joint stiffness, and skeletal anomalies. Here, by performing exome sequencing of a single affected individual and coupling the results to a hypothesis-driven filtering strategy, we establish that heterozygous mutations in SMAD4, which encodes for a transducer mediating transforming growth factor β and bone morphogenetic protein signaling branches, underlie this rare Mendelian trait. Two recurrent de novo SMAD4 mutations were identified in eight unrelated subjects. Both mutations were missense changes altering Ile500 within the evolutionary conserved MAD homology 2 domain, a well known mutational hot spot in malignancies. Structural analyses suggest that the substituted residues are likely to perturb the binding properties of the mutant protein to signaling partners. Although SMAD4 has been established as a tumor suppressor gene somatically mutated in pancreatic, gastrointestinal, and skin cancers, and germline loss-of-function lesions and deletions of this gene have been documented to cause disorders that predispose individuals to gastrointestinal cancer and vascular dysplasias, the present report identifies a previously unrecognized class of mutations in the gene with profound impact on development and growth. PMID:22243968

  3. De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome

    DEFF Research Database (Denmark)

    Hoischen, Alexander; van Bon, Bregje W M; Rodríguez-Santiago, Benjamín

    2011-01-01

    Bohring-Opitz syndrome is characterized by severe intellectual disability, distinctive facial features and multiple congenital malformations. We sequenced the exomes of three individuals with Bohring-Opitz syndrome and in each identified heterozygous de novo nonsense mutations in ASXL1, which...... is required for maintenance of both activation and silencing of Hox genes. In total, 7 out of 13 subjects with a Bohring-Opitz phenotype had de novo ASXL1 mutations, suggesting that the syndrome is genetically heterogeneous....

  4. [Using exon combined target region capture sequencing chip to detect the disease-causing genes of retinitis pigmentosa].

    Science.gov (United States)

    Rong, Weining; Chen, Xuejuan; Li, Huiping; Liu, Yani; Sheng, Xunlun

    2014-06-01

    To detect the disease-causing genes of 10 retinitis pigmentosa pedigrees by using exon combined target region capture sequencing chip. Pedigree investigation study. From October 2010 to December 2013, 10 RP pedigrees were recruited for this study in Ningxia Eye Hospital. All the patients and family members received complete ophthalmic examinations. DNA was abstracted from patients, family members and controls. Using exon combined target region capture sequencing chip to screen the candidate disease-causing mutations. Polymerase chain reaction (PCR) and direct sequencing were used to confirm the disease-causing mutations. Seventy patients and 23 normal family members were recruited from 10 pedigrees. Among 10 RP pedigrees, 1 was autosomal dominant pedigrees and 9 were autosomal recessive pedigrees. 7 mutations related to 5 genes of 5 pedigrees were detected. A frameshift mutation on BBS7 gene was detected in No.2 pedigree, the patients of this pedigree combined with central obesity, polydactyly and mental handicap. No.2 pedigree was diagnosed as Bardet-Biedl syndrome finally. A missense mutation was detected in No.7 and No.10 pedigrees respectively. Because the patients suffered deafness meanwhile, the final diagnosis was Usher syndrome. A missense mutation on C3 gene related to age-related macular degeneration was also detected in No. 7 pedigrees. A nonsense mutation and a missense mutation on CRB1 gene were detected in No. 1 pedigree and a splicesite mutation on PROM1 gene was detected in No. 5 pedigree. Retinitis pigmentosa is a kind of genetic eye disease with diversity clinical phenotypes. Rapid and effective genetic diagnosis technology combined with clinical characteristics analysis is helpful to improve the level of clinical diagnosis of RP.

  5. Prospective investigation of FOXP1 syndrome.

    Science.gov (United States)

    Siper, Paige M; De Rubeis, Silvia; Trelles, Maria Del Pilar; Durkin, Allison; Di Marino, Daniele; Muratet, François; Frank, Yitzchak; Lozano, Reymundo; Eichler, Evan E; Kelly, Morgan; Beighley, Jennifer; Gerdts, Jennifer; Wallace, Arianne S; Mefford, Heather C; Bernier, Raphael A; Kolevzon, Alexander; Buxbaum, Joseph D

    2017-01-01

    Haploinsufficiency of the forkhead-box protein P1 ( FOXP1 ) gene leads to a neurodevelopmental disorder termed FOXP1 syndrome. Previous studies in individuals carrying FOXP1 mutations and deletions have described the presence of autism spectrum disorder (ASD) traits, intellectual disability, language impairment, and psychiatric features. The goal of the present study was to comprehensively characterize the genetic and clinical spectrum of FOXP1 syndrome. This is the first study to prospectively examine the genotype-phenotype relationship in multiple individuals with FOXP1 syndrome, using a battery of standardized clinical assessments. Genetic and clinical data was obtained and analyzed from nine children and adolescents between the ages of 5-17 with mutations in FOXP1 . Phenotypic characterization included gold standard ASD testing and norm-referenced measures of cognition, adaptive behavior, language, motor, and visual-motor integration skills. In addition, psychiatric, medical, neurological, and dysmorphology examinations were completed by a multidisciplinary team of clinicians. A comprehensive review of reported cases was also performed. All missense and in-frame mutations were mapped onto the three-dimensional structure of DNA-bound FOXP1. We have identified nine de novo mutations, including three frameshift, one nonsense, one mutation in an essential splice site resulting in frameshift and insertion of a premature stop codon, three missense, and one in-frame deletion. Reviewing prior literature, we found seven instances of recurrent mutations and another 34 private mutations. The majority of pathogenic missense and in-frame mutations, including all four missense mutations in our cohort, lie in the DNA-binding domain. Through structural analyses, we show that the mutations perturb amino acids necessary for binding to the DNA or interfere with the domain swapping that mediates FOXP1 dimerization. Individuals with FOXP1 syndrome presented with delays in early

  6. In Silico Analysis of FMR1 Gene Missense SNPs.

    Science.gov (United States)

    Tekcan, Akin

    2016-06-01

    The FMR1 gene, a member of the fragile X-related gene family, is responsible for fragile X syndrome (FXS). Missense single-nucleotide polymorphisms (SNPs) are responsible for many complex diseases. The effect of FMR1 gene missense SNPs is unknown. The aim of this study, using in silico techniques, was to analyze all known missense mutations that can affect the functionality of the FMR1 gene, leading to mental retardation (MR) and FXS. Data on the human FMR1 gene were collected from the Ensembl database (release 81), National Centre for Biological Information dbSNP Short Genetic Variations database, 1000 Genomes Browser, and NHLBI Exome Sequencing Project Exome Variant Server. In silico analysis was then performed. One hundred-twenty different missense SNPs of the FMR1 gene were determined. Of these, 11.66 % of the FMR1 gene missense SNPs were in highly conserved domains, and 83.33 % were in domains with high variety. The results of the in silico prediction analysis showed that 31.66 % of the FMR1 gene SNPs were disease related and that 50 % of SNPs had a pathogenic effect. The results of the structural and functional analysis revealed that although the R138Q mutation did not seem to have a damaging effect on the protein, the G266E and I304N SNPs appeared to disturb the interaction between the domains and affect the function of the protein. This is the first study to analyze all missense SNPs of the FMR1 gene. The results indicate the applicability of a bioinformatics approach to FXS and other FMR1-related diseases. I think that the analysis of FMR1 gene missense SNPs using bioinformatics methods would help diagnosis of FXS and other FMR1-related diseases.

  7. Inflammatory peeling skin syndrome caused a novel mutation in CDSN.

    Science.gov (United States)

    Telem, Dana Fuchs; Israeli, Shirli; Sarig, Ofer; Sprecher, Eli

    2012-04-01

    Generalized peeling skin syndrome (PSS) is a rare autosomal recessive dermatosis manifesting with continuous exfoliation of the stratum corneum. The inflammatory (type B) subtype of PSS was recently found to be caused by deleterious mutations in the CDSN gene encoding corneodesmosin, a major component of desmosomal junctions in the uppermost layers of the epidermis. In the present study, we assessed a 10-month-old baby, who presented with generalized superficial peeling of the skin. Using PCR amplification and direct sequencing, we identified the third PSS-associated mutation in CDSN, a homozygous 4 bp duplication in the second exon of the gene (c.164_167dup GCCT; p.Thr57ProfsX6). These data further support the notion that corneodesmosin deficiency impairs cell-cell adhesion in the upper epidermis, paving the way for an abnormal inflammatory response due to epidermal barrier disruption.

  8. A Comprehensive Functional Analysis of NTRK1 Missense Mutations Causing Hereditary Sensory and Autonomic Neuropathy Type IV (HSAN IV).

    Science.gov (United States)

    Shaikh, Samiha S; Chen, Ya-Chun; Halsall, Sally-Anne; Nahorski, Michael S; Omoto, Kiyoyuki; Young, Gareth T; Phelan, Anne; Woods, Christopher Geoffrey

    2017-01-01

    Hereditary sensory and autonomic neuropathy type IV (HSAN IV) is an autosomal recessive disorder characterized by a complete lack of pain perception and anhidrosis. Here, we studied a cohort of seven patients with HSAN IV and describe a comprehensive functional analysis of seven novel NTRK1 missense mutations, c.1550G >A, c.1565G >A, c.1970T >C, c.2096T >C, c.2254T >A, c.2288G >C, and c.2311C >T, corresponding to p.G517E, p.G522E, p.L657P, p.I699T, p.C752S, p.C763S, and p.R771C, all of which were predicted pathogenic by in silico analysis. The results allowed us to assess the pathogenicity of each mutation and to gain novel insights into tropomyosin receptor kinase A (TRKA) downstream signaling. Each mutation was systematically analyzed for TRKA glycosylation states, intracellular and cell membrane expression patterns, nerve growth factor stimulated TRKA autophosphorylation, TRKA-Y496 phosphorylation, PLCγ activity, and neurite outgrowth. We showed a diverse range of functional effects: one mutation appeared fully functional, another had partial activity in all assays, one mutation affected only the PLCγ pathway and four mutations were proved null in all assays. Thus, we conclude that complete abolition of TRKA kinase activity is not the only pathogenic mechanism underlying HSAN IV. By corollary, the assessment of the clinical pathogenicity of HSAN IV mutations is more complex than initially predicted and requires a multifaceted approach. © 2016 WILEY PERIODICALS, INC.

  9. A rat model of hypohidrotic ectodermal dysplasia carries a missense mutation in the Edaradd gene

    Science.gov (United States)

    2011-01-01

    Background Hypohidrotic ectodermal dysplasia (HED) is a congenital disorder characterized by sparse hair, oligodontia, and inability to sweat. It is caused by mutations in any of three Eda pathway genes: ectodysplasin (Eda), Eda receptor (Edar), and Edar-associated death domain (Edaradd), which encode ligand, receptor, and intracellular adaptor molecule, respectively. The Eda signaling pathway activates NF-κB, which is central to ectodermal differentiation. Although the causative genes and the molecular pathway affecting HED have been identified, no curative treatment for HED has been established. Previously, we found a rat spontaneous mutation that caused defects in hair follicles and named it sparse-and-wavy (swh). Here, we have established the swh rat as the first rat model of HED and successfully identified the swh mutation. Results The swh/swh rat showed sparse hair, abnormal morphology of teeth, and absence of sweat glands. The ectoderm-derived glands, meibomian, preputial, and tongue glands, were absent. We mapped the swh mutation to the most telomeric part of rat Chr 7 and found a Pro153Ser missense mutation in the Edaradd gene. This mutation was located in the death domain of EDARADD, which is crucial for signal transduction and resulted in failure to activate NF-κB. Conclusions These findings suggest that swh is a loss-of-function mutation in the rat Edaradd and indicate that the swh/swh rat would be an excellent animal model of HED that could be used to investigate the pathological basis of the disease and the development of new therapies. PMID:22013926

  10. Novel Mutation in the ATP-Binding Cassette Transporter A3 (ABCA3) Encoding Gene Causes Respiratory Distress Syndrome in A Term Newborn in Southwest Iran

    Science.gov (United States)

    Rezaei, Farideh; Shafiei, Mohammad; Shariati, Gholamreza; Dehdashtian, Ali; Mohebbi, Maryam; Galehdari, Hamid

    2016-01-01

    Introduction ABCA3 glycoprotein belongs to the ATP-binding cassette (ABC) superfamily of transporters, which utilize the energy derived from hydrolysis of ATP for the translocation of a wide variety of substrates across the plasma membrane. Mutations in the ABCA3 gene are knowingly causative for fatal surfactant deficiency, particularly respiratory distress syndrome (RDS) in term babies. Case Presentation In this study, Sanger sequencing of the whole ABCA3 gene (NCBI NM_001089) was performed in a neonatal boy with severe RDS. A homozygous mutation has been identified in the patient. Parents were heterozygous for the same missense mutation GGA > AGA at position 202 in exon 6 of the ABCA3 gene (c.604G > A; p.G202R). Furthermore, 70 normal individuals have been analyzed for the mentioned change with negative results. Conclusions Regarding Human Genome Mutation Database (HGMD) and other literature recherche, the detected change is a novel mutation and has not been reported before. Bioinformatics mutation predicting tools prefer it as pathogenic. PMID:27437095

  11. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.

    Science.gov (United States)

    Zeyer, Karina A; Reinhardt, Dieter P

    2015-01-01

    Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB) domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular and organismal levels. Representative point mutations associated with Marfan syndrome in affected individuals have been introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a structural and functional level. Mutations which impair folding of cbEGF domains can affect protein trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome. Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights into the pathogenic molecular mechanisms exerted by mutated fibrillin-1. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Lynch Syndrome Caused by Germline PMS2 Mutations

    DEFF Research Database (Denmark)

    Ten Broeke, Sanne W; Brohet, Richard M; Tops, Carli M

    2015-01-01

    PURPOSE: The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. METHODS: Data were collected from 98...... PMS2 families ascertained from family cancer clinics that included a total of 2,548 family members and 377 proven mutation carriers. To adjust for potential ascertainment bias, a modified segregation analysis model was used to calculate colorectal cancer (CRC) and endometrial cancer (EC) risks....... Standardized incidence ratios (SIRs) were calculated to estimate risks for other Lynch syndrome-associated cancers. RESULTS: The cumulative risk (CR) of CRC for male mutation carriers by age 70 years was 19%. The CR among female carriers was 11% for CRC and 12% for EC. The mean age of CRC development was 52...

  13. A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia.

    Science.gov (United States)

    Tsoi, Ho; Yu, Allen C S; Chen, Zhefan S; Ng, Nelson K N; Chan, Anne Y Y; Yuen, Liz Y P; Abrigo, Jill M; Tsang, Suk Ying; Tsui, Stephen K W; Tong, Tony M F; Lo, Ivan F M; Lam, Stephen T S; Mok, Vincent C T; Wong, Lawrence K S; Ngo, Jacky C K; Lau, Kwok-Fai; Chan, Ting-Fung; Chan, H Y Edwin

    2014-09-01

    Spinocerebellar ataxias (SCAs) are a group of clinically and genetically diverse and autosomal-dominant disorders characterised by neurological deficits in the cerebellum. At present, there is no cure for SCAs. Of the different distinct subtypes of autosomal-dominant SCAs identified to date, causative genes for only a fraction of them are currently known. In this study, we investigated the cause of an autosomal-dominant SCA phenotype in a family that exhibits cerebellar ataxia and pontocerebellar atrophy along with a global reduction in brain volume. Whole-exome analysis revealed a missense mutation c.G1391A (p.R464H) in the coding region of the coiled-coil domain containing 88C (CCDC88C) gene in all affected individuals. Functional studies showed that the mutant form of CCDC88C activates the c-Jun N-terminal kinase (JNK) pathway, induces caspase 3 cleavage and triggers apoptosis. This study expands our understanding of the cause of autosomal-dominant SCAs, a group of heterogeneous congenital neurological conditions in humans, and unveils a link between the JNK stress pathway and cerebellar atrophy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. ABCD syndrome is caused by a homozygous mutation in the EDNRB gene.

    Science.gov (United States)

    Verheij, Joke B G M; Kunze, Jürgen; Osinga, Jan; van Essen, Anthonie J; Hofstra, Robert M W

    2002-03-15

    ABCD syndrome is an autosomal recessive syndrome characterized by albinism, black lock, cell migration disorder of the neurocytes of the gut (Hirschsprung disease [HSCR]), and deafness. This phenotype clearly overlaps with the features of the Shah-Waardenburg syndrome, comprising sensorineural deafness; hypopigmentation of skin, hair, and irides; and HSCR. Therefore, we screened DNA of the index patient of the ABCD syndrome family for mutations in the endothelin B receptor (EDNRB) gene, a gene known to be involved in Shah-Waardenburg syndrome. A homozygous nonsense mutation in exon 3 (R201X) of the EDNRB gene was found. We therefore suggest that ABCD syndrome is not a separate entity, but an expression of Shah-Waardenburg syndrome.

  15. Gitelman or Bartter type 3 syndrome? A case of distal convoluted tubulopathy caused by CLCNKB gene mutation.

    Science.gov (United States)

    Cruz, António José; Castro, Alexandra

    2013-01-22

    A 32-year-old woman with no significant medical history was sent to our consultation due to hypokalaemia (syndrome (GS) came negative. CLCNKB gene mutation analysis present in both GS and Bartter (BS) type 3 syndromes was positive. The patient is now being treated with potassium and magnesium oral supplements, ramipril and spironolactone with stable near-normal potassium and magnesium levels. This article presents the case of a patient with hypokalaemia caused by CLCNKB gene mutation hard to categorise as GS or BS type 3.

  16. A novel missense mutation of NDP in a Chinese family with X-linked familial exudative vitreoretinopathy.

    Science.gov (United States)

    Liu, Hong Yan; Huang, Jia; Wang, Rui Li; Wang, Yue; Guo, Liang Jie; Li, Tao; Wu, Dong; Wang, Hong Dan; Guo, Qian Nan; Dong, Dao Quan

    2016-11-01

    Familial exudative vitreoretinopathy (FEVR) is a hereditary ocular disorder characterized by a failure of peripheral retinal vascularization. In this report, we describe a novel missense mutation of the Norrie disease gene (NDP) in a Chinese family with X-linked FEVR. Ophthalmologic evaluation was performed on four male patients and seven unaffected individuals after informed consent was obtained. Venous blood was collected from the 11 members of this family, and genomic DNA was extracted using standard methods. The coding exons 2 and 3 and their corresponding exon-intron junctions of NDP were amplified by polymerase chain reaction and then subjected to direct DNA sequencing. A novel missense mutation (c.310A>C) in exon 3, leading to a lysine-to-glutamine substitution at position 104 (p.Lys104Gln), was identified in all four patients with X-linked FEVR. Three unaffected female individuals (III2, IV3, and IV11) were found to be carriers of the mutation. This mutation was not detected in other unaffected individuals. The mutation c.310A>C (p.Lys104Gln) in exon 3 of NDP is associated with FEVR in the studied family. This result further enriches the mutation spectrum of FEVR. Copyright © 2016. Published by Elsevier Taiwan LLC.

  17. A novel missense mutation of NDP in a Chinese family with X-linked familial exudative vitreoretinopathy

    Directory of Open Access Journals (Sweden)

    Hong Yan Liu

    2016-11-01

    Full Text Available Familial exudative vitreoretinopathy (FEVR is a hereditary ocular disorder characterized by a failure of peripheral retinal vascularization. In this report, we describe a novel missense mutation of the Norrie disease gene (NDP in a Chinese family with X-linked FEVR. Ophthalmologic evaluation was performed on four male patients and seven unaffected individuals after informed consent was obtained. Venous blood was collected from the 11 members of this family, and genomic DNA was extracted using standard methods. The coding exons 2 and 3 and their corresponding exon–intron junctions of NDP were amplified by polymerase chain reaction and then subjected to direct DNA sequencing. A novel missense mutation (c.310A>C in exon 3, leading to a lysine-to-glutamine substitution at position 104 (p.Lys104Gln, was identified in all four patients with X-linked FEVR. Three unaffected female individuals (III2, IV3, and IV11 were found to be carriers of the mutation. This mutation was not detected in other unaffected individuals. The mutation c.310A>C (p.Lys104Gln in exon 3 of NDP is associated with FEVR in the studied family. This result further enriches the mutation spectrum of FEVR.

  18. Development of in vitro and in vivo functional assays to enable diagnosis of Variants of Uncertain Significance in the common cancer predisposition Lynch syndrome

    NARCIS (Netherlands)

    Drost, Mark

    2014-01-01

    Lynch syndrome (LS) is caused by germline mutations in DNA mismatch repair (MMR) genes and is the most prevalent hereditary colorectal cancer syndrome. A significant proportion of variants identified in MMR and other common cancer susceptibility genes are missense or noncoding changes whose

  19. Mutations in the evolutionarily highly conserved KEOPS complex genes cause nephrotic syndrome with microcephaly

    Science.gov (United States)

    Braun, Daniela A.; Rao, Jia; Mollet, Geraldine; Schapiro, David; Daugeron, Marie-Claire; Tan, Weizhen; Gribouval, Olivier; Boyer, Olivia; Revy, Patrick; Jobst-Schwan, Tilman; Schmidt, Johanna Magdalena; Lawson, Jennifer A.; Schanze, Denny; Ashraf, Shazia; Boddaert, Nathalie; Collinet, Bruno; Martin, Gaëlle; Liger, Dominique; Lovric, Svjetlana; Furlano, Monica; Guerrera, I. Chiara; Sanchez-Ferras, Oraly; Menten, Björn; Vergult, Sarah; De Rocker, Nina; Airik, Merlin; Hermle, Tobias; Shril, Shirlee; Widmeier, Eugen; Gee, Heon Yung; Choi, Won-Il; Sadowski, Carolin E.; Pabst, Werner L.; Warejko, Jillian; Daga, Ankana; LeBerre, Tamara Basta; Matejas, Verena; Behnam, Babak; Beeson, Brendan; Begtrup, Amber; Bruce, Malcolm; Ch'ng, Gaik-Siew; Lin, Shuan-Pei; Chang, Jui-Hsing; Chen, Chao-Huei; Cho, Megan T.; Gipson, Patrick E.; Hsu, Chyong-Hsin; Kari, Jameela A.; Ke, Yu-Yuan; Kiraly-Borri, Cathy; Lai, Wai-ming; Lemyre, Emmanuelle; Littlejohn, Rebecca Okasha; Masri, Amira; Moghtaderi, Mastaneh; Nakamura, Kazuyuki; Praet, Marleen; Prasad, Chitra; Prytula, Agnieszka; Roeder, Elizabeth; Rump, Patrick; Schnur, Rhonda E.; Shiihara, Takashi; Sinha, Manish; Soliman, Neveen A; Soulami, Kenza; Sweetser, David A.; Tsai, Wen-Hui; Tsai, Jeng-Daw; Vester, Udo; Viskochil, David H.; Vatanavicharn, Nithiwat; Waxler, Jessica L.; Wolf, Matthias T.F.; Wong, Sik-Nin; Poduri, Annapurna; Truglio, Gessica; Mane, Shrikant; Lifton, Richard P.; Bouchard, Maxime; Kannu, Peter; Chitayat, David; Magen, Daniella; Calleweart, Bert; van Tilbeurgh, Herman; Zenker, Martin; Antignac, Corinne; Hildebrandt, Friedhelm

    2018-01-01

    Galloway-Mowat syndrome (GAMOS) is a severe autosomal-recessive disease characterized by the combination of early-onset steroid-resistant nephrotic syndrome (SRNS) and microcephaly with brain anomalies. To date, mutations of WDR73 are the only known monogenic cause of GAMOS and in most affected individuals the molecular diagnosis remains elusive. We here identify recessive mutations of OSGEP, TP53RK, TPRKB, or LAGE3, encoding the 4 subunits of the KEOPS complex in 33 individuals of 30 families with GAMOS. CRISPR/Cas9 knockout in zebrafish and mice recapitulates the human phenotype of microcephaly and results in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibits cell proliferation, which human mutations fail to rescue, and knockdown of either gene activates DNA damage response signaling and induces apoptosis. OSGEP and TP53RK molecularly interact and co-localize with the actin-regulating ARP2/3 complex. Furthermore, knockdown of OSGEP and TP53RK induces defects of the actin cytoskeleton and reduces migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identify 4 novel monogenic causes of GAMOS, describe the first link between KEOPS function and human disease, and delineate potential pathogenic mechanisms. PMID:28805828

  20. A Novel KCNJ2 Mutation Identified in an Autistic Proband Affects the Single Channel Properties of Kir2.1

    Directory of Open Access Journals (Sweden)

    Anna Binda

    2018-03-01

    Full Text Available Inwardly rectifying potassium channels (Kir have been historically associated to several cardiovascular disorders. In particular, loss-of-function mutations in the Kir2.1 channel have been reported in cases affected by Andersen-Tawil syndrome while gain-of-function mutations in the same channel cause the short QT3 syndrome. Recently, a missense mutation in Kir2.1, as well as mutations in the Kir4.1, were reported to be involved in autism spectrum disorders (ASDs suggesting a role of potassium channels in these diseases and introducing the idea of the existence of K+ channel ASDs. Here, we report the identification in an Italian affected family of a novel missense mutation (p.Phe58Ser in the KCNJ2 gene detected in heterozygosity in a proband affected by autism and borderline for short QT syndrome type 3. The mutation is located in the N-terminal region of the gene coding for the Kir2.1 channel and in particular in a very conserved domain. In vitro assays demonstrated that this mutation results in an increase of the channel conductance and in its open probability. This gain-of-function of the protein is consistent with the autistic phenotype, which is normally associated to an altered neuronal excitability.

  1. A Novel Homozygous Missense Mutation in HOXC13 Leads to Autosomal Recessive Pure Hair and Nail Ectodermal Dysplasia.

    Science.gov (United States)

    Li, Xiaoxiao; Orseth, Meredith Lee; Smith, J Michael; Brehm, Mary Abigail; Agim, Nnenna Gebechi; Glass, Donald Alexander

    2017-03-01

    Pure hair and nail ectodermal dysplasia (PHNED) is a rare disorder that presents with hypotrichosis and nail dystrophy while sparing other ectodermal structures such as teeth and sweat glands. We describe a homozygous novel missense mutation in the HOXC13 gene that resulted in autosomal recessive PHNED in a Hispanic child. The mutation c.812A>G (p.Gln271Arg) is located within the DNA-binding domain of the HOXC13 gene, cosegregates within the family, and is predicted to be maximally damaging. This is the first reported case of a missense HOXC13 mutation resulting in PHNED and the first reported case of PHNED identified in a North American family. Our findings illustrate the critical role of HOXC13 in human hair and nail development. © 2017 Wiley Periodicals, Inc.

  2. A MITF mutation associated with a dominant white phenotype and bilateral deafness in German Fleckvieh cattle.

    Directory of Open Access Journals (Sweden)

    Ute Philipp

    Full Text Available A dominantly inherited syndrome associated with hypopigmentation, heterochromia irides, colobomatous eyes and bilateral hearing loss has been ascertained in Fleckvieh cattle (German White Fleckvieh syndrome. This syndrome has been mapped to bovine chromosome (BTA 22 using a genome-wide association study with the bovine high density single nucleotide polymorphism array. An R210I missense mutation has been identified within microphthalmia-associated transcription factor (MITF as responsible for this syndrome. The mutation is located in the highly conserved basic region of the protein and causes a negative-dominant effect. SOX10 and PAX3 promoter binding site mutations in MITF could be ruled out as causative for the German White Fleckvieh syndrome. Molecular characterization of this newly detected bovine syndrome means a large animal model is now available for the Tietz syndrome in humans.

  3. A frame-shift mutation of PMS2 is a widespread cause of Lynch syndrome

    DEFF Research Database (Denmark)

    Clendenning, Mark; Senter, Leigha; Hampel, Heather

    2008-01-01

    BACKGROUND: When compared to the other mismatch repair genes involved in Lynch syndrome, the identification of mutations within PMS2 has been limited (Lynch syndrome cases...... on immunohistochemical analysis. RESULTS: We have identified a frequently occurring frame-shift mutation (c.736_741del6ins11) in 12 ostensibly unrelated Lynch syndrome patients (20% of patients we have identified with a deleterious mutation in PMS2, n=61). These individuals all display the rare allele (population...... and Swedish ancestry. We estimate that there are >10,000 carriers of this mutation in the United States alone. The identification of both the mutation and the common haplotype in one Swedish control sample (n = 225), along with evidence that Lynch syndrome associated cancers are rarer than expected...

  4. SMARCA4 inactivating mutations cause concomitant Coffin-Siris syndrome, microphthalmia and small-cell carcinoma of the ovary hypercalcaemic type.

    Science.gov (United States)

    Errichiello, Edoardo; Mustafa, Noor; Vetro, Annalisa; Notarangelo, Lucia Dora; de Jonge, Hugo; Rinaldi, Berardo; Vergani, Debora; Giglio, Sabrina Rita; Morbini, Patrizia; Zuffardi, Orsetta

    2017-09-01

    SMARCA4 chromatin remodelling factor is mutated in 11% of Coffin-Siris syndrome (CSS) patients and in almost all small-cell carcinoma of the ovary hypercalcaemic type (SCCOHT) tumours. Missense mutations with gain-of-function or dominant-negative effects are associated with CSS, whereas inactivating mutations, leading to loss of SMARCA4 expression, have been exclusively found in SCCOHT. We applied whole-exome sequencing to study a 15-year-old patient with mild CSS who concomitantly developed SCCOHT at age 13 years. Interestingly, our patient also showed congenital microphthalmia, which has never previously been reported in CSS patients. We detected a de novo germline heterozygous nonsense mutation in exon 19 of SMARCA4 (c.2935C > T;p.Arg979*), and a somatic frameshift mutation in exon 6 (c.1236_1236delC;p.Gln413Argfs*88), causing complete loss of SMARCA4 immunostaining in the tumour. The immunohistochemical findings are supported by the observation that the c.2935C > T mutant transcript was detected by reverse transcription polymerase chain reaction at a much lower level than the wild-type allele in whole blood and the lymphoblastoid cell line of the proband, confirming nonsense-mediated mRNA decay. Accordingly, immunoblotting demonstrated that there was approximately half the amount of SMARCA4 protein in the proband's cells as in controls. This study suggests that SMARCA4 constitutional mutations associated with CSS are not necessarily non-truncating, and that haploinsufficiency may explain milder CSS phenotypes, as previously reported for haploinsufficient ARID1B. In addition, our case supports the dual role of chromatin remodellers in developmental disorders and cancer, as well as the involvement of SMARCA4 in microphthalmia, confirming previous findings in mouse models and the DECIPHER database. Finally, we speculate that mild CSS might be under-recognized in a proportion of SCCOHT patients harbouring SMARCA4 mutations. © 2017 The Authors. The

  5. Genotype-phenotype correlation of Coffin-Siris syndrome caused by mutations in SMARCB1, SMARCA4, SMARCE1, and ARID1A

    NARCIS (Netherlands)

    Kosho, T.; Okamoto, N.; Bon, B.W. van; Vulto-van Silfhout, A.T.; et al.,

    2014-01-01

    Coffin-Siris syndrome (CSS) is a rare congenital malformation syndrome, recently found to be caused by mutations in several genes encoding components of the BAF complex. To date, 109 patients have been reported with their mutations: SMARCB1 (12%), SMARCA4 (11%), SMARCE1 (2%), ARID1A (7%), ARID1B

  6. Genotype-Phenotype Correlation of Coffin-Siris Syndrome Caused by Mutations in SMARCB1, SMARCA4, SMARCE1, and ARID1A

    NARCIS (Netherlands)

    Kosho, Tomoki; Okamoto, Nobuhiko; Imai, Yoko; Ohashi, Hirofumi; van Eerde, Albertien M.; Chrzanowska, Krystyna; Clayton-Smith, Jill; Kingston, Helen; Mari, Francesca; Aggarwal, Shagun; Mowat, David; Niikawa, Norio; Hiraki, Yoko; Matsumoto, Naoya; Fukushima, Yoshimitsu; Josifova, Dragana; Dean, John; Smigiel, Robert; Sakazume, Satoru; Silengo, Margherita; Tinschert, Sigrid; Kawame, Hiroshi; Yano, Shoji; Yamagata, Takanori; van Bon, Bregje W. M.; Vulto-van Silfhout, Anneke T.; Ben-Omran, Tawfeg; Bigoni, Stefania; Alanay, Yasemin; Miyake, Noriko; Tsurusaki, Yoshinori; Matsumoto, Naomichi; Santen, Gijs W. E.; Wieczorek, Dagmar; Wollnik, Bernd; Hennekam, Raul C. M.

    2014-01-01

    Coffin-Siris syndrome (CSS) is a rare congenital malformation syndrome, recently found to be caused by mutations in several genes encoding components of the BAF complex. To date, 109 patients have been reported with their mutations: SMARCB1 (12%), SMARCA4 (11%), SMARCE1 (2%), ARID1A (7%), ARID1B

  7. Andermann syndrome can be a phenocopy of hereditary motor and sensory neuropathy--report of a discordant sibship with a compound heterozygous mutation of the KCC3 gene.

    Science.gov (United States)

    Rudnik-Schöneborn, S; Hehr, U; von Kalle, T; Bornemann, A; Winkler, J; Zerres, K

    2009-06-01

    Andermann syndrome is a rare autosomal recessive disorder characterized by agenesis of the corpus callosum (ACC), progressive motor-sensory neuropathy, mental retardation and facial features. We report on two siblings with the clinical picture of a demyelinating hereditary motor and sensory neuropathy (HMSN), where only the presence of ACC in the younger brother pointed to the diagnosis of Andermann syndrome. Mutation analysis of the KCC3 (SLC12A6) gene showed a compound heterozygous mutation; a maternal missense mutation c.1616G>A (p.G539D) and a paternal splice mutation c.1118+1G>A in both siblings. We hypothesize that mutations of the KCC3 gene may result in non-syndromic childhood onset HMSN.

  8. The novel C-terminal KCNQ1 mutation M520R alters protein trafficking

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Calloe, Kirstine; Nielsen, Nathalie Hélix

    2007-01-01

    The long QT-syndrome is characterized by a prolongation of the QT-interval and tachyarrhythmias causing syncopes and sudden death. We identified the missense mutation M520R in the calmodulin binding domain of the Kv7.1 channel from a German family with long QT-syndrome. Heterologous expression...... an immunopositive labeling of the plasma membrane. For M520R no plasma membrane staining was visible, instead a strong signal in the ER was observed. These results indicate that the LQT1 mutation M520R leads to ER-retention and dysfunctional trafficking of the mutant channel resulting in haploinsufficiency...

  9. Mitochondrial DNA depletion syndrome due to mutations in the RRM2B gene.

    Science.gov (United States)

    Bornstein, Belén; Area, Estela; Flanigan, Kevin M; Ganesh, Jaya; Jayakar, Parul; Swoboda, Kathryn J; Coku, Jorida; Naini, Ali; Shanske, Sara; Tanji, Kurenai; Hirano, Michio; DiMauro, Salvatore

    2008-06-01

    Mitochondrial DNA depletion syndrome (MDS) is characterized by a reduction in mtDNA copy number and has been associated with mutations in eight nuclear genes, including enzymes involved in mitochondrial nucleotide metabolism (POLG, TK2, DGUOK, SUCLA2, SUCLG1, PEO1) and MPV17. Recently, mutations in the RRM2B gene, encoding the p53-controlled ribonucleotide reductase subunit, have been described in seven infants from four families, who presented with various combinations of hypotonia, tubulopathy, seizures, respiratory distress, diarrhea, and lactic acidosis. All children died before 4 months of age. We sequenced the RRM2B gene in three unrelated cases with unexplained severe mtDNA depletion. The first patient developed intractable diarrhea, profound weakness, respiratory distress, and died at 3 months. The other two unrelated patients had a much milder phenotype and are still alive at ages 27 and 36 months. All three patients had lactic acidosis and severe depletion of mtDNA in muscle. Muscle histochemistry showed RRF and COX deficiency. Sequencing the RRM2B gene revealed three missense mutations and two single nucleotide deletions in exons 6, 8, and 9, confirming that RRM2B mutations are important causes of MDS and that the clinical phenotype is heterogeneous and not invariably fatal in infancy.

  10. Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4).

    Science.gov (United States)

    Yatsenko, A N; Shroyer, N F; Lewis, R A; Lupski, J R

    2001-04-01

    Based on recent studies of the photoreceptor-specific ABC transporter gene ABCR (ABCA4) in Stargardt disease (STGD1) and other retinal dystrophies, we and others have developed a model in which the severity of retinal disease correlates inversely with residual ABCR activity. This model predicts that patients with late-onset STGDI may retain partial ABCR activity attributable to mild missense alleles. To test this hypothesis, we used late-onset STGDI patients (onset: > or =35 years) to provide an in vivo functional analysis of various combinations of mutant alleles. We sequenced directly the entire coding region of ABCR and detected mutations in 33/50 (66%) disease chromosomes, but surprisingly, 11/33 (33%) were truncating alleles. Importantly, all 22 missense mutations were located outside the known functional domains of ABCR (ATP-binding or transmembrane), whereas in our general cohort of STGDI subjects, alterations occurred with equal frequency across the entire protein. We suggest that these missense mutations in regions of unknown function are milder alleles and more susceptible to modifier effects. Thus, we have corroborated a prediction from the model of ABCR pathogenicity that (1) one mutant ABCR allele is always missense in late-onset STGD1 patients, and (2) the age-of-onset is correlated with the amount of ABCR activity of this allele. In addition, we report three new pseudodominant families that now comprise eight of 178 outbred STGD1 families and suggest a carrier frequency of STGD1-associated ABCR mutations of about 4.5% (approximately 1/22).

  11. MDE heteroduplex analysis of PCR products spanning each exon of the fibrillin (FBN1) gene greatly increases the efficiency of mutation detection in the Marfan syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Nijbroek, G.; Dietz, H.C. [Johns Hopkins Univ. School of Med., Baltimore, MD (United States); Pereira, L.; Ramirz, F. [Mount Sinai School of Med., New York, NY (United States)

    1994-09-01

    Defects in fibrillin (FNB1) cause the Marfan syndrome (MFS). Classic Marfan phenotype cosegregates with intragenic and/or flanking marker alleles in all families tested and a significant number of FBN1 mutations have been identified in affected individuals. Using a standard method of mutation detection, SSCP analysis of overlapping RT-PCR amplimers that span the entire coding sequence, the general experience has been a low yield of identifiable mutations, ranging from 10-20%. Possible explanations included low sensitivity of mutation screening procedures, under-representation of mutant transcript in patient samples either due to deletions or mutant alleles containing premature termination codons, clustering of mutations in yet uncharacterized regions of the gene, including regulatory elements, or genetic heterogeneity. In order to compensate for a potential reduced mutant transcript stability, we have devised a method to screen directly from genomic DNA. The intronic boundaries flanking each of the 65 FBN1 exons were characterized and primer pairs were fashioned such that all splice junctions would be included in the resultant amplimers. The entire gene was screened for a panel of 9 probands with classic Marfan syndrome using mutation detection enhancement (MDE) gel heteroduplex analysis. A mutation was identified in 5/9 (55%) of patient samples. All were either missense mutations involving a cysteine residue or small deletions that did not create a frame shift. In addition, 10 novel polymorphisms were found. We conclude that the majority of mutations causing Marfan syndrome reside in the FBN1 gene and that mutations creating premature termination codons are not the predominant cause of inefficient mutation detection using RT-PCR. We are currently modifying screening methods to increase sensitivity and targeting putative FBN1 gene promoter sequences for study.

  12. Identification of Missense Mutation (I12T in the BSND Gene and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Hina Iqbal

    2011-01-01

    Full Text Available Nonsyndromic hearing loss is a paradigm of genetic heterogeneity with 85 loci and 39 nuclear disease genes reported so far. Mutations of BSND have been shown to cause Bartter syndrome type IV, characterized by significant renal abnormalities and deafness and nonsyndromic nearing loss. We studied a Pakistani consanguineous family. Clinical examinations of affected individuals did not reveal the presence of any associated signs, which are hallmarks of the Bartter syndrome type IV. Linkage analysis identified an area of 18.36 Mb shared by all affected individuals between markers D1S2706 and D1S1596. A maximum two-point LOD score of 2.55 with markers D1S2700 and multipoint LOD score of 3.42 with marker D1S1661 were obtained. BSND mutation, that is, p.I12T, cosegregated in all extant members of our pedigree. BSND mutations can cause nonsyndromic hearing loss, and it is a second report for this mutation. The respected protein, that is, BSND, was first modeled, and then, the identified mutation was further analyzed by using different bioinformatics tools; finally, this protein and its mutant was docked with CLCNKB and REN, interactions of BSND, respectively.

  13. A Turkish family with Sjögren-Larsson syndrome caused by a novel ALDH3A2 mutation

    Directory of Open Access Journals (Sweden)

    Faruk Incecik

    2013-01-01

    Full Text Available Sjögren-Larsson syndrome (SLS is an inherited neurocutaneous disorder caused by mutations in the aldehyde dehydrogenase family 3 member A2 (ALDH3A2 gene that encodes fatty aldehyde dehydrogenase. Affected patients display ichthyosis, mental retardation, and spastic diplegia. More than 70 mutations in ALDH3A2 have been discovered in SLS patients. We diagnosed two brothers age of 12 and 20 years with characteristic features of this rare syndrome. Magnetic resonance imaging showed demyelinating disease in both of them. We described a novel homozygous, c. 835 T > A (p.Y279N mutation in exon 6 in two patients.

  14. Clinical and Genetic Spectrum of Bartter Syndrome Type 3.

    Science.gov (United States)

    Seys, Elsa; Andrini, Olga; Keck, Mathilde; Mansour-Hendili, Lamisse; Courand, Pierre-Yves; Simian, Christophe; Deschenes, Georges; Kwon, Theresa; Bertholet-Thomas, Aurélia; Bobrie, Guillaume; Borde, Jean Sébastien; Bourdat-Michel, Guylhène; Decramer, Stéphane; Cailliez, Mathilde; Krug, Pauline; Cozette, Paul; Delbet, Jean Daniel; Dubourg, Laurence; Chaveau, Dominique; Fila, Marc; Jourde-Chiche, Noémie; Knebelmann, Bertrand; Lavocat, Marie-Pierre; Lemoine, Sandrine; Djeddi, Djamal; Llanas, Brigitte; Louillet, Ferielle; Merieau, Elodie; Mileva, Maria; Mota-Vieira, Luisa; Mousson, Christiane; Nobili, François; Novo, Robert; Roussey-Kesler, Gwenaëlle; Vrillon, Isabelle; Walsh, Stephen B; Teulon, Jacques; Blanchard, Anne; Vargas-Poussou, Rosa

    2017-08-01

    Bartter syndrome type 3 is a clinically heterogeneous hereditary salt-losing tubulopathy caused by mutations of the chloride voltage-gated channel Kb gene ( CLCNKB ), which encodes the ClC-Kb chloride channel involved in NaCl reabsorption in the renal tubule. To study phenotype/genotype correlations, we performed genetic analyses by direct sequencing and multiplex ligation-dependent probe amplification and retrospectively analyzed medical charts for 115 patients with CLCNKB mutations. Functional analyses were performed in Xenopus laevis oocytes for eight missense and two nonsense mutations. We detected 60 mutations, including 27 previously unreported mutations. Among patients, 29.5% had a phenotype of ante/neonatal Bartter syndrome (polyhydramnios or diagnosis in the first month of life), 44.5% had classic Bartter syndrome (diagnosis during childhood, hypercalciuria, and/or polyuria), and 26.0% had Gitelman-like syndrome (fortuitous discovery of hypokalemia with hypomagnesemia and/or hypocalciuria in childhood or adulthood). Nine of the ten mutations expressed in vitro decreased or abolished chloride conductance. Severe (large deletions, frameshift, nonsense, and essential splicing) and missense mutations resulting in poor residual conductance were associated with younger age at diagnosis. Electrolyte supplements and indomethacin were used frequently to induce catch-up growth, with few adverse effects. After a median follow-up of 8 (range, 1-41) years in 77 patients, chronic renal failure was detected in 19 patients (25%): one required hemodialysis and four underwent renal transplant. In summary, we report a genotype/phenotype correlation for Bartter syndrome type 3: complete loss-of-function mutations associated with younger age at diagnosis, and CKD was observed in all phenotypes. Copyright © 2017 by the American Society of Nephrology.

  15. A mouse model of the human Fragile X syndrome I304N mutation.

    Directory of Open Access Journals (Sweden)

    Julie B Zang

    2009-12-01

    Full Text Available The mental retardation, autistic features, and behavioral abnormalities characteristic of the Fragile X mental retardation syndrome result from the loss of function of the RNA-binding protein FMRP. The disease is usually caused by a triplet repeat expansion in the 5'UTR of the FMR1 gene. This leads to loss of function through transcriptional gene silencing, pointing to a key function for FMRP, but precluding genetic identification of critical activities within the protein. Moreover, antisense transcripts (FMR4, ASFMR1 in the same locus have been reported to be silenced by the repeat expansion. Missense mutations offer one means of confirming a central role for FMRP in the disease, but to date, only a single such patient has been described. This patient harbors an isoleucine to asparagine mutation (I304N in the second FMRP KH-type RNA-binding domain, however, this single case report was complicated because the patient harbored a superimposed familial liver disease. To address these issues, we have generated a new Fragile X Syndrome mouse model in which the endogenous Fmr1 gene harbors the I304N mutation. These mice phenocopy the symptoms of Fragile X Syndrome in the existing Fmr1-null mouse, as assessed by testicular size, behavioral phenotyping, and electrophysiological assays of synaptic plasticity. I304N FMRP retains some functions, but has specifically lost RNA binding and polyribosome association; moreover, levels of the mutant protein are markedly reduced in the brain specifically at a time when synapses are forming postnatally. These data suggest that loss of FMRP function, particularly in KH2-mediated RNA binding and in synaptic plasticity, play critical roles in pathogenesis of the Fragile X Syndrome and establish a new model for studying the disorder.

  16. Identification of a homozygous PSTPIP1 mutation in a patient with a PAPA-like syndrome responding to canakinumab treatment.

    Science.gov (United States)

    Geusau, Alexandra; Mothes-Luksch, Nadine; Nahavandi, Hesam; Pickl, Winfried F; Wise, Carol A; Pourpak, Zahra; Ponweiser, Elisabeth; Eckhart, Leopold; Sunder-Plassmann, Raute

    2013-02-01

    Pyogenic sterile arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome (OMIM 604416) is a rare autosomal dominant inherited autoinflammatory syndrome characterized by pyogenic sterile arthritis and less frequently accompanied by pyoderma gangrenosum and acne. It is associated with dominant missense mutations in the proline-serine-threonine phosphatase-interacting protein 1 gene (PSTPIP1) located on chromosome 15. The patient was diagnosed as having features of a PAPA-like syndrome in which cutaneous manifestations, such as pyoderma gangrenosum and acne fulminans, predominated. Sequencing of the PSTPIP1 gene was performed in the patient and his extended family. The patient's DNA analysis revealed a homozygous nucleotide exchange c.773G>C in the PSTPIP1 gene, leading to the substitution of glycine 258 by alanine (p.Gly258Ala), a previously reported heterozygous polymorphism. Heterozygous changes were identified in both of the patient's parents and in 7 other family members, all of whom were asymptomatic. The patient was treated with canakinumab, a human anti-interleukin 1β monoclonal antibody, which led to rapid remission of the symptoms. To our knowledge, this is the first reported case of the resolution of dermatological symptoms associated with a PAPA-like syndrome using canakinumab treatment. Further study of the p.Gly258Ala variant is warranted to determine whether this mutation has a role in causing an apparently recessive cutaneous syndrome resembling PAPA syndrome.

  17. Mismatch repair gene mutation spectrum in the Swedish Lynch syndrome population

    DEFF Research Database (Denmark)

    Lagerstedt-Robinson, Kristina; Rohlin, Anna; Aravidis, Christos

    2016-01-01

    Lynch syndrome caused by constitutional mismatch‑repair defects is one of the most common hereditary cancer syndromes with a high risk for colorectal, endometrial, ovarian and urothelial cancer. Lynch syndrome is caused by mutations in the mismatch repair (MMR) genes i.e., MLH1, MSH2, MSH6 and PMS2...... Lynch syndrome families. These mutations affected MLH1 in 40%, MSH2 in 36%, MSH6 in 18% and PMS2 in 6% of the families. A large variety of mutations were identified with splice site mutations being the most common mutation type in MLH1 and frameshift mutations predominating in MSH2 and MSH6. Large...... deletions of one or several exons accounted for 21% of the mutations in MLH1 and MSH2 and 22% in PMS2, but were rare (4%) in MSH6. In 66% of the Lynch syndrome families the variants identified were private and the effect from founder mutations was limited and predominantly related to a Finnish founder...

  18. A novel missense mutation in the gene EDARADD associated with an unusual phenotype of hypohidrotic ectodermal dysplasia.

    Science.gov (United States)

    Wohlfart, Sigrun; Söder, Stephan; Smahi, Asma; Schneider, Holm

    2016-01-01

    Hypohidrotic ectodermal dysplasia (HED) is a rare disorder characterized by deficient development of structures derived from the ectoderm including hair, nails, eccrine glands, and teeth. HED forms that are caused by mutations in the genes EDA, EDAR, or EDARADD may show almost identical phenotypes, explained by a common signaling pathway. Proper interaction of the proteins encoded by these three genes is important for the activation of the NF-κB signaling pathway and subsequent transcription of the target genes. Mutations in the gene EDARADD are most rarely implicated in HED. Here we describe a novel missense mutation, c.367G>A (p.Asp123Asn), in this gene which did not appear to influence the interaction between EDAR and EDARADD proteins, but led to an impaired ability to activate NF-κB signaling. Female members of the affected family showed either unilateral or bilateral amazia. In addition, an affected girl developed bilateral ovarian teratomas, possibly associated with her genetic condition. © 2015 Wiley Periodicals, Inc.

  19. Spectrum of CREBBP mutations in Indian patients with Rubinstein ...

    Indian Academy of Sciences (India)

    Prakash

    Rubinstein–Taybi syndrome. NEETI SHARMA, AVINASH M MALI and SHARMILA A BAPAT ..... Supplementary table 4. Exon mutations in RSTS patients in the Indian population. S.No. Gene Position Sense /. Missense. Patient. Exon. Amino acid change. Novel/de novo/SNP. Domain. 1 g.3276G>C missense. RSTS13a. 32 p.

  20. A Novel Missense Mutation in SLC5A5 Gene in a Sudanese Family with Congenital Hypothyroidism.

    Science.gov (United States)

    Watanabe, Yui; Ebrhim, Reham Shareef; Abdullah, Mohamed A; Weiss, Roy E

    2018-05-15

    Thyroid hormone synthesis requires the presence of iodide. The sodium iodide symporter (NIS) is a glycoprotein which mediates the active uptake of iodide from the blood stream into the thyroid grand. NIS defects due to SLC5A5 gene mutations are known to cause congenital hypothyroidism (CH). The proposita is a 28-year-old female whose origin is the North Sudan where neonatal screening for CH is not available. She presented with severe constipation and a goiter at the age of 40 days. Laboratory testing confirmed CH and she was started on levothyroxine (L-T4). Presumably due to the delayed treatment the patient developed mental retardation. Her younger sister presented with a goiter, tongue protrusion and umbilical hernia and the youngest brother was also diagnosed with CH based on the TSH >100 µIU/mL at the age of 22 days and 8 days, respectively. Two siblings were treated with L-T4 and had normal development. Their consanguineous parents had no history of thyroid disorders. We performed whole exome sequencing (WES) on the proposita. WES identified a novel homozygous missense mutation in the SLC5A5 gene: c.1042T>G, p.Tyr348Asp, which was subsequently confirmed by Sanger sequencing. All affected children were homozygous for the same mutation and their unaffected mother was heterozygous. The NIS protein is composed of 13 transmembrane segments (TMS), an extracellular amino-terminus and an intracellular carboxyl terminus. The mutation is located in the TMS IX which has the most β-OH group-containing amino acids (serine and threonine) which is implicated in Na+ binding and translocation. In conclusion, a novel homozygous missense mutation in the SLC5A5 gene was identified in the Sudanese family with CH. The mutation is located in the TMS IX of the NIS protein which is essential for NIS function. Low iodine intake in Sudan is considered to affect severity of hypothyroidism in the patients.

  1. Parkinson disease: α-synuclein mutational screening and new clinical insight into the p.E46K mutation.

    Science.gov (United States)

    Pimentel, Márcia M G; Rodrigues, Fabíola C; Leite, Marco Antônio A; Campos Júnior, Mário; Rosso, Ana Lucia; Nicaretta, Denise H; Pereira, João S; Silva, Delson José; Della Coletta, Marcus V; Vasconcellos, Luiz Felipe R; Abreu, Gabriella M; Dos Santos, Jussara M; Santos-Rebouças, Cíntia B

    2015-06-01

    Amongst Parkinson's disease-causing genetic factors, missense mutations and genomic multiplications in the gene encoding α-synuclein are well established causes of the disease, although genetic data in populations with a high degree of admixture, such as the Brazilian one, are still scarce. In this study, we conducted a molecular screening of α-synuclein point mutations and copy number variation in the largest cohort of Brazilian patients with Parkinson's disease (n = 549) and also in twelve Portuguese and one Bolivian immigrants. Genomic DNA was isolated from peripheral blood leukocytes or saliva, and the mutational screening was performed by quantitative and qualitative real-time PCR. The only alteration identified was the p.E46K mutation in a 60-year-old man, born in Bolivia, with a familial history of autosomal dominant Parkinson's disease. This is the second family ever reported, in which this rare pathogenic mutation is segregating. The same mutation was firstly described ten years ago in a Spanish family with a neurodegenerative syndrome combining parkinsonism, dementia and visual hallucinations. The clinical condition of our proband reveals a less aggressive phenotype than previously described and reinforces that marked phenotypic heterogeneity is common among patients with Parkinson's disease, even among those carriers sharing the same mutation. Our findings add new insight into the preexisting information about α-synuclein p.E46K, improving our understanding about the endophenotypes associated to this mutation and corroborate that missense alterations and multiplications in α-synuclein are uncommon among Brazilian patients with Parkinson's disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Two microcephaly-associated novel missense mutations in CASK specifically disrupt the CASK-neurexin interaction.

    Science.gov (United States)

    LaConte, Leslie E W; Chavan, Vrushali; Elias, Abdallah F; Hudson, Cynthia; Schwanke, Corbin; Styren, Katie; Shoof, Jonathan; Kok, Fernando; Srivastava, Sarika; Mukherjee, Konark

    2018-03-01

    Deletion and truncation mutations in the X-linked gene CASK are associated with severe intellectual disability (ID), microcephaly and pontine and cerebellar hypoplasia in girls (MICPCH). The molecular origin of CASK-linked MICPCH is presumed to be due to disruption of the CASK-Tbr-1 interaction. This hypothesis, however, has not been directly tested. Missense variants in CASK are typically asymptomatic in girls. We report three severely affected girls with heterozygous CASK missense mutations (M519T (2), G659D (1)) who exhibit ID, microcephaly, and hindbrain hypoplasia. The mutation M519T results in the replacement of an evolutionarily invariant methionine located in the PDZ signaling domain known to be critical for the CASK-neurexin interaction. CASK M519T is incapable of binding to neurexin, suggesting a critically important role for the CASK-neurexin interaction. The mutation G659D is in the SH3 (Src homology 3) domain of CASK, replacing a semi-conserved glycine with aspartate. We demonstrate that the CASK G659D mutation affects the CASK protein in two independent ways: (1) it increases the protein's propensity to aggregate; and (2) it disrupts the interface between CASK's PDZ (PSD95, Dlg, ZO-1) and SH3 domains, inhibiting the CASK-neurexin interaction despite residing outside of the domain deemed critical for neurexin interaction. Since heterozygosity of other aggregation-inducing mutations (e.g., CASK W919R ) does not produce MICPCH, we suggest that the G659D mutation produces microcephaly by disrupting the CASK-neurexin interaction. Our results suggest that disruption of the CASK-neurexin interaction, not the CASK-Tbr-1 interaction, produces microcephaly and cerebellar hypoplasia. These findings underscore the importance of functional validation for variant classification.

  3. The mitochondrial DNA 10197 G > A mutation causes MELAS/Leigh overlap syndrome presenting with acute auditory agnosia.

    Science.gov (United States)

    Leng, Yinglin; Liu, Yuhe; Fang, Xiaojing; Li, Yao; Yu, Lei; Yuan, Yun; Wang, Zhaoxia

    2015-04-01

    Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes/Leigh (MELAS/LS) overlap syndrome is a mitochondrial disorder subtype with clinical and magnetic resonance imaging (MRI) features that are characteristic of both MELAS and Leigh syndrome (LS). Here, we report an MELAS/LS case presenting with cortical deafness and seizures. Cranial MRI revealed multiple lesions involving bilateral temporal lobes, the basal ganglia and the brainstem, which conformed to neuroimaging features of both MELAS and LS. Whole mitochondrial DNA (mtDNA) sequencing and PCR-RFLP revealed a de novo heteroplasmic m.10197 G > A mutation in the NADH dehydrogenase subunit 3 gene (ND3), which was predicted to cause an alanine to threonine substitution at amino acid 47. Although the mtDNA m.10197 G > A mutation has been reported in association with LS, Leber hereditary optic neuropathy and dystonia, it has never been linked with MELAS/LS overlap syndrome. Our patient therefore expands the phenotypic spectrum of the mtDNA m.10197 G > A mutation.

  4. Loss-of-function mutations in SOX10 cause Kallmann syndrome with deafness.

    Science.gov (United States)

    Pingault, Veronique; Bodereau, Virginie; Baral, Viviane; Marcos, Severine; Watanabe, Yuli; Chaoui, Asma; Fouveaut, Corinne; Leroy, Chrystel; Vérier-Mine, Odile; Francannet, Christine; Dupin-Deguine, Delphine; Archambeaud, Françoise; Kurtz, François-Joseph; Young, Jacques; Bertherat, Jérôme; Marlin, Sandrine; Goossens, Michel; Hardelin, Jean-Pierre; Dodé, Catherine; Bondurand, Nadege

    2013-05-02

    Transcription factor SOX10 plays a role in the maintenance of progenitor cell multipotency, lineage specification, and cell differentiation and is a major actor in the development of the neural crest. It has been implicated in Waardenburg syndrome (WS), a rare disorder characterized by the association between pigmentation abnormalities and deafness, but SOX10 mutations cause a variable phenotype that spreads over the initial limits of the syndrome definition. On the basis of recent findings of olfactory-bulb agenesis in WS individuals, we suspected SOX10 was also involved in Kallmann syndrome (KS). KS is defined by the association between anosmia and hypogonadotropic hypogonadism due to incomplete migration of neuroendocrine gonadotropin-releasing hormone (GnRH) cells along the olfactory, vomeronasal, and terminal nerves. Mutations in any of the nine genes identified to date account for only 30% of the KS cases. KS can be either isolated or associated with a variety of other symptoms, including deafness. This study reports SOX10 loss-of-function mutations in approximately one-third of KS individuals with deafness, indicating a substantial involvement in this clinical condition. Study of SOX10-null mutant mice revealed a developmental role of SOX10 in a subpopulation of glial cells called olfactory ensheathing cells. These mice indeed showed an almost complete absence of these cells along the olfactory nerve pathway, as well as defasciculation and misrouting of the nerve fibers, impaired migration of GnRH cells, and disorganization of the olfactory nerve layer of the olfactory bulbs. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Aarskog-Scott syndrome: clinical update and report of nine novel mutations of the FGD1 gene.

    Science.gov (United States)

    Orrico, A; Galli, L; Faivre, L; Clayton-Smith, J; Azzarello-Burri, S M; Hertz, J M; Jacquemont, S; Taurisano, R; Arroyo Carrera, I; Tarantino, E; Devriendt, K; Melis, D; Thelle, T; Meinhardt, U; Sorrentino, V

    2010-02-01

    Mutations in the FGD1 gene have been shown to cause Aarskog-Scott syndrome (AAS), or facio-digito-genital dysplasia (OMIM#305400), an X-linked disorder characterized by distinctive genital and skeletal developmental abnormalities with a broad spectrum of clinical phenotypes. To date, 20 distinct mutations have been reported, but little phenotypic data are available on patients with molecularly confirmed AAS. In the present study, we report on our experience of screening for mutations in the FGD1 gene in a cohort of 60 European patients with a clinically suspected diagnosis of AAS. We identified nine novel mutations in 11 patients (detection rate of 18.33%), including three missense mutations (p.R402Q; p.S558W; p.K748E), four truncating mutations (p.Y530X; p.R656X; c.806delC; c.1620delC), one in-frame deletion (c.2020_2022delGAG) and the first reported splice site mutation (c.1935+3A>C). A recurrent mutation (p.R656X) was detected in three independent families. We did not find any evidence for phenotype-genotype correlations between type and position of mutations and clinical features. In addition to the well-established phenotypic features of AAS, other clinical features are also reported and discussed. Copyright 2010 Wiley-Liss, Inc.

  6. Novel mutations in cyclin-dependent kinase-like 5 (CDKL5) gene in Indian cases of Rett syndrome.

    Science.gov (United States)

    Das, Dhanjit Kumar; Mehta, Bhakti; Menon, Shyla R; Raha, Sarbani; Udani, Vrajesh

    2013-03-01

    Rett syndrome is a severe neurodevelopmental disorder, almost exclusively affecting females and characterized by a wide spectrum of clinical manifestations. Both the classic and atypical forms of Rett syndrome are primarily due to mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with atypical Rett syndrome, X-linked infantile spasms sharing common features of generally early-onset seizures and mental retardation. CDKL5 is known as serine/threonine protein kinase 9 (STK9) and is mapped to the Xp22 region. It has a conserved serine/threonine kinase domain within its amino terminus and a large C-terminal region. Disease-causing mutations are distributed in both the amino terminal domain and in the large C-terminal domain. We have screened the CDKL5 gene in 44 patients with atypical Rett syndrome who had tested negative for MECP2 gene mutations and have identified 6 sequence variants, out of which three were novel and three known mutations. Two of these novel mutations p.V966I and p.A1011V were missense and p.H589H a silent mutation. Other known mutations identified were p.V999M, p.Q791P and p.T734A. Sequence homology for all the mutations revealed that the two mutations (p.Q791P and p.T734A) were conserved across species. This indicated the importance of these residues in structure and function of the protein. The damaging effects of these mutations were analysed in silico using PolyPhen-2 online software. The PolyPhen-2 scores of p.Q791P and p.T734A were 0.998 and 0.48, revealing that these mutations could be deleterious and might have potential functional effect. All other mutations had a low score suggesting that they might not alter the activity of CDKL5. We have also analysed the position of the mutations in the CDKL5 protein and found that all the mutations were present in the C-terminal domain of the protein. The C-terminal domain is required for

  7. Fifteen novel FBN1 mutations causing Marfan syndrome detected by heteroduplex analysis of genomic amplicons

    Energy Technology Data Exchange (ETDEWEB)

    Nijbroek, G.; Sood, S.; McIntosh, I. [John Hopkins Univ. School of Medicine, Baltimore, MD (United States)] [and others

    1995-07-01

    Mutations in the gene encoding fibrillin-1 (FBN1), a component of the extracellular microfibril, cause the Marfan syndrome (MFS). This statement is supported by the observations that the classic Marfan phenotype cosegregates with intragenic and/or flanking marker alleles in all families tested and that a significant number of FBN1 mutations have been identified in affected individuals. We have now devised a method to screen the entire coding sequence and flanking splice junctions of FBN1. On completion for a panel of nine probands with classic MFS, six new mutations were identified that accounted for disease in seven (78%) of nine patients. Nine additional new mutations have been characterized in the early stages of a larger screening project. These 15 mutations were equally distributed throughout the gene and, with one exception, were specific to single families. One-third of mutations created premature termination codons, and 6 of 15 substituted residues with putative significance for calcium finding to epidermal growth factor (EGF)-like domains. Mutations causing severe and rapidly progressive disease that presents in the neonatal period can occur in a larger region of the gene than previously demonstrated, and the nature of the mutation is as important a determinant as its location, in predisposing to this phenotype. 56 refs., 5 figs., 3 tabs.

  8. De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome

    NARCIS (Netherlands)

    Hoischen, Alexander; van Bon, Bregje W. M.; Rodríguez-Santiago, Benjamín; Gilissen, Christian; Vissers, Lisenka E. L. M.; de Vries, Petra; Janssen, Irene; van Lier, Bart; Hastings, Rob; Smithson, Sarah F.; Newbury-Ecob, Ruth; Kjaergaard, Susanne; Goodship, Judith; McGowan, Ruth; Bartholdi, Deborah; Rauch, Anita; Peippo, Maarit; Cobben, Jan M.; Wieczorek, Dagmar; Gillessen-Kaesbach, Gabriele; Veltman, Joris A.; Brunner, Han G.; de Vries, Bert B. B. A.

    2011-01-01

    Bohring-Opitz syndrome is characterized by severe intellectual disability, distinctive facial features and multiple congenital malformations. We sequenced the exomes of three individuals with Bohring-Opitz syndrome and in each identified heterozygous de novo nonsense mutations in ASXL1, which is

  9. Expression defect size among unclassified MLH1 variants determines pathogenicity in Lynch syndrome diagnosis

    DEFF Research Database (Denmark)

    Hinrichsen, Inga; Brieger, Angela; Trojan, Jörg

    2013-01-01

    Lynch syndrome is caused by a germline mutation in a mismatch repair gene, most commonly the MLH1 gene. However, one third of the identified alterations are missense variants with unclear clinical significance. The functionality of these variants can be tested in the laboratory, but the results...

  10. A de novo SOX10 mutation causing severe type 4 Waardenburg syndrome without Hirschsprung disease.

    Science.gov (United States)

    Sznajer, Yves; Coldéa, Cristina; Meire, Françoise; Delpierre, Isabelle; Sekhara, Tayeb; Touraine, Renaud L

    2008-04-15

    Type 4 Waardenburg syndrome represents a well define entity caused by neural crest derivatives anomalies (melanocytes, intrinsic ganglion cells, central, autonomous and peripheral nervous systems) leading, with variable expressivity, to pigmentary anomalies, deafness, mental retardation, peripheral neuropathy, and Hirschsprung disease. Autosomal dominant mode of inheritance is prevalent when Sox10 gene mutation is identified. We report the natural history of a child who presented with synophrys, vivid blue eye, deafness, bilateral complete semicircular canals agenesis with mental retardation, subtle signs for peripheral neuropathy and lack of Hirschsprung disease. SOX10 gene sequencing identified "de novo" splice site mutation (c.698-2A > C). The present phenotype and the genotype findings underline the wide spectrum of SOX10 gene implication in unusual type 4 Waardenburg syndrome patient. Copyright 2008 Wiley-Liss, Inc.

  11. De Novo Mutations in CHD4, an ATP-Dependent Chromatin Remodeler Gene, Cause an Intellectual Disability Syndrome with Distinctive Dysmorphisms.

    Science.gov (United States)

    Weiss, Karin; Terhal, Paulien A; Cohen, Lior; Bruccoleri, Michael; Irving, Melita; Martinez, Ariel F; Rosenfeld, Jill A; Machol, Keren; Yang, Yaping; Liu, Pengfei; Walkiewicz, Magdalena; Beuten, Joke; Gomez-Ospina, Natalia; Haude, Katrina; Fong, Chin-To; Enns, Gregory M; Bernstein, Jonathan A; Fan, Judith; Gotway, Garrett; Ghorbani, Mohammad; van Gassen, Koen; Monroe, Glen R; van Haaften, Gijs; Basel-Vanagaite, Lina; Yang, Xiang-Jiao; Campeau, Philippe M; Muenke, Maximilian

    2016-10-06

    Chromodomain helicase DNA-binding protein 4 (CHD4) is an ATP-dependent chromatin remodeler involved in epigenetic regulation of gene transcription, DNA repair, and cell cycle progression. Also known as Mi2β, CHD4 is an integral subunit of a well-characterized histone deacetylase complex. Here we report five individuals with de novo missense substitutions in CHD4 identified through whole-exome sequencing and web-based gene matching. These individuals have overlapping phenotypes including developmental delay, intellectual disability, hearing loss, macrocephaly, distinct facial dysmorphisms, palatal abnormalities, ventriculomegaly, and hypogonadism as well as additional findings such as bone fusions. The variants, c.3380G>A (p.Arg1127Gln), c.3443G>T (p.Trp1148Leu), c.3518G>T (p.Arg1173Leu), and c.3008G>A, (p.Gly1003Asp) (GenBank: NM_001273.3), affect evolutionarily highly conserved residues and are predicted to be deleterious. Previous studies in yeast showed the equivalent Arg1127 and Trp1148 residues to be crucial for SNF2 function. Furthermore, mutations in the same positions were reported in malignant tumors, and a de novo missense substitution in an equivalent arginine residue in the C-terminal helicase domain of SMARCA4 is associated with Coffin Siris syndrome. Cell-based studies of the p.Arg1127Gln and p.Arg1173Leu mutants demonstrate normal localization to the nucleus and HDAC1 interaction. Based on these findings, the mutations potentially alter the complex activity but not its formation. This report provides evidence for the role of CHD4 in human development and expands an increasingly recognized group of Mendelian disorders involving chromatin remodeling and modification. Published by Elsevier Inc.

  12. Sector Retinitis Pigmentosa Associated With Novel Compound Heterozygous Mutations of CDH23.

    Science.gov (United States)

    Branson, Sara V; McClintic, Jedediah I; Stamper, Tara H; Haldeman-Englert, Chad R; John, Vishak J

    2016-02-01

    Usher syndrome is an autosomal recessive condition characterized by retinitis pigmentosa (RP) and congenital hearing loss, with or without vestibular dysfunction. Allelic variants of CDH23 cause both Usher syndrome type 1D (USH1D) and a form of nonsyndromic hearing loss (DFNB12). The authors describe here a 34-year-old patient with congenital hearing loss and a new diagnosis of sector RP who was found to have two novel compound heterozygous mutations in CDH23, including one missense (c.8530C > A; p.Pro2844Thr) and one splice-site (c.5820 + 5G > A) mutation. This is the first report of sector RP associated with these types of mutations in CDH23. Copyright 2016, SLACK Incorporated.

  13. Bartter and Gitelman syndromes: Spectrum of clinical manifestations caused by different mutations

    Science.gov (United States)

    Al Shibli, Amar; Narchi, Hassib

    2015-01-01

    Bartter and Gitelman syndromes (BS and GS) are inherited disorders resulting in defects in renal tubular handling of sodium, potassium and chloride. Previously considered as genotypic and phenotypic heterogeneous diseases, recent evidence suggests that they constitute a spectrum of disease caused by different genetic mutations with the molecular defects of chloride reabsorption originating at different sites of the nephron in each condition. Although they share some characteristic metabolic abnormalities such as hypokalemia, metabolic alkalosis, hyperplasia of the juxtaglomerular apparatus with hyperreninemia, hyperaldosteronism, the clinical and laboratory manifestations may not always allow distinction between them. Diuretics tests, measuring the changes in urinary fractional excretion of chloride from baseline after administration of either hydrochlorothiazide or furosemide show very little change (< 2.3%) in the fractional excretion of chloride from baseline in GS when compared with BS, except when BS is associated with KCNJ1 mutations where a good response to both diuretics exists. The diuretic test is not recommended for infants or young children with suspected BS because of a higher risk of volume depletion in such children. Clinical symptoms and biochemical markers of GS and classic form of BS (type III) may overlap and thus genetic analysis may specify the real cause of symptoms. However, although genetic analysis is available, its use remains limited because of limited availability, large gene dimensions, lack of hot-spot mutations, heavy workup time and costs involved. Furthermore, considerable overlap exists between the different genotypes and phenotypes. Although BS and GS usually have distinct presentations and are associated with specific gene mutations, there remains considerable overlap between their phenotypes and genotypes. Thus, they are better described as a spectrum of clinical manifestations caused by different gene mutations. PMID:26140272

  14. Eight novel F13A1 gene missense mutations in patients with mild FXIII deficiency: in silico analysis suggests changes in FXIII-A subunit structure/function.

    Science.gov (United States)

    Biswas, Arijit; Ivaskevicius, Vytautas; Thomas, Anne; Varvenne, Michael; Brand, Brigitte; Rott, Hannelore; Haussels, Iris; Ruehl, Heiko; Scholz, Ute; Klamroth, Robert; Oldenburg, Johannes

    2014-10-01

    Mild FXIII deficiency is an under-diagnosed disorder because the carriers of this deficiency are often asymptomatic and reveal a phenotype only under special circumstances like surgery or induced trauma. Mutational reports from this type of deficiency have been rare. In this study, we present the phenotypic and genotypic data of nine patients showing mild FXIII-A deficiency caused by eight novel heterozygous missense mutations (Pro166Leu, Arg171Gln, His342Tyr, Gln415Arg, Leu529Pro, Gln601Lys, Arg703Gln and Arg715Gly) in the F13A1 gene. None of these variants were seen in 200 healthy controls. In silico structural analysis of the local wild-type protein structures (activated and non-activated) from X-ray crystallographic models downloaded from the protein databank identified potential structural/functional effects for the identified mutations. The missense mutations in the core domain are suggested to be directly influencing the catalytic triad. Mutations on other domains might influence other critical factors such as activation peptide cleavage or the barrel domain integrity. In vitro expression and subsequent biochemical studies in the future will be able to confirm the pathophysiological mechanisms proposed for the mutations in this article.

  15. Disabilities caused by unstable mutations in Costa Rica

    OpenAIRE

    Morales Montero, Fernando; Cuenca Berger, Patricia; Castro Volio, Isabel

    2004-01-01

    Myotonic dystrophy and fragile X syndrome are two genetically determined relatively common disabilities. Both are examples of a new type of mutation mechanism called unstable or dynamic mutations, triple repeats expansions or DNA amplification. Fragile X syndrome is recognized as the main cause of hereditary mental retardation and myotonic dystrophy is considered the most common muscular dystrophy of adults. This is a prospective non randomized study of clinically affected people,...

  16. Hay-Wells syndrome is caused by heterozygous missense mutations in the SAM domain of p63.

    NARCIS (Netherlands)

    McGrath, J.A.; Duijf, P.H.; Doetsch, V.; Irvine, A.D.; Waal, R.M.W. de; Vanmolkot, K.R.; Wessagowit, V.; Kelly, A.E.; Atherton, D.J.; Griffiths, W.A.; Orlow, S.J.; Haeringen, A. van; Ausems, M.G.E.M.; Yang, A.; McKeon, F.; Bamshad, M.; Brunner, H.G.; Hamel, B.C.J.; Bokhoven, J.H.L.M. van

    2001-01-01

    Hay-Wells syndrome, also known as ankyloblepharon-ectodermal dysplasia-clefting (AEC) syndrome (OMIM 106260), is a rare autosomal dominant disorder characterized by congenital ectodermal dysplasia, including alopecia, scalp infections, dystrophic nails, hypodontia, ankyloblepharon and cleft lip

  17. Hay-Wells syndrome is caused by heterozygous missense mutations in the SAM domain of p63

    NARCIS (Netherlands)

    McGrath, JA; Duijf, PHG; Doetsch, [No Value; Irvine, AD; de Waal, R; Vanmolkot, KRJ; Wessagowit, [No Value; Kelly, A; Atherton, DJ; Griffiths, WAD; Orlow, SJ; van Haeringen, A; Ausems, MGEM; Yang, A; McKeon, F; Bamshad, MA; Brunner, HG; Hamel, BCJ; van Bokhoven, H

    2001-01-01

    Hay-Wells syndrome, also known as ankyloblepharon-ectodermal dysplasia-clefting (AEC) syndrome (OMIM 106260), is a rare autosomal dominant disorder characterized by congenital ectodermal dysplasia, including alopecia, scalp infections, dystrophic nails, hypodontia, ankyloblepharon and cleft lip

  18. GBA2 Mutations Cause a Marinesco-Sjögren-Like Syndrome: Genetic and Biochemical Studies.

    Directory of Open Access Journals (Sweden)

    Kristoffer Haugarvoll

    Full Text Available With the advent new sequencing technologies, we now have the tools to understand the phenotypic diversity and the common occurrence of phenocopies. We used these techniques to investigate two Norwegian families with an autosomal recessive cerebellar ataxia with cataracts and mental retardation.Single nucleotide polymorphism (SNP chip analysis followed by Exome sequencing identified a 2 bp homozygous deletion in GBA2 in both families, c.1528_1529del [p.Met510Valfs*17]. Furthermore, we report the biochemical characterization of GBA2 in these patients. Our studies show that a reduced activity of GBA2 is sufficient to elevate the levels of glucosylceramide to similar levels as seen in Gaucher disease. Furthermore, leucocytes seem to be the proper enzyme source for in vitro analysis of GBA2 activity.We report GBA2 mutations causing a Marinesco-Sjögren-like syndrome in two Norwegian families. One of the families was originally diagnosed with Marinesco-Sjögren syndrome based on an autosomal recessive cerebellar ataxia with cataracts and mental retardation. Our findings highlight the phenotypic variability associated with GBA2 mutations, and suggest that patients with Marinesco-Sjögren-like syndromes should be tested for mutations in this gene.

  19. Novel GABRG2 mutations cause familial febrile seizures

    Science.gov (United States)

    Boillot, Morgane; Morin-Brureau, Mélanie; Picard, Fabienne; Weckhuysen, Sarah; Lambrecq, Virginie; Minetti, Carlo; Striano, Pasquale; Zara, Federico; Iacomino, Michele; Ishida, Saeko; An-Gourfinkel, Isabelle; Daniau, Mailys; Hardies, Katia; Baulac, Michel; Dulac, Olivier; Leguern, Eric; Nabbout, Rima

    2015-01-01

    Objective: To identify the genetic cause in a large family with febrile seizures (FS) and temporal lobe epilepsy (TLE) and subsequently search for additional mutations in a cohort of 107 families with FS, with or without epilepsy. Methods: The cohort consisted of 1 large family with FS and TLE, 64 smaller French families recruited through a national French campaign, and 43 Italian families. Molecular analyses consisted of whole-exome sequencing and mutational screening. Results: Exome sequencing revealed a p.Glu402fs*3 mutation in the γ2 subunit of the GABAA receptor gene (GABRG2) in the large family with FS and TLE. Three additional nonsense and frameshift GABRG2 mutations (p.Arg136*, p.Val462fs*33, and p.Pro59fs*12), 1 missense mutation (p.Met199Val), and 1 exonic deletion were subsequently identified in 5 families of the follow-up cohort. Conclusions: We report GABRG2 mutations in 5.6% (6/108) of families with FS, with or without associated epilepsy. This study provides evidence that GABRG2 mutations are linked to the FS phenotype, rather than epilepsy, and that loss-of-function of GABAA receptor γ2 subunit is the probable underlying pathogenic mechanism. PMID:27066572

  20. Missense variants in plakophilin-2 in arrhythmogenic right ventricular cardiomyopathy patients - disease - causing or innocent bystanders?

    DEFF Research Database (Denmark)

    Christensen, A.H.; Benn, M.; Tybjaerg-Hansen, A.

    2009-01-01

    Objectives: Mutations in genes encoding desmosomal proteins have been linked to arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). We hypothesized that a Scandinavian ARVC/D population would have a different spectrum of plakophilin-2 (PKP2) mutations and that some of the reported...... missense mutations may not be pathogenic. Methods: We screened 53 unrelated patients fulfilling Task Force criteria for ARVC/D for mutations in PKP2 by direct sequencing. Results: Seven different mutations were identified: two insertion/deletions (E329fsX352, P401fsX406), 1 splice site (2146-2A>T), 1 non...

  1. Missense variants in plakophilin-2 in arrhythmogenic right ventricular cardiomyopathy patients--disease-causing or innocent bystanders?

    DEFF Research Database (Denmark)

    Christensen, Alex Hørby; Benn, Marianne; Tybjaerg-Hansen, Anne

    2010-01-01

    Objectives: Mutations in genes encoding desmosomal proteins have been linked to arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). We hypothesized that a Scandinavian ARVC/D population would have a different spectrum of plakophilin-2 (PKP2) mutations and that some of the reported...... missense mutations may not be pathogenic. Methods: We screened 53 unrelated patients fulfilling Task Force criteria for ARVC/D for mutations in PKP2 by direct sequencing. Results: Seven different mutations were identified: two insertion/deletions (E329fsX352, P401fsX406), 1 splice site (2146-2A>T), 1 non...

  2. Structural Effects of Some Relevant Missense Mutations on the MECP2-DNA Binding: A MD Study Analyzed by Rescore+, a Versatile Rescoring Tool of the VEGA ZZ Program.

    Science.gov (United States)

    Pedretti, Alessandro; Granito, Cinzia; Mazzolari, Angelica; Vistoli, Giulio

    2016-09-01

    DNA methylation plays key roles in mammalian cells and is modulated by a set of proteins which recognize symmetrically methylated nucleotides. Among them, the protein MECP2 shows multifunctional roles repressing and/or activating genes by binding to both methylated and unmethylated regions of the genome. The interest for this protein markedly increased from the observation that its mutations are the primary cause of Rett syndrome, a neurodevelopmental disorder which causes mental retardation in young females. Thus, the present study is aimed to investigate the effects of some of these known pathogenic missense mutations (i.e. R106Q, R106W, R111G, R133C and R133H) on the MECP2 folding and DNA binding by molecular dynamics simulations. The effects of the simulated mutations are also parameterized by using a here proposed new tool, named Rescore+, implemented in the VEGA ZZ suite of programs, which calculates a set of scoring functions on all frames of a trajectory or on all complexes contained in a database thus allowing an easy rescoring of results coming from MD or docking simulations. The obtained results revealed that the reported loss of the MECP2 function induced by the simulated mutations can be ascribed to both stabilizing and destabilizing effect on DNA binding. The study confirms that MD simulations are particularly useful to rationalize and predict the mutation effects offering insightful information for diagnostics and drug design. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly

    NARCIS (Netherlands)

    Braun, Daniela A; Rao, Jia; Mollet, Geraldine; Schapiro, David; Daugeron, Marie-Claire; Tan, Weizhen; Gribouval, Olivier; Boyer, Olivia; Revy, Patrick; Jobst-Schwan, Tilman; Schmidt, Johanna Magdalena; Lawson, Jennifer A; Schanze, Denny; Ashraf, Shazia; Ullmann, Jeremy F P; Hoogstraten, Charlotte A; Boddaert, Nathalie; Collinet, Bruno; Martin, Gaëlle; Liger, Dominique; Lovric, Svjetlana; Furlano, Monica; Guerrera, I Chiara; Sanchez-Ferras, Oraly; Hu, Jennifer F; Boschat, Anne-Claire; Sanquer, Sylvia; Menten, Björn; Vergult, Sarah; De Rocker, Nina; Airik, Merlin; Hermle, Tobias; Shril, Shirlee; Widmeier, Eugen; Gee, Heon Yung; Choi, Won-Il; Sadowski, Carolin E; Pabst, Werner L; Warejko, Jillian K; Daga, Ankana; Basta, Tamara; Matejas, Verena; Scharmann, Karin; Kienast, Sandra D; Behnam, Babak; Beeson, Brendan; Begtrup, Amber; Bruce, Malcolm; Ch'ng, Gaik-Siew; Lin, Shuan-Pei; Chang, Jui-Hsing; Chen, Chao-Huei; Cho, Megan T; Gaffney, Patrick M; Gipson, Patrick E; Hsu, Chyong-Hsin; Kari, Jameela A; Ke, Yu-Yuan; Kiraly-Borri, Cathy; Lai, Wai-Ming; Lemyre, Emmanuelle; Littlejohn, Rebecca Okashah; Masri, Amira; Moghtaderi, Mastaneh; Nakamura, Kazuyuki; Ozaltin, Fatih; Praet, Marleen; Prasad, Chitra; Prytula, Agnieszka; Roeder, Elizabeth R; Rump, Patrick; Schnur, Rhonda E; Shiihara, Takashi; Sinha, Manish D; Soliman, Neveen A; Soulami, Kenza; Sweetser, David A; Tsai, Wen-Hui; Tsai, Jeng-Daw; Topaloglu, Rezan; Vester, Udo; Viskochil, David H; Vatanavicharn, Nithiwat; Waxler, Jessica L; Wierenga, Klaas J; Wolf, Matthias T F; Wong, Sik-Nin; Leidel, Sebastian A; Truglio, Gessica; Dedon, Peter C; Poduri, Annapurna; Mane, Shrikant; Lifton, Richard P; Bouchard, Maxime; Kannu, Peter; Chitayat, David; Magen, Daniella; Callewaert, Bert; van Tilbeurgh, Herman; Zenker, Martin; Antignac, Corinne; Hildebrandt, Friedhelm

    2017-01-01

    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS

  4. Waardenburg syndrome type 4: report of two new cases caused by SOX10 mutations in Spain.

    Science.gov (United States)

    Fernández, Raquel M; Núñez-Ramos, Raquel; Enguix-Riego, M Valle; Román-Rodríguez, Francisco José; Galán-Gómez, Enrique; Blesa-Sánchez, Emilio; Antiñolo, Guillermo; Núñez-Núñez, Ramón; Borrego, Salud

    2014-02-01

    Shah-Waardenburg syndrome or Waardenburg syndrome type 4 (WS4) is a neurocristopathy characterized by the association of deafness, depigmentation and Hirschsprung disease. Three disease-causing genes have been identified so far for WS4: EDNRB, EDN3, and SOX10. SOX10 mutations, found in 45-55% of WS4 patients, are inherited in autosomal dominant way. In addition, mutations in SOX10 are also responsible for an extended syndrome involving peripheral and central neurological phenotypes, referred to as PCWH (peripheral demyelinating neuropathy, central dysmyelinating leucodystrophy, Waardenburg syndrome, Hirschsprung disease). Such mutations are mostly private, and a high intra- and inter-familial variability exists. In this report, we present a patient with WS4 and a second with PCWH due to SOX10 mutations supporting again the genetic and phenotypic heterogeneity of these syndromes. Interestingly, the WS4 family carries an insertion of 19 nucleotides in exon 5 of SOX10, which results in distinct phenotypes along three different generations: hypopigmentation in the maternal grandmother, hearing loss in the mother, and WS4 in the proband. Since mosaicism cannot explain the three different related-WS features observed in this family, we propose as the most plausible explanation the existence of additional molecular events, acting in an additive or multiplicative fashion, in genes or regulatory regions unidentified so far. On the other hand, the PCWH case was due to a de novo deletion in exon 5 of the gene. Efforts should be devoted to unravel the mechanisms underlying the intrafamilial phenotypic variability observed in the families affected, and to identify new genes responsible for the still unsolved WS4 cases. © 2013 Wiley Periodicals, Inc.

  5. Waardenburg syndrome: Novel mutations in a large Brazilian sample.

    Science.gov (United States)

    Bocángel, Magnolia Astrid Pretell; Melo, Uirá Souto; Alves, Leandro Ucela; Pardono, Eliete; Lourenço, Naila Cristina Vilaça; Marcolino, Humberto Vicente Cezar; Otto, Paulo Alberto; Mingroni-Netto, Regina Célia

    2018-06-01

    This paper deals with the molecular investigation of Waardenburg syndrome (WS) in a sample of 49 clinically diagnosed probands (most from southeastern Brazil), 24 of them having the type 1 (WS1) variant (10 familial and 14 isolated cases) and 25 being affected by the type 2 (WS2) variant (five familial and 20 isolated cases). Sequential Sanger sequencing of all coding exons of PAX3, MITF, EDN3, EDNRB, SOX10 and SNAI2 genes, followed by CNV detection by MLPA of PAX3, MITF and SOX10 genes in selected cases revealed many novel pathogenic variants. Molecular screening, performed in all patients, revealed 19 causative variants (19/49 = 38.8%), six of them being large whole-exon deletions detected by MLPA, seven (four missense and three nonsense substitutions) resulting from single nucleotide substitutions (SNV), and six representing small indels. A pair of dizygotic affected female twins presented the c.430delC variant in SOX10, but the mutation, imputed to gonadal mosaicism, was not found in their unaffected parents. At least 10 novel causative mutations, described in this paper, were found in this Brazilian sample. Copy-number-variation detected by MLPA identified the causative mutation in 12.2% of our cases, corresponding to 31.6% of all causative mutations. In the majority of cases, the deletions were sporadic, since they were not present in the parents of isolated cases. Our results, as a whole, reinforce the fact that the screening of copy-number-variants by MLPA is a powerful tool to identify the molecular cause in WS patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Risk of cancer by ATM missense mutations in the general population

    DEFF Research Database (Denmark)

    Dombernowsky, Sarah Louise; Weischer, Maren; Allin, Kristine Højgaard

    2008-01-01

    PURPOSE: Truncating and missense mutations in the ATM gene, which cause insufficient DNA damage surveillance, allow damaged cells to proceed into mitosis, which eventually results in increased cancer susceptibility. We tested the hypotheses that ATM Ser49Cys and ATM Ser707Pro heterozygosity......: Multifactorially adjusted hazard ratios for ATM Ser49Cys heterozygotes versus noncarriers were 1.2 (95% CI, 0.9 to 1.5) for cancer overall, 0.8 (95% CI, 0.3 to 2.0) for breast cancer, 4.8 (95% CI, 2.2 to 11) for melanoma, 2.3 (95% CI, 1.1 to 5.0) for prostate cancer, and 3.4 (95% CI, 1.1 to 11) for cancer...... of the oral cavity/pharynx. Multifactorially adjusted hazard ratios for ATM Ser707Pro heterozygotes versus noncarriers were 0.8 (95% CI, 0.6 to 1.2) for cancer overall, 0.6 (95% CI, 0.2 to 1.6) for breast cancer, 10 (95% CI, 1.1 to 93) for thyroid/other endocrine tumors, and 2.7 (95% CI, 1.0 to 7...

  7. [Epigenome: what we learned from Rett syndrome, a neurological disease caused by mutation of a methyl-CpG binding protein].

    Science.gov (United States)

    Kubota, Takeo

    2013-01-01

    Epigenome is defined as DNA and histone modification-dependent gene regulation system. Abnormalities in this system are known to cause various neuro-developmental diseases. We recently reported that neurological symptoms of Rett syndrome, which is an autistic disorder caused by mutations in methyl-CpG binding protein 2 (MeCP2), was associated with failure of epigenomic gene regulation in neuronal cells, and that clinical differences in the identical twins with Rett syndrome in the differences in DNA methylation in neuronal genes, but not caused by DNA sequence differences. Since central nervus system requires precise gene regulation, neurological diseases including Alzheimer and Parkinson diseases may be caused by acquired DNA modification (epigenomic) changes that results in aberrant gene regulation as well as DNA sequence changes congenitally occurred (mutation).

  8. Deletions and de novo mutations of SOX11 are associated with a neurodevelopmental disorder with features of Coffin–Siris syndrome

    Science.gov (United States)

    Hempel, Annmarie; Pagnamenta, Alistair T; Blyth, Moira; Mansour, Sahar; McConnell, Vivienne; Kou, Ikuyo; Ikegawa, Shiro; Tsurusaki, Yoshinori; Matsumoto, Naomichi; Lo-Castro, Adriana; Plessis, Ghislaine; Albrecht, Beate; Battaglia, Agatino; Taylor, Jenny C; Howard, Malcolm F; Keays, David; Sohal, Aman Singh; Kühl, Susanne J; Kini, Usha; McNeill, Alisdair

    2016-01-01

    Background SOX11 is a transcription factor proposed to play a role in brain development. The relevance of SOX11 to human developmental disorders was suggested by a recent report of SOX11 mutations in two patients with Coffin–Siris syndrome. Here we further investigate the role of SOX11 variants in neurodevelopmental disorders. Methods We used array based comparative genomic hybridisation and trio exome sequencing to identify children with intellectual disability who have deletions or de novo point mutations disrupting SOX11. The pathogenicity of the SOX11 mutations was assessed using an in vitro gene expression reporter system. Loss-of-function experiments were performed in xenopus by knockdown of Sox11 expression. Results We identified seven individuals with chromosome 2p25 deletions involving SOX11. Trio exome sequencing identified three de novo SOX11 variants, two missense (p.K50N; p.P120H) and one nonsense (p.C29*). The biological consequences of the missense mutations were assessed using an in vitro gene expression system. These individuals had microcephaly, developmental delay and shared dysmorphic features compatible with mild Coffin–Siris syndrome. To further investigate the function of SOX11, we knocked down the orthologous gene in xenopus. Morphants had significant reduction in head size compared with controls. This suggests that SOX11 loss of function can be associated with microcephaly. Conclusions We thus propose that SOX11 deletion or mutation can present with a Coffin–Siris phenotype. PMID:26543203

  9. Selfish spermatogonial selection

    DEFF Research Database (Denmark)

    Lim, Jasmine; Maher, Geoffrey J; Turner, Gareth D H

    2012-01-01

    The dominant congenital disorders Apert syndrome, achondroplasia and multiple endocrine neoplasia-caused by specific missense mutations in the FGFR2, FGFR3 and RET proteins respectively-represent classical examples of paternal age-effect mutation, a class that arises at particularly high frequenc......The dominant congenital disorders Apert syndrome, achondroplasia and multiple endocrine neoplasia-caused by specific missense mutations in the FGFR2, FGFR3 and RET proteins respectively-represent classical examples of paternal age-effect mutation, a class that arises at particularly high...

  10. A FBN1 mutation association with different phenotypes of Marfan syndrome in a Chinese family.

    Science.gov (United States)

    Li, Yapeng; Xu, Jianhua; Chen, Mingjie; Du, Binbin; Li, Qiaoli; Xing, Qinghe; Zhang, Yanzhou

    2016-09-01

    Previous studies demonstrated that patients with different FBN1 mutations often present more considerable phenotypic variation compared to different members of the related family carrying a same mutation. The purpose of our study was to identify pathogenic mutation and provide more information about genotype-phenotypic correlations in a large Chinese family with Marfan syndrome. 15 related family members from a Chinese 4-generation pedigree with Marfan syndrome underwent physical, ophthalmologic, radiological and cardiovascular examinations. The propositus has De Bakey III aortic dissection and didn't fulfill the revised Ghent criteria for Marfan syndrome. Nine family members have ectopia lentis and their echocardiogram was normal. Five other family members have no evidence of Marfan syndrome. Genomic DNA was isolated from blood leukocytes. The exome sequencing was employed on the propositus, then the Sanger sequencing was conducted for mutation verification in other 14 participants of this family. The causative mutation in FBN1 discovered in the propositus was a known heterozygous missense mutation, c.1633T>G (p.R545C), in exon 14 (NM 000138). This same mutation was also identified in all 9 ectopia lentis patients and one unaffected 8-year-old girl. However, the same mutation was not discovered in other 4 unaffected family members. Our data enhance the information of genotype-phenotype correlation owing to FBN1 mutations. To our current knowledge, we firstly reported that the same FBN1 mutation, c. 1633C>T (Arg545Cys), was detected simultaneously in three different cardinal phenotypes (ectopia lentis, aortic dissection and unaffected) within one family. The unaffected girl with FBN1 mutation may presumably represent a rare case of nonpenetrance. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Under-recognition of acral peeling skin syndrome: 59 new cases with 15 novel mutations.

    Science.gov (United States)

    Szczecinska, W; Nesteruk, D; Wertheim-Tysarowska, K; Greenblatt, D T; Baty, D; Browne, F; Liu, L; Ozoemena, L; Terron-Kwiatkowski, A; McGrath, J A; Mellerio, J E; Morton, J; Woźniak, K; Kowalewski, C; Has, C; Moss, C

    2014-11-01

    Acral peeling skin syndrome (APSS) is a rare skin fragility disorder usually caused by mutations in the transglutaminase 5 gene (TGM5). We investigated the mutation spectrum of APSS in the U.K., Germany and Poland. We identified 59 children with APSS from 52 families. The phenotype was readily recognizable, with some variation in severity both within and between families. Most cases had been misdiagnosed as the localized form of epidermolysis bullosa simplex (EBS-loc). Eighteen different TGM5 mutations were identified, 15 of which were novel. Eight mutations were unique to a single family, nine each occurred in two families, while the common p.Gly113Cys mutation linked to a second missense variant p.Thr109Met occurred in 47 of the 52 families and was homozygous in 28. Most patients were of nonconsanguineous white European origin. We propose that APSS is under-reported and widely misdiagnosed as EBS-loc, with significant counselling implications as APSS is autosomal recessive while EBS-loc is dominant. We recommend screening for TGM5 mutations when EBS-loc is suspected but not confirmed by mutations in KRT5 or KRT14. Our report trebles the number of known TGM5 mutations. It provides further evidence that p.Gly113Cys is a founder mutation in the European population. This is consistent with the striking ethnic distribution of APSS in U.K., where the majority of patients are of nonconsanguineous white European origin, in contrast to the pattern of other recessive skin disorders. © 2014 British Association of Dermatologists.

  12. A novel homozygous variant in the SMOC1 gene underlying Waardenburg anophthalmia syndrome.

    Science.gov (United States)

    Ullah, Asmat; Umair, Muhammad; Ahmad, Farooq; Muhammad, Dost; Basit, Sulman; Ahmad, Wasim

    2017-01-01

    Waardenburg anophthalmia syndrome (WAS), also known as ophthalmo-acromelic syndrome or anophthalmia-syndactyly, is a rare congenital disorder that segregates in an autosomal recessive pattern. Clinical features of the syndrome include malformation of the eyes and the skeleton. Mostly, WAS is caused by mutations in the SMOC-1 gene. The present report describes a large consanguineous family of Pakistani origin segregating Waardenburg anophthalmia syndrome in an autosomal recessive pattern. Genotyping followed by Sanger sequencing was performed to search for a candidate gene. SNP genotyping using AffymetrixGeneChip Human Mapping 250K Nsp array established a single homozygous region among affected members on chromosome 14q23.1-q24.3 harboring the SMOC1 gene. Sequencing of the gene revealed a novel homozygous missense mutation (c.812G>A; p.Cys271Tyr) in the family. This is the first report of Waardenburg anophthalmia syndrome caused by a SMOC1 variant in a Pakistani population. The mutation identified in the present investigation extends the body of evidence implicating the gene SMOC-1 in causing WAS.

  13. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Barbara Gasse

    2017-06-01

    Full Text Available Amelogenesis imperfecta (AI designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene (MMP20 produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues, pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI.

  14. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta.

    Science.gov (United States)

    Gasse, Barbara; Prasad, Megana; Delgado, Sidney; Huckert, Mathilde; Kawczynski, Marzena; Garret-Bernardin, Annelyse; Lopez-Cazaux, Serena; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Stoetzel, Corinne; Bloch-Zupan, Agnès; Sire, Jean-Yves

    2017-01-01

    Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene ( MMP20 ) produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues), pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI.

  15. Loss of the BMP antagonist, SMOC-1, causes Ophthalmo-acromelic (Waardenburg Anophthalmia) syndrome in humans and mice.

    Science.gov (United States)

    Rainger, Joe; van Beusekom, Ellen; Ramsay, Jacqueline K; McKie, Lisa; Al-Gazali, Lihadh; Pallotta, Rosanna; Saponari, Anita; Branney, Peter; Fisher, Malcolm; Morrison, Harris; Bicknell, Louise; Gautier, Philippe; Perry, Paul; Sokhi, Kishan; Sexton, David; Bardakjian, Tanya M; Schneider, Adele S; Elcioglu, Nursel; Ozkinay, Ferda; Koenig, Rainer; Mégarbané, Andre; Semerci, C Nur; Khan, Ayesha; Zafar, Saemah; Hennekam, Raoul; Sousa, Sérgio B; Ramos, Lina; Garavelli, Livia; Furga, Andrea Superti; Wischmeijer, Anita; Jackson, Ian J; Gillessen-Kaesbach, Gabriele; Brunner, Han G; Wieczorek, Dagmar; van Bokhoven, Hans; Fitzpatrick, David R

    2011-07-01

    Ophthalmo-acromelic syndrome (OAS), also known as Waardenburg Anophthalmia syndrome, is defined by the combination of eye malformations, most commonly bilateral anophthalmia, with post-axial oligosyndactyly. Homozygosity mapping and subsequent targeted mutation analysis of a locus on 14q24.2 identified homozygous mutations in SMOC1 (SPARC-related modular calcium binding 1) in eight unrelated families. Four of these mutations are nonsense, two frame-shift, and two missense. The missense mutations are both in the second Thyroglobulin Type-1 (Tg1) domain of the protein. The orthologous gene in the mouse, Smoc1, shows site- and stage-specific expression during eye, limb, craniofacial, and somite development. We also report a targeted pre-conditional gene-trap mutation of Smoc1 (Smoc1(tm1a)) that reduces mRNA to ∼10% of wild-type levels. This gene-trap results in highly penetrant hindlimb post-axial oligosyndactyly in homozygous mutant animals (Smoc1(tm1a/tm1a)). Eye malformations, most commonly coloboma, and cleft palate occur in a significant proportion of Smoc1(tm1a/tm1a) embryos and pups. Thus partial loss of Smoc-1 results in a convincing phenocopy of the human disease. SMOC-1 is one of the two mammalian paralogs of Drosophila Pentagone, an inhibitor of decapentaplegic. The orthologous gene in Xenopus laevis, Smoc-1, also functions as a Bone Morphogenic Protein (BMP) antagonist in early embryogenesis. Loss of BMP antagonism during mammalian development provides a plausible explanation for both the limb and eye phenotype in humans and mice.

  16. Loss of the BMP antagonist, SMOC-1, causes Ophthalmo-acromelic (Waardenburg Anophthalmia syndrome in humans and mice.

    Directory of Open Access Journals (Sweden)

    Joe Rainger

    2011-07-01

    Full Text Available Ophthalmo-acromelic syndrome (OAS, also known as Waardenburg Anophthalmia syndrome, is defined by the combination of eye malformations, most commonly bilateral anophthalmia, with post-axial oligosyndactyly. Homozygosity mapping and subsequent targeted mutation analysis of a locus on 14q24.2 identified homozygous mutations in SMOC1 (SPARC-related modular calcium binding 1 in eight unrelated families. Four of these mutations are nonsense, two frame-shift, and two missense. The missense mutations are both in the second Thyroglobulin Type-1 (Tg1 domain of the protein. The orthologous gene in the mouse, Smoc1, shows site- and stage-specific expression during eye, limb, craniofacial, and somite development. We also report a targeted pre-conditional gene-trap mutation of Smoc1 (Smoc1(tm1a that reduces mRNA to ∼10% of wild-type levels. This gene-trap results in highly penetrant hindlimb post-axial oligosyndactyly in homozygous mutant animals (Smoc1(tm1a/tm1a. Eye malformations, most commonly coloboma, and cleft palate occur in a significant proportion of Smoc1(tm1a/tm1a embryos and pups. Thus partial loss of Smoc-1 results in a convincing phenocopy of the human disease. SMOC-1 is one of the two mammalian paralogs of Drosophila Pentagone, an inhibitor of decapentaplegic. The orthologous gene in Xenopus laevis, Smoc-1, also functions as a Bone Morphogenic Protein (BMP antagonist in early embryogenesis. Loss of BMP antagonism during mammalian development provides a plausible explanation for both the limb and eye phenotype in humans and mice.

  17. Alzheimer neuropathology without frontotemporal lobar degeneration hallmarks (TAR DNA-binding protein 43 inclusions) in missense progranulin mutation Cys139Arg.

    Science.gov (United States)

    Redaelli, Veronica; Rossi, Giacomina; Maderna, Emanuela; Kovacs, Gabor G; Piccoli, Elena; Caroppo, Paola; Cacciatore, Francesca; Spinello, Sonia; Grisoli, Marina; Sozzi, Giuliano; Salmaggi, Andrea; Tagliavini, Fabrizio; Giaccone, Giorgio

    2018-01-01

    Null mutations in progranulin gene (GRN) reduce the progranulin production resulting in haploinsufficiency and are tightly associated with tau-negative frontotemporal lobar degeneration with TAR DNA-binding protein 43-positive inclusions (FTLD-TDP). Missense mutations of GRN were also identified, but their effects are not completely clear, in particular unanswered is the question of what neuropathology they elicit, also considering that their occurrence has been reported in patients with typical clinical features of Alzheimer disease. They describe two fraternal twins carrying the missense GRN Cys139Arg mutation affected by late-onset dementia and we report the neuropathological study of one of them. Both patients were examined by neuroimaging, neuropsychological assessment and genetic analysis of GRN and other genes associated with dementia. The brain of one was obtained at autopsy and examined neuropathologically. One sister presented clinical and MRI features leading to the diagnosis of Alzheimer disease. The other underwent autopsy and the brain showed neuropathological hallmarks of Alzheimer disease with abundant Aβ-amyloid deposition and Braak stage V of neurofibrillary pathology, in the absence of the hallmark lesions of FTLD-TDP. Their findings may contribute to better clarify the role of progranulin in neurodegenerative diseases indicating that some GRN mutations, in particular missense ones, may act as strong risk factor for Alzheimer disease rather than induce FTLD-TDP. © 2016 International Society of Neuropathology.

  18. Four novel FBN1 mutations: Significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, H.C.; McIntosh, I.; Pyeritz, R.E.; Francomano, C.A. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)); Sakai, L.Y.; Corson, G.M.; Chalberg, S.C. (Oregon Health Sciences Univ., Portland (United States))

    1993-08-01

    Defects of fibrillin (FBN1), a glycoprotein component of the extracellular microfibril, cause Marfan syndrome. This disorder is characterized by marked inter- and intrafamilial variation in phenotypic severity. To understand the molecular basis for this clinical observation, the authors have screened the fibrillin gene (FBN1) on chromosome 15, including the newly cloned 5[prime] coding sequence, for disease-producing alterations in a panel of patients with a wide range of manifestations and clinical severity. All the missense mutations identified to date, including two novel mutations discussed here, are associated with classic and moderate to severe disease and occur at residues with putative significance for calcium binding to epidermal growth factor (EGF)-like domains. In contrast, two new mutations that create premature signals for termination of translation of mRNA and are associated with reduction in the amount of mutant allele transcript produce a range of phenotypic severity. The patient with the lowest amount of mutant transcript has the mildest disease. These data support a role for altered calcium binding to EGF-like domains in the pathogenesis of Marfan syndrome and suggest a dominant negative mechanism for the pathogenesis of this disorder. 26 refs., 6 figs., 1 tab.

  19. Mutations in RIT1 cause Noonan syndrome with possible juvenile myelomonocytic leukemia but are not involved in acute lymphoblastic leukemia.

    Science.gov (United States)

    Cavé, Hélène; Caye, Aurélie; Ghedira, Nehla; Capri, Yline; Pouvreau, Nathalie; Fillot, Natacha; Trimouille, Aurélien; Vignal, Cédric; Fenneteau, Odile; Alembik, Yves; Alessandri, Jean-Luc; Blanchet, Patricia; Boute, Odile; Bouvagnet, Patrice; David, Albert; Dieux Coeslier, Anne; Doray, Bérénice; Dulac, Olivier; Drouin-Garraud, Valérie; Gérard, Marion; Héron, Delphine; Isidor, Bertrand; Lacombe, Didier; Lyonnet, Stanislas; Perrin, Laurence; Rio, Marlène; Roume, Joëlle; Sauvion, Sylvie; Toutain, Annick; Vincent-Delorme, Catherine; Willems, Marjorie; Baumann, Clarisse; Verloes, Alain

    2016-08-01

    Noonan syndrome is a heterogeneous autosomal dominant disorder caused by mutations in at least eight genes involved in the RAS/MAPK signaling pathway. Recently, RIT1 (Ras-like without CAAX 1) has been shown to be involved in the pathogenesis of some patients. We report a series of 44 patients from 30 pedigrees (including nine multiplex families) with mutations in RIT1. These patients display a typical Noonan gestalt and facial phenotype. Among the probands, 8.7% showed postnatal growth retardation, 90% had congenital heart defects, 36% had hypertrophic cardiomyopathy (a lower incidence compared with previous report), 50% displayed speech delay and 52% had learning difficulties, but only 22% required special education. None had major skin anomalies. One child died perinatally of juvenile myelomonocytic leukemia. Compared with the canonical Noonan phenotype linked to PTPN11 mutations, patients with RIT1 mutations appear to be less severely growth retarded and more frequently affected by cardiomyopathy. Based on our experience, we estimate that RIT1 could be the cause of 5% of Noonan syndrome patients. Because mutations found constitutionally in Noonan syndrome are also found in several tumors in adulthood, we evaluated the potential contribution of RIT1 to leukemogenesis in Noonan syndrome. We screened 192 pediatric cases of acute lymphoblastic leukemias (96 B-ALL and 96 T-ALL) and 110 cases of juvenile myelomonocytic leukemias (JMML), but detected no variation in these tumoral samples, suggesting that Noonan patients with germline RIT1 mutations are not at high risk to developing JMML or ALL, and that RIT1 has at most a marginal role in these sporadic malignancies.

  20. Germline Missense Changes in the APC Gene and Their Relationship to Disease.

    Science.gov (United States)

    Scott, Rodney J; Crooks, Renee; Rose, Lindy; Attia, John; Thakkinstian, Ammarin; Thomas, Lesley; Spigelman, Allan D; Meldrum, Cliff J

    2004-05-15

    Familial adenomatous polyposis (FAP) is characterized by the presence of hundreds to thousands of adenomas that carpet the entire colon and rectum. Nonsense and frameshift mutations in the adenomatous polyposis coli (APC) gene account for the majority of mutations identified to date and predispose primarily to the typical disease phenotype. Some APC mutations are associated with a milder form of the disease known as attenuated FAP. Virtually all mutations that have been described in the APC gene result in the formation of a premature stop codon and very little is known about missense mutations apart from a common Ashkenazi Jewish mutation (1307 K) and a British E1317Q missense change. The incidence of missense mutations in the APC gene has been underreported since the APC gene lends itself to analysis using an artificial transcription and translation assay known as the Protein Truncation Test (PTT) or the In Vitro Synthetic Protein assay (IVSP).In this report we have used denaturing high performance liquid chromatography to analyse the entire coding sequence of the APC gene to determine if a cohort of patients adhering to the diagnostic criteria of FAP to assess the frequency of missense mutations in the APC gene. Altogether 112 patients were studied and 22 missense mutations were identified. From the total of 22 missense changes, 13 were silent changes and the remaining 9 resulted in amino acid substitutions. One or more of these changes were identified multiple times in 62.5% of the population under study.The results reveal that missense mutations in the APC gene appear not to radically alter protein function but may be associated with more subtle processing of RNA transcripts which in turn could result in the expression of differentially spliced forms of the APC gene which may interfere with the functional activity of the APC protein.

  1. Germline Missense Changes in the APC Gene and Their Relationship to Disease

    Directory of Open Access Journals (Sweden)

    Scott Rodney J

    2004-05-01

    Full Text Available Abstract Familial adenomatous polyposis (FAP is characterized by the presence of hundreds to thousands of adenomas that carpet the entire colon and rectum. Nonsense and frameshift mutations in the adenomatous polyposis coli (APC gene account for the majority of mutations identified to date and predispose primarily to the typical disease phenotype. Some APC mutations are associated with a milder form of the disease known as attenuated FAP. Virtually all mutations that have been described in the APC gene result in the formation of a premature stop codon and very little is known about missense mutations apart from a common Ashkenazi Jewish mutation (1307 K and a British E1317Q missense change. The incidence of missense mutations in the APC gene has been underreported since the APC gene lends itself to analysis using an artificial transcription and translation assay known as the Protein Truncation Test (PTT or the In Vitro Synthetic Protein assay (IVSP. In this report we have used denaturing high performance liquid chromatography to analyse the entire coding sequence of the APC gene to determine if a cohort of patients adhering to the diagnostic criteria of FAP to assess the frequency of missense mutations in the APC gene. Altogether 112 patients were studied and 22 missense mutations were identified. From the total of 22 missense changes, 13 were silent changes and the remaining 9 resulted in amino acid substitutions. One or more of these changes were identified multiple times in 62.5% of the population under study. The results reveal that missense mutations in the APC gene appear not to radically alter protein function but may be associated with more subtle processing of RNA transcripts which in turn could result in the expression of differentially spliced forms of the APC gene which may interfere with the functional activity of the APC protein.

  2. A novel common large genomic deletion and two new missense mutations identified in the Romanian phenylketonuria population.

    Science.gov (United States)

    Gemperle-Britschgi, Corinne; Iorgulescu, Daniela; Mager, Monica Alina; Anton-Paduraru, Dana; Vulturar, Romana; Thöny, Beat

    2016-01-15

    The mutation spectrum for the phenylalanine hydroxylase (PAH) gene was investigated in a cohort of 84 hyperphenylalaninemia (HPA) patients from Romania identified through newborn screening or neurometabolic investigations. Differential diagnosis identified 81 patients with classic PAH deficiency while 3 had tetrahydropterin-cofactor deficiency and/or remained uncertain due to insufficient specimen. PAH-genetic analysis included a combination of Sanger sequencing of exons and exon–intron boundaries, MLPA and NGS with genomic DNA, and cDNA analysis from immortalized lymphoblasts. A diagnostic efficiency of 99.4% was achieved, as for one allele (out of a total of 162 alleles) no mutation could be identified. The most prevalent mutation was p.Arg408Trp which was found in ~ 38% of all PKU alleles. Three novel mutations were identified, including the two missense mutations p.Gln226Lys and p.Tyr268Cys that were both disease causing by prediction algorithms, and the large genomic deletion EX6del7831 (c.509 + 4140_706 + 510del7831) that resulted in skipping of exon 6 based on PAH-cDNA analysis in immortalized lymphocytes. The genomic deletion was present in a heterozygous state in 12 patients, i.e. in ~ 8% of all the analyzed PKU alleles, and might have originated from a Romanian founder.

  3. Waardenburg syndrome type II in a Chinese patient caused by a novel nonsense mutation in the SOX10 gene.

    Science.gov (United States)

    Ma, Jing; Zhang, Tie-Song; Lin, Ken; Sun, Hao; Jiang, Hong-Chao; Yang, Yan-Li; Low, Fan; Gao, Ying-Qin; Ruan, Biao

    2016-06-01

    Waardenburg syndrome is a congenital genetic disorder. It is the most common type of syndromic hearing impairment with highly genetic heterogeneity and proved to be related by 6 genes as follows: PAX3, MITF, SNAI2, EDN3, EDNRB and SOX10. This article aims to identify the genetic causes of a Chinese WS child patient. A Chinese WS child was collected for clinical data collection by questionnaire survey. DNA samples of proband and his parents were extracted from peripheral blood samples. Six candidate genes were sequenced by the Trusight One sequencing panel on the illumina NextSeq 500 platform. A novel nonsense heterozygous mutation was found in the coding region of exon 2 in the SOX10 gene of proband. The novel nonsense heterozygous mutation could cause the replacement of the 55th lysine codon by stop codon (484T > C, C142R) and further more possibly cause terminating the protein translation in advance. However, both proband's parents had no mutation of genes above mentioned. The gene mutation of SOX10 [NM_006941.3 c.163A > T] is a novel nonsense mutation. No record of this mutation has been found in dbSNP, HGMD, 1000 Genomes Project, ClinVar and ESP6500 databases. It meets the condition of PS2 of strong evidence in 2015 ACMG Standards and Guidelines. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Structural, Functional, and Clinical Characterization of a Novel PTPN11 Mutation Cluster Underlying Noonan Syndrome.

    Science.gov (United States)

    Pannone, Luca; Bocchinfuso, Gianfranco; Flex, Elisabetta; Rossi, Cesare; Baldassarre, Giuseppina; Lissewski, Christina; Pantaleoni, Francesca; Consoli, Federica; Lepri, Francesca; Magliozzi, Monia; Anselmi, Massimiliano; Delle Vigne, Silvia; Sorge, Giovanni; Karaer, Kadri; Cuturilo, Goran; Sartorio, Alessandro; Tinschert, Sigrid; Accadia, Maria; Digilio, Maria C; Zampino, Giuseppe; De Luca, Alessandro; Cavé, Hélène; Zenker, Martin; Gelb, Bruce D; Dallapiccola, Bruno; Stella, Lorenzo; Ferrero, Giovanni B; Martinelli, Simone; Tartaglia, Marco

    2017-04-01

    Germline mutations in PTPN11, the gene encoding the Src-homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP2), cause Noonan syndrome (NS), a relatively common, clinically variable, multisystem disorder. Here, we report on the identification of five different PTPN11 missense changes affecting residues Leu 261 , Leu 262 , and Arg 265 in 16 unrelated individuals with clinical diagnosis of NS or with features suggestive for this disorder, specifying a novel disease-causing mutation cluster. Expression of the mutant proteins in HEK293T cells documented their activating role on MAPK signaling. Structural data predicted a gain-of-function role of substitutions at residues Leu 262 and Arg 265 exerted by disruption of the N-SH2/PTP autoinhibitory interaction. Molecular dynamics simulations suggested a more complex behavior for changes affecting Leu 261 , with possible impact on SHP2's catalytic activity/selectivity and proper interaction of the PTP domain with the regulatory SH2 domains. Consistent with that, biochemical data indicated that substitutions at codons 262 and 265 increased the catalytic activity of the phosphatase, while those affecting codon 261 were only moderately activating but impacted substrate specificity. Remarkably, these mutations underlie a relatively mild form of NS characterized by low prevalence of cardiac defects, short stature, and cognitive and behavioral issues, as well as less evident typical facial features. © 2017 WILEY PERIODICALS, INC.

  5. Observational cohort study of ventricular arrhythmia in adults with Marfan syndrome caused by FBN1 mutations.

    Directory of Open Access Journals (Sweden)

    Ali Aydin

    Full Text Available Marfan syndrome is associated with ventricular arrhythmia but risk factors including FBN1 mutation characteristics require elucidation.We performed an observational cohort study of 80 consecutive adults (30 men, 50 women aged 42±15 years with Marfan syndrome caused by FBN1 mutations. We assessed ventricular arrhythmia on baseline ambulatory electrocardiography as >10 premature ventricular complexes per hour (>10 PVC/h, as ventricular couplets (Couplet, or as non-sustained ventricular tachycardia (nsVT, and during 31±18 months of follow-up as ventricular tachycardia (VT events (VTE such as sudden cardiac death (SCD, and sustained ventricular tachycardia (sVT. We identified >10 PVC/h in 28 (35%, Couplet/nsVT in 32 (40%, and VTE in 6 patients (8%, including 3 with SCD (4%. PVC>10/h, Couplet/nsVT, and VTE exhibited increased N-terminal pro-brain natriuretic peptide serum levels(P10/h and Couplet/nsVT also related to increased indexed end-systolic LV diameters (P = .024 and P = .020, to moderate mitral valve regurgitation (P = .018 and P = .003, and to prolonged QTc intervals (P = .001 and P = .006, respectively. Moreover, VTE related to mutations in exons 24-32 (P = .021. Kaplan-Meier analysis corroborated an association of VTE with increased NT-proBNP (P<.001 and with mutations in exons 24-32 (P<.001.Marfan syndrome with causative FBN1 mutations is associated with an increased risk for arrhythmia, and affected persons may require life-long monitoring. Ventricular arrhythmia on electrocardiography, signs of myocardial dysfunction and mutations in exons 24-32 may be risk factors of VTE.

  6. Electrophysiological characteristics of a SCN5A voltage sensors mutation R1629Q associated with Brugada syndrome.

    Directory of Open Access Journals (Sweden)

    Zhipeng Zeng

    Full Text Available Brugada syndrome (BrS is an inherited arrhythmogenic syndrome leading to sudden cardiac death, partially associated with autosomal dominant mutations in SCN5A, which encodes the cardiac sodium channel alpha-subunit (Nav1.5. To date some SCN5A mutations related with BrS have been identified in voltage sensor of Nav1.5. Here, we describe a dominant missense mutation (R1629Q localized in the fourth segment of domain IV region (DIV-S4 in a Chinese Han family. The mutation was identified by direct sequencing of SCN5A from the proband's DNA. Co-expression of Wild-type (WT or R1629Q Nav1.5 channel and hβ1 subunit were achieved in human embryonic kidney cells by transient transfection. Sodium currents were recorded using whole cell patch-clamp protocols. No significant changes between WT and R1629Q currents were observed in current density or steady-state activation. However, hyperpolarized shift of steady-state inactivation curve was identified in cells expressing R1629Q channel (WT: V1/2 = -81.1 ± 1.3 mV, n = 13; R1629Q: V1/2 = -101.7 ± 1.2 mV, n = 18. Moreover, R1629Q channel showed enhanced intermediate inactivation and prolonged recovery time from inactivation. In summary, this study reveals that R1629Q mutation causes a distinct loss-of-function of the channel due to alter its electrophysiological characteristics, and facilitates our understanding of biophysical mechanisms of BrS.

  7. Mutations in HPSE2 cause urofacial syndrome.

    Science.gov (United States)

    Daly, Sarah B; Urquhart, Jill E; Hilton, Emma; McKenzie, Edward A; Kammerer, Richard A; Lewis, Malcolm; Kerr, Bronwyn; Stuart, Helen; Donnai, Dian; Long, David A; Burgu, Berk; Aydogdu, Ozgu; Derbent, Murat; Garcia-Minaur, Sixto; Reardon, Willie; Gener, Blanca; Shalev, Stavit; Smith, Rupert; Woolf, Adrian S; Black, Graeme C; Newman, William G

    2010-06-11

    Urinary voiding dysfunction in childhood, manifesting as incontinence, dysuria, and urinary frequency, is a common condition. Urofacial syndrome (UFS) is a rare autosomal recessive disease characterized by facial grimacing when attempting to smile and failure of the urinary bladder to void completely despite a lack of anatomical bladder outflow obstruction or overt neurological damage. UFS individuals often have reflux of infected urine from the bladder to the upper renal tract, with a risk of kidney damage and renal failure. Whole-genome SNP mapping in one affected individual defined an autozygous region of 16 Mb on chromosome 10q23-q24, within which a 10 kb deletion encompassing exons 8 and 9 of HPSE2 was identified. Homozygous exonic deletions, nonsense mutations, and frameshift mutations in five further unrelated families confirmed HPSE2 as the causative gene for UFS. Mutations were not identified in four additional UFS patients, indicating genetic heterogeneity. We show that HPSE2 is expressed in the fetal and adult central nervous system, where it might be implicated in controlling facial expression and urinary voiding, and also in bladder smooth muscle, consistent with a role in renal tract morphology and function. Our findings have broader implications for understanding the genetic basis of lower renal tract malformations and voiding dysfunction.

  8. Mutations in HPSE2 Cause Urofacial Syndrome

    Science.gov (United States)

    Daly, Sarah B.; Urquhart, Jill E.; Hilton, Emma; McKenzie, Edward A.; Kammerer, Richard A.; Lewis, Malcolm; Kerr, Bronwyn; Stuart, Helen; Donnai, Dian; Long, David A.; Burgu, Berk; Aydogdu, Ozgu; Derbent, Murat; Garcia-Minaur, Sixto; Reardon, Willie; Gener, Blanca; Shalev, Stavit; Smith, Rupert; Woolf, Adrian S.; Black, Graeme C.; Newman, William G.

    2010-01-01

    Urinary voiding dysfunction in childhood, manifesting as incontinence, dysuria, and urinary frequency, is a common condition. Urofacial syndrome (UFS) is a rare autosomal recessive disease characterized by facial grimacing when attempting to smile and failure of the urinary bladder to void completely despite a lack of anatomical bladder outflow obstruction or overt neurological damage. UFS individuals often have reflux of infected urine from the bladder to the upper renal tract, with a risk of kidney damage and renal failure. Whole-genome SNP mapping in one affected individual defined an autozygous region of 16 Mb on chromosome 10q23-q24, within which a 10 kb deletion encompassing exons 8 and 9 of HPSE2 was identified. Homozygous exonic deletions, nonsense mutations, and frameshift mutations in five further unrelated families confirmed HPSE2 as the causative gene for UFS. Mutations were not identified in four additional UFS patients, indicating genetic heterogeneity. We show that HPSE2 is expressed in the fetal and adult central nervous system, where it might be implicated in controlling facial expression and urinary voiding, and also in bladder smooth muscle, consistent with a role in renal tract morphology and function. Our findings have broader implications for understanding the genetic basis of lower renal tract malformations and voiding dysfunction. PMID:20560210

  9. A PLK4 mutation causing azoospermia in a man with Sertoli cell-only syndrome.

    Science.gov (United States)

    Miyamoto, T; Bando, Y; Koh, E; Tsujimura, A; Miyagawa, Y; Iijima, M; Namiki, M; Shiina, M; Ogata, K; Matsumoto, N; Sengoku, K

    2016-01-01

    About 15% of couples wishing to have children are infertile; approximately half these cases involve a male factor. Polo-like kinase 4 (PLK-4) is a member of the polo protein family and a key regulator of centriole duplication. Male mice with a point mutation in the Plk4 gene show azoospermia associated with germ cell loss. Mutational analysis of 81 patients with azoospermia and Sertoli cell-only syndrome (SCOS) identified one man with a heterozygous 13-bp deletion in the Ser/Thr kinase domain of PLK4. Division of centrioles occurred in wild-type PLK4-transfected cells, but was hampered in PLK-4-mutant transfectants, which also showed abnormal nuclei. Thus, this PLK4 mutation might be a cause of human SCOS and nonobstructive azoospermia. © 2015 American Society of Andrology and European Academy of Andrology.

  10. Respiratory and sleep disorders in female children with atypical Rett syndrome caused by mutations in the CDKL5 gene.

    Science.gov (United States)

    Hagebeuk, Eveline E O; van den Bossche, Renilde A S; de Weerd, Al W

    2013-05-01

    In female children with drug-resistant seizures and developmental delay from birth, atypical Rett syndrome caused by mutations in the CDKL5 gene should be considered. Several clinical features resemble classic Rett syndrome. Respiratory and sleep abnormalities are frequently present in Rett syndrome, whereas little is known in patients with CDKL5 mutations. In four genetically confirmed female patients with CDKL5 mutations (age range 2-15 y), the presence of breathing and sleep abnormalities was evaluated using the validated Sleep Disturbance Scale for Children and polysomnography (PSG). The Sleep Disturbance Scale for Children indicated disorders of initiating and maintaining sleep, daytime somnolence, and sleep breathing disorders. In one patient, PSG showed central apnoeas during sleep: her total apnoea-hypopnoea index (AHI) was 4.9, of which the central AHI was 3.4/h. When awake, central apnoeas were present in two of the four female children (central AHI 28/h and 41/h respectively), all preceded by hyperventilation. PSG showed low rapid eye movement (REM) sleep (9.7-18.3%), frequent awakenings, and low sleep efficiency (range 59-78%). Episodic hyperventilation followed by central apnoeas was present while awake in two of four patients. This may indicate failure of brainstem respiratory centres. In addition, low REM sleep, frequent arousals (not caused by apnoeas/seizures), and low sleep efficiency were present. Similar to Rett syndrome, in patients with CDKL5 mutations PSG seems warranted to evaluate breathing and sleep disturbances. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  11. Mutation analysis in the long isoform of USH2A in American patients with Usher Syndrome type II.

    Science.gov (United States)

    Yan, Denise; Ouyang, Xiaomei; Patterson, D Michael; Du, Li Lin; Jacobson, Samuel G; Liu, Xue-Zhong

    2009-12-01

    Usher syndrome type II (USH2) is an autosomal recessive disorder characterized by moderate to severe hearing impairment and progressive visual loss due to retinitis pigmentosa (RP). To identify novel mutations and determine the frequency of USH2A mutations as a cause of USH2, we have carried out mutation screening of all 72 coding exons and exon-intron splice sites of the USH2A gene. A total of 20 USH2 American probands of European descent were analyzed using single strand conformational polymorphism (SSCP) and direct sequencing methods. Ten different USH2A mutations were identified in 55% of the probands, five of which were novel mutations. The detected mutations include three missense, three frameshifts and four nonsense mutations, with c.2299delG/p.E767fs mutation, accounting for 38.9% of the pathological alleles. Two cases were homozygotes, two cases were compound heterozygotes and one case had complex allele with three variants. In seven probands, only one USH2A mutation was detected and no pathological mutation was found in the remaining eight individuals. Altogether, our data support the fact that c.2299delG/p.E767fs is indeed the most common USH2A mutation found in USH2 patients of European Caucasian background. Thus, if screening for mutations in USH2A is considered, it is reasonable to screen for the c.2299delG mutation first.

  12. Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome.

    Science.gov (United States)

    Tsurusaki, Yoshinori; Okamoto, Nobuhiko; Ohashi, Hirofumi; Kosho, Tomoki; Imai, Yoko; Hibi-Ko, Yumiko; Kaname, Tadashi; Naritomi, Kenji; Kawame, Hiroshi; Wakui, Keiko; Fukushima, Yoshimitsu; Homma, Tomomi; Kato, Mitsuhiro; Hiraki, Yoko; Yamagata, Takanori; Yano, Shoji; Mizuno, Seiji; Sakazume, Satoru; Ishii, Takuma; Nagai, Toshiro; Shiina, Masaaki; Ogata, Kazuhiro; Ohta, Tohru; Niikawa, Norio; Miyatake, Satoko; Okada, Ippei; Mizuguchi, Takeshi; Doi, Hiroshi; Saitsu, Hirotomo; Miyake, Noriko; Matsumoto, Naomichi

    2012-03-18

    By exome sequencing, we found de novo SMARCB1 mutations in two of five individuals with typical Coffin-Siris syndrome (CSS), a rare autosomal dominant anomaly syndrome. As SMARCB1 encodes a subunit of the SWItch/Sucrose NonFermenting (SWI/SNF) complex, we screened 15 other genes encoding subunits of this complex in 23 individuals with CSS. Twenty affected individuals (87%) each had a germline mutation in one of six SWI/SNF subunit genes, including SMARCB1, SMARCA4, SMARCA2, SMARCE1, ARID1A and ARID1B.

  13. A rare male patient with classic Rett syndrome caused by MeCP2_e1 mutation.

    Science.gov (United States)

    Tokaji, Narumi; Ito, Hiromichi; Kohmoto, Tomohiro; Naruto, Takuya; Takahashi, Rizu; Goji, Aya; Mori, Tatsuo; Toda, Yoshihiro; Saito, Masako; Tange, Shoichiro; Masuda, Kiyoshi; Kagami, Shoji; Imoto, Issei

    2018-03-01

    Rett syndrome (RTT) is a severe neurodevelopmental disorder typically affecting females. It is mainly caused by loss-of-function mutations that affect the coding sequence of exon 3 or 4 of methyl-CpG-binding protein 2 (MECP2). Severe neonatal encephalopathy resulting in death before the age of 2 years is the most common phenotype observed in males affected by a pathogenic MECP2 variant. Mutations in MECP2 exon 1 affecting the MeCP2_e1 isoform are relatively rare causes of RTT in females, and only one case of a male patient with MECP2-related severe neonatal encephalopathy caused by a mutation in MECP2 exon 1 has been reported. This is the first reported case of a male with classic RTT caused by a 5-bp duplication in the open-reading frame of MECP2 exon 1 (NM_001110792.1:c.23_27dup) that introduced a premature stop codon [p.(Ser10Argfs*36)] in the MeCP2_e1 isoform, which has been reported in one female patient with classic RTT. Therefore, both males and females displaying at least some type of MeCP2_e1 mutation may exhibit the classic RTT phenotype. © 2018 Wiley Periodicals, Inc.

  14. Clinical study of DMD gene point mutation causing Becker muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Ji-qing CAO

    2015-07-01

    Full Text Available Background  DMD gene point mutation, mainly nonsense mutation, always cause the most severe Duchenne muscular dystrophy (DMD. However, we also observed some cases of Becker muscular dystrophy (BMD carrying DMD point mutation. This paper aims to explore the mechanism of DMD point mutation causing BMD, in order to enhance the understanding of mutation types of BMD.  Methods  Sequence analysis was performed in 11 cases of BMD confirmed by typical clinical manifestations and muscle biopsy. The exon of DMD gene was detected non-deletion or duplication by multiplex ligation-dependent probe amplification (MLPA.  Results  Eleven patients carried 10 mutation types without mutational hotspot. Six patients carried nonsense mutations [c.5002G>T, p.(Glu1668X; c.1615C > T, p.(Arg539X; c.7105G > T, p.(Glu2369X; c.5287C > T, p.(Arg1763X; c.9284T > G, p.(Leu3095X]. One patient carried missense mutation [c.5234G > A, p.(Arg1745His]. Two patients carried frameshift mutations (c.10231dupT, c.10491delC. Two patients carried splicing site mutations (c.4518 + 3A > T, c.649 + 2T > C.  Conclusions  DMD gene point mutation may result in BMD with mild clinical symptoms. When clinical manifestations suggest the possibility of BMD and MLPA reveals non?deletion or duplication mutation of DMD gene, BMD should be considered. Study on the mechanism of DMD point mutation causing BMD is very important for gene therapy of DMD. DOI: 10.3969/j.issn.1672-6731.2015.06.005

  15. Clinical and mutational spectrum of hypoparathyroidism, deafness and renal dysplasia syndrome.

    Science.gov (United States)

    Belge, Hendrica; Dahan, Karin; Cambier, Jean-François; Benoit, Valérie; Morelle, Johann; Bloch, Julie; Vanhille, Philippe; Pirson, Yves; Demoulin, Nathalie

    2017-05-01

    Hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome is a rare autosomal dominant disorder, secondary to mutations in the GATA-3 gene. Due to its wide range of penetrance and expressivity, the disease may not always be recognized. We herein describe clinical and genetic features of patients with HDR syndrome, highlighting diagnostic clues. Medical records of eight patients from five unrelated families exhibiting GATA-3 mutations were reviewed retrospectively, in conjunction with all previously reported cases. HDR syndrome was diagnosed in eight patients between the ages of 18 and 60 years. Sensorineural deafness was consistently diagnosed, ranging from clinical hearing loss since infancy in seven patients to deafness detected only by audiometry in adulthood in one single patient. Hypoparathyroidism was present in six patients (with hypocalcaemia and inaugural seizures in two out of six). Renal abnormalities observed in six patients were diverse and of dysplastic nature. Three patients displayed nephrotic-range proteinuria and reached end-stage renal disease (ESRD) between the ages of 19 and 61 years, whilst lesions of focal and segmental glomerulosclerosis were histologically demonstrated in one of them. Interestingly, phenotype severity differed significantly between a mother and son within one family. Five new mutations of GATA-3 were identified, including three missense mutations affecting zinc finger motifs [NM_001002295.1: c.856A>G (p.N286D) and c.1017C>G (p.C339W)] or the conserved linker region [c.896G>A (p.R299G)], and two splicing mutations (c.924+4_924+19del and c.1051-2A>G). Review of 115 previously reported cases of GATA-3 mutations showed hypoparathyroidism and deafness in 95% of patients, and renal abnormalities in only 60%. Overall, 10% of patients had reached ESRD. We herein expand the clinical and mutational spectrum of HDR syndrome, illustrating considerable inter- and intrafamilial phenotypic variability. Diagnosis of HDR should be

  16. Coffin-Siris Syndrome with obesity, macrocephaly, hepatomegaly and hyperinsulinism caused by a mutation in the ARID1B gene.

    Science.gov (United States)

    Vals, Mari-Anne; Õiglane-Shlik, Eve; Nõukas, Margit; Shor, Riina; Peet, Aleksandr; Kals, Mart; Kivistik, Paula Ann; Metspalu, Andres; Õunap, Katrin

    2014-11-01

    Coffin-Siris Syndrome (CSS, MIM 135900) is a rare genetic disorder, and mutations in ARID1B were recently shown to cause CSS. In this study, we report a novel ARID1B mutation identified by whole-exome sequencing in a patient with clinical features of CSS. We identified a novel heterozygous frameshift mutation c.1584delG in exon 2 of ARID1B (NM_020732.3) predicting a premature stop codon p.(Leu528Phefs*65). Sanger sequencing confirmed the c.1584delG mutation as a de novo in the proband and that it was not present either in her parents, half-sister or half-brother. Clinically, the patient presented with extreme obesity, macrocephaly, hepatomegaly, hyperinsulinism and polycystic ovarian syndrome (PCOS), which have previously not been described in CSS patients. We suggest that obesity, macrocephaly, hepatomegaly and/or PCOS may be added to the list of clinical features of ARID1B mutations, but further clinical reports are required to make a definite conclusion.

  17. Noonan syndrome gain-of-function mutations in NRAS cause zebrafish gastrulation defects

    NARCIS (Netherlands)

    Runtuwene, V.J.; van Eekelen, M.J.L.; Overvoorde, J.; Rehmann, H.; Yntema, H.G.; Nillesen, W.M.; van Haeringen, A.; van der Burgt, I.; Burgering, B.; den Hertog, J.

    2011-01-01

    Noonan syndrome is a relatively common developmental disorder that is characterized by reduced growth, wide-set eyes and congenital heart defects. Noonan syndrome is associated with dysregulation of the Ras-mitogen-activated-protein-kinase (MAPK) signaling pathway. Recently, two mutations in NRAS

  18. Novel CLCNKB mutations causing Bartter syndrome affect channel surface expression.

    Science.gov (United States)

    Keck, Mathilde; Andrini, Olga; Lahuna, Olivier; Burgos, Johanna; Cid, L Pablo; Sepúlveda, Francisco V; L'hoste, Sébastien; Blanchard, Anne; Vargas-Poussou, Rosa; Lourdel, Stéphane; Teulon, Jacques

    2013-09-01

    Mutations in the CLCNKB gene encoding the ClC-Kb Cl(-) channel cause Bartter syndrome, which is a salt-losing renal tubulopathy. Here, we investigate the functional consequences of seven mutations. When expressed in Xenopus laevis oocytes, four mutants carried no current (c.736G>C, p.Gly246Arg; c.1271G>A, p.Gly424Glu; c.1313G>A, p.Arg438His; c.1316T>C, p.Leu439Pro), whereas others displayed a 30%-60% reduction in conductance as compared with wild-type ClC-Kb (c.242T>C, p.Leu81Pro; c.274C>T, p.Arg92Trp; c.1052G>C, p.Arg351Pro). Anion selectivity and sensitivity to external Ca(2+) and H(+), typical of the ClC-Kb channel, were not modified in the partially active mutants. In oocytes, we found that all the mutations reduced surface expression with a profile similar to that observed for currents. In HEK293 cells, the currents in the mutants had similar profiles to those obtained in oocytes, except for p.Leu81Pro, which produced no current. Furthermore, p.Arg92Trp and p.Arg351Pro mutations did not modify the unit-conductance of closely related ClC-K1. Western blot analysis in HEK293 cells showed that ClC-Kb protein abundance was lower for the nonconducting mutants but similar to wild-type for other mutants. Overall, two classes of mutants can be distinguished: nonconducting mutants associated with low total protein expression, and partially conducting mutants with unaltered channel properties and ClC-Kb protein abundance. © 2013 WILEY PERIODICALS, INC.

  19. Physiological Expression of AMPKγ2RG Mutation Causes Wolff-Parkinson-White Syndrome and Induces Kidney Injury in Mice.

    Science.gov (United States)

    Yang, Xiaodong; Mudgett, John; Bou-About, Ghina; Champy, Marie-France; Jacobs, Hugues; Monassier, Laurent; Pavlovic, Guillaume; Sorg, Tania; Herault, Yann; Petit-Demoulière, Benoit; Lu, Ku; Feng, Wen; Wang, Hongwu; Ma, Li-Jun; Askew, Roger; Erion, Mark D; Kelley, David E; Myers, Robert W; Li, Cai; Guan, Hong-Ping

    2016-11-04

    Mutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2 NI ) and R531G (AMPKγ2 RG ), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2 NI or AMPKγ2 RG leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype. To investigate whether physiological levels of AMPKγ2 NI or AMPKγ2 RG mutation cause WPW syndrome and metabolic changes in other organs, we generated two knock-in mouse lines on the C57BL/6N background harboring mutations of human AMPKγ2 NI and AMPKγ2 RG , respectively. Similar to the reported phenotypes of mice overexpressing AMPKγ2 NI or AMPKγ2 RG in the heart, both lines developed WPW syndrome and cardiac hypertrophy; however, these effects were independent of cardiac glycogen accumulation. Compared with AMPKγ2 WT mice, AMPKγ2 NI and AMPKγ2 RG mice exhibited reduced body weight, fat mass, and liver steatosis when fed with a high fat diet (HFD). Surprisingly, AMPKγ2 RG but not AMPKγ2 NI mice fed with an HFD exhibited severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function. These results demonstrate that expression of AMPKγ2 NI and AMPKγ2 RG mutations at physiological levels can induce beneficial metabolic effects but that this is accompanied by WPW syndrome. Our data also reveal an unexpected effect of AMPKγ2 RG in the kidney, linking lifelong constitutive activation of AMPK to a potential risk for kidney dysfunction in the context of an HFD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Physiological Expression of AMPKγ2RG Mutation Causes Wolff-Parkinson-White Syndrome and Induces Kidney Injury in Mice*

    Science.gov (United States)

    Yang, Xiaodong; Mudgett, John; Bou-About, Ghina; Champy, Marie-France; Jacobs, Hugues; Monassier, Laurent; Pavlovic, Guillaume; Sorg, Tania; Herault, Yann; Petit-Demoulière, Benoit; Lu, Ku; Feng, Wen; Wang, Hongwu; Ma, Li-Jun; Askew, Roger; Erion, Mark D.; Kelley, David E.; Myers, Robert W.; Li, Cai

    2016-01-01

    Mutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2NI) and R531G (AMPKγ2RG), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2NI or AMPKγ2RG leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype. To investigate whether physiological levels of AMPKγ2NI or AMPKγ2RG mutation cause WPW syndrome and metabolic changes in other organs, we generated two knock-in mouse lines on the C57BL/6N background harboring mutations of human AMPKγ2NI and AMPKγ2RG, respectively. Similar to the reported phenotypes of mice overexpressing AMPKγ2NI or AMPKγ2RG in the heart, both lines developed WPW syndrome and cardiac hypertrophy; however, these effects were independent of cardiac glycogen accumulation. Compared with AMPKγ2WT mice, AMPKγ2NI and AMPKγ2RG mice exhibited reduced body weight, fat mass, and liver steatosis when fed with a high fat diet (HFD). Surprisingly, AMPKγ2RG but not AMPKγ2NI mice fed with an HFD exhibited severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function. These results demonstrate that expression of AMPKγ2NI and AMPKγ2RG mutations at physiological levels can induce beneficial metabolic effects but that this is accompanied by WPW syndrome. Our data also reveal an unexpected effect of AMPKγ2RG in the kidney, linking lifelong constitutive activation of AMPK to a potential risk for kidney dysfunction in the context of an HFD. PMID:27621313

  1. Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome.

    Science.gov (United States)

    Santen, Gijs W E; Aten, Emmelien; Sun, Yu; Almomani, Rowida; Gilissen, Christian; Nielsen, Maartje; Kant, Sarina G; Snoeck, Irina N; Peeters, Els A J; Hilhorst-Hofstee, Yvonne; Wessels, Marja W; den Hollander, Nicolette S; Ruivenkamp, Claudia A L; van Ommen, Gert-Jan B; Breuning, Martijn H; den Dunnen, Johan T; van Haeringen, Arie; Kriek, Marjolein

    2012-03-18

    We identified de novo truncating mutations in ARID1B in three individuals with Coffin-Siris syndrome (CSS) by exome sequencing. Array-based copy-number variation (CNV) analysis in 2,000 individuals with intellectual disability revealed deletions encompassing ARID1B in 3 subjects with phenotypes partially overlapping that of CSS. Taken together with published data, these results indicate that haploinsufficiency of the ARID1B gene, which encodes an epigenetic modifier of chromatin structure, is an important cause of CSS and is potentially a common cause of intellectual disability and speech impairment.

  2. Congenital short bowel syndrome as the presenting symptom in male patients with FLNA mutations

    NARCIS (Netherlands)

    van der Werf, Christine S.; Sribudiani, Yunia; Verheij, Joke B. G. M.; Carroll, Matthew; O'Loughlin, Edward; Chen, Chien-Huan; Brooks, Alice S.; Liszewski, M. Kathryn; Atkinson, John P.; Hofstra, Robert M. W.

    Purpose: Autosomal recessive congenital short bowel syndrome is caused by mutations in CLMP. No mutations were found in the affected males of a family with presumed X-linked congenital short bowel syndrome or in an isolated male patient. Our aim was to identify the disease-causing mutation in these

  3. Prefoldin Promotes Proteasomal Degradation of Cytosolic Proteins with Missense Mutations by Maintaining Substrate Solubility.

    Directory of Open Access Journals (Sweden)

    Sophie A Comyn

    2016-07-01

    Full Text Available Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations.

  4. Impairment of CDKL5 nuclear localisation as a cause for severe infantile encephalopathy.

    Science.gov (United States)

    Rosas-Vargas, H; Bahi-Buisson, N; Philippe, C; Nectoux, J; Girard, B; N'Guyen Morel, M A; Gitiaux, C; Lazaro, L; Odent, S; Jonveaux, P; Chelly, J; Bienvenu, T

    2008-03-01

    Mutations in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been shown to cause infantile spasms as well as Rett syndrome-like phenotype. To date, fewer than 20 different mutations have been reported. So far, no clear genotype-phenotype correlation has been established. We screened the entire coding region of CDKL5 in 151 affected girls with a clinically heterogeneous phenotype ranging from encephalopathy with epilepsy to atypical Rett syndrome by denaturing high liquid performance chromatography and direct sequencing, and we identified three novel missense mutations located in catalytic domain (p.Ala40Val, p.Arg65Gln, p.Leu220Pro). Segregation analysis showed that p.Arg65Gln was inherited from the healthy father, which rules out the involvement of CDKL5 in the aetiology of the phenotype in this patient. However, the de novo occurrence was shown for p.Ala40Val and p.Leu220Pro. The p.Ala40Val mutation was observed in two unrelated patients and represented the first recurrent mutation in the CDKL5 gene. For the two de novo mutations, we analysed the cellular localisation of the wild-type and CDKL5 mutants by transfection experiments. We showed that the two CDKL5 mutations cause mislocalisation of the mutant CDKL5 proteins in the cytoplasm. Interestingly these missense mutations that result in a mislocalisation of the CDKL5 protein are associated with severe developmental delay which was apparent within the first months of life characterised by early and generalised hypotonia, and autistic features, and as well as early infantile spasms.

  5. Identification of a Novel Heterozygous Missense Mutation in the CACNA1F Gene in a Chinese Family with Retinitis Pigmentosa by Next Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Qi Zhou

    2015-01-01

    Full Text Available Background. Retinitis pigmentosa (RP is an inherited retinal degenerative disease, which is clinically and genetically heterogeneous, and the inheritance pattern is complex. In this study, we have intended to study the possible association of certain genes with X-linked RP (XLRP in a Chinese family. Methods. A Chinese family with RP was recruited, and a total of seven individuals were enrolled in this genetic study. Genomic DNA was isolated from peripheral leukocytes, and used for the next generation sequencing (NGS. Results. The affected individual presented the clinical signs of XLRP. A heterozygous missense mutation (c.1555C>T, p.R519W was identified by NGS in exon 13 of the CACNA1F gene on X chromosome, and was confirmed by Sanger sequencing. It showed perfect cosegregation with the disease in the family. The mutation at this position in the CACNA1F gene of RP was found novel by database searching. Conclusion. By using NGS, we have found a novel heterozygous missense mutation (c.1555C>T, p.R519W in CACNA1F gene, which is probably associated with XLRP. The findings might provide new insights into the cause and diagnosis of RP, and have implications for genetic counseling and clinical management in this family.

  6. Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome.

    Science.gov (United States)

    Laugel, V; Dalloz, C; Durand, M; Sauvanaud, F; Kristensen, U; Vincent, M C; Pasquier, L; Odent, S; Cormier-Daire, V; Gener, B; Tobias, E S; Tolmie, J L; Martin-Coignard, D; Drouin-Garraud, V; Heron, D; Journel, H; Raffo, E; Vigneron, J; Lyonnet, S; Murday, V; Gubser-Mercati, D; Funalot, B; Brueton, L; Sanchez Del Pozo, J; Muñoz, E; Gennery, A R; Salih, M; Noruzinia, M; Prescott, K; Ramos, L; Stark, Z; Fieggen, K; Chabrol, B; Sarda, P; Edery, P; Bloch-Zupan, A; Fawcett, H; Pham, D; Egly, J M; Lehmann, A R; Sarasin, A; Dollfus, H

    2010-02-01

    Cockayne syndrome is an autosomal recessive multisystem disorder characterized principally by neurological and sensory impairment, cachectic dwarfism, and photosensitivity. This rare disease is linked to mutations in the CSB/ERCC6 and CSA/ERCC8 genes encoding proteins involved in the transcription-coupled DNA repair pathway. The clinical spectrum of Cockayne syndrome encompasses a wide range of severity from severe prenatal forms to mild and late-onset presentations. We have reviewed the 45 published mutations in CSA and CSB to date and we report 43 new mutations in these genes together with the corresponding clinical data. Among the 84 reported kindreds, 52 (62%) have mutations in the CSB gene. Many types of mutations are scattered along the whole coding sequence of both genes, but clusters of missense mutations can be recognized and highlight the role of particular motifs in the proteins. Genotype-phenotype correlation hypotheses are considered with regard to these new molecular and clinical data. Additional cases of molecular prenatal diagnosis are reported and the strategy for prenatal testing is discussed. Two web-based locus-specific databases have been created to list all identified variants and to allow the inclusion of future reports (www.umd.be/CSA/ and www.umd.be/CSB/). (c) 2009 Wiley-Liss, Inc.

  7. Mutations in FUS cause FALS and SALS in French and French Canadian populations.

    Science.gov (United States)

    Belzil, V V; Valdmanis, P N; Dion, P A; Daoud, H; Kabashi, E; Noreau, A; Gauthier, J; Hince, P; Desjarlais, A; Bouchard, J-P; Lacomblez, L; Salachas, F; Pradat, P-F; Camu, W; Meininger, V; Dupré, N; Rouleau, G A

    2009-10-13

    The identification of mutations in the TARDBP and more recently the identification of mutations in the FUS gene as the cause of amyotrophic lateral sclerosis (ALS) is providing the field with new insight about the mechanisms involved in this severe neurodegenerative disease. To extend these recent genetic reports, we screened the entire gene in a cohort of 200 patients with ALS. An additional 285 patients with sporadic ALS were screened for variants in exon 15 for which mutations were previously reported. In total, 3 different mutations were identified in 4 different patients, including 1 3-bp deletion in exon 3 of a patient with sporadic ALS and 2 missense mutations in exon 15 of 1 patient with familial ALS and 2 patients with sporadic ALS. Our study identified sporadic patients with mutations in the FUS gene. The accumulation and description of different genes and mutations helps to develop a more comprehensive picture of the genetic events underlying amyotrophic lateral sclerosis.

  8. The novel RAF1 mutation p.(Gly361Ala) located outside the kinase domain of the CR3 region in two patients with Noonan syndrome, including one with a rare brain tumor.

    Science.gov (United States)

    Harms, Frederike L; Alawi, Malik; Amor, David J; Tan, Tiong Y; Cuturilo, Goran; Lissewski, Christina; Brinkmann, Julia; Schanze, Denny; Kutsche, Kerstin; Zenker, Martin

    2018-02-01

    Noonan syndrome is characterized by typical craniofacial dysmorphism, postnatal growth retardation, congenital heart defect, and learning difficulties and belongs to the RASopathies, a group of neurodevelopmental disorders caused by germline mutations in genes encoding components of the RAS-MAPK pathway. Mutations in the RAF1 gene are associated with Noonan syndrome, with a high prevalence of hypertrophic cardiomyopathy (HCM). RAF1 mutations cluster in exons encoding the conserved region 2 (CR2), the kinase activation segment of the CR3 domain, and the C-terminus. We present two boys with Noonan syndrome and the identical de novo RAF1 missense variant c.1082G>C/p.(Gly361Ala) affecting the CR3, but located outside the kinase activation segment. The p.(Gly361Ala) mutation has been identified as a RAF1 allele conferring resistance to RAF inhibitors. This amino acid change favors a RAF1 conformation that allows for enhanced RAF dimerization and increased intrinsic kinase activity. Both patients with Noonan syndrome showed typical craniofacial dysmorphism, macrocephaly, and short stature. One individual developed HCM and was diagnosed with a disseminated oligodendroglial-like leptomeningeal tumor (DOLT) of childhood at the age of 9 years. While there is a well-established association of NS with malignant tumors, especially childhood hemato-oncological diseases, brain tumors have rarely been reported in Noonan syndrome. Our data demonstrate that mutation scanning of the entire coding region of genes associated with Noonan syndrome is mandatory not to miss rare variants located outside the known mutational hotspots. © 2017 Wiley Periodicals, Inc.

  9. HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy.

    Science.gov (United States)

    Estep, Anne L; Tidyman, William E; Teitell, Michael A; Cotter, Philip D; Rauen, Katherine A

    2006-01-01

    Costello syndrome (CS) is a complex developmental disorder involving characteristic craniofacial features, failure to thrive, developmental delay, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Based on similarities with other cancer syndromes, we previously hypothesized that CS is likely due to activation of signal transduction through the Ras/MAPK pathway [Tartaglia et al., 2003]. In this study, the HRAS coding region was sequenced for mutations in a large, well-characterized cohort of 36 CS patients. Heterogeneous missense point mutations predicting an amino acid substitution were identified in 33/36 (92%) patients. The majority (91%) had a 34G --> A transition in codon 12. Less frequent mutations included 35G --> C (codon 12) and 37G --> T (codon 13). Parental samples did not have an HRAS mutation supporting the hypothesis of de novo heterogeneous mutations. There is phenotypic variability among patients with a 34G --> A transition. The most consistent features included characteristic facies and skin, failure to thrive, developmental delay, musculoskeletal abnormalities, visual impairment, cardiac abnormalities, and generalized hyperpigmentation. The two patients with 35G --> C had cardiac arrhythmias whereas one patient with a 37G --> T transversion had an enlarged aortic root. Of the patients with a clinical diagnosis of CS, neoplasia was the most consistent phenotypic feature for predicating an HRAS mutation. To gain an understanding of the relationship between constitutional HRAS mutations and malignancy, HRAS was sequenced in an advanced biphasic rhabdomyosarcoma/fibrosarcoma from an individual with a 34G --> A mutation. Loss of the wild-type HRAS allele was observed, suggesting tumorigenesis in CS patients is accompanied by additional somatic changes affecting HRAS. Finally, due to phenotypic overlap between CS and cardio-facio-cutaneous (CFC) syndromes, the HRAS coding region was sequenced in a well-characterized CFC cohort

  10. Beckwith-Wiedemann and IMAGe syndromes: two very different diseases caused by mutations on the same gene.

    Science.gov (United States)

    Milani, Donatella; Pezzani, Lidia; Tabano, Silvia; Miozzo, Monica

    2014-01-01

    Genomic imprinting is an epigenetically regulated mechanism leading to parental-origin allele-specific expression. Beckwith-Wiedemann syndrome (BWS) is an imprinting disease related to 11p15.5 genetic and epigenetic alterations, among them loss-of-function CDKN1C mutations. Intriguing is that CDKN1C gain-of-function variations were recently found in patients with IMAGe syndrome (intrauterine growth restriction, metaphyseal dysplasia, congenital adrenal hypoplasia, and genital anomalies). BWS and IMAGe share an imprinted mode of inheritance; familial analysis demonstrated the presence of the phenotype exclusively when the mutant CDKN1C allele is inherited from the mother. Interestingly, both IMAGe and BWS are characterized by growth disturbances, although with opposite clinical phenotypes; IMAGe patients display growth restriction whereas BWS patients display overgrowth. CDKN1C codifies for CDKN1C/KIP2, a nuclear protein and potent tight-binding inhibitor of several cyclin/Cdk complexes, playing a role in maintenance of the nonproliferative state of cells. The mirror phenotype of BWS and IMAGe can be, at least in part, explained by the effect of mutations on protein functions. All the IMAGe-associated mutations are clustered in the proliferating cell nuclear antigen-binding domain of CDKN1C and cause a dramatic increase in the stability of the protein, which probably results in a functional gain of growth inhibition properties. In contrast, BWS mutations are not clustered within a single domain, are loss-of-function, and promote cell proliferation. CDKN1C is an example of allelic heterogeneity associated with opposite syndromes.

  11. A case report of novel mutation in PRF1 gene, which causes familial autosomal recessive hemophagocytic lymphohistiocytosis.

    Science.gov (United States)

    Bordbar, Mohammad Reza; Modarresi, Farzaneh; Farazi Fard, Mohammad Ali; Dastsooz, Hassan; Shakib Azad, Nader; Faghihi, Mohammad Ali

    2017-05-03

    Hemophagocytic Lymphohistiocytosis (HLH) is a life-threatening immunodeficiency and multi-organ disease that affects people of all ages and ethnic groups. Common symptoms and signs of this disease are high fever, hepatosplenomegaly, and cytopenias. Familial form of HLH disease, which is an autosomal recessive hematological disorder is due to disease-causing mutations in several genes essential for NK and T-cell granule-mediated cytotoxic function. For an effective cytotoxic response from cytotoxic T lymphocyte or NK cell encountering an infected cell or tumor cell, different processes are required, including trafficking, docking, priming, membrane fusion, and entry of cytotoxic granules into the target cell leading to apoptosis. Therefore, genes involved in these steps play important roles in the pathogenesis of HLH disease which include PRF1, UNC13D (MUNC13-4), STX11, and STXBP2 (MUNC18-2). Here, we report a novel missense mutation in an 8-year-old boy suffered from hepatosplenomegaly, hepatitis, epilepsy and pancytopenia. The patient was born to a first-cousin parents with no previous documented disease in his parents. To identify mutated gene in the proband, Whole Exome Sequencing (WES) utilizing next generation sequencing was used on an Illumina HiSeq 2000 platform on DNA sample from the patient. Results showed a novel deleterious homozygous missense mutation in PRF1 gene (NM_001083116: exon3: c. 1120 T > G, p.W374G) in the patient and then using Sanger sequencing it was confirmed in the proband and his parents. Since his parents were heterozygous for the identified mutation, autosomal recessive pattern of inheritance was confirmed in the family. Our study identified a rare new pathogenic missense mutation in PRF1 gene in patient with HLH disease and it is the first report of mutation in PRF1 in Iranian patients with this disease.

  12. Coffin–Siris Syndrome with obesity, macrocephaly, hepatomegaly and hyperinsulinism caused by a mutation in the ARID1B gene

    Science.gov (United States)

    Vals, Mari-Anne; Õiglane-Shlik, Eve; Nõukas, Margit; Shor, Riina; Peet, Aleksandr; Kals, Mart; Kivistik, Paula Ann; Metspalu, Andres; Õunap, Katrin

    2014-01-01

    Coffin–Siris Syndrome (CSS, MIM 135900) is a rare genetic disorder, and mutations in ARID1B were recently shown to cause CSS. In this study, we report a novel ARID1B mutation identified by whole-exome sequencing in a patient with clinical features of CSS. We identified a novel heterozygous frameshift mutation c.1584delG in exon 2 of ARID1B (NM_020732.3) predicting a premature stop codon p.(Leu528Phefs*65). Sanger sequencing confirmed the c.1584delG mutation as a de novo in the proband and that it was not present either in her parents, half-sister or half-brother. Clinically, the patient presented with extreme obesity, macrocephaly, hepatomegaly, hyperinsulinism and polycystic ovarian syndrome (PCOS), which have previously not been described in CSS patients. We suggest that obesity, macrocephaly, hepatomegaly and/or PCOS may be added to the list of clinical features of ARID1B mutations, but further clinical reports are required to make a definite conclusion. PMID:24569609

  13. TBX1 mutation identified by exome sequencing in a Japanese family with 22q11.2 deletion syndrome-like craniofacial features and hypocalcemia.

    Directory of Open Access Journals (Sweden)

    Tsutomu Ogata

    Full Text Available BACKGROUND: Although TBX1 mutations have been identified in patients with 22q11.2 deletion syndrome (22q11.2DS-like phenotypes including characteristic craniofacial features, cardiovascular anomalies, hypoparathyroidism, and thymic hypoplasia, the frequency of TBX1 mutations remains rare in deletion-negative patients. Thus, it would be reasonable to perform a comprehensive genetic analysis in deletion-negative patients with 22q11.2DS-like phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: We studied three subjects with craniofacial features and hypocalcemia (group 1, two subjects with craniofacial features alone (group 2, and three subjects with normal phenotype within a single Japanese family. Fluorescence in situ hybridization analysis excluded chromosome 22q11.2 deletion, and genomewide array comparative genomic hybridization analysis revealed no copy number change specific to group 1 or groups 1+2. However, exome sequencing identified a heterozygous TBX1 frameshift mutation (c.1253delA, p.Y418fsX459 specific to groups 1+2, as well as six missense variants and two in-frame microdeletions specific to groups 1+2 and two missense variants specific to group 1. The TBX1 mutation resided at exon 9C and was predicted to produce a non-functional truncated protein missing the nuclear localization signal and most of the transactivation domain. CONCLUSIONS/SIGNIFICANCE: Clinical features in groups 1+2 are well explained by the TBX1 mutation, while the clinical effects of the remaining variants are largely unknown. Thus, the results exemplify the usefulness of exome sequencing in the identification of disease-causing mutations in familial disorders. Furthermore, the results, in conjunction with the previous data, imply that TBX1 isoform C is the biologically essential variant and that TBX1 mutations are associated with a wide phenotypic spectrum, including most of 22q11.2DS phenotypes.

  14. Muscarinic Acetylcholine Receptor M3 Mutation Causes Urinary Bladder Disease and a Prune-Belly-like Syndrome.

    Science.gov (United States)

    Weber, Stefanie; Thiele, Holger; Mir, Sevgi; Toliat, Mohammad Reza; Sozeri, Betül; Reutter, Heiko; Draaken, Markus; Ludwig, Michael; Altmüller, Janine; Frommolt, Peter; Stuart, Helen M; Ranjzad, Parisa; Hanley, Neil A; Jennings, Rachel; Newman, William G; Wilcox, Duncan T; Thiel, Uwe; Schlingmann, Karl Peter; Beetz, Rolf; Hoyer, Peter F; Konrad, Martin; Schaefer, Franz; Nürnberg, Peter; Woolf, Adrian S

    2011-11-11

    Urinary bladder malformations associated with bladder outlet obstruction are a frequent cause of progressive renal failure in children. We here describe a muscarinic acetylcholine receptor M3 (CHRM3) (1q41-q44) homozygous frameshift mutation in familial congenital bladder malformation associated with a prune-belly-like syndrome, defining an isolated gene defect underlying this sometimes devastating disease. CHRM3 encodes the M3 muscarinic acetylcholine receptor, which we show is present in developing renal epithelia and bladder muscle. These observations may imply that M3 has a role beyond its known contribution to detrusor contractions. This Mendelian disease caused by a muscarinic acetylcholine receptor mutation strikingly phenocopies Chrm3 null mutant mice. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Haplotype analysis suggest that the MLH1 c.2059C > T mutation is a Swedish founder mutation.

    Science.gov (United States)

    von Salomé, Jenny; Liu, Tao; Keihäs, Markku; Morak, Moni; Holinski-Feder, Elke; Berry, Ian R; Moilanen, Jukka S; Baert-Desurmont, Stéphanie; Lindblom, Annika; Lagerstedt-Robinson, Kristina

    2017-12-29

    Lynch syndrome (LS) predisposes to a spectrum of cancers and increases the lifetime risk of developing colorectal- or endometrial cancer to over 50%. Lynch syndrome is dominantly inherited and is caused by defects in DNA mismatch-repair genes MLH1, MSH2, MSH6 or PMS2, with the vast majority detected in MLH1 and MSH2. Recurrent LS-associated variants observed in apparently unrelated individuals, have either arisen de novo in different families due to mutation hotspots, or are inherited from a founder (a common ancestor) that lived several generations back. There are variants that recur in some populations while also acting as founders in other ethnic groups. Testing for founder mutations can facilitate molecular diagnosis of Lynch Syndrome more efficiently and more cost effective than screening for all possible mutations. Here we report a study of the missense mutation MLH1 c.2059C > T (p.Arg687Trp), a potential founder mutation identified in eight Swedish families and one Finnish family with Swedish ancestors. Haplotype analysis confirmed that the Finnish and Swedish families shared a haplotype of between 0.9 and 2.8 Mb. While MLH1 c.2059C > T exists worldwide, the Swedish haplotype was not found among mutation carriers from Germany or France, which indicates a common founder in the Swedish population. The geographic distribution of MLH1 c.2059C > T in Sweden suggests a single, ancient mutational event in the northern part of Sweden.

  16. A combination of two truncating mutations in USH2A causes more severe and progressive hearing impairment in Usher syndrome type IIa

    NARCIS (Netherlands)

    Hartel, B.P.; Lofgren, M.; Huygen, P.L.; Guchelaar, I.; Lo, A.N.K.N.; Sadeghi, A.M.; van Wijk, E.; Tranebjaerg, L.; Kremer, H.; Kimberling, W.J.; Cremers, C.W.R.J.; Moller, C.; Pennings, R.J.

    2016-01-01

    OBJECTIVES: Usher syndrome is an inherited disorder that is characterized by hearing impairment (HI), retinitis pigmentosa, and in some cases vestibular dysfunction. Usher syndrome type IIa is caused by mutations in USH2A. HI in these patients is highly heterogeneous and the present study evaluates

  17. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination.

    Science.gov (United States)

    Overlack, Nora; Goldmann, Tobias; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2012-06-26

    Human Usher syndrome (USH) is the most frequent cause of inherited deaf-blindness. It is clinically and genetically heterogeneous, assigned to three clinical types of which the most severe type is USH1. No effective treatment for the ophthalmic component of USH exists. Gene augmentation is an attractive strategy for hereditary retinal diseases. However, several USH genes, like USH1C, are expressed in various isoforms, hampering gene augmentation. As an alternative treatment strategy, we applied the zinc-finger nuclease (ZFN) technology for targeted gene repair of an USH1C, causing mutation by homologous recombination. We designed ZFNs customized for the p.R31X nonsense mutation in Ush1c. We evaluated ZFNs for DNA cleavage capability and analyzed ZFNs biocompatibilities by XTT assays. We demonstrated ZFNs mediated gene repair on genomic level by digestion assays and DNA sequencing, and on protein level by indirect immunofluorescence and Western blot analyses. The specifically designed ZFNs did not show cytotoxic effects in a p.R31X cell line. We demonstrated that ZFN induced cleavage of their target sequence. We showed that simultaneous application of ZFN and rescue DNA induced gene repair of the disease-causing mutation on the genomic level, resulting in recovery of protein expression. In our present study, we analyzed for the first time ZFN-activated gene repair of an USH gene. The data highlight the ability of ZFNs to induce targeted homologous recombination and mediate gene repair in USH. We provide further evidence that the ZFN technology holds great potential to recover disease-causing mutations in inherited retinal disorders.

  18. Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation.

    Science.gov (United States)

    Bose, Baundauna; Reed, Sydney E; Besprozvannaya, Marina; Burton, Briana M

    2016-01-01

    SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation and vegetative growth. The sequence-reading domain (γ domain) is required for directional DNA transport, and its deletion severely impairs sporulation. We selected suppressors of the spoIIIEΔγ sporulation defect. Unexpectedly, many suppressors were intragenic missense mutants, and some restore sporulation to near-wild-type levels. The mutant proteins are likely not more abundant, faster at translocating DNA, or sequence-sensitive, and rescue does not involve the SpoIIIE homolog SftA. Some mutants behave differently when co-expressed with spoIIIEΔγ, consistent with the idea that some, but not all, variants may form mixed oligomers. In full-length spoIIIE, these mutations do not affect sporulation, and yet the corresponding residues are rarely found in other SpoIIIE/FtsK family members. The suppressors do not rescue chromosome translocation defects during vegetative growth, indicating that the role of the γ domain cannot be fully replaced by these mutations. We present two models consistent with our findings: that the suppressors commit to transport in one arbitrarily-determined direction or delay spore development. It is surprising that missense mutations somehow rescue loss of an entire domain with a complex function, and this raises new questions about the mechanism by which SpoIIIE pumps DNA and the roles SpoIIIE plays in vivo.

  19. Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation.

    Directory of Open Access Journals (Sweden)

    Baundauna Bose

    Full Text Available SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation and vegetative growth. The sequence-reading domain (γ domain is required for directional DNA transport, and its deletion severely impairs sporulation. We selected suppressors of the spoIIIEΔγ sporulation defect. Unexpectedly, many suppressors were intragenic missense mutants, and some restore sporulation to near-wild-type levels. The mutant proteins are likely not more abundant, faster at translocating DNA, or sequence-sensitive, and rescue does not involve the SpoIIIE homolog SftA. Some mutants behave differently when co-expressed with spoIIIEΔγ, consistent with the idea that some, but not all, variants may form mixed oligomers. In full-length spoIIIE, these mutations do not affect sporulation, and yet the corresponding residues are rarely found in other SpoIIIE/FtsK family members. The suppressors do not rescue chromosome translocation defects during vegetative growth, indicating that the role of the γ domain cannot be fully replaced by these mutations. We present two models consistent with our findings: that the suppressors commit to transport in one arbitrarily-determined direction or delay spore development. It is surprising that missense mutations somehow rescue loss of an entire domain with a complex function, and this raises new questions about the mechanism by which SpoIIIE pumps DNA and the roles SpoIIIE plays in vivo.

  20. Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy.

    Science.gov (United States)

    Nicole, Sophie; Chaouch, Amina; Torbergsen, Torberg; Bauché, Stéphanie; de Bruyckere, Elodie; Fontenille, Marie-Joséphine; Horn, Morten A; van Ghelue, Marijke; Løseth, Sissel; Issop, Yasmin; Cox, Daniel; Müller, Juliane S; Evangelista, Teresinha; Stålberg, Erik; Ioos, Christine; Barois, Annie; Brochier, Guy; Sternberg, Damien; Fournier, Emmanuel; Hantaï, Daniel; Abicht, Angela; Dusl, Marina; Laval, Steven H; Griffin, Helen; Eymard, Bruno; Lochmüller, Hanns

    2014-09-01

    Congenital myasthenic syndromes are a clinically and genetically heterogeneous group of rare diseases resulting from impaired neuromuscular transmission. Their clinical hallmark is fatigable muscle weakness associated with a decremental muscle response to repetitive nerve stimulation and frequently related to postsynaptic defects. Distal myopathies form another clinically and genetically heterogeneous group of primary muscle disorders where weakness and atrophy are restricted to distal muscles, at least initially. In both congenital myasthenic syndromes and distal myopathies, a significant number of patients remain genetically undiagnosed. Here, we report five patients from three unrelated families with a strikingly homogenous clinical entity combining congenital myasthenia with distal muscle weakness and atrophy reminiscent of a distal myopathy. MRI and neurophysiological studies were compatible with mild myopathy restricted to distal limb muscles, but decrement (up to 72%) in response to 3 Hz repetitive nerve stimulation pointed towards a neuromuscular transmission defect. Post-exercise increment (up to 285%) was observed in the distal limb muscles in all cases suggesting presynaptic congenital myasthenic syndrome. Immunofluorescence and ultrastructural analyses of muscle end-plate regions showed synaptic remodelling with denervation-reinnervation events. We performed whole-exome sequencing in two kinships and Sanger sequencing in one isolated case and identified five new recessive mutations in the gene encoding agrin. This synaptic proteoglycan with critical function at the neuromuscular junction was previously found mutated in more typical forms of congenital myasthenic syndrome. In our patients, we found two missense mutations residing in the N-terminal agrin domain, which reduced acetylcholine receptors clustering activity of agrin in vitro. Our findings expand the spectrum of congenital myasthenic syndromes due to agrin mutations and show an unexpected

  1. Neonatal High Bone Mass With First Mutation of the NF-κB Complex: Heterozygous De Novo Missense (p.Asp512Ser) RELA (Rela/p65).

    Science.gov (United States)

    Frederiksen, Anja L; Larsen, Martin J; Brusgaard, Klaus; Novack, Deborah V; Knudsen, Peter Juel Thiis; Schrøder, Henrik Daa; Qiu, Weimin; Eckhardt, Christina; McAlister, William H; Kassem, Moustapha; Mumm, Steven; Frost, Morten; Whyte, Michael P

    2016-01-01

    Heritable disorders that feature high bone mass (HBM) are rare. The etiology is typically a mutation(s) within a gene that regulates the differentiation and function of osteoblasts (OBs) or osteoclasts (OCs). Nevertheless, the molecular basis is unknown for approximately one-fifth of such entities. NF-κB signaling is a key regulator of bone remodeling and acts by enhancing OC survival while impairing OB maturation and function. The NF-κB transcription complex comprises five subunits. In mice, deletion of the p50 and p52 subunits together causes osteopetrosis (OPT). In humans, however, mutations within the genes that encode the NF-κB complex, including the Rela/p65 subunit, have not been reported. We describe a neonate who died suddenly and unexpectedly and was found at postmortem to have HBM documented radiographically and by skeletal histopathology. Serum was not available for study. Radiographic changes resembled malignant OPT, but histopathological investigation showed morphologically normal OCs and evidence of intact bone resorption excluding OPT. Furthermore, mutation analysis was negative for eight genes associated with OPT or HBM. Instead, accelerated bone formation appeared to account for the HBM. Subsequently, trio-based whole exome sequencing revealed a heterozygous de novo missense mutation (c.1534_1535delinsAG, p.Asp512Ser) in exon 11 of RELA encoding Rela/p65. The mutation was then verified using bidirectional Sanger sequencing. Lipopolysaccharide stimulation of patient fibroblasts elicited impaired NF-κB responses compared with healthy control fibroblasts. Five unrelated patients with unexplained HBM did not show a RELA defect. Ours is apparently the first report of a mutation within the NF-κB complex in humans. The missense change is associated with neonatal osteosclerosis from in utero increased OB function rather than failed OC action. These findings demonstrate the importance of the Rela/p65 subunit within the NF-κB pathway for human

  2. Review and update of mutations causing Waardenburg syndrome.

    Science.gov (United States)

    Pingault, Véronique; Ente, Dorothée; Dastot-Le Moal, Florence; Goossens, Michel; Marlin, Sandrine; Bondurand, Nadège

    2010-04-01

    Waardenburg syndrome (WS) is characterized by the association of pigmentation abnormalities, including depigmented patches of the skin and hair, vivid blue eyes or heterochromia irides, and sensorineural hearing loss. However, other features such as dystopia canthorum, musculoskeletal abnormalities of the limbs, Hirschsprung disease, or neurological defects are found in subsets of patients and used for the clinical classification of WS. Six genes are involved in this syndrome: PAX3 (encoding the paired box 3 transcription factor), MITF (microphthalmia-associated transcription factor), EDN3 (endothelin 3), EDNRB (endothelin receptor type B), SOX10 (encoding the Sry bOX10 transcription factor), and SNAI2 (snail homolog 2), with different frequencies. In this review we provide an update on all WS genes and set up mutation databases, summarize molecular and functional data available for each of them, and discuss the applications in diagnostics and genetic counseling. (c) 2010 Wiley-Liss, Inc.

  3. Syndromic intellectual disability: a new phenotype caused by an aromatic amino acid decarboxylase gene (DDC) variant.

    Science.gov (United States)

    Graziano, Claudio; Wischmeijer, Anita; Pippucci, Tommaso; Fusco, Carlo; Diquigiovanni, Chiara; Nõukas, Margit; Sauk, Martin; Kurg, Ants; Rivieri, Francesca; Blau, Nenad; Hoffmann, Georg F; Chaubey, Alka; Schwartz, Charles E; Romeo, Giovanni; Bonora, Elena; Garavelli, Livia; Seri, Marco

    2015-04-01

    The causative variant in a consanguineous family in which the three patients (two siblings and a cousin) presented with intellectual disability, Marfanoid habitus, craniofacial dysmorphisms, chronic diarrhea and progressive kyphoscoliosis, has been identified through whole exome sequencing (WES) analysis. WES study identified a homozygous DDC variant in the patients, c.1123C>T, resulting in p.Arg375Cys missense substitution. Mutations in DDC cause a recessive metabolic disorder (aromatic amino acid decarboxylase, AADC, deficiency, OMIM #608643) characterized by hypotonia, oculogyric crises, excessive sweating, temperature instability, dystonia, severe neurologic dysfunction in infancy, and specific abnormalities of neurotransmitters and their metabolites in the cerebrospinal fluid (CSF). In our family, analysis of neurotransmitters and their metabolites in patient's CSF shows a pattern compatible with AADC deficiency, although the clinical signs are different from the classic form. Our work expands the phenotypic spectrum associated with DDC variants, which therefore can cause an additional novel syndrome without typical movement abnormalities. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Deletions and de novo mutations of SOX11 are associated with a neurodevelopmental disorder with features of Coffin-Siris syndrome.

    Science.gov (United States)

    Hempel, Annmarie; Pagnamenta, Alistair T; Blyth, Moira; Mansour, Sahar; McConnell, Vivienne; Kou, Ikuyo; Ikegawa, Shiro; Tsurusaki, Yoshinori; Matsumoto, Naomichi; Lo-Castro, Adriana; Plessis, Ghislaine; Albrecht, Beate; Battaglia, Agatino; Taylor, Jenny C; Howard, Malcolm F; Keays, David; Sohal, Aman Singh; Kühl, Susanne J; Kini, Usha; McNeill, Alisdair

    2016-03-01

    SOX11 is a transcription factor proposed to play a role in brain development. The relevance of SOX11 to human developmental disorders was suggested by a recent report of SOX11 mutations in two patients with Coffin-Siris syndrome. Here we further investigate the role of SOX11 variants in neurodevelopmental disorders. We used array based comparative genomic hybridisation and trio exome sequencing to identify children with intellectual disability who have deletions or de novo point mutations disrupting SOX11. The pathogenicity of the SOX11 mutations was assessed using an in vitro gene expression reporter system. Loss-of-function experiments were performed in xenopus by knockdown of Sox11 expression. We identified seven individuals with chromosome 2p25 deletions involving SOX11. Trio exome sequencing identified three de novo SOX11 variants, two missense (p.K50N; p.P120H) and one nonsense (p.C29*). The biological consequences of the missense mutations were assessed using an in vitro gene expression system. These individuals had microcephaly, developmental delay and shared dysmorphic features compatible with mild Coffin-Siris syndrome. To further investigate the function of SOX11, we knocked down the orthologous gene in xenopus. Morphants had significant reduction in head size compared with controls. This suggests that SOX11 loss of function can be associated with microcephaly. We thus propose that SOX11 deletion or mutation can present with a Coffin-Siris phenotype. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Novel FGFR1 and KISS1R Mutations in Chinese Kallmann Syndrome Males with Cleft Lip/Palate

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2015-01-01

    Full Text Available Kallmann syndrome (KS is characterized by isolated hypogonadotropic hypogonadism (IHH with anosmia and is sometimes associated with cleft lip/palate (CLP. In order to describe the clinical features, genetic etiology, and treatment outcome of KS males with CLP, we performed genetic screening for 15 known causal IHH genes (KAL1, FGFR1, NELF, FGF8, CHD7, WDR11, SEMA3A, KISS1R, KISS1, PROKR2, PROK2, TAC3, TACR3, GNRH1, and GNRHR in four KS with CLP patients and six IHH patients without CLP. Two novel heterozygous missense mutations in FGFR1, (NM_001174066: c.776G>A (p.G259E and (NM_001174066: c.358C>T (p.R120C, were identified in a 23-year-old KS male with cleft lip and an 18-year-old KS patient with cleft lip and palate, dental agenesis, and high arched palate, respectively. These two mutations were not presented in their healthy parents and 200 normal controls. One novel heterozygous missense mutation in KISS1R, (NM_032551: c.587C>A (p.P196H, was identified in an 18-year-old KS male with cleft lip and dental agenesis who developed sperm after being treated with gonadotropin. This mutation was also presented in his healthy father and grandfather. These results have implications for the diagnosis, genetic counseling, and treatment of KS and CLP males with mutations in FGFR1 gene.

  6. Axonal transport of TDP-43 mRNA granules in neurons is impaired by ALS-causing mutations

    Science.gov (United States)

    Carrasco, Monica A.; Williams, Luis A.; Winborn, Christina S.; Han, Steve S. W.; Kiskinis, Evangelos; Winborn, Brett; Freibaum, Brian D.; Kanagaraj, Anderson; Clare, Alison J.; Badders, Nisha M.; Bilican, Bilada; Chaum, Edward; Chandran, Siddharthan; Shaw, Christopher E.; Eggan, Kevin C.; Maniatis, Tom; Taylor, J. Paul

    2014-01-01

    Summary The RNA binding protein TDP-43 regulates RNA metabolism at multiple levels, including transcription, RNA splicing, and mRNA stability. TDP-43 is a major component of the cytoplasmic inclusions characteristic of amyotrophic lateral sclerosis and some types of frontotemporal lobar degeneration. The importance of TDP-43 in disease is underscored by the fact that dominant missense mutations are sufficient to cause disease, although the role of TDP-43 in pathogenesis is unknown. Here we show that TDP-43 forms cytoplasmic mRNP granules that undergo bidirectional, microtubule-dependent transport in neurons in vitro and in vivo and facilitate delivery of target mRNA to distal neuronal compartments. TDP-43 mutations impair this mRNA transport function in vivo and in vitro, including in stem cell-derived motor neurons from ALS patients bearing any one of three different TDP-43 ALS-causing mutations. Thus, TDP43 mutations that cause ALS lead to partial loss of a novel cytoplasmic function of TDP-43. PMID:24507191

  7. Novel POC1A mutation in primordial dwarfism reveals new insights for centriole biogenesis.

    Science.gov (United States)

    Koparir, Asuman; Karatas, Omer F; Yuceturk, Betul; Yuksel, Bayram; Bayrak, Ali O; Gerdan, Omer F; Sagiroglu, Mahmut S; Gezdirici, Alper; Kirimtay, Koray; Selcuk, Ece; Karabay, Arzu; Creighton, Chad J; Yuksel, Adnan; Ozen, Mustafa

    2015-10-01

    POC1A encodes a WD repeat protein localizing to centrioles and spindle poles and is associated with short stature, onychodysplasia, facial dysmorphism and hypotrichosis (SOFT) syndrome. These main features are related to the defect in cell proliferation of chondrocytes in growth plate. In the current study, we aimed at identifying the molecular basis of two patients with primordial dwarfism (PD) in a single family through utilization of whole-exome sequencing. A novel homozygous p.T120A missense mutation was detected in POC1A in both patients, a known causative gene of SOFT syndrome, and confirmed using Sanger sequencing. To test the pathogenicity of the detected mutation, primary fibroblast cultures obtained from the patients and a control individual were used. For evaluating the global gene expression profile of cells carrying p.T120A mutation in POC1A, we performed the gene expression array and compared their expression profiles to those of control fibroblast cells. The gene expression array analysis showed that 4800 transcript probes were significantly deregulated in cells with p.T120A mutation in comparison to the control. GO term association results showed that deregulated genes are mostly involved in the extracellular matrix and cytoskeleton. Furthermore, the p.T120A missense mutation in POC1A caused the formation of abnormal mitotic spindle structure, including supernumerary centrosomes, and changes in POC1A were accompanied by alterations in another centrosome-associated WD repeat protein p80-katanin. As a result, we identified a novel mutation in POC1A of patients with PD and showed that this mutation causes the formation of multiple numbers of centrioles and multipolar spindles with abnormal chromosome arrangement. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Identification of a novel mutation in RIPK4 in a kindred with phenotypic features of Bartsocas-Papas and CHAND syndromes.

    Science.gov (United States)

    Gollasch, Benjamin; Basmanav, Fitnat Buket; Nanda, Arti; Fritz, Günter; Mahmoudi, Hassnaa; Thiele, Holger; Wehner, Maria; Wolf, Sabrina; Altmüller, Janine; Nürnberg, Peter; Frank, Jorge; Betz, Regina C

    2015-11-01

    Three children from an expanded consanguineous Kuwaiti kindred presented with ankyloblepharon, sparse and curly hair, and hypoplastic nails, suggestive of CHAND syndrome (OMIM 214350) that belongs to the heterogeneous spectrum of ectodermal dysplasias. After exclusion of pathogenic mutations in TP63 we performed homozygosity mapping, followed by exome sequencing of one affected individual. We initially identified three homozygous mutations in the linked region, located in PWP2, MX2 and RIPK4. Recently, mutations in RIPK4 have been reported in Bartsocas-Papas syndrome (OMIM 263650) that shows overlapping clinical symptoms with the phenotype observed in the affected individuals studied here. Subsequent analysis of affected and non-affected family members showed that mutation c.850G>A (p.Glu284Lys) in RIPK4 was in complete segregation with the disease phenotype, in accordance with an autosomal recessive inheritance pattern, thus supporting pathogenicity of this variant. Interestingly, however, our patients did not have cleft lip/palate, a common feature encountered in Bartsocas-Papas syndrome. Whereas in Bartsocas-Papas syndromes missense mutations are usually located within the serin/threonin kinase of RIPK4, the mutation detected in our family resides just outside of the kinase domain, which could explain the milder phenotype. Our data raise the question if CHAND syndrome indeed is a distinct entity. Alternatively, CHAND and Bartsocas-Papas syndrome might be allelic disorders or RIPK4 mutations could confer varying degrees of phenotypic severity, depending on their localization within or outside functionally important domains. Our findings indicate that making an accurate diagnosis based only on the prevailing clinical symptoms is challenging. © 2015 Wiley Periodicals, Inc.

  9. Point mutation in the MITF gene causing Waardenburg syndrome type II in a three-generation Indian family.

    Science.gov (United States)

    Lalwani, A K; Attaie, A; Randolph, F T; Deshmukh, D; Wang, C; Mhatre, A; Wilcox, E

    1998-12-04

    Waardenburg syndrome (WS) is an autosomal-dominant neural crest cell disorder phenotypically characterized by hearing impairment and disturbance of pigmentation. A presence of dystopia canthorum is indicative of WS type 1, caused by loss of function mutation in the PAX3 gene. In contrast, type 2 WS (WS2) is characterized by normally placed medial canthi and is genetically heterogeneous; mutations in MITF (microphthalmia associated transcription factor) associated with WS2 have been identified in some but not all affected families. Here, we report on a three-generation Indian family with a point mutation in the MITF gene causing WS2. This mutation, initially reported in a Northern European family, creates a stop codon in exon 7 and is predicted to result in a truncated protein lacking the HLH-Zip or Zip structure necessary for normal interaction with its target DNA motif. Comparison of the phenotype between the two families demonstrates a significant difference in pigmentary disturbance of the eye. This family, with the first documented case of two unrelated WS2 families harboring identical mutations, provides additional evidence for the importance of genetic background on the clinical phenotype.

  10. Ciliopathies with Skeletal Anomalies and Renal Insufficiency due to Mutations in the IFT-A Gene WDR19

    Science.gov (United States)

    Bredrup, Cecilie; Saunier, Sophie; Oud, Machteld M.; Fiskerstrand, Torunn; Hoischen, Alexander; Brackman, Damien; Leh, Sabine M.; Midtbø, Marit; Filhol, Emilie; Bole-Feysot, Christine; Nitschké, Patrick; Gilissen, Christian; Haugen, Olav H.; Sanders, Jan-Stephan F.; Stolte-Dijkstra, Irene; Mans, Dorus A.; Steenbergen, Eric J.; Hamel, Ben C.J.; Matignon, Marie; Pfundt, Rolph; Jeanpierre, Cécile; Boman, Helge; Rødahl, Eyvind; Veltman, Joris A.; Knappskog, Per M.; Knoers, Nine V.A.M.; Roepman, Ronald; Arts, Heleen H.

    2011-01-01

    A subset of ciliopathies, including Sensenbrenner, Jeune, and short-rib polydactyly syndromes are characterized by skeletal anomalies accompanied by multiorgan defects such as chronic renal failure and retinitis pigmentosa. Through exome sequencing we identified compound heterozygous mutations in WDR19 in a Norwegian family with Sensenbrenner syndrome. In a Dutch family with the clinically overlapping Jeune syndrome, a homozygous missense mutation in the same gene was found. Both families displayed a nephronophthisis-like nephropathy. Independently, we also identified compound heterozygous WDR19 mutations by exome sequencing in a Moroccan family with isolated nephronophthisis. WDR19 encodes IFT144, a member of the intraflagellar transport (IFT) complex A that drives retrograde ciliary transport. We show that IFT144 is absent from the cilia of fibroblasts from one of the Sensenbrenner patients and that ciliary abundance and morphology is perturbed, demonstrating the ciliary pathogenesis. Our results suggest that isolated nephronophthisis, Jeune, and Sensenbrenner syndromes are clinically overlapping disorders that can result from a similar molecular cause. PMID:22019273

  11. Mutations in LOXHD1, a Recessive-Deafness Locus, Cause Dominant Late-Onset Fuchs Corneal Dystrophy

    Science.gov (United States)

    Riazuddin, S. Amer; Parker, David S.; McGlumphy, Elyse J.; Oh, Edwin C.; Iliff, Benjamin W.; Schmedt, Thore; Jurkunas, Ula; Schleif, Robert; Katsanis, Nicholas; Gottsch, John D.

    2012-01-01

    Fuchs corneal dystrophy (FCD) is a genetic disorder of the corneal endothelium and is the most common cause of corneal transplantation in the United States. Previously, we mapped a late-onset FCD locus, FCD2, on chromosome 18q. Here, we present next-generation sequencing of all coding exons in the FCD2 critical interval in a multigenerational pedigree in which FCD segregates as an autosomal-dominant trait. We identified a missense change in LOXHD1, a gene causing progressive hearing loss in humans, as the sole variant capable of explaining the phenotype in this pedigree. We observed LOXHD1 mRNA in cultured human corneal endothelial cells, whereas antibody staining of both human and mouse corneas showed staining in the corneal epithelium and endothelium. Corneal sections of the original proband were stained for LOXHD1 and demonstrated a distinct increase in antibody punctate staining in the endothelium and Descemet membrane; punctate staining was absent from both normal corneas and FCD corneas negative for causal LOXHD1 mutations. Subsequent interrogation of a cohort of >200 sporadic affected individuals identified another 15 heterozygous missense mutations that were absent from >800 control chromosomes. Furthermore, in silico analyses predicted that these mutations reside on the surface of the protein and are likely to affect the protein's interface and protein-protein interactions. Finally, expression of the familial LOXHD1 mutant allele as well as two sporadic mutations in cells revealed prominent cytoplasmic aggregates reminiscent of the corneal phenotype. All together, our data implicate rare alleles in LOXHD1 in the pathogenesis of FCD and highlight how different mutations in the same locus can potentially produce diverse phenotypes. PMID:22341973

  12. Contribution of novel ATGL missense mutations to the clinical phenotype of NLSD-M: a strikingly low amount of lipase activity may preserve cardiac function.

    Science.gov (United States)

    Tavian, Daniela; Missaglia, Sara; Redaelli, Chiara; Pennisi, Elena M; Invernici, Gloria; Wessalowski, Ruediger; Maiwald, Robert; Arca, Marcello; Coleman, Rosalind A

    2012-12-15

    The lack of adipose triglyceride lipase (ATGL), a patatin-like phospholipase domain-containing enzyme that hydrolyzes fatty acids from triacylglycerol (TAG) stored in multiple tissues, causes the autosomal recessive disorder neutral lipid storage disease with myopathy (NLSD-M). In two families of Lebanese and Italian origin presenting with NLSD-M, we identified two new missense mutations in highly conserved regions of ATGL (p.Arg221Pro and p.Asn172Lys) and a novel nonsense mutation (p.Trp8X). The Lebanese patients harbor homozygous p.Arg221Pro, whereas the Italian patients are heterozygotes for p.Asn172Lys and the p.Trp8X mutation. The p.Trp8X mutation results in a complete absence of ATGL protein, while the p.Arg221Pro and p.Asn172Lys mutations result in proteins with minimal lipolytic activity. Although these mutations did not affect putative catalytic residues or the lipid droplet (LD)-binding domain of ATGL, cytosolic LDs accumulated in cultured skin fibroblasts from the patients. The missense mutations might destabilize a random coil (p.Asn172Lys) or a helix (p.Arg221Pro) structure within or proximal to the patatin domain of the lipase, thereby interfering with the enzyme activity, while leaving intact the residues required to localize the protein to LDs. Overexpressing wild-type ATGL in one patient's fibroblasts corrected the metabolic defect and effectively reduced the number and area of cellular LDs. Despite the poor lipase activity in vitro, the Lebanese siblings have a mild myopathy and not clinically evident myocardial dysfunction. The patients of Italian origin show a late-onset and slowly progressive skeletal myopathy. These findings suggest that a small amount of correctly localized lipase activity preserves cardiac function in NLSD-M.

  13. Dyskeratosis congenita--two siblings with a new missense mutation in the DKC1 gene.

    Science.gov (United States)

    Coelho, Joana Dias; Lestre, Sara; Kay, Teresa; Lopes, Maria João Paiva; Fiadeiro, Teresa; Apetato, Margarida

    2011-01-01

    Dyskeratosis congenital is reported in two siblings. They presented with the classic triad of mucocutaneous features: leukoplakia of the tongue, dystrophic nails, and a widespread reticulate pigmentation on the neck and upper chest. A genetic analysis was performed and a new missense mutation S356P, hemizygous, was identified in the DKC1 gene in both patients. Acitretin was started at a low-dose in both patients, resulting in clinical improvement and important, positive psychosocial effects. © 2011 Wiley Periodicals, Inc.

  14. Axonal Transport of TDP-43 mRNA Granules Is Impaired by ALS-Causing Mutations

    OpenAIRE

    Alami, Nael H.; Smith, Rebecca B.; Carrasco, Monica A.; Williams, Luis A.; Winborn, Christina S.; Han, Steve S.W.; Kiskinis, Evangelos; Winborn, Brett; Freibaum, Brian D.; Kanagaraj, Anderson; Clare, Alison J.; Badders, Nisha M.; Bilican, Bilada; Chaum, Edward; Chandran, Siddharthan

    2014-01-01

    The RNA binding protein TDP-43 regulates RNA metabolism at multiple levels, including transcription, RNA splicing, and mRNA stability. TDP-43 is a major component of the cytoplasmic inclusions characteristic of amyotrophic lateral sclerosis and some types of frontotemporal lobar degeneration. The importance of TDP-43 in disease is underscored by the fact that dominant missense mutations are sufficient to cause disease, although the role of TDP-43 in pathogenesis is unknown. ...

  15. Occipital horn syndrome and classical Menkes syndrome caused by deep intronic mutations, leading to the activation of ATP7A pseudo-exon

    DEFF Research Database (Denmark)

    Yasmeen, Saiqa; Lund, Katrine; De Paepe, Anne

    2014-01-01

    Menkes disease is an X-linked disorder of copper metabolism caused by mutations in the ATP7A gene. Whereas most of the patients exhibit a severe classical form, about 9% of the patients exhibit a milder form of Menkes disease. The mildest form is called occipital horn syndrome (OHS). Mutations...... patients: two patients with OHS and one patient with classical Menkes disease. The pseudo-exons were inserted between exons 10 and 11, between exons 16 and 17 and between exons 14 and 15 in the three patients, as a result of deep intronic mutations. This is the first time the activation of pseudo...... mechanism, which has hitherto been overlooked.European Journal of Human Genetics advance online publication, 4 September 2013; doi:10.1038/ejhg.2013.191....

  16. Novel growth hormone receptor gene mutation in a patient with Laron syndrome.

    Science.gov (United States)

    Arman, Ahmet; Yüksel, Bilgin; Coker, Ajda; Sarioz, Ozlem; Temiz, Fatih; Topaloglu, Ali Kemal

    2010-04-01

    Growth Hormone (GH) is a 22 kDa protein that has effects on growth and glucose and fat metabolisms. These effects are initiated by binding of growth hormone (GH) to growth hormone receptors (GHR) expressed in target cells. Mutations or deletions in the growth hormone receptor cause an autosomal disorder called Laron-type dwarfism (LS) characterized by high circulating levels of serum GH and low levels of insulin like growth factor-1 (IGF-1). We analyzed the GHR gene for genetic defect in seven patients identified as Laron type dwarfism. We identified two missense mutations (S40L and W104R), and four polymorphisms (S473S, L526I, G168G and exon 3 deletion). We are reporting a mutation (W104R) at exon 5 of GHR gene that is not previously reported, and it is a novel mutation.

  17. A Novel MAPT Mutation Causing Corticobasal Syndrome Led by Progressive Apraxia of Speech.

    Science.gov (United States)

    Marshall, Charles R; Guerreiro, Rita; Thust, Steffi; Fletcher, Phillip; Rohrer, Jonathan D; Fox, Nick C

    2015-01-01

    The authors describe a case of corticobasal syndrome led by progressive apraxia of speech, associated with a novel mutation in exon 10 of the MAPT gene. Genetic bases for progressive apraxia of speech and corticobasal syndrome are only rarely described, and have not been described in conjunction.

  18. A novel mutation in the endothelin B receptor gene in a moroccan family with shah-waardenburg syndrome.

    Science.gov (United States)

    Doubaj, Yassamine; Pingault, Véronique; Elalaoui, Siham C; Ratbi, Ilham; Azouz, Mohamed; Zerhouni, Hicham; Ettayebi, Fouad; Sefiani, Abdelaziz

    2015-02-01

    Waardenburg syndrome (WS) is a neurocristopathy disorder combining sensorineural deafness and pigmentary abnormalities. The presence of additional signs defines the 4 subtypes. WS type IV, also called Shah-Waardenburg syndrome (SWS), is characterized by the association with congenital aganglionic megacolon (Hirschsprung disease). To date, 3 causative genes have been related to this congenital disorder. Mutations in the EDNRB and EDN3 genes are responsible for the autosomal recessive form of SWS, whereas SOX10 mutations are inherited in an autosomal dominant manner. We report here the case of a 3-month-old Morrocan girl with WS type IV, born to consanguineous parents. The patient had 3 cousins who died in infancy with the same symptoms. Molecular analysis by Sanger sequencing revealed the presence of a novel homozygous missense mutation c.1133A>G (p.Asn378Ser) in the EDNRB gene. The proband's parents as well as the parents of the deceased cousins are heterozygous carriers of this likely pathogenic mutation. This molecular diagnosis allows us to provide genetic counseling to the family and eventually propose prenatal diagnosis to prevent recurrence of the disease in subsequent pregnancies.

  19. Functional analysis of a SOX10 gene mutation associated with Waardenburg syndrome II.

    Science.gov (United States)

    Wang, Xue-Ping; Hao, Zi-Qi; Liu, Ya-Lan; Mei, Ling-Yun; He, Chu-Feng; Niu, Zhi-Jie; Sun, Jie; Zhao, Yu-Lin; Feng, Yong

    2017-11-04

    Waardenburg syndrome (WS) is an autosomal dominant inherited non-syndromic type of hereditary hearing loss characterized by varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four subtypes (WS1-WS4) based on additional symptoms. WS2 is characterized by the absence of additional symptoms. Recently, we identified a SOX10 missense mutation c.422T > C (p.L141P) associated with WS2. We performed functional assays and found the mutant loses DNA-binding capacity, shows aberrant cytoplasmic and nuclear localization, and fails to interact with PAX3. Therefore, the mutant cannot transactivate the MITF promoter effectively, inhibiting melanin synthesis and leading to WS2. Our study confirmed haploinsufficiency as the underlying pathogenesis for WS2. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Molar Tooth Sign with Deranged Liver Function Tests: An Indian Case with COACH Syndrome.

    Science.gov (United States)

    Sanjeev, Rama Krishna; Kapoor, Seema; Goyal, Manisha; Kapur, Rajiv; Gleeson, Joseph Gerard

    2015-01-01

    We report the first genetically proven case of COACH syndrome from the Indian subcontinent in a 6-year-old girl who presented with typical features of Joubert syndrome along with hepatic involvement. Mutation analysis revealed compound heterozygous missense mutation in the known gene TMEM67 (also called MKS3).

  1. Mutation analysis of the NSD1 gene in patients with autism spectrum disorders and macrocephaly

    Directory of Open Access Journals (Sweden)

    Delorme Richard

    2007-11-01

    Full Text Available Abstract Background Sotos syndrome is an overgrowth syndrome characterized by macrocephaly, advanced bone age, characteristic facial features, and learning disabilities, caused by mutations or deletions of the NSD1 gene, located at 5q35. Sotos syndrome has been described in a number of patients with autism spectrum disorders, suggesting that NSD1 could be involved in other cases of autism and macrocephaly. Methods We screened the NSD1 gene for mutations and deletions in 88 patients with autism spectrum disorders and macrocephaly (head circumference 2 standard deviations or more above the mean. Mutation analysis was performed by direct sequencing of all exons and flanking regions. Dosage analysis of NSD1 was carried out using multiplex ligation-dependent probe amplification. Results We identified three missense variants (R604L, S822C and E1499G in one patient each, but none is within a functional domain. In addition, segregation analysis showed that all variants were inherited from healthy parents and in two cases were also present in unaffected siblings, indicating that they are probably nonpathogenic. No partial or whole gene deletions/duplications were observed. Conclusion Our findings suggest that Sotos syndrome is a rare cause of autism spectrum disorders and that screening for NSD1 mutations and deletions in patients with autism and macrocephaly is not warranted in the absence of other features of Sotos syndrome.

  2. Novel Homozygous Missense Mutation in RYR1 Leads to Severe Congenital Ptosis, Ophthalmoplegia, and Scoliosis in the Absence of Myopathy.

    Science.gov (United States)

    Dilaver, Nafi; Mazaheri, Neda; Maroofian, Reza; Zeighami, Jawaher; Seifi, Tahere; Zamani, Mina; Sedaghat, Alireza; Shariati, Gholam Reza; Galehdari, Hamid

    2017-12-01

    Ryanodine receptor 1 ( RYR1 ) is an intracellular calcium receptor primarily expressed in skeletal muscle with a role in excitation contraction. Both dominant and recessive mutations in the RYR1 gene cause a range of RYR1 -related myopathies and/or susceptibility to malignant hyperthermia (MH). Recently, an atypical manifestation of ptosis, variably presenting with ophthalmoplegia, facial paralysis, and scoliosis but without significant muscle weakness, has been reported in 9 cases from 4 families with bialleic variants in RYR1 . Two affected children from a consanguineous family with severe congenital ptosis, ophthalmoplegia, scoliosis, and distinctive long faces but without skeletal myopathy were studied. To identify the cause of the hereditary condition, DNA from the proband was subjected to whole exome sequencing (WES). WES revealed a novel homozygous missense variant in RYR1 (c.14066T>A; p.IIe4689Asn), which segregated within the family. Although the phenotype of the affected siblings in this study was similar to previously described cases, the clinical features were more severely expressed. Our findings contribute to the expansion of phenotypes related to RYR1 dysfunction. Additionally, it supports a new RYR1 -related clinical presentation without musculoskeletal involvement. It is important that individuals with RYR1 mutations are considered susceptible to MH, as 70% of the MH cases are caused by mutations in the RYR1 gene.

  3. Hypomorphic mutation in mouse Nppc gene causes retarded bone growth due to impaired endochondral ossification

    International Nuclear Information System (INIS)

    Tsuji, Takehito; Kondo, Eri; Yasoda, Akihiro; Inamoto, Masataka; Kiyosu, Chiyo; Nakao, Kazuwa; Kunieda, Tetsuo

    2008-01-01

    Long bone abnormality (lbab/lbab) is a spontaneous mutant mouse characterized by dwarfism with shorter long bones. A missense mutation was reported in the Nppc gene, which encodes C-type natriuretic peptide (CNP), but it has not been confirmed whether this mutation is responsible for the dwarf phenotype. To verify that the mutation causes the dwarfism of lbab/lbab mice, we first investigated the effect of CNP in lbab/lbab mice. By transgenic rescue with chondrocyte-specific expression of CNP, the dwarf phenotype in lbab/lbab mice was completely compensated. Next, we revealed that CNP derived from the lbab allele retained only slight activity to induce cGMP production through its receptor. Histological analysis showed that both proliferative and hypertrophic zones of chondrocytes in the growth plate of lbab/lbab mice were markedly reduced. Our results demonstrate that lbab/lbab mice have a hypomorphic mutation in the Nppc gene that is responsible for dwarfism caused by impaired endochondral ossification

  4. Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency Syndrome

    NARCIS (Netherlands)

    Klift, H.M. van der; Mensenkamp, A.R.; Drost, M.; Bik, E.C.; Vos, Y.J.; Gille, H.J.; Redeker, B.E.; Tiersma, Y.; Zonneveld, J.B.; Garcia, E.G.; Letteboer, T.G.; Olderode-Berends, M.J.; Hest, L.P. van; Os, T.A. van; Verhoef, S.; Wagner, A.; Asperen, C.J. van; Broeke, S.W. ten; Hes, F.J.; Wind, N. de; Nielsen, M.; Devilee, P.; Ligtenberg, M.J.L.; Wijnen, J.T.; Tops, C.M.

    2016-01-01

    Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are

  5. Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency Syndrome

    NARCIS (Netherlands)

    van der Klift, Heleen M.; Mensenkamp, Arjen R.; Drost, Mark; Bik, Elsa C.; Vos, Yvonne J.; Gille, Hans J. J. P.; Redeker, Bert E. J. W.; Tiersma, Yvonne; Zonneveld, Jose B. M.; Garcia, Encarna Gomez; Letteboer, Tom G. W.; Olderode-Berends, Maran J. W.; van Hest, Liselotte P.; van Os, Theo A.; Verhoef, Senno; Wagner, Anja; van Asperen, Christi J.; ten Broeke, Sanne W.; Hes, Frederik J.; de Wind, Niels; Nielsen, Maartje; Devilee, Peter; Ligtenberg, Marjolijn J. L.; Wijnen, Juul T.; Tops, Carli M. J.

    Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are

  6. Clinical intrafamilial variability in lethal familial neonatal seizure disorder caused by TBC1D24 mutations.

    Science.gov (United States)

    Lozano, Reymundo; Herman, Kristin; Rothfuss, Melanie; Rieger, Hillary; Bayrak-Toydemir, Pinar; Aprile, Davide; Fruscione, Floriana; Zara, Federico; Fassio, Anna

    2016-12-01

    TBC1D24-related disorders include a wide phenotypic ranging from mild to lethal seizure disorders, non-syndromic deafness, and composite syndromes such as DOORS (deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures). The TBC1D24 gene has a role in cerebral cortex development and in presynaptic neurotransmission. Here, we present a familial case of a lethal early-onset epileptic encephalopathy, associated with two novel compound heterozygous missense variants on the TBC1D24 gene, which were detected by exome sequencing. The detailed clinical data of the three siblings is summarized in order to support the variability of the phenotype, severity, and progression of this disorder among these family members. Functional studies demonstrated that the identified novel missense mutations result in a loss of expression of the protein, suggesting a correlation between residual expression, and the disease severity. This indicates that protein expression analysis is important for interpreting genetic results when novel variants are found, as well as for complementing clinical assessment by predicting the functional impact. Further analysis is necessary to delineate the clinical presentation of individuals with TBC1D24 pathogenic variants, as well as to develop markers for diagnosis, prognosis, and potential targeted treatments. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Numerous BAF complex genes are mutated in Coffin-Siris syndrome.

    Science.gov (United States)

    Miyake, Noriko; Tsurusaki, Yoshinori; Matsumoto, Naomichi

    2014-09-01

    Coffin-Siris syndrome (CSS; OMIM#135900) is a rare congenital anomaly syndrome characterized by intellectual disability, coarse face, hypertrichosis, and absence/hypoplasia of the fifth digits' nails. As the majority of patients are sporadic, an autosomal dominant inheritance model has been postulated. Recently, whole exome sequencing (WES) emerged as a comprehensive analytical method for rare variants. We applied WES on five CSS patients and found two de novo mutations in SMARCB1. SMARCB1 was completely sequenced in 23 CSS patients and the mutations were found in two more patients. As SMARCB1 encodes a subunit of the BAF complex functioning as a chromatin remodeling factor, mutations in 15 other subunit genes may cause CSS and thus were analyzed in 23 CSS patients. We identified heterozygous mutations in either of six genes (SMARCA4, SMARCB1, SMARCA2, SMARCE1, ARID1A, and ARID1B) in 20 out of 23 CSS patients. The patient with a SMARCA2 mutation was re-evaluated and identified as having Nicolaides-Baraitser syndrome (OMIM#601358), which is similar to but different from CSS. Additionally, 49 more CSS patients were analyzed as a second cohort. Together with the first cohort, 37 out of 71 (22 plus 49) patients were found to have a mutation in either one of five BAF complex genes. Furthermore, two CSS patients were reported to have a PHF6 abnormality, which can also cause Borjeson-Forssman-Lehmann syndrome (OMIM#301900), an X-linked intellectual disability syndrome with epilepsy and endocrine abnormalities. The current list of mutated genes in CSS is far from being complete and analysis of more patients is required. © 2014 Wiley Periodicals, Inc.

  8. Further confirmation of the MED13L haploinsufficiency syndrome

    NARCIS (Netherlands)

    van Haelst, M.M.; Monroe, G.R.; Duran, K.J.; van Binsbergen, E.; Breur, J.M.P.J.; Giltay, J.C.; van Haaften, G.W.

    MED13L haploinsufficiency syndrome has been described in two patients and is characterized by moderate intellectual disability (ID), conotruncal heart defects, facial abnormalities and hypotonia. Missense mutations in MED13L are linked to transposition of the great arteries and non-syndromal

  9. Identification of missense mutations in the Norrie disease gene associated with advanced retinopathy of prematurity.

    Science.gov (United States)

    Shastry, B S; Pendergast, S D; Hartzer, M K; Liu, X; Trese, M T

    1997-05-01

    Retinopathy of prematurity (ROP) is a retinal vascular disease occurring in infants with short gestational age and low birth weight and can lead to retinal detachment (ROP stages 4 and 5). X-linked familial exudative vitreoretinopathy is phenotypically similar to ROP and has been associated with mutations in the Norrie disease (ND) gene in some cases. To determine if similar mutations in the ND gene may play a role in the development of advanced ROP. Clinical examination and molecular genetic analysis were performed on 16 children, including 2 dizygotic and 1 monozygotic twin pairs, and their parents from 13 families. Sequencing of the amplified products revealed missense mutations (R121W and L108P) in the third exon of the ND gene in 4 patients. These mutations were not present in an unaffected premature twin, 2 children with regressed stage 3 ROP, the parents, or in 50 unrelated healthy control subjects. These findings suggest that mutations in the ND gene may play a role in the development of severe ROP in premature infants.

  10. Introducing Pitt-Hopkins syndrome-associated mutations of TCF4 to Drosophila daughterless

    Directory of Open Access Journals (Sweden)

    Laura Tamberg

    2015-12-01

    Full Text Available Pitt-Hopkins syndrome (PTHS is caused by haploinsufficiency of Transcription factor 4 (TCF4, one of the three human class I basic helix-loop-helix transcription factors called E-proteins. Drosophila has a single E-protein, Daughterless (Da, homologous to all three mammalian counterparts. Here we show that human TCF4 can rescue Da deficiency during fruit fly nervous system development. Overexpression of Da or TCF4 specifically in adult flies significantly decreases their survival rates, indicating that these factors are crucial even after development has been completed. We generated da transgenic fruit fly strains with corresponding missense mutations R578H, R580W, R582P and A614V found in TCF4 of PTHS patients and studied the impact of these mutations in vivo. Overexpression of wild type Da as well as human TCF4 in progenitor tissues induced ectopic sensory bristles and the rough eye phenotype. By contrast, overexpression of DaR580W and DaR582P that disrupt DNA binding reduced the number of bristles and induced the rough eye phenotype with partial lack of pigmentation, indicating that these act dominant negatively. Compared to the wild type, DaR578H and DaA614V were less potent in induction of ectopic bristles and the rough eye phenotype, respectively, suggesting that these are hypomorphic. All studied PTHS-associated mutations that we introduced into Da led to similar effects in vivo as the same mutations in TCF4 in vitro. Consequently, our Drosophila models of PTHS are applicable for further studies aiming to unravel the molecular mechanisms of this disorder.

  11. A patient with Dent disease and features of Bartter syndrome caused by a novel mutation of CLCN5.

    Science.gov (United States)

    Okamoto, Takayuki; Tajima, Toshihiro; Hirayama, Tomoya; Sasaki, Satoshi

    2012-02-01

    Dent disease is an X-linked tubulopathy mainly caused by inactivating mutations of CLCN5. Features of Bartter syndrome such as hypokalemic metabolic alkalosis are rarely observed in patients with Dent disease. We report a Japanese male patient with Dent disease who also manifested features of Bartter syndrome. At the age of 3 years, he was diagnosed with Dent disease based on low molecular weight proteinuria and hypercalciuria. One year later, he was found to have features of Bartter syndrome, i.e., hypokalemia and metabolic alkalosis, and high levels of plasma renin activity and aldosterone with a normal blood pressure. Despite medical interventions, he developed chronic kidney disease stage 3 at the age of 21 years. To investigate the molecular basis of his disease, CLCN5, KCNJ1, SLC12A1, and CLCkb were analyzed and a novel mutation (Y567X) in CLCN5 was identified. Hypokalemic metabolic alkalosis is a rare manifestation in Dent disease. It is speculated that Dent patients with features of Bartter syndrome are susceptible to progression to renal failure. To study this hypothesis, additional observations and long-term follow-up of such patients are necessary.

  12. MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta

    Science.gov (United States)

    Lindert, Uschi; Cabral, Wayne A.; Ausavarat, Surasawadee; Tongkobpetch, Siraprapa; Ludin, Katja; Barnes, Aileen M.; Yeetong, Patra; Weis, Maryann; Krabichler, Birgit; Srichomthong, Chalurmpon; Makareeva, Elena N.; Janecke, Andreas R.; Leikin, Sergey; Röthlisberger, Benno; Rohrbach, Marianne; Kennerknecht, Ingo; Eyre, David R.; Suphapeetiporn, Kanya; Giunta, Cecilia; Marini, Joan C.; Shotelersuk, Vorasuk

    2016-01-01

    Osteogenesis imperfecta (OI) is a collagen-related bone dysplasia. We identified an X-linked recessive form of OI caused by defects in MBTPS2, which encodes site-2 metalloprotease (S2P). MBTPS2 missense mutations in two independent kindreds with moderate/severe OI cause substitutions at highly conserved S2P residues. Mutant S2P has normal stability, but impaired functioning in regulated intramembrane proteolysis (RIP) of OASIS, ATF6 and SREBP transcription factors, consistent with decreased proband secretion of type I collagen. Further, hydroxylation of the collagen lysine residue (K87) critical for crosslinking is reduced in proband bone tissue, consistent with decreased lysyl hydroxylase 1 in proband osteoblasts. Reduced collagen crosslinks presumptively undermine bone strength. Also, proband osteoblasts have broadly defective differentiation. These mutations provide evidence that RIP plays a fundamental role in normal bone development. PMID:27380894

  13. Constitutional SAMD9L mutations cause familial myelodysplastic syndrome and transient monosomy 7.

    Science.gov (United States)

    Pastor, Victor B; Sahoo, Sushree S; Boklan, Jessica; Schwabe, Georg C; Saribeyoglu, Ebru; Strahm, Brigitte; Lebrecht, Dirk; Voss, Matthias; Bryceson, Yenan T; Erlacher, Miriam; Ehninger, Gerhard; Niewisch, Marena; Schlegelberger, Brigitte; Baumann, Irith; Achermann, John C; Shimamura, Akiko; Hochrein, Jochen; Tedgård, Ulf; Nilsson, Lars; Hasle, Henrik; Boerries, Melanie; Busch, Hauke; Niemeyer, Charlotte M; Wlodarski, Marcin W

    2018-03-01

    Familial myelodysplastic syndromes arise from haploinsufficiency of genes involved in hematopoiesis and are primarily associated with early-onset disease. Here we describe a familial syndrome in seven patients from four unrelated pedigrees presenting with myelodysplastic syndrome and loss of chromosome 7/7q. Their median age at diagnosis was 2.1 years (range, 1-42). All patients presented with thrombocytopenia with or without additional cytopenias and a hypocellular marrow without an increase of blasts. Genomic studies identified constitutional mutations (p.H880Q, p.R986H, p.R986C and p.V1512M) in the SAMD9L gene on 7q21, with decreased allele frequency in hematopoiesis. The non-random loss of mutated SAMD9L alleles was attained via monosomy 7, deletion 7q, UPD7q, or acquired truncating SAMD9L variants p.R1188X and p.S1317RfsX21. Incomplete penetrance was noted in 30% (3/10) of mutation carriers. Long-term observation revealed divergent outcomes with either progression to leukemia and/or accumulation of driver mutations (n=2), persistent monosomy 7 (n=4), and transient monosomy 7 followed by spontaneous recovery with SAMD9L -wildtype UPD7q (n=2). Dysmorphic features or neurological symptoms were absent in our patients, pointing to the notion that myelodysplasia with monosomy 7 can be a sole manifestation of SAMD9L disease. Collectively, our results define a new subtype of familial myelodysplastic syndrome and provide an explanation for the phenomenon of transient monosomy 7. Registered at: www.clinicaltrials.gov; #NCT00047268 . Copyright© 2018 Ferrata Storti Foundation.

  14. A Novel Missense Mutation of the NSD1 Gene Associated with Overgrowth in Three Generations of an Italian Family: Case Report, Differential Diagnosis, and Review of Mutations of NSD1 Gene in Familial Sotos Syndrome

    Directory of Open Access Journals (Sweden)

    Gianluigi Laccetta

    2017-11-01

    Full Text Available Sotos syndrome (SoS is characterized by overgrowth of prenatal onset, learning disability, and characteristic facial appearance; it is usually due to haploinsufficiency of NSD1 gene at chromosome 5q35. An Italian child was born at 37 weeks of gestation (weight 2,910 g, 25th–50th centiles; length 50 cm, 75th centile; head circumference 36 cm, 97th centile showing cryptorchidism on the right side, hypertelorism, dolichocephaly, broad and prominent forehead, and narrow jaw; the pregnancy was worsened by maternal preeclampsia and gestational diabetes, and his mother had a previous history of four early miscarriages. The patient showed neonatal jaundice, hypotonia, feeding difficulties, frequent vomiting, and gastroesophageal reflux. After the age of 6 months, his weight, length, and head circumference were above the 97th centile; psychomotor development was delayed. At the age of 9 years, the patient showed also joint laxity and scoliosis. DNA sequence analysis of NSD1 gene detected a novel heterozygous mutation (c.521T>A, p.Val174Asp in exon 2. The same mutant allele was also found in the mother and in the maternal grandfather of the proband; both the mother and the maternal grandfather of the proband showed isolated overgrowth with height above the 97th centile in absence of other features of SoS. At present 23 familial cases of SoS have been described (two cases with mutation in exon 2 of NSD1 gene; no familial cases of SoS with mutation of NSD1 gene and isolated overgrowth have been reported. Probably, point mutations of NSD1 gene, and particularly mutations between exon 20 and exon 23, are not likely to affect reproductive fitness. Epigenetic mechanisms and intrauterine environment may influence phenotypes, therefore genetic tests are not useful to predict the phenotype but they are indispensable for the diagnosis of SoS. This is the first Italian familial case of SoS with genetic confirmation and the third report in which a

  15. New mutations in APOB100 involved in familial hypobetalipoproteinemia

    DEFF Research Database (Denmark)

    Brusgaard, Klaus; Kjaersgaard, Lars; Hansen, Anne-Birthe Bo

    2011-01-01

    Familial hypolipoproteinemia (FHBL) is characterized by an inherited low plasma level of apolipoprotein B containing lipoproteins. FHBL may be caused by mutations of APOB. Individuals with FHBL typically have intestinal malabsorption and frequently suffer from a deficiency of fat-soluble vitamins....... Most mutations that cause FHBL are APOB truncating mutations. Here we describe a patient with FHBL caused by a novel truncating mutation together with a novel missense mutation....

  16. Analysis of MYO7A in a Moroccan family with Usher syndrome type 1B: novel loss-of-function mutation and non-pathogenicity of p.Y1719C.

    Science.gov (United States)

    Boulouiz, Redouane; Li, Yun; Abidi, Omar; Bolz, Hanno; Chafik, Abdelaziz; Kubisch, Christian; Roub, Hassan; Wollnik, Bernd; Barakat, Abdelhamid

    2007-10-02

    Mutations in the MYO7A gene are responsible for Usher syndrome type 1B (USH1B), the most common USH1 subtype, which accounts for the largest proportion of USH1 cases in most populations. Molecular genetic diagnosis in Usher syndrome is well established and identification of the underlying mutations in Usher patients is important for confirmation of the clinical diagnosis and genetic counseling. We analyzed a large consanguineous USH1 family from Morocco and linked the disease in this family to the MYO7A/USH1B locus. We identified the frequently described missense change p.Y1719C. In addition, we found the homozygous c.1687G>A mutation in the last nucleotide of exon 14, which is predicted to result in aberrant splicing and may lead to loss of MYO7A transcript. We further showed that p.Y1719C is not disease-causing but does represent a frequent polymorphism in the Moroccan population, with an estimated carrier frequency of 0.07. This finding has an important impact for molecular diagnosis and genetic counseling in USH1B families.

  17. Alpha-tubulin missense mutations correlate with antimicrotubule drug resistance in Eleusine indica.

    Science.gov (United States)

    Yamamoto, E; Zeng, L; Baird, W V

    1998-02-01

    Dinitroaniline herbicides are antimicrotubule drugs that bind to tubulins and inhibit polymerization. As a result of repeated application of dinitroaniline herbicides, highly resistant and intermediately resistant biotypes of goosegrass (Eleusine indica) developed in previously wild-type populations. Three alpha-tubulin cDNA classes (designated TUA1, TUA2, and TUA3) were isolated from each biotype. Nucleotide differences between the susceptible and the resistant (R) alpha-tubulins were identified in TUA1 and TUA2. The most significant differences were missense mutations that occurred in TUA1 of the R and intermediately resistant (I) biotypes. Such mutations convert Thr-239 to Ile in the R biotype and Met-268 to Thr in the I biotype. These amino acid substitutions alter hydrophobicity; therefore, they may alter the dinitroaniline binding property of the protein. These mutations were correlated with the dinitroaniline response phenotypes (Drp). Plants homozygous for susceptibility possessed the wild-type TUA1 allele; plants homozygous for resistance possessed the mutant tua1 allele; and plants heterozygous for susceptibility possessed both wild-type and mutant alleles. Thus, we conclude that TUA1 is at the Drp locus. Using polymerase chain reaction primer-introduced restriction analysis, we demonstrated that goosegrass genomic DNA can be diagnosed for Drp alleles. Although not direct proof, these results suggest that a mutation in an alpha-tubulin gene confers resistance to dinitroanilines in goosegrass.

  18. Exome Sequencing Fails to Identify the Genetic Cause of Aicardi Syndrome.

    Science.gov (United States)

    Lund, Caroline; Striano, Pasquale; Sorte, Hanne Sørmo; Parisi, Pasquale; Iacomino, Michele; Sheng, Ying; Vigeland, Magnus D; Øye, Anne-Marte; Møller, Rikke Steensbjerre; Selmer, Kaja K; Zara, Federico

    2016-09-01

    Aicardi syndrome (AS) is a well-characterized neurodevelopmental disorder with an unknown etiology. In this study, we performed whole-exome sequencing in 11 female patients with the diagnosis of AS, in order to identify the disease-causing gene. In particular, we focused on detecting variants in the X chromosome, including the analysis of variants with a low number of sequencing reads, in case of somatic mosaicism. For 2 of the patients, we also sequenced the exome of the parents to search for de novo mutations. We did not identify any genetic variants likely to be damaging. Only one single missense variant was identified by the de novo analyses of the 2 trios, and this was considered benign. The failure to identify a disease gene in this study may be due to technical limitations of our study design, including the possibility that the genetic aberration leading to AS is situated in a non-exonic region or that the mutation is somatic and not detectable by our approach. Alternatively, it is possible that AS is genetically heterogeneous and that 11 patients are not sufficient to reveal the causative genes. Future studies of AS should consider designs where also non-exonic regions are explored and apply a sequencing depth so that also low-grade somatic mosaicism can be detected.

  19. A PTPN11 allele encoding a catalytically impaired SHP2 protein in a patient with a Noonan syndrome phenotype.

    Science.gov (United States)

    Edwards, Jonathan J; Martinelli, Simone; Pannone, Luca; Lo, Ivan Fai-Man; Shi, Lisong; Edelmann, Lisa; Tartaglia, Marco; Luk, Ho-Ming; Gelb, Bruce D

    2014-09-01

    The RASopathies are a relatively common group of phenotypically similar and genetically related autosomal dominant genetic syndromes caused by missense mutations affecting genes participating in the RAS/mitogen-activated protein kinase (MAPK) pathway that include Noonan syndrome (NS) and Noonan syndrome with multiple lentigines (NSML, formerly LEOPARD syndrome). NS and NSML can be difficult to differentiate during infancy, but the presence of multiple lentigines, café au lait spots, and specific cardiac defects facilitate the diagnosis. Furthermore, individual PTPN11 missense mutations are highly specific to each syndrome and engender opposite biochemical alterations on the function of SHP-2, the protein product of that gene. Here, we report on a 5-year-old male with two de novo PTPN11 mutations in cis, c.1471C>T (p.Pro491Ser), and c.1492C>T (p.Arg498Trp), which are associated with NS and NSML, respectively. This boy's phenotype is intermediate between NS and NSML with facial dysmorphism, short stature, mild global developmental delay, pulmonic stenosis, and deafness but absence of café au lait spots or lentigines. The double-mutant SHP-2 was found to be catalytically impaired. This raises the question of whether clinical differences between NS and NSML can be ascribed solely to the relative SHP-2 catalytic activity. © 2014 Wiley Periodicals, Inc.

  20. Making Sense of Missense in the Lynch Syndrome: The Clinical Perspective

    Science.gov (United States)

    Lynch, Henry T.; Jascur, Thomas; Lanspa, Stephen; Boland, C. Richard

    2010-01-01

    The DNA mismatch repair system provides critical genetic housekeeping, and its failure is associated with tumorigenesis. Through distinct domains on the DNA mismatch repair proteins, the system recognizes and repairs errors occurring during DNA synthesis, but signals apoptosis when the DNA damage cannot be repaired. Certain missense mutations in the mismatch repair genes can selectively alter just one of these functions. This impacts the clinical features of tumors associated with defective DNA mismatch repair activity. New work reported by Xie et al. in this issue of the journal (beginning on page XXX) adds to the understanding of DNA mismatch repair. PMID:20978117

  1. Postmortem diagnosis of Marfan syndrome in a case of sudden death due to aortic rupture: Detection of a novel FBN1 frameshift mutation.

    Science.gov (United States)

    Wang, Yunyun; Chen, Shu; Wang, Rongshuai; Huang, Sizhe; Yang, Mingzhen; Liu, Liang; Liu, Qian

    2016-04-01

    To investigate the sudden death of a 36-year-old Chinese man, a medicolegal autopsy was performed, combining forensic pathological examinations and genetic sequencing analysis to diagnose the cause of death. Genomic DNA samples were extracted from blood and subjected to high-throughput sequencing. Major findings included a dilated aortic root with a ruptured and dissected aorta and consequent tamponade of the pericardial sac. Moreover, arachnodactyly and other skeletal deformities were noted. By sequencing the fibrillin-1 gene (FBN1), five genetic variations were found, including four previously known single nucleotide polymorphisms (SNPs) and a novel frameshift mutation, leading to the diagnosis of Marfan syndrome. The frameshift mutation (c.4921delG, p.glu1641llysFsX9) detected in exon 40 led to a stop codon after the next 8 amino acids. The four SNPs included a splice site mutation (c.3464-5 G>A, rs11853943), a synonymous mutation (p.Asn625Asn, rs25458), and two missense mutations (p.Pro1148Ala, rs140598; p.Cys472Tyr, rs4775765). Genetic screening was recommended for the relatives as it was reported that the father and brother of the deceased had died at the ages of 40 and 25, respectively, from sudden cardiac failure. The son of the deceased lacked the relevant mutations. This report emphasizes the important contribution of medicolegal postmortem analysis on the molecular pathogenesis study of Marfan syndrome and early diagnosis of at-risk relatives. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency (CMMRD) Syndrome

    NARCIS (Netherlands)

    van der Klift, Heleen M; Mensenkamp, Arjen R; Drost, Mark; Bik, Elsa C; Vos, Yvonne J; Gille, Hans J J P; Redeker, Bert E J W; Tiersma, Yvonne; Zonneveld, José B M; García, Encarna Gómez; Letteboer, Tom G W; Olderode-Berends, Maran J W; van Hest, Liselotte P; van Os, Theo A; Verhoef, Senno; Wagner, Anja; van Asperen, Christi J; Ten Broeke, Sanne W; Hes, Frederik J; de Wind, Niels; Nielsen, Maartje; Devilee, Peter; Ligtenberg, Marjolijn J L; Wijnen, Juul T; Tops, Carli M J

    2016-01-01

    Monoallelic PMS2 germline mutations cause 5-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional MMR deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA and RNA-based strategies are applied to

  3. Mutation of Mitochondrial DNA G13513A Presenting with Leigh Syndrome, Wolff-Parkinson-White Syndrome and Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Shi-Bing Wang

    2008-08-01

    Full Text Available Mutation of mitochondrial DNA (mtDNA G13513A, encoding the ND5 subunit of respiratory chain complex I, can cause mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS and Leigh syndrome. Wolff-Parkinson-White (WPW syndrome and optic atrophy were reported in a high proportion of patients with this mutation. We report an 18-month-old girl, with an 11-month history of psychomotor regression who was diagnosed with WPW syndrome and hypertrophic cardiomyopathy, in association with Leigh syndrome. Supplementation with coenzyme Q10, thiamine and carnitine prevented further regression in gross motor function but the patient's heart function deteriorated and dilated cardiomyopathy developed 11 months later. She was found to have a mutation of mtDNA G13513A. We suggest that mtDNA G13513A mutation is an important factor in patients with Leigh syndrome associated with WPW syndrome and/or optic atrophy, and serial heart function monitoring by echocardiography is recommended in this group of patients.

  4. KMeyeDB: a graphical database of mutations in genes that cause eye diseases.

    Science.gov (United States)

    Kawamura, Takashi; Ohtsubo, Masafumi; Mitsuyama, Susumu; Ohno-Nakamura, Saho; Shimizu, Nobuyoshi; Minoshima, Shinsei

    2010-06-01

    KMeyeDB (http://mutview.dmb.med.keio.ac.jp/) is a database of human gene mutations that cause eye diseases. We have substantially enriched the amount of data in the database, which now contains information about the mutations of 167 human genes causing eye-related diseases including retinitis pigmentosa, cone-rod dystrophy, night blindness, Oguchi disease, Stargardt disease, macular degeneration, Leber congenital amaurosis, corneal dystrophy, cataract, glaucoma, retinoblastoma, Bardet-Biedl syndrome, and Usher syndrome. KMeyeDB is operated using the database software MutationView, which deals with various characters of mutations, gene structure, protein functional domains, and polymerase chain reaction (PCR) primers, as well as clinical data for each case. Users can access the database using an ordinary Internet browser with smooth user-interface, without user registration. The results are displayed on the graphical windows together with statistical calculations. All mutations and associated data have been collected from published articles. Careful data analysis with KMeyeDB revealed many interesting features regarding the mutations in 167 genes that cause 326 different types of eye diseases. Some genes are involved in multiple types of eye diseases, whereas several eye diseases are caused by different mutations in one gene.

  5. Homozygous STIL mutation causes holoprosencephaly and microcephaly in two siblings.

    Directory of Open Access Journals (Sweden)

    Charlotte Mouden

    Full Text Available Holoprosencephaly (HPE is a frequent congenital malformation of the brain characterized by impaired forebrain cleavage and midline facial anomalies. Heterozygous mutations in 14 genes have been identified in HPE patients that account for only 30% of HPE cases, suggesting the existence of other HPE genes. Data from homozygosity mapping and whole-exome sequencing in a consanguineous Turkish family were combined to identify a homozygous missense mutation (c.2150G>A; p.Gly717Glu in STIL, common to the two affected children. STIL has a role in centriole formation and has previously been described in rare cases of microcephaly. Rescue experiments in U2OS cells showed that the STIL p.Gly717Glu mutation was not able to fully restore the centriole duplication failure following depletion of endogenous STIL protein indicating the deleterious role of the mutation. In situ hybridization experiments using chick embryos demonstrated that expression of Stil was in accordance with a function during early patterning of the forebrain. It is only the second time that a STIL homozygous mutation causing a recessive form of HPE was reported. This result also supports the genetic heterogeneity of HPE and increases the panel of genes to be tested for HPE diagnosis.

  6. Orphan missense mutations in the cystic fibrosis transmembrane conductance regulator: A three-step biological approach to establishing a correlation between genotype and phenotype.

    Science.gov (United States)

    Fresquet, Fleur; Clement, Romain; Norez, Caroline; Sterlin, Adélaïde; Melin, Patricia; Becq, Frédéric; Kitzis, Alain; Thoreau, Vincent; Bilan, Frédéric

    2011-09-01

    More than 1860 mutations have been found within the human cystic fibrosis transmembrane conductance regulator (CFTR) gene sequence. These mutations can be classified according to their degree of severity in CF disease. Although the most common mutations are well characterized, few data are available for rare mutations. Thus, genetic counseling is particularly difficult when fetuses or patients with CF present these orphan variations. We describe a three-step in vitro assay that can evaluate rare missense CFTR mutation consequences to establish a correlation between genotype and phenotype. By using a green fluorescent protein-tagged CFTR construct, we expressed mutated proteins in COS-7 cells. CFTR trafficking was visualized by confocal microscopy, and the cellular localization of CFTR was determined using intracellular markers. We studied the CFTR maturation process using Western blot analysis and evaluated CFTR channel activity by automated iodide efflux assays. Of six rare mutations that we studied, five have been isolated in our laboratory. The cellular and functional impact that we observed in each case was compared with the clinical data concerning the patients in whom we encountered these mutations. In conclusion, we propose that performing this type of analysis for orphan CFTR missense mutations can improve CF genetic counseling. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  7. Mutation analysis of the WFS1 gene in seven Danish Wolfram syndrome families; four new mutations identified

    DEFF Research Database (Denmark)

    Hansen, Lars; Eiberg, Hans Rudolf Lytchoff; Barrett, Timothy

    2005-01-01

    loss (LFSNHL). WFS1 variants were identified in eight subjects from seven families with WS, leading to the identification of four novel mutations, Q194X (nonsense), H313Y (missense), L313fsX360 (duplication frame shift) and F883fsX951 (deletion frame shift), and four previously reported mutations, A133...

  8. BRF1 mutations alter RNA polymerase III–dependent transcription and cause neurodevelopmental anomalies

    Science.gov (United States)

    Hög, Friederike; Dentici, Maria Lisa; Tan, Perciliz L.; Sowada, Nadine; Medeira, Ana; Gueneau, Lucie; Thiele, Holger; Kousi, Maria; Lepri, Francesca; Wenzeck, Larissa; Blumenthal, Ian; Radicioni, Antonio; Schwarzenberg, Tito Livio; Mandriani, Barbara; Fischetto, Rita; Morris-Rosendahl, Deborah J.; Altmüller, Janine; Reymond, Alexandre; Nürnberg, Peter; Merla, Giuseppe; Dallapiccola, Bruno; Katsanis, Nicholas; Cramer, Patrick; Kubisch, Christian

    2015-01-01

    RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III–related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development. PMID:25561519

  9. An Usher syndrome type 1 patient diagnosed before the appearance of visual symptoms by MYO7A mutation analysis.

    Science.gov (United States)

    Yoshimura, Hidekane; Iwasaki, Satoshi; Kanda, Yukihiko; Nakanishi, Hiroshi; Murata, Toshinori; Iwasa, Yoh-ichiro; Nishio, Shin-ya; Takumi, Yutaka; Usami, Shin-ichi

    2013-02-01

    Usher syndrome type 1 (USH1) appears to have only profound non-syndromic hearing loss in childhood and retinitis pigmentosa develops in later years. This study examined the frequency of USH1 before the appearance of visual symptoms in Japanese deaf children by MYO7A mutation analysis. We report the case of 6-year-old male with profound hearing loss, who did not have visual symptoms. The frequency of MYO7A mutations in profound hearing loss children is also discussed. We sequenced all exons of the MYO7A gene in 80 Japanese children with severe to profound non-syndromic HL not due to mutations of the GJB2 gene (ages 0-14 years). A total of nine DNA variants were found and six of them were presumed to be non-pathogenic variants. In addition, three variants of them were found in two patients (2.5%) with deafness and were classified as possible pathogenic variants. Among them, at least one nonsense mutation and one missense mutation from the patient were confirmed to be responsible for deafness. After MYO7A mutation analysis, the patient was diagnosed with RP, and therefore, also diagnosed with USH1. This is the first case report to show the advantage of MYO7A mutation analysis to diagnose USH1 before the appearance of visual symptoms. We believed that MYO7A mutation analysis is valid for the early diagnosis of USH1. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. A combination of two truncating mutations in USH2A causes more severe and progressive hearing impairment in Usher syndrome type IIa

    DEFF Research Database (Denmark)

    Hartel, Bas P.; Lofgren, Maria; Huygen, Patrick L. M.

    2016-01-01

    Objectives Usher syndrome is an inherited disorder that is characterized by hearing impairment (HI), retinitis pigmentosa, and in some cases vestibular dysfunction. Usher syndrome type IIa is caused by mutations in USH2A. HI in these patients is highly heterogeneous and the present study evaluates...... the effects of different types of USH2A mutations on the audiometric phenotype. Data from two large centres of expertise on Usher Syndrome in the Netherlands and Sweden were combined in order to create a large combined sample of patients to identify possible genotype-phenotype correlations. Design...... A retrospective study on HI in 110 patients (65 Dutch and 45 Swedish) genetically diagnosed with Usher syndrome type IIa. We used methods especially designed for characterizing and testing differences in audiological phenotype between patient subgroups. These methods included Age Related Typical Audiograms (ARTA...

  11. six novel mutations in the TSC1 and TSC2 genes

    Indian Academy of Sciences (India)

    M. GLUSHKOVA

    2018-04-30

    Apr 30, 2018 ... RESEARCH ARTICLE ... nant disorder caused by inactivating TSC1 or TSC2 gene variants (Van ... premature protein truncation, while missense mutations are rare ..... TSC2 variants in our cohort are missense, frame-shift.

  12. Identification of a missense mutation in the tyrosinase gene in a Chinese family with oculocutaneous albinism type 1.

    Science.gov (United States)

    Lu, Qian; Yuan, Lamei; Xu, Hongbo; Huang, Xiangjun; Yang, Zhijian; Yi, Junhui; Ni, Bin; Chen, Yong; Deng, Hao

    2017-03-01

    Oculocutaneous albinism (OCA) is a group of heterogeneous and autosomal recessive disorders characterized by a reduction or complete loss of melanin biosynthesis in melanocytes. OCA type 1 (OCA1) is the most severe and common form of OCA, and is caused by mutations in the tyrosinase gene (TYR). The present study aimed to identify the genetic cause of OCA1 in a four‑generation consanguineous Chinese Han family. Complete physical examinations were performed and blood samples were collected from five members of the family and 100 unrelated healthy controls. Exome sequencing was conducted in the proband, followed by verification in other family members, using Sanger sequencing. Patients in the family presented with typical OCA1 features, including hypopigmentation of the skin and hair, and distinctive ocular changes. A homozygous missense variant, c.896G>A (p.R299H), in the TYR gene was identified in two patients, which co‑segregated with disease in the family. This variant was not present in the 100 healthy controls. These results expand the number of mutations identified to be responsible for OCA1 in the Chinese Han population, and may have implications for genetic counseling and clinical management of the disease.

  13. Inactivating mutations in ESCO2 cause SC phocomelia and Roberts syndrome: no phenotype-genotype correlation.

    Science.gov (United States)

    Schüle, Birgitt; Oviedo, Angelica; Johnston, Kathreen; Pai, Shashidhar; Francke, Uta

    2005-12-01

    The rare, autosomal recessive Roberts syndrome (RBS) is characterized by tetraphocomelia, profound growth deficiency of prenatal onset, craniofacial anomalies, microcephaly, and mental deficiency. SC phocomelia (SC) has a milder phenotype, with a lesser degree of limb reduction and with survival to adulthood. Since heterochromatin repulsion (HR) is characteristic for both disorders and is not complemented in somatic-cell hybrids, it has been hypothesized that the disorders are allelic. Recently, mutations in ESCO2 (establishment of cohesion 1 homolog 2) on 8p21.1 have been reported in RBS. To determine whether ESCO2 mutations are also responsible for SC, we studied three families with SC and two families in which variable degrees of limb and craniofacial abnormalities, detected by fetal ultrasound, led to pregnancy terminations. All cases were positive for HR. We identified seven novel mutations in exons 3-8 of ESCO2. In two families, affected individuals were homozygous--for a 5-nucleotide deletion in one family and a splice-site mutation in the other. In three nonconsanguineous families, probands were compound heterozygous for a single-nucleotide insertion or deletion, a nonsense mutation, or a splice-site mutation. Abnormal splice products were characterized at the RNA level. Since only protein-truncating mutations were identified, regardless of clinical severity, we conclude that genotype does not predict phenotype. Having established that RBS and SC are caused by mutations in the same gene, we delineated the clinical phenotype of the tetraphocomelia spectrum that is associated with HR and ESCO2 mutations and differentiated it from other types of phocomelia that are negative for HR.

  14. Mutations in a novel gene with transmembrane domains underlie Usher syndrome type 3.

    Science.gov (United States)

    Joensuu, T; Hämäläinen, R; Yuan, B; Johnson, C; Tegelberg, S; Gasparini, P; Zelante, L; Pirvola, U; Pakarinen, L; Lehesjoki, A E; de la Chapelle, A; Sankila, E M

    2001-10-01

    Usher syndrome type 3 (USH3) is an autosomal recessive disorder characterized by progressive hearing loss, severe retinal degeneration, and variably present vestibular dysfunction, assigned to 3q21-q25. Here, we report on the positional cloning of the USH3 gene. By haplotype and linkage-disequilibrium analyses in Finnish carriers of a putative founder mutation, the critical region was narrowed to 250 kb, of which we sequenced, assembled, and annotated 207 kb. Two novel genes-NOPAR and UCRP-and one previously identified gene-H963-were excluded as USH3, on the basis of mutational analysis. USH3, the candidate gene that we identified, encodes a 120-amino-acid protein. Fifty-two Finnish patients were homozygous for a termination mutation, Y100X; patients in two Finnish families were compound heterozygous for Y100X and for a missense mutation, M44K, whereas patients in an Italian family were homozygous for a 3-bp deletion leading to an amino acid deletion and substitution. USH3 has two predicted transmembrane domains, and it shows no homology to known genes. As revealed by northern blotting and reverse-transcriptase PCR, it is expressed in many tissues, including the retina.

  15. Identification of FASTKD2 compound heterozygous mutations as the underlying cause of autosomal recessive MELAS-like syndrome.

    Science.gov (United States)

    Yoo, Da Hye; Choi, Young-Chul; Nam, Da Eun; Choi, Sun Seong; Kim, Ji Won; Choi, Byung-Ok; Chung, Ki Wha

    2017-07-01

    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a condition that affects many parts of the body, particularly the brain and muscles. This study examined a Korean MELAS-like syndrome patient with seizure, stroke-like episode, and optic atrophy. Target sequencing of whole mtDNA and 73 nuclear genes identified compound heterozygous mutations p.R205X and p.L255P in the FASTKD2. Each of his unaffected parents has one of the two mutations, and both mutations were not found in 302 controls. FASTKD2 encodes a FAS-activated serine-threonine (FAST) kinase domain 2 which locates in the mitochondrial inner compartment. A FASTKD2 nonsense mutation was once reported as the cause of a recessive infantile mitochondrial encephalomyopathy. The present case showed relatively mild symptoms with a late onset age, compared to a previous patient with FASTKD2 mutation, implicating an inter-allelic clinical heterogeneity. Because this study is the second report of an autosomal recessive mitochondrial encephalomyopathy patient with a FASTKD2 mutation, it will extend the phenotypic spectrum of the FASTKD2 mutation. Copyright © 2017. Published by Elsevier B.V.

  16. Choline transporter mutations in severe congenital myasthenic syndrome disrupt transporter localization.

    Science.gov (United States)

    Wang, Haicui; Salter, Claire G; Refai, Osama; Hardy, Holly; Barwick, Katy E S; Akpulat, Ugur; Kvarnung, Malin; Chioza, Barry A; Harlalka, Gaurav; Taylan, Fulya; Sejersen, Thomas; Wright, Jane; Zimmerman, Holly H; Karakaya, Mert; Stüve, Burkhardt; Weis, Joachim; Schara, Ulrike; Russell, Mark A; Abdul-Rahman, Omar A; Chilton, John; Blakely, Randy D; Baple, Emma L; Cirak, Sebahattin; Crosby, Andrew H

    2017-11-01

    The presynaptic, high-affinity choline transporter is a critical determinant of signalling by the neurotransmitter acetylcholine at both central and peripheral cholinergic synapses, including the neuromuscular junction. Here we describe an autosomal recessive presynaptic congenital myasthenic syndrome presenting with a broad clinical phenotype due to homozygous choline transporter missense mutations. The clinical phenotype ranges from the classical presentation of a congenital myasthenic syndrome in one patient (p.Pro210Leu), to severe neurodevelopmental delay with brain atrophy (p.Ser94Arg) and extend the clinical outcomes to a more severe spectrum with infantile lethality (p.Val112Glu). Cells transfected with mutant transporter construct revealed a virtually complete loss of transport activity that was paralleled by a reduction in transporter cell surface expression. Consistent with these findings, studies to determine the impact of gene mutations on the trafficking of the Caenorhabditis elegans choline transporter orthologue revealed deficits in transporter export to axons and nerve terminals. These findings contrast with our previous findings in autosomal dominant distal hereditary motor neuropathy of a dominant-negative frameshift mutation at the C-terminus of choline transporter that was associated with significantly reduced, but not completely abrogated choline transporter function. Together our findings define divergent neuropathological outcomes arising from different classes of choline transporter mutation with distinct disease processes and modes of inheritance. These findings underscore the essential role played by the choline transporter in sustaining acetylcholine neurotransmission at both central and neuromuscular synapses, with important implications for treatment and drug selection. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. NIH Researchers Find Potential Genetic Cause of Cushing Syndrome

    Science.gov (United States)

    ... 2017 NIH researchers find potential genetic cause of Cushing syndrome Finding may lead to therapies that prevent pituitary ... mutations in the gene CABLES1 may lead to Cushing syndrome, a rare disorder in which the body overproduces ...

  18. A novel missense KIT mutation causing piebaldism in one Chinese family associated with café-au-lait macules and intertriginous freckling

    Directory of Open Access Journals (Sweden)

    Jia WX

    2015-04-01

    Full Text Available Wei-Xue Jia,1,2 Xue-Min Xiao,1,2 Jian-Bing Wu,1,2 Yi-Ping Ma,1,2 Yi-Ping Ge,1,2 Qi Li,1,2 Qiu-Xia Mao,1,2 Cheng-Rang Li1,2 1Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; 2Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China Abstract: Piebaldism is a rare autosomal dominant genodermatosis, manifesting as congenital and stable depigmentation of the skin and white forelock. It has been found to be associated with mutations in the KIT or SLUG genes. We report a Chinese piebaldism family including a 28-year-old woman and her 3-year-old son with characteristics of white patches and forelock associated with numerous brown macules and patches. Genomic DNA samples of the proband and her son were extracted from their peripheral blood. One hundred unrelated healthy individuals were used as controls. All coding regions of KIT, SLUG, and NF1 genes were amplified by polymerase chain reaction using exon flanking intronic primers and Sanger sequencings were performed. DNA sequencing revealed heterozygous missense c.2431T>G mutation in exon 17 of the KIT gene in the proband and the affected son. No potentially pathogenic variant was identified in SLUG or NF1 genes. The nucleotide substitution was not found in 100 unrelated control individuals. This study reveals a novel KIT mutation in piebaldism, and it further supports that café-au-lait macules and intertriginous freckling of piebaldism are parts of pigmented anomaly in piebaldism, which does not necessarily represent coexistence of neurofibromatosis type 1 (NF1. Keywords: novel mutation, KIT gene, neurofibromatosis type 1 

  19. Identification of the first nonsense CDSN mutation with expression of a truncated protein causing peeling skin syndrome type B.

    Science.gov (United States)

    Mallet, A; Kypriotou, M; George, K; Leclerc, E; Rivero, D; Mazereeuw-Hautier, J; Serre, G; Huber, M; Jonca, N; Hohl, D

    2013-12-01

    Peeling skin disease (PSD), a generalized inflammatory form of peeling skin syndrome, is caused by autosomal recessive nonsense mutations in the corneodesmosin gene (CDSN). To investigate a novel mutation in CDSN. A 50-year-old white woman showed widespread peeling with erythema and elevated serum IgE. DNA sequencing, immunohistochemistry, Western blot and real-time polymerase chain reaction analyses of skin biopsies were performed in order to study the genetics and to characterize the molecular profile of the disease. Histology showed hyperkeratosis and acanthosis of the epidermis, and inflammatory infiltrates in the dermis. DNA sequencing revealed a homozygous mutation leading to a premature termination codon in CDSN: p.Gly142*. Protein analyses showed reduced expression of a 16-kDa corneodesmosin mutant in the upper epidermal layers, whereas the full-length protein was absent. These results are interesting regarding the genotype-phenotype correlations in diseases caused by CDSN mutations. The PSD-causing CDSN mutations identified heretofore result in total corneodesmosin loss, suggesting that PSD is due to full corneodesmosin deficiency. Here, we show for the first time that a mutant corneodesmosin can be stably expressed in some patients with PSD, and that this truncated protein is very probably nonfunctional. © 2013 British Association of Dermatologists.

  20. Allele frequencies of hemojuvelin gene (HJV I222N and G320V missense mutations in white and African American subjects from the general Alabama population

    Directory of Open Access Journals (Sweden)

    Bohannon Sean B

    2004-12-01

    Full Text Available Abstract Background Homozygosity or compound heterozygosity for coding region mutations of the hemojuvelin gene (HJV in whites is a cause of early age-of-onset iron overload (juvenile hemochromatosis, and of hemochromatosis phenotypes in some young or middle-aged adults. HJV coding region mutations have also been identified recently in African American primary iron overload and control subjects. Primary iron overload unexplained by typical hemochromatosis-associated HFE genotypes is common in white and black adults in Alabama, and HJV I222N and G320V were detected in a white Alabama juvenile hemochromatosis index patient. Thus, we estimated the frequency of the HJV missense mutations I222N and G320V in adult whites and African Americans from Alabama general population convenience samples. Methods We evaluated the genomic DNA of 241 Alabama white and 124 African American adults who reported no history of hemochromatosis or iron overload to detect HJV missense mutations I222N and G320V using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP technique. Analysis for HJV I222N was performed in 240 whites and 124 African Americans. Analysis for HJV G320V was performed in 241 whites and 118 African Americans. Results One of 240 white control subjects was heterozygous for HJV I222N; she was also heterozygous for HFE C282Y, but had normal serum iron measures and bone marrow iron stores. HJV I222N was not detected in 124 African American subjects. HJV G320V was not detected in 241 white or 118 African American subjects. Conclusions HJV I222N and G320V are probably uncommon causes or modifiers of primary iron overload in adult whites and African Americans in Alabama. Double heterozygosity for HJV I222N and HFE C282Y may not promote increased iron absorption.

  1. Phenotype and genotype in 17 patients with Goltz-Gorlin syndrome.

    Science.gov (United States)

    Maas, S M; Lombardi, M P; van Essen, A J; Wakeling, E L; Castle, B; Temple, I K; Kumar, V K A; Writzl, K; Hennekam, Raoul C M

    2009-10-01

    Goltz-Gorlin syndrome or focal dermal hypoplasia is a highly variable, X-linked dominant syndrome with abnormalities of ectodermal and mesodermal origin. In 2007, mutations in the PORCN gene were found to be causative in Goltz-Gorlin syndrome. A series of 17 patients with Goltz-Gorlin syndrome is reported on, and their phenotype and genotype are described. In 14 patients (13 females and one male), a PORCN mutation was found. Mutations included nonsense (n = 5), frameshift (n = 2), aberrant splicing (n = 2) and missense (n = 5) mutations. No genotype-phenotype correlation was found. All patients with the classical features of the syndrome had a detectable mutation. In three females with atypical signs, no mutation was found. The male patient had classical features and showed mosaicism for a PORCN nonsense mutation in fibroblasts. Two affected sisters had a mutation not detectable in their parents, supporting germline mosaicism. Their father had undergone radiation for testicular cancer in the past. Two classically affected females had three severely affected female fetuses which all had midline thoracic and abdominal wall defects, resembling the pentalogy of Cantrell and the limb-body wall complex. Thoracic and abdominal wall defects were also present in two surviving patients. PORCN mutations can possibly cause pentalogy of Cantrell and limb-body wall complexes as well. Therefore, particularly in cases with limb defects, it seems useful to search for these. PORCN mutations can be found in all classically affected cases of Goltz-Gorlin syndrome, including males. Somatic and germline mosaicism occur. There is no evident genotype-phenotype correlation.

  2. Visual Outcomes in Japanese Patients with Retinitis Pigmentosa and Usher Syndrome Caused by USH2A Mutations.

    Science.gov (United States)

    Nagase, Yasunori; Kurata, Kentaro; Hosono, Katsuhiro; Suto, Kimiko; Hikoya, Akiko; Nakanishi, Hiroshi; Mizuta, Kunihiro; Mineta, Hiroyuki; Minoshima, Shinsei; Hotta, Yoshihiro

    2017-07-05

    EYS and USH2A are the most common causative genes for retinitis pigmentosa (RP) in Japan. We determined the clinical outcomes for USH2A-related non-syndromic RP or Usher syndrome type II (USH2). Two non-syndromic RP and 11 USH2 patients with previously identified USH2A mutations were included. Their complete history and medical records were collected using standard procedures. Visual fields and acuity were compared with those of patients with EYS mutations. Clinical analyses were based on ophthalmic and otolaryngologic examinations. In all patients, the fundus displayed changes typical of RP. Most patients showed relatively well-preserved visual acuity in their thirties or forties, with rapid deterioration in their fifties. Concentric constriction started in the twenties or thirties, and no effective residual visual field was observed after the fifties. The visual outcome for non-syndromic RP or USH2 patients with USH2A mutations is consistent with that for RP patients with EYS mutations.

  3. Novel somatic mutations in the catalytic subunit of the protein kinase A as a cause of adrenal Cushing's syndrome: a European multicentric study.

    Science.gov (United States)

    Di Dalmazi, Guido; Kisker, Caroline; Calebiro, Davide; Mannelli, Massimo; Canu, Letizia; Arnaldi, Giorgio; Quinkler, Marcus; Rayes, Nada; Tabarin, Antoine; Laure Jullié, Marie; Mantero, Franco; Rubin, Beatrice; Waldmann, Jens; Bartsch, Detlef K; Pasquali, Renato; Lohse, Martin; Allolio, Bruno; Fassnacht, Martin; Beuschlein, Felix; Reincke, Martin

    2014-10-01

    Somatic mutations in PRKACA gene, encoding the catalytic subunit of protein kinase A (PKA), have been recently found in a high proportion of sporadic adenomas associated with Cushing's syndrome. The aim was to analyze the PRKACA mutation in a large cohort of patients with adrenocortical masses. Samples from nine European centers were included (Germany, n = 4; Italy, n = 4; France, n = 1). Samples were drawn from 149 patients with nonsecreting adenomas (n = 32 + 2 peritumoral), subclinical hypercortisolism (n = 36), Cushing's syndrome (n = 64 + 2 peritumoral), androgen-producing tumors (n = 4), adrenocortical carcinomas (n = 5 + 2 peritumoral), and primary bilateral macronodular adrenal hyperplasias (n = 8). Blood samples were available from patients with nonsecreting adenomas (n = 15), subclinical hypercortisolism (n = 10), and Cushing's syndrome (n = 35). Clinical and hormonal data were collected. DNA amplification by PCR of exons 6 and 7 of the PRKACA gene and direct sequencing were performed. PRKACA heterozygous mutations were found in 22/64 samples of Cushing's syndrome patients (34%). No mutations were found in peritumoral tissue and blood samples or in other tumors examined. The c.617A>C (p.Leu206Arg) occurred in 18/22 patients. Furthermore, two novel mutations were identified: c.600_601insGTG/p.Cys200_Gly201insVal in three patients and c.639C>G+c.638_640insATTATCCTGAGG/p.Ser213Arg+p.Leu212_Lys214insIle-Ile-Leu-Arg) in one. All the mutations involved a region implicated in interaction between PKA regulatory and catalytic subunits. Patients with somatic PRKACA mutations showed higher levels of cortisol after dexamethasone test and a smaller adenoma size, compared with nonmutated subjects. These data confirm and extend previous observations that somatic PRKACA mutations are specific for adrenocortical adenomas causing Cushing's syndrome.

  4. GATA3 mutation in a family with hypoparathyroidism, deafness and renal dysplasia syndrome.

    Science.gov (United States)

    Zhu, Zi-Yang; Zhou, Qiao-Li; Ni, Shi-Ning; Gu, Wei

    2014-08-01

    The hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome is an autosomal dominant disorder primarily caused by GATA3 gene mutation. We report here a case that both of a Chinese boy and his father had HDR syndrome which caused by a novel mutation of GATA3. Polymerase chain reaction and DNA sequencing was performed to detect the exons of the GATA3 gene for mutation analysis. Sequence analysis of GATA3 revealed a heterozygous nonsense mutation in this family: a mutation of GATA3 at exon 2 (c.515C >A) that resulted in a premature stop at codon 172 (p.S172X) with a loss of two zinc finger domains. We identified a novel nonsense mutation which will expand the spectrum of HDR-associated GATA3 mutations.

  5. Structural implications of mutations in the pea SYM8 symbiosis gene, the DMI1 ortholog, encoding a predicted ion channel

    DEFF Research Database (Denmark)

    Edwards, Anne; Heckmann, Anne Birgitte Lau; Yousafzai, Faridoon

    2007-01-01

    the aspartate to valine and identified a missense mutation (changing alanine to valine adjacent to the aspartate residues) in this predicted filter region; both mutations caused a loss of function. We also identified a loss-of-function missense mutation (changing arginine to isoleucine) in a domain proposed...

  6. Wiskott-Aldrich Syndrome. A Report of a New Mutation

    Directory of Open Access Journals (Sweden)

    Nelva Lizbeth Guillén-Rocha

    2014-06-01

    Full Text Available Wiskott-Aldrich syndrome was rst reported clinically in 1937, and in 1954 the classic triad was identified: eccema, recurrent infections and thrombocytopenia with an X-linked transmission. Its incidence is estimated at 1 to 10 in one million live births per year. Wiskott Aldrich syndrome is caused by mutations in a gene in the short arm of chromosome X that encodes the Wiskott-Aldrich syndrome protein (WASp, which identi cation and sequencing was rst performed in 1994, and since then about 300 mutations have been reported. This paper describes the case of a boy with Wiskott-Aldrich syndrome, with clinical and genetic diagnosis, with a considerable diagnostic delay attributable to an atypical presentation misdiagnosed as immune thrombocytopenia.

  7. A novel missense mutation of COL5A2 in a patient with Ehlers-Danlos syndrome.

    Science.gov (United States)

    Watanabe, Miki; Nakagawa, Ryuji; Naruto, Takuya; Kohmoto, Tomohiro; Suga, Ken-Ichi; Goji, Aya; Kagami, Shoji; Masuda, Kiyoshi; Imoto, Issei

    2016-01-01

    Ehlers-Danlos syndrome (EDS) is a group of inherited connective tissue disorders characterized by hyperextensible skin, joint hypermobility and soft tissue fragility. For molecular diagnosis, targeted exome sequencing was performed on a 9-year-old male patient who was clinically suspected to have EDS. The patient presented with progressive kyphoscoliosis, joint hypermobility and hyperextensible skin without scars. Ultimately, classical EDS was diagnosed by identifying a novel, mono-allelic mutation in COL5A2 [NM_000393.3(COL5A2_v001):c.682G>A, p.Gly228Arg].

  8. A novel missense mutation of COL5A2 in a patient with Ehlers–Danlos syndrome

    Science.gov (United States)

    Watanabe, Miki; Nakagawa, Ryuji; Naruto, Takuya; Kohmoto, Tomohiro; Suga, Ken-ichi; Goji, Aya; Kagami, Shoji; Masuda, Kiyoshi; Imoto, Issei

    2016-01-01

    Ehlers–Danlos syndrome (EDS) is a group of inherited connective tissue disorders characterized by hyperextensible skin, joint hypermobility and soft tissue fragility. For molecular diagnosis, targeted exome sequencing was performed on a 9-year-old male patient who was clinically suspected to have EDS. The patient presented with progressive kyphoscoliosis, joint hypermobility and hyperextensible skin without scars. Ultimately, classical EDS was diagnosed by identifying a novel, mono-allelic mutation in COL5A2 [NM_000393.3(COL5A2_v001):c.682G>A, p.Gly228Arg]. PMID:27656288

  9. The refractive state of the eye in Icelandic horses with the Silver mutation.

    Science.gov (United States)

    Johansson, Maria K; Jäderkvist Fegraeus, Kim; Lindgren, Gabriella; Ekesten, Björn

    2017-06-02

    The syndrome Multiple Congenital Ocular Anomalies (MCOA) is a congenital eye disorder in horses. Both the MCOA syndrome and the Silver coat colour in horses are caused by the same missense mutation in the premelanosome protein (PMEL) gene. Horses homozygous for the Silver mutation (TT) are affected by multiple ocular defects causing visual impairment or blindness. Horses heterozygous for the Silver mutation (CT) have less severe clinical signs, usually cysts arising from the ciliary body iris or retina temporally. It is still unknown if the vision is impaired in horses heterozygous for the Silver mutation. A recent study reported that Comtois horses carrying the Silver mutation had significantly deeper anterior chambers of the eye compared to wild-type horses. This could potentially cause refractive errors. The purpose of the present study was to investigate if Icelandic horses with the Silver mutation have refractive errors compared to wild-type horses. One hundred and fifty-two Icelandic horses were included in the study, 71 CT horses and five TT horses. All horses were genotyped for the missense mutation in PMEL. Each CT and TT horse was matched by a wild-type (CC) horse of the same age ± 1 year. Skiascopy and a brief ophthalmic examination were performed in all horses. Association between refraction and age, eye, genotype and sex was tested by linear mixed-effect model analysis. TT horses with controls were not included in the statistical analyses as they were too few. The interaction between age and genotype had a significant impact on the refractive state (P = 0.0001). CT horses older than 16 years were on average more myopic than wild-type horses of the same age. No difference in the refractive state could be observed between genotypes (CT and CC) in horses younger than 16 years. TT horses were myopic (-2 D or more) in one or both eyes regardless of age. Our results indicate that an elderly Icelandic horse (older than 16 years) carrying the Silver

  10. Exclusion of homozygous PLCE1 (NPHS3) mutations in 69 families with idiopathic and hereditary FSGS.

    LENUS (Irish Health Repository)

    Gbadegesin, Rasheed

    2009-02-01

    Focal and segmental glomerulosclerosis (FSGS) is the most common glomerular cause of end-stage kidney disease (ESKD). Although the etiology of FSGS has not been fully elucidated, recent results from the positional cloning of genes mutated in nephrotic syndromes are now beginning to provide insight into the pathogenesis of these diseases. Mutations in PLCE1\\/NPHS3 have recently been reported as a cause of nephrotic syndrome characterized by diffuse mesangial sclerosis (DMS) histology. One single family with a missense mutation had late onset of the disease that was characterized by FSGS. To further define the role of PLCE1 mutations in the etiology of FSGS, we performed mutational analysis in 69 families with FSGS. A total of 69 families with 231 affected individuals were examined. The median age of disease onset was 26 years (range 1-66 years). Onset of ESKD was at a median age of 35.5 years. Seven variants leading to non-synonymous changes were found, of which only two are new variants (exon 4 c.1682 G>A R561Q, exon 31 c.6518A>G K2173R). No known disease-causing mutations were identified in the families screened. PLCE1\\/NPHS3 mutations are not a cause of FSGS in this cohort. The absence of mutations in PLCE1\\/NPHS3 in this study indicates that there are additional genetic causes of FSGS and that hereditary FSGS is a heterogeneous disease. Kindreds appropriate for genome-wide screening are currently being subjected to analysis with the aim of identifying other genetic causes of FSGS.

  11. The mutational spectrum of Lynch syndrome in cyprus.

    Directory of Open Access Journals (Sweden)

    Maria A Loizidou

    Full Text Available Lynch syndrome is the most common form of hereditary colorectal cancer and is caused by germline mutations in the mismatch repair (MMR genes MLH1, MSH2, MSH6 and PMS2. Mutation carriers have an increased lifetime risk of developing colorectal cancer as well as other extracolonic tumours. The aim of the current study was to evaluate the frequency and distribution of mutations in the MLH1, MSH2 and MSH6 genes within a cohort of Cypriot families that fulfilled the revised Bethesda guidelines. The study cohort included 77 patients who fulfilled at least one of the revised Bethesda guidelines. Mutational analysis revealed the presence of 4 pathogenic mutations, 3 in the MLH1 gene and 1 in the MSH2 gene, in 5 unrelated individuals. It is noted that out of the 4 pathogenic mutations detected, one is novel (c.1610delG in exon 14 of the MLH1 and has been detected for the first time in the Cypriot population. Overall, the pathogenic mutation detection rate in our patient cohort was 7%. This percentage is relatively low but could be explained by the fact that the sole criterion for genetic screening was compliance to the revised Bethesda guidelines. Larger numbers of Lynch syndrome families and screening of the two additional predisposition genes, PMS2 and EPCAM, are needed in order to decipher the full spectrum of mutations associated with Lynch syndrome predisposition in Cyprus.

  12. Identification and functional characterisation of novel glucokinase mutations causing maturity-onset diabetes of the young in Slovakia.

    Directory of Open Access Journals (Sweden)

    Lucia Valentínová

    Full Text Available Heterozygous glucokinase (GCK mutations cause a subtype of maturity-onset diabetes of the young (GCK-MODY. Over 600 GCK mutations have been reported of which ∼65% are missense. In many cases co-segregation has not been established and despite the importance of functional studies in ascribing pathogenicity for missense variants these have only been performed for C, c.1113-1114delGC were novel. Parental DNA was available for 22 probands (covering 14/22 mutations and co-segregation established in all cases. Bioinformatic analysis predicted all missense mutations to be damaging. Nine (I110N, V200A, N204D, G223S, G258R, F419S, V244G, L315H, I436N mutations were functionally evaluated. Basic kinetic analysis explained pathogenicity for 7 mutants which showed reduced glucokinase activity with relative activity indices (RAI between 0.6 to <0.001 compared to wild-type GCK (1.0. For the remaining 2 mutants additional molecular mechanisms were investigated. Differences in glucokinase regulatory protein (GKRP -mediated-inhibition of GCK were observed for both L315H & I436N when compared to wild type (IC(50 14.6±0.1 mM & 20.3±1.6 mM vs.13.3±0.1 mM respectively [p<0.03]. Protein instability as assessed by thermal lability studies demonstrated that both L315H and I436N show marked thermal instability compared to wild-type GCK (RAI at 55°C 8.8±0.8% & 3.1±0.4% vs. 42.5±3.9% respectively [p<0.001]. The minimum prevalence of GCK-MODY amongst Slovakian patients with diabetes was 0.03%. In conclusion, we have identified 22 GCK mutations in 36 Slovakian probands and demonstrate that combining family, bioinformatic and functional studies can aid the interpretation of variants identified by molecular diagnostic screening.

  13. Genetic and bioinformatics analysis of four novel GCK missense variants detected in Caucasian families with GCK-MODY phenotype.

    Science.gov (United States)

    Costantini, S; Malerba, G; Contreas, G; Corradi, M; Marin Vargas, S P; Giorgetti, A; Maffeis, C

    2015-05-01

    Heterozygous loss-of-function mutations in the glucokinase (GCK) gene cause maturity-onset diabetes of the young (MODY) subtype GCK (GCK-MODY/MODY2). GCK sequencing revealed 16 distinct mutations (13 missense, 1 nonsense, 1 splice site, and 1 frameshift-deletion) co-segregating with hyperglycaemia in 23 GCK-MODY families. Four missense substitutions (c.718A>G/p.Asn240Asp, c.757G>T/p.Val253Phe, c.872A>C/p.Lys291Thr, and c.1151C>T/p.Ala384Val) were novel and a founder effect for the nonsense mutation (c.76C>T/p.Gln26*) was supposed. We tested whether an accurate bioinformatics approach could strengthen family-genetic evidence for missense variant pathogenicity in routine diagnostics, where wet-lab functional assays are generally unviable. In silico analyses of the novel missense variants, including orthologous sequence conservation, amino acid substitution (AAS)-pathogenicity predictors, structural modeling and splicing predictors, suggested that the AASs and/or the underlying nucleotide changes are likely to be pathogenic. This study shows how a careful bioinformatics analysis could provide effective suggestions to help molecular-genetic diagnosis in absence of wet-lab validations. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Coffin-Siris syndrome with café-au-lait spots, obesity and hyperinsulinism caused by a mutation in the ARID1B gene.

    Science.gov (United States)

    Sonmez, Fatma Mujgan; Uctepe, Eyyup; Gunduz, Mehmet; Gormez, Zeliha; Erpolat, Seval; Oznur, Murat; Sagiroglu, Mahmut Samil; Demirci, Huseyin; Gunduz, Esra

    2016-08-01

    Coffin-Siris syndrome (CSS) (MIM 135900) is characterized by developmental delay, severe speech impairment, distinctive facial features, hypertrichosis, aplasia or hypoplasia of the distal phalanx or nail of the fifth digit and agenesis of the corpus callosum. Recently, it was shown that mutations in the ARID1B gene are the main cause of CSS, accounting for 76% of identified mutations. Here, we report a 15 year-old female patient who was admitted to our clinic with seizures, speech problems, dysmorphic features, bilaterally big, large thumb, café-au-lait (CAL) spots, obesity and hyperinsulinism. First, the patient was thought to have an association of neurofibromatosis and Rubinstein Taybi syndrome. Because of the large size of the NF1 gene for neurofibromatosis and CREBBP gene for Rubinstein Taybi syndrome, whole exome sequence analysis (WES) was conducted and a novel ARID1B mutation was identified. The proband WES test identified a novel heterozygous frameshift mutation c.3394_3395insTA in exon 13 of ARID1B (NM_017519.2) predicting a premature stop codon p.(Tyr1132Leufs*67). Sanger sequencing confirmed the heterozygous c.3394_3395insTA mutation in the proband and that it was not present in her parents indicating de novo mutation. Further investigation and new cases will help to understand this phenomenon better.

  15. Whole exome sequencing identifies mutations in Usher syndrome genes in profoundly deaf Tunisian patients.

    Science.gov (United States)

    Riahi, Zied; Bonnet, Crystel; Zainine, Rim; Lahbib, Saida; Bouyacoub, Yosra; Bechraoui, Rym; Marrakchi, Jihène; Hardelin, Jean-Pierre; Louha, Malek; Largueche, Leila; Ben Yahia, Salim; Kheirallah, Moncef; Elmatri, Leila; Besbes, Ghazi; Abdelhak, Sonia; Petit, Christine

    2015-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3) are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys), in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24), and a nonsense mutation, c.52A>T (p.Lys18*). Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss.

  16. Whole exome sequencing identifies mutations in Usher syndrome genes in profoundly deaf Tunisian patients.

    Directory of Open Access Journals (Sweden)

    Zied Riahi

    Full Text Available Usher syndrome (USH is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3 are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys, in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24, and a nonsense mutation, c.52A>T (p.Lys18*. Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss.

  17. SCN5A mutations and polymorphisms in patients with ventricular fibrillation during acute myocardial infarction.

    Science.gov (United States)

    Boehringer, Tim; Bugert, Peter; Borggrefe, Martin; Elmas, Elif

    2014-10-01

    Mutations in the SCN5A gene encoding the Nav1.5 channel α-subunit are known to be risk factors of arrhythmia, including Brugada Syndrome and Long QT syndrome subtype 3. The present study focused on the role of SCN5A variants in the development of ventricular fibrillation (VF) during acute myocardial infarction (AMI). Since VF during AMI is the major cause of sudden death in the Western world, SCN5A mutations represent genetic risk factors for sudden death. By exon re-sequencing, the entire coding region and flanking intron regions were sequenced in 46 AMI/VF+ patients. In total, nine single nucleotide variants were identified of which four represented common single nucleotide polymorphisms (SNPs; 87G>A, 1673A>G, IVS16‑6C>T and 5457T>A). Only five rare variants were identified, each in only one patient. Only two of the rare variants represented missense mutations (3578G>A and 4786T>A). The common SNPs and the missense mutations were also genotyped using polymerase chain reaction methods in 79 AMI/VF‑ patients and 480 healthy controls. The SNPs did not demonstrate significant differences in allele and genotype frequencies between the study groups. The 3578G>A mutation was identified in one out of the 480 controls, whereas the 4786T>A mutation was not present in AMI/VF- patients and controls. In conclusion, the majority of AMI/VF+ patients demonstrated a wild type sequence or common SNPs in SCN5A. Only two out of 46 (4.3%) AMI/VF+ patients revealed mutations that may be involved in Nav1.5 dysfunction and VF. However, this requires further functional validation.

  18. Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation.

    Science.gov (United States)

    Hartmann, Bianca; Wai, Timothy; Hu, Hao; MacVicar, Thomas; Musante, Luciana; Fischer-Zirnsak, Björn; Stenzel, Werner; Gräf, Ralph; van den Heuvel, Lambert; Ropers, Hans-Hilger; Wienker, Thomas F; Hübner, Christoph; Langer, Thomas; Kaindl, Angela M

    2016-08-06

    Mitochondriopathies often present clinically as multisystemic disorders of primarily high-energy consuming organs. Assembly, turnover, and surveillance of mitochondrial proteins are essential for mitochondrial function and a key task of AAA family members of metalloproteases. We identified a homozygous mutation in the nuclear encoded mitochondrial escape 1-like 1 gene YME1L1, member of the AAA protease family, as a cause of a novel mitochondriopathy in a consanguineous pedigree of Saudi Arabian descent. The homozygous missense mutation, located in a highly conserved region in the mitochondrial pre-sequence, inhibits cleavage of YME1L1 by the mitochondrial processing peptidase, which culminates in the rapid degradation of YME1L1 precursor protein. Impaired YME1L1 function causes a proliferation defect and mitochondrial network fragmentation due to abnormal processing of OPA1. Our results identify mutations in YME1L1 as a cause of a mitochondriopathy with optic nerve atrophy highlighting the importance of YME1L1 for mitochondrial functionality in humans.

  19. Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation

    Science.gov (United States)

    Hartmann, Bianca; Wai, Timothy; Hu, Hao; MacVicar, Thomas; Musante, Luciana; Fischer-Zirnsak, Björn; Stenzel, Werner; Gräf, Ralph; van den Heuvel, Lambert; Ropers, Hans-Hilger; Wienker, Thomas F; Hübner, Christoph; Langer, Thomas; Kaindl, Angela M

    2016-01-01

    Mitochondriopathies often present clinically as multisystemic disorders of primarily high-energy consuming organs. Assembly, turnover, and surveillance of mitochondrial proteins are essential for mitochondrial function and a key task of AAA family members of metalloproteases. We identified a homozygous mutation in the nuclear encoded mitochondrial escape 1-like 1 gene YME1L1, member of the AAA protease family, as a cause of a novel mitochondriopathy in a consanguineous pedigree of Saudi Arabian descent. The homozygous missense mutation, located in a highly conserved region in the mitochondrial pre-sequence, inhibits cleavage of YME1L1 by the mitochondrial processing peptidase, which culminates in the rapid degradation of YME1L1 precursor protein. Impaired YME1L1 function causes a proliferation defect and mitochondrial network fragmentation due to abnormal processing of OPA1. Our results identify mutations in YME1L1 as a cause of a mitochondriopathy with optic nerve atrophy highlighting the importance of YME1L1 for mitochondrial functionality in humans. DOI: http://dx.doi.org/10.7554/eLife.16078.001 PMID:27495975

  20. Disease: H00997 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available TLE ... A novel mutation in FGFR3 causes camptodactyly, tall stature, and hearing loss (CATSHL) syndrome. ... JOURNAL ... Am J Hum Genet 79:935-41 (2006) DOI:10.1086/508433 ... H00997 CATSHL syndrome CATSHL syndrome is characterised by camptodactyly, tall stature, scoliosis, and hear...ing loss. The syndrome is caused by a missense mutation in the FGFR3 gene. FGFR3 is

  1. Mutations in Three Genes Encoding Proteins Involved in Hair Shaft Formation Cause Uncombable Hair Syndrome

    DEFF Research Database (Denmark)

    Ü Basmanav, F Buket; Cau, Laura; Tafazzoli, Aylar

    2016-01-01

    Uncombable hair syndrome (UHS), also known as "spun glass hair syndrome," "pili trianguli et canaliculi," or "cheveux incoiffables" is a rare anomaly of the hair shaft that occurs in children and improves with age. UHS is characterized by dry, frizzy, spangly, and often fair hair that is resistant...... in the majority of UHS case subjects. The two enzymes PADI3 and TGM3, responsible for posttranslational protein modifications, and their target structural protein TCHH are all involved in hair shaft formation. Elucidation of the molecular outcomes of the disease-causing mutations by cell culture experiments...... and tridimensional protein models demonstrated clear differences in the structural organization and activity of mutant and wild-type proteins. Scanning electron microscopy observations revealed morphological alterations in hair coat of Padi3 knockout mice. All together, these findings elucidate the molecular genetic...

  2. Familial gigantism caused by an NSD1 mutation.

    NARCIS (Netherlands)

    Haelst, M.M. van; Hoogeboom, J.J.; Baujat, G.; Bruggenwirth, H.T.; Laar, I. van de; Coleman, K.; Rahman, N.; Niermeijer, M.F.; Drop, S.L.; Scambler, P.J.

    2005-01-01

    A three-generation family with autosomal dominant segregation of a novel NSD1 mutation (6605G --> A, resulting in Cys2202Tyr) is reported. Haploinsufficiency of NSD1 has been identified as the major cause of Sotos syndrome. The overgrowth condition (MIM 117550) is characterized by facial anomalies,

  3. STAT3 mutations correlated with hyper-IgE syndrome lead to ...

    Indian Academy of Sciences (India)

    Of all the causes identified for the disease hyper-immunoglobulinemia E syndrome (HIES), a homozygous mutation in tyrosine kinase2 (TYK2) and heterozygous mutations in STAT3 are implicated the defects in Jak/STAT signalling pathway in the pathogenesis of HIES. Mutations of STAT3 have been frequently clinically ...

  4. Clinical presentation of Griscelli syndrome type 2 and spectrum of RAB27A mutations

    DEFF Research Database (Denmark)

    Meeths, Marie; Bryceson, Yenan T; Rudd, Eva

    2010-01-01

    Griscelli syndrome type 2 (GS2) is an autosomal-recessive immunodeficiency caused by mutations in RAB27A, clinically characterized by partial albinism and haemophagocytic lymphohistocytosis (HLH). We evaluated the frequency of RAB27A mutations in 21 unrelated patients with haemophagocytic syndromes...

  5. Analyses of MMP20 Missense Mutations in Two Families with Hypomaturation Amelogenesis Imperfecta.

    Science.gov (United States)

    Kim, Youn Jung; Kang, Jenny; Seymen, Figen; Koruyucu, Mine; Gencay, Koray; Shin, Teo Jeon; Hyun, Hong-Keun; Lee, Zang Hee; Hu, Jan C-C; Simmer, James P; Kim, Jung-Wook

    2017-01-01

    Amelogenesis imperfecta is a group of rare inherited disorders that affect tooth enamel formation, quantitatively and/or qualitatively. The aim of this study was to identify the genetic etiologies of two families presenting with hypomaturation amelogenesis imperfecta. DNA was isolated from peripheral blood samples obtained from participating family members. Whole exome sequencing was performed using DNA samples from the two probands. Sequencing data was aligned to the NCBI human reference genome (NCBI build 37.2, hg19) and sequence variations were annotated with the dbSNP build 138. Mutations in MMP20 were identified in both probands. A homozygous missense mutation (c.678T>A; p.His226Gln) was identified in the consanguineous Family 1. Compound heterozygous MMP20 mutations (c.540T>A, p.Tyr180 * and c.389C>T, p.Thr130Ile) were identified in the non-consanguineous Family 2. Affected persons in Family 1 showed hypomaturation AI with dark brown discoloration, which is similar to the clinical phenotype in a previous report with the same mutation. However, the dentition of the Family 2 proband exhibited slight yellowish discoloration with reduced transparency. Functional analysis showed that the p.Thr130Ile mutant protein had reduced activity of MMP20, while there was no functional MMP20 in the Family 1 proband. These results expand the mutational spectrum of the MMP20 and broaden our understanding of genotype-phenotype correlations in amelogenesis imperfecta.

  6. Analyses of MMP20 Missense Mutations in Two Families with Hypomaturation Amelogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Jung-Wook Kim

    2017-04-01

    Full Text Available Amelogenesis imperfecta is a group of rare inherited disorders that affect tooth enamel formation, quantitatively and/or qualitatively. The aim of this study was to identify the genetic etiologies of two families presenting with hypomaturation amelogenesis imperfecta. DNA was isolated from peripheral blood samples obtained from participating family members. Whole exome sequencing was performed using DNA samples from the two probands. Sequencing data was aligned to the NCBI human reference genome (NCBI build 37.2, hg19 and sequence variations were annotated with the dbSNP build 138. Mutations in MMP20 were identified in both probands. A homozygous missense mutation (c.678T>A; p.His226Gln was identified in the consanguineous Family 1. Compound heterozygous MMP20 mutations (c.540T>A, p.Tyr180* and c.389C>T, p.Thr130Ile were identified in the non-consanguineous Family 2. Affected persons in Family 1 showed hypomaturation AI with dark brown discoloration, which is similar to the clinical phenotype in a previous report with the same mutation. However, the dentition of the Family 2 proband exhibited slight yellowish discoloration with reduced transparency. Functional analysis showed that the p.Thr130Ile mutant protein had reduced activity of MMP20, while there was no functional MMP20 in the Family 1 proband. These results expand the mutational spectrum of the MMP20 and broaden our understanding of genotype-phenotype correlations in amelogenesis imperfecta.

  7. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome

    NARCIS (Netherlands)

    Niihori, Tetsuya; Aoki, Yoko; Narumi, Yoko; Neri, Giovanni; Cavé, Hélène; Verloes, Alain; Okamoto, Nobuhiko; Hennekam, Raoul C. M.; Gillessen-Kaesbach, Gabriele; Wieczorek, Dagmar; Kavamura, Maria Ines; Kurosawa, Kenji; Ohashi, Hirofumi; Wilson, Louise; Heron, Delphine; Bonneau, Dominique; Corona, Giuseppina; Kaname, Tadashi; Naritomi, Kenji; Baumann, Clarisse; Matsumoto, Naomichi; Kato, Kumi; Kure, Shigeo; Matsubara, Yoichi

    2006-01-01

    Cardio-facio-cutaneous (CFC) syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. It phenotypically overlaps with Noonan and Costello syndrome, which are caused by mutations in PTPN11 and HRAS, respectively. In 43 individuals with CFC, we identified two

  8. A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects.

    Directory of Open Access Journals (Sweden)

    Jinglan Zhang

    2016-04-01

    Full Text Available Genetic leukoencephalopathies (gLEs are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS. The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES, we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G, as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026. VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting and CORVET (class C core vacuole/endosome tethering protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway.

  9. Whole Exome Sequencing for a Patient with Rubinstein-Taybi Syndrome Reveals de Novo Variants besides an Overt CREBBP Mutation

    Directory of Open Access Journals (Sweden)

    Hee Jeong Yoo

    2015-03-01

    Full Text Available Rubinstein-Taybi syndrome (RSTS is a rare condition with a prevalence of 1 in 125,000–720,000 births and characterized by clinical features that include facial, dental, and limb dysmorphology and growth retardation. Most cases of RSTS occur sporadically and are caused by de novo mutations. Cytogenetic or molecular abnormalities are detected in only 55% of RSTS cases. Previous genetic studies have yielded inconsistent results due to the variety of methods used for genetic analysis. The purpose of this study was to use whole exome sequencing (WES to evaluate the genetic causes of RSTS in a young girl presenting with an Autism phenotype. We used the Autism diagnostic observation schedule (ADOS and Autism diagnostic interview revised (ADI-R to confirm her diagnosis of Autism. In addition, various questionnaires were used to evaluate other psychiatric features. We used WES to analyze the DNA sequences of the patient and her parents and to search for de novo variants. The patient showed all the typical features of Autism, WES revealed a de novo frameshift mutation in CREBBP and de novo sequence variants in TNC and IGFALS genes. Mutations in the CREBBP gene have been extensively reported in RSTS patients, while potential missense mutations in TNC and IGFALS genes have not previously been associated with RSTS. The TNC and IGFALS genes are involved in central nervous system development and growth. It is possible for patients with RSTS to have additional de novo variants that could account for previously unexplained phenotypes.

  10. Dominant mutations in KAT6A cause intellectual disability with recognizable syndromic features.

    Science.gov (United States)

    Tham, Emma; Lindstrand, Anna; Santani, Avni; Malmgren, Helena; Nesbitt, Addie; Dubbs, Holly A; Zackai, Elaine H; Parker, Michael J; Millan, Francisca; Rosenbaum, Kenneth; Wilson, Golder N; Nordgren, Ann

    2015-03-05

    Through a multi-center collaboration study, we here report six individuals from five unrelated families, with mutations in KAT6A/MOZ detected by whole-exome sequencing. All five different de novo heterozygous truncating mutations were located in the C-terminal transactivation domain of KAT6A: NM_001099412.1: c.3116_3117 delCT, p.(Ser1039∗); c.3830_3831insTT, p.(Arg1278Serfs∗17); c.3879 dupA, p.(Glu1294Argfs∗19); c.4108G>T p.(Glu1370∗) and c.4292 dupT, p.(Leu1431Phefs∗8). An additional subject with a 0.23 MB microdeletion including the entire KAT6A reading frame was identified with genome-wide array comparative genomic hybridization. Finally, by detailed clinical characterization we provide evidence that heterozygous mutations in KAT6A cause a distinct intellectual disability syndrome. The common phenotype includes hypotonia, intellectual disability, early feeding and oromotor difficulties, microcephaly and/or craniosynostosis, and cardiac defects in combination with subtle facial features such as bitemporal narrowing, broad nasal tip, thin upper lip, posteriorly rotated or low-set ears, and microretrognathia. The identification of human subjects complements previous work from mice and zebrafish where knockouts of Kat6a/kat6a lead to developmental defects. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. [Novel CHST6 compound heterozygous mutations cause macular corneal dystrophy in a Chinese family].

    Science.gov (United States)

    Qi, Yan-hua; Dang, Xiu-hong; Su, Hong; Zhou, Nan; Liang, Ting; Wang, Zheng; Huang, Shang-zhi

    2010-02-01

    The aim of this study was to identify mutations of CHST6 gene in a Chinese family with macular corneal dystrophy (MCD) and to investigate the histopathological changes of MCD. Corneal button of the proband was obtained from penetrating keratoplasty for the treatment of severe corneal dystrophy. The sections and ultrathin sections of this specimen were examined under light microscope and transmission electron microscope (TEM). Genomic DNA was extracted from leukocytes in peripheral blood from the family members. The coding region of CHST6 was amplified by polymerase chain reaction (PCR). The PCR products were analyzed by direct sequencing and restriction enzyme digestion. Histochemical study revealed positive results of colloidal iron stain. TEM revealed enlargement of smooth endoplasmic reticulum and the presence of intracytoplasmic vacuoles. Two mutations, Q298X Y358H, were identified in exon 3 of CHST6. Three patients were compound heterozygotes of these two mutations. The C892T transversion occurred at codon 298 turned the codon of glutamine to a stop codon; the T1072C transversion occurred at codon 358 caused a missense mutation, tyrosine to histidine. All six unaffected family members were heterozygotes. These two mutations were not detected in any of the 100 control subjects. The novel compound heterozygous mutation results in loss of CHST6 function and causes the occurrence of MCD. This is the first report of this gene mutation.

  12. Mutations in the BAF-Complex Subunit DPF2 Are Associated with Coffin-Siris Syndrome.

    Science.gov (United States)

    Vasileiou, Georgia; Vergarajauregui, Silvia; Endele, Sabine; Popp, Bernt; Büttner, Christian; Ekici, Arif B; Gerard, Marion; Bramswig, Nuria C; Albrecht, Beate; Clayton-Smith, Jill; Morton, Jenny; Tomkins, Susan; Low, Karen; Weber, Astrid; Wenzel, Maren; Altmüller, Janine; Li, Yun; Wollnik, Bernd; Hoganson, George; Plona, Maria-Renée; Cho, Megan T; Thiel, Christian T; Lüdecke, Hermann-Josef; Strom, Tim M; Calpena, Eduardo; Wilkie, Andrew O M; Wieczorek, Dagmar; Engel, Felix B; Reis, André

    2018-03-01

    Variants affecting the function of different subunits of the BAF chromatin-remodelling complex lead to various neurodevelopmental syndromes, including Coffin-Siris syndrome. Furthermore, variants in proteins containing PHD fingers, motifs recognizing specific histone tail modifications, have been associated with several neurological and developmental-delay disorders. Here, we report eight heterozygous de novo variants (one frameshift, two splice site, and five missense) in the gene encoding the BAF complex subunit double plant homeodomain finger 2 (DPF2). Affected individuals share common clinical features described in individuals with Coffin-Siris syndrome, including coarse facial features, global developmental delay, intellectual disability, speech impairment, and hypoplasia of fingernails and toenails. All variants occur within the highly conserved PHD1 and PHD2 motifs. Moreover, missense variants are situated close to zinc binding sites and are predicted to disrupt these sites. Pull-down assays of recombinant proteins and histone peptides revealed that a subset of the identified missense variants abolish or impaire DPF2 binding to unmodified and modified H3 histone tails. These results suggest an impairment of PHD finger structural integrity and cohesion and most likely an aberrant recognition of histone modifications. Furthermore, the overexpression of these variants in HEK293 and COS7 cell lines was associated with the formation of nuclear aggregates and the recruitment of both wild-type DPF2 and BRG1 to these aggregates. Expression analysis of truncating variants found in the affected individuals indicated that the aberrant transcripts escape nonsense-mediated decay. Altogether, we provide compelling evidence that de novo variants in DPF2 cause Coffin-Siris syndrome and propose a dominant-negative mechanism of pathogenicity. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. Functional Dysregulation of CDC42 Causes Diverse Developmental Phenotypes.

    Science.gov (United States)

    Martinelli, Simone; Krumbach, Oliver H F; Pantaleoni, Francesca; Coppola, Simona; Amin, Ehsan; Pannone, Luca; Nouri, Kazem; Farina, Luciapia; Dvorsky, Radovan; Lepri, Francesca; Buchholzer, Marcel; Konopatzki, Raphael; Walsh, Laurence; Payne, Katelyn; Pierpont, Mary Ella; Vergano, Samantha Schrier; Langley, Katherine G; Larsen, Douglas; Farwell, Kelly D; Tang, Sha; Mroske, Cameron; Gallotta, Ivan; Di Schiavi, Elia; Della Monica, Matteo; Lugli, Licia; Rossi, Cesare; Seri, Marco; Cocchi, Guido; Henderson, Lindsay; Baskin, Berivan; Alders, Mariëlle; Mendoza-Londono, Roberto; Dupuis, Lucie; Nickerson, Deborah A; Chong, Jessica X; Meeks, Naomi; Brown, Kathleen; Causey, Tahnee; Cho, Megan T; Demuth, Stephanie; Digilio, Maria Cristina; Gelb, Bruce D; Bamshad, Michael J; Zenker, Martin; Ahmadian, Mohammad Reza; Hennekam, Raoul C; Tartaglia, Marco; Mirzaa, Ghayda M

    2018-01-17

    Exome sequencing has markedly enhanced the discovery of genes implicated in Mendelian disorders, particularly for individuals in whom a known clinical entity could not be assigned. This has led to the recognition that phenotypic heterogeneity resulting from allelic mutations occurs more commonly than previously appreciated. Here, we report that missense variants in CDC42, a gene encoding a small GTPase functioning as an intracellular signaling node, underlie a clinically heterogeneous group of phenotypes characterized by variable growth dysregulation, facial dysmorphism, and neurodevelopmental, immunological, and hematological anomalies, including a phenotype resembling Noonan syndrome, a developmental disorder caused by dysregulated RAS signaling. In silico, in vitro, and in vivo analyses demonstrate that mutations variably perturb CDC42 function by altering the switch between the active and inactive states of the GTPase and/or affecting CDC42 interaction with effectors, and differentially disturb cellular and developmental processes. These findings reveal the remarkably variable impact that dominantly acting CDC42 mutations have on cell function and development, creating challenges in syndrome definition, and exemplify the importance of functional profiling for syndrome recognition and delineation. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Mainzer-Saldino Syndrome Is a Ciliopathy Caused by IFT140 Mutations

    Science.gov (United States)

    Perrault, Isabelle; Saunier, Sophie; Hanein, Sylvain; Filhol, Emilie; Bizet, Albane A.; Collins, Felicity; Salih, Mustafa A.M.; Gerber, Sylvie; Delphin, Nathalie; Bigot, Karine; Orssaud, Christophe; Silva, Eduardo; Baudouin, Véronique; Oud, Machteld M.; Shannon, Nora; Le Merrer, Martine; Roche, Olivier; Pietrement, Christine; Goumid, Jamal; Baumann, Clarisse; Bole-Feysot, Christine; Nitschke, Patrick; Zahrate, Mohammed; Beales, Philip; Arts, Heleen H.; Munnich, Arnold; Kaplan, Josseline; Antignac, Corinne; Cormier-Daire, Valérie; Rozet, Jean-Michel

    2012-01-01

    Mainzer-Saldino syndrome (MSS) is a rare disorder characterized by phalangeal cone-shaped epiphyses, chronic renal failure, and early-onset, severe retinal dystrophy. Through a combination of ciliome resequencing and Sanger sequencing, we identified IFT140 mutations in six MSS families and in a family with the clinically overlapping Jeune syndrome. IFT140 is one of the six currently known components of the intraflagellar transport complex A (IFT-A) that regulates retrograde protein transport in ciliated cells. Ciliary abundance and localization of anterograde IFTs were altered in fibroblasts of affected individuals, a result that supports the pivotal role of IFT140 in proper development and function of ciliated cells. PMID:22503633

  15. A Missense Mutation of G257A at Exon 3 in PEX7 CDS Was Responsible for the Incidence of Rhizomelic Chondrodysplasia Punctata Type 1

    Directory of Open Access Journals (Sweden)

    Marziyeh Alamatsaz

    2018-02-01

    Full Text Available Background Rhizomelic chondrodysplasia punctata (RCDP type 1 is among of the rare autosomal recessive peroxisome biogenesis disorders caused by mutations in the PEX7 gene. RCDP patients with the classic form of RCDP1 do not live more than 10- year. Materials and Methods In the present study, a two-year-old girl with skeletal abnormalities and dysmorphic facial appearance is reported to be suffered from RCDP. The patient's parents were second cousins and healthy and there was no similar case in the parents’ family. PEX7 gene was sequenced in the patient and her parents. Results A homozygous mutation, G257A, was identified PEX7 in the genome of patient while the parents were compound heterozygous. Conclusion Taken together, clinical presentation and peroxisome profile of the patient suggested a missense mutation led to formation of a pathogenic PEX7, responsible for incidence of RCDP.

  16. A newly detected mutation of the RET protooncogene in exon 8 as a cause of multiple endocrine neoplasia type 2A.

    Science.gov (United States)

    Bethanis, Sotirios; Koutsodontis, George; Palouka, Theodosia; Avgoustis, Christos; Yannoukakos, Drakoulis; Bei, Thalia; Papadopoulos, Savas; Linos, Dimitrios; Tsagarakis, Stylianos

    2007-01-01

    Multiple endocrine neoplasia type 2A (MEN2A) is a syndrome of familial neoplasias characterized by medullary thyroid carcinoma (MTC), pheochromocytoma and hyperplasia of the parathyroid glands. RET protooncogene mutations are responsible for MEN 2A. Mutations in exons 10 or 11 have been identified in more than 96% of patients with MEN 2A. We herein report for the first time a patient with MEN 2A harboring a mutation (Gly(533)Cys) in exon 8. A 66-year old male patient was referred to our department for bilateral adrenal nodules. The patient's family history was remarkable in that his mother had pheochromocytoma. Biochemical evaluation and findings of the magnetic resonance imaging of the adrenals were compatible with the diagnosis of bilateral pheochromocytomas. The patient underwent laparoscopic bilateral adrenalectomy and histological examination confirmed the preoperative diagnosis of pheochromocytoma. Absence of phenotypic characteristics of VHL or NF1 and elevated calcitonin levels both basal and post pentagastrin stimulation, raised the possibility of MEN 2A syndrome. Total thyroidectomy was performed and histological examination showed the presence of MTC. Direct sequencing of exon 8 from the patient's genomic DNA revealed the mutation c.1,597G-->T (Gly533Cys). Although this missense point mutation has been associated with familial MTC (FMTC), to the best of our knowledge mutations in exon 8 have not previously been identified in patients with MEN 2A. In conclusion, in patients with clinical suspicion of MEN 2A syndrome, analysis of RET exon 8 should be considered when the routine evaluation of MEN 2A-associated mutations is negative. Furthermore, patients with FMTC and exon 8 mutations should also be screened for pheochromocytoma.

  17. Novel autosomal dominant TNNT1 mutation causing nemaline myopathy.

    Science.gov (United States)

    Konersman, Chamindra G; Freyermuth, Fernande; Winder, Thomas L; Lawlor, Michael W; Lagier-Tourenne, Clotilde; Patel, Shailendra B

    2017-11-01

    Nemaline myopathy (NEM) is one of the three major forms of congenital myopathy and is characterized by diffuse muscle weakness, hypotonia, respiratory insufficiency, and the presence of nemaline rod structures on muscle biopsy. Mutations in troponin T1 (TNNT1) is 1 of 10 genes known to cause NEM. To date, only homozygous nonsense mutations or compound heterozygous truncating or internal deletion mutations in TNNT1 gene have been identified in NEM. This extended family is of historical importance as some members were reported in the 1960s as initial evidence that NEM is a hereditary disorder. Proband and extended family underwent Sanger sequencing for TNNT1. We performed RT-PCR and immunoblot on muscle to assess TNNT1 RNA expression and protein levels in proband and father. We report a novel heterozygous missense mutation of TNNT1 c.311A>T (p.E104V) that segregated in an autosomal dominant fashion in a large family residing in the United States. Extensive sequencing of the other known genes for NEM failed to identify any other mutant alleles. Muscle biopsies revealed a characteristic pattern of nemaline rods and severe myofiber hypotrophy that was almost entirely restricted to the type 1 fiber population. This novel mutation alters a residue that is highly conserved among vertebrates. This report highlights not only a family with autosomal dominant inheritance of NEM, but that this novel mutation likely acts via a dominant negative mechanism. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  18. A new nonsense mutation in the NF1 gene with neurofibromatosis-Noonan syndrome phenotype.

    Science.gov (United States)

    Yimenicioğlu, Sevgi; Yakut, Ayten; Karaer, Kadri; Zenker, Martin; Ekici, Arzu; Carman, Kürşat Bora

    2012-12-01

    Neurofibromatosis-Noonan syndrome is a rare autosomal dominant disorder which combines neurofibromatosis type 1 (NF1) features with Noonan syndrome. NF1 gene mutations are reported in the majority of these patients. Sequence analysis of the established genes for Noonan syndrome revealed no mutation; a heterozygous NF1 point mutation c.7549C>T in exon 51, creating a premature stop codon (p.R2517X), had been demonstrated. Neurofibromatosis-Noonan syndrome recently has been considered a subtype of NF1 and caused by different NF1 mutations. We report the case of a 14-year-old boy with neurofibromatosis type 1 with Noonan-like features, who complained of headache with triventricular hydrocephaly and a heterozygous NF1 point mutation c.7549C>T in exon 51.

  19. Autosomal dominant familial neurohypophyseal diabetes insipidus caused by a mutation in the arginine-vasopressin II gene in four generations of a Korean family

    Directory of Open Access Journals (Sweden)

    Myo-Jing Kim

    2014-12-01

    Full Text Available Autosomal dominant neurohypophyseal diabetes insipidus is a rare form of central diabetes insipidus that is caused by mutations in the vasopressin-neurophysin II (AVP-NPII gene. It is characterized by persistent polydipsia and polyuria induced by deficient or absent secretion of arginine vasopressin (AVP. Here we report a case of familial neurohypophyseal diabetes insipidus in four generations of a Korean family, caused by heterozygous missense mutation in exon 2 of the AVP-NPII gene (c.286G>T. This is the first report of such a case in Korea.

  20. High rate of mutation K103N causing resistance to nevirapine in Indian children with acquired immunodeficiency syndrome

    Directory of Open Access Journals (Sweden)

    Sehgal S

    2008-01-01

    Full Text Available In north India the number of paediatric cases with acquired immunodeficiency syndrome (AIDS is on the rise. Most drug combinations used for treatment of AIDS incorporate nevirapine, resistance to which develops very fast if given singly or because of unplanned interruptions. This paper investigates presence of mutations at codon 103 and codon 215 of the HIV pol gene causing resistance to nevirapine and zidovudine (AZT respectively in 25 children with AIDS. Mutations T215Y and K103N were detected by a nested cum amplification refractory mutation system polymerase chain reaction (ARMS PCR and the results were confirmed by direct sequencing in five randomly selected cases. Nineteen patients had received nevirapine containing regimen and six were drug naive. Mutation K103N was observed in 56% (14/25 of the children while mutation T215Y was found in none. Two of the six drug naοve children also showed K103N mutation. Thus, Indian children drug naοve or treated with nevirapine containing regimens show a high rate of mutation conferring resistance to nevirapine which calls for a judicious use of nevirapine both in antenatal and postnatal setting.

  1. De novo loss-of-function mutations in WAC cause a recognizable intellectual disability syndrome and learning deficits in Drosophila.

    Science.gov (United States)

    Lugtenberg, Dorien; Reijnders, Margot R F; Fenckova, Michaela; Bijlsma, Emilia K; Bernier, Raphael; van Bon, Bregje W M; Smeets, Eric; Vulto-van Silfhout, Anneke T; Bosch, Danielle; Eichler, Evan E; Mefford, Heather C; Carvill, Gemma L; Bongers, Ernie M H F; Schuurs-Hoeijmakers, Janneke Hm; Ruivenkamp, Claudia A; Santen, Gijs W E; van den Maagdenberg, Arn M J M; Peeters-Scholte, Cacha M P C D; Kuenen, Sabine; Verstreken, Patrik; Pfundt, Rolph; Yntema, Helger G; de Vries, Petra F; Veltman, Joris A; Hoischen, Alexander; Gilissen, Christian; de Vries, Bert B A; Schenck, Annette; Kleefstra, Tjitske; Vissers, Lisenka E L M

    2016-08-01

    Recently WAC was reported as a candidate gene for intellectual disability (ID) based on the identification of a de novo mutation in an individual with severe ID. WAC regulates transcription-coupled histone H2B ubiquitination and has previously been implicated in the 10p12p11 contiguous gene deletion syndrome. In this study, we report on 10 individuals with de novo WAC mutations which we identified through routine (diagnostic) exome sequencing and targeted resequencing of WAC in 2326 individuals with unexplained ID. All but one mutation was expected to lead to a loss-of-function of WAC. Clinical evaluation of all individuals revealed phenotypic overlap for mild ID, hypotonia, behavioral problems and distinctive facial dysmorphisms, including a square-shaped face, deep set eyes, long palpebral fissures, and a broad mouth and chin. These clinical features were also previously reported in individuals with 10p12p11 microdeletion syndrome. To investigate the role of WAC in ID, we studied the importance of the Drosophila WAC orthologue (CG8949) in habituation, a non-associative learning paradigm. Neuronal knockdown of Drosophila CG8949 resulted in impaired learning, suggesting that WAC is required in neurons for normal cognitive performance. In conclusion, we defined a clinically recognizable ID syndrome, caused by de novo loss-of-function mutations in WAC. Independent functional evidence in Drosophila further supported the role of WAC in ID. On the basis of our data WAC can be added to the list of ID genes with a role in transcription regulation through histone modification.

  2. Novel GALNT3 mutations causing hyperostosis-hyperphosphatemia syndrome result in low intact fibroblast growth factor 23 concentrations.

    Science.gov (United States)

    Ichikawa, Shoji; Guigonis, Vincent; Imel, Erik A; Courouble, Mélanie; Heissat, Sophie; Henley, John D; Sorenson, Andrea H; Petit, Barbara; Lienhardt, Anne; Econs, Michael J

    2007-05-01

    Hyperostosis-hyperphosphatemia syndrome (HHS) is a rare metabolic disorder characterized by hyperphosphatemia and localized hyperostosis. HHS is caused by mutations in GALNT3, which encodes UDP-N-acetyl-alpha-D-galactosamine:polypeptide N- acetylgalactosaminyltransferase 3. Familial tumoral calcinosis (TC), characterized by ectopic calcifications and hyperphosphatemia, is caused by mutations in the GALNT3 or fibroblast growth factor 23 (FGF23) genes. Our objective was to identify mutations in FGF23 or GALNT3 and determine serum FGF23 levels in an HHS patient. Mutation detection in FGF23 and GALNT3 was performed by DNA sequencing, and serum FGF23 concentrations were measured by ELISA. A 5-year-old French boy with HHS and his family members participated. The patient presented with painful cortical lesions in his leg. Radiographs of the affected bone showed diaphyseal hyperostosis. The lesional tissue comprised trabeculae of immature, woven bone surrounded by fibrous tissue. Biochemistry revealed elevated phosphate, tubular maximum rate for phosphate reabsorption per deciliter of glomerular filtrate, and 1,25-dihydroxyvitamin D levels. The patient was a compound heterozygote for two novel GALNT3 mutations. His parents and brother were heterozygous for one of the mutations and had no biochemical abnormalities. Intact FGF23 level in the patient was low normal, whereas C-terminal FGF23 was elevated, a pattern similar to TC. The presence of GALNT3 mutations and elevated C-terminal, but low intact serum FGF23, levels in HHS resemble those seen in TC, suggesting that HHS and TC are different manifestations of the same disorder. The absence of biochemical abnormalities in the heterozygous individuals suggests that one normal allele is sufficient for secretion of intact FGF23.

  3. Novel growth hormone receptor mutation in a Chinese patient with Laron syndrome.

    Science.gov (United States)

    Hui, Hamilton N T; Metherell, Louise A; Ng, K L; Savage, Martin O; Camacho-Hübner, Cecilia; Clark, Adrian J L

    2005-02-01

    Laron syndrome, growth hormone (GH) insensitivity syndrome, caused by a mutation of the GH receptor (GHR) gene, is extremely rare in the Chinese population. We report a Chinese girl diagnosed with Laron syndrome at age 1.9 years with height -4.9 SDS, basal GH 344 mIU/ml, IGF-I <12 ng/ml, IGFBP-3 <0.2 mg/ml, and undetectable GHBP. A novel mutation of the GHR, not previously described, was identified at the donor splice site of intron 6.

  4. Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling.

    Science.gov (United States)

    Snijders Blok, Lot; Madsen, Erik; Juusola, Jane; Gilissen, Christian; Baralle, Diana; Reijnders, Margot R F; Venselaar, Hanka; Helsmoortel, Céline; Cho, Megan T; Hoischen, Alexander; Vissers, Lisenka E L M; Koemans, Tom S; Wissink-Lindhout, Willemijn; Eichler, Evan E; Romano, Corrado; Van Esch, Hilde; Stumpel, Connie; Vreeburg, Maaike; Smeets, Eric; Oberndorff, Karin; van Bon, Bregje W M; Shaw, Marie; Gecz, Jozef; Haan, Eric; Bienek, Melanie; Jensen, Corinna; Loeys, Bart L; Van Dijck, Anke; Innes, A Micheil; Racher, Hilary; Vermeer, Sascha; Di Donato, Nataliya; Rump, Andreas; Tatton-Brown, Katrina; Parker, Michael J; Henderson, Alex; Lynch, Sally A; Fryer, Alan; Ross, Alison; Vasudevan, Pradeep; Kini, Usha; Newbury-Ecob, Ruth; Chandler, Kate; Male, Alison; Dijkstra, Sybe; Schieving, Jolanda; Giltay, Jacques; van Gassen, Koen L I; Schuurs-Hoeijmakers, Janneke; Tan, Perciliz L; Pediaditakis, Igor; Haas, Stefan A; Retterer, Kyle; Reed, Patrick; Monaghan, Kristin G; Haverfield, Eden; Natowicz, Marvin; Myers, Angela; Kruer, Michael C; Stein, Quinn; Strauss, Kevin A; Brigatti, Karlla W; Keating, Katherine; Burton, Barbara K; Kim, Katherine H; Charrow, Joel; Norman, Jennifer; Foster-Barber, Audrey; Kline, Antonie D; Kimball, Amy; Zackai, Elaine; Harr, Margaret; Fox, Joyce; McLaughlin, Julie; Lindstrom, Kristin; Haude, Katrina M; van Roozendaal, Kees; Brunner, Han; Chung, Wendy K; Kooy, R Frank; Pfundt, Rolph; Kalscheuer, Vera; Mehta, Sarju G; Katsanis, Nicholas; Kleefstra, Tjitske

    2015-08-06

    Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Exome-first approach identified a novel gloss deletion associated with Lowe syndrome.

    Science.gov (United States)

    Watanabe, Miki; Nakagawa, Ryuji; Kohmoto, Tomohiro; Naruto, Takuya; Suga, Ken-Ichi; Goji, Aya; Horikawa, Hideaki; Masuda, Kiyoshi; Kagami, Shoji; Imoto, Issei

    2016-01-01

    Lowe syndrome (LS) is an X-linked disorder affecting the eyes, nervous system and kidneys, typically caused by missense or nonsense/frameshift OCRL mutations. We report a 6-month-old male clinically suspected to have LS, but without the Fanconi-type renal dysfunction. Using a targeted-exome sequencing-first approach, LS was diagnosed by the identification of a deletion involving 1.7 Mb at Xq25-q26.1, encompassing the entire OCRL gene and neighboring loci.

  6. Expanding the mutation and clinical spectrum of Roberts syndrome.

    Science.gov (United States)

    Afifi, Hanan H; Abdel-Salam, Ghada M H; Eid, Maha M; Tosson, Angie M S; Shousha, Wafaa Gh; Abdel Azeem, Amira A; Farag, Mona K; Mehrez, Mennat I; Gaber, Khaled R

    2016-07-01

    Roberts syndrome and SC phocomelia syndrome are rare autosomal recessive genetic disorders representing the extremes of the spectrum of severity of the same condition, caused by mutations in ESCO2 gene. We report three new patients with Roberts syndrome from three unrelated consanguineous Egyptian families. All patients presented with growth retardation, mesomelic shortening of the limbs more in the upper than in the lower limbs and microcephaly. Patients were subjected to clinical, cytogenetic and radiologic examinations. Cytogenetic analysis showed the characteristic premature separation of centromeres and puffing of heterochromatic regions. Further, sequencing of the ESCO2 gene identified a novel mutation c.244_245dupCT (p.T83Pfs*20) in one family besides two previously reported mutations c.760_761insA (p.T254Nfs*27) and c.764_765delTT (p.F255Cfs*25). All mutations were in homozygous state, in exon 3. The severity of the mesomelic shortening of the limbs and craniofacial anomalies showed variability among patients. Interestingly, patient 1 had abnormal skin hypopigmentation. Serial fetal ultrasound examinations and measurements of long bones diagnosed two affected fetuses in two of the studied families. A literature review and case comparison was performed. In conclusion, we report a novel ESCO2 mutation and expand the clinical spectrum of Roberts syndrome. © 2015 Japanese Teratology Society.

  7. Mutations in ORC1, encoding the largest subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome.

    Science.gov (United States)

    Bicknell, Louise S; Walker, Sarah; Klingseisen, Anna; Stiff, Tom; Leitch, Andrea; Kerzendorfer, Claudia; Martin, Carol-Anne; Yeyati, Patricia; Al Sanna, Nouriya; Bober, Michael; Johnson, Diana; Wise, Carol; Jackson, Andrew P; O'Driscoll, Mark; Jeggo, Penny A

    2011-02-27

    Studies into disorders of extreme growth failure (for example, Seckel syndrome and Majewski osteodysplastic primordial dwarfism type II) have implicated fundamental cellular processes of DNA damage response signaling and centrosome function in the regulation of human growth. Here we report that mutations in ORC1, encoding a subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. We establish that these mutations disrupt known ORC1 functions including pre-replicative complex formation and origin activation. ORC1 deficiency perturbs S-phase entry and S-phase progression. Additionally, we show that Orc1 depletion in zebrafish is sufficient to markedly reduce body size during rapid embryonic growth. Our data suggest a model in which ORC1 mutations impair replication licensing, slowing cell cycle progression and consequently impeding growth during development, particularly at times of rapid proliferation. These findings establish a novel mechanism for the pathogenesis of microcephalic dwarfism and show a surprising but important developmental impact of impaired origin licensing.

  8. Novel Compound Heterozygous CLCNKB Gene Mutations (c.1755A>G/ c.848_850delTCT) Cause Classic Bartter Syndrome.

    Science.gov (United States)

    Wang, Chunli; Chen, Ying; Zheng, Bixia; Zhu, Mengshu; Fan, Jia; Wang, Juejin; Jia, Zhanjun; Huang, Songming; Zhang, Aihua

    2018-02-14

    Inactivated variants in CLCNKB gene encoding the basolateral chloride channel ClC-Kb cause classic Bartter syndrome characterized by hypokalemic metabolic alkalosis and hyperreninemic hyperaldosteronism. Here we identified two cBS siblings presenting hypokalemia in a Chinese family due to novel compound heterozygous CLCNKB mutations (c.848_850delTCT/c.1755A>G). Compound heterozygosity was confirmed by amplifying and sequencing the patient's genomic DNA. The synonymous mutation c.1755A>G (Thr585Thr) was located at +2bp from the 5' splice donor site in exon 15, further transcript analysis demonstrated that this single nucleotide mutation causes exclusion of exon 15 in the cDNA from the proband and his mother. Furthermore, we investigated the expression and protein trafficking change of c.848_850delTCT (TCT) and exon 15 deletion(E15)mutation in vitro. The E15 mutation markedly decreased the expression of ClC-Kb and resulted in a low-molecular-weight band (~55kD) trapping in the endoplasmic reticulum, while the TCT mutant only decreased the total and plasma membrane ClC-Kb protein expression but did not affect the subcellular localization. Finally, we studied the physiological functions of mutations by using whole-cell patch clamp and found that E15 or TCT mutation decreased the current of ClC-Kb/barttin channel. These results suggested that the compound defective mutations of CLCNKB gene are the molecular mechanism of the two cBS siblings.

  9. Exome sequencing identifies mutations in ABCD1 and DACH2 in two brothers with a distinct phenotype.

    Science.gov (United States)

    Zhang, Yanliang; Liu, Yanhui; Li, Ya; Duan, Yong; Zhang, Keyun; Wang, Junwang; Dai, Yong

    2014-09-19

    We report on two brothers with a distinct syndromic phenotype and explore the potential pathogenic cause. Cytogenetic tests and exome sequencing were performed on the two brothers and their parents. Variants detected by exome sequencing were validated by Sanger sequencing. The main phenotype of the two brothers included congenital language disorder, growth retardation, intellectual disability, difficulty in standing and walking, and urinary and fecal incontinence. To the best of our knowledge, no similar phenotype has been reported previously. No abnormalities were detected by G-banding chromosome analysis or array comparative genomic hybridization. However, exome sequencing revealed novel mutations in the ATP-binding cassette, sub-family D member 1 (ABCD1) and Dachshund homolog 2 (DACH2) genes in both brothers. The ABCD1 mutation was a missense mutation c.1126G > C in exon 3 leading to a p.E376Q substitution. The DACH2 mutation was also a missense mutation c.1069A > T in exon 6, leading to a p.S357C substitution. The mother was an asymptomatic heterozygous carrier. Plasma levels of very-long-chain fatty acids were increased in both brothers, suggesting a diagnosis of adrenoleukodystrophy (ALD); however, their phenotype was not compatible with any reported forms of ALD. DACH2 plays an important role in the regulation of brain and limb development, suggesting that this mutation may be involved in the phenotype of the two brothers. The distinct phenotype demonstrated by these two brothers might represent a new form of ALD or a new syndrome. The combination of mutations in ABCD1 and DACH2 provides a plausible mechanism for this phenotype.

  10. Dominant KCNA2 mutation causes episodic ataxia and pharmacoresponsive epilepsy.

    Science.gov (United States)

    Corbett, Mark A; Bellows, Susannah T; Li, Melody; Carroll, Renée; Micallef, Silvana; Carvill, Gemma L; Myers, Candace T; Howell, Katherine B; Maljevic, Snezana; Lerche, Holger; Gazina, Elena V; Mefford, Heather C; Bahlo, Melanie; Berkovic, Samuel F; Petrou, Steven; Scheffer, Ingrid E; Gecz, Jozef

    2016-11-08

    To identify the genetic basis of a family segregating episodic ataxia, infantile seizures, and heterogeneous epilepsies and to study the phenotypic spectrum of KCNA2 mutations. A family with 7 affected individuals over 3 generations underwent detailed phenotyping. Whole genome sequencing was performed on a mildly affected grandmother and her grandson with epileptic encephalopathy (EE). Segregating variants were filtered and prioritized based on functional annotations. The effects of the mutation on channel function were analyzed in vitro by voltage clamp assay and in silico by molecular modeling. KCNA2 was sequenced in 35 probands with heterogeneous phenotypes. The 7 family members had episodic ataxia (5), self-limited infantile seizures (5), evolving to genetic generalized epilepsy (4), focal seizures (2), and EE (1). They had a segregating novel mutation in the shaker type voltage-gated potassium channel KCNA2 (CCDS_827.1: c.765_773del; p.255_257del). A rare missense SCN2A (rs200884216) variant was also found in 2 affected siblings and their unaffected mother. The p.255_257del mutation caused dominant negative loss of channel function. Molecular modeling predicted repositioning of critical arginine residues in the voltage-sensing domain. KCNA2 sequencing revealed 1 de novo mutation (CCDS_827.1: c.890G>A; p.Arg297Gln) in a girl with EE, ataxia, and tremor. A KCNA2 mutation caused dominantly inherited episodic ataxia, mild infantile-onset seizures, and later generalized and focal epilepsies in the setting of normal intellect. This observation expands the KCNA2 phenotypic spectrum from EE often associated with chronic ataxia, reflecting the marked variation in severity observed in many ion channel disorders. © 2016 American Academy of Neurology.

  11. Determining the role of missense mutations in the POU domain of HNF1A that reduce the DNA-binding affinity: A computational approach.

    Directory of Open Access Journals (Sweden)

    Sneha P

    Full Text Available Maturity-onset diabetes of the young type 3 (MODY3 is a non-ketotic form of diabetes associated with poor insulin secretion. Over the past years, several studies have reported the association of missense mutations in the Hepatocyte Nuclear Factor 1 Alpha (HNF1A with MODY3. Missense mutations in the POU homeodomain (POUH of HNF1A hinder binding to the DNA, thereby leading to a dysfunctional protein. Missense mutations of the HNF1A were retrieved from public databases and subjected to a three-step computational mutational analysis to identify the underlying mechanism. First, the pathogenicity and stability of the mutations were analyzed to determine whether they alter protein structure and function. Second, the sequence conservation and DNA-binding sites of the mutant positions were assessed; as HNF1A protein is a transcription factor. Finally, the biochemical properties of the biological system were validated using molecular dynamic simulations in Gromacs 4.6.3 package. Two arginine residues (131 and 203 in the HNF1A protein are highly conserved residues and contribute to the function of the protein. Furthermore, the R131W, R131Q, and R203C mutations were predicted to be highly deleterious by in silico tools and showed lower binding affinity with DNA when compared to the native protein using the molecular docking analysis. Triplicate runs of molecular dynamic (MD simulations (50ns revealed smaller changes in patterns of deviation, fluctuation, and compactness, in complexes containing the R131Q and R131W mutations, compared to complexes containing the R203C mutant complex. We observed reduction in the number of intermolecular hydrogen bonds, compactness, and electrostatic potential, as well as the loss of salt bridges, in the R203C mutant complex. Substitution of arginine with cysteine at position 203 decreases the affinity of the protein for DNA, thereby destabilizing the protein. Based on our current findings, the MD approach is an important

  12. Case reports of juvenile GM1 gangliosidosisis type II caused by mutation in GLB1 gene.

    Science.gov (United States)

    Karimzadeh, Parvaneh; Naderi, Samaneh; Modarresi, Farzaneh; Dastsooz, Hassan; Nemati, Hamid; Farokhashtiani, Tayebeh; Shamsian, Bibi Shahin; Inaloo, Soroor; Faghihi, Mohammad Ali

    2017-07-17

    Type II or juvenile GM1-gangliosidosis is an autosomal recessive lysosomal storage disorder, which is clinically distinct from infantile form of the disease by the lack of characteristic cherry-red spot and hepatosplenomegaly. The disease is characterized by slowly progressive neurodegeneration and mild skeletal changes. Due to the later age of onset and uncharacteristic presentation, diagnosis is frequently puzzled with other ataxic and purely neurological disorders. Up to now, 3-4 types of GM1-gangliosidosis have been reported and among them type I is the most common phenotype with the age of onset around 6 months. Various forms of GM1-gangliosidosis are caused by GLB1 gene mutations but severity of the disease and age of onset are directly related to the position and the nature of deleterious mutations. However, due to its unique genetic cause and overlapping clinical features, some researchers believe that GM1 gangliosidosis represents an overlapped disease spectrum instead of four distinct types. Here, we report a less frequent type of autosomal recessive GM1 gangliosidosis with perplexing clinical presentation in three families in the southwest part of Iran, who are unrelated but all from "Lurs" ethnic background. To identify disease-causing mutations, Whole Exome Sequencing (WES) utilizing next generation sequencing was performed. Four patients from three families were investigated with the age of onset around 3 years old. Clinical presentations were ataxia, gate disturbances and dystonia leading to wheelchair-dependent disability, regression of intellectual abilities, and general developmental regression. They all were born in consanguineous families with no previous documented similar disease in their parents. A homozygote missense mutation in GLB1 gene (c. 601 G > A, p.R201C) was found in all patients. Using Sanger sequencing this identified mutation was confirmed in the proband, their parents, grandparents, and extended family members, confirming

  13. Phenotype of Usher syndrome type II assosiated with compound missense mutations of c.721 C>T and c.1969 C>T in MYO7A in a Chinese Usher syndrome family

    OpenAIRE

    Zhai, Wei; Jin, Xin; Gong, Yan; Qu, Ling-Hui; Zhao, Chen; Li, Zhao-Hui

    2015-01-01

    AIM:To identify the pathogenic mutations in a Chinese pedigree affected with Usher syndrome type II (USH2).METHODS:The ophthalmic examinations and audiometric tests were performed to ascertain the phenotype of the family. To detect the genetic defect, exons of 103 known RDs -associated genes including 12 Usher syndrome (USH) genes of the proband were captured and sequencing analysis was performed to exclude known genetic defects and find potential pathogenic mutations. Subsequently, candidate...

  14. Inherited mutations in the helicase RTEL1 cause telomere dysfunction and Hoyeraal-Hreidarsson syndrome.

    Science.gov (United States)

    Deng, Zhong; Glousker, Galina; Molczan, Aliah; Fox, Alan J; Lamm, Noa; Dheekollu, Jayaraju; Weizman, Orr-El; Schertzer, Michael; Wang, Zhuo; Vladimirova, Olga; Schug, Jonathan; Aker, Memet; Londoño-Vallejo, Arturo; Kaestner, Klaus H; Lieberman, Paul M; Tzfati, Yehuda

    2013-09-03

    Telomeres repress the DNA damage response at the natural chromosome ends to prevent cell-cycle arrest and maintain genome stability. Telomeres are elongated by telomerase in a tightly regulated manner to ensure a sufficient number of cell divisions throughout life, yet prevent unlimited cell division and cancer development. Hoyeraal-Hreidarsson syndrome (HHS) is characterized by accelerated telomere shortening and a broad range of pathologies, including bone marrow failure, immunodeficiency, and developmental defects. HHS-causing mutations have previously been found in telomerase and the shelterin component telomeric repeat binding factor 1 (TRF1)-interacting nuclear factor 2 (TIN2). We identified by whole-genome exome sequencing compound heterozygous mutations in four siblings affected with HHS, in the gene encoding the regulator of telomere elongation helicase 1 (RTEL1). Rtel1 was identified in mouse by its genetic association with telomere length. However, its mechanism of action and whether it regulates telomere length in human remained unknown. Lymphoblastoid cell lines obtained from a patient and from the healthy parents carrying heterozygous RTEL1 mutations displayed telomere shortening, fragility and fusion, and growth defects in culture. Ectopic expression of WT RTEL1 suppressed the telomere shortening and growth defect, confirming the causal role of the RTEL1 mutations in HHS and demonstrating the essential function of human RTEL1 in telomere protection and elongation. Finally, we show that human RTEL1 interacts with the shelterin protein TRF1, providing a potential recruitment mechanism of RTEL1 to telomeres.

  15. Inherited mutations in the helicase RTEL1 cause telomere dysfunction and Hoyeraal–Hreidarsson syndrome

    Science.gov (United States)

    Deng, Zhong; Glousker, Galina; Molczan, Aliah; Fox, Alan J.; Lamm, Noa; Dheekollu, Jayaraju; Weizman, Orr-El; Schertzer, Michael; Wang, Zhuo; Vladimirova, Olga; Schug, Jonathan; Aker, Memet; Londoño-Vallejo, Arturo; Kaestner, Klaus H.; Lieberman, Paul M.; Tzfati, Yehuda

    2013-01-01

    Telomeres repress the DNA damage response at the natural chromosome ends to prevent cell-cycle arrest and maintain genome stability. Telomeres are elongated by telomerase in a tightly regulated manner to ensure a sufficient number of cell divisions throughout life, yet prevent unlimited cell division and cancer development. Hoyeraal–Hreidarsson syndrome (HHS) is characterized by accelerated telomere shortening and a broad range of pathologies, including bone marrow failure, immunodeficiency, and developmental defects. HHS-causing mutations have previously been found in telomerase and the shelterin component telomeric repeat binding factor 1 (TRF1)-interacting nuclear factor 2 (TIN2). We identified by whole-genome exome sequencing compound heterozygous mutations in four siblings affected with HHS, in the gene encoding the regulator of telomere elongation helicase 1 (RTEL1). Rtel1 was identified in mouse by its genetic association with telomere length. However, its mechanism of action and whether it regulates telomere length in human remained unknown. Lymphoblastoid cell lines obtained from a patient and from the healthy parents carrying heterozygous RTEL1 mutations displayed telomere shortening, fragility and fusion, and growth defects in culture. Ectopic expression of WT RTEL1 suppressed the telomere shortening and growth defect, confirming the causal role of the RTEL1 mutations in HHS and demonstrating the essential function of human RTEL1 in telomere protection and elongation. Finally, we show that human RTEL1 interacts with the shelterin protein TRF1, providing a potential recruitment mechanism of RTEL1 to telomeres. PMID:23959892

  16. A novel classification system to predict the pathogenic effects of CHD7 missense variants in CHARGE syndrome

    DEFF Research Database (Denmark)

    Bergman, Jorieke E H; Janssen, Nicole; van der Sloot, Almer M

    2012-01-01

    CHARGE syndrome is characterized by the variable occurrence of multisensory impairment, congenital anomalies, and developmental delay, and is caused by heterozygous mutations in the CHD7 gene. Correct interpretation of CHD7 variants is essential for genetic counseling. This is particularly diffic...

  17. Non-syndromic hearing loss caused by the dominant cis mutation R75Q with the recessive mutation V37I of the GJB2 (Connexin 26) gene.

    Science.gov (United States)

    Kim, Juwon; Jung, Jinsei; Lee, Min Goo; Choi, Jae Young; Lee, Kyung-A

    2015-06-19

    GJB2 alleles containing two cis mutations have been rarely found in non-syndromic hearing loss. Herein, we present a Korean patient with non-syndromic hearing loss caused by the R75Q cis mutation with V37I, which arose de novo in the father and was inherited by the patient. Biochemical coupling and hemichannel permeability assays were performed after molecular cloning and transfection of HEK293T cells. Student's t-tests or analysis of variance followed by Tukey's multiple comparison test was used as statistical analysis. Biochemical coupling was significantly reduced in connexin 26 (Cx26)-R75Q- and Cx26-V37I-transfected cells, with greater extent in Cx26-R75Q and Cx26-R75Q+V37I cells. Interestingly, our patient and his father with the mutations had more residual hearing compared with patients with the dominant mutation alone. Although the difference in hemichannel activity between R75Q alone and R75Q in combination with V37I failed to reach significance, it is of note that there is a possibility that V37I located upstream of R75Q might have the ability to ameliorate R75Q expression. Our study emphasizes the importance of cis mutations with R75Q, as the gene effect of R75Q can be modulated depending on the type of additional mutation.

  18. Mutations of the aminoacyl-tRNA-synthetases SARS and WARS2 are implicated in the etiology of autosomal recessive intellectual disability.

    Science.gov (United States)

    Musante, Luciana; Püttmann, Lucia; Kahrizi, Kimia; Garshasbi, Masoud; Hu, Hao; Stehr, Henning; Lipkowitz, Bettina; Otto, Sabine; Jensen, Lars R; Tzschach, Andreas; Jamali, Payman; Wienker, Thomas; Najmabadi, Hossein; Ropers, Hans Hilger; Kuss, Andreas W

    2017-06-01

    Intellectual disability (ID) is the hallmark of an extremely heterogeneous group of disorders that comprises a wide variety of syndromic and non-syndromic phenotypes. Here, we report on mutations in two aminoacyl-tRNA synthetases that are associated with ID in two unrelated Iranian families. In the first family, we identified a homozygous missense mutation (c.514G>A, p.Asp172Asn) in the cytoplasmic seryl-tRNA synthetase (SARS) gene. The mutation affects the enzymatic core domain of the protein and impairs its enzymatic activity, probably leading to reduced cytoplasmic tRNA Ser concentrations. The mutant protein was predicted to be unstable, which could be substantiated by investigating ectopic mutant SARS in transfected HEK293T cells. In the second family, we found a compound heterozygous genotype of the mitochondrial tryptophanyl-tRNA synthetase (WARS2) gene, comprising a nonsense mutation (c.325delA, p.Ser109Alafs*15), which very likely entails nonsense-mediated mRNA decay and a missense mutation (c.37T>G, p.Trp13Gly). The latter affects the mitochondrial localization signal of WARS2, causing protein mislocalization. Including AIMP1, which we have recently implicated in the etiology of ID, three genes with a role in tRNA-aminoacylation are now associated with this condition. We therefore suggest that the functional integrity of tRNAs in general is an important factor in the development and maintenance of human cognitive functions. © 2017 Wiley Periodicals, Inc.

  19. Phenotype of Usher syndrome type II assosiated with compound missense mutations of c.721 C>T and c.1969 C>T in MYO7A in a Chinese Usher syndrome family.

    Science.gov (United States)

    Zhai, Wei; Jin, Xin; Gong, Yan; Qu, Ling-Hui; Zhao, Chen; Li, Zhao-Hui

    2015-01-01

    To identify the pathogenic mutations in a Chinese pedigree affected with Usher syndrome type II (USH2). The ophthalmic examinations and audiometric tests were performed to ascertain the phenotype of the family. To detect the genetic defect, exons of 103 known RDs -associated genes including 12 Usher syndrome (USH) genes of the proband were captured and sequencing analysis was performed to exclude known genetic defects and find potential pathogenic mutations. Subsequently, candidate mutations were validated in his pedigree and 100 normal controls using polymerase chain reaction (PCR) and Sanger sequencing. The patient in the family occurred hearing loss (HL) and retinitis pigmentosa (RP) without vestibular dysfunction, which were consistent with standards of classification for USH2. He carried the compound heterozygous mutations, c.721 C>T and c.1969 C>T, in the MYO7A gene and the unaffected members carried only one of the two mutations. The mutations were not present in the 100 normal controls. We suggested that the compound heterozygous mutations of the MYO7A could lead to USH2, which had revealed distinguished clinical phenotypes associated with MYO7A and expanded the spectrum of clinical phenotypes of the MYO7A mutations.

  20. Infection-triggered familial or recurrent cases of acute necrotizing encephalopathy caused by mutations in a component of the nuclear pore, RANBP2

    DEFF Research Database (Denmark)

    Neilson, Derek E; Adams, Mark D; Orr, Caitlin M D

    2009-01-01

    a susceptibility locus (ANE1) in a family segregating recurrent ANE as an incompletely penetrant, autosomal-dominant trait. We now report that all affected individuals and obligate carriers in this family are heterozygous for a missense mutation (c.1880C-->T, p.Thr585Met) in the gene encoding the nuclear pore...... protein Ran Binding Protein 2 (RANBP2). To determine whether this mutation is the susceptibility allele, we screened controls and other patients with ANE who are unrelated to the index family. Patients from 9 of 15 additional kindreds with familial or recurrent ANE had the identical mutation. It arose de...... novo in two families and independently in several other families. Two other patients with familial ANE had different RANBP2 missense mutations that altered conserved residues. None of the three RANBP2 missense mutations were found in 19 patients with isolated ANE or in unaffected controls. We conclude...