WorldWideScience

Sample records for syndrome protein suppresses

  1. NSs protein of severe fever with thrombocytopenia syndrome virus suppresses interferon production through different mechanism than Rift Valley fever virus.

    Science.gov (United States)

    Zhang, S; Zheng, B; Wang, T; Li, A; Wan, J; Qu, J; Li, C H; Li, D; Liang, M

    Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly identified Phlebovirus that causes severe fever with thrombocytopenia syndrome. Our study demonstrated that SFTSV NSs functioned as IFN antagonist mainly by suppressing TBK1/IKKε-IRF3 signaling pathway. NSs interacted with and relocalized TANK-binding kinase 1 (TBK1) into NSs-induced cytoplasmic structures and this interaction could effectively inhibit downstream phosphorylation and dimerization of interferon regulatory factor 3 (IRF3), resulting in the suppression of antiviral signaling and IFN induction. Functional sites of SFTSV NSs binding with TBK1 were then studied and results showed that NSs had lost their IFN-inhibiting activity after deleting the 25 amino acids in N-terminal. Furthermore, the mechanism of Rift Valley fever virus (RVFV) NSs blocking IFN-β response were also investigated. Preliminary results showed that RVFV NSs proteins could neither interact nor co-localize with TBK1 in cytoplasm, but suppressed its expression levels, phosphorylation and dimerization of IRF3 in the subsequent steps, resulting in inhibition of the IFN-β production. Altogether, our data demonstrated the probable mechanism used by SFTSV to inhibit IFN responses which was different from RVFV and pointed toward a novel mechanism for RVFV suppressing IFN responses.

  2. Suppression of type I and type III IFN signalling by NSs protein of severe fever with thrombocytopenia syndrome virus through inhibition of STAT1 phosphorylation and activation.

    Science.gov (United States)

    Chaudhary, Vidyanath; Zhang, Shuo; Yuen, Kit-San; Li, Chuan; Lui, Pak-Yin; Fung, Sin-Yee; Wang, Pei-Hui; Chan, Chi-Ping; Li, Dexin; Kok, Kin-Hang; Liang, Mifang; Jin, Dong-Yan

    2015-11-01

    Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen causing significant morbidity and mortality in Asia. NSs protein of SFTSV is known to perturb type I IFN induction and signalling, but the mechanism remains to be fully understood. Here, we showed the suppression of both type I and type III IFN signalling by SFTSV NSs protein is mediated through inhibition of STAT1 phosphorylation and activation. Infection with live SFTSV or expression of NSs potently suppressed IFN-stimulated genes but not NFkB activation. NSs was capable of counteracting the activity of IFN-α1, IFN-β, IFN-λ1 and IFN-λ2. Mechanistically, NSs associated with STAT1 and STAT2, mitigated IFN-β-induced phosphorylation of STAT1 at S727, and reduced the expression and activity of STAT1 protein in IFN-β-treated cells, resulting in the inhibition of STAT1 and STAT2 recruitment to IFNstimulated promoters. Taken together, SFTSV NSs protein is an IFN antagonist that suppresses phosphorylation and activation of STAT1.

  3. Weight Suppression Predicts Maintenance and Onset of Bulimic Syndromes at 10-Year Follow-up

    Science.gov (United States)

    Keel, Pamela K.; Heatherton, Todd F.

    2010-01-01

    Conflicting results have emerged regarding the prognostic significance of weight suppression for maintenance of bulimic symptoms. This study examined whether the magnitude of weight suppression would predict bulimic syndrome maintenance and onset in college-based samples of men (n=369) and women (n=968) at 10-year follow-up. Data come from a longitudinal study of body weight and disordered eating with high retention (80%). Among those with a bulimic syndrome at baseline, greater weight suppression significantly predicted maintenance of the syndrome, and, among those without a bulimic syndrome at baseline, greater weight suppression predicted onset of a bulimic syndrome at 10-year follow-up in multivariate models that included baseline body mass index, diet frequency, and weight perception. Future research should address mechanisms that could account for the effects of weight suppression over a long duration of follow-up. PMID:20455599

  4. [Herbs for calming liver and suppressing yang in treatment of hyperthyroidism with hyperactive liver yang: herbal effects on lymphocyte protein expression].

    Science.gov (United States)

    Li, Xiangping; Yin, Tao; Zhong, Guangwei; Li, Wei; Luo, Yanhong; Xiang, Lingli; Liu, Zhehao

    2011-07-01

    To observe the herbal effects on hyperthyroidism patients with syndrome of hyperactivity of liver-Yang by method for calming the liver and suppressing Yang and investigate its effects on the lymphocyte protein expression. This approach may lay a foundation for the further investigation of the curative mechanisms of calming the liver and suppressing Yang treatment. A total of 48 hyperthyroidism patients with syndrome of hyperactivity of liver-Yang were randomly divided into treatment group and control group. The treatment group was treated by method for calming the liver and suppressing Yang in accordance with traditional Chinese medicine (TCM) and the control group with thiamazole tablets for three periods of treatment The therapeutic effects, the score of TCM symptom, electrocardiogram (P wave), thyroid hormones and ultrasound were observed in both groups before and after the treatment. The side effects in the treatment course were observed in both groups. The level of differential protein expression was analyzed by two-dimensional electrphoresis and matrix assisted laser desorption/ionizaton time-of-flight mass spectrometry. The treatment group has the effect on stepping down the heart rate, cutting down the P wave amplitude changes, regulating the level of thyroid hormones and decreasing the volume of thyromegaly. There are not statistically significant between the treatment group and control group. However, the treatment group has obviously better effect on regulating TCM symptom and decreasing the side reaction than the control group (Peffective between the treatment group and control group. The average spots in lymphocyte for normal people, before and after treating hyperthyroidism patients with syndrome of hyperactivity of liver-Yang were (429 +/- 31), (452 +/- 28) and (437 +/- 36) spots respectively. Eight down-regulated protein expressions and 11 up-regulated protein expressions were obtained in the hyperthyroidism patients with syndrome of hyperactivity

  5. Subtype-specific suppression of Shiga toxin 2 released from Escherichia coli upon exposure to protein synthesis inhibitors

    DEFF Research Database (Denmark)

    Pedersen, Malene Gantzhorn; Hansen, Claus; Riise, Erik

    2008-01-01

    Shiga toxins (Stx) are important virulence factors in the pathogenesis of severe disease including hemolytic-uremic syndrome, caused by Stx-producing Escherichia coli (STEC). STEC strains increase the release of Stx in vitro following the addition of fluoroquinolones, whereas protein synthesis...... inhibitors previously have been reported to suppress the release of Stx. The amount of Stx released from wild-type STEC strains incubated with protein synthesis inhibitors was examined by a Vero cell cytotoxicity assay. The amounts released were compared to the Stx type (Stx1 or Stx2) and additionally...... to the individual subtypes and toxin variants of Stx2. In general, Stx2 release was suppressed significantly upon exposure to protein synthesis inhibitors at MICs, which was not observed in the case of Stx1. Also, the average amount of different Stx2 toxin variants released was suppressed to various levels ranging...

  6. Immunological studies in the acquired immunodeficiency syndrome. II. Active suppression or intrinsic defect--investigated by mixing AIDS cells with HLA-DR identical normal cells

    DEFF Research Database (Denmark)

    Hofmann, B; Ødum, Niels; Jakobsen, B K

    1986-01-01

    The lymphocyte transformation responses to mitogens (phytohaemagglutinin (PHA), concanavalin A (Con A), and pokeweed mitogen (PWM)), allogeneic cells, and the antigen-purified protein derivative (PPD) were studied in six acquired immunodeficiency syndrome (AIDS) patients and in six healthy controls...... with the strong mitogens PHA and Con A or with allogeneic cells, but suppression may be involved in the decreased responses in cultures stimulated with PWM or PPD. Addition of supernatants from macrocultures of AIDS cells did not suppress responses of control PBMC. Thus, suppression by any lymphocyte subset...

  7. Suppression of matrix protein synthesis in endothelial cells by herpes simplex virus is not dependent on viral protein synthesis

    International Nuclear Information System (INIS)

    Kefalides, N.A.

    1986-01-01

    The synthesis of matrix proteins by human endothelial cells (EC) in vitro was studied before and at various times after infection with Herpes Simplex virus Type 1 (HSV-1) or 2 (HSV-2). Monolayers of EC were either mock-infected or infected with virus for 1 hr at a multiplicity infection (MOI) of 5 to 20 at 37 0 C. Control and infected cultures were pulse-labeled for 1 or 2 hrs with either [ 14 C]proline or [ 35 S]methionine. Synthesis of labeled matrix proteins was determined by SDS-gel electrophoresis. Suppression of synthesis of fibronectin, Type IV collagen and thrombospondin began as early as 2 hrs and became almost complete by 10 hrs post-infection. The degree of suppression varied with the protein and the virus dose. Suppression of Type IV collagen occurred first followed by that of fibronectin and then thrombospondin. Infection of EC with UV irradiated HSV-1 or HSV-2 resulted in suppression of host-cell protein synthesis as well as viral protein synthesis. Infection with intact virus in the presence of actinomycin-D resulted in suppression of both host-cell and viral protein synthesis. The data indicate that infection of EC with HSV leads to suppression of matrix protein synthesis which does not depend on viral protein synthesis

  8. Self-initiated coping with Tourette's syndrome: Effect of tic suppression on QOL.

    Science.gov (United States)

    Matsuda, Natsumi; Kono, Toshiaki; Nonaka, Maiko; Fujio, Miyuki; Kano, Yukiko

    2016-02-01

    Because of the semi-voluntary nature of tics, patients with Tourette' syndrome (TS) often report self-initiated coping with tics. Our goals were to understand the experiences of self-initiated coping with tics by individuals with TS (e.g., suppression frequency, suppression ability, and side effects of tic suppression), and investigate the effects of tic control on quality of life (QOL). One hundred participants with TS (38 children and 62 adults) answered a questionnaire concerning tic control, QOL, and other clinical characteristics. Fifty-eight percent of the participants always or frequently tried to suppress tics daily. In contrast, over 90% felt uncomfortable or incomplete when they suppressed tics and needed concentration or extra effort to suppress them. Thirty-four percent could suppress tics for less than one minute and 65% could suppress tics for less than 10min. Higher subjective satisfaction with tic control was positively correlated with life satisfaction and QOL. Individuals with TS often attempt self-initiated coping in their daily lives, especially through tic suppression, despite experiencing subjective discomfort and being aware that the duration of tic suppression is often limited. Moreover, it was found that their subjective satisfaction with tic control and effective tic suppression might have a positive influence on their life satisfaction and QOL. Thus, self-initiated coping with tics is vital for improving the QOL of individuals with TS and intervention aimed at enhancing subjective satisfaction with tic control could help manage TS. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  9. Analysis of Tospovirus NSs Proteins in Suppression of Systemic Silencing.

    Science.gov (United States)

    Hedil, Marcio; Sterken, Mark G; de Ronde, Dryas; Lohuis, Dick; Kormelink, Richard

    2015-01-01

    RNA silencing is a sequence-specific gene regulation mechanism that in plants also acts antiviral. In order to counteract antiviral RNA silencing, viruses have evolved RNA silencing suppressors (RSS). In the case of tospoviruses, the non-structural NSs protein has been identified as the RSS. Although the tomato spotted wilt virus (TSWV) tospovirus NSs protein has been shown to exhibit affinity to long and small dsRNA molecules, its ability to suppress the non-cell autonomous part of RNA silencing has only been studied to a limited extent. Here, the NSs proteins of TSWV, groundnut ringspot virus (GRSV) and tomato yellow ring virus (TYRV), representatives for three distinct tospovirus species, have been studied on their ability and strength to suppress local and systemic silencing. A system has been developed to quantify suppression of GFP silencing in Nicotiana benthamiana 16C lines, to allow a comparison of relative RNA silencing suppressor strength. It is shown that NSs of all three tospoviruses are suppressors of local and systemic silencing. Unexpectedly, suppression of systemic RNA silencing by NSsTYRV was just as strong as those by NSsTSWV and NSsGRSV, even though NSsTYRV was expressed in lower amounts. Using the system established, a set of selected NSsTSWV gene constructs mutated in predicted RNA binding domains, as well as NSs from TSWV isolates 160 and 171 (resistance breakers of the Tsw resistance gene), were analyzed for their ability to suppress systemic GFP silencing. The results indicate another mode of RNA silencing suppression by NSs that acts further downstream the biogenesis of siRNAs and their sequestration. The findings are discussed in light of the affinity of NSs for small and long dsRNA, and recent mutant screen of NSsTSWV to map domains required for RSS activity and triggering of Tsw-governed resistance.

  10. [Value of desmopressin stimulation test and high dose dexamethasone suppression testin the etiologic diagnosis of ACTH dependent Cushing's syndrome].

    Science.gov (United States)

    Zhang, Weiwei; Yu, Yerong; Tan, Huiwen; Wang, Chun; Li, Jianwei; An, Zhenmei; Liu, Yuping

    2016-03-22

    To investigate the value of desmopressin (DDAVP) stimulation test and high dose dexamethasone suppression test (HDDST) in establishing the cause of ACTH dependent Cushing's syndrome. The clinical data of patients with ACTH dependent Cushing's syndrome at West China Hospital from January 1, 2010 to September 30, 2015 was analyzed. The sensitivity and specificity of DDAVP stimulation test, HDDST, and the diagnostic accordance rate when the two tests were combined, were evaluated based on the diagnostic gold standard. A total of 85 patients with Cushing's disease and 10 patients with ectopic ACTH syndrome were included. The sensitivity and specificity of DDAVP stimulation test were 87% and 5/5, respectively, whereas those of HDDST were 79% and 8/10, respectively. The standard high dose dexamethasone suppression test showed a higher sensitivity than overnight 8 mg dexamethasone suppression test. When the two tests had consistent results, the diagnostic accordance rate was 100%. DDAVP stimulation test and HDDST are both efficient modalities for the diagnosis of Cushing's Disease and ectopic ACTH syndrome. The accuracy of diagnosis can be further improved by combining the two tests.

  11. Usher syndrome: molecular links of pathogenesis, proteins and pathways.

    NARCIS (Netherlands)

    Kremer, H.; Wijk, E. van; Marker, T.; Wolfrum, U.; Roepman, R.

    2006-01-01

    Usher syndrome is the most common form of deaf-blindness. The syndrome is both clinically and genetically heterogeneous, and to date, eight causative genes have been identified. The proteins encoded by these genes are part of a dynamic protein complex that is present in hair cells of the inner ear

  12. Associations of Dietary Protein and Energy Intakes With Protein-Energy Wasting Syndrome in Hemodialysis Patients.

    Science.gov (United States)

    Beddhu, Srinivasan; Wei, Guo; Chen, Xiaorui; Boucher, Robert; Kiani, Rabia; Raj, Dominic; Chonchol, Michel; Greene, Tom; Murtaugh, Maureen A

    2017-09-01

    The associations of dietary protein and/or energy intakes with protein or energy wasting in patients on maintenance hemodialysis are controversial. We examined these in the Hemodialysis (HEMO) Study. In 1487 participants in the HEMO Study, baseline dietary protein intake (grams per kilogram per day) and dietary energy intake (kilocalories per kilograms per day) were related to the presence of the protein-energy wasting (PEW) syndrome at month 12 (defined as the presence of at least 1 criteria in 2 of the 3 categories of low serum chemistry, low body mass, and low muscle mass) in logistic regression models. In additional separate models, protein intake estimated from equilibrated normalized protein catabolic rate (enPCR) was also related to the PEW syndrome. Compared with the lowest quartile, the highest quartile of baseline dietary protein intake was paradoxically associated with increased risk of the PEW syndrome at month 12 (odds ratio [OR]: 4.11; 95% confidence interval [CI]: 2.79-6.05). This relationship was completely attenuated (OR: 1.35; 95% CI: 0.88-2.06) with adjustment for baseline body weight, which suggested mathematical coupling. Results were similar for dietary energy intake. Compared with the lowest quartile of baseline enPCR, the highest quartile was not associated with the PEW syndrome at 12 months (OR: 0.78; 95% CI: 0.54-1.12). These data do not support the use of dietary protein intake or dietary energy intake criteria in the definition of the PEW syndrome in patients on maintenance hemodialysis.

  13. DNA mismatch repair protein deficient non-neoplastic colonic crypts: a novel indicator of Lynch syndrome.

    Science.gov (United States)

    Pai, Rish K; Dudley, Beth; Karloski, Eve; Brand, Randall E; O'Callaghan, Neil; Rosty, Christophe; Buchanan, Daniel D; Jenkins, Mark A; Thibodeau, Stephen N; French, Amy J; Lindor, Noralane M; Pai, Reetesh K

    2018-06-08

    Lynch syndrome is the most common form of hereditary colorectal carcinoma. However, establishing the diagnosis of Lynch syndrome is challenging, and ancillary studies that distinguish between sporadic DNA mismatch repair (MMR) protein deficiency and Lynch syndrome are needed, particularly when germline mutation studies are inconclusive. The aim of this study was to determine if MMR protein-deficient non-neoplastic intestinal crypts can help distinguish between patients with and without Lynch syndrome. We evaluated the expression of MMR proteins in non-neoplastic intestinal mucosa obtained from colorectal surgical resection specimens from patients with Lynch syndrome-associated colorectal carcinoma (n = 52) and patients with colorectal carcinoma without evidence of Lynch syndrome (n = 70), including sporadic MMR protein-deficient colorectal carcinoma (n = 30), MMR protein proficient colorectal carcinoma (n = 30), and "Lynch-like" syndrome (n = 10). MMR protein-deficient non-neoplastic colonic crypts were identified in 19 of 122 (16%) patients. MMR protein-deficient colonic crypts were identified in 18 of 52 (35%) patients with Lynch syndrome compared to only 1 of 70 (1%) patients without Lynch syndrome (p Lynch-like" syndrome and harbored two MSH2-deficient non-neoplastic colonic crypts. MMR protein-deficient non-neoplastic colonic crypts were not identified in patients with sporadic MMR protein-deficient or MMR protein proficient colorectal carcinoma. Our findings suggest that MMR protein-deficient colonic crypts are a novel indicator of Lynch syndrome, and evaluation for MMR protein-deficient crypts may be a helpful addition to Lynch syndrome diagnostics.

  14. Genistein suppresses adhesion-induced protein tyrosine phosphorylation and invasion of B16-BL6 melanoma cells.

    Science.gov (United States)

    Yan, C; Han, R

    1998-07-03

    Protein tyrosine phosphorylation occurs as one of the earlier events in cancer cell-extracellular matrix (ECM) interaction. With immunoblot analysis and immunofluorescence microscopy, genistein was found to suppress the tyrosine phosphorylation of proteins located at the cell periphery, including a 125 kDa protein, when B16-BL6 melanoma cells attached to and interacted with ECM. When accompanied by the suppression of adhesion-induced protein tyrosine phosphorylation, the invasive potential of B16-BL6 cells through reconstituted basement membrane was decreased significantly. However, neither adhesive capability nor cell growth was significantly affected by genistein. Therefore, the interruption of cancer cell-ECM interaction by suppression of protein tyrosine phosphorylation may contribute to invasion prevention of genistein.

  15. Usher syndrome: molecular links of pathogenesis, proteins and pathways.

    Science.gov (United States)

    Kremer, Hannie; van Wijk, Erwin; Märker, Tina; Wolfrum, Uwe; Roepman, Ronald

    2006-10-15

    Usher syndrome is the most common form of deaf-blindness. The syndrome is both clinically and genetically heterogeneous, and to date, eight causative genes have been identified. The proteins encoded by these genes are part of a dynamic protein complex that is present in hair cells of the inner ear and in photoreceptor cells of the retina. The localization of the Usher proteins and the phenotype in animal models indicate that the Usher protein complex is essential in the morphogenesis of the stereocilia bundle in hair cells and in the calycal processes of photoreceptor cells. In addition, the Usher proteins are important in the synaptic processes of both cell types. The association of other proteins with the complex indicates functional links to a number of basic cell-biological processes. Prominently present is the connection to the dynamics of the actin cytoskeleton, involved in cellular morphology, cell polarity and cell-cell interactions. The Usher protein complex can also be linked to the cadherins/catenins in the adherens junction-associated protein complexes, suggesting a role in cell polarity and tissue organization. A third link can be established to the integrin transmembrane signaling network. The Usher interactome, as outlined in this review, participates in pathways common in inner ear and retina that are disrupted in the Usher syndrome.

  16. Suppression of expression of muscle-associated proteins by PPARα in brown adipose tissue

    International Nuclear Information System (INIS)

    Tong, Yuhong; Hara, Atsushi; Komatsu, Makiko; Tanaka, Naoki; Kamijo, Yuji; Gonzalez, Frank J.; Aoyama, Toshifumi

    2005-01-01

    Peroxisome proliferator-activated receptor α (PPARα) belongs to the steroid/nuclear receptor superfamily. Two-dimensional (2D) SDS-PAGE analysis of brown adipose tissue (BAT) unexpectedly revealed six spots that were present only in PPARα-null mice. Proteomic analysis indicated that these proteins were tropomyosin-1 α chain, tropomyosin β chain, myosin regulatory light chain 2, myosin light chain 3, and parvalbumin α. Analyses of mRNA have revealed that PPARα suppressed the genes encoding these proteins in a synchronous manner in adult wild-type mice. Histological and physiological analyses of BAT showed in adult wild-type mice, a marked suppression of BAT growth concurrent with a prominent decrease in lipolytic and thermogenesis activities. These results suggest that in adult mice, PPARα functions to suppress the expression of the proteins that may be involved in the architecture of BAT, and thus may function in keeping BAT in a quiescent state

  17. Simplified quantification of urinary protein excretion in children with nephrotic syndrome

    International Nuclear Information System (INIS)

    Mustafa, G.; Khan, P.A.; Hussain, Z.; Iqbal, M.

    2007-01-01

    To assess the value of single voided random (spot) urinary protein to creatinine ratio in accurately predicting the 24-hour urinary protein excretion in Pakistani pediatric population with nephrotic syndrome. Fifty seven children between 1-18 years with nephrotic syndrome were included. Seventy pairs of spot urine (5 milliliter) and 24-hour urine were collected in different phases of their disease e.g. initial, induction and remission. The protein to creatinine ratio was determined in spot urine samples and total protein content in 24-hour urine samples. The correlation between the ratio and 24-hour urinary protein excreted was determined using Pearson's coefficient (r) linear regression analysis. The protein to creatinine ratio in a spot urine sample was significantly correlated with the 24-hour urinary protein. The correlation coefficient (least square method) was found to be significant (r=0.9444). A random (spot) urinary protein to creatinine ratio of greater than 2 correlated well with the massive proteinuria (i.e. nephrotic syndrome), between 2 to 0.2 indicated glomerulopathy while a ratio of less than 0.2 was suggestive of physiological values. The random spot urinary protein to creatinine ratio can reliably be used to assess the degree of proteinuria in children with nephrotic syndrome and can replace the 24-hour urinary protein excretion/collection. (author)

  18. Hypothalamic-Pituitary-Adrenal Suppression and Iatrogenic Cushing's Syndrome as a Complication of Epidural Steroid Injections

    Directory of Open Access Journals (Sweden)

    Joyce Leary

    2013-01-01

    Full Text Available Epidural steroid injections are well accepted as a treatment for radicular back pain in appropriate candidates. While overall incidence of systemic side effects has not been well established, at least five biochemically proven cases of iatrogenic Cushing's Syndrome have been reported as complications of epidural steroid treatment. We present an additional case of iatrogenic Cushing's Syndrome and adrenal suppression in a middle-aged woman who received three epidural steroid injections over a four-month period. We review this case in the context of previous cases and discuss diagnostic and management issues.

  19. A novel white spot syndrome virus protein WSSV164 controls prophenoloxidases, PmproPOs in shrimp melanization cascade.

    Science.gov (United States)

    Sangsuriya, Pakkakul; Charoensapsri, Walaiporn; Sutthangkul, Jantiwan; Senapin, Saengchan; Hirono, Ikuo; Tassanakajon, Anchalee; Amparyup, Piti

    2018-09-01

    Melanization, mediated by the prophenoloxidase (proPO)-activating system, is an important innate immune response in invertebrates. The implication of the proPO system in antiviral response and the suppression of host proPO activation by the viral protein have previously been demonstrated in shrimp. However, the molecular mechanism of viral-host interactions in the proPO cascade remains largely unexplored. Here, we characterized the viral protein, namely, WSSV164, which was initially identified from the forward suppression subtractive hybridization (SSH) cDNA library of the PmproPO1/2 co-silenced black tiger shrimp Penaeus monodon that was challenged with white spot syndrome virus (WSSV). Using the yeast two-hybrid system, WSSV164 was found to interact with the PmproPO2 protein. The subsequent validation assay by co-immunoprecipitation revealed that WSSV164 directly bound to both PmproPO1 and PmproPO2. The gene silencing experiment was carried out to explore the role of WSSV164 in the control of the proPO pathway in shrimp, and the results showed that suppression of WSSV164 can restore PO activity in WSSV-infected shrimp hemolymph. The recombinant proteins of PmproPO1 and PmproPO2 were produced in Sf-9 cells and were shown to be successfully activated by exogenous trypsin and endogenous serine proteinases from shrimp hemocyte lysate supernatant (HLS), yielding PO activity in vitro. Moreover, the activated PO activity in shrimp HLS was dose-dependently reduced by the recombinant WSSV164 protein, suggesting that WSSV164 may interfere with the activation of the proPO system in shrimp. Taken together, these results suggest an alternative infection route of WSSV through the encoded viral protein WSSV164 that binds to the PmproPO1 and PmproPO2 proteins, interfering with the activation of the melanization cascade in shrimp. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Nuclear imprisonment of host cellular mRNA by nsp1β protein of porcine reproductive and respiratory syndrome virus

    International Nuclear Information System (INIS)

    Han, Mingyuan; Ke, Hanzhong; Zhang, Qingzhan; Yoo, Dongwan

    2017-01-01

    Positive-strand RNA genomes function as mRNA for viral protein synthesis which is fully reliant on host cell translation machinery. Competing with cellular protein translation apparatus needs to ensure the production of viral proteins, but this also stifles host innate defense. In the present study, we showed that porcine reproductive and respiratory syndrome virus (PRRSV), whose replication takes place in the cytoplasm, imprisoned host cell mRNA in the nucleus, which suggests a novel mechanism to enhance translation of PRRSV genome. PRRSV nonstructural protein (nsp) 1β was identified as the nuclear protein playing the role for host mRNA nuclear retention and subversion of host protein synthesis. A SAP (SAF-A/B, Acinus, and PIAS) motif was identified in nsp1β with the consensus sequence of 126 -LQxxLxxxGL- 135 . In situ hybridization unveiled that SAP mutants were unable to cause nuclear retention of host cell mRNAs and did not suppress host protein synthesis. In addition, these SAP mutants reverted PRRSV-nsp1β-mediated suppression of interferon (IFN) production, IFN signaling, and TNF-α production pathway. Using reverse genetics, a series of SAP mutant PRRS viruses, vK124A, vL126A, vG134A, and vL135A were generated. No mRNA nuclear retention was observed during vL126A and vL135A infections. Importantly, vL126A and vL135A did not suppress IFN production. For other arteriviruses, mRNA nuclear accumulation was also observed for LDV-nsp1β and SHFV-nsp1β. EAV-nsp1 was exceptional and did not block the host mRNA nuclear export. - Highlights: •PRRS virus blocks host mRNA nuclear export to the cytoplasm. •PRRSV nsp1β is the viral protein responsible for host mRNA nuclear retention. •SAP domain in nsp1β is essential for host mRNA nuclear retention and type I interferon suppression. •Mutation in the SAP domain of nsp1β causes the loss of function. •Host mRNA nuclear retention by nsp1β is common in the family Arteriviridae, except equine arteritis virus.

  1. Nuclear imprisonment of host cellular mRNA by nsp1β protein of porcine reproductive and respiratory syndrome virus

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mingyuan, E-mail: hanming@umich.edu; Ke, Hanzhong; Zhang, Qingzhan; Yoo, Dongwan, E-mail: dyoo@illinois.edu

    2017-05-15

    Positive-strand RNA genomes function as mRNA for viral protein synthesis which is fully reliant on host cell translation machinery. Competing with cellular protein translation apparatus needs to ensure the production of viral proteins, but this also stifles host innate defense. In the present study, we showed that porcine reproductive and respiratory syndrome virus (PRRSV), whose replication takes place in the cytoplasm, imprisoned host cell mRNA in the nucleus, which suggests a novel mechanism to enhance translation of PRRSV genome. PRRSV nonstructural protein (nsp) 1β was identified as the nuclear protein playing the role for host mRNA nuclear retention and subversion of host protein synthesis. A SAP (SAF-A/B, Acinus, and PIAS) motif was identified in nsp1β with the consensus sequence of {sub 126}-LQxxLxxxGL-{sub 135}. In situ hybridization unveiled that SAP mutants were unable to cause nuclear retention of host cell mRNAs and did not suppress host protein synthesis. In addition, these SAP mutants reverted PRRSV-nsp1β-mediated suppression of interferon (IFN) production, IFN signaling, and TNF-α production pathway. Using reverse genetics, a series of SAP mutant PRRS viruses, vK124A, vL126A, vG134A, and vL135A were generated. No mRNA nuclear retention was observed during vL126A and vL135A infections. Importantly, vL126A and vL135A did not suppress IFN production. For other arteriviruses, mRNA nuclear accumulation was also observed for LDV-nsp1β and SHFV-nsp1β. EAV-nsp1 was exceptional and did not block the host mRNA nuclear export. - Highlights: •PRRS virus blocks host mRNA nuclear export to the cytoplasm. •PRRSV nsp1β is the viral protein responsible for host mRNA nuclear retention. •SAP domain in nsp1β is essential for host mRNA nuclear retention and type I interferon suppression. •Mutation in the SAP domain of nsp1β causes the loss of function. •Host mRNA nuclear retention by nsp1β is common in the family Arteriviridae, except equine

  2. HpARI Protein Secreted by a Helminth Parasite Suppresses Interleukin-33.

    Science.gov (United States)

    Osbourn, Megan; Soares, Dinesh C; Vacca, Francesco; Cohen, E Suzanne; Scott, Ian C; Gregory, William F; Smyth, Danielle J; Toivakka, Matilda; Kemter, Andrea M; le Bihan, Thierry; Wear, Martin; Hoving, Dennis; Filbey, Kara J; Hewitson, James P; Henderson, Holly; Gonzàlez-Cìscar, Andrea; Errington, Claire; Vermeren, Sonja; Astier, Anne L; Wallace, William A; Schwarze, Jürgen; Ivens, Alasdair C; Maizels, Rick M; McSorley, Henry J

    2017-10-17

    Infection by helminth parasites is associated with amelioration of allergic reactivity, but mechanistic insights into this association are lacking. Products secreted by the mouse parasite Heligmosomoides polygyrus suppress type 2 (allergic) immune responses through interference in the interleukin-33 (IL-33) pathway. Here, we identified H. polygyrus Alarmin Release Inhibitor (HpARI), an IL-33-suppressive 26-kDa protein, containing three predicted complement control protein (CCP) modules. In vivo, recombinant HpARI abrogated IL-33, group 2 innate lymphoid cell (ILC2) and eosinophilic responses to Alternaria allergen administration, and diminished eosinophilic responses to Nippostrongylus brasiliensis, increasing parasite burden. HpARI bound directly to both mouse and human IL-33 (in the cytokine's activated state) and also to nuclear DNA via its N-terminal CCP module pair (CCP1/2), tethering active IL-33 within necrotic cells, preventing its release, and forestalling initiation of type 2 allergic responses. Thus, HpARI employs a novel molecular strategy to suppress type 2 immunity in both infection and allergy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Cell-Permeable Parkin Proteins Suppress Parkinson Disease-Associated Phenotypes in Cultured Cells and Animals

    Science.gov (United States)

    Duong, Tam; Kim, Jaetaek; Ruley, H. Earl; Jo, Daewoong

    2014-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder of complex etiology characterized by the selective loss of dopaminergic neurons, particularly in the substantia nigra. Parkin, a tightly regulated E3 ubiquitin ligase, promotes the survival of dopaminergic neurons in both PD and Parkinsonian syndromes induced by acute exposures to neurotoxic agents. The present study assessed the potential of cell-permeable parkin (CP-Parkin) as a neuroprotective agent. Cellular uptake and tissue penetration of recombinant, enzymatically active parkin was markedly enhanced by the addition of a hydrophobic macromolecule transduction domain (MTD). The resulting CP-Parkin proteins (HPM13 and PM10) suppressed dopaminergic neuronal toxicity in cells and mice exposed to 6-hydroxydopamine (6-OHDH) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). These included enhanced survival and dopamine expression in cultured CATH.a and SH-SY5Y neuronal cells; and protection against MPTP-induced damage in mice, notably preservation of tyrosine hydroxylase-positive cells with enhanced dopamine expression in the striatum and midbrain, and preservation of gross motor function. These results demonstrate that CP-Parkin proteins can compensate for intrinsic limitations in the parkin response and provide a therapeutic strategy to augment parkin activity in vivo. PMID:25019626

  4. Aspirin augments the expression of Adenomatous Polyposis Coli protein by suppression of IKKβ

    International Nuclear Information System (INIS)

    Ashida, Noboru; Kishihata, Masako; Tien, Dat Nguyen; Kamei, Kaeko; Kimura, Takeshi; Yokode, Masayuki

    2014-01-01

    Highlights: • Clinical studies revealed aspirin inhibits cancer, but the mechanism is not known. • Adenomatous Polyposis Coli (APC) is a well-known tumor-suppressing gene. • We found aspirin up-regulates the protein of APC. • Aspirin suppressed the expression of IKKβ, an essential kinase in NFκB activation. • The deletion of IKKβ significantly increases the expression of APC protein. - Abstract: Aspirin has been widely used as analgesic, antipyretic and anti-inflammatory medicine for long. In addition to these traditional effects, clinical studies suggest that aspirin can protect against cancer, but its mechanism has not been explored. To unveil it, we identified the proteins up- or down-regulated after incubation with aspirin by using proteomics analysis with Nano-flow LC/MALDI-TOF system. Interestingly, the analysis identified the protein of Adenomatous Polyposis Coli (APC) as one of the most up-regulated protein. APC regulates cell proliferation or angiogenesis, and is widely known as a tumor-suppressing gene which can cause colorectal cancer when it is mutated. Western blots confirmed this result, and real-time PCR indicated it is transcriptionally regulated. We further tried to elucidate the molecular mechanism with focusing on IKKβ. IKKβ is the essential kinase in activation of nuclear factor-kappa B (NF-κB), major transcriptional factors that regulate genes responsible for inflammation or immune response. Previous reports indicated that aspirin specifically inhibits IKKβ activity, and constitutively active form of IKKβ accelerates APC loss. We found that aspirin suppressed the expression of IKKβ, and the deletion of IKKβ by siRNA increases the expression of APC in HEK294 cells. Finally, we observed similar effects of aspirin in human umbilical vein endothelial cells. Taken together, these results reveal that aspirin up-regulates the expression of APC via the suppression of IKKβ. This can be a mechanism how aspirin prevents cancer at

  5. Aspirin augments the expression of Adenomatous Polyposis Coli protein by suppression of IKKβ

    Energy Technology Data Exchange (ETDEWEB)

    Ashida, Noboru, E-mail: nashida@kuhp.kyoto-u.ac.jp [Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Faculty of Medicine, Kyoto University, Kyoto (Japan); Kishihata, Masako [Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Faculty of Medicine, Kyoto University, Kyoto (Japan); Tien, Dat Nguyen [Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Faculty of Medicine, Kyoto University, Kyoto (Japan); Department of Biomolecular Engineering, Kyoto Institute of Technology, Kyoto (Japan); Kamei, Kaeko [Department of Biomolecular Engineering, Kyoto Institute of Technology, Kyoto (Japan); Kimura, Takeshi [Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Yokode, Masayuki [Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Faculty of Medicine, Kyoto University, Kyoto (Japan)

    2014-04-04

    Highlights: • Clinical studies revealed aspirin inhibits cancer, but the mechanism is not known. • Adenomatous Polyposis Coli (APC) is a well-known tumor-suppressing gene. • We found aspirin up-regulates the protein of APC. • Aspirin suppressed the expression of IKKβ, an essential kinase in NFκB activation. • The deletion of IKKβ significantly increases the expression of APC protein. - Abstract: Aspirin has been widely used as analgesic, antipyretic and anti-inflammatory medicine for long. In addition to these traditional effects, clinical studies suggest that aspirin can protect against cancer, but its mechanism has not been explored. To unveil it, we identified the proteins up- or down-regulated after incubation with aspirin by using proteomics analysis with Nano-flow LC/MALDI-TOF system. Interestingly, the analysis identified the protein of Adenomatous Polyposis Coli (APC) as one of the most up-regulated protein. APC regulates cell proliferation or angiogenesis, and is widely known as a tumor-suppressing gene which can cause colorectal cancer when it is mutated. Western blots confirmed this result, and real-time PCR indicated it is transcriptionally regulated. We further tried to elucidate the molecular mechanism with focusing on IKKβ. IKKβ is the essential kinase in activation of nuclear factor-kappa B (NF-κB), major transcriptional factors that regulate genes responsible for inflammation or immune response. Previous reports indicated that aspirin specifically inhibits IKKβ activity, and constitutively active form of IKKβ accelerates APC loss. We found that aspirin suppressed the expression of IKKβ, and the deletion of IKKβ by siRNA increases the expression of APC in HEK294 cells. Finally, we observed similar effects of aspirin in human umbilical vein endothelial cells. Taken together, these results reveal that aspirin up-regulates the expression of APC via the suppression of IKKβ. This can be a mechanism how aspirin prevents cancer at

  6. Angelman syndrome protein UBE3A interacts with primary microcephaly protein ASPM, localizes to centrosomes and regulates chromosome segregation.

    Directory of Open Access Journals (Sweden)

    Pooja Singhmar

    Full Text Available Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.

  7. Beliefs about emotions mediate the relationship between emotional suppression and quality of life in irritable bowel syndrome.

    Science.gov (United States)

    Bowers, Hannah; Wroe, Abigail

    2016-01-01

    Cross-sectional and experimental research has demonstrated an association between emotional suppression and IBS. However, the relationship is not well understood. To examine the relationships between emotional suppression, we compare the measures of beliefs about emotions and quality of life in irritable bowel syndrome (IBS) with healthy controls. Online questionnaires measured beliefs about emotions, emotional suppression and IBS-related quality of life in participants with (n = 87) and without (n = 37) IBS. Mediation analyses and group comparisons were used to explore the role of emotional suppression and beliefs about emotions in this sample. IBS participants held significantly more beliefs about the unacceptability of emotions compared to healthy controls despite no differences in emotional suppression. The relationship between beliefs about emotions and quality of life was not mediated by emotional suppression. However, the relationship between emotional suppression and quality of life was mediated by beliefs about emotions. The findings suggest a role of beliefs about emotions and emotional suppression in IBS, where emotional suppression may relate to changes in beliefs about emotions and consequently quality of life. This is discussed in relation to the cognitive-behavioural model of medically unexplained symptoms.

  8. BMP suppresses PTEN expression via RAS/ERK signaling.

    Science.gov (United States)

    Beck, Stayce E; Carethers, John M

    2007-08-01

    Bone morphogenetic protein (BMP), a member of the transforming growth factor beta family, classically utilizes the SMAD signaling pathway for its growth suppressive effects,and loss of this signaling cascade may accelerate cell growth. In the colon cancer predisposition syndrome Juvenile Polyposis, as well as in the late progression stages of nonsyndromic colorectal cancers, SMAD4 function is typically abrogated. Here, we utilized the SMAD4-null SW480 colon cancer cell line to examine BMPs effect on a potential target gene, PTEN, and how its expression might be regulated. Initial treatment of the SMAD4-null cells with BMP resulted in mild growth suppression, but with prolonged exposure to BMP, the cells become growth stimulatory, which coincided with observed decreases in transcription and translation of PTEN, and with corresponding increases in phospho-AKT protein levels. BMP-induced PTEN suppression was mediated via the RAS/ERK pathway, as pharmacologic inhibition of RAS/ERK, or interference with protein function in the cytosol by DN-RAS prevented BMP-induced growth promotion and changes in PTEN levels, as did treatment with noggin, a BMP ligand inhibitor. Thus, BMP downregulates PTEN via RAS/ERK in a SMAD4-null environment that contributes to cell growth, and constitutes a SMAD4-independent but BMP-responsive signaling pathway.

  9. Regorafenib suppresses sinusoidal obstruction syndrome in rats.

    Science.gov (United States)

    Okuno, Masayuki; Hatano, Etsuro; Nakamura, Kojiro; Miyagawa-Hayashino, Aya; Kasai, Yosuke; Nishio, Takahiro; Seo, Satoru; Taura, Kojiro; Uemoto, Shinji

    2015-02-01

    Sinusoidal obstruction syndrome (SOS), a form of drug-induced liver injury related to oxaliplatin treatment, is associated with postoperative morbidity after hepatectomy. This study aimed to examine the impact of regorafenib, the first small-molecule kinase inhibitor to show efficacy against metastatic colorectal cancer, on a rat model of SOS. Rats with monocrotaline (MCT)-induced SOS were divided into two groups according to treatment with either regorafenib (6 mg/kg) or vehicle alone, which were administered at 12 and 36 h, respectively, before MCT administration. Histopathologic examination and serum biochemistry tests were performed 48 h after MCT administration. Sinusoidal endothelial cells were evaluated by immunohistochemistry and electron microscopy. To examine whether regorafenib preserved remnant liver function, a 30% hepatectomy was performed in each group. The rats in the vehicle group displayed typical SOS features, whereas these features were suppressed in the regorafenib group. The total SOS scores were significantly lower in the regorafenib group than in the vehicle group. Immunohistochemistry and electron microscopy showed that regorafenib had a protective effect on sinusoidal endothelial cells. The postoperative survival rate after 7 d was significantly better in the regorafenib group than that in the vehicle group (26.7% versus 6.7%, P Regorafenib reduced the phosphorylation of extracellular signal-regulated kinase, which induced matrix metalloproteinase-9 (MMP-9) activation and decreased the activity of MMP-9, one of the crucial mediators of SOS development. Regorafenib suppressed MCT-induced SOS, concomitant with attenuating extracellular signal-regulated kinase phosphorylation, and MMP-9 activation, suggesting that regorafenib may be a favorable agent for use in combination with oxaliplatin-based chemotherapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Analysis of Tospovirus NSs Proteins in Suppression of Systemic Silencing

    OpenAIRE

    Hedil, Marcio; Sterken, Mark G.; de Ronde, Dryas; Lohuis, Dick; Kormelink, Richard

    2015-01-01

    RNA silencing is a sequence-specific gene regulation mechanism that in plants also acts antiviral. In order to counteract antiviral RNA silencing, viruses have evolved RNA silencing suppressors (RSS). In the case of tospoviruses, the non-structural NSs protein has been identified as the RSS. Although the tomato spotted wilt virus (TSWV) tospovirus NSs protein has been shown to exhibit affinity to long and small dsRNA molecules, its ability to suppress the non-cell autonomous part of RNA silen...

  11. Upper tract urothelial carcinomas: frequency of association with mismatch repair protein loss and lynch syndrome.

    Science.gov (United States)

    Harper, Holly L; McKenney, Jesse K; Heald, Brandie; Stephenson, Andrew; Campbell, Steven C; Plesec, Thomas; Magi-Galluzzi, Cristina

    2017-01-01

    Increased risk for upper tract urothelial carcinoma is described in patients with Lynch syndrome, caused by germline mutations in mismatch repair genes. We aimed to identify the frequency of mismatch repair protein loss in upper tract urothelial carcinoma and its potential for identifying an association with Lynch syndrome. We queried our database to identify upper tract urothelial carcinomas. Patients were cross-referenced for history of colorectal carcinoma or other common Lynch syndrome-associated neoplasms to enrich for potential Lynch syndrome cases. Tumor histopathologic characteristics were reviewed and each case was analyzed for loss of mismatch repair proteins, MLH1, MSH2, MSH6, and PMS2, by immunohistochemistry. Of 444 patients with upper tract urothelial carcinoma, a subset of 215 (encompassing 30 with upper tract urothelial carcinoma and another common Lynch syndrome-associated neoplasm) was analyzed for loss of mismatch repair protein expression. Of 30 patients with Lynch syndrome-associated neoplasms, six had documented Lynch syndrome, including two with Muir-Torre syndrome. Mismatch repair protein loss was identified in 7% of total upper tract urothelial carcinomas and 30% of patients with Lynch syndrome-associated neoplasms (including all patients with Lynch syndrome/Muir-Torre syndrome). Of patients without history of Lynch syndrome-associated neoplasms, 5 of 184 (2.7%) had loss of mismatch repair protein expression. Twelve cases with mismatch repair protein loss demonstrated loss of MSH2 and MSH6, and 2 had isolated loss of MSH6. MLH1 and PMS2 expression were consistently retained. Although increased intratumoral lymphocytes, inverted growth, pushing tumor-stromal interface, and lack of nuclear pleomorphism were more commonly seen in cases with mismatch repair protein loss, only intratumoral lymphocytes and presence of pushing borders were statistically significant. MLH1 and PMS2 testing appear to have little utility in upper tract urothelial

  12. BMP Suppresses PTEN Expression via RAS/ERK Signaling

    OpenAIRE

    Beck, Stayce E.; Carethers, John M.

    2007-01-01

    Bone morphogenetic protein (BMP), a member of the transforming growth factor β family, classically utilizes the SMAD signaling pathway for its growth suppressive effects, and loss of this signaling cascade may accelerate cell growth. In the colon cancer predisposition syndrome Juvenile Polyposis, as well as in the late progression stages of nonsyndromic colorectal cancers, SMAD4 function is typically abrogated. Here, we utilized the SMAD4-null SW480 colon cancer cell line to examine BMPs effe...

  13. Landiolol suppression of electrical storm of torsades de pointes in patients with congenital long-QT syndrome type 2 and myocardial ischemia

    Directory of Open Access Journals (Sweden)

    Ryota Kitajima, MD

    2017-10-01

    Full Text Available A 76-year-old man who had been diagnosed with long-QT syndrome type 2 had frequent syncopal attacks. The electrocardiogram was monitored, and frequent torsades de pointes (TdP was detected despite administration of conventional medications: oral propranolol, verapamil, intravenous magnesium sulfate, verapamil, and lidocaine. In contrast, 2 μg/kg/min landiolol could completely suppress TdP. Subsequently, an implantable cardioverter defibrillator was placed, and he was diagnosed with silent myocardial ischemia using myocardial perfusion scintigraphy and coronary angiography. This is the first case report wherein landiolol effectively suppressed TdP due to long-QT syndrome with silent myocardial ischemia.

  14. Two Novel Motifs of Watermelon Silver Mottle Virus NSs Protein Are Responsible for RNA Silencing Suppression and Pathogenicity.

    Science.gov (United States)

    Huang, Chung-Hao; Hsiao, Weng-Rong; Huang, Ching-Wen; Chen, Kuan-Chun; Lin, Shih-Shun; Chen, Tsung-Chi; Raja, Joseph A J; Wu, Hui-Wen; Yeh, Shyi-Dong

    2015-01-01

    The NSs protein of Watermelon silver mottle virus (WSMoV) is the RNA silencing suppressor and pathogenicity determinant. In this study, serial deletion and point-mutation mutagenesis of conserved regions (CR) of NSs protein were performed, and the silencing suppression function was analyzed through agroinfiltration in Nicotiana benthamiana plants. We found two amino acid (aa) residues, H113 and Y398, are novel functional residues for RNA silencing suppression. Our further analyses demonstrated that H113 at the common epitope (CE) ((109)KFTMHNQ(117)), which is highly conserved in Asia type tospoviruses, and the benzene ring of Y398 at the C-terminal β-sheet motif ((397)IYFL(400)) affect NSs mRNA stability and protein stability, respectively, and are thus critical for NSs RNA silencing suppression. Additionally, protein expression of other six deleted (ΔCR1-ΔCR6) and five point-mutated (Y15A, Y27A, G180A, R181A and R212A) mutants were hampered and their silencing suppression ability was abolished. The accumulation of the mutant mRNAs and proteins, except Y398A, could be rescued or enhanced by co-infiltration with potyviral suppressor HC-Pro. When assayed with the attenuated Zucchini yellow mosaic virus vector in squash plants, the recombinants carrying individual seven point-mutated NSs proteins displayed symptoms much milder than the recombinant carrying the wild type NSs protein, suggesting that these aa residues also affect viral pathogenicity by suppressing the host silencing mechanism.

  15. Nance-Horan syndrome protein, NHS, associates with epithelial cell junctions.

    Science.gov (United States)

    Sharma, Shiwani; Ang, Sharyn L; Shaw, Marie; Mackey, David A; Gécz, Jozef; McAvoy, John W; Craig, Jamie E

    2006-06-15

    Nance-Horan syndrome, characterized by congenital cataracts, craniofacial, dental abnormalities and mental disturbances, is an X-linked disorder with significant phenotypic heterogeneity. Affected individuals have mutations in the NHS (Nance-Horan syndrome) gene typically resulting in premature truncation of the protein. This report underlines the complexity of the regulation of the NHS gene that transcribes several isoforms. We demonstrate the differential expression of the two NHS isoforms, NHS-A and NHS-1A, and differences in the subcellular localization of the proteins encoded by these isoforms. This may in part explain the pleiotropic features of the syndrome. We show that the endogenous and exogenous NHS-A isoform localizes to the cell membrane of mammalian cells in a cell-type-dependent manner and that it co-localizes with the tight junction (TJ) protein ZO-1 in the apical aspect of cell membrane in epithelial cells. We also show that the NHS-1A isoform is a cytoplasmic protein. In the developing mammalian lens, we found continuous expression of NHS that became restricted to the lens epithelium in pre- and postnatal lens. Consistent with the in vitro findings, the NHS-A isoform associates with the apical cell membrane in the lens epithelium. This study suggests that disturbances in intercellular contacts underlie cataractogenesis in the Nance-Horan syndrome. NHS is the first gene localized at TJs that has been implicated in congenital cataracts.

  16. Measles virus C protein suppresses gamma-activated factor formation and virus-induced cell growth arrest

    International Nuclear Information System (INIS)

    Yokota, Shin-ichi; Okabayashi, Tamaki; Fujii, Nobuhiro

    2011-01-01

    Measles virus (MeV) produces two accessory proteins, V and C, from the P gene. These accessory proteins have been reported to contribute to efficient virus proliferation through the modulation of host cell events. Our previous paper described that Vero cell-adapted strains of MeV led host cells to growth arrest through the upregulation of interferon regulatory factor 1 (IRF-1), and wild strains did not. In the present study, we found that C protein expression levels varied among MeV strains in infected SiHa cells. C protein levels were inversely correlated with IRF-1 expression levels and with cell growth arrest. Forced expression of C protein released cells from growth arrest. C-deficient recombinant virus efficiently upregulated IRF-1 and caused growth arrest more efficiently than the wild-type virus. C protein preferentially bound to phosphorylated STAT1 and suppressed STAT1 dimer formation. We conclude that MeV C protein suppresses IFN-γ signaling pathway via inhibition of phosphorylated STAT1 dimerization.

  17. Disruption of a Ciliary B9 Protein Complex Causes Meckel Syndrome

    Science.gov (United States)

    Dowdle, William E.; Robinson, Jon F.; Kneist, Andreas; Sirerol-Piquer, M. Salomé; Frints, Suzanna G.M.; Corbit, Kevin C.; Zaghloul, Norran A.; van Lijnschoten, Gesina; Mulders, Leon; Verver, Dideke E.; Zerres, Klaus; Reed, Randall R.; Attié-Bitach, Tania; Johnson, Colin A.; García-Verdugo, José Manuel; Katsanis, Nicholas; Bergmann, Carsten; Reiter, Jeremy F.

    2011-01-01

    Nearly every ciliated organism possesses three B9 domain-containing proteins: MKS1, B9D1, and B9D2. Mutations in human MKS1 cause Meckel syndrome (MKS), a severe ciliopathy characterized by occipital encephalocele, liver ductal plate malformations, polydactyly, and kidney cysts. Mouse mutations in either Mks1 or B9d2 compromise ciliogenesis and result in phenotypes similar to those of MKS. Given the importance of these two B9 proteins to ciliogenesis, we examined the role of the third B9 protein, B9d1. Mice lacking B9d1 displayed polydactyly, kidney cysts, ductal plate malformations, and abnormal patterning of the neural tube, concomitant with compromised ciliogenesis, ciliary protein localization, and Hedgehog (Hh) signal transduction. These data prompted us to screen MKS patients for mutations in B9D1 and B9D2. We identified a homozygous c.301A>C (p.Ser101Arg) B9D2 mutation that segregates with MKS, affects an evolutionarily conserved residue, and is absent from controls. Unlike wild-type B9D2 mRNA, the p.Ser101Arg mutation failed to rescue zebrafish phenotypes induced by the suppression of b9d2. With coimmunoprecipitation and mass spectrometric analyses, we found that Mks1, B9d1, and B9d2 interact physically, but that the p.Ser101Arg mutation abrogates the ability of B9d2 to interact with Mks1, further suggesting that the mutation compromises B9d2 function. Our data indicate that B9d1 is required for normal Hh signaling, ciliogenesis, and ciliary protein localization and that B9d1 and B9d2 are essential components of a B9 protein complex, disruption of which causes MKS. PMID:21763481

  18. Cardiac imaging in RASopathies/mitogen activated protein kinase syndromes

    Directory of Open Access Journals (Sweden)

    Rita Gravino

    2014-07-01

    Full Text Available RASopathies include a spectrum of disorders due to dysregulation of RAS/mitogen activated protein kinase pathway that plays an essential role in the control of the cell cycle and differentiation. As a consequence, its dysregulation has profound developmental consequences, in particular cardiac malformations. RASopathies with cardiac features are: Noonan syndrome, multiple lentigines syndrome, cardio-faciocutaneous syndrome, Costello syndrome, neurofibromatosis- 1, Legius syndrome, neurofibromatosis- Noonan syndrome. The former syndromes are associated with a high rate of cardiac involvement (60-85% and 12 genes: PTPN11, SOS1, RAF1, KRAS, HRAS, BRAF, MEK1/MAP2K1, MEK2/MAP2K2, NRAS, SHOC2, CBL and SPRED1. Although the majority of these diseases are readily distinguishable in clinical terms, an integrated imaging study of the cardiac condition associated to RASopathies helps to better define risk assessment, surveillance, and management of these patients.

  19. Protein Carbonylation in Patients with Myelodysplastic Syndromes

    Czech Academy of Sciences Publication Activity Database

    Hlaváčková, A.; Štikarová, J.; Kotlín, R.; Chrastinová, L.; Šácha, Pavel; Májek, P.; Čermák, J.; Suttnar, J.; Dyr, J. E.

    2015-01-01

    Roč. 126, č. 23 (2015), s. 5232 ISSN 0006-4971. [Annual Meeting and Exposition of the American Society of Hematology /55./. 07.12.2013-10.12.2013, New Orleans] Institutional support: RVO:61388963 Keywords : protein carbonylation * myelodysplastic syndromes Subject RIV: CE - Biochemistry

  20. Cellular mechanisms underlying the effects of milrinone and cilostazol to suppress arrhythmogenesis associated with Brugada syndrome.

    Science.gov (United States)

    Szél, Tamás; Koncz, István; Antzelevitch, Charles

    2013-11-01

    Brugada syndrome is an inherited disease associated with vulnerability to ventricular tachycardia and sudden cardiac death in young adults. Milrinone and cilostazol, oral phosphodiesterase (PDE) type III inhibitors, have been shown to increase L-type calcium channel current (ICa) and modestly increase heart rate by elevating the level of intracellular cyclic adenosine monophosphate. To examine the effectiveness of these PDE inhibitors to suppress arrhythmogenesis in an experimental model of Brugada syndrome. Action potential (AP) and electrocardiographic recordings were obtained from epicardial and endocardial sites of coronary-perfused canine right ventricular wedge preparations. The Ito agonist NS5806 (5 μM) and Ca(2+) channel blocker verapamil (2 μM) were used to pharmacologically mimic Brugada phenotype. The combination induced all-or-none repolarization at some epicardial sites but not others, leading to ST-segment elevation as well as an increase in both epicardial and transmural dispersion of repolarization. Under these conditions, phase 2 reentry developed as the epicardial AP dome propagated from sites where it was maintained to sites at which it was lost, generating closely coupled extrasystoles and ventricular tachycardia. The addition of the PDE inhibitor milrinone (2.5 μM) or cilostazol (5-10 μM) to the coronary perfusate restored the epicardial AP dome, reduced dispersion, and abolished phase 2 reentry-induced extrasystoles and ventricular tachycardia. Our study identifies milrinone as a more potent alternative to cilostazol for reversing the repolarization defects responsible for the electrocardiographic and arrhythmic manifestations of Brugada syndrome. Both drugs normalize ST-segment elevation and suppress arrhythmogenesis in experimental models of Brugada syndrome. © 2013 Heart Rhythm Society. All rights reserved.

  1. Overproduction, purification, crystallization and preliminary X-ray diffraction analysis of Cockayne syndrome protein A in complex with DNA damage-binding protein 1

    International Nuclear Information System (INIS)

    Meulenbroek, Elisabeth M.; Pannu, Navraj S.

    2011-01-01

    Human Cockayne syndrome protein A has been cocrystallized with human DNA damage-binding protein 1 and data have been collected to 2.9 Å resolution. Cockayne syndrome protein A is one of the main components in mammalian transcription coupled repair. Here, the overproduction, purification and crystallization of human Cockayne syndrome protein A in complex with its interacting partner DNA damage binding protein 1 are reported. The complex was coproduced in insect cells, copurified and crystallized using sitting drops with PEG 3350 and sodium citrate as crystallizing agents. The crystals had unit-cell parameters a = b = 142.03, c = 250.19 Å and diffracted to 2.9 Å resolution on beamline ID14-1 at the European Synchrotron Radiation Facility

  2. Cell viability and protein turnover in nongrowing Bacillus megaterium at sporulation suppressing temperature.

    Science.gov (United States)

    Kucerová, H; Strnadová, M; Ludvík, J; Chaloupka, J

    1999-01-01

    In Bacillus megaterium, a temperature that suppresses sporulation (43 degrees C) only slightly exceeds both the optimum growth temperature and the temperature still permitting sporulation (40-41 degrees C). Here we show that, when cells grown at 35 degrees C and transferred to a sporulation medium, were subjected to shifts between 35 degrees C and the sporulation suppressing temperature (SST, 43 degrees C), their development and proteolytic activities were deeply affected. During the reversible sporulation phase that took place at 35 degrees C for 2-3 h (T2-T3), the cells developed forespores and their protein turnover was characterized by degradation of short-lived proteins and proteins made accessible to the proteolytic attack because of starvation. During the following irreversible sporulation phase refractile heat-resistant spores appeared at T4-T5. Protein turnover rate increased again after T2 and up to T8 60-70% prelabelled proteins were degraded. The SST suppressed sporulation at its beginning; at T3 no asymmetric septa were observed and the amount of heat-resistant spores at T8 was by 4-5 orders lower than at 35 degrees C. However, the cells remained viable and were able to sporulate when transferred to a lower temperature. Protein degradation was increased up to T3 but then its velocity sharply dropped and the amount of degraded protein at T8 corresponded to slightly more than one-half of that found at 35 degrees C. The cytoplasmic proteolytic activity was enhanced but the activity in the membrane fraction was decreased. When a temperature shift to SST was applied at the beginning of the irreversible sporulation phase (T2.5), the sporulation process was impaired. A portion of forespores lyzed, the others were able to complete their development but most spores were not heat-resistant and their coats showed defects. Protein degradation increased again because an effective proteolytic system was developed during the reversible sporulation phase but the

  3. Mutations in plasmalemma vesicle-associated protein cause severe syndromic protein-losing enteropathy.

    Science.gov (United States)

    Broekaert, Ilse Julia; Becker, Kerstin; Gottschalk, Ingo; Körber, Friederike; Dötsch, Jörg; Thiele, Holger; Altmüller, Janine; Nürnberg, Peter; Hünseler, Christoph; Cirak, Sebahattin

    2018-04-16

    Protein-losing enteropathy (PLE) is characterised by gastrointestinal protein leakage due to loss of mucosal integrity or lymphatic abnormalities. PLE can manifest as congenital diarrhoea and should be differentiated from other congenital diarrhoeal disorders. Primary PLEs are genetically heterogeneous and the underlying genetic defects are currently emerging. We report an infant with fatal PLE for whom we aimed to uncover the underlying pathogenic mutation. We performed whole exome sequencing (WES) for the index patient. Variants were classified based on the American College of Medical Genetics and Genomics guidelines. WES results and our detailed clinical description of the patient were compared with the literature. We discovered a novel homozygous stop mutation (c.988C>T, p.Q330*) in the Plasmalemma Vesicle-Associated Protein ( PLVAP ) gene in a newborn with fatal PLE, facial dysmorphism, and renal, ocular and cardiac anomalies. The Q330* mutation is predicted to result in complete loss of PLVAP protein expression leading to deletion of the diaphragms of endothelial fenestrae, resulting in plasma protein extravasation and PLE. Recently, another single homozygous stop mutation in PLVAP causing lethal PLE in an infant was reported. Our findings validate PLVAP mutations as a cause of syndromic PLE. Prenatal anomalies, severe PLE and syndromic features may guide the diagnosis of this rare disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Antiviral RNA silencing suppression activity of Tomato spotted wilt virus NSs protein.

    Science.gov (United States)

    Ocampo Ocampo, T; Gabriel Peralta, S M; Bacheller, N; Uiterwaal, S; Knapp, A; Hennen, A; Ochoa-Martinez, D L; Garcia-Ruiz, H

    2016-06-17

    In addition to regulating gene expression, RNA silencing is an essential antiviral defense system in plants. Triggered by double-stranded RNA, silencing results in degradation or translational repression of target transcripts. Viruses are inducers and targets of RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressors that interfere with this process, such as the Tomato spotted wilt virus (TSWV) NSs protein. The mechanism by which NSs suppresses RNA silencing and its role in viral infection and movement remain to be determined. We cloned NSs from the Hawaii isolate of TSWV and using two independent assays show for the first time that this protein restored pathogenicity and supported the formation of local infection foci by suppressor-deficient Turnip mosaic virus and Turnip crinkle virus. Demonstrating the suppression of RNA silencing directed against heterologous viruses establishes the foundation to determine the means used by NSs to block this antiviral process.

  5. Roles of Werner syndrome protein in protection of genome integrity

    DEFF Research Database (Denmark)

    Rossi, Marie L; Ghosh, Avik K; Bohr, Vilhelm A

    2010-01-01

    Werner syndrome protein (WRN) is one of a family of five human RecQ helicases implicated in the maintenance of genome stability. The conserved RecQ family also includes RecQ1, Bloom syndrome protein (BLM), RecQ4, and RecQ5 in humans, as well as Sgs1 in Saccharomyces cerevisiae, Rqh1...... in Schizosaccharomyces pombe, and homologs in Caenorhabditis elegans, Xenopus laevis, and Drosophila melanogaster. Defects in three of the RecQ helicases, RecQ4, BLM, and WRN, cause human pathologies linked with cancer predisposition and premature aging. Mutations in the WRN gene are the causative factor of Werner...

  6. Usher syndrome protein network functions in the retina and their relation to other retinal ciliopathies.

    Science.gov (United States)

    Sorusch, Nasrin; Wunderlich, Kirsten; Bauss, Katharina; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe

    2014-01-01

    The human Usher syndrome (USH) is the most frequent cause of combined hereditary deaf-blindness. USH is genetically and clinically heterogeneous: 15 chromosomal loci assigned to 3 clinical types, USH1-3. All USH1 and 2 proteins are organized into protein networks by the scaffold proteins harmonin (USH1C), whirlin (USH2D) and SANS (USH1G). This has contributed essentially to our current understanding of the USH protein function in the eye and the ear and explains why defects in proteins of different families cause very similar phenotypes. Ongoing in depth analyses of USH protein networks in the eye indicated cytoskeletal functions as well as roles in molecular transport processes and ciliary cargo delivery in photoreceptor cells. The analysis of USH protein networks revealed molecular links of USH to other ciliopathies, including non-syndromic inner ear defects and isolated retinal dystrophies but also to kidney diseases and syndromes like the Bardet-Biedl syndrome. These findings provide emerging evidence that USH is a ciliopathy molecularly related to other ciliopathies, which opens an avenue for common therapy strategies to treat these diseases.

  7. Questiomycin A stimulates sorafenib-induced cell death via suppression of glucose-regulated protein 78.

    Science.gov (United States)

    Machihara, Kayo; Tanaka, Hidenori; Hayashi, Yoshihiro; Murakami, Ichiro; Namba, Takushi

    2017-10-07

    Hepatocellular carcinoma (HCC) is one of the most difficult cancers to treat owing to the lack of effective chemotherapeutic methods. Sorafenib, the first-line and only available treatment for HCC, extends patient overall survival by several months, with a response rate below 10%. Thus, the identification of an agent that enhances the anticancer effect of sorafenib is critical for the development of therapeutic options for HCC. Endoplasmic reticulum (ER) stress response is one of the methods of sorafenib-induced cell death. Here we report that questiomycin A suppresses expression of GRP78, a cell-protective ER chaperone protein. Analysis of the molecular mechanisms of questiomycin A revealed that this compound stimulated GRP78 protein degradation in an ER stress response-independent manner. Cotreatment with sorafenib and questiomycin A suppressed GRP78 protein expression, which is essential for the stimulation of sorafenib-induced cell death. Moreover, our in vivo study demonstrated that the coadministration of sorafenib and questiomycin A suppressed tumor formation in HCC-induced xenograft models. These results suggest that cotreatment with sorafenib and questiomycin A is a novel therapeutic strategy for HCC by enhancing sorafenib-dependent ER stress-induced cell death, and downregulation of GRP78 is a new target for the stimulation of the therapeutic effects of sorafenib in HCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The Role of Maternal Dietary Proteins in Development of Metabolic Syndrome in Offspring

    Directory of Open Access Journals (Sweden)

    Alireza Jahan-Mihan

    2015-11-01

    Full Text Available The prevalence of metabolic syndrome and obesity has been increasing. Pre-natal environment has been suggested as a factor influencing the risk of metabolic syndrome in adulthood. Both observational and experimental studies showed that maternal diet is a major modifier of the development of regulatory systems in the offspring in utero and post-natally. Both protein content and source in maternal diet influence pre- and early post-natal development. High and low protein dams’ diets have detrimental effect on body weight, blood pressure191 and metabolic and intake regulatory systems in the offspring. Moreover, the role of the source of protein in a nutritionally adequate maternal diet in programming of food intake regulatory system, body weight, glucose metabolism and blood pressure in offspring is studied. However, underlying mechanisms are still elusive. The purpose of this review is to examine the current literature related to the role of proteins in maternal diets in development of characteristics of the metabolic syndrome in offspring.

  9. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation

    KAUST Repository

    Shah, Dhawal

    2011-09-21

    We examine the interaction of aromatic residues of proteins with arginine, an additive commonly used to suppress protein aggregation, using experiments and molecular dynamics simulations. An aromatic-rich peptide, FFYTP (a segment of insulin), and lysozyme and insulin are used as model systems. Mass spectrometry shows that arginine increases the solubility of FFYTP by binding to the peptide, with the simulations revealing the predominant association of arginine to be with the aromatic residues. The calculations further show a positive preferential interaction coefficient, Γ XP, contrary to conventional thinking that positive Γ XP\\'s indicate aggregation rather than suppression of aggregation. Simulations with lysozyme and insulin also show arginine\\'s preference for aromatic residues, in addition to acidic residues. We use these observations and earlier results reported by us and others to discuss the possible implications of arginine\\'s interactions with aromatic residues on the solubilization of aromatic moieties and proteins. Our results also highlight the fact that explanations based purely on Γ XP, which measures average affinity of an additive to a protein, could obscure or misinterpret the underlying molecular mechanisms behind additive-induced suppression of protein aggregation. © 2011 American Institute of Chemical Engineers (AIChE).

  10. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation

    KAUST Repository

    Shah, Dhawal; Li, Jianguo; Shaikh, Abdul Rajjak; Rajagopalan, Raj

    2011-01-01

    We examine the interaction of aromatic residues of proteins with arginine, an additive commonly used to suppress protein aggregation, using experiments and molecular dynamics simulations. An aromatic-rich peptide, FFYTP (a segment of insulin), and lysozyme and insulin are used as model systems. Mass spectrometry shows that arginine increases the solubility of FFYTP by binding to the peptide, with the simulations revealing the predominant association of arginine to be with the aromatic residues. The calculations further show a positive preferential interaction coefficient, Γ XP, contrary to conventional thinking that positive Γ XP's indicate aggregation rather than suppression of aggregation. Simulations with lysozyme and insulin also show arginine's preference for aromatic residues, in addition to acidic residues. We use these observations and earlier results reported by us and others to discuss the possible implications of arginine's interactions with aromatic residues on the solubilization of aromatic moieties and proteins. Our results also highlight the fact that explanations based purely on Γ XP, which measures average affinity of an additive to a protein, could obscure or misinterpret the underlying molecular mechanisms behind additive-induced suppression of protein aggregation. © 2011 American Institute of Chemical Engineers (AIChE).

  11. Association between C-reactive protein and features of the metabolic syndrome

    DEFF Research Database (Denmark)

    Fröhlich, M; Imhof, A; Berg, Gabriele

    2000-01-01

    OBJECTIVE: To assess the association of circulating levels of C-reactive protein, a sensitive systemic marker of inflammation, with different components of the metabolic syndrome. RESEARCH DESIGN AND METHODS: Total cholesterol (TC), HDL cholesterol, triglycerides, uric acid, BMI , and prevalence...... concentrations in subjects grouped according to the presence of 0-1, 2-3, and > or =4 features of the metabolic syndrome were 1.11, 1.27, and 2.16 mg/l, respectively, with a statistically highly significant trend (P metabolic syndrome...

  12. Cocoa Procyanidins Suppress Transformation by Inhibiting Mitogen-activated Protein Kinase Kinase*S⃞

    Science.gov (United States)

    Kang, Nam Joo; Lee, Ki Won; Lee, Dong Eun; Rogozin, Evgeny A.; Bode, Ann M.; Lee, Hyong Joo; Dong, Zigang

    2008-01-01

    Cocoa was shown to inhibit chemically induced carcinogenesis in animals and exert antioxidant activity in humans. However, the molecular mechanisms of the chemopreventive potential of cocoa and its active ingredient(s) remain unknown. Here we report that cocoa procyanidins inhibit neoplastic cell transformation by suppressing the kinase activity of mitogen-activated protein kinase kinase (MEK). A cocoa procyanidin fraction (CPF) and procyanidin B2 at 5 μg/ml and 40 μm, respectively, inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ mouse epidermal (JB6 P+) cells by 47 and 93%, respectively. The TPA-induced promoter activity and expression of cyclooxygenase-2, which is involved in tumor promotion and inflammation, were dose-dependently inhibited by CPF or procyanidin B2. The activation of activator protein-1 and nuclear factor-κB induced by TPA was also attenuated by CPF or procyanidin B2. The TPA-induced phosphorylation of MEK, extracellular signal-regulated kinase, and p90 ribosomal s6 kinase was suppressed by CPF or procyanidin B2. In vitro and ex vivo kinase assay data demonstrated that CPF or procyanidin B2 inhibited the kinase activity of MEK1 and directly bound with MEK1. CPF or procyanidin B2 suppressed JB6 P+ cell transformation induced by epidermal growth factor or H-Ras, both of which are known to be involved in MEK/ERK signal activation. In contrast, theobromine (up to 80 μm) had no effect on TPA-induced transformation, cyclooxygenase-2 expression, the transactivation of activator protein-1 or nuclear factor-κB, or MEK. Notably, procyanidin B2 exerted stronger inhibitory effects compared with PD098059 (a well known pharmacological inhibitor of MEK) on MEK1 activity and neoplastic cell transformation. PMID:18519570

  13. Protein A Suppresses Immune Responses during Staphylococcus aureus Bloodstream Infection in Guinea Pigs

    Science.gov (United States)

    Kim, Hwan Keun; Falugi, Fabiana; Thomer, Lena; Missiakas, Dominique M.

    2015-01-01

    ABSTRACT   Staphylococcus aureus infection is not associated with the development of protective immunity, and disease relapses occur frequently. We hypothesize that protein A, a factor that binds immunoglobulin Fcγ and cross-links VH3 clan B cell receptors (IgM), is the staphylococcal determinant for host immune suppression. To test this, vertebrate IgM was examined for protein A cross-linking. High VH3 binding activity occurred with human and guinea immunoglobulin, whereas mouse and rabbit immunoglobulins displayed little and no binding, respectively. Establishing a guinea pig model of S. aureus bloodstream infection, we show that protein A functions as a virulence determinant and suppresses host B cell responses. Immunization with SpAKKAA, which cannot bind immunoglobulin, elicits neutralizing antibodies that enable guinea pigs to develop protective immunity. Importance  Staphylococcus aureus is the leading cause of soft tissue and bloodstream infections; however, a vaccine with clinical efficacy is not available. Using mice to model staphylococcal infection, earlier work identified protective antigens; however, corresponding human clinical trials did not reach their endpoints. We show that B cell receptor (IgM) cross-linking by protein A is an important immune evasion strategy of S. aureus that can be monitored in a guinea pig model of bloodstream infection. Further, immunization with nontoxigenic protein A enables infected guinea pigs to elicit antibody responses that are protective against S. aureus. Thus, the guinea pig model may support preclinical development of staphylococcal vaccines. PMID:25564466

  14. Transnodal lymphangiography and post-CT for protein-losing enteropathy in Noonan syndrome.

    Science.gov (United States)

    Matsumoto, Tomohiro; Kudo, Takahiro; Endo, Jun; Hashida, Kazunobu; Tachibana, Nao; Murakoshi, Takatsugu; Hasebe, Terumitsu

    2015-01-01

    Noonan syndrome, which is a multiple congenital disorder, may be associated with lymphatic abnormalities. Protein-losing enteropathy (PLE) developing in Noonan syndrome is rare. We performed transnodal lymphangiography by directly accessing bilateral inguinal nodes under ultrasound guidance in a 17-year-old female with PLE developing in Noonan syndrome to assess detailed anatomical findings regarding lymphatic vessels. There have been no reports on transnodal lymphangiography for Noonan syndrome. Post-lymphangiographic CT images revealed multiple lymphatic abnormalities and lipiodol extravasation into the duodenum and the proximal jejunum. Transnodal lymphangiography was easy and safe for PLE developing in Noonan syndrome, and post-lymphangiographic CT provided invaluable information.

  15. Domain analyses of Usher syndrome causing Clarin-1 and GPR98 protein models.

    Science.gov (United States)

    Khan, Sehrish Haider; Javed, Muhammad Rizwan; Qasim, Muhammad; Shahzadi, Samar; Jalil, Asma; Rehman, Shahid Ur

    2014-01-01

    Usher syndrome is an autosomal recessive disorder that causes hearing loss, Retinitis Pigmentosa (RP) and vestibular dysfunction. It is clinically and genetically heterogeneous disorder which is clinically divided into three types i.e. type I, type II and type III. To date, there are about twelve loci and ten identified genes which are associated with Usher syndrome. A mutation in any of these genes e.g. CDH23, CLRN1, GPR98, MYO7A, PCDH15, USH1C, USH1G, USH2A and DFNB31 can result in Usher syndrome or non-syndromic deafness. These genes provide instructions for making proteins that play important roles in normal hearing, balance and vision. Studies have shown that protein structures of only seven genes have been determined experimentally and there are still three genes whose structures are unavailable. These genes are Clarin-1, GPR98 and Usherin. In the absence of an experimentally determined structure, homology modeling and threading often provide a useful 3D model of a protein. Therefore in the current study Clarin-1 and GPR98 proteins have been analyzed for signal peptide, domains and motifs. Clarin-1 protein was found to be without any signal peptide and consists of prokar lipoprotein domain. Clarin-1 is classified within claudin 2 super family and consists of twelve motifs. Whereas, GPR98 has a 29 amino acids long signal peptide and classified within GPCR family 2 having Concanavalin A-like lectin/glucanase superfamily. It was found to be consists of GPS and G protein receptor F2 domains and twenty nine motifs. Their 3D structures have been predicted using I-TASSER server. The model of Clarin-1 showed only α-helix but no beta sheets while model of GPR98 showed both α-helix and β sheets. The predicted structures were then evaluated and validated by MolProbity and Ramachandran plot. The evaluation of the predicted structures showed 78.9% residues of Clarin-1 and 78.9% residues of GPR98 within favored regions. The findings of present study has resulted in the

  16. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses.

    Science.gov (United States)

    Rodríguez-Herva, José J; González-Melendi, Pablo; Cuartas-Lanza, Raquel; Antúnez-Lamas, María; Río-Alvarez, Isabel; Li, Ziduo; López-Torrejón, Gema; Díaz, Isabel; Del Pozo, Juan C; Chakravarthy, Suma; Collmer, Alan; Rodríguez-Palenzuela, Pablo; López-Solanilla, Emilia

    2012-05-01

    The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression. © 2012 Blackwell Publishing Ltd.

  17. Aberrant Methylation-Mediated Suppression of APAF1 in Myelodysplastic Syndrome.

    Science.gov (United States)

    Zaker, Farhad; Nasiri, Nahid; Amirizadeh, Naser; Razavi, Seyed Mohsen; Yaghmaie, Marjan; Teimoori-Toolabi, Ladan; Maleki, Ali; Bakhshayesh, Masoumeh

    2017-04-01

    Background: Myelodysplastic syndromes (MDSs) include a diverse group of clonal bone marrow disorders characterized by ineffective hematopoiesis and pancytopenia. It was found that down regulation of APAF1, a putative tumor suppressor gene (TSG), leads to resistance to chemotherapy and disease development in some cancers. In this study, we investigated the relation of APAF1 methylation status with its expression and clinicopathological factors in myelodysplastic syndrome (MDS) patients. Materials and Methods: Methylation Sensitive-High Resolution Melting Curve Analysis (MS-HRM) was employed in studying the methylation of CpG islands in the APAF1promoter region in MDS. Gene expression was analyzed by using real time RT-PCR. Results: 42.6% of patient samples were methylated in promoter region of APAF1analyzed, while methylation of the gene was not seen in controls (P<0.05). Methylation of APAF1was significantly associated with the suppression of its mRNA expression (P=0.00). The methylation status of APAF1in advanced-stage MDS patients (80%) was significantly higher than that of the early-stage MDS patients (28.2%) (P=0.001). The difference in frequency of hypermethylatedAPAF1 gene was significant between good (37.5%) and poor (85.71%) cytogenetic risk groups (P=0.043). In addition, a higher frequency of APAF1hypermethylation was observed in higher-risk MDS group (69.2%) compared to lower-risk MDS group (34.14%) (P=0.026). Conclusion: Our study indicated that APAF1hypermethylation in MDS was associated to high-risk disease classified according to the IPSS, WHO and cytogenetic risk.

  18. Anti-thrombin III, Protein C, and Protein S deficiency in acute coronary syndrome

    Directory of Open Access Journals (Sweden)

    Dasnan Ismail

    2002-06-01

    Full Text Available The final most common pathway for the majority of coronary artery disease is occlusion of a coronary vessel. Under normal conditions, antithrombin III (AT III, protein C, and protein S as an active protein C cofactor, are natural anticoagulants (hemostatic control that balances procoagulant activity (thrombin antithrombin complex balance to prevent thrombosis. If the condition becomes unbalanced, natural anticoagulants and the procoagulants can lead to thrombosis. Thirty subjects with acute coronary syndrome (ACS were studied for the incidence of antithrombin III (AT III, protein C, and protein S deficiencies, and the result were compare to the control group. Among patients with ACS, the frequency of distribution of AT-III with activity < 75% were 23,3% (7 of 30, and only 6,7% ( 2 of 30 in control subject. No one of the 30 control subject have protein C activity deficient, in ACS with activity < 70% were 13,3% (4 of 30. Fifteen out of the 30 (50% control subjects had protein S activity deficiency, while protein S deficiency activity < 70% was found 73.3.% (22 out of 30. On linear regression, the deterministic coefficient of AT-III activity deficiency to the development ACS was 13,25 %, and the deterministic coefficient of protein C activity deficient to the development of ACS was 9,06 %. The cut-off point for AT-III without protein S deficiency expected to contribute to the development of vessel disease was 45%. On discriminant analysis, protein C activity deficiency posed a risk for ACS of 4,5 greater than non deficient subjects, and AT-III activity deficiency posed a risk for ACS of 3,5 times greater than non deficient subjects. On binary logistic regression, protein S activity acted only as a reinforcing factor of AT-III activity deficiency in the development of ACS. Protein C and AT III deficiency can trigger ACS, with determinant coefficients of 9,06% and 13,25% respectively. Low levels of protein C posed a greater risk of

  19. Quercetin suppresses hypoxia-induced accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) through inhibiting protein synthesis.

    Science.gov (United States)

    Lee, Dae-Hee; Lee, Yong J

    2008-10-01

    Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells and induce the accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) in normoxia. In this study, under hypoxic conditions (1% O(2)), we examined the effect of quercetin on the intracellular level of HIF-1alpha and extracellular level of vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Surprisingly, we observed that quercetin suppressed the HIF-1alpha accumulation during hypoxia in human prostate cancer LNCaP, colon cancer CX-1, and breast cancer SkBr3 cells. Quercetin treatment also significantly reduced hypoxia-induced secretion of VEGF. Suppression of HIF-1alpha accumulation during treatment with quercetin in hypoxia was not prevented by treatment with 26S proteasome inhibitor MG132 or PI3K inhibitor LY294002. Interestingly, hypoxia (1% O(2)) in the presence of 100 microM quercetin inhibited protein synthesis by 94% during incubation for 8 h. Significant quercetin concentration-dependent inhibition of protein synthesis and suppression of HIF-1alpha accumulation were observed under hypoxic conditions. Treatment with 100 microM cycloheximide, a protein synthesis inhibitor, replicated the effect of quercetin by inhibiting HIF-1alpha accumulation during hypoxia. These results suggest that suppression of HIF-1alpha accumulation during treatment with quercetin under hypoxic conditions is due to inhibition of protein synthesis. (c) 2008 Wiley-Liss, Inc.

  20. Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingzhan; Shi, Kaichuang; Yoo, Dongwan, E-mail: dyoo@illinois.edu

    2016-02-15

    Type I interferons (IFN-α/β) are the major components of the innate immune response of hosts, and in turn many viruses have evolved to modulate the host response during infection. We found that the IFN-β production was significantly suppressed during PEDV infection in cells. To identify viral IFN antagonists and to study their suppressive function, viral coding sequences for the entire structural and nonstructural proteins were cloned and expressed. Of 16 PEDV nonstructural proteins (nsps), nsp1, nsp3, nsp7, nsp14, nsp15 and nsp16 were found to inhibit the IFN-β and IRF3 promoter activities. The sole accessory protein ORF3, structure protein envelope (E), membrane (M), and nucleocapsid (N) protein were also shown to inhibit such activities. PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP) by degrading CBP. A further study showed that the CBP degradation by nsp1 was proteasome-dependent. Our data demonstrate that PEDV modulates the host innate immune responses by degrading CBP and suppressing ISGs expression. - Highlights: • PEDV modulates the host innate immune system by suppressing the type I interferon production and ISGs expression. • Ten viral proteins were identified as IFN antagonists, and nsp1 was the most potent viral IFN antagonist. • PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP). • PEDV nsp1 caused the CBP degradation in the nucleus, which may be the key mechanism for PEDV-mediated IFN downregulation.

  1. High-sensitivity C-reactive protein predicts target organ damage in Chinese patients with metabolic syndrome

    DEFF Research Database (Denmark)

    Zhao, Zhigang; Nie, Hai; He, Hongbo

    2007-01-01

    with metabolic syndrome. A total of 1082 consecutive patients of Chinese origin were screened for the presence of metabolic syndrome according to the National Cholesterol Education Program's Adult Treatment Panel III. High-sensitivity C-reactive protein and target organ damage, including cardiac hypertrophy......Observational studies established high-sensitivity C-reactive protein as a risk factor for cardiovascular events in the general population. The goal of this study was to determine the relationship between target organ damage and high-sensitivity C-reactive protein in a cohort of Chinese patients......, carotid intima-media thickness, and renal impairment, were investigated. The median (25th and 75th percentiles) of high-sensitivity C-reactive protein in 619 patients with metabolic syndrome was 2.42 mg/L (0.75 and 3.66 mg/L) compared with 1.13 mg/L (0.51 and 2.46 mg/L) among 463 control subjects (P

  2. Metabolic syndrome, C-reactive protein and cardiovascular risk in psoriasis patients: a cross-sectional study*

    Science.gov (United States)

    Paschoal, Renato Soriani; Silva, Daniela Antoniali; Cardili, Renata Nahas; Souza, Cacilda da Silva

    2018-01-01

    Background Psoriasis has been associated with co-morbidities and elevated cardiovascular risk. Objectives To analyze the relationships among metabolic syndrome, cardiovascular risk, C-reactive protein, gender, and Psoriasis severity. Methods In this cross-sectional study, plaque Psoriasis patients (n=90), distributed equally in gender, were analyzed according to: Psoriasis Area and Severity Index, cardiovascular risk determined by the Framingham risk score and global risk assessment, C-reactive protein and metabolic syndrome criteria (NCEPT-ATP III). Results Metabolic syndrome frequency was 43.3% overall, without significance between genders (P=0.14); but women had higher risk for obesity (OR 2.56, 95%CI 1.02-6.41; P=0.04) and systemic arterial hypertension (OR 3.29, 95%CI 1.39-7.81; P=0.006). The increase in the Psoriasis Area and Severity Index also increased the risk for metabolic syndrome (OR 1.060, 95%CI 1.006-1.117; P=0.03). Absolute 10-year cardiovascular risk was higher in males (P=0.002), but after global risk assessment, 51.1% patients, 52.2% women, were re-classified as high-intermediate cardiovascular risk; without significance between genders (P=0.83). C-reactive protein level was elevated nearly six-fold overall, higher in metabolic syndrome (P=0.05), systemic arterial hypertension (P=0.004), and high-intermediate 10-year cardiovascular risk patients (Preactive protein patients (t=1.98; P=0.05). Study limitations Restricted sample, hospital-based and representative of a single center and no specification of psoriatic arthritis. Conclusions Psoriasis, metabolic syndrome, systemic arterial hypertension and age share the increase in C-reactive protein, which could implicate in additional burden for increasing the cardiovascular risk and be an alert for effective interventions. PMID:29723366

  3. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bé lair, Guy; Moffett, Peter

    2015-01-01

    in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic

  4. The Troyer syndrome (SPG20) protein spartin interacts with Eps15

    International Nuclear Information System (INIS)

    Bakowska, Joanna C.; Jenkins, Russell; Pendleton, James; Blackstone, Craig

    2005-01-01

    The hereditary spastic paraplegias comprise a group of inherited neurological disorders in which the primary manifestation is spastic weakness of the lower extremities. Troyer syndrome is an autosomal recessive form of spastic paraplegia caused by a frameshift mutation in the spartin (SPG20) gene. Currently, neither the localization nor the functions of the spartin protein are known. In this study, we generated anti-spartin antibodies and found that spartin is both cytosolic and membrane-associated. Using a yeast two-hybrid approach, we screened an adult human brain library for binding partners of spartin. We identified Eps15, a protein known to be involved in endocytosis and the control of cell proliferation. This interaction was confirmed by fusion protein 'pull-down' experiments as well as a cellular redistribution assay. Our results suggest that spartin might be involved in endocytosis, vesicle trafficking, or mitogenic activity, and that impairment in one of these processes may underlie the long axonopathy in patients with Troyer syndrome

  5. Amyloid-related biomarkers and axonal damage proteins in parkinsonian syndromes

    DEFF Research Database (Denmark)

    Bech, Sara; Hjermind, Lena E; Salvesen, Lisette

    2012-01-01

    Clinical differentiation between parkinsonian syndromes (PS) remains a challenge despite well-established clinical diagnostic criteria. Specific diagnostic biomarkers have yet to be identified, though in recent years, studies have been published on the aid of certain brain related proteins (BRP) ...

  6. BTB-BACK Domain Protein POB1 Suppresses Immune Cell Death by Targeting Ubiquitin E3 ligase PUB17 for Degradation.

    Directory of Open Access Journals (Sweden)

    Beatriz Orosa

    2017-01-01

    Full Text Available Hypersensitive response programmed cell death (HR-PCD is a critical feature in plant immunity required for pathogen restriction and prevention of disease development. The precise control of this process is paramount to cell survival and an effective immune response. The discovery of new components that function to suppress HR-PCD will be instrumental in understanding the regulation of this fundamental mechanism. Here we report the identification and characterisation of a BTB domain E3 ligase protein, POB1, that functions to suppress HR-PCD triggered by evolutionarily diverse pathogens. Nicotiana benthamiana and tobacco plants with reduced POB1 activity show accelerated HR-PCD whilst those with increased POB1 levels show attenuated HR-PCD. We demonstrate that POB1 dimerization and nuclear localization are vital for its function in HR-PCD suppression. Using protein-protein interaction assays, we identify the Plant U-Box E3 ligase PUB17, a well established positive regulator of plant innate immunity, as a target for POB1-mediated proteasomal degradation. Using confocal imaging and in planta immunoprecipitation assays we show that POB1 interacts with PUB17 in the nucleus and stimulates its degradation. Mutated versions of POB1 that show reduced interaction with PUB17 fail to suppress HR-PCD, indicating that POB1-mediated degradation of PUB17 U-box E3 ligase is an important step for negative regulation of specific immune pathways in plants. Our data reveals a new mechanism for BTB domain proteins in suppressing HR-PCD in plant innate immune responses.

  7. Multiple proteins of White spot syndrome virus involved in ...

    Indian Academy of Sciences (India)

    The recognition and attachment of virus to its host cell surface is a critical step for viral infection. Recent research revealed that -integrin was involved in White spot syndrome virus (WSSV) infection. In this study, the interaction of -integrin with structure proteins of WSSV and motifs involved in WSSV infection was ...

  8. The Severe Acute Respiratory Syndrome (SARS-coronavirus 3a protein may function as a modulator of the trafficking properties of the spike protein

    Directory of Open Access Journals (Sweden)

    Tan Yee-Joo

    2005-02-01

    Full Text Available Abstract Background A recent publication reported that a tyrosine-dependent sorting signal, present in cytoplasmic tail of the spike protein of most coronaviruses, mediates the intracellular retention of the spike protein. This motif is missing from the spike protein of the severe acute respiratory syndrome-coronavirus (SARS-CoV, resulting in high level of surface expression of the spike protein when it is expressed on its own in vitro. Presentation of the hypothesis It has been shown that the severe acute respiratory syndrome-coronavirus genome contains open reading frames that encode for proteins with no homologue in other coronaviruses. One of them is the 3a protein, which is expressed during infection in vitro and in vivo. The 3a protein, which contains a tyrosine-dependent sorting signal in its cytoplasmic domain, is expressed on the cell surface and can undergo internalization. In addition, 3a can bind to the spike protein and through this interaction, it may be able to cause the spike protein to become internalized, resulting in a decrease in its surface expression. Testing the hypothesis The effects of 3a on the internalization of cell surface spike protein can be examined biochemically and the significance of the interplay between these two viral proteins during viral infection can be studied using reverse genetics methodology. Implication of the hypothesis If this hypothesis is proven, it will indicate that the severe acute respiratory syndrome-coronavirus modulates the surface expression of the spike protein via a different mechanism from other coronaviruses. The interaction between 3a and S, which are expressed from separate subgenomic RNA, would be important for controlling the trafficking properties of S. The cell surface expression of S in infected cells significantly impacts viral assembly, viral spread and viral pathogenesis. Modulation by this unique pathway could confer certain advantages during the replication of the severe

  9. The E-Id Protein Axis Specifies Adaptive Lymphoid Cell Identity and Suppresses Thymic Innate Lymphoid Cell Development.

    Science.gov (United States)

    Miyazaki, Masaki; Miyazaki, Kazuko; Chen, Kenian; Jin, Yi; Turner, Jacob; Moore, Amanda J; Saito, Rintaro; Yoshida, Kenichi; Ogawa, Seishi; Rodewald, Hans-Reimer; Lin, Yin C; Kawamoto, Hiroshi; Murre, Cornelis

    2017-05-16

    Innate and adaptive lymphoid development is orchestrated by the activities of E proteins and their antagonist Id proteins, but how these factors regulate early T cell progenitor (ETP) and innate lymphoid cell (ILC) development remains unclear. Using multiple genetic strategies, we demonstrated that E proteins E2A and HEB acted in synergy in the thymus to establish T cell identity and to suppress the aberrant development of ILCs, including ILC2s and lymphoid-tissue-inducer-like cells. E2A and HEB orchestrated T cell fate and suppressed the ILC transcription signature by activating the expression of genes associated with Notch receptors, T cell receptor (TCR) assembly, and TCR-mediated signaling. E2A and HEB acted in ETPs to establish and maintain a T-cell-lineage-specific enhancer repertoire, including regulatory elements associated with the Notch1, Rag1, and Rag2 loci. On the basis of these and previous observations, we propose that the E-Id protein axis specifies innate and adaptive lymphoid cell fate. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effect of vitamin D status on chick kidney proteins: detection of a 45-kilodalton mitochondrial protein suppressed by vitamin D

    International Nuclear Information System (INIS)

    Kain, S.R.; Kamrath, K.S.; Henry, H.L.

    1988-01-01

    Two-dimensional polyacrylamide gel electrophoresis along with L-[ 35 S]methionine radiolabeling studies were used to examine the effect of chronic vitamin D status on the composition and relative abundance of chick kidney proteins. Comparison of silver-stained gels revealed no extensive differences in either the electrophoretic mobility or the amounts of kidney proteins present in the mitochondrial fraction from vitamin D-replete and vitamin D-deficient chicks. A similar result was obtained in studies with L-[ 35 S]methionine-labeled proteins. Vitamin D deficiency specifically elevated levels of a 45-kilodalton mitochondrial protein (pI 5.0 to 5.5) by approximately 5- to 12-fold relative to amounts present in vitamin D-replete tissue. This protein could not be detected in postmitochondrial supernatant fractions and was only faintly visible in crude kidney homogenates. The specificity of the observed suppression of this 45-kilodalton protein by vitamin D suggests that it may play an important role in renal functions influenced by the vitamin D endocrine system

  11. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.

    Science.gov (United States)

    Zeyer, Karina A; Reinhardt, Dieter P

    2015-01-01

    Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB) domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular and organismal levels. Representative point mutations associated with Marfan syndrome in affected individuals have been introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a structural and functional level. Mutations which impair folding of cbEGF domains can affect protein trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome. Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights into the pathogenic molecular mechanisms exerted by mutated fibrillin-1. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Comparison of 1 mg and 2 mg overnight dexamethasone suppression tests for the screening of Cushing's syndrome in obese patients.

    Science.gov (United States)

    Sahin, Mustafa; Kebapcilar, Levent; Taslipinar, Abdullah; Azal, Omer; Ozgurtas, Taner; Corakci, Ahmet; Akgul, Emin Ozgur; Taslipinar, Mine Yavuz; Yazici, Mahmut; Kutlu, Mustafa

    2009-01-01

    Obesity is currently a major public health problem and one of the potential underlying causes of obesity in a minority of patients is Cushing's syndrome (CS). Traditionally, the gold standard screening test for CS is 1 mg dexamethasone overnight suppression test. However, it is known that obese subjects have high false positive results with this test. We have therefore compared the 1 mg and 2 mg overnight dexamethasone suppression tests in obese subjects. Patients whose serum cortisol after ODST was >50 nM underwent and a low-dose dexamethasone suppression test (LDDST); 24-hour urine cortisol was collected for basal urinary free cortisol (UFC). For positive results after overnight 1-mg dexamethasone suppression test we also performed the overnight 2-mg dexamethasone suppression test. We prospectively evaluated 100 patients (22 men and 78 women, ranging in age from 17 to 73 years with a body mass index (BMI) >30 kg/m2 who had been referred to our hospital-affiliated endocrine clinic because of simple obesity. Suppression of serum cortisol to suppression. Thyroid function tests, lipid profiles, homocysteine, antithyroglobulin, anti-thyroid peroxidase antibody levels, vitamin B12, folate levels, insulin resistance [by homeostasis model assessment (HOMA)] and 1.0 mg postdexamethasone (postdex) suppression cortisol levels were measured. We found an 8% false-positive rate in 1 mg overnight test and 2% in 2 mg overnight test (p=0.001). There was no correlation between the cortisol levels after ODST and other parameters. Our results indicate that the 2 mg overnight dexamethasone suppression test (ODST) is more convenient and accurate than 1-mg ODST as a screening test for excluding CS in subjects with simple obesity.

  13. Successful diuretics treatment of protein-losing enteropathy in Noonan syndrome.

    Science.gov (United States)

    Mizuochi, Tatsuki; Suda, Kenji; Seki, Yoshitaka; Yanagi, Tadahiro; Yoshimoto, Hironaga; Kudo, Yoshiyuki; Iemura, Motofumi; Tanikawa, Ken; Matsuishi, Toyojiro

    2015-04-01

    There are few reports on successful high-dose spironolactone treatment of refractory protein-losing enteropathy (PLE) caused by Fontan procedure. We report successful diuretics treatment with spironolactone and furosemide at standard dose, of refractory PLE in a patient with Noonan syndrome and repaired congenital heart disease. This is the first successful application of diuretics treatment in a patient with refractory PLE without Fontan procedure. This case illustrates that diuretics treatment can be the first-line treatment of PLE regardless of the causative physiology, and can be effective in refractory PLE with Noonan syndrome. © 2015 Japan Pediatric Society.

  14. A case of posterior reversible encephalopathy syndrome in the setting of post-partum preeclampsia with suppressed plasma aldosterone levels and plasma renin activity

    Directory of Open Access Journals (Sweden)

    Aurelio Negro

    2013-12-01

    Full Text Available Posterior reversible encephalopathy syndrome (PRES is characterized by headache, altered mental status, visual loss, and seizures. PRES is associated with neuroradiological findings: white matter abnormalities, predominantly in the parieto-occipital regions of the brain. PRES has been described in association with hypertensive encephalopathy, eclampsia, renal failure, or following immunosuppressive or anticancer therapy. We report a case of PRES in a severe preeclampsia occurring in the late postpartum period, with suppressed plasma aldosterone levels and plasma renin activity. These laboratory abnormalities may be due to an apparent mineralocorticoid excess syndrome.

  15. Arctigenin suppresses unfolded protein response and sensitizes glucose deprivation-mediated cytotoxicity of cancer cells.

    Science.gov (United States)

    Sun, Shengrong; Wang, Xiong; Wang, Changhua; Nawaz, Ahmed; Wei, Wen; Li, Juanjuan; Wang, Lijun; Yu, De-Hua

    2011-01-01

    The involvement of unfolded protein response (UPR) activation in tumor survival and resistance to chemotherapies suggests a new anticancer strategy targeting UPR pathway. Arctigenin, a natural product, has been recently identified for its antitumor activity with selective toxicity against cancer cells under glucose starvation with unknown mechanism. Here we found that arctigenin specifically blocks the transcriptional induction of two potential anticancer targets, namely glucose-regulated protein-78 (GRP78) and its analog GRP94, under glucose deprivation, but not by tunicamycin. The activation of other UPR pathways, e.g., XBP-1 and ATF4, by glucose deprivation was also suppressed by arctigenin. A further transgene experiment showed that ectopic expression of GRP78 at least partially rescued arctigenin/glucose starvation-mediated cell growth inhibition, suggesting the causal role of UPR suppression in arctigenin-mediated cytotoxicity under glucose starvation. These observations bring a new insight into the mechanism of action of arctigenin and may lead to the design of new anticancer therapeutics. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Hepatitis B virus X protein suppresses caveolin-1 expression in hepatocellular carcinoma by regulating DNA methylation

    International Nuclear Information System (INIS)

    Yan, Jun; Lu, Qian; Dong, Jiahong; Li, Xiaowu; Ma, Kuansheng; Cai, Lei

    2012-01-01

    To understand the molecular mechanisms of caveolin-1 downregulation by hepatitis B virus X protein (HBx). The DNA methylation status of the caveolin-1 promoter was examined by nested methylation-specific PCR of 33 hepatitis B virus (HBV)-infected hepatocellular carcinoma (HCC) samples. The SMMC-7721 hepatoma cell line was transfected with a recombinant HBx adenoviral vector, and the effects of HBx protein on caveolin-1 expression and promoter methylation were examined and confirmed by sequencing. A reporter gene containing the caveolin-1 promoter region was constructed, and the effects of HBx on the transcriptional activity of the promoter were also studied. Methylation of the caveolin-1 promoter was detected in 84.8% (28/33) of HBV-infected HCC samples. Expression of caveolin-1 was significantly downregulated (P = 0.022), and multiple CpG sites in the promoter region of caveolin-1 were methylated in SMMC-7721 cells after HBx transfection. Transfected HBx significantly suppressed caveolin-1 promoter activity (P = 0.001). HBx protein induces methylation of the caveolin-1 promoter region and suppresses its expression

  17. Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity.

    Science.gov (United States)

    Nicaise, Valerie; Candresse, Thierry

    2017-08-01

    The perception of pathogen-associated molecular patterns (PAMPs) by immune receptors launches defence mechanisms referred to as PAMP-triggered immunity (PTI). Successful pathogens must suppress PTI pathways via the action of effectors to efficiently colonize their hosts. So far, plant PTI has been reported to be active against most classes of pathogens, except viruses, although this defence layer has been hypothesized recently as an active part of antiviral immunity which needs to be suppressed by viruses for infection success. Here, we report that Arabidopsis PTI genes are regulated upon infection by viruses and contribute to plant resistance to Plum pox virus (PPV). Our experiments further show that PPV suppresses two early PTI responses, the oxidative burst and marker gene expression, during Arabidopsis infection. In planta expression of PPV capsid protein (CP) was found to strongly impair these responses in Nicotiana benthamiana and Arabidopsis, revealing its PTI suppressor activity. In summary, we provide the first clear evidence that plant viruses acquired the ability to suppress PTI mechanisms via the action of effectors, highlighting a novel strategy employed by viruses to escape plant defences. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  18. Association between C-reactive protein and features of the metabolic syndrome

    DEFF Research Database (Denmark)

    Fröhlich, M; Imhof, A; Berg, Gabriele

    2000-01-01

    OBJECTIVE: To assess the association of circulating levels of C-reactive protein, a sensitive systemic marker of inflammation, with different components of the metabolic syndrome. RESEARCH DESIGN AND METHODS: Total cholesterol (TC), HDL cholesterol, triglycerides, uric acid, BMI , and prevalence...... C-reactive protein and TC (R = 0.19), TG (R = 0.29), BMI (R = 0.32), glucose (R = 0.11), and uric acid (R = 0.14) (all P

  19. Localization of PDZD7 to the stereocilia ankle-link associates this scaffolding protein with the Usher syndrome protein network.

    Science.gov (United States)

    Grati, M'hamed; Shin, Jung-Bum; Weston, Michael D; Green, James; Bhat, Manzoor A; Gillespie, Peter G; Kachar, Bechara

    2012-10-10

    Usher syndrome is the leading cause of genetic deaf-blindness. Monoallelic mutations in PDZD7 increase the severity of Usher type II syndrome caused by mutations in USH2A and GPR98, which respectively encode usherin and GPR98. PDZ domain-containing 7 protein (PDZD7) is a paralog of the scaffolding proteins harmonin and whirlin, which are implicated in Usher type 1 and type 2 syndromes. While usherin and GPR98 have been reported to form hair cell stereocilia ankle-links, harmonin localizes to the stereocilia upper tip-link density and whirlin localizes to both tip and ankle-link regions. Here, we used mass spectrometry to show that PDZD7 is expressed in chick stereocilia at a comparable molecular abundance to GPR98. We also show by immunofluorescence and by overexpression of tagged proteins in rat and mouse hair cells that PDZD7 localizes to the ankle-link region, overlapping with usherin, whirlin, and GPR98. Finally, we show in LLC-PK1 cells that cytosolic domains of usherin and GPR98 can bind to both whirlin and PDZD7. These observations are consistent with PDZD7 being a modifier and candidate gene for USH2, and suggest that PDZD7 is a second scaffolding component of the ankle-link complex.

  20. A novel nuclear DnaJ protein, DNAJC8, can suppress the formation of spinocerebellar ataxia 3 polyglutamine aggregation in a J-domain independent manner

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Norie [Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556 (Japan); Department of Neurology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556 (Japan); Kamiguchi, Kenjiro; Nakanishi, Katsuya; Sokolovskya, Alice; Hirohashi, Yoshihiko; Tamura, Yasuaki; Murai, Aiko; Yamamoto, Eri; Kanaseki, Takayuki; Tsukahara, Tomohide; Kochin, Vitaly [Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556 (Japan); Chiba, Susumu [Department of Neurology, Clinical Brain Research Laboratory, Toyokura Memorial Hall, Sapporo Yamano-ue Hospital (Japan); Shimohama, Shun [Department of Neurology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556 (Japan); Sato, Noriyuki [Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556 (Japan); Torigoe, Toshihiko, E-mail: torigoe@sapmed.ac.jp [Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556 (Japan)

    2016-06-10

    Polyglutamine (polyQ) diseases comprise neurodegenerative disorders caused by expression of expanded polyQ-containing proteins. The cytotoxicity of the expanded polyQ-containing proteins is closely associated with aggregate formation. In this study, we report that a novel J-protein, DNAJ (HSP40) Homolog, Subfamily C, Member 8 (DNAJC8), suppresses the aggregation of polyQ-containing protein in a cellular model of spinocerebellar ataxia type 3 (SCA3), which is also known as Machado-Joseph disease. Overexpression of DNAJC8 in SH-SY5Y neuroblastoma cells significantly reduced the polyQ aggregation and apoptosis, and DNAJC8 was co-localized with the polyQ aggregation in the cell nucleus. Deletion mutants of DNAJC8 revealed that the C-terminal domain of DNAJC8 was essential for the suppression of polyQ aggregation, whereas the J-domain was dispensable. Furthermore, 22-mer oligopeptide derived from C-termilal domain could suppress the polyQ aggregation. These results indicate that DNAJC8 can suppress the polyQ aggregation via a distinct mechanism independent of HSP70-based chaperone machinery and have a unique protective role against the aggregation of expanded polyQ-containing proteins such as pathogenic ataxin-3 proteins.

  1. Roles of viroplasm-like structures formed by nonstructural protein NSs in infection with severe fever with thrombocytopenia syndrome virus.

    Science.gov (United States)

    Wu, Xiaodong; Qi, Xian; Liang, Mifang; Li, Chuan; Cardona, Carol J; Li, Dexin; Xing, Zheng

    2014-06-01

    Severe fever with thrombocytopenia syndrome (SFTS) virus is an emerging bunyavirus that causes a hemorrhagic fever with a high mortality rate. The virus is likely tick-borne and replicates primarily in hemopoietic cells, which may lead to disregulation of proinflammatory cytokine induction and loss of leukocytes and platelets. The viral genome contains L, M, and S segments encoding a viral RNA polymerase, glycoproteins G(n) and G(c), nucleoprotein (NP), and a nonstructural S segment (NSs) protein. NSs protein is involved in the regulation of host innate immune responses and suppression of IFNβ-promoter activities. In this article, we demonstrate that NSs protein can form viroplasm-like structures (VLSs) in infected and transfected cells. NSs protein molecules interact with one another, interact with NP, and were associated with viral RNA in infected cells, suggesting that NSs protein may be involved in viral replication. Furthermore, we observed that NSs-formed VLS colocalized with lipid droplets and that inhibitors of fatty acid biosynthesis decreased VLS formation or viral replication in transfected and infected cells. Finally, we have demonstrated that viral dsRNAs were also localized in VLS in infected cells, suggesting that NSs-formed VLS may be implicated in the replication of SFTS bunyavirus. These findings identify a novel function of nonstructural NSs in SFTSV-infected cells where it is a scaffolding component in a VLS functioning as a virus replication factory. This function is in addition to the role of NSs protein in modulating host responses that will broaden our understanding of viral pathogenesis of phleboviruses. © FASEB.

  2. Cockayne Syndrome group B protein stimulates NEIL2 DNA glycosylase activity

    DEFF Research Database (Denmark)

    Aamann, Maria Diget; Hvitby, Christina Poulsen; Popuri, Venkateswarlu

    2014-01-01

    Cockayne Syndrome is a segmental premature aging syndrome, which can be caused by loss of function of the CSB protein. CSB is essential for genome maintenance and has numerous interaction partners with established roles in different DNA repair pathways including transcription coupled nucleotide...... activity on a 5-hydroxyl uracil lesion in a DNA bubble structure substrate in vitro. A novel 4,6-diamino-5-formamidopyrimidine (FapyA) specific incision activity of NEIL2 was also stimulated by CSB. To further elucidate the biological role of the interaction, immunofluorescence studies were performed...

  3. Sterol regulatory element binding protein-1 (SREBP1) gene expression is similarly increased in polycystic ovary syndrome and endometrial cancer.

    Science.gov (United States)

    Shafiee, Mohamad N; Mongan, Nigel; Seedhouse, Claire; Chapman, Caroline; Deen, Suha; Abu, Jafaru; Atiomo, William

    2017-05-01

    Women with polycystic ovary syndrome have a three-fold higher risk of endometrial cancer. Insulin resistance and hyperlipidemia may be pertinent factors in the pathogenesis of both conditions. The aim of this study was to investigate endometrial sterol regulatory element binding protein-1 gene expression in polycystic ovary syndrome and endometrial cancer endometrium, and to correlate endometrial sterol regulatory element binding protein-1 gene expression with serum lipid profiles. A cross-sectional study was performed at Nottingham University Hospital, UK. A total of 102 women (polycystic ovary syndrome, endometrial cancer and controls; 34 participants in each group) were recruited. Clinical and biochemical assessments were performed before endometrial biopsies were obtained from all participants. Taqman real-time polymerase chain reaction for endometrial sterol regulatory element binding protein-1 gene and its systemic protein expression were analyzed. The body mass indices of women with polycystic ovary syndrome (29.28 ± 2.91 kg/m 2 ) and controls (28.58 ± 2.62 kg/m 2 ) were not significantly different. Women with endometrial cancer had a higher mean body mass index (32.22 ± 5.70 kg/m 2 ). Sterol regulatory element binding protein-1 gene expression was significantly increased in polycystic ovary syndrome and endometrial cancer endometrium compared with controls (p ovary syndrome, but this was not statistically significant. Similarly, statistically insignificant positive correlations were found between endometrial sterol regulatory element binding protein-1 gene expression and body mass index in endometrial cancer (r = 0.643, p = 0.06) and waist-hip ratio (r = 0.096, p = 0.073). Sterol regulatory element binding protein-1 gene expression was significantly positively correlated with triglyceride in both polycystic ovary syndrome and endometrial cancer (p = 0.028 and p = 0.027, respectively). Quantitative serum sterol regulatory element

  4. Pitfalls in the diagnosis and management of Cushing's syndrome.

    Science.gov (United States)

    Bansal, Vivek; El Asmar, Nadine; Selman, Warren R; Arafah, Baha M

    2015-02-01

    Despite many recent advances, the management of patients with Cushing's disease continues to be challenging. Cushing's syndrome is a complex metabolic disorder that is a result of excess glucocorticoids. Excluding the exogenous causes, adrenocorticotropic hormone-secreting pituitary adenomas account for nearly 70% of all cases of Cushing's syndrome. The suspicion, diagnosis, and differential diagnosis require a logical systematic approach with attention paid to key details at each investigational step. A diagnosis of endogenous Cushing's syndrome is usually suspected in patients with clinical symptoms and confirmed by using multiple biochemical tests. Each of the biochemical tests used to establish the diagnosis has limitations that need to be considered for proper interpretation. Although some tests determine the total daily urinary excretion of cortisol, many others rely on measurements of serum cortisol at baseline and after stimulation (e.g., after corticotropin-releasing hormone) or suppression (e.g., dexamethasone) with agents that influence the hypothalamic-pituitary-adrenal axis. Other tests (e.g., measurements of late-night salivary cortisol concentration) rely on alterations in the diurnal rhythm of cortisol secretion. Because more than 90% of the cortisol in the circulation is protein bound, any alteration in the binding proteins (transcortin and albumin) will automatically influence the measured level and confound the interpretation of stimulation and suppression data, which are the basis for establishing the diagnosis of Cushing's syndrome. Although measuring late-night salivary cortisol seems to be an excellent initial test for hypercortisolism, it may be confounded by poor sampling methods and contamination. Measurements of 24-hour urinary free-cortisol excretion could be misleading in the presence of some pathological and physiological conditions. Dexamethasone suppression tests can be affected by illnesses that alter the absorption of the drug (e

  5. Suppression of phospholipid biosynthesis by cerulenin in the condensed Single-Protein-Production (cSPP) system

    International Nuclear Information System (INIS)

    Mao, Lili; Inoue, Koichi; Tao, Yisong; Montelione, Gaetano T.; McDermott, Ann E.; Inouye, Masayori

    2011-01-01

    Using the single-protein-production (SPP) system, a protein of interest can be exclusively produced in high yield from its ACA-less gene in Escherichia coli expressing MazF, an ACA-specific mRNA interferase. It is thus feasible to study a membrane protein by solid-state NMR (SSNMR) directly in natural membrane fractions. In developing isotope-enrichment methods, we observed that 13 C was also incorporated into phospholipids, generating spurious signals in SSNMR spectra. Notable, with the SPP system a protein can be produced in total absence of cell growth caused by antibiotics. Here, we demonstrate that cerulenin, an inhibitor of phospholipid biosynthesis, can suppress isotope incorporation in the lipids without affecting membrane protein yield in the SPP system. SSNMR analysis of ATP synthase subunit c, an E. coli inner membrane protein, produced by the SPP method using cerulenin revealed that 13 C resonance signals from phospholipid were markedly reduced, while signals for the isotope-enriched protein were clearly present.

  6. Interaction between the Cockayne syndrome B and p53 proteins: implications for aging.

    Science.gov (United States)

    Frontini, Mattia; Proietti-De-Santis, Luca

    2012-02-01

    The CSB protein plays a role in the transcription coupled repair (TCR) branch of the nucleotide excision repair pathway. CSB is very often found mutated in Cockayne syndrome, a segmental progeroid genetic disease characterized by organ degeneration and growth failure. The tumor suppressor p53 plays a pivotal role in triggering senescence and apoptosis and suppressing tumorigenesis. Although p53 is very important to avoid cancer, its excessive activity can be detrimental for the lifespan of the organism. This is why a network of positive and negative feedback loops, which most likely evolved to fine-tune the activity of this tumor suppressor, modulate its induction and activation. Accordingly, an unbalanced p53 activity gives rise to premature aging or cancer. The physical interaction between CSB and p53 proteins has been known for more than a decade but, despite several hypotheses, nobody has been able to show the functional consequences of this interaction. In this review we resume recent advances towards a more comprehensive understanding of the critical role of this interaction in modulating p53’s levels and activity, therefore helping the system find a reasonable equilibrium between the beneficial and the detrimental effects of its activity. This crosstalk re-establishes the physiological balance towards cell proliferation and survival instead of towards cell death, after stressors of a broad nature. Accordingly, cells bearing mutations in the csb gene are unable to re-establish this physiological balance and to properly respond to some stress stimuli and undergo massive apoptosis.

  7. Usher syndrome: animal models, retinal function of Usher proteins, and prospects for gene therapy

    Science.gov (United States)

    Williams, David S.

    2009-01-01

    Usher syndrome is a deafness-blindness disorder. The blindness occurs from a progressive retinal degeneration that begins after deafness and after the retina has developed. Three clinical subtypes of Usher syndrome have been identified, with mutations in any one of six different genes giving rise to type 1, in any one of three different genes to type 2, and in one identified gene causing Usher type 3. Mutant mice for most of the genes have been studied; while they have clear inner ear defects, retinal phenotypes are relatively mild and have been difficult to characterize. The retinal functions of the Usher proteins are still largely unknown. Protein binding studies have suggested many interactions among the proteins, and a model of interaction among all the proteins in the photoreceptor synapse has been proposed. However this model is not supported by localization data from some laboratories, or the indication of any synaptic phenotype in mutant mice. An earlier suggestion, based on patient pathologies, of Usher protein function in the photoreceptor cilium continues to gain support from immunolocalization and mutant mouse studies, which are consistent with Usher protein interaction in the photoreceptor ciliary/periciliary region. So far, the most characterized Usher protein is myosin VIIa. It is present in the apical RPE and photoreceptor ciliary/periciliary region, where it is required for organelle transport and clearance of opsin from the connecting cilium, respectively. Usher syndrome is amenable to gene replacement therapy, but also has some specific challenges. Progress in this treatment approach has been achieved by correction of mutant phenotypes in Myo7a-null mouse retinas, following lentiviral delivery of MYO7A. PMID:17936325

  8. A protein interaction mechanism for suppressing the mechanosensitive Piezo channels.

    Science.gov (United States)

    Zhang, Tingxin; Chi, Shaopeng; Jiang, Fan; Zhao, Qiancheng; Xiao, Bailong

    2017-11-27

    Piezo proteins are bona fide mammalian mechanotransduction channels for various cell types including endothelial cells. The mouse Piezo1 of 2547 residues forms a three-bladed, propeller-like homo-trimer comprising a central pore-module and three propeller-structures that might serve as mechanotransduction-modules. However, the mechanogating and regulation of Piezo channels remain unclear. Here we identify the sarcoplasmic /endoplasmic-reticulum Ca 2+ ATPase (SERCA), including the widely expressed SERCA2, as Piezo interacting proteins. SERCA2 strategically suppresses Piezo1 via acting on a 14-residue-constituted intracellular linker connecting the pore-module and mechanotransduction-module. Mutating the linker impairs mechanogating and SERCA2-mediated modulation of Piezo1. Furthermore, the synthetic linker-peptide disrupts the modulatory effects of SERCA2, demonstrating the key role of the linker in mechanogating and regulation. Importantly, the SERCA2-mediated regulation affects Piezo1-dependent migration of endothelial cells. Collectively, we identify SERCA-mediated regulation of Piezos and the functional significance of the linker, providing important insights into the mechanogating and regulation mechanisms of Piezo channels.

  9. Efficacy of Glutamate Modulators in Tic Suppression: A Double-Blind, Randomized Control Trial of D-serine and Riluzole in Tourette Syndrome.

    Science.gov (United States)

    Lemmon, Monica E; Grados, Marco; Kline, Tina; Thompson, Carol B; Ali, Syed F; Singer, Harvey S

    2015-06-01

    It has been hypothesized that glutamatergic transmission may be altered in Tourette syndrome. In this study, we explored the efficacy of a glutamate agonist (D-serine) and antagonist (riluzole) as tic-suppressing agents in children with Tourette syndrome. We performed a parallel three-arm, 8-week, double-blind, randomized placebo-controlled treatment study in children with Tourette syndrome. Each child received 6 weeks of treatment with D-serine (maximum dose 30 mg/kg/day), riluzole (maximum dose 200 mg/day), or placebo, followed by a 2-week taper. The primary outcome measure was effective tic suppression as determined by the differences in the Yale Global Tic Severity Scale score; specifically, the total tic score and the combined score (total tic score + global impairment) between treatment arms after 6 weeks of treatment. Mann-Whitney U tests were performed to analyze differences between each group and the placebo group. Twenty-four patients (males = 21, ages 9-18) enrolled in the study; one patient dropped out before completion. Combined Yale Global Tic Severity Scale score and total tic scores improved in all groups. The 6-week mean percent improvement of the riluzole (n = 10), D-serine (n = 9), and placebo (n = 5) groups in the combined Yale Global Tic Severity Scale score were 43.7, 39.5, and 30.2 and for total tic scores were 38.0, 25.0, and 34.0, respectively. There were no significant differences in Yale Global Tic Severity Scale score or total tic score, respectively, between the riluzole and placebo (P = 0.35, 0.85) or D-serine and placebo (P = 0.50, 0.69) groups. Tics diminished by comparable percentages in the riluzole, D-serine, and placebo groups. These preliminary data suggest that D-serine and riluzole are not effective in tic suppression. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Tofacitinib Suppresses Antibody Responses to Protein Therapeutics in Murine Hosts1

    Science.gov (United States)

    Onda, Masanori; Ghoreschi, Kamran; Steward-Tharp, Scott; Thomas, Craig; O’Shea, John J.; Pastan, Ira H.; FitzGerald, David J.

    2014-01-01

    Immunogenicity remains the ‘Achilles’ heel’ of protein-based therapeutics. Anti-drug antibodies produced in response to protein therapeutics can severely limit both the safety and efficacy of this expanding class of agent. Here we report that monotherapy of mice with tofacitinib (the Janus kinase inhibitor) quells antibody responses to an immunotoxin derived from the bacterial protein, Pseudomonas exotoxin A, as well as to the model antigen, keyhole limpet hemocyanin. Thousandfold reductions in IgG1 titers to both antigens were observed 21 days post-immunization. In fact, suppression was evident for all IgG isotypes and IgM. A reduction in IgG3 production was also noted with a thymus-independent type II antigen. Mechanistic investigations revealed that tofacitinib treatment led to reduced numbers of CD127+ pro-B cells. Furthermore, we observed fewer germinal center B cells and the impaired formation of germinal centers of mice treated with tofacitinib. Since normal immunoglobulin levels were still present during the tofacitinib treatment, this agent specifically reduced anti-drug antibodies, thus preserving the potential efficacy of biological therapeutics, including those that are used as cancer therapeutics. PMID:24890727

  11. Morvan's syndrome with anti contactin associated protein like 2 – voltage gated potassium channel antibody presenting with syndrome of inappropriate antidiuretic hormone secretion

    Directory of Open Access Journals (Sweden)

    Anjani Kumar Sharma

    2016-01-01

    Full Text Available Morvan's syndrome is a rare autoimmune disorder characterized by triad of peripheral nerve hyperexcitability, autonomic dysfunction, and central nervous system symptoms. Antibodies against contactin-associated protein-like 2 (CASPR2, a subtype of voltage-gated potassium channel (VGKC complex, are found in a significant proportion of patients with Morvan's syndrome and are thought to play a key role in peripheral as well as central clinical manifestations. We report a patient of Morvan's syndrome with positive CASPR2–anti-VGKC antibody having syndrome of inappropriate antidiuretic hormone as a cause of persistent hyponatremia.

  12. Overnight Dexamethasone Suppression Test in the Diagnosis of Cushing's Disease

    Directory of Open Access Journals (Sweden)

    Fatemeh Esfahanian

    2010-08-01

    Full Text Available Realizing the cause of Cushing's Syndrome (CS is one of the most challenging processes in clinical endocrinology. The long high dose dexamethasone suppression test (standard test is costly and need an extended inpatient stay. In this study we want to show the clinical utility of the overnight 8 mg dexamethasone suppression test (DST for differential diagnosis of CS in a referral center. Retrospectively from 2002-2005 we selected the patients of endocrinology ward in Imam hospital who were admitted with the diagnosis of Cushing syndrome and had 8 mg DST (modified test along with classic DST. In modified test a decrease in an 8 AM serum cortisol level of 50% or more is thought to indicate suppression and we compared the results of modified test with standard test. This test had been done on 42 patients: 10 male (23% and 32 female (76%. The mean age of patients was 31.39 (15-63, 32 with proven pituitary Cushing's disease, 7 with primary adrnal tumors and 3 with ectopic ACTH syndrome. The standard test according to 50% suppression of UFC had 90.62% sensitivity, and according to 90% suppression had 43.75% sensitivity. The sensitivity of this test was 71.85% for serum cortisol suppression. The modified test (8 mg overnight DST had 78% sensitivity. All of these tests had 100% specificity for the diagnosis of Cushing's disease. The positive predictive vale (PPV of all of these tests was 100%. The negative predictive value (NPV of modified test for the diagnosis of Cushing's disease was 58.82%. In standard test the NPV of serum cortisol was 52.6%, UFC 50% had 76.9% NPV and UFC 90% had 35.7% NPV. The results of serum cortisol suppression in modified test is better than standard test. Although 50% suppression of UFC in standard test had greater sensitivity than modified test, collecting of urine is difficult, time consuming and needing hospitalization, so we advice modified test that is much simpler and more convenient instead of standard test in the first

  13. Identification of polycystic ovary syndrome potential drug targets based on pathobiological similarity in the protein-protein interaction network

    OpenAIRE

    Huang, Hao; He, Yuehan; Li, Wan; Wei, Wenqing; Li, Yiran; Xie, Ruiqiang; Guo, Shanshan; Wang, Yahui; Jiang, Jing; Chen, Binbin; Lv, Junjie; Zhang, Nana; Chen, Lina; He, Weiming

    2016-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrinological disorders in reproductive aged women. PCOS and Type 2 Diabetes (T2D) are closely linked in multiple levels and possess high pathobiological similarity. Here, we put forward a new computational approach based on the pathobiological similarity to identify PCOS potential drug target modules (PPDT-Modules) and PCOS potential drug targets in the protein-protein interaction network (PPIN). From the systems level and biologi...

  14. Mutations in Three Genes Encoding Proteins Involved in Hair Shaft Formation Cause Uncombable Hair Syndrome

    DEFF Research Database (Denmark)

    Ü Basmanav, F Buket; Cau, Laura; Tafazzoli, Aylar

    2016-01-01

    Uncombable hair syndrome (UHS), also known as "spun glass hair syndrome," "pili trianguli et canaliculi," or "cheveux incoiffables" is a rare anomaly of the hair shaft that occurs in children and improves with age. UHS is characterized by dry, frizzy, spangly, and often fair hair that is resistant...... in the majority of UHS case subjects. The two enzymes PADI3 and TGM3, responsible for posttranslational protein modifications, and their target structural protein TCHH are all involved in hair shaft formation. Elucidation of the molecular outcomes of the disease-causing mutations by cell culture experiments...... and tridimensional protein models demonstrated clear differences in the structural organization and activity of mutant and wild-type proteins. Scanning electron microscopy observations revealed morphological alterations in hair coat of Padi3 knockout mice. All together, these findings elucidate the molecular genetic...

  15. Natural proteasome inhibitor celastrol suppresses androgen-independent prostate cancer progression by modulating apoptotic proteins and NF-kappaB.

    Directory of Open Access Journals (Sweden)

    Yao Dai

    Full Text Available Celastrol is a natural proteasome inhibitor that exhibits promising anti-tumor effects in human malignancies, especially the androgen-independent prostate cancer (AIPC with constitutive NF-κB activation. Celastrol induces apoptosis by means of proteasome inhibition and suppresses prostate tumor growth. However, the detailed mechanism of action remains elusive. In the current study, we aim to test the hypothesis that celastrol suppresses AIPC progression via inhibiting the constitutive NF-κB activity as well as modulating the Bcl-2 family proteins.We examined the efficacy of celastrol both in vitro and in vivo, and evaluated the role of NF-κB in celastrol-mediated AIPC regression. We found that celastrol inhibited cell proliferation in all three AIPC cell lines (PC-3, DU145 and CL1, with IC₅₀ in the range of 1-2 µM. Celastrol also suppressed cell migration and invasion. Celastrol significantly induced apoptosis as evidenced by increased sub-G1 population, caspase activation and PARP cleavage. Moreover, celastrol promoted cleavage of the anti-apoptotic protein Mcl-1 and activated the pro-apoptotic protein Noxa. In addition, celastrol rapidly blocked cytosolic IκBα degradation and nuclear translocation of RelA. Likewise, celastrol inhibited the expression of multiple NF-κB target genes that are involved in proliferation, invasion and anti-apoptosis. Celastrol suppressed AIPC tumor progression by inhibiting proliferation, increasing apoptosis and decreasing angiogenesis, in PC-3 xenograft model in nude mouse. Furthermore, increased cellular IκBα and inhibited expression of various NF-κB target genes were observed in tumor tissues.Our data suggest that, via targeting the proteasome, celastrol suppresses proliferation, invasion and angiogenesis by inducing the apoptotic machinery and attenuating constitutive NF-κB activity in AIPC both in vitro and in vivo. Celastrol as an active ingredient of traditional herbal medicine could thus be

  16. Suppression of adhesion-induced protein tyrosine phosphorylation decreases invasive and metastatic potentials of B16-BL6 melanoma cells by protein tyrosine kinase inhibitor genistein.

    Science.gov (United States)

    Yan, C; Han, R

    1997-01-01

    Protein tyrosine kinase (PTK) appears to be involved in the activation of signaling during cell attachment to and spreading on extracellular matrix (ECM) in the metastatic cascade. To verify the assumption that PTK inhibitors might impair ECM signaling and prevent cancer metastasis, the highly metastatic B16-BL6 mouse melanoma cells were exposed to the PTK inhibitor genistein for 3 days. The ability of the cells to invade through reconstituted basement membrane (Matrigel) and to establish experimental pulmonary metastatic foci in C57BL/6 mice decreased after genistein exposure. The genistein-treated cells were also prevented from attaching to Matrigel and spread extremely poorly on the ECM substratum. Immunoblot analysis showed that tyrosine phosphorylation of a 125-kD protein in response to cell spreading on Matrigel was suppressed in the genistein-treated cells. Adhesion-induced protein tyrosine phosphorylation represents the earlier and specific event in the activation of ECM signaling, so this result implied ECM signaling was impaired in the treated cells. With immunofluorescence microscopy, the adhesion-induced tyrosine phosphorylated proteins were located at the pericytoplasms of well-spread cells, but not at the periphery of poorly spread genistein-treated cells. Therefore, this paper suggests that genistein might impair ECM signaling and subsequently prevent cancer cells from spreading well and invading or establishing metastasis through the suppression of adhesion-induced protein tyrosine phosphorylation. PTKs and adhesion-induced protein tyrosine phosphorylation might play a role in the control of invasion and metastasis.

  17. Circulating adipocyte fatty acid-binding protein, juvenile obesity, and metabolic syndrome

    NARCIS (Netherlands)

    Krzystek-Korpacka, Malgorzata; Patryn, Eliza; Bednarz-Misa, Iwona; Mierzchala, Magdalena; Hotowy, Katarzyna; Czapinska, Elzbieta; Kustrzeba-Wojcicka, Irena; Gamian, Andrzej; Noczynska, Anna

    2011-01-01

    Adipocyte fatty acid-binding protein (A-FABP) links obesity and metabolic syndrome (MetS) and might be targeted in future therapies. Its utility as a MetS biomarker has been suggested in adults but has not been examined in children/adolescents. Our objectives were to identify metabolic parameters

  18. PmVRP15, a Novel Viral Responsive Protein from the Black Tiger Shrimp, Penaeus monodon, Promoted White Spot Syndrome Virus Replication

    Science.gov (United States)

    Vatanavicharn, Tipachai; Prapavorarat, Adisak; Jaree, Phattarunda; Somboonwiwat, Kunlaya; Tassanakajon, Anchalee

    2014-01-01

    Suppression subtractive hybridization of Penaeus monodon hemocytes challenged with white spot syndrome virus (WSSV) has identified the viral responsive gene, PmVRP15, as the highest up-regulated gene ever reported in shrimps. Expression analysis by quantitative real time RT-PCR revealed 9410–fold up-regulated level at 48 h post WSSV injection. Tissue distribution analysis showed that PmVRP15 transcript was mainly expressed in the hemocytes of shrimp. The full-length cDNA of PmVRP15 transcript was obtained and showed no significant similarity to any known gene in the GenBank database. The predicted open reading frame of PmVRP15 encodes for a deduced 137 amino acid protein containing a putative transmembrane helix. Immunofluorescent localization of the PmVRP15 protein revealed it accumulated around the nuclear membrane in all three types of shrimp hemocytes and that the protein was highly up-regulated in WSSV-infected shrimps. Double-stranded RNA interference-mediated gene silencing of PmVRP15 in P. monodon significantly decreased WSSV propagation compared to the control shrimps (injected with GFP dsRNA). The significant decrease in cumulative mortality rate of WSSV-infected shrimp following PmVRP15 knockdown was observed. These results suggest that PmVRP15 is likely to be a nuclear membrane protein and that it acts as a part of WSSV propagation pathway. PMID:24637711

  19. The Prader-Willi syndrome proteins MAGEL2 and necdin regulate leptin receptor cell surface abundance through ubiquitination pathways.

    Science.gov (United States)

    Wijesuriya, Tishani Methsala; De Ceuninck, Leentje; Masschaele, Delphine; Sanderson, Matthea R; Carias, Karin Vanessa; Tavernier, Jan; Wevrick, Rachel

    2017-11-01

    In Prader-Willi syndrome (PWS), obesity is caused by the disruption of appetite-controlling pathways in the brain. Two PWS candidate genes encode MAGEL2 and necdin, related melanoma antigen proteins that assemble into ubiquitination complexes. Mice lacking Magel2 are obese and lack leptin sensitivity in hypothalamic pro-opiomelanocortin neurons, suggesting dysregulation of leptin receptor (LepR) activity. Hypothalamus from Magel2-null mice had less LepR and altered levels of ubiquitin pathway proteins that regulate LepR processing (Rnf41, Usp8, and Stam1). MAGEL2 increased the cell surface abundance of LepR and decreased their degradation. LepR interacts with necdin, which interacts with MAGEL2, which complexes with RNF41 and USP8. Mutations in the MAGE homology domain of MAGEL2 suppress RNF41 stabilization and prevent the MAGEL2-mediated increase of cell surface LepR. Thus, MAGEL2 and necdin together control LepR sorting and degradation through a dynamic ubiquitin-dependent pathway. Loss of MAGEL2 and necdin may uncouple LepR from ubiquitination pathways, providing a cellular mechanism for obesity in PWS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Nucleocapsid protein VP15 is the basic DNA binding protein of white spot syndrome virus of shrimp

    NARCIS (Netherlands)

    Witteveldt, J.; Vermeesch, A.M.G.; Langenhof, M.; Lang, de A.; Vlak, J.M.; Hulten, van M.C.W.

    2005-01-01

    White spot syndrome virus (WSSV) is type species of the genus Whispovirus of the new family Nimaviridae. Despite the elucidation of its genomic sequence, very little is known about the virus as only 6% of its ORFs show homology to known genes. One of the structural virion proteins, VP15, is part of

  1. The role of suppression in amblyopia.

    Science.gov (United States)

    Li, Jingrong; Thompson, Benjamin; Lam, Carly S Y; Deng, Daming; Chan, Lily Y L; Maehara, Goro; Woo, George C; Yu, Minbin; Hess, Robert F

    2011-06-13

    This study had three main goals: to assess the degree of suppression in patients with strabismic, anisometropic, and mixed amblyopia; to establish the relationship between suppression and the degree of amblyopia; and to compare the degree of suppression across the clinical subgroups within the sample. Using both standard measures of suppression (Bagolini lenses and neutral density [ND] filters, Worth 4-Dot test) and a new approach involving the measurement of dichoptic motion thresholds under conditions of variable interocular contrast, the degree of suppression in 43 amblyopic patients with strabismus, anisometropia, or a combination of both was quantified. There was good agreement between the quantitative measures of suppression made with the new dichoptic motion threshold technique and measurements made with standard clinical techniques (Bagolini lenses and ND filters, Worth 4-Dot test). The degree of suppression was found to correlate directly with the degree of amblyopia within our clinical sample, whereby stronger suppression was associated with a greater difference in interocular acuity and poorer stereoacuity. Suppression was not related to the type or angle of strabismus when this was present or the previous treatment history. These results suggest that suppression may have a primary role in the amblyopia syndrome and therefore have implications for the treatment of amblyopia.

  2. Suppressive effect of AMP-activated protein kinase on the epithelial-mesenchymal transition in retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ryo Matoba

    Full Text Available The epithelial-mesenchymal transition (EMT in retinal pigment epithelial (RPE cells plays a central role in the development of proliferative vitreoretinopathy (PVR. The purpose of this study was to investigate the effect of AMP-activated protein kinase (AMPK, a key regulator of energy homeostasis, on the EMT in RPE cells. In this study, EMT-associated formation of cellular aggregates was induced by co-stimulation of cultured ARPE-19 cells with tumor necrosis factor (TNF-α (10 ng/ml and transforming growth factor (TGF-β2 (5 ng/ml. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR, a potent activator of AMPK, significantly suppressed TNF-α and TGF-β2-induced cellular aggregate formation (p < 0.01. Dipyridamole almost completely reversed the suppressive effect of AICAR, whereas 5'-amino-5'-deoxyadenosine restored aggregate formation by approximately 50%. AICAR suppressed the downregulation of E-cadherin and the upregulation of fibronectin and α-smooth muscle actin by TNF-α and TGF-β2. The levels of matrix metalloproteinase (MMP-2, MMP-9, interleukin-6, and vascular endothelial growth factor were significantly decreased by AICAR. Activation of the mitogen-activated protein kinase and mammalian target of rapamycin pathways, but not the Smad pathway, was inhibited by AICAR. These findings indicate that AICAR suppresses the EMT in RPE cells at least partially via activation of AMPK. AMPK is a potential target molecule for the prevention and treatment of PVR, so AICAR may be a promising candidate for PVR therapy.

  3. Metabolic syndrome and C-reactive protein in bank employees

    Directory of Open Access Journals (Sweden)

    Cattafesta M

    2016-05-01

    Full Text Available Monica Cattafesta,1 Nazaré Souza Bissoli,2 Luciane Bresciani Salaroli,1,31Postgraduate Program in Nutrition and Health, 2Postgraduate Program in Physiological Sciences, 3Postgraduate Program in Public Health, Department of Health Integrated Education, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil Background: The ultrasensitive C-reactive protein (us-CRP is used for the diagnosis of cardiovascular disease, but it is not well described as a marker for the diagnosis of metabolic syndrome (MS. Methods: An observational and transversal study of bank employees evaluated anthropometric, hemodynamic, and biochemical data. CRP values were determined using commercial kits from Roche Diagnostics Ltd, and MS criteria were analyzed according to National Cholesterol Education Program’s – Adult Treatment Panel III (NCEP/ATP III. Results: A total of 88 individuals had MS, and 77.3% (n=68 of these showed alterations of us-CRP (P=0.0001, confidence interval [CI] 0.11–0.34. Individuals with MS had higher mean values of us-CRP in global measures (P=0.0001 and stratified by sex (P=0.004 than individuals without the syndrome. This marker exhibited significant differences with varying criteria for MS, such as waist circumference (P=0.0001, triglycerides (P=0.002, and diastolic blood pressure (P=0.007, and the highest levels of us-CRP were found in individuals with more MS criteria. Conclusion: us-CRP was strongly associated with the presence of MS and MS criteria in this group of workers. us-CRP is a useful and effective marker for identifying the development of MS and may be used as a reference in routine care. Keywords: C-reactive protein, bank employees, metabolic syndrome, inflammation mediators, occupational health

  4. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum).

    Science.gov (United States)

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Plants use a variety of innate immune regulators to trigger cell death and defense responses against pathogen attack. We identified pepper (Capsicum annuum) GLYCINE-RICH RNA-BINDING PROTEIN1 (CaGRP1) as a RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 (CaPIK1)-interacting partner, based on bimolecular fluorescence complementation and coimmunoprecipitation analyses as well as gene silencing and transient expression analysis. CaGRP1 contains an N-terminal RNA recognition motif and a glycine-rich region at the C-terminus. The CaGRP1 protein had DNA- and RNA-binding activity in vitro. CaGRP1 interacted with CaPIK1 in planta. CaGRP1 and CaGRP1-CaPIK1 complexes were localized to the nucleus in plant cells. CaPIK1 phosphorylated CaGRP1 in vitro and in planta. Transient coexpression of CaGRP1 with CaPIK1 suppressed the CaPIK1-triggered cell death response, accompanied by a reduced CaPIK1-triggered reactive oxygen species (ROS) burst. The RNA recognition motif region of CaGRP1 was responsible for the nuclear localization of CaGRP1 as well as the suppression of the CaPIK1-triggered cell death response. CaGRP1 silencing in pepper conferred enhanced resistance to Xanthomonas campestris pv vesicatoria (Xcv) infection; however, CaPIK1-silenced plants were more susceptible to Xcv. CaGRP1 interacts with CaPIK1 and negatively regulates CaPIK1-triggered cell death and defense responses by suppressing ROS accumulation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  5. Simultaneous Hypoxia and Low Extracellular pH Suppress Overall Metabolic Rate and Protein Synthesis In Vitro.

    Science.gov (United States)

    Sørensen, Brita Singers; Busk, Morten; Overgaard, Jens; Horsman, Michael R; Alsner, Jan

    2015-01-01

    The tumor microenvironment is characterized by regions of hypoxia and acidosis which are linked to poor prognosis. This occurs due to an aberrant vasculature as well as high rates of glycolysis and lactate production in tumor cells even in the presence of oxygen (the Warburg effect), which weakens the spatial linkage between hypoxia and acidosis. Five different human squamous cell carcinoma cell lines (SiHa, FaDuDD, UTSCC5, UTSCC14 and UTSCC15) were treated with hypoxia, acidosis (pH 6.3), or a combination, and gene expression analyzed using microarray. SiHa and FaDuDD were chosen for further characterization of cell energetics and protein synthesis. Total cellular ATP turnover and relative glycolytic dependency was determined by simultaneous measurements of oxygen consumption and lactate synthesis rates and total protein synthesis was determined by autoradiographic quantification of the incorporation of 35S-labelled methionine and cysteine into protein. Microarray analysis allowed differentiation between genes induced at low oxygen only at normal extracellular pH (pHe), genes induced at low oxygen at both normal and low pHe, and genes induced at low pHe independent of oxygen concentration. Several genes were found to be upregulated by acidosis independent of oxygenation. Acidosis resulted in a more wide-scale change in gene expression profiles than hypoxia including upregulation of genes involved in the translation process, for example Eukaryotic translation initiation factor 4A, isoform 2 (EIF4A2), and Ribosomal protein L37 (RPL37). Acidosis suppressed overall ATP turnover and protein synthesis by 50%. Protein synthesis, but not total ATP production, was also suppressed under hypoxic conditions. A dramatic decrease in ATP turnover (SiHa) and protein synthesis (both cell lines) was observed when hypoxia and low pHe were combined. We demonstrate here that the influence of hypoxia and acidosis causes different responses, both in gene expression and in de novo

  6. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Science.gov (United States)

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter

    2015-01-01

    The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  7. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Directory of Open Access Journals (Sweden)

    Shawkat Ali

    Full Text Available The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12 and an expansin-like protein (GrEXPB2, suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  8. Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture.

    Science.gov (United States)

    Shimamoto, Akira; Kagawa, Harunobu; Zensho, Kazumasa; Sera, Yukihiro; Kazuki, Yasuhiro; Osaki, Mitsuhiko; Oshimura, Mitsuo; Ishigaki, Yasuhito; Hamasaki, Kanya; Kodama, Yoshiaki; Yuasa, Shinsuke; Fukuda, Keiichi; Hirashima, Kyotaro; Seimiya, Hiroyuki; Koyama, Hirofumi; Shimizu, Takahiko; Takemoto, Minoru; Yokote, Koutaro; Goto, Makoto; Tahara, Hidetoshi

    2014-01-01

    Werner syndrome (WS) is a premature aging disorder characterized by chromosomal instability and cancer predisposition. Mutations in WRN are responsible for the disease and cause telomere dysfunction, resulting in accelerated aging. Recent studies have revealed that cells from WS patients can be successfully reprogrammed into induced pluripotent stem cells (iPSCs). In the present study, we describe the effects of long-term culture on WS iPSCs, which acquired and maintained infinite proliferative potential for self-renewal over 2 years. After long-term cultures, WS iPSCs exhibited stable undifferentiated states and differentiation capacity, and premature upregulation of senescence-associated genes in WS cells was completely suppressed in WS iPSCs despite WRN deficiency. WS iPSCs also showed recapitulation of the phenotypes during differentiation. Furthermore, karyotype analysis indicated that WS iPSCs were stable, and half of the descendant clones had chromosomal profiles that were similar to those of parental cells. These unexpected properties might be achieved by induced expression of endogenous telomerase gene during reprogramming, which trigger telomerase reactivation leading to suppression of both replicative senescence and telomere dysfunction in WS cells. These findings demonstrated that reprogramming suppressed premature senescence phenotypes in WS cells and WS iPSCs could lead to chromosomal stability over the long term. WS iPSCs will provide opportunities to identify affected lineages in WS and to develop a new strategy for the treatment of WS.

  9. Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture.

    Directory of Open Access Journals (Sweden)

    Akira Shimamoto

    Full Text Available Werner syndrome (WS is a premature aging disorder characterized by chromosomal instability and cancer predisposition. Mutations in WRN are responsible for the disease and cause telomere dysfunction, resulting in accelerated aging. Recent studies have revealed that cells from WS patients can be successfully reprogrammed into induced pluripotent stem cells (iPSCs. In the present study, we describe the effects of long-term culture on WS iPSCs, which acquired and maintained infinite proliferative potential for self-renewal over 2 years. After long-term cultures, WS iPSCs exhibited stable undifferentiated states and differentiation capacity, and premature upregulation of senescence-associated genes in WS cells was completely suppressed in WS iPSCs despite WRN deficiency. WS iPSCs also showed recapitulation of the phenotypes during differentiation. Furthermore, karyotype analysis indicated that WS iPSCs were stable, and half of the descendant clones had chromosomal profiles that were similar to those of parental cells. These unexpected properties might be achieved by induced expression of endogenous telomerase gene during reprogramming, which trigger telomerase reactivation leading to suppression of both replicative senescence and telomere dysfunction in WS cells. These findings demonstrated that reprogramming suppressed premature senescence phenotypes in WS cells and WS iPSCs could lead to chromosomal stability over the long term. WS iPSCs will provide opportunities to identify affected lineages in WS and to develop a new strategy for the treatment of WS.

  10. Uncoupling proteins, dietary fat and the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Warden Craig H

    2006-09-01

    Full Text Available Abstract There has been intense interest in defining the functions of UCP2 and UCP3 during the nine years since the cloning of these UCP1 homologues. Current data suggest that both UCP2 and UCP3 proteins share some features with UCP1, such as the ability to reduce mitochondrial membrane potential, but they also have distinctly different physiological roles. Human genetic studies consistently demonstrate the effect of UCP2 alleles on type-2 diabetes. Less clear is whether UCP2 alleles influence body weight or body mass index (BMI with many studies showing a positive effect while others do not. There is strong evidence that both UCP2 and UCP3 protect against mitochondrial oxidative damage by reducing the production of reactive oxygen species. The evidence that UCP2 protein is a negative regulator of insulin secretion by pancreatic β-cells is also strong: increased UCP2 decreases glucose stimulated insulin secretion ultimately leading to β-cell dysfunction. UCP2 is also neuroprotective, reducing oxidative stress in neurons. UCP3 may also transport fatty acids out of mitochondria thereby protecting the mitochondria from fatty acid anions or peroxides. Current data suggest that UCP2 plays a role in the metabolic syndrome through down-regulation of insulin secretion and development of type-2 diabetes. However, UCP2 may protect against atherosclerosis through reduction of oxidative stress and both UCP2 and UCP3 may protect against obesity. Thus, these UCP1 homologues may both contribute to and protect from the markers of the metabolic syndrome.

  11. Suppression of interleukin-6-induced C-reactive protein expression by FXR agonists

    International Nuclear Information System (INIS)

    Zhang Songwen; Liu Qiangyuan; Wang Juan; Harnish, Douglas C.

    2009-01-01

    C-reactive protein (CRP), a human acute-phase protein, is a risk factor for future cardiovascular events and exerts direct pro-inflammatory and pro-atherogenic properties. The farnesoid X receptor (FXR), a member of the nuclear hormone receptor superfamily, plays an essential role in the regulation of enterohepatic circulation and lipid homeostasis. In this study, we report that two synthetic FXR agonists, WAY-362450 and GW4064, suppressed interleukin-6-induced CRP expression in human Hep3B hepatoma cells. Knockdown of FXR by short interfering RNA attenuated the inhibitory effect of the FXR agonists and also increased the ability of interleukin-6 to induce CRP production. Furthermore, treatment of wild type C57BL/6 mice with the FXR agonist, WAY-362450, attenuated lipopolysaccharide-induced serum amyloid P component and serum amyloid A3 mRNA levels in the liver, whereas no effect was observed in FXR knockout mice. These data provide new evidence for direct anti-inflammatory properties of FXR.

  12. Impact of weight loss and maintenance with ad libitum diets varying in protein and glycemic index content on metabolic syndrome

    DEFF Research Database (Denmark)

    Papadaki, Angeliki; Linardakis, Manolis; Plada, Maria

    2014-01-01

    We investigated the effects of weight loss and maintenance with diets that varied with regard to protein content and glycemic index (GI) on metabolic syndrome (MetSyn) status.......We investigated the effects of weight loss and maintenance with diets that varied with regard to protein content and glycemic index (GI) on metabolic syndrome (MetSyn) status....

  13. A Murine Model of Persistent Inflammation, Immune Suppression, and Catabolism Syndrome

    Directory of Open Access Journals (Sweden)

    Amanda M. Pugh

    2017-08-01

    Full Text Available Critically ill patients that survive sepsis can develop a Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS, which often leads to extended recovery periods and multiple complications. Here, we utilized a cecal ligation and puncture (CLP method in mice with the goal of creating a model that concurrently displays all the characteristics of PICS. We observed that, after eight days, mice that survive the CLP develop persistent inflammation with significant myelopoiesis in the bone marrow and spleen. These mice also demonstrate ongoing immune suppression, as evidenced by the decreased total and naïve splenic CD4 and CD8 T cells with a concomitant increase in immature myeloid cells. The mice further display significant weight loss and decreased muscle mass, indicating a state of ongoing catabolism. When PICS mice are challenged with intranasal Pseudomonas aeruginosa, mortality is significantly elevated compared to sham mice. This mortality difference is associated with increased bacterial loads in the lung, as well as impaired neutrophil migration and neutrophil dysfunction in the PICS mice. Altogether, we have created a sepsis model that concurrently exhibits PICS characteristics. We postulate that this will help determine the mechanisms underlying PICS and identify potential therapeutic targets to improve outcomes for this patient population.

  14. Myostatin inhibits eEF2K-eEF2 by regulating AMPK to suppress protein synthesis.

    Science.gov (United States)

    Deng, Zhao; Luo, Pei; Lai, Wen; Song, Tongxing; Peng, Jian; Wei, Hong-Kui

    2017-12-09

    Growth of skeletal muscle is dependent on the protein synthesis, and the rate of protein synthesis is mainly regulated in the stage of translation initiation and elongation. Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a negative regulator of protein synthesis. C2C12 myotubes was incubated with 0, 0.01, 0.1, 1, 2, 3 μg/mL myostatin recombinant protein, and then we detected the rates of protein synthesis by the method of SUnSET. We found that high concentrations of myostatin (2 and 3 μg/mL) inhibited protein synthesis by blocking mTOR and eEF2K-eEF2 pathway, while low concentration of myostatin (0.01, 0.1 and 1 μg/mL) regulated eEF2K-eEF2 pathway activity to block protein synthesis without affected mTOR pathway, and myostatin inhibited eEF2K-eEF2 pathway through regulating AMPK pathway to suppress protein synthesis. It provided a new mechanism for myostatin regulating protein synthesis and treating muscle atrophy. Copyright © 2017. Published by Elsevier Inc.

  15. Impaired genome maintenance suppresses the growth hormone--insulin-like growth factor 1 axis in mice with Cockayne syndrome.

    Directory of Open Access Journals (Sweden)

    Ingrid van der Pluijm

    2007-01-01

    Full Text Available Cockayne syndrome (CS is a photosensitive, DNA repair disorder associated with progeria that is caused by a defect in the transcription-coupled repair subpathway of nucleotide excision repair (NER. Here, complete inactivation of NER in Csb(m/m/Xpa(-/- mutants causes a phenotype that reliably mimics the human progeroid CS syndrome. Newborn Csb(m/m/Xpa(-/- mice display attenuated growth, progressive neurological dysfunction, retinal degeneration, cachexia, kyphosis, and die before weaning. Mouse liver transcriptome analysis and several physiological endpoints revealed systemic suppression of the growth hormone/insulin-like growth factor 1 (GH/IGF1 somatotroph axis and oxidative metabolism, increased antioxidant responses, and hypoglycemia together with hepatic glycogen and fat accumulation. Broad genome-wide parallels between Csb(m/m/Xpa(-/- and naturally aged mouse liver transcriptomes suggested that these changes are intrinsic to natural ageing and the DNA repair-deficient mice. Importantly, wild-type mice exposed to a low dose of chronic genotoxic stress recapitulated this response, thereby pointing to a novel link between genome instability and the age-related decline of the somatotroph axis.

  16. The effects of GH and hormone replacement therapy on serum concentrations of mannan-binding lectin, surfactant protein D and vitamin D binding protein in Turner syndrome

    DEFF Research Database (Denmark)

    Gravholt, Claus Højbjerg; Leth-Larsen, Rikke; Lauridsen, Anna Lis

    2004-01-01

    function. In the present study we examined whether GH or hormone replacement therapy (HRT) in Turner syndrome (TS) influence the serum concentrations of MBL and two other proteins partaking in the innate immune defence, surfactant protein D (SP-D) and vitamin D binding protein (DBP). DESIGN: Study 1...

  17. A calcineurin inhibitory protein overexpressed in Down's syndrome interacts with the product of a ubiquitously expressed transcript

    Directory of Open Access Journals (Sweden)

    H.C.S. Silveira

    2004-06-01

    Full Text Available The Down's syndrome candidate region 1 (DSCR1 protein, encoded by a gene located in the human chromosome 21, interacts with calcineurin and is overexpressed in Down's syndrome patients. As an approach to clarifying a putative function for this protein, in the present study we used the yeast two-hybrid system to identify DSCR1 partners. The two-hybrid system is a method that allows the identification of protein-protein interactions through reconstitution of the activity of the yeast GAL 4 transcriptional activator. The gene DSCR1 fused to the GAL 4 binding domain (BD was used to screen a human fetal brain cDNA library cloned in fusion with the GAL 4 activation domain (AD. Three positive clones were found and sequence analysis revealed that all the plasmids coded for the ubiquitously expressed transcript (UXT. UXT, which is encoded in human Xp11, is a 157-amino acid protein present in both cytosol and nucleus of the cells. This positive interaction of DSCR1 and UXT was confirmed in vivo by mating the yeast strain AH109 (MATaexpressing AD-UXT with the strain Y187 (MATalpha expressing BD-DSCR1, and in vitro by co-immunoprecipitation experiments. These results may help elucidate a new function for DSCR1 and its participation in Down's syndrome pathogenesis.

  18. The effects of wet cupping on serum high-sensitivity C-reactive protein and heat shock protein 27 antibody titers in patients with metabolic syndrome.

    Science.gov (United States)

    Farahmand, Seyed Kazem; Gang, Li Zhi; Saghebi, Seyed Ahmad; Mohammadi, Maryam; Mohammadi, Shabnam; Mohammadi, Ghazaleh; Ferns, Gordan A; Ghanbarzadeh, Majid; Razmgah, Gholamreza Ghayour; Ramazani, Zahra; Ghayour-Mobarhan, Majid; Esmaily, Habibollah; Bahrami Taghanaki, Hamidreza; Azizi, Hoda

    2014-08-01

    It has previously been reported that increased level of serum heat shock proteins (Hsps) antibody in patients with metabolic syndrome. It is possible that the expression of Hsp and inflammatory markers can be affected by cupping and traditional Chinese medicine. There is a little data investigating the effects of cupping on markers of inflammation and Hsp proteins, hence, the objective of this study was evaluation of the effects of wet cupping on serum high-sensitivity C-reactive protein (hs-CRP) and Hsp27 antibody titers in patients with metabolic syndrome. Serum Hs-CRP and Hsp27 antibody titers were assessed in samples from 126 patients with metabolic syndrome (18-65 years of age) at baseline, and after 6 and 12 weeks after treatment. One hundred and twenty-six patients were randomly divided into the experimental group treated with wet cupping combined with dietary advice, and the control group treated with dietary advice alone using a random number table. Eight patients in case group and five subjects in control groups were excluded from the study. Data were analyzed using SPSS 15.0 software and a repeated measure ANCOVA. Serum hs-CRP titers did not change significantly between groups (p>0.05) and times (p=0.27). The same result was found for Hsp27 titers (p>0.05). Wet-cupping on the interscapular region has no effect on serum hs-CRP and Hsp27 patients with metabolic syndrome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Eosinophilic myocarditis due to Churg-Strauss syndrome with markedly elevated eosinophil cationic protein.

    Science.gov (United States)

    Hara, Tomoya; Yamaguchi, Koji; Iwase, Takashi; Kadota, Muneyuki; Bando, Mika; Ogasawara, Kozue; Bando, Sachiko; Ise, Takayuki; Niki, Toshiyuki; Ueda, Yuka; Tomita, Noriko; Taketani, Yoshio; Yamada, Hirotsugu; Soeki, Takeshi; Wakatsuki, Tetsuzo; Sata, Masataka

    2013-01-01

    A 67-year-old woman with asthma visited our hospital with increasing dyspnea and new-onset paresthesia and purpura in her legs. Physical examination showed a wheeze, pretibial edema, and surrounding purpura. Chest X-rays showed cardiac decompensation and an electrocardiogram revealed a new ST-T change. Laboratory data showed leukocytosis, hypereosinophilia (10,450/μL), troponin T(+), elevated BNP, and markedly elevated eosinophil cationic protein (ECP) (> 150 ng/mL). Echocardiography revealed diffuse left ventricular hypokinesis (ejection fraction 30%) with increased wall thickness. Coronary angiography was normal. Cardiac magnetic resonance imaging implied diffuse myocardial edema and subendocardial late gadolinium enhancement. Skin biopsy of purpura showed superfi cial perivascular dermatitis with remarkable eosinophilic infiltrations. No evidence of drug allergies, parasitic infection, or myeloproliferative disorder was detected. Based on these findings, a diagnosis of eosinophilic myocarditis due to Churg-Strauss syndrome was considered. She was administered prednisolone at a dose of 1 mg/kg, cyclophosphamide, and diuretics. Several markers of eosinophilic myocarditis and heart failure gradually improved, including ECP. She was discharged 30 days later with no cardiac event. Eosinophilic myocarditis is characterized by predominantly eosinophilic infi ltration. Eosinophilic granule proteins, such as ECP and major basic protein, play important roles in the pathogenesis of eosinophilic myocarditis. We experienced a rare case of eosinophilic myocarditis due to Churg-Strauss syndrome. Markedly elevated ECP played an important role in the early diagnosis and subsequent reduction in ECP served as a marker of monitoring. In an asthmatic patient with dyspnea, hypereosinophilia, and vasculitis, Churg-Strauss syndrome with eosinophilic myocarditis should be considered.

  20. Simultaneous Hypoxia and Low Extracellular pH Suppress Overall Metabolic Rate and Protein Synthesis In Vitro.

    Directory of Open Access Journals (Sweden)

    Brita Singers Sørensen

    Full Text Available The tumor microenvironment is characterized by regions of hypoxia and acidosis which are linked to poor prognosis. This occurs due to an aberrant vasculature as well as high rates of glycolysis and lactate production in tumor cells even in the presence of oxygen (the Warburg effect, which weakens the spatial linkage between hypoxia and acidosis.Five different human squamous cell carcinoma cell lines (SiHa, FaDuDD, UTSCC5, UTSCC14 and UTSCC15 were treated with hypoxia, acidosis (pH 6.3, or a combination, and gene expression analyzed using microarray. SiHa and FaDuDD were chosen for further characterization of cell energetics and protein synthesis. Total cellular ATP turnover and relative glycolytic dependency was determined by simultaneous measurements of oxygen consumption and lactate synthesis rates and total protein synthesis was determined by autoradiographic quantification of the incorporation of 35S-labelled methionine and cysteine into protein.Microarray analysis allowed differentiation between genes induced at low oxygen only at normal extracellular pH (pHe, genes induced at low oxygen at both normal and low pHe, and genes induced at low pHe independent of oxygen concentration. Several genes were found to be upregulated by acidosis independent of oxygenation. Acidosis resulted in a more wide-scale change in gene expression profiles than hypoxia including upregulation of genes involved in the translation process, for example Eukaryotic translation initiation factor 4A, isoform 2 (EIF4A2, and Ribosomal protein L37 (RPL37. Acidosis suppressed overall ATP turnover and protein synthesis by 50%. Protein synthesis, but not total ATP production, was also suppressed under hypoxic conditions. A dramatic decrease in ATP turnover (SiHa and protein synthesis (both cell lines was observed when hypoxia and low pHe were combined.We demonstrate here that the influence of hypoxia and acidosis causes different responses, both in gene expression and in de

  1. Early suppression of adipocyte lipid turnover induces immunometabolic modulation in cancer cachexia syndrome.

    Science.gov (United States)

    Henriques, Felipe Santos; Sertié, Rogério Antônio Laurato; Franco, Felipe Oliveira; Knobl, Pamela; Neves, Rodrigo Xavier; Andreotti, Sandra; Lima, Fabio Bessa; Guilherme, Adilson; Seelaender, Marilia; Batista, Miguel Luiz

    2017-05-01

    Cancer cachexia is a multifactorial syndrome characterized by body weight loss, atrophy of adipose tissue (AT) and systemic inflammation. However, there is limited information regarding the mechanisms of immunometabolic response in AT from cancer cachexia. Male Wistar rats were inoculated with 2 × 10 7 of Walker 256 tumor cells [tumor bearing (TB) rats]. The mesenteric AT (MeAT) was collected on d 0, 4, 7 (early stage), and 14 (cachexia stage) after tumor cell injection. Surgical biopsies for MeAT were obtained from patients who had gastrointestinal cancer with cachexia. Lipolysis showed an early decrease in glycerol release in TB d 4 (TB4) rats in relation to the control, followed by a 6-fold increase in TB14 rats, whereas de novo lipogenesis was markedly lower in the incorporation of glucose into fatty acids in TB14 rats during the development of cachexia. CD11b and CD68 were positive in TB7 and TB14 rats, respectively. In addition, we found cachexia stage results similar to those of animals in MeAT from patients: an increased presence of CD68 + , iNOS2 + , TNFα + , and HSL + cells. In summary, translational analysis of MeAT from patients and an animal model of cancer cachexia enabled us to identify early disruption in Adl turnover and subsequent inflammatory response during the development of cancer cachexia.-Henriques, F. S., Sertié, R. A. L., Franco, F. O., Knobl, P., Neves, R. X., Andreotti, S., Lima, F. B., Guilherme, A., Seelaender, M., Batista, M. L., Jr. Early suppression of adipocyte lipid turnover induces immunometabolic modulation in cancer cachexia syndrome. © FASEB.

  2. LIM-domain protein AJUBA suppresses malignant mesothelioma cell proliferation via Hippo signaling cascade.

    Science.gov (United States)

    Tanaka, I; Osada, H; Fujii, M; Fukatsu, A; Hida, T; Horio, Y; Kondo, Y; Sato, A; Hasegawa, Y; Tsujimura, T; Sekido, Y

    2015-01-02

    Malignant mesothelioma (MM) is one of the most aggressive neoplasms usually associated with asbestos exposure and is highly refractory to current therapeutic modalities. MMs show frequent activation of a transcriptional coactivator Yes-associated protein (YAP), which is attributed to the neurofibromatosis type 2 (NF2)-Hippo pathway dysfunction, leading to deregulated cell proliferation and acquisition of a malignant phenotype. However, the whole mechanism of disordered YAP activation in MMs has not yet been well clarified. In the present study, we investigated various components of the NF2-Hippo pathway, and eventually found that MM cells frequently showed downregulation of LIM-domain protein AJUBA, a binding partner of large tumor suppressor type 2 (LATS2), which is one of the last-step kinases of the NF2-Hippo pathway. Although loss of AJUBA expression was independent of the alteration status of other Hippo pathway components, MM cell lines with AJUBA inactivation showed a more dephosphorylated (activated) level of YAP. Immunohistochemical analysis showed frequent downregulation of AJUBA in primary MMs, which was associated with YAP constitutive activation. We found that AJUBA transduction into MM cells significantly suppressed promoter activities of YAP-target genes, and the suppression of YAP activity by AJUBA was remarkably canceled by knockdown of LATS2. In connection with these results, transduction of AJUBA-expressing lentivirus significantly inhibited the proliferation and anchorage-independent growth of the MM cells that harbored ordinary LATS family expression. Taken together, our findings indicate that AJUBA negatively regulates YAP activity through the LATS family, and inactivation of AJUBA is a novel key mechanism in MM cell proliferation.

  3. Bidirectional Regulation of Amyloid Precursor Protein-Induced Memory Defects by Nebula/DSCR1: A Protein Upregulated in Alzheimer's Disease and Down Syndrome.

    Science.gov (United States)

    Shaw, Jillian L; Zhang, Shixing; Chang, Karen T

    2015-08-12

    Aging individuals with Down syndrome (DS) have an increased risk of developing Alzheimer's disease (AD), a neurodegenerative disorder characterized by impaired memory. Memory problems in both DS and AD individuals usually develop slowly and progressively get worse with age, but the cause of this age-dependent memory impairment is not well understood. This study examines the functional interactions between Down syndrome critical region 1 (DSCR1) and amyloid-precursor protein (APP), proteins upregulated in both DS and AD, in regulating memory. Using Drosophila as a model, we find that overexpression of nebula (fly homolog of DSCR1) initially protects against APP-induced memory defects by correcting calcineurin and cAMP signaling pathways but accelerates the rate of memory loss and exacerbates mitochondrial dysfunction in older animals. We report that transient upregulation of Nebula/DSCR1 or acute pharmacological inhibition of calcineurin in aged flies protected against APP-induced memory loss. Our data suggest that calcineurin dyshomeostasis underlies age-dependent memory impairments and further imply that chronic Nebula/DSCR1 upregulation may contribute to age-dependent memory impairments in AD in DS. Most Down syndrome (DS) individuals eventually develop Alzheimer's disease (AD)-like dementia, but mechanisms underlying this age-dependent memory impairment remain poorly understood. This study examines Nebula/Down syndrome critical region 1 (DSCR1) and amyloid-precursor protein (APP), proteins upregulated in both DS and AD, in regulating memory. We uncover a previously unidentified role for Nebula/DSCR1 in modulating APP-induced memory defects during aging. We show that upregulation of Nebula/DSCR1, an inhibitor of calcineurin, rescues APP-induced memory defects in young flies but enhances memory loss of older flies. Excitingly, transient Nebula/DSCR1 overexpression or calcineurin inhibition in aged flies ameliorates APP-mediated memory problems. These results

  4. Potential protein biomarkers for burning mouth syndrome discovered by quantitative proteomics.

    Science.gov (United States)

    Ji, Eoon Hye; Diep, Cynthia; Liu, Tong; Li, Hong; Merrill, Robert; Messadi, Diana; Hu, Shen

    2017-01-01

    Burning mouth syndrome (BMS) is a chronic pain disorder characterized by severe burning sensation in normal looking oral mucosa. Diagnosis of BMS remains to be a challenge to oral healthcare professionals because the method for definite diagnosis is still uncertain. In this study, a quantitative saliva proteomic analysis was performed in order to identify target proteins in BMS patients' saliva that may be used as biomarkers for simple, non-invasive detection of the disease. By using isobaric tags for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry to quantify 1130 saliva proteins between BMS patients and healthy control subjects, we found that 50 proteins were significantly changed in the BMS patients when compared to the healthy control subjects ( p ≤ 0.05, 39 up-regulated and 11 down-regulated). Four candidates, alpha-enolase, interleukin-18 (IL-18), kallikrein-13 (KLK13), and cathepsin G, were selected for further validation. Based on enzyme-linked immunosorbent assay measurements, three potential biomarkers, alpha-enolase, IL-18, and KLK13, were successfully validated. The fold changes for alpha-enolase, IL-18, and KLK13 were determined as 3.6, 2.9, and 2.2 (burning mouth syndrome vs. control), and corresponding receiver operating characteristic values were determined as 0.78, 0.83, and 0.68, respectively. Our findings indicate that testing of the identified protein biomarkers in saliva might be a valuable clinical tool for BMS detection. Further validation studies of the identified biomarkers or additional candidate biomarkers are needed to achieve a multi-marker prediction model for improved detection of BMS with high sensitivity and specificity.

  5. Comparative Metatranscriptomics of Wheat Rhizosphere Microbiomes in Disease Suppressive and Non-suppressive Soils for Rhizoctonia solani AG8

    Directory of Open Access Journals (Sweden)

    Helen L. Hayden

    2018-05-01

    Full Text Available The soilborne fungus Rhizoctonia solani anastomosis group (AG 8 is a major pathogen of grain crops resulting in substantial production losses. In the absence of resistant cultivars of wheat or barley, a sustainable and enduring method for disease control may lie in the enhancement of biological disease suppression. Evidence of effective biological control of R. solani AG8 through disease suppression has been well documented at our study site in Avon, South Australia. A comparative metatranscriptomic approach was applied to assess the taxonomic and functional characteristics of the rhizosphere microbiome of wheat plants grown in adjacent fields which are suppressive and non-suppressive to the plant pathogen R. solani AG8. Analysis of 12 rhizosphere metatranscriptomes (six per field was undertaken using two bioinformatic approaches involving unassembled and assembled reads. Differential expression analysis showed the dominant taxa in the rhizosphere based on mRNA annotation were Arthrobacter spp. and Pseudomonas spp. for non-suppressive samples and Stenotrophomonas spp. and Buttiauxella spp. for the suppressive samples. The assembled metatranscriptome analysis identified more differentially expressed genes than the unassembled analysis in the comparison of suppressive and non-suppressive samples. Suppressive samples showed greater expression of a polyketide cyclase, a terpenoid biosynthesis backbone gene (dxs and many cold shock proteins (csp. Non-suppressive samples were characterised by greater expression of antibiotic genes such as non-heme chloroperoxidase (cpo which is involved in pyrrolnitrin synthesis, and phenazine biosynthesis family protein F (phzF and its transcriptional activator protein (phzR. A large number of genes involved in detoxifying reactive oxygen species (ROS and superoxide radicals (sod, cat, ahp, bcp, gpx1, trx were also expressed in the non-suppressive rhizosphere samples most likely in response to the infection of wheat

  6. A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance.

    Directory of Open Access Journals (Sweden)

    Wenjun Zhu

    Full Text Available SSITL (SS1G_14133 of Sclerotinia sclerotiorum encodes a protein with 302 amino acid residues including a signal peptide, its secretion property was confirmed with immunolocalization and immunofluorescence techniques. SSITL was classified in the integrin alpha N-terminal domain superfamily, and its 3D structure is similar to those of human integrin α4-subunit and a fungal integrin-like protein. When S. sclerotiorum was inoculated to its host, high expression of SSITL was detected during the initial stages of infection (1.5-3.0 hpi. Targeted silencing of SSITL resulted in a significant reduction in virulence; on the other hand, inoculation of SSITL silenced transformant A10 initiated strong and rapid defense response in Arabidopsis, the highest expressions of defense genes PDF1.2 and PR-1 appeared at 3 hpi which was 9 hr earlier than that time when plants were inoculated with the wild-type strain of S. sclerotiorum. Systemic resistance induced by A10 was detected by analysis of the expression of PDF1.2 and PR-1, and confirmed following inoculation with Botrytis cinerea. A10 induced much larger lesions on Arabidopsis mutant ein2 and jar1, and slightly larger lesions on mutant pad4 and NahG in comparison with the wild-type plants. Furthermore, both transient and constitutive expression of SSITL in Arabidopsis suppressed the expression of PDF1.2 and led to be more susceptible to A10 and the wild-type strain of S. sclerotiorum and B. cinerea. Our results suggested that SSITL is an effector possibly and plays significant role in the suppression of jasmonic/ethylene (JA/ET signal pathway mediated resistance at the early stage of infection.

  7. Activation of the alternative NFκB pathway improves disease symptoms in a model of Sjogren's syndrome.

    Directory of Open Access Journals (Sweden)

    Adi Gilboa-Geffen

    Full Text Available The purpose of our study was to understand if Toll-like receptor 9 (TLR9 activation could contribute to the control of inflammation in Sjogren's syndrome. To this end, we manipulated TLR9 signaling in non-obese diabetic (NOD and TLR9(-/- mice using agonistic CpG oligonucleotide aptamers, TLR9 inhibitors, and the in-house oligonucleotide BL-7040. We then measured salivation, inflammatory response markers, and expression of proteins downstream to NF-κB activation pathways. Finally, we labeled proteins of interest in salivary gland biopsies from Sjogren's syndrome patients, compared to Sicca syndrome controls. We show that in NOD mice BL-7040 activates TLR9 to induce an alternative NF-κB activation mode resulting in increased salivation, elevated anti-inflammatory response in salivary glands, and reduced peripheral AChE activity. These effects were more prominent and also suppressible by TLR9 inhibitors in NOD mice, but TLR9(-/- mice were resistant to the salivation-promoting effects of CpG oligonucleotides and BL-7040. Last, salivary glands from Sjogren's disease patients showed increased inflammatory and decreased anti-inflammatory biomarkers, in addition to decreased levels of alternative NF-κB pathway proteins. In summary, we have demonstrated that activation of TLR9 by BL-7040 leads to non-canonical activation of NF-κB, promoting salivary functioning and down-regulating inflammation. We propose that BL-7040 could be beneficial in treating Sjogren's syndrome and may be applicable to additional autoimmune syndromes.

  8. Production of polyclonal antiserum specific to the 27.5 kDa envelope protein of white spot syndrome virus

    NARCIS (Netherlands)

    You, Z.O.; Nadala, E.C.B.; Yang, J.S.; Hulten, van M.C.W.; Loh, P.C.

    2002-01-01

    A truncated version of the white spot syndrome virus (WSSV) 27.5 kDa envelope protein was expressed as a histidine tag fusion protein in Escherichia coli. The bacterial expression system allowed the production of up to 10 mg of purified recombinant protein per liter of bacterial culture. Antiserum

  9. Endoglin-mediated suppression of prostate cancer invasion is regulated by activin and bone morphogenetic protein type II receptors.

    Directory of Open Access Journals (Sweden)

    Michael J Breen

    Full Text Available Mortality from prostate cancer (PCa is due to the formation of metastatic disease. Understanding how that process is regulated is therefore critical. We previously demonstrated that endoglin, a type III transforming growth factor β (TGFβ superfamily receptor, suppresses human PCa cell invasion and metastasis. Endoglin-mediated suppression of invasion was also shown by us to be dependent upon the type I TGFβ receptor, activin receptor-like kinase 2 (ALK2, and the downstream effector, Smad1. In this study we demonstrate for the first time that two type II TGFβ receptors are required for endoglin-mediated suppression of invasion: activin A receptor type IIA (ActRIIA and bone morphogenetic protein receptor type II (BMPRII. Downstream signaling through these receptors is predominantly mediated by Smad1. ActRIIA stimulates Smad1 activation in a kinase-dependent manner, and this is required for suppression of invasion. In contrast BMPRII regulates Smad1 in a biphasic manner, promoting Smad1 signaling through its kinase domain but suppressing it through its cytoplasmic tail. BMPRII's Smad1-regulatory effects are dependent upon its expression level. Further, its ability to suppress invasion is independent of either kinase function or tail domain. We demonstrate that ActRIIA and BMPRII physically interact, and that each also interacts with endoglin. The current findings demonstrate that both BMPRII and ActRIIA are necessary for endoglin-mediated suppression of human PCa cell invasion, that they have differential effects on Smad1 signaling, that they make separate contributions to regulation of invasion, and that they functionally and physically interact.

  10. Loeys-Dietz Syndrome

    Science.gov (United States)

    ... to the signs and symptoms of Loeys-Dietz syndrome. Marfan syndrome is different from Loeys-Dietz syndrome in that the gene mutation which causes Marfan syndrome is in fibrillin-1 (FBN-1), a protein ...

  11. Marfan Syndrome

    Science.gov (United States)

    Marfan syndrome is a disorder that affects connective tissue. Connective tissues are proteins that support skin, bones, blood vessels, ... A problem with the fibrillin gene causes Marfan syndrome. Marfan syndrome can be mild to severe, and ...

  12. Three genes for mitochondrial proteins suppress null-mutations in both Afg3 and Rca1 when over-expressed.

    Science.gov (United States)

    Rep, M; Nooy, J; Guélin, E; Grivell, L A

    1996-08-01

    The AFG3 gene of Saccharomyces cerevisiae encodes a mitochondrial inner membrane protein with ATP-dependent protease activity. To gain more insight into the function of this protein, multi-copy suppressors of an afg3-null mutation were isolated. Three genes were found that restored partial growth on non-fermentable carbon sources, all of which affect the biogenesis of respiratory competent mitochondria: PIM1(LON) encodes a matrix-localized ATP-dependent protease involved in the turnover of matrix proteins; OXA1(PET1402) encodes a putative mitochondrial inner membrane protein involved in the biogenesis of the respiratory chain; and MBA1 encodes a mitochondrial protein required for optimal respiratory growth. All three genes also suppressed a null mutation in a related gene, RCA1, as well as in the combination of afg3- and rca1-null.

  13. Screening for Cushing's syndrome in obese patients

    Directory of Open Access Journals (Sweden)

    Ozay Tiryakioglu

    2010-01-01

    Full Text Available OBJECTIVES: The aim of this study was to examine the frequency of Cushing's syndrome (CS in obese patients devoid of specific clinical symptoms of Cushing's syndrome. METHODS: A total of 150 obese patients (129 female, 21 male; mean age 44.41 ± 13.34 yr; mean BMI 35.76 ± 7.13 were included in the study. As a first screening step, we measured 24-h urinary free cortisol (UFC. An overnight 1-mg dexamethasone suppression test was also performed on all patients. Urinary free cortisol levels above 100 μg/24 h were considered to be abnormal. Suppression of serum cortisol 100 μg/24 h were recorded in 37 patients (24%. Cushing's syndrome was diagnosed in 14 of the 150 patients (9.33%. Etiologic reasons for Cushing's syndrome were pituitary microadenoma (9 patients, adrenocortical adenoma (3 patients, and adrenocortical carcinoma (1 patient. CONCLUSION: A significant proportion (9.33% of patients with simple obesity were found to have Cushing's syndrome. These findings argue that obese patients should be routinely screened for Cushing's syndrome.

  14. miR-758-3p: a blood-based biomarker that's influence on the expression of CERP/ABCA1 may contribute to the progression of obesity to metabolic syndrome.

    Science.gov (United States)

    O'Neill, Sadhbh; Larsen, Mette Bohl; Gregersen, Søren; Hermansen, Kjeld; O'Driscoll, Lorraine

    2018-02-06

    Due to increasing prevalence of obesity, a simple method or methods for the diagnosis of metabolic syndrome are urgently required to reduce the risk of associated cardiovascular disease, diabetes and cancer. This study aimed to identify a miRNA biomarker that may distinguish metabolic syndrome from obesity and to investigate if such a miRNA may have functional relevance for metabolic syndrome. 52 adults with clinical obesity (n=26) or metabolic syndrome (n=26) were recruited. Plasma specimens were procured from all and were randomly designated to discovery and validation cohorts. miRNA discovery profiling was performed, using array technology, on plasma RNA. Validation was performed by quantitative polymerase chain reaction. The functional effect of miR-758-3p on its predicted target, cholesterol efflux regulatory protein/ATP-binding cassette transporter, was investigated using HepG2 liver cells. Custom miRNA profiling of 25 miRNAs in the discovery cohort found miR-758-3p to be detected in the obese cohort but undetected in the metabolic syndrome cohort. miR-758-3p was subsequently validated as a potential biomarker for metabolic syndrome by quantitative polymerase chain reaction. Bioinformatics analysis identified cholesterol efflux regulatory protein/ATP-binding cassette transporter as miR-758-3p's predicted target. Specifically, mimicking miR-758-3p in HepG2 cells suppressed cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression; conversely, inhibiting miR-758-3p increased cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression. miR-758-3p holds potential as a blood-based biomarker for distinguishing progression from obesity to metabolic syndrome and as a driver in controlling cholesterol efflux regulatory protein/ATP-binding cassette transporter expression, indicating it potential role in cholesterol control in metabolic syndrome.

  15. Expanding spectrum of contactin-associated protein 2 (CASPR2) autoimmunity-syndrome of parkinsonism and ataxia.

    Science.gov (United States)

    Kannoth, Sudheeran; Nambiar, Vivek; Gopinath, Siby; Anandakuttan, Anandkumar; Mathai, Annamma; Rajan, Parvathy Kanjiramana

    2018-03-01

    Contactin-associated protein 2 (CASPR2) antibodies are originally associated with Morvan's syndrome and peripheral nerve hyper excitability. Our objective was to study retrospectively the clinical spectrum of CASPR2 antibody-positive patients in our hospital. This is a retrospective observational study. Patients treated at the Amrita Institute of Medical Sciences from May 2013 to April 2016, who were tested positive for CASPR2 antibodies, were included. A total of 1584 samples were tested in the neuroimmunology laboratory during the study period for voltage-gated potassium channel (VGKC) complex antibodies-leucine-rich glioma-inactivated protein 1 (LGI1) and CASPR2 antibodies. Thirty-four were positive for LGI1, 13 were positive for CASPR2, and 7 were for both (total 54-3.4% positivity). Of these 54 cases, 11 were treated in our hospital. Seven were positive for LGI1, three for CASPR2, and one for both. The patient who had both CASPR2 and LGI1 antibody positive had Morvan's syndrome. One patient with CASPR2 had neuromyotonia. The other patient was admitted with status epilepticus with a syndrome of parkinsonism and ataxia. The third patient had encephalopathy and myoclonus with a syndrome of parkinsonism and ataxia. Two of them underwent siddha treatment for other ailments prior to the onset of the disease for other ailments. Our short series shows the expanding spectrum of CASPR2 autoimmunity. Syndrome of parkinsonism and ataxia is an important manifestation of CASPR2 autoimmunity where we can offer a definitive treatment.

  16. Serum-dependent expression of promyelocytic leukemia protein suppresses propagation of influenza virus

    International Nuclear Information System (INIS)

    Iki, Shigeo; Yokota, Shin-ichi; Okabayashi, Tamaki; Yokosawa, Noriko; Nagata, Kyosuke; Fujii, Nobuhiro

    2005-01-01

    The rate of propagation of influenza virus in human adenocarcinoma Caco-2 cells was found to negatively correlate with the concentration of fetal bovine serum (FBS) in the culture medium. Virus replicated more rapidly at lower FBS concentrations (0 or 2%) than at higher concentrations (10 or 20%) during an early stage of infection. Basal and interferon (IFN)-induced levels of typical IFN-inducible anti-viral proteins, such as 2',5'-oligoadenylate synthetase, dsRNA-activated protein kinase and MxA, were unaffected by variation in FBS concentrations. But promyelocytic leukemia protein (PML) was expressed in a serum-dependent manner. In particular, the 65 to 70 kDa isoform of PML was markedly upregulated following the addition of serum. In contrast, other isoforms were induced by IFN treatment, and weakly induced by FBS concentrations. Immunofluorescence microscopy indicated that PML was mainly formed nuclear bodies in Caco-2 cells at various FBS concentrations, and the levels of the PML-nuclear bodies were upregulated by FBS. Overexpression of PML isoform consisting of 560 or 633 amino acid residues by transfection of expression plasmid results in significantly delayed viral replication rate in Caco-2 cells. On the other hand, downregulation of PML expression by RNAi enhanced viral replication. These results indicate that PML isoforms which are expressed in a serum-dependent manner suppress the propagation of influenza virus at an early stage of infection

  17. The catastrophic antiphospholipid syndrome in children.

    Science.gov (United States)

    Go, Ellen J L; O'Neil, Kathleen M

    2017-09-01

    To review the difficult syndrome of catastrophic antiphospholipid syndrome, emphasizing new developments in the diagnosis, pathogenesis and treatment. Few recent publications directly address pediatric catastrophic antiphospholipid syndrome (CAPS). Most articles are case reports or are data from adult and pediatric registries. The major factors contributing to most pediatric catastrophic antiphospholipid syndrome include infection and the presence of antiphospholipid antibodies, but complement activation also is important in creating diffuse thrombosis in the microcirculation. Treatment of the acute emergency requires anticoagulation, suppression of the hyperinflammatory state and elimination of the triggering infection. Inhibition of complement activation appears to improve outcome in limited studies, and suppression of antiphospholipid antibody formation may be important in long-term management. CAPS, an antibody-mediated diffuse thrombotic disease of microvasculature, is rare in childhood but has high mortality (33-50%). It requires prompt recognition and aggressive multimodality treatment, including anticoagulation, anti-inflammatory therapy and elimination of inciting infection and pathogenic autoantibodies.

  18. Suppressive effects of mycoviral proteins encoded by Magnaporthe oryzae chrysovirus 1 strain A on conidial germination of the rice blast fungus.

    Science.gov (United States)

    Urayama, Syun-Ichi; Kimura, Yuri; Katoh, Yu; Ohta, Tomoko; Onozuka, Nobuya; Fukuhara, Toshiyuki; Arie, Tsutomu; Teraoka, Tohru; Komatsu, Ken; Moriyama, Hiromitsu

    2016-09-02

    Magnaporthe oryzae chrysovirus 1 strain A (MoCV1-A) is the causal agent of growth repression and attenuated virulence (hypovirulence) of the rice blast fungus, Magnaporthe oryzae. We previously revealed that heterologous expression of the MoCV1-A ORF4 protein resulted in cytological damage to the yeasts Saccharomyces cerevisiae and Cryptococcus neoformans. Since the ORF4 protein is one of the components of viral particles, we evaluated the inhibitory effects of the purified virus particle against the conidial germination of M. oryzae, and confirmed its suppressive effects. Recombinant MoCV1-A ORF4 protein produced in Pichia pastoris was also effective for suppression of conidial germination of M. oryzae. MoCV1-A ORF4 protein sequence showed significant similarity to 6 related mycoviral proteins; Botrysphaeria dothidea chrysovirus 1, two Fusarium graminearum viruses, Fusarium oxysporum f. sp. dianthi mycovirus 1, Penicillium janczewski chrysovirus and Agaricus bisporus virus 1 in the Chrysoviridae family. Multiple alignments of the ORF4-related protein sequences showed that their central regions (210-591 aa in MoCV1-A ORF4) are relatively conserved. Indeed, yeast transformants expressing the conserved central region of MoCV1-A ORF4 protein (325-575 aa) showed similar impaired growth phenotypes as those observed in yeasts expressing the full-length MoCV1-A ORF4 protein. These data suggest that the mycovirus itself and its encoded viral protein can be useful as anti-fungal proteins to control rice blast disease caused by M. oryzae and other pathogenic fungi. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. miR-758-3p: a blood-based biomarker that’s influence on the expression of CERP/ABCA1 may contribute to the progression of obesity to metabolic syndrome

    Science.gov (United States)

    O’Neill, Sadhbh; Larsen, Mette Bohl; Gregersen, Søren; Hermansen, Kjeld; O’Driscoll, Lorraine

    2018-01-01

    Due to increasing prevalence of obesity, a simple method or methods for the diagnosis of metabolic syndrome are urgently required to reduce the risk of associated cardiovascular disease, diabetes and cancer. This study aimed to identify a miRNA biomarker that may distinguish metabolic syndrome from obesity and to investigate if such a miRNA may have functional relevance for metabolic syndrome. 52 adults with clinical obesity (n=26) or metabolic syndrome (n=26) were recruited. Plasma specimens were procured from all and were randomly designated to discovery and validation cohorts. miRNA discovery profiling was performed, using array technology, on plasma RNA. Validation was performed by quantitative polymerase chain reaction. The functional effect of miR-758-3p on its predicted target, cholesterol efflux regulatory protein/ATP-binding cassette transporter, was investigated using HepG2 liver cells. Custom miRNA profiling of 25 miRNAs in the discovery cohort found miR-758-3p to be detected in the obese cohort but undetected in the metabolic syndrome cohort. miR-758-3p was subsequently validated as a potential biomarker for metabolic syndrome by quantitative polymerase chain reaction. Bioinformatics analysis identified cholesterol efflux regulatory protein/ATP-binding cassette transporter as miR-758-3p’s predicted target. Specifically, mimicking miR-758-3p in HepG2 cells suppressed cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression; conversely, inhibiting miR-758-3p increased cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression. miR-758-3p holds potential as a blood-based biomarker for distinguishing progression from obesity to metabolic syndrome and as a driver in controlling cholesterol efflux regulatory protein/ATP-binding cassette transporter expression, indicating it potential role in cholesterol control in metabolic syndrome. PMID:29507696

  20. Retinol-Binding Protein 4 and Insulin Resistance in Polycystic Ovary Syndrome

    OpenAIRE

    Hutchison, Samantha K.; Harrison, Cheryce; Stepto, Nigel; Meyer, Caroline; Teede, Helena J.

    2008-01-01

    OBJECTIVE?Polycystic ovary syndrome (PCOS) is an insulin-resistant state with insulin resistance being an established therapeutic target; however, measurement of insulin resistance remains challenging. We aimed to 1) determine serum retinol-binding protein 4 (RBP4) levels (purported to reflect insulin resistance) in women with PCOS and control subjects, 2) examine the relationship of RBP4 to conventional markers of insulin resistance, and 3) examine RBP4 changes with interventions modulating ...

  1. Characterization of the RNA silencing suppression activity of the Ebola virus VP35 protein in plants and mammalian cells.

    Science.gov (United States)

    Zhu, Yali; Cherukuri, Nil Celebi; Jackel, Jamie N; Wu, Zetang; Crary, Monica; Buckley, Kenneth J; Bisaro, David M; Parris, Deborah S

    2012-03-01

    Ebola virus (EBOV) causes a lethal hemorrhagic fever for which there is no approved effective treatment or prevention strategy. EBOV VP35 is a virulence factor that blocks innate antiviral host responses, including the induction of and response to alpha/beta interferon. VP35 is also an RNA silencing suppressor (RSS). By inhibiting microRNA-directed silencing, mammalian virus RSSs have the capacity to alter the cellular environment to benefit replication. A reporter gene containing specific microRNA target sequences was used to demonstrate that prior expression of wild-type VP35 was able to block establishment of microRNA silencing in mammalian cells. In addition, wild-type VP35 C-terminal domain (CTD) protein fusions were shown to bind small interfering RNA (siRNA). Analysis of mutant proteins demonstrated that reporter activity in RSS assays did not correlate with their ability to antagonize double-stranded RNA (dsRNA)-activated protein kinase R (PKR) or bind siRNA. The results suggest that enhanced reporter activity in the presence of VP35 is a composite of nonspecific translational enhancement and silencing suppression. Moreover, most of the specific RSS activity in mammalian cells is RNA binding independent, consistent with VP35's proposed role in sequestering one or more silencing complex proteins. To examine RSS activity in a system without interferon, VP35 was tested in well-characterized plant silencing suppression assays. VP35 was shown to possess potent plant RSS activity, and the activities of mutant proteins correlated strongly, but not exclusively, with RNA binding ability. The results suggest the importance of VP35-protein interactions in blocking silencing in a system (mammalian) that cannot amplify dsRNA.

  2. Atomic force microscopy-based antibody recognition imaging of proteins in the pathological deposits in Pseudoexfoliation Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Creasey, Rhiannon [School of Chemical and Physical Sciences, Flinders University of SA, GPO Box 2100, Adelaide, SA 5001 (Australia); Sharma, Shiwani [School of Medicine, Ophthalmology, Flinders University of SA, GPO Box 2100, Adelaide, SA 5001 (Australia); Gibson, Christopher T. [School of Chemical and Physical Sciences, Flinders University of SA, GPO Box 2100, Adelaide, SA 5001 (Australia); Craig, Jamie E. [School of Medicine, Ophthalmology, Flinders University of SA, GPO Box 2100, Adelaide, SA 5001 (Australia); Ebner, Andreas [Institute for Biophysics, Johannes Kepler Universitaet Linz, Altenbergerstr. 69, A-4040 Linz (Austria); Becker, Thomas [Nanochemistry Research Institute, Curtin University, GPO Box U1987, Perth, 6845 WA (Australia); Hinterdorfer, Peter [Institute for Biophysics, Johannes Kepler Universitaet Linz, Altenbergerstr. 69, A-4040 Linz (Austria); Voelcker, Nicolas H., E-mail: nico.voelcker@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University of SA, GPO Box 2100, Adelaide, SA 5001 (Australia)

    2011-07-15

    The phenomenon of protein aggregation is of considerable interest to various disciplines, including the field of medicine. A range of disease pathologies are associated with this phenomenon. One of the ocular diseases hallmarked by protein aggregation is the Pseudoexfoliation (PEX) Syndrome. This condition is characterized by the deposition of insoluble proteinaceous material on the anterior human lens capsule. Genomic and proteomic analyses have revealed an association of specific genetic markers and various proteins, respectively, with PEX syndrome. However, the ultrastructure of the protein aggregates is poorly characterized. This study seeks to build capacity to determine the molecular nature of PEX aggregates on human lens capsules in their native state by AFM-based antibody recognition imaging. Lysyl oxidase-Like 1 (LOXL1), a protein identified as a component of PEX aggregates, is detected by an antibody-modified AFM probe. Topographical AFM images and antibody recognition images are obtained using three AFM-based techniques: TREC, phase and force-volume imaging. LOXL1 is found to be present on the lens capsule surface, and is localized around fibrous protein aggregates. Our evaluation shows that TREC imaging is best suited for human tissue imaging and holds significant potential for imaging of human disease tissues in their native state. -- Highlights: {yields} Atomic force microscopy techniques were applied to diseased human tissues. {yields} LOXL1 protein was detected on the small fibers of Pseudoexfoliation deposits. {yields} PicoTREC was the optimum technique for investigating protein aggregates.

  3. Knockdown of Pokemon protein expression inhibits hepatocellular carcinoma cell proliferation by suppression of AKT activity.

    Science.gov (United States)

    Zhu, Xiaosan; Dai, Yichen; Chen, Zhangxin; Xie, Junpei; Zeng, Wei; Lin, Yuanyuan

    2013-01-01

    Overexpression of Pokemon, which is an erythroid myeloid ontogenic factor protein, occurs in different cancers, including hepatocellular carcinoma (HCC). Pokemon is also reported to have an oncogenic activity in various human cancers. This study investigated the effect of Pokemon knockdown on the regulation of HCC growth. POK shRNA suppressed the expression of Pokemon protein in HepG2 cells compared to the negative control vector-transfected HCC cells. Pokemon knockdown also reduced HCC cell viability and enhanced cisplatin-induced apoptosis in HCC cells. AKT activation and the expression of various cell cycle-related genes were inhibited following Pokemon knockdown. These data demonstrate that Pokemon may play a role in HCC progression, suggesting that inhibition of Pokemon expression using Pokemon shRNA should be further evaluated as a novel target for the control of HCC.

  4. Cysteine-rich buccal gland protein suppressed the proliferation, migration and invasion of hela cells through akt pathway.

    Science.gov (United States)

    Han, Jianmei; Liu, Yu; Jiang, Qi; Xiao, Rong

    2017-11-01

    Cysteine-rich buccal gland protein (CRBGP) as a member of cysteine-rich secretory proteins (CRISPs) superfamily was isolated from the buccal glands of Lampetra japonica, the blood suckers in the marine. Previous studies showed CRBGP could suppress angiogenesis probably due to its ion channel blocking activity. Whether CRBGP could also affect the activity of tumor cells has not been reported yet. In this study, CRBGP suppressed the proliferation of Hela cells with an IC 50 of 6.7 μM by inducing apoptosis. Both microscopic observation and Western blot indicated that CRBGP was able to induce the nuclei shrinking, downregulate the protein level of BCL2 and caspase 3 as well as upregulate the level of BAX in Hela cells, suggested that CRBGP might induce apoptosis of Hela cells in a mitochondrial-dependent pathway. Furthermore, CRBGP could disturb F-actin organization, which would finally cause the Hela cells to lose their shape and to lessen their abilities on adhesion, migration and invasion. Finally, CRBGP was shown to reduce the phosphorylation level of Akt, which indicated that CRBGP might inhibit the proliferation and metastasis of Hela cells through Akt pathway. CRBGP, as a voltage-gated sodium channel blocker, also possesses the anti-tumor abilities which provided information on the effects and action manner of the other CRISPs. © 2017 IUBMB Life, 69(11):856-866, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  5. Klippel-Feil Syndrome

    Science.gov (United States)

    ... proteins that are involved in bone development and segmentation of the vertebrae. × Definition Klippel-Feil Syndrome is a rare disorder characterized ... proteins that are involved in bone development and segmentation of the vertebrae. View Full Definition ... Treatment Treatment for Klippel-Feil Syndrome is symptomatic ...

  6. Activation of the Alternative NFκB Pathway Improves Disease Symptoms in a Model of Sjogren's Syndrome

    Science.gov (United States)

    Gilboa-Geffen, Adi; Wolf, Yochai; Hanin, Geula; Melamed-Book, Naomi; Pick, Marjorie; Bennett, Estelle R.; Greenberg, David S.; Lester, Susan; Rischmueller, Maureen; Soreq, Hermona

    2011-01-01

    The purpose of our study was to understand if Toll-like receptor 9 (TLR9) activation could contribute to the control of inflammation in Sjogren's syndrome. To this end, we manipulated TLR9 signaling in non-obese diabetic (NOD) and TLR9−/− mice using agonistic CpG oligonucleotide aptamers, TLR9 inhibitors, and the in-house oligonucleotide BL-7040. We then measured salivation, inflammatory response markers, and expression of proteins downstream to NF-κB activation pathways. Finally, we labeled proteins of interest in salivary gland biopsies from Sjogren's syndrome patients, compared to Sicca syndrome controls. We show that in NOD mice BL-7040 activates TLR9 to induce an alternative NF-κB activation mode resulting in increased salivation, elevated anti-inflammatory response in salivary glands, and reduced peripheral AChE activity. These effects were more prominent and also suppressible by TLR9 inhibitors in NOD mice, but TLR9−/− mice were resistant to the salivation-promoting effects of CpG oligonucleotides and BL-7040. Last, salivary glands from Sjogren's disease patients showed increased inflammatory and decreased anti-inflammatory biomarkers, in addition to decreased levels of alternative NF-κB pathway proteins. In summary, we have demonstrated that activation of TLR9 by BL-7040 leads to non-canonical activation of NF-κB, promoting salivary functioning and down-regulating inflammation. We propose that BL-7040 could be beneficial in treating Sjogren's syndrome and may be applicable to additional autoimmune syndromes. PMID:22174879

  7. TP53 suppression promotes erythropoiesis in del(5q) MDS, suggesting a targeted therapeutic strategy in lenalidomide-resistant patients

    Science.gov (United States)

    Caceres, Gisela; McGraw, Kathy; Yip, Bon Ham; Pellagatti, Andrea; Johnson, Joseph; Zhang, Ling; Liu, Kenian; Zhang, Lan Min; Fulp, William J.; Lee, Ji-Hyun; Al Ali, Najla H.; Basiorka, Ashley; Smith, Larry J.; Daugherty, F. Joseph; Littleton, Neil; Wells, Richard A.; Sokol, Lubomir; Wei, Sheng; Komrokji, Rami S.; Boultwood, Jacqueline; List, Alan F.

    2013-01-01

    Stabilization of p53 in erythroid precursors in response to nucleosomal stress underlies the hypoplastic anemia in myelodysplastic syndromes (MDS) with chromosome 5q deletion [del(5q)]. We investigated whether cenersen, a clinically active 20-mer antisense oligonucleotide complementary to TP53 exon10, could suppress p53 expression and restore erythropoiesis in del(5q) MDS. Cenersen treatment of ribosomal protein S-14-deficient erythroblasts significantly reduced cellular p53 and p53-up-regulated modulator of apoptosis expression compared with controls, accompanied by a significant reduction in apoptosis and increased cell proliferation. In a two-stage erythroid differentiation assay, cenersen significantly suppressed nuclear p53 in bone marrow CD34+ cells isolated from patients with del(5q) MDS, whereas erythroid burst recovery increased proportionally to the magnitude of p53 suppression without evidence of del(5q) clonal suppression (r = −0.6; P = 0.005). To explore the effect of p53 suppression on erythropoiesis in vivo, dexamethasone, a glucocorticoid receptor-dependent p53 antagonist, was added to lenalidomide treatment in eight lower-risk, transfusion-dependent, del(5q) MDS patients with acquired drug resistance. Transfusion independence was restored in five patients accompanied by expansion of erythroid precursors and decreased cellular p53 expression. We conclude that targeted suppression of p53 could support effective erythropoiesis in lenalidomide-resistant del(5q) MDS. PMID:24043769

  8. Tissue-Specific Ablation of Prkar1a Causes Schwannomas by Suppressing Neurofibromatosis Protein Production

    Directory of Open Access Journals (Sweden)

    Georgette N. Jones

    2008-11-01

    Full Text Available Signaling events leading to Schwann cell tumor initiation have been extensively characterized in the context of neurofibromatosis (NF. Similar tumors are also observed in patients with the endocrine neoplasia syndrome Carney complex, which results from inactivating mutations in PRKAR1A. Loss of PRKAR1A causes enhanced protein kinase A activity, although the pathways leading to tumorigenesis are not well characterized. Tissue-specific ablation of Prkar1a in neural crest precursor cells (TEC3KO mice causes schwannomas with nearly 80% penetrance by 10 months. These heterogeneous neoplasms were clinically characterized as genetically engineered mouse schwannomas, grades II and III. At the molecular level, analysis of the tumors revealed almost complete loss of both NF proteins, despite the fact that transcript levels were increased, implying posttranscriptional regulation. Although Erk and Akt signaling are typically enhanced in NF-associated tumors, we observed no activation of either of these pathways in TEC3KO tumors. Furthermore, the small G proteins Ras, Rac1, and RhoA are all known to be involved with NF signaling. In TEC3KO tumors, all three molecules showed modest increases in total protein, but only Rac1 showed significant activation. These data suggest that dysregulated protein kinase A activation causes tumorigenesis through pathways that overlap but are distinct from those described in NF tumorigenesis.

  9. Suppression of cell division by pKi-67 antisense-RNA and recombinant protein.

    Science.gov (United States)

    Duchrow, M; Schmidt, M H; Zingler, M; Anemüller, S; Bruch, H P; Broll, R

    2001-01-01

    The human antigen defined by the monoclonal antibody Ki-67 (pKi-67) is a human nuclear protein strongly associated with cell proliferation and found in all tissues studied. It is widely used as a marker of proliferating cells, yet its function is unknown. To investigate its function we suppressed pKi-67 expression by antisense RNA and overexpressed a partial structure of pKi-67 in HeLa cells. A BrdU-incorporation assay showed a significant decrease in DNA synthesis after antisense inhibition. Cell cycle analysis indicated a higher proportion of cells in G1 phase and a lower proportion of cells in S phase while the number of G(2)/M phase cells remained constant. Overexpression of a recombinant protein encoding three of the repetitive elements from exon 13 of pKi-67 had a similar effect to that obtained by antisense inhibition. The similarity of the effect of expressing 'Ki-67 repeats' and pKi-67 antisense RNA could be explained by a negative effect on the folding of the endogenous protein in the endoplasmatic reticulum. Furthermore excessive self-association of pKi-67 via the repeat structure could inhibit its nuclear transport, preventing it from getting to its presumptive site of action. We conclude that the Ki-67 protein has an important role in the regulation of the cell cycle, which is mediated in part by its repetitive elements. Copyright 2001 S. Karger AG, Basel

  10. Effects of Dairy Protein and Fat on the Metabolic Syndrome and Type 2 Diabetes

    OpenAIRE

    Bjørnshave, Ann; Hermansen, Kjeld

    2014-01-01

    The incidence of the metabolic syndrome (MetS) and type 2 diabetes (T2D) is increasing worldwide. Evidence supports a negative relationship between the consumption of dairy products and risk of MetS and T2D. Dairy proteins are known to have a directly beneficial effect on hypertension, dyslipidemia, and hyperglycemia, but a detailed understanding of the underlying mechanisms is missing. It has been confirmed by observations that the insulinotropic effect of dairy proteins is associated with t...

  11. Ascofuranone suppresses EGF-induced HIF-1α protein synthesis by inhibition of the Akt/mTOR/p70S6K pathway in MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yun-Jeong; Cho, Hyun-Ji [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of); Magae, Junji [Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba 300-1263 (Japan); Lee, In-Kyu [Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721 (Korea, Republic of); Park, Keun-Gyu, E-mail: kpark@knu.ac.kr [Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721 (Korea, Republic of); Chang, Young-Chae, E-mail: ycchang@cu.ac.kr [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of)

    2013-12-15

    Hypoxia-inducible factor (HIF)-1 plays an important role in tumor progression, angiogenesis and metastasis. In this study, we investigated the potential molecular mechanisms underlying the anti-angiogenic effect of ascofuranone, an isoprenoid antibiotic from Ascochyta viciae, in epidermal growth factor (EGF)-1 responsive human breast cancer cells. Ascofuranone significantly and selectively suppressed EGF-induced HIF-1α protein accumulation, whereas it did not affect the expression of HIF-1β. Furthermore, ascofuranone inhibited the transcriptional activation of vascular endothelial growth factor (VEGF) by reducing protein HIF-1α. Mechanistically, we found that the inhibitory effects of ascofuranone on HIF-1α protein expression are associated with the inhibition of synthesis HIF-1α through an EGF-dependent mechanism. In addition, ascofuranone suppressed EGF-induced phosphorylation of Akt/mTOR/p70S6 kinase, but the phosphorylation of ERK/JNK/p38 kinase was not affected by ascofuranone. These results suggest that ascofuranone suppresses EGF-induced HIF-1α protein translation through the inhibition of Akt/mTOR/p70S6 kinase signaling pathways and plays a novel role in the anti-angiogenic action. - Highlights: • Inhibitory effect of ascofuranone on HIF-1α expression is EGF-specific regulation. • Ascofuranone decreases HIF-1α protein synthesis through Akt/mTOR pathways. • Ascofuranone suppresses EGF-induced VEGF production and tumor angiogenesis.

  12. A Ca2+-calmodulin-eEF2K-eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions

    DEFF Research Database (Denmark)

    Rose, Adam John; Alsted, Thomas Junker; Jensen, Thomas Elbenhardt

    2009-01-01

    Skeletal muscle protein synthesis rate decreases during contractions but the underlying regulatory mechanisms are poorly understood. It was hypothesised that there would be a coordinated regulation of eukaryotic elongation factor 2 (eEF2) and eukaryotic initiation factor 4E-binding protein 1 (4EBP1......) phosphorylation by signalling cascades downstream of rises in intracellular [Ca(2+)] and decreased energy charge via AMP activated protein kinase (AMPK) in contracting skeletal muscle. When fast-twitch skeletal muscles were contracted ex vivo using different protocols, the suppression of protein synthesis...... correlated more closely with changes in eEF2 rather than 4EBP1 phosphorylation. Using a combination of Ca(2+) release agents and ATPase inhibitors it was shown that the 60-70% suppression of fast-twitch skeletal muscle protein synthesis during contraction was equally distributed between Ca(2+) and energy...

  13. Buddleja officinalis suppresses high glucose-induced vascular smooth muscle cell proliferation: role of mitogen-activated protein kinases, nuclear factor-kappaB and matrix metalloproteinases.

    Science.gov (United States)

    Lee, Yun Jung; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2010-02-01

    Diabetes mellitus is a well-established risk factor for vascular diseases caused by atherosclerosis. In the development of diabetic atherogenesis, vascular smooth muscle cell proliferation is recognized as a key event. Thus, we aimed to investigate whether an ethanol extract of Buddleja officinalis (EBO) suppresses high glucose-induced proliferation in primary cultured human aortic smooth muscle cells (HASMC). [(3)H]-thymidine incorporation revealed that incubation of HASMC with a high concentration of glucose (25 mmol/L) increased cell proliferation. The expression levels of cell cycle protein were also increased by treatment with high glucose concentration. Pretreatment of HASMC with EBO significantly attenuated the increase of high glucose-induced cell proliferation as well as p38 mitogen-activated protein kinases (MAPK) and JNK phosphorylation. EBO suppressed high glucose-induced matrix metalloproteinase (MMP)-9 activity in a dose-dependent manner. In addition, EBO suppressed nuclear factor-kappaB (NF-kappaB) nuclear translocation and transcriptional activity in high glucose conditions. Taken together, the present data suggest that EBO could suppress high glucose-induced atherosclerotic processes through inhibition of p38, JNK, NF-kappaB and MMP signal pathways in HASMC.

  14. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals.

    Science.gov (United States)

    Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F; Jaiswal, Sonal Nagarkar; Cai, Tiantian; Godt, Dorothea; Groves, Andrew K; Bellen, Hugo J

    2016-06-22

    Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs.

  15. Developmental expression of Drosophila Wiskott-Aldrich Syndrome family proteins

    Science.gov (United States)

    Rodriguez-Mesa, Evelyn; Abreu-Blanco, Maria Teresa; Rosales-Nieves, Alicia E.; Parkhurst, Susan M.

    2012-01-01

    Background Wiskott-Aldrich Syndrome (WASP) family proteins participate in many cellular processes involving rearrangements of the actin cytoskeleton. To the date, four WASP subfamily members have been described in Drosophila: Wash, WASp, SCAR, and Whamy. Wash, WASp, and SCAR are essential during early Drosophila development where they function in orchestrating cytoplasmic events including membrane-cytoskeleton interactions. A mutant for Whamy has not yet been reported. Results We generated monoclonal antibodies that are specific to Drosophila Wash, WASp, SCAR, and Whamy, and use these to describe their spatial and temporal localization patterns. Consistent with the importance of WASP family proteins in flies, we find that Wash, WASp, SCAR, and Whamy are dynamically expressed throughout oogenesis and embryogenesis. For example, we find that Wash accumulates at the oocyte cortex. WASp is highly expressed in the PNS, while SCAR is the most abundantly expressed in the CNS. Whamy exhibits an asymmetric subcellular localization that overlaps with mitochondria and is highly expressed in muscle. Conclusion All four WASP family members show specific expression patterns, some of which reflect their previously known roles and others revealing new potential functions. The monoclonal antibodies developed offer valuable new tools to investigate how WASP family proteins regulate actin cytoskeleton dynamics. PMID:22275148

  16. Altered intracellular localization and mobility of SBDS protein upon mutation in Shwachman-Diamond syndrome.

    Directory of Open Access Journals (Sweden)

    Claudia Orelio

    Full Text Available Shwachman-Diamond Syndrome (SDS is a rare inherited disease caused by mutations in the SBDS gene. Hematopoietic defects, exocrine pancreas dysfunction and short stature are the most prominent clinical features. To gain understanding of the molecular properties of the ubiquitously expressed SBDS protein, we examined its intracellular localization and mobility by live cell imaging techniques. We observed that SBDS full-length protein was localized in both the nucleus and cytoplasm, whereas patient-related truncated SBDS protein isoforms localize predominantly to the nucleus. Also the nucleo-cytoplasmic trafficking of these patient-related SBDS proteins was disturbed. Further studies with a series of SBDS mutant proteins revealed that three distinct motifs determine the intracellular mobility of SBDS protein. A sumoylation motif in the C-terminal domain, that is lacking in patient SBDS proteins, was found to play a pivotal role in intracellular motility. Our structure-function analyses provide new insight into localization and motility of the SBDS protein, and show that patient-related mutant proteins are altered in their molecular properties, which may contribute to the clinical features observed in SDS patients.

  17. Nonstructural 5A Protein of Hepatitis C Virus Interferes with Toll-Like Receptor Signaling and Suppresses the Interferon Response in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Takeya Tsutsumi

    Full Text Available The hepatitis C virus nonstructural protein NS5A is involved in resistance to the host immune response, as well as the viral lifecycle such as replication and maturation. Here, we established transgenic mice expressing NS5A protein in the liver and examined innate immune responses against lipopolysaccharide (LPS in vivo. Intrahepatic gene expression levels of cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ were significantly suppressed after LPS injection in the transgenic mouse liver. Induction of the C-C motif chemokine ligand 2, 4, and 5 was also suppressed. Phosphorylation of the signal transducer and activator of transcription 3, which is activated by cytokines, was also reduced, and expression levels of interferon-stimulated genes, 2'-5' oligoadenylate synthase, interferon-inducible double-stranded RNA-activated protein kinase, and myxovirus resistance 1 were similarly suppressed. Since LPS binds to toll-like receptor 4 and stimulates the downstream pathway leading to induction of these genes, we examined the extracellular signal-regulated kinase and IκB-α. The phosphorylation levels of these molecules were reduced in transgenic mouse liver, indicating that the pathway upstream of the molecules was disrupted by NS5A. Further analyses revealed that the interaction between interleukin-1 receptor-associated kinase-1 and tumor necrosis factor receptor associated factor-6 was dispersed in transgenic mice, suggesting that NS5A may interfere with this interaction via myeloid differentiation primary response gene 88, which was shown to interact with NS5A. Since the gut microbiota, a source of LPS, is known to be associated with pathological conditions in liver diseases, our results suggest the involvement of NS5A in the pathogenesis of HCV infected-liver via the suppression of innate immunity.

  18. Associations of Protein-Energy Wasting Syndrome Criteria With Body Composition and Mortality in the General and Moderate Chronic Kidney Disease Populations in the United States.

    Science.gov (United States)

    Beddhu, Srinivasan; Chen, Xiaorui; Wei, Guo; Raj, Dominic; Raphael, Kalani L; Boucher, Robert; Chonchol, Michel B; Murtaugh, Maureen A; Greene, Tom

    2017-05-01

    It is unknown whether the criteria used to define Protein-energy wasting (PEW) syndrome in dialysis patients reflect protein or energy wasting in the general and moderate CKD populations. In 11,834 participants in the 1999-2004 National Health and Nutrition Examination Survey, individual PEW syndrome criteria and the number of PEW syndrome categories were related to lean body and fat masses (measured by dual-energy absorptiometry) using linear regression in the entire cohort and CKD sub-population. Serum chemistry, body mass and muscle mass PEW criteria tended to be associated with lower lean body and fat masses, but the low dietary protein and energy intake criteria were associated with significantly higher protein and energy stores. When the number of PEW syndrome categories was defined by non-dietary categories alone, there was a monotonic inverse relationship with lean body and fat masses and strong positive relationship with mortality. In contrast, when dietary category alone was present, mean BMI was in the obesity range; additional presence of two non-dietary categories was associated with lower BMI and lower lean body and fat masses. Thus, the association of dietary category plus two additional non-dietary categories with lower protein or energy stores was driven by the presence of the two non-dietary categories. Results were similar in CKD subgroup. Hence, a definition of PEW syndrome without dietary variables has face validity and reflects protein or energy wasting.

  19. Pocket Proteins Suppress Head and Neck Cancer

    Science.gov (United States)

    Shin, Myeong-Kyun; Pitot, Henry C.; Lambert, Paul F.

    2012-01-01

    Head and neck squamous cell carcinomas (HNSCC) is a common cancer in humans long known to be caused by tobacco and alcohol use, but now an increasing percentage of HNSCC is recognized to be caused by the same human papillomaviruses (HPVs) that cause cervical and other anogenital cancers. HPV-positive HNSCCs differ remarkably from HPV-negative HNSCCs in their clinical response and molecular properties. From studies in mice, we know that E7 is the dominant HPV oncoprotein in head and neck cancer. E7 is best known for its ability to inactivate pRb, the product of the retinoblastoma tumor susceptibility gene. However loss of pRb function does not fully account for E7’s potency in causing head and neck cancer. In this study, we characterized the cancer susceptibility of mice deficient in the expression of pRb and either of two related “pocket” proteins, p107 and p130, that are also inactivated by E7. pRb/p107 deficient mice developed head and neck cancer as frequently as do HPV16 E7 transgenic mice. The head and neck epithelia of the pRb/p107 deficient mice also displayed the same acute phenotypes and biomarker readouts as observed in the epithelia of E7 transgenic mice. Mice deficient for pRb and p130 in their head and neck epithelia showed intermediate acute and tumor phenotypes. We conclude that pRb and p107 act together to efficiently suppress head and neck cancer, and are therefore highly relevant targets of HPV16 E7 in its contribution to HPV-positive HNSCC. PMID:22237625

  20. Novel causative mutations in patients with Nance-Horan syndrome and altered localization of the mutant NHS-A protein isoform.

    Science.gov (United States)

    Sharma, Shiwani; Burdon, Kathryn P; Dave, Alpana; Jamieson, Robyn V; Yaron, Yuval; Billson, Frank; Van Maldergem, Lionel; Lorenz, Birgit; Gécz, Jozef; Craig, Jamie E

    2008-01-01

    Nance-Horan syndrome is typically characterized by severe bilateral congenital cataracts and dental abnormalities. Truncating mutations in the Nance-Horan syndrome (NHS) gene cause this X-linked genetic disorder. NHS encodes two isoforms, NHS-A and NHS-1A. The ocular lens expresses NHS-A, the epithelial and neuronal cell specific isoform. The NHS-A protein localizes in the lens epithelium at the cellular periphery. The data to date suggest a role for this isoform at cell-cell junctions in epithelial cells. This study aimed to identify the causative mutations in new patients diagnosed with Nance-Horan syndrome and to investigate the effect of mutations on subcellular localization of the NHS-A protein. All coding exons of NHS were screened for mutations by polymerase chain reaction (PCR) and sequencing. PCR-based mutagenesis was performed to introduce three independent mutations in the NHS-A cDNA. Expression and localization of the mutant proteins was determined in mammalian epithelial cells. Truncating mutations were found in 6 out of 10 unrelated patients from four countries. Each of four patients carried a novel mutation (R248X, P264fs, K1198fs, and I1302fs), and each of the two other patients carried two previously reported mutations (R373X and R879X). No mutation was found in the gene in four patients. Two disease-causing mutations (R134fs and R901X) and an artificial mutation (T1357fs) resulted in premature truncation of the NHS-A protein. All three mutant proteins failed to localize to the cellular periphery in epithelial cells and instead were found in the cytoplasm. This study brings the total number of mutations identified in NHS to 18. The mislocalization of the mutant NHS-A protein, revealed by mutation analysis, is expected to adversely affect cell-cell junctions in epithelial cells such as the lens epithelium, which may explain cataractogenesis in Nance-Horan syndrome patients. Mutation analysis also shed light on the significance of NHS-A regions for

  1. Suppression of Zika Virus Infection and Replication in Endothelial Cells and Astrocytes by PKA Inhibitor PKI 14-22.

    Science.gov (United States)

    Cheng, Fan; Ramos da Silva, Suzane; Huang, I-Chueh; Jung, Jae U; Gao, Shou-Jiang

    2018-02-15

    The recent outbreak of Zika virus (ZIKV), a reemerging flavivirus, and its associated neurological disorders, such as Guillain-Barré (GB) syndrome and microcephaly, have generated an urgent need to develop effective ZIKV vaccines and therapeutic agents. Here, we used human endothelial cells and astrocytes, both of which represent key cell types for ZIKV infection, to identify potential inhibitors of ZIKV replication. Because several pathways, including the AMP-activated protein kinase (AMPK), protein kinase A (PKA), and mitogen-activated protein kinase (MAPK) signaling pathways, have been reported to play important roles in flavivirus replication, we tested inhibitors and agonists of these pathways for their effects on ZIKV replication. We identified the PKA inhibitor PKI 14-22 (PKI) to be a potent inhibitor of ZIKV replication. PKI effectively suppressed the replication of ZIKV from both the African and Asian/American lineages with a high efficiency and minimal cytotoxicity. While ZIKV infection does not induce PKA activation, endogenous PKA activity is essential for supporting ZIKV replication. Interestingly, in addition to PKA, PKI also inhibited another unknown target(s) to block ZIKV replication. PKI inhibited ZIKV replication at the postentry stage by preferentially affecting negative-sense RNA synthesis as well as viral protein translation. Together, these results have identified a potential inhibitor of ZIKV replication which could be further explored for future therapeutic application. IMPORTANCE There is an urgent need to develop effective vaccines and therapeutic agents against Zika virus (ZIKV) infection, a reemerging flavivirus associated with neurological disorders, including Guillain-Barré (GB) syndrome and microcephaly. By screening for inhibitors of several cellular pathways, we have identified the PKA inhibitor PKI 14-22 (PKI) to be a potent inhibitor of ZIKV replication. We show that PKI effectively suppresses the replication of all ZIKV

  2. Co-suppression of synthesis of major x-kafirin sub-class together with y-kafirin-1 and y-kafirin-2 required for substantially improved protein digestibility in transgenic sorghum

    CSIR Research Space (South Africa)

    Grootboom, AW

    2014-01-01

    Full Text Available Co-suppressing major kafirin sub-classes is fundamental to improved protein digestibility and nutritional value of sorghum. The improvement is linked to an irregularly invaginated phenotype of protein bodies....

  3. Suppression of Retinal Neovascularization in vivo by Inhibition of Vascular Endothelial Growth Factor (VEGF) Using Soluble VEGF-Receptor Chimeric Proteins

    Science.gov (United States)

    Aiello, Lloyd Paul; Pierce, Eric A.; Foley, Eliot D.; Takagi, Hitoshi; Chen, Helen; Riddle, Lavon; Ferrara, Napoleone; King, George L.; Smith, Lois E. H.

    1995-11-01

    The majority of severe visual loss in the United States results from complications associated with retinal neovascularization in patients with ischemic ocular diseases such as diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. Intraocular expression of the angiogenic protein vascular endothelial growth factor (VEGF) is closely correlated with neovascularization in these human disorders and with ischemia-induced retinal neovascularization in mice. In this study, we evaluated whether in vivo inhibition of VEGF action could suppress retinal neovascularization in a murine model of ischemic retinopathy. VEGF-neutralizing chimeric proteins were constructed by joining the extracellular domain of either human (Flt) or mouse (Flk) high-affinity VEGF receptors with IgG. Control chimeric proteins that did not bind VEGF were also used. VEGF-receptor chimeric proteins eliminated in vitro retinal endothelial cell growth stimulation by either VEGF (P hypoxic conditioned medium (P < 0.005) without affecting growth under nonstimulated conditions. Control proteins had no effect. To assess in vivo response, animals with bilateral retinal ischemia received intravitreal injections of VEGF antagonist in one eye and control protein in the contralateral eye. Retinal neovascularization was quantitated histologically by a masked protocol. Retinal neovascularization in the eye injected with human Flt or murine Flk chimeric protein was reduced in 100% (25/25; P < 0.0001) and 95% (21/22; P < 0.0001) of animals, respectively, compared to the control treated eye. This response was evident after only a single intravitreal injection and was dose dependent with suppression of neovascularization noted after total delivery of 200 ng of protein (P < 0.002). Reduction of histologically evident neovascular nuclei per 6-um section averaged 47% ± 4% (P < 0.001) and 37% ± 2% (P < 0.001) for Flt and Flk chimeric proteins with maximal inhibitory effects of 77% and 66

  4. Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling.

    Science.gov (United States)

    Moon, Heejung; Song, Jieun; Shin, Jeong-Oh; Lee, Hankyu; Kim, Hong-Kyung; Eggenschwiller, Jonathan T; Bok, Jinwoong; Ko, Hyuk Wan

    2014-06-10

    Endocrine-cerebro-osteodysplasia (ECO) syndrome is a recessive genetic disorder associated with multiple congenital defects in endocrine, cerebral, and skeletal systems that is caused by a missense mutation in the mitogen-activated protein kinase-like intestinal cell kinase (ICK) gene. In algae and invertebrates, ICK homologs are involved in flagellar formation and ciliogenesis, respectively. However, it is not clear whether this role of ICK is conserved in mammals and how a lack of functional ICK results in the characteristic phenotypes of human ECO syndrome. Here, we generated Ick knockout mice to elucidate the precise role of ICK in mammalian development and to examine the pathological mechanisms of ECO syndrome. Ick null mouse embryos displayed cleft palate, hydrocephalus, polydactyly, and delayed skeletal development, closely resembling ECO syndrome phenotypes. In cultured cells, down-regulation of Ick or overexpression of kinase-dead or ECO syndrome mutant ICK resulted in an elongation of primary cilia and abnormal Sonic hedgehog (Shh) signaling. Wild-type ICK proteins were generally localized in the proximal region of cilia near the basal bodies, whereas kinase-dead ICK mutant proteins accumulated in the distal part of bulged ciliary tips. Consistent with these observations in cultured cells, Ick knockout mouse embryos displayed elongated cilia and reduced Shh signaling during limb digit patterning. Taken together, these results indicate that ICK plays a crucial role in controlling ciliary length and that ciliary defects caused by a lack of functional ICK leads to abnormal Shh signaling, resulting in congenital disorders such as ECO syndrome.

  5. The effect of milk and milk proteins on risk factors of metabolic syndrome in overweight adolecents

    DEFF Research Database (Denmark)

    Arnberg, Karina

    This PhD is based on data from an intervention study with milk and milk proteins conducted in Danish adolescents with overweight. There is a high prevalence of overweight in Danish adolescents. Metabolic syndrome is a cluster of risk factors related to overweight and believed to increase the risk...... of type-2 diabetes and atherosclerotic cardiovascular diseases. Overweight children have higher concentrations of the metabolic syndrome risk factors than normal weight children and the pathological condition underlying cardiovascular diseases, called atherosclerosis, seems to start in childhood. A well...... skimmed milk, whey, casein or water for three months. The background for the intervention is that milk is an important source of protein in the Western diet and epidemiological studies in children have shown that children drinking low amounts of milk have higher concentrations of the metabolic risk...

  6. Low-Protein Diet Supplemented with Keto Acids Is Associated with Suppression of Small-Solute Peritoneal Transport Rate in Peritoneal Dialysis Patients

    OpenAIRE

    Jiang, Na; Qian, Jiaqi; Lin, Aiwu; Fang, Wei; Zhang, Weiming; Cao, Liou; Wang, Qin; Ni, Zhaohui; Yao, Qiang

    2011-01-01

    Objective. We investigate whether low-protein diet would show benefits in suppressing peritoneal transport rate in peritoneal dialysis (PD) patients. Methods. This is a supplemented analysis of our previously published trial, which randomized 60 PD patients to receive low- (LP: dietary protein intake of 0.6–0.8 g/kg/d), keto-acid-supplemented low- (sLP: 0.6–0.8 g/kg/d with 0.12 g/kg/d of keto acids), or high- (HP: 1.0–1.2 g/kg/d) protein diet and lasted for one year. In this study, the variat...

  7. An ANNEXIN-like protein from the cereal cyst nematode Heterodera avenae suppresses plant defense.

    Directory of Open Access Journals (Sweden)

    Changlong Chen

    Full Text Available Parasitism genes encoding secreted effector proteins of plant-parasitic nematodes play important roles in facilitating parasitism. An annexin-like gene was isolated from the cereal cyst nematode Heterodera avenae (termed Ha-annexin and had high similarity to annexin 2, which encodes a secreted protein of Globodera pallida. Ha-annexin encodes a predicted 326 amino acid protein containing four conserved annexin domains. Southern blotting revealed that there are at least two homologies in the H. avenae genome. Ha-annexin transcripts were expressed within the subventral gland cells of the pre-parasitic second-stage juveniles by in situ hybridization. Additionally, expression of these transcripts were relatively higher in the parasitic second-stage juveniles by quantitative real-time RT-PCR analysis, coinciding with the time when feeding cell formation is initiated. Knockdown of Ha-annexin by method of barley stripe mosaic virus-based host-induced gene silencing (BSMV-HIGS caused impaired nematode infections at 7 dpi and reduced females at 40 dpi, indicating important roles of the gene in parasitism at least in early stage in vivo. Transiently expression of Ha-ANNEXIN in onion epidermal cells and Nicotiana benthamiana leaf cells showed the whole cell-localization. Using transient expression assays in N. benthamiana, we found that Ha-ANNEXIN could suppress programmed cell death triggered by the pro-apoptotic mouse protein BAX and the induction of marker genes of PAMP-triggered immunity (PTI in N. benthamiana. In addition, Ha-ANNEXIN targeted a point in the mitogen-activated protein kinase (MAPK signaling pathway downstream of two kinases MKK1 and NPK1 in N. benthamiana.

  8. Anti-melanization mechanism of the white spot syndrome viral protein, WSSV453, via interaction with shrimp proPO-activating enzyme, PmproPPAE2.

    Science.gov (United States)

    Sutthangkul, Jantiwan; Amparyup, Piti; Eum, Jai-Hoon; Strand, Michael R; Tassanakajon, Anchalee

    2017-04-01

    Inhibition of the host melanization reaction, activated by the prophenoloxidase activating (proPO) system, is one of the crucial evasion strategies of pathogens. Recently, the shrimp pathogen, white spot syndrome virus (WSSV), was found to inhibit melanization in the shrimp Penaeus monodon. The viral protein WSSV453 was previously shown to interact with PO-activating enzyme 2 (PmPPAE2) and reported to be involved in suppressing the shrimp melanization response after WSSV infection. Here, we characterized how WSSV453 inhibits melanization. WSSV453 is a non-structural viral protein, which was first detected in shrimp haemocytes at 6 hours post-infection (hpi) by WSSV and in shrimp plasma at 24 hpi. We produced recombinant proteins for three components of the P. monodon proPO system: PmproPPAE2, PmproPO1 and PmproPO2. Functional assays showed that active PmPPAE2 processed PmproPO1 and 2 to produce functional PO. Incubation of WSSV453 with PmproPPAE2 dose-dependently reduced PmPPAE2 activity toward PmPO1 or PmPO2. In contrast, WSSV453 had no effect on activated PmPPAE2. The addition of active PmPPAE2 to WSSV-infected shrimp plasma at day 2 post-infection also rescued PO activity. Taken together, these results indicate that the anti-melanization activity of WSSV is due to WSSV453, which interacts with PmproPPAE2 and interferes with its activation to active PmPPAE2.

  9. Circulating matrix gamma-carboxyglutamate protein (MGP) species are refractory to vitamin K treatment in a new case of Keutel syndrome

    NARCIS (Netherlands)

    Cranenburg, E. C. M.; van Spaendonck-Zwarts, K. Y.; Bonafe, L.; Crettol, L. Mittaz; Rodiger, L. A.; Dikkers, F. G.; van Essen, A. J.; Superti-Furga, A.; Alexandrakis, E.; Vermeer, C.; Schurgers, L. J.; Laverman, G. D.

    Background and objectives: Matrix gamma-carboxyglutamate protein (MGP), a vitamin K-dependent protein, is recognized as a potent local inhibitor of vascular calcification. Studying patients with Keutel syndrome (KS), a rare autosomal recessive disorder resulting from MGP mutations, provides an

  10. Circulating matrix gamma-carboxyglutamate protein (MGP) species are refractory to vitamin K treatment in a new case of Keutel syndrome

    NARCIS (Netherlands)

    Cranenburg, E. C. M.; van Spaendonck-Zwarts, K. Y.; Bonafe, L.; Mittaz Crettol, L.; Rödiger, L. A.; Dikkers, F. G.; van Essen, A. J.; Superti-Furga, A.; Alexandrakis, E.; Vermeer, C.; Schurgers, L. J.; Laverman, G. D.

    2011-01-01

    Background and objectives: Matrix gamma-carboxyglutamate protein (MGP), a vitamin K-dependent protein, is recognized as a potent local inhibitor of vascular calcification. Studying patients with Keutel syndrome (KS), a rare autosomal recessive disorder resulting from MGP mutations, provides an

  11. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals

    Science.gov (United States)

    Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F; Jaiswal, Sonal Nagarkar; Cai, Tiantian; Godt, Dorothea; Groves, Andrew K; Bellen, Hugo J

    2016-01-01

    Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs. DOI: http://dx.doi.org/10.7554/eLife.15258.001 PMID:27331610

  12. hnRNP A2/B1 interacts with influenza A viral protein NS1 and inhibits virus replication potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nuclear export

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yimeng; Zhou, Jianhong; Du, Yuchun, E-mail: ydu@uark.edu

    2014-01-20

    The NS1 protein of influenza viruses is a major virulence factor and exerts its function through interacting with viral/cellular RNAs and proteins. In this study, we identified heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) as an interacting partner of NS1 proteins by a proteomic method. Knockdown of hnRNP A2/B1 by small interfering RNA (siRNA) resulted in higher levels of NS vRNA, NS1 mRNA, and NS1 protein in the virus-infected cells. In addition, we demonstrated that hnRNP A2/B1 proteins are associated with NS1 and NS2 mRNAs and that knockdown of hnRNP A2/B1 promotes transport of NS1 mRNA from the nucleus to the cytoplasm in the infected cells. Lastly, we showed that knockdown of hnRNP A2/B1 leads to enhanced virus replication. Our results suggest that hnRNP A2/B1 plays an inhibitory role in the replication of influenza A virus in host cells potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nucleocytoplasmic translocation. - Highlights: • Cellular protein hnRNP A2/B1 interacts with influenza viral protein NS1. • hnRNP A2/B1 suppresses the levels of NS1 protein, vRNA and mRNA in infected cells. • hnRNP A2/B1 protein is associated with NS1 and NS2 mRNAs. • hnRNP A2/B1 inhibits the nuclear export of NS1 mRNAs. • hnRNP A2/B1 inhibits influenza virus replication.

  13. Increased Urinary Extracellular Vesicle Sodium Transporters in Cushing's Syndrome with Hypertension.

    Science.gov (United States)

    Salih, Mahdi; Bovée, Dominique M; van der Lubbe, Nils; Danser, Alexander H J; Zietse, Robert; Feelders, Richard A; Hoorn, Ewout J

    2018-05-02

    Increased renal sodium reabsorption contributes to hypertension in Cushing's syndrome (CS). Renal sodium transporters can be analyzed non-invasively in urinary extracellular vesicles (uEVs). To analyze renal sodium transporters in uEVs of patients with CS and hypertension. Observational study. University hospital. uEVs were isolated by ultracentrifugation and analyzed by immunoblotting in 10 CS patients and 7 age-matched healthy subjects. In 7 CS patients uEVs were analyzed before and after treatment. uEV protein abundance. The 10 CS patients were divided in those with suppressed and non-suppressed renin-angiotensin-aldosterone system (RAAS, n = 5/group). CS patients with suppressed RAAS had similar blood pressure but significantly lower serum potassium than CS patients with non-suppressed RAAS. Compared to healthy subjects, only those with suppressed RAAS had higher phosphorylated Na+-K+-Cl- cotransporter type 2 (pNKCC2) and higher total and phosphorylated Na+-Cl- cotransporter (NCC) in uEVs. Serum potassium but not urinary free cortisol correlated with pNKCC2, pNCC, and NCC in uEVs. Treatment of CS reversed the increases in pNKCC2, NCC, and pNCC. CS increases renal sodium transporter abundance in uEVs especially in patients with hypertension and suppressed RAAS. As potassium has recently been identified as an important driver of NCC activity, low serum potassium may also contribute to increased renal sodium reabsorption and hypertension in CS. These results may also be relevant for hypertension induced by exogenous glucocorticoids.

  14. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    Directory of Open Access Journals (Sweden)

    Peter eMoffett

    2015-08-01

    Full Text Available Potato cyst nematodes (PCNs, including Globodera rostochiensis (Woll., are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC family. SPRYSEC proteins are unique to members of the genera Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense response in N. tabacum, and tobacco was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  15. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat

    2015-08-11

    Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC) family. SPRYSEC proteins are unique to members of the genus Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense responses in N. tabacum, which was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  16. The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties

    International Nuclear Information System (INIS)

    Lee, Changhee; Yoo, Dongwan

    2006-01-01

    The small envelope (E) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is a hydrophobic 73 amino acid protein encoded in the internal open reading frame (ORF) of the bicistronic mRNA2. As a first step towards understanding the biological role of E protein during PRRSV replication, E gene expression was blocked in a full-length infectious clone by mutating the ATG translational initiation to GTG, such that the full-length mutant genomic clone was unable to synthesize the E protein. DNA transfection of PRRSV-susceptible cells with the E gene knocked-out genomic clone showed the absence of virus infectivity. P129-ΔE-transfected cells however produced virion particles in the culture supernatant, and these particles contained viral genomic RNA, demonstrating that the E protein is essential for PRRSV infection but dispensable for virion assembly. Electron microscopy suggests that the P129-ΔE virions assembled in the absence of E had a similar appearance to the wild-type particles. Strand-specific RT-PCR demonstrated that the E protein-negative, non-infectious P129-ΔE virus particles were able to enter cells but further steps of replication were interrupted. The entry of PRRSV has been suggested to be via receptor-mediated endocytosis, and lysomotropic basic compounds and known ion-channel blocking agents both inhibited PRRSV replication effectively during the uncoating process. The expression of E protein in Escherichia coli-mediated cell growth arrests and increased the membrane permeability. Cross-linking experiments in cells infected with PRRSV or transfected with E gene showed that the E protein was able to form homo-oligomers. Taken together, our data suggest that the PRRSV E protein is likely an ion-channel protein embedded in the viral envelope and facilitates uncoating of virus and release of the genome in the cytoplasm

  17. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse)

    Science.gov (United States)

    Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.

    1997-01-01

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans. PMID:9371826

  18. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse).

    Science.gov (United States)

    Zhou, Y; Xu, B C; Maheshwari, H G; He, L; Reed, M; Lozykowski, M; Okada, S; Cataldo, L; Coschigamo, K; Wagner, T E; Baumann, G; Kopchick, J J

    1997-11-25

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans.

  19. Expression of SET Protein in the Ovaries of Patients with Polycystic Ovary Syndrome.

    Science.gov (United States)

    Boqun, Xu; Xiaonan, Dai; Yugui, Cui; Lingling, Gao; Xue, Dai; Gao, Chao; Feiyang, Diao; Jiayin, Liu; Gao, Li; Li, Mei; Zhang, Yuan; Ma, Xiang

    2013-01-01

    Background. We previously found that expression of SET gene was up-regulated in polycystic ovaries by using microarray. It suggested that SET may be an attractive candidate regulator involved in the pathophysiology of polycystic ovary syndrome (PCOS). In this study, expression and cellular localization of SET protein were investigated in human polycystic and normal ovaries. Method. Ovarian tissues, six normal ovaries and six polycystic ovaries, were collected during transsexual operation and surgical treatment with the signed consent form. The cellular localization of SET protein was observed by immunohistochemistry. The expression levels of SET protein were analyzed by Western Blot. Result. SET protein was expressed predominantly in the theca cells and oocytes of human ovarian follicles in both PCOS ovarian tissues and normal ovarian tissues. The level of SET protein expression in polycystic ovaries was triple higher than that in normal ovaries (P polycystic ovaries more than that in normal ovaries. Combined with its localization in theca cells, SET may participate in regulating ovarian androgen biosynthesis and the pathophysiology of hyperandrogenism in PCOS.

  20. Pokemon siRNA Delivery Mediated by RGD-Modified HBV Core Protein Suppressed the Growth of Hepatocellular Carcinoma.

    Science.gov (United States)

    Kong, Jing; Liu, Xiaoping; Jia, Jianbo; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang

    2015-10-01

    Hepatocellular carcinoma (HCC) is a deadly human malignant tumor that is among the most common cancers in the world, especially in Asia. Hepatitis B virus (HBV) infection has been well established as a high risk factor for hepatic malignance. Studies have shown that Pokemon is a master oncogene for HCC growth, suggesting it as an ideal therapeutic target. However, efficient delivery system is still lacking for Pokemon targeting treatment. In this study, we used core proteins of HBV, which is modified with RGD peptides, to construct a biomimetic vector for the delivery of Pokemon siRNAs (namely, RGD-HBc-Pokemon siRNA). Quantitative PCR and Western blot assays revealed that RGD-HBc-Pokemon siRNA possessed the highest efficiency of Pokemon suppression in HCC cells. In vitro experiments further indicated that RGD-HBc-Pokemon-siRNA exerted a higher tumor suppressor activity on HCC cell lines, evidenced by reduced proliferation and attenuated invasiveness, than Pokemon-siRNA or RGD-HBc alone. Finally, animal studies demonstrated that RGD-HBc-Pokemon siRNA suppressed the growth of HCC xenografts in mice by a greater extent than Pokemon-siRNA or RGD-HBc alone. Based on the above results, Pokemon siRNA delivery mediated by RGD-modified HBV core protein was shown to be an effective strategy of HCC gene therapy.

  1. Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver.

    Science.gov (United States)

    Sekiguchi, Satoshi; Kimura, Kiminori; Chiyo, Tomoko; Ohtsuki, Takahiro; Tobita, Yoshimi; Tokunaga, Yuko; Yasui, Fumihiko; Tsukiyama-Kohara, Kyoko; Wakita, Takaji; Tanaka, Toshiyuki; Miyasaka, Masayuki; Mizuno, Kyosuke; Hayashi, Yukiko; Hishima, Tsunekazu; Matsushima, Kouji; Kohara, Michinori

    2012-01-01

    Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV), is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV) that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid-polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis), liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25), which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29((+/-))/MxCre((+/-)) mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor) TNF-α and (interleukin) IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine.

  2. Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver.

    Directory of Open Access Journals (Sweden)

    Satoshi Sekiguchi

    Full Text Available Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV, is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid-polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis, liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25, which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29((+/-/MxCre((+/- mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor TNF-α and (interleukin IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine.

  3. Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses.

    Science.gov (United States)

    Liu, Yingqi; Zhu, Zixiang; Zhang, Miaotao; Zheng, Haixue

    2015-10-28

    Foot-and-mouth disease virus (FMDV) leader protein (L(pro)) is a papain-like proteinase, which plays an important role in FMDV pathogenesis. L(pro) exists as two forms, Lab and Lb, due to translation being initiated from two different start codons separated by 84 nucleotides. L(pro) self-cleaves from the nascent viral polyprotein precursor as the first mature viral protein. In addition to its role as a viral proteinase, L(pro) also has the ability to antagonize host antiviral effects. To promote FMDV replication, L(pro) can suppress host antiviral responses by three different mechanisms: (1) cleavage of eukaryotic translation initiation factor 4 γ (eIF4G) to shut off host protein synthesis; (2) inhibition of host innate immune responses through restriction of interferon-α/β production; and (3) L(pro) can also act as a deubiquitinase and catalyze deubiquitination of innate immune signaling molecules. In the light of recent functional and biochemical findings regarding L(pro), this review introduces the basic properties of L(pro) and the mechanisms by which it antagonizes host antiviral responses.

  4. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Panchal, Sunil K; Ward, Leigh; Brown, Lindsay

    2013-03-01

    Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome. Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised. High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1. Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.

  5. Expression of SET Protein in the Ovaries of Patients with Polycystic Ovary Syndrome

    OpenAIRE

    Xu Boqun; Dai Xiaonan; Cui YuGui; Gao Lingling; Dai Xue; Chao Gao; Diao Feiyang; Liu Jiayin; Li Gao; Mei Li; Yuan Zhang; Xiang Ma

    2013-01-01

    Background. We previously found that expression of SET gene was up-regulated in polycystic ovaries by using microarray. It suggested that SET may be an attractive candidate regulator involved in the pathophysiology of polycystic ovary syndrome (PCOS). In this study, expression and cellular localization of SET protein were investigated in human polycystic and normal ovaries. Method. Ovarian tissues, six normal ovaries and six polycystic ovaries, were collected during transsexual operation and ...

  6. A PTPN11 allele encoding a catalytically impaired SHP2 protein in a patient with a Noonan syndrome phenotype.

    Science.gov (United States)

    Edwards, Jonathan J; Martinelli, Simone; Pannone, Luca; Lo, Ivan Fai-Man; Shi, Lisong; Edelmann, Lisa; Tartaglia, Marco; Luk, Ho-Ming; Gelb, Bruce D

    2014-09-01

    The RASopathies are a relatively common group of phenotypically similar and genetically related autosomal dominant genetic syndromes caused by missense mutations affecting genes participating in the RAS/mitogen-activated protein kinase (MAPK) pathway that include Noonan syndrome (NS) and Noonan syndrome with multiple lentigines (NSML, formerly LEOPARD syndrome). NS and NSML can be difficult to differentiate during infancy, but the presence of multiple lentigines, café au lait spots, and specific cardiac defects facilitate the diagnosis. Furthermore, individual PTPN11 missense mutations are highly specific to each syndrome and engender opposite biochemical alterations on the function of SHP-2, the protein product of that gene. Here, we report on a 5-year-old male with two de novo PTPN11 mutations in cis, c.1471C>T (p.Pro491Ser), and c.1492C>T (p.Arg498Trp), which are associated with NS and NSML, respectively. This boy's phenotype is intermediate between NS and NSML with facial dysmorphism, short stature, mild global developmental delay, pulmonic stenosis, and deafness but absence of café au lait spots or lentigines. The double-mutant SHP-2 was found to be catalytically impaired. This raises the question of whether clinical differences between NS and NSML can be ascribed solely to the relative SHP-2 catalytic activity. © 2014 Wiley Periodicals, Inc.

  7. Characterization and interactome study of white spot syndrome virus envelope protein VP11.

    Directory of Open Access Journals (Sweden)

    Wang-Jing Liu

    Full Text Available White spot syndrome virus (WSSV is a large enveloped virus. The WSSV viral particle consists of three structural layers that surround its core DNA: an outer envelope, a tegument and a nucleocapsid. Here we characterize the WSSV structural protein VP11 (WSSV394, GenBank accession number AF440570, and use an interactome approach to analyze the possible associations between this protein and an array of other WSSV and host proteins. Temporal transcription analysis showed that vp11 is an early gene. Western blot hybridization of the intact viral particles and fractionation of the viral components, and immunoelectron microscopy showed that VP11 is an envelope protein. Membrane topology software predicted VP11 to be a type of transmembrane protein with a highly hydrophobic transmembrane domain at its N-terminal. Based on an immunofluorescence assay performed on VP11-transfected Sf9 cells and a trypsin digestion analysis of the virion, we conclude that, contrary to topology software prediction, the C-terminal of this protein is in fact inside the virion. Yeast two-hybrid screening combined with co-immunoprecipitation assays found that VP11 directly interacted with at least 12 other WSSV structural proteins as well as itself. An oligomerization assay further showed that VP11 could form dimers. VP11 is also the first reported WSSV structural protein to interact with the major nucleocapsid protein VP664.

  8. Fisetin Ameliorated Photodamage by Suppressing the Mitogen-Activated Protein Kinase/Matrix Metalloproteinase Pathway and Nuclear Factor-κB Pathways.

    Science.gov (United States)

    Chiang, Hsiu-Mei; Chan, Shih-Yun; Chu, Yin; Wen, Kuo-Ching

    2015-05-13

    Ultraviolet (UV) irradiation is one of the most important extrinsic factors contributing to skin photodamage. After UV irradiation, a series of signal transductions in the skin will be activated, leading to inflammatory response and photoaged skin. In this study, fisetin, a flavonol that exists in fruits and vegetables, was investigated for its photoprotective effects. The results revealed that 5-25 μM fisetin inhibits cyclooxygenase-2 (COX-2) and matrix metalloproteinase (MMP)-1, MMP-3, MMP-9 expression induced by ultraviolet B (UVB) irradiation in human skin fibroblasts. In addition, fisetin suppressed UVB-induced collagen degradation. With regard to its effect on upper-stream signal transduction, we found that fisetin reduced the expression of ultraviolet (UV)-induced ERK, JNK, and p38 phosphorylation in the mitogen-activated protein kinase (MAP kinase) pathway. Furthermore, fisetin reduced inhibitor κB (IκB) degradation and increased the amount of p65, which is a major subunit of nuclear factor-κB (NF-κB), in cytoplasm. It also suppressed NF-κB translocated to the nucleus and inhibited cAMP response element-binding protein (CREB) Ser-133 phosphorylation level in the phosphoinositide 3-kinase/protein kinase B/CREB (PI3K/AKT/CREB) pathway. Finally, fisetin inhibited UV-induced intracellular reactive oxygen species (ROS), prostaglandin E2 (PGE2), and nitric oxide (NO) generation. The mentioned effects and mechanisms suggest that fisetin can be used in the development of photoprotective agents.

  9. Direct interaction of the Usher syndrome 1G protein SANS and myomegalin in the retina

    NARCIS (Netherlands)

    Overlack, N.; Kilic, D.; Bauss, K.; Marker, T.; Kremer, J.M.J.; Wijk, E. van; Wolfrum, U.

    2011-01-01

    The human Usher syndrome (USH) is the most frequent cause of combined hereditary deaf-blindness. USH is genetically heterogeneous with at least 11 chromosomal loci assigned to 3 clinical types, USH1-3. We have previously demonstrated that all USH1 and 2 proteins in the eye and the inner ear are

  10. A role for suppressed skeletal muscle thermogenesis in pathways from weight fluctuations to the insulin resistance syndrome.

    Science.gov (United States)

    Dulloo, A G

    2005-08-01

    An impressive body of epidemiological evidence suggests that a history of large perturbations in body weight earlier in life, independently of excess weight, is a risk factor for later development of insulin-related complications, namely central obesity, type 2 diabetes and cardiovascular disease. Such an increased risk has been reported in men and women who in young adulthood experienced weight fluctuations that involved weight recovery after weight loss caused by disease, famine or voluntary 'yoyo' dieting, and is particularly strong when the weight fluctuations occurred much earlier in life and are characterized by catch-up growth after foetal and/or neonatal growth retardation. As the phase of weight recovery/catch-up growth is associated with both hyperinsulinaemia and an accelerated rate for recovering fat mass (i.e. catch-up fat), the questions arise as to whether, why and how processes that regulate catch-up fat might predispose to hyperinsulinaemia and to insulin-related diseases. In addressing these issues, this paper first reviews evidence for the existence of an adipose-specific control of thermogenesis, whose suppression contributes to the phenomenon of catch-up fat during weight recovery/catch-up growth. It subsequently concentrates upon recent findings suggesting that: (i) such suppression of thermogenesis directed at catch-up fat is accompanied by a redistribution of glucose from skeletal muscle to white adipose tissue, and (ii) substrate cycling between de novo lipogenesis and lipid oxidation can operate as a thermogenic effector in skeletal muscle in response to signalling interactions between leptin and insulin - two key 'adiposity' hormones implicated in the peripheral control of substrate metabolism. These new findings are integrated into the proposal that, in its 'evolutionary adaptive' role to spare glucose for rapid rebuilding of the fat stores, suppressed thermogenesis in skeletal muscle - via inhibition of substrate cycling between de novo

  11. Dreng med diarré og svær dehydrering havde food protein-induced enterocolitis syndrome

    DEFF Research Database (Denmark)

    Henriksen, Pernille; Børresen, Malene Landbo; Dahl, Kathrin

    2016-01-01

    Food protein-induced enterocolitis syndrome (FPIES) is a rare non-IgE mediated condition. Symptoms of acute FPIES include vomiting, diarrhoea and dehydration. Symptoms are often misread as acute abdomen or sepsis. The condition can be fatal. There are no biomarkers for FPIES, and skin prick test...... confronted with the very ill, dehydrated infant....

  12. The Polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing.

    Science.gov (United States)

    Bortolamiol, Diane; Pazhouhandeh, Maghsoud; Marrocco, Katia; Genschik, Pascal; Ziegler-Graff, Véronique

    2007-09-18

    Plants employ post-transcriptional gene silencing (PTGS) as an antiviral defense response. In this mechanism, viral-derived small RNAs are incorporated into the RNA-induced silencing complex (RISC) to guide degradation of the corresponding viral RNAs. ARGONAUTE1 (AGO1) is a key component of RISC: it carries the RNA slicer activity. As a counter-defense, viruses have evolved various proteins that suppress PTGS. Recently, we showed that the Polerovirus P0 protein carries an F box motif required to form an SCF-like complex, which is also essential for P0's silencing suppressor function. Here, we investigate the molecular mechanism by which P0 impairs PTGS. First we show that P0's expression does not affect the biogenesis of primary siRNAs in an inverted repeat-PTGS assay, but it does affect their activity. Moreover, P0's expression in transformed Arabidopsis plants leads to various developmental abnormalities reminiscent of mutants affected in miRNA pathways, which is accompanied by enhanced levels of several miRNA-target transcripts, suggesting that P0 acts at the level of RISC. Interestingly, ectopic expression of P0 triggered AGO1 protein decay in planta. Finally, we provide evidence that P0 physically interacts with AGO1. Based on these results, we propose that P0 hijacks the host SCF machinery to modulate gene silencing by destabilizing AGO1.

  13. Treatment of metabolic syndrome by combination of physical activity and diet needs an optimal protein intake: a randomized controlled trial.

    Science.gov (United States)

    Dutheil, Frédéric; Lac, Gérard; Courteix, Daniel; Doré, Eric; Chapier, Robert; Roszyk, Laurence; Sapin, Vincent; Lesourd, Bruno

    2012-09-17

    The recommended dietary allowance (RDA) for protein intake has been set at 1.0-1.3 g/kg/day for senior. To date, no consensus exists on the lower threshold intake (LTI = RDA/1.3) for the protein intake (PI) needed in senior patients ongoing both combined caloric restriction and physical activity treatment for metabolic syndrome. Considering that age, caloric restriction and exercise are three increasing factors of protein need, this study was dedicated to determine the minimal PI in this situation, through the determination of albuminemia that is the blood marker of protein homeostasis. Twenty eight subjects (19 M, 9 F, 61.8 ± 6.5 years, BMI 33.4 ± 4.1 kg/m²) with metabolic syndrome completed a three-week residential programme (Day 0 to Day 21) controlled for nutrition (energy balance of -500 kcal/day) and physical activity (3.5 hours/day). Patients were randomly assigned in two groups: Normal-PI (NPI: 1.0 g/kg/day) and High-PI (HPI: 1.2 g/kg/day). Then, patients returned home and were followed for six months. Albuminemia was measured at D0, D21, D90 and D180. At baseline, PI was spontaneously 1.0 g/kg/day for both groups. Albuminemia was 40.6 g/l for NPI and 40.8 g/l for HPI. A marginal protein under-nutrition appeared in NPI with a decreased albuminemia at D90 below 35 g/l (34.3 versus 41.5 g/l for HPI, p treatment based on restricted diet and exercise in senior people with metabolic syndrome, the lower threshold intake for protein must be set at 1.2 g/kg/day to maintain blood protein homeostasis.

  14. Inhalational Steroids and Iatrogenic Cushing's Syndrome.

    Science.gov (United States)

    A V, Raveendran

    2014-01-01

    Bronchial asthma (BA) and Allergic rhinitis (AR) are common clinical problems encountered in day to day practice, where inhalational corticosteroids (ICS) or intranasal steroids (INS) are the mainstay of treatment. Iatrogenic Cushing syndrome (CS) is a well known complication of systemic steroid administration. ICS /INS were earlier thought to be safe, but now more and more number of case reports of Iatrogenic Cushing syndrome have been reported, especially in those who are taking cytochrome P450 (CYP 450) inhibitors. Comparing to the classical clinical features of spontaneous Cushing syndrome, iatrogenic Cushing syndrome is more commonly associated with osteoporosis, increase in intra-ocular pressure, benign intracranial hypertension, aseptic necrosis of femoral head and pancreatitis, where as hypertension, hirsuitisum and menstrual irregularities are less common. Endocrine work up shows low serum cortisol level with evidence of HPA (hypothalamo-pituitary-adrenal) axis suppression. In all patients with features of Cushing syndrome with evidence of adrenal suppression always suspect iatrogenic CS. Since concomitant administration of cytochrome P450 inhibitors in patients on ICS/INS can precipitate iatrogenic CS, avoidance of CYP450 inhibitors, its dose reduction or substitution of ICS are the available options. Along with those, measures to prevent the precipitation of adrenal crisis has to be taken. An update on ICS-/INS- associated iatrogenic CS and its management is presented here.

  15. Shwachman-Diamond Syndrome Protein SBDS Maintains Human Telomeres by Regulating Telomerase Recruitment

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2018-02-01

    Full Text Available Shwachman-Diamond syndrome (SDS is a rare pediatric disease characterized by various systemic disorders, including hematopoietic dysfunction. The mutation of Shwachman-Bodian-Diamond syndrome (SBDS gene has been proposed to be a major causative reason for SDS. Although SBDS patients were reported to have shorter telomere length in granulocytes, the underlying mechanism is still unclear. Here we provide data to elucidate the role of SBDS in telomere protection. We demonstrate that SBDS deficiency leads to telomere shortening. We found that overexpression of disease-associated SBDS mutants or knockdown of SBDS hampered the recruitment of telomerase onto telomeres, while the overall reverse transcriptase activity of telomerase remained unaffected. Moreover, we show that SBDS could specifically bind to TPP1 during the S phase of cell cycle, likely functioning as a stabilizer for TPP1-telomerase interaction. Our findings suggest that SBDS is a telomere-protecting protein that participates in regulating telomerase recruitment.

  16. Zebrafish Mnx proteins specify one motoneuron subtype and suppress acquisition of interneuron characteristics

    Directory of Open Access Journals (Sweden)

    Seredick Steve D

    2012-11-01

    Full Text Available Abstract Background Precise matching between motoneuron subtypes and the muscles they innervate is a prerequisite for normal behavior. Motoneuron subtype identity is specified by the combination of transcription factors expressed by the cell during its differentiation. Here we investigate the roles of Mnx family transcription factors in specifying the subtypes of individually identified zebrafish primary motoneurons. Results Zebrafish has three Mnx family members. We show that each of them has a distinct and temporally dynamic expression pattern in each primary motoneuron subtype. We also show that two Mnx family members are expressed in identified VeLD interneurons derived from the same progenitor domain that generates primary motoneurons. Surprisingly, we found that Mnx proteins appear unnecessary for differentiation of VeLD interneurons or the CaP motoneuron subtype. Mnx proteins are, however, required for differentiation of the MiP motoneuron subtype. We previously showed that MiPs require two temporally-distinct phases of Islet1 expression for normal development. Here we show that in the absence of Mnx proteins, the later phase of Islet1 expression is initiated but not sustained, and MiPs become hybrids that co-express morphological and molecular features of motoneurons and V2a interneurons. Unexpectedly, these hybrid MiPs often extend CaP-like axons, and some MiPs appear to be entirely transformed to a CaP morphology. Conclusions Our results suggest that Mnx proteins promote MiP subtype identity by suppressing both interneuron development and CaP axon pathfinding. This is, to our knowledge, the first report of transcription factors that act to distinguish CaP and MiP subtype identities. Our results also suggest that MiP motoneurons are more similar to V2 interneurons than are CaP motoneurons.

  17. The Lowe syndrome protein OCRL1 is required for endocytosis in the zebrafish pronephric tubule.

    Directory of Open Access Journals (Sweden)

    Francesca Oltrabella

    2015-04-01

    Full Text Available Lowe syndrome and Dent-2 disease are caused by mutation of the inositol 5-phosphatase OCRL1. Despite our increased understanding of the cellular functions of OCRL1, the underlying basis for the renal tubulopathy seen in both human disorders, of which a hallmark is low molecular weight proteinuria, is currently unknown. Here, we show that deficiency in OCRL1 causes a defect in endocytosis in the zebrafish pronephric tubule, a model for the mammalian renal tubule. This coincides with a reduction in levels of the scavenger receptor megalin and its accumulation in endocytic compartments, consistent with reduced recycling within the endocytic pathway. We also observe reduced numbers of early endocytic compartments and enlarged vacuolar endosomes in the sub-apical region of pronephric cells. Cell polarity within the pronephric tubule is unaffected in mutant embryos. The OCRL1-deficient embryos exhibit a mild ciliogenesis defect, but this cannot account for the observed impairment of endocytosis. Catalytic activity of OCRL1 is required for renal tubular endocytosis and the endocytic defect can be rescued by suppression of PIP5K. These results indicate for the first time that OCRL1 is required for endocytic trafficking in vivo, and strongly support the hypothesis that endocytic defects are responsible for the renal tubulopathy in Lowe syndrome and Dent-2 disease. Moreover, our results reveal PIP5K as a potential therapeutic target for Lowe syndrome and Dent-2 disease.

  18. C-Reactive Protein Levels in the Brugada Syndrome

    Directory of Open Access Journals (Sweden)

    Aimé Bonny

    2011-01-01

    Full Text Available Background. Inflammation in the Brugada syndrome (BrS and its clinical implication have been little studied. Aims. To assess the level of inflammation in BrS patients. Methods. All studied BrS patients underwent blood samples drawn for C-reactive protein (CRP levels at admission, prior to any invasive intervention. Patients with a previous ICD placement were controlled to exclude those with a recent (<14 days shock. We divided subjects into symptomatic (syncope or aborted sudden death and asymptomatic groups. In a multivariable analysis, we adjusted for significant variables (age, CRP ≥ 2 mg/L. Results. Fifty-four subjects were studied (mean age 45 ± 13 years, 49 (91% male. Twenty (37% were symptomatic. Baseline characteristics were similar in both groups. Mean CRP level was 1,4 ± 0,9 mg/L in asymptomatic and 2,4 ± 1,4 mg/L in symptomatic groups (P = .003. In the multivariate model, CRP concentrations ≥ 2 mg/L remained an independent marker for being symptomatic (P = .018; 95% CI: 1.3 to 19.3. Conclusion. Inflammation seems to be more active in symptomatic BrS. C-reactive protein concentrations ≥ 2 mg/L might be associated with the previous symptoms in BrS. The value of inflammation as a risk factor of arrhythmic events in BrS needs to be studied.

  19. Relationship of C-reactive protein, metabolic syndrome and diabetes mellitus: potential role of statins.

    Science.gov (United States)

    Nash, David T

    2005-12-01

    Atherosclerosis and the metabolic derangements of insulin resistance, metabolic syndrome and diabetes mellitus are all associated with underlying inflammatory processes. C-reactive protein (CRP), a marker of inflammation, has been shown to be a strong independent predictor of vascular events. It adds to cardiovascular disease risk at all levels of low-density-lipoprotein cholesterol and Framingham risk scores, and elevated levels are also associated with increasing severity of the metabolic syndrome. The development of a simple, stable, noninvasive test to measure high-sensitivity CRP has provided a clinical tool that may have an important role in the identification and assessment of individuals likely to develop cardiovascular or metabolic disease. The role of CRP in predicting cardiovascular risk is less clear in African Americans, however, than in white populations. Statins and thiazolidinediones are being investigated for their potential role in the prevention and treatment of the inflammatory processes involved in the metabolic syndrome and cardiovascular disease. In the future, assessment of CRP levels may contribute importantly to clinical decision-making in reducing cardiovascular risk.

  20. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-β- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures

    International Nuclear Information System (INIS)

    Kamanga-Sollo, E.; Pampusch, M.S.; White, M.E.; Hathaway, M.R.; Dayton, W.R.

    2005-01-01

    We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-β superfamily members myostatin and TGF-β 1 have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-β 1 or myostatin significantly (P 1 and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P 1 or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-β 1 or myostatin treatment (P 1 or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-β and myostatin to suppress proliferation of PEMC

  1. Theobromine suppresses adipogenesis through enhancement of CCAAT-enhancer-binding protein β degradation by adenosine receptor A1.

    Science.gov (United States)

    Mitani, Takakazu; Watanabe, Shun; Yoshioka, Yasukiyo; Katayama, Shigeru; Nakamura, Soichiro; Ashida, Hitoshi

    2017-12-01

    Theobromine, a methylxanthine derived from cacao beans, reportedly has various health-promoting properties but molecular mechanism by which effects of theobromine on adipocyte differentiation and adipogenesis remains unclear. In this study, we aimed to clarify the molecular mechanisms of the anti-adipogenic effect of theobromine in vitro and in vivo. ICR mice (4week-old) were administered with theobromine (0.1g/kg) for 7days. Theobromine administration attenuated gains in body and epididymal adipose tissue weights in mice and suppressed expression of adipogenic-associated genes in mouse adipose tissue. In 3T3-L1 preadipocytes, theobromine caused degradation of C/EBPβ protein by the ubiquitin-proteasome pathway. Pull down assay showed that theobromine selectively interacts with adenosine receptor A1 (AR1), and AR1 knockdown inhibited theobromine-induced C/EBPβ degradation. Theobromine increased sumoylation of C/EBPβ at Lys133. Expression of the small ubiquitin-like modifier (SUMO)-specific protease 2 (SENP2) gene, coding for a desumoylation enzyme, was suppressed by theobromine. In vivo knockdown studies showed that AR1 knockdown in mice attenuated the anti-adipogenic effects of theobromine in younger mice. Theobromine suppresses adipocyte differentiation and induced C/EBPβ degradation by increasing its sumoylation. Furthermore, the inhibition of AR1 signaling is important for theobromine-induced C/EBPβ degradation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Envelope Proteins of White Spot Syndrome Virus (WSSV Interact with Litopenaeus vannamei Peritrophin-Like Protein (LvPT.

    Directory of Open Access Journals (Sweden)

    Shijun Xie

    Full Text Available White spot syndrome virus (WSSV is a major pathogen in shrimp cultures. The interactions between viral proteins and their receptors on the surface of cells in a frontier target tissue are crucial for triggering an infection. In this study, a yeast two-hybrid (Y2H library was constructed using cDNA obtained from the stomach and gut of Litopenaeus vannamei, to ascertain the role of envelope proteins in WSSV infection. For this purpose, VP37 was used as the bait in the Y2H library screening. Forty positive clones were detected after screening. The positive clones were analyzed and discriminated, and two clones belonging to the peritrophin family were subsequently confirmed as genuine positive clones. Sequence analysis revealed that both clones could be considered as the same gene, LV-peritrophin (LvPT. Co-immunoprecipitation confirmed the interaction between LvPT and VP37. Further studies in the Y2H system revealed that LvPT could also interact with other WSSV envelope proteins such as VP32, VP38A, VP39B, and VP41A. The distribution of LvPT in tissues revealed that LvPT was mainly expressed in the stomach than in other tissues. In addition, LvPT was found to be a secretory protein, and its chitin-binding ability was also confirmed.

  3. Multiple Functional Domains and Complexes of the Two Nonstructural Proteins of Human Respiratory Syncytial Virus Contribute to Interferon Suppression and Cellular Location▿

    Science.gov (United States)

    Swedan, Samer; Andrews, Joel; Majumdar, Tanmay; Musiyenko, Alla; Barik, Sailen

    2011-01-01

    Human respiratory syncytial virus (RSV), a major cause of severe respiratory diseases, efficiently suppresses cellular innate immunity, represented by type I interferon (IFN), using its two unique nonstructural proteins, NS1 and NS2. In a search for their mechanism, NS1 was previously shown to decrease levels of TRAF3 and IKKε, whereas NS2 interacted with RIG-I and decreased TRAF3 and STAT2. Here, we report on the interaction, cellular localization, and functional domains of these two proteins. We show that recombinant NS1 and NS2, expressed in lung epithelial A549 cells, can form homo- as well as heteromers. Interestingly, when expressed alone, substantial amounts of NS1 and NS2 localized to the nuclei and to the mitochondria, respectively. However, when coexpressed with NS2, as in RSV infection, NS1 could be detected in the mitochondria as well, suggesting that the NS1-NS2 heteromer localizes to the mitochondria. The C-terminal tetrapeptide sequence, DLNP, common to both NS1 and NS2, was required for some functions, but not all, whereas only the NS1 N-terminal region was important for IKKε reduction. Finally, NS1 and NS2 both interacted specifically with host microtubule-associated protein 1B (MAP1B). The contribution of MAP1B in NS1 function was not tested, but in NS2 it was essential for STAT2 destruction, suggesting a role of the novel DLNP motif in protein-protein interaction and IFN suppression. PMID:21795342

  4. Morvan syndrome: a rare cause of syndrome of inappropriate antidiuretic hormone secretion.

    Science.gov (United States)

    Demirbas, Seref; Aykan, Musa Baris; Zengin, Haydar; Mazman, Semir; Saglam, Kenan

    2017-01-01

    The syndrome of inappropriate antidiuretic hormone secretion (SIADH) accounts for an important part of hyponatremia cases. The causes of SIADH can be detected almost always. As a rare disorder, Morvan Syndrome can be defined by the sum of peripheral nerve hyperexcitability, autonomic instability and neuropsychiatric features. Antibodies to voltage-gated potassium channels (Anti - VGKC-Ab) including contactin associated protein-like 2 antibodies (CASPR2-Ab) and leucine-rich glioma inactivated protein 1 antibodies (LGI1-Ab) were previously known for the potential association with this condition. We present a Morvan Syndrome in a patient who presented with various neuropsychiatric symptoms and SIADH.

  5. Extracellular vesicle-derived protein from Bifidobacterium longum alleviates food allergy through mast cell suppression.

    Science.gov (United States)

    Kim, Jung-Hwan; Jeun, Eun-Ji; Hong, Chun-Pyo; Kim, Seong-Hoon; Jang, Min Seong; Lee, Eun-Jung; Moon, Sook Jin; Yun, Chang Ho; Im, Sin-Hyeog; Jeong, Seok-Geun; Park, Beom-Young; Kim, Kyong-Tai; Seoh, Ju-Young; Kim, Yoon-Keun; Oh, Sung-Jong; Ham, Jun-Sang; Yang, Bo-Gie; Jang, Myoung Ho

    2016-02-01

    The incidence of food allergies has increased dramatically during the last decade. Recently, probiotics have been studied for the prevention and treatment of allergic disease. We examined whether Bifidobacterium longum KACC 91563 and Enterococcus faecalis KACC 91532 have the capacity to suppress food allergies. B longum KACC 91563 and E faecalis KACC 91532 were administered to BALB/c wild-type mice, in which food allergy was induced by using ovalbumin and alum. Food allergy symptoms and various immune responses were assessed. B longum KACC 91563, but not E faecalis KACC 91532, alleviated food allergy symptoms. Extracellular vesicles of B longum KACC 91563 bound specifically to mast cells and induced apoptosis without affecting T-cell immune responses. Furthermore, injection of family 5 extracellular solute-binding protein, a main component of extracellular vesicles, into mice markedly reduced the occurrence of diarrhea in a mouse food allergy model. B longum KACC 91563 induces apoptosis of mast cells specifically and alleviates food allergy symptoms. Accordingly, B longum KACC 91563 and family 5 extracellular solute-binding protein exhibit potential as therapeutic approaches for food allergies. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. Proteomic Identification of Altered Cerebral Proteins in the Complex Regional Pain Syndrome Animal Model

    Directory of Open Access Journals (Sweden)

    Francis Sahngun Nahm

    2014-01-01

    Full Text Available Background. Complex regional pain syndrome (CRPS is a rare but debilitating pain disorder. Although the exact pathophysiology of CRPS is not fully understood, central and peripheral mechanisms might be involved in the development of this disorder. To reveal the central mechanism of CRPS, we conducted a proteomic analysis of rat cerebrum using the chronic postischemia pain (CPIP model, a novel experimental model of CRPS. Materials and Methods. After generating the CPIP animal model, we performed a proteomic analysis of the rat cerebrum using a multidimensional protein identification technology, and screened the proteins differentially expressed between the CPIP and control groups. Results. A total of 155 proteins were differentially expressed between the CPIP and control groups: 125 increased and 30 decreased; expressions of proteins related to cell signaling, synaptic plasticity, regulation of cell proliferation, and cytoskeletal formation were increased in the CPIP group. However, proenkephalin A, cereblon, and neuroserpin were decreased in CPIP group. Conclusion. Altered expression of cerebral proteins in the CPIP model indicates cerebral involvement in the pathogenesis of CRPS. Further study is required to elucidate the roles of these proteins in the development and maintenance of CRPS.

  7. Proteomic identification of altered cerebral proteins in the complex regional pain syndrome animal model.

    Science.gov (United States)

    Nahm, Francis Sahngun; Park, Zee-Yong; Nahm, Sang-Soep; Kim, Yong Chul; Lee, Pyung Bok

    2014-01-01

    Complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder. Although the exact pathophysiology of CRPS is not fully understood, central and peripheral mechanisms might be involved in the development of this disorder. To reveal the central mechanism of CRPS, we conducted a proteomic analysis of rat cerebrum using the chronic postischemia pain (CPIP) model, a novel experimental model of CRPS. After generating the CPIP animal model, we performed a proteomic analysis of the rat cerebrum using a multidimensional protein identification technology, and screened the proteins differentially expressed between the CPIP and control groups. Results. A total of 155 proteins were differentially expressed between the CPIP and control groups: 125 increased and 30 decreased; expressions of proteins related to cell signaling, synaptic plasticity, regulation of cell proliferation, and cytoskeletal formation were increased in the CPIP group. However, proenkephalin A, cereblon, and neuroserpin were decreased in CPIP group. Altered expression of cerebral proteins in the CPIP model indicates cerebral involvement in the pathogenesis of CRPS. Further study is required to elucidate the roles of these proteins in the development and maintenance of CRPS.

  8. Myofibroblast Expression in Skin Wounds Is Enhanced by Collagen III Suppression

    Directory of Open Access Journals (Sweden)

    Mohammed M. Al-Qattan

    2015-01-01

    Full Text Available Generally speaking, the excessive expression of myofibroblasts is associated with excessive collagen production. One exception is seen in patients and animal models of Ehlers-Danlos syndrome type IV in which the COL3A1 gene mutation results in reduced collagen III but with concurrent increased myofibroblast expression. This paradox has not been examined with the use of external drugs/modalities to prevent hypertrophic scars. In this paper, we injected the rabbit ear wound model of hypertrophic scarring with two doses of a protein called nAG, which is known to reduce collagen expression and to suppress hypertrophic scarring in that animal model. The higher nAG dose was associated with significantly less collagen III expression and concurrent higher degree of myofibroblast expression. We concluded that collagen III content of the extracellular matrix may have a direct or an indirect effect on myofibroblast differentiation. However, further research is required to investigate the pathogenesis of this paradoxical phenomenon.

  9. Protein metabolism in Turner syndrome and the impact of hormone replacement therapy.

    Science.gov (United States)

    Gravholt, Claus Højbjerg; Riis, Anne Lene; Møller, Niels; Christiansen, Jens Sandahl

    2007-09-01

    Studies have documented an altered body composition in Turner syndrome (TS). Body fat is increased and muscle mass is decreased. Ovarian failure necessitates substitution with female hormone replacement therapy (HRT), and HRT induces favourable changes in body composition. It is unknown how HRT affects protein metabolism. To test whether alterations in body composition before and after HRT in TS are a result of altered protein metabolism. We performed a randomized crossover study with active treatment (HRT in TS and oral contraceptives in controls) or no treatment. We studied eight women (age 29.7 +/- 5.6 (mean +/- SD) years) with TS, verified by karyotype, and eight age-matched controls (age 27.3 +/- 4.9 years). All subjects underwent a 3-h study in the postabsorptive state. Protein dynamics of the whole body and of the forearm muscles were measured by an amino acid tracer dilution technique using [(15)N]phenylalanine and [(2)H(4)]tyrosine. Substrate metabolism was examined by indirect calorimetry. Energy expenditure was comparable among TS and controls, and did not change during active treatment. Whole-body phenylalanine and tyrosine fluxes were similar in the untreated situations, and did not change during active treatment. Amino acid degradation and protein synthesis were similar in all situations. Muscle protein breakdown was similar among groups, and was not affected by treatment. Muscle protein synthesis rate and forearm blood flow did not differ among groups or due to treatment. Protein metabolism in TS is comparable to controls, and is not affected by HRT.

  10. Minoxidil may suppress androgen receptor-related functions.

    Science.gov (United States)

    Hsu, Cheng-Lung; Liu, Jai-Shin; Lin, An-Chi; Yang, Chih-Hsun; Chung, Wen-Hung; Wu, Wen-Guey

    2014-04-30

    Although minoxidil has been used for more than two decades to treat androgenetic alopecia (AGA), an androgen-androgen receptor (AR) pathway-dominant disease, its precise mechanism of action remains elusive. We hypothesized that minoxidil may influence the AR or its downstream signaling. These tests revealed that minoxidil suppressed AR-related functions, decreasing AR transcriptional activity in reporter assays, reducing expression of AR targets at the protein level, and suppressing AR-positive LNCaP cell growth. Dissecting the underlying mechanisms, we found that minoxidil interfered with AR-peptide, AR-coregulator, and AR N/C-terminal interactions, as well as AR protein stability. Furthermore, a crystallographic analysis using the AR ligand-binding domain (LBD) revealed direct binding of minoxidil to the AR in a minoxidil-AR-LBD co-crystal model, and surface plasmon resonance assays demonstrated that minoxidil directly bound the AR with a K(d) value of 2.6 µM. Minoxidil also suppressed AR-responsive reporter activity and decreased AR protein stability in human hair dermal papilla cells. The current findings provide evidence that minoxidil could be used to treat both cancer and age-related disease, and open a new avenue for applications of minoxidil in treating androgen-AR pathway-related diseases.

  11. Competition between the DNA unwinding and strand pairing activities of the Werner and Bloom syndrome proteins

    Directory of Open Access Journals (Sweden)

    Orren David K

    2006-01-01

    Full Text Available Abstract Background The premature aging and cancer-prone Werner and Bloom syndromes are caused by defects in the RecQ helicase enzymes WRN and BLM, respectively. Recently, both WRN and BLM (as well as several other RecQ members have been shown to possess a strand annealing activity in addition to the requisite DNA unwinding activity. Since an annealing function would appear to directly oppose the action of a helicase, we have examined in this study the dynamic equilibrium between unwinding and annealing mediated by either WRN or BLM. Results Our investigation into the competition between annealing and unwinding demonstrates that, under standard reaction conditions, WRN- or BLM-mediated annealing can partially or completely mask unwinding as measured in standard helicase assays. Several strategies were employed to suppress the annealing activity so that the actual strength of WRN- or BLM-dependent unwinding could be more accurately assessed. Interestingly, if a DNA oligomer complementary to one strand of the DNA substrate to be unwound is added during the helicase reaction, both WRN and BLM unwinding is enhanced, presumably by preventing protein-mediated re-annealing. This strategy allowed measurement of WRN-catalyzed unwinding of long (80 base pair duplex regions and fully complementary, blunt-ended duplexes, both of which were otherwise quite refractory to the helicase activity of WRN. Similarly, the addition of trap strand stimulated the ability of BLM to unwind long and blunt-ended duplexes. The stimulatory effect of the human replication protein A (hRPA, the eukaryotic single-stranded DNA binding protein on both WRN- and BLM-dependent unwinding was also re-examined in light of its possible role in preventing re-annealing. Our results show that hRPA influences the outcome of WRN and BLM helicase assays by both inhibiting re-annealing and directly promoting unwinding, with the larger contribution from the latter mechanism. Conclusion These

  12. Characterization of the ternary Usher syndrome SANS/ush2a/whirlin protein complex.

    Science.gov (United States)

    Sorusch, Nasrin; Bauß, Katharina; Plutniok, Janet; Samanta, Ananya; Knapp, Barbara; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe

    2017-03-15

    The Usher syndrome (USH) is the most common form of inherited deaf-blindness, accompanied by vestibular dysfunction. Due to the heterogeneous manifestation of the clinical symptoms, three USH types (USH1-3) and additional atypical forms are distinguished. USH1 and USH2 proteins have been shown to function together in multiprotein networks in photoreceptor cells and hair cells. Mutations in USH proteins are considered to disrupt distinct USH protein networks and finally lead to the development of USH.To get novel insights into the molecular pathomechanisms underlying USH, we further characterize the periciliary USH protein network in photoreceptor cells. We show the direct interaction between the scaffold protein SANS (USH1G) and the transmembrane adhesion protein ush2a and that both assemble into a ternary USH1/USH2 complex together with the PDZ-domain protein whirlin (USH2D) via mutual interactions. Immunohistochemistry and proximity ligation assays demonstrate co-localization of complex partners and complex formation, respectively, in the periciliary region, the inner segment and at the synapses of rodent and human photoreceptor cells. Protein-protein interaction assays and co-expression of complex partners reveal that pathogenic mutations in USH1G severely affect formation of the SANS/ush2a/whirlin complex. Translational read-through drug treatment, targeting the c.728C > A (p.S243X) nonsense mutation, restored SANS scaffold function. We conclude that USH1 and USH2 proteins function together in higher order protein complexes. The maintenance of USH1/USH2 protein complexes depends on multiple USH1/USH2 protein interactions, which are disrupted by pathogenic mutations in USH1G protein SANS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Food protein induced enterocolitis syndrome caused by rice beverage.

    Science.gov (United States)

    Caminiti, Lucia; Salzano, Giuseppina; Crisafulli, Giuseppe; Porcaro, Federica; Pajno, Giovanni Battista

    2013-05-14

    Food protein-induced enterocolitis syndrome (FPIES) is an uncommon and potentially severe non IgE-mediated gastrointestinal food allergy. It is usually caused by cow's milk or soy proteins, but may also be triggered by ingestion of solid foods. The diagnosis is made on the basis of clinical history and symptoms. Management of acute phase requires fluid resuscitation and intravenous steroids administration, but avoidance of offending foods is the only effective therapeutic option.Infant with FPIES presented to our emergency department with vomiting, watery stools, hypothension and metabolic acidosis after ingestion of rice beverage. Intravenous fluids and steroids were administered with good clinical response. Subsequently, a double blind placebo control food challenge (DBPCFC) was performed using rice beverage and hydrolyzed formula (eHF) as placebo. The "rice based formula" induced emesis, diarrhoea and lethargy. Laboratory investigations reveal an increase of absolute count of neutrophils and the presence of faecal eosinophils. The patient was treated with both intravenous hydration and steroids. According to Powell criteria, oral food challenge was considered positive and diagnosis of FPIES induced by rice beverage was made. Patient was discharged at home with the indication to avoid rice and any rice beverage as well as to reintroduce hydrolyzed formula. A case of FPIES induced by rice beverage has never been reported. The present case clearly shows that also beverage containing rice proteins can be responsible of FPIES. For this reason, the use of rice beverage as cow's milk substitute for the treatment of non IgE-mediated food allergy should be avoided.

  14. A 3D model of the membrane protein complex formed by the white spot syndrome virus structural proteins.

    Directory of Open Access Journals (Sweden)

    Yun-Shiang Chang

    Full Text Available BACKGROUND: Outbreaks of white spot disease have had a large negative economic impact on cultured shrimp worldwide. However, the pathogenesis of the causative virus, WSSV (whit spot syndrome virus, is not yet well understood. WSSV is a large enveloped virus. The WSSV virion has three structural layers surrounding its core DNA: an outer envelope, a tegument and a nucleocapsid. In this study, we investigated the protein-protein interactions of the major WSSV structural proteins, including several envelope and tegument proteins that are known to be involved in the infection process. PRINCIPAL FINDINGS: In the present report, we used coimmunoprecipitation and yeast two-hybrid assays to elucidate and/or confirm all the interactions that occur among the WSSV structural (envelope and tegument proteins VP51A, VP19, VP24, VP26 and VP28. We found that VP51A interacted directly not only with VP26 but also with VP19 and VP24. VP51A, VP19 and VP24 were also shown to have an affinity for self-interaction. Chemical cross-linking assays showed that these three self-interacting proteins could occur as dimers. CONCLUSIONS: From our present results in conjunction with other previously established interactions we construct a 3D model in which VP24 acts as a core protein that directly associates with VP26, VP28, VP38A, VP51A and WSV010 to form a membrane-associated protein complex. VP19 and VP37 are attached to this complex via association with VP51A and VP28, respectively. Through the VP26-VP51C interaction this envelope complex is anchored to the nucleocapsid, which is made of layers of rings formed by VP664. A 3D model of the nucleocapsid and the surrounding outer membrane is presented.

  15. Human Antiviral Protein IFIX Suppresses Viral Gene Expression during Herpes Simplex Virus 1 (HSV-1) Infection and Is Counteracted by Virus-induced Proteasomal Degradation.

    Science.gov (United States)

    Crow, Marni S; Cristea, Ileana M

    2017-04-01

    The interferon-inducible protein X (IFIX), a member of the PYHIN family, was recently recognized as an antiviral factor against infection with herpes simplex virus 1 (HSV-1). IFIX binds viral DNA upon infection and promotes expression of antiviral cytokines. How IFIX exerts its host defense functions and whether it is inhibited by the virus remain unknown. Here, we integrated live cell microscopy, proteomics, IFIX domain characterization, and molecular virology to investigate IFIX regulation and antiviral functions during HSV-1 infection. We find that IFIX has a dynamic localization during infection that changes from diffuse nuclear and nucleoli distribution in uninfected cells to discrete nuclear puncta early in infection. This is rapidly followed by a reduction in IFIX protein levels. Indeed, using immunoaffinity purification and mass spectrometry, we define IFIX interactions during HSV-1 infection, finding an association with a proteasome subunit and proteins involved in ubiquitin-proteasome processes. Using synchronized HSV-1 infection, microscopy, and proteasome-inhibition experiments, we demonstrate that IFIX co-localizes with nuclear proteasome puncta shortly after 3 h of infection and that its pyrin domain is rapidly degraded in a proteasome-dependent manner. We further demonstrate that, in contrast to several other host defense factors, IFIX degradation is not dependent on the E3 ubiquitin ligase activity of the viral protein ICP0. However, we show IFIX degradation requires immediate-early viral gene expression, suggesting a viral host suppression mechanism. The IFIX interactome also demonstrated its association with transcriptional regulatory proteins, including the 5FMC complex. We validate this interaction using microscopy and reciprocal isolations and determine it is mediated by the IFIX HIN domain. Finally, we show IFIX suppresses immediate-early and early viral gene expression during infection. Altogether, our study demonstrates that IFIX antiviral

  16. Role of Shwachman-Bodian-Diamond syndrome protein in translation machinery and cell chemotaxis: a comparative genomics approach

    Directory of Open Access Journals (Sweden)

    Vasieva O

    2011-09-01

    Full Text Available Olga VasievaInstitute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Fellowship for the Interpretation of Genomes, Burr Ridge, IL, USAAbstract: Shwachman-Bodian-Diamond syndrome (SBDS is linked to a mutation in a single gene. The SBDS proinvolved in RNA metabolism and ribosome-associated functions, but SBDS mutation is primarily linked to a defect in polymorphonuclear leukocytes unable to orient correctly in a spatial gradient of chemoattractants. Results of data mining and comparative genomic approaches undertaken in this study suggest that SBDS protein is also linked to tRNA metabolism and translation initiation. Analysis of crosstalk between translation machinery and cytoskeletal dynamics provides new insights into the cellular chemotactic defects caused by SBDS protein malfunction. The proposed functional interactions provide a new approach to exploit potential targets in the treatment and monitoring of this disease.Keywords: Shwachman-Bodian-Diamond syndrome, wybutosine, tRNA, chemotaxis, translation, genomics, gene proximity

  17. Computed tomography after lymphangiography in the diagnosis of intestinal lymphangiectasia with protein-losing enteropathy in Noonan's syndrome

    International Nuclear Information System (INIS)

    Keberle, M.; Jenett, M.; Hahn, D.; Moerk, H.; Scheurlen, M.

    2000-01-01

    Noonan's syndrome is a rare congenital disorder that may be associated with abnormalities in the lymphatic drainage. In this case of a 21-year-old man CT after bipedal lymphangiography confirmed the diagnosis of intestinal lymphangiectasy causing protein-losing enteropathy in Noonan's syndrome by showing contrast-enhanced abnormal lymphatic vessels in the mesentery and the intestinal wall. Because of the benefit of diet in case of intestinal involvement, we recommend a thorough documentation of the lymphatic drainage with lymphangiography followed by CT, if clinical signs of lymphatic dysplasia, such as pleural effusions, lymphedema, or hypoproteinemia are present. (orig.)

  18. Nicotine suppresses the neurotoxicity by MPP+/MPTP through activating α7nAChR/PI3K/Trx-1 and suppressing ER stress.

    Science.gov (United States)

    Cai, Yanxue; Zhang, Xianwen; Zhou, Xiaoshuang; Wu, Xiaoli; Li, Yanhui; Yao, Jianhua; Bai, Jie

    2017-03-01

    Parkinson's disease (PD) is a neurodegenerative disease. Nicotine has been reported to have the role in preventing Parkinson's disease. However, its mechanism is still unclear. In present study we found that nicotine suppressed 1-methyl-4-phenylpyridinium ion(MPP + ) toxicity in PC12 cells by MTT assay. The expression of thioredoxin-1(Trx-1) was decreased by MPP + , which was restored by nicotine. The nicotine suppressed expressions of Glucose-regulated protein 78(GRP78/Bip) and C/EBP homologous protein (CHOP) induced by MPP + . The methyllycaconitine (MLA), the inhibitor of α7nAChR and LY294002, the inhibitor of phosphatidylinositol 3-kinase (PI3K) blocked the suppressions of above molecules, respectively. Consistently, pretreatment with nicotine ameliorated the motor ability, restored the declines of Trx-1 and tyrosine hydroxylase (TH), and suppressed the expressions of Bip and CHOP induced by 1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Our results suggest that nicotine plays role in resisting MPP + /MPTP neurotoxicity through activating the α7nAChR/PI3K/Trx-1 pathway and suppressing ER stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Expression, purification and crystallization of two major envelope proteins from white spot syndrome virus

    International Nuclear Information System (INIS)

    Tang, Xuhua; Hew, Choy Leong

    2007-01-01

    The crystallization of the N-terminal transmembrane region-truncated VP26 and VP28 of white spot syndrome virus is described. White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapour-diffusion method. Crystals of SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 M sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 Å resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 Å. SeMet-labelled VP28 crystallizes in space group P2 1 2 1 2 1 , with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 Å, and diffracts to 2.0 Å resolution

  20. Expression, purification and crystallization of two major envelope proteins from white spot syndrome virus

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xuhua; Hew, Choy Leong, E-mail: dbshewcl@nus.edu.sg [Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 (Singapore)

    2007-07-01

    The crystallization of the N-terminal transmembrane region-truncated VP26 and VP28 of white spot syndrome virus is described. White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapour-diffusion method. Crystals of SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 M sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 Å resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 Å. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 Å, and diffracts to 2.0 Å resolution.

  1. Hsp105 family proteins suppress staurosporine-induced apoptosis by inhibiting the translocation of Bax to mitochondria in HeLa cells

    International Nuclear Information System (INIS)

    Yamagishi, Nobuyuki; Ishihara, Keiichi; Saito, Youhei; Hatayama, Takumi

    2006-01-01

    Hsp105 (Hsp105α and Hsp105β), major heat shock proteins in mammalian cells, belong to a subgroup of the HSP70 family, HSP105/110. Previously, we have shown that Hsp105α has completely different effects on stress-induced apoptosis depending on cell type. However, the molecular mechanisms by which Hsp105α regulates stress-induced apoptosis are not fully understood. Here, we established HeLa cells that overexpress either Hsp105α or Hsp105β by removing doxycycline and examined how Hsp105 modifies staurosporine (STS)-induced apoptosis in HeLa cells. Apoptotic features such as the externalization of phosphatidylserine on the plasma membrane and nuclear morphological changes were induced by the treatment with STS, and the STS-induced apoptosis was suppressed by overexpression of Hsp105α or Hsp105β. In addition, we found that overexpression of Hsp105α or Hsp105β suppressed the activation of caspase-3 and caspase-9 by preventing the release of cytochrome c from mitochondria. Furthermore, the translocation of Bax to mitochondria, which results in the release of cytochrome c from the mitochondria, was also suppressed by the overexpression of Hsp105α or Hsp105β. Thus, it is suggested that Hsp105 suppresses the stress-induced apoptosis at its initial step, the translocation of Bax to mitochondria in HeLa cells

  2. Wolfram syndrome 1 and Wolfram syndrome 2.

    Science.gov (United States)

    Rigoli, Luciana; Di Bella, Chiara

    2012-08-01

    Wolfram syndrome 1 (WS1) is an autosomal recessive disorder characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness (DI DM OA D syndrome) associated with other variable clinical manifestations. The causative gene for WS1 (WFS1) encoding wolframin maps to chromosome 4p16.1. Wolframin has an important function in maintaining the homeostasis of the endoplasmic reticulum (ER) in pancreatic β cells. Recently, another causative gene, CISD2, has been identified in patients with a type of Wolfram syndrome (WS2) resulting in early optic atrophy, diabetes mellitus, deafness, decreased lifespan, but not diabetes insipidus. The CISD2-encoded protein ERIS (endoplasmic reticulum intermembrane small protein) also localizes to ER, but does not interact directly with wolframin. ERIS maps to chromosome 4q22. Numerous studies have shown an interesting similarity between WFS1 and CISD2 genes. Experimental studies demonstrated that the Cisd2 knockout (Cisd2) mouse shows premature aging and typical symptoms of Wolfram syndrome. These researches provide interesting insight into the relation of neurodegenerative diseases, mitochondrial disorders, and autophagy and are useful for the pathophysiological understanding of both Wolfram syndrome and mitochondrial-mediated premature aging. The knowledge of WS1 and WS2 pathogenesis, and of the interactions between WFS1 and CISD2 genes, is useful for accurate diagnostic classification and for diagnosis of presymptomatic individuals.

  3. Mode of ATM-dependent suppression of chromosome translocation

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Motohiro, E-mail: motoyama@nagasaki-u.ac.jp [Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Suzuki, Keiji; Oka, Yasuyoshi; Suzuki, Masatoshi; Kondo, Hisayoshi; Yamashita, Shunichi [Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer We addressed how ATM suppresses frequency of chromosome translocation. Black-Right-Pointing-Pointer We found ATM/p53-dependent G1 checkpoint suppresses translocation frequency. Black-Right-Pointing-Pointer We found ATM and DNA-PKcs function in a common pathway to suppress translocation. -- Abstract: It is well documented that deficiency in ataxia telangiectasia mutated (ATM) protein leads to elevated frequency of chromosome translocation, however, it remains poorly understood how ATM suppresses translocation frequency. In the present study, we addressed the mechanism of ATM-dependent suppression of translocation frequency. To know frequency of translocation events in a whole genome at once, we performed centromere/telomere FISH and scored dicentric chromosomes, because dicentric and translocation occur with equal frequency and by identical mechanism. By centromere/telomere FISH analysis, we confirmed that chemical inhibition or RNAi-mediated knockdown of ATM causes 2 to 2.5-fold increase in dicentric frequency at first mitosis after 2 Gy of gamma-irradiation in G0/G1. The FISH analysis revealed that ATM/p53-dependent G1 checkpoint suppresses dicentric frequency, since RNAi-mediated knockdown of p53 elevated dicentric frequency by 1.5-fold. We found ATM also suppresses dicentric occurrence independently of its checkpoint role, as ATM inhibitor showed additional effect on dicentric frequency in the context of p53 depletion and Chk1/2 inactivation. Epistasis analysis using chemical inhibitors revealed that ATM kinase functions in the same pathway that requires kinase activity of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to suppress dicentric frequency. From the results in the present study, we conclude that ATM minimizes translocation frequency through its commitment to G1 checkpoint and DNA double-strand break repair pathway that requires kinase activity of DNA-PKcs.

  4. Novel causative mutations in patients with Nance-Horan syndrome and altered localization of the mutant NHS-A protein isoform

    OpenAIRE

    Sharma, Shiwani; Burdon, Kathryn P.; Dave, Alpana; Jamieson, Robyn V.; Yaron, Yuval; Billson, Frank; Van Maldergem, Lionel; Lorenz, Birgit; Gécz, Jozef; Craig, Jamie E.

    2008-01-01

    Purpose Nance-Horan syndrome is typically characterized by severe bilateral congenital cataracts and dental abnormalities. Truncating mutations in the Nance-Horan syndrome (NHS) gene cause this X-linked genetic disorder. NHS encodes two isoforms, NHS-A and NHS-1A. The ocular lens expresses NHS-A, the epithelial and neuronal cell specific isoform. The NHS-A protein localizes in the lens epithelium at the cellular periphery. The data to date suggest a role for this isoform at cell-cell junction...

  5. Kaempferol ameliorates symptoms of metabolic syndrome by regulating activities of liver X receptor-β.

    Science.gov (United States)

    Hoang, Minh-Hien; Jia, Yaoyao; Mok, Boram; Jun, Hee-jin; Hwang, Kwang-Yeon; Lee, Sung-Joon

    2015-08-01

    Kaempferol is a dietary flavonol previously shown to regulate cellular lipid and glucose metabolism. However, its molecular mechanisms of action and target proteins have remained elusive, probably due to the involvement of multiple proteins. This study investigated the molecular targets of kaempferol. Ligand binding of kaempferol to liver X receptors (LXRs) was quantified by time-resolved fluorescence resonance energy transfer and surface plasmon resonance analyses. Kaempferol directly binds to and induces the transactivation of LXRs, with stronger specificity for the β-subtype (EC50 = 0.33 μM). The oral administration of kaempferol in apolipoprotein-E-deficient mice (150 mg/day/kg body weight) significantly reduced plasma glucose and increased high-density lipoprotein cholesterol levels and insulin sensitivity compared with the vehicle-fed control. Kaempferol also reduced plasma triglyceride concentrations and did not cause liver steatosis, a common side effect of potent LXR activation. In immunoblotting analysis, kaempferol reduced the nuclear accumulation of sterol regulatory element-binding protein-1 (SREBP-1). Our results show that the suppression of SREBP-1 activity and the selectivity for LXR-β over LXR-α by kaempferol contribute to the reductions of plasma and hepatic triglyceride concentrations in mice fed kaempferol. They also suggest that kaempferol activates LXR-β and suppresses SREBP-1 to enhance symptoms in metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp

    NARCIS (Netherlands)

    Hulten, van M.C.W.; Witteveldt, J.; Snippe, M.; Vlak, J.M.

    2001-01-01

    White spot syndrome virus (WSSV) is a large DNA virus infecting shrimp and other crustaceans. The virus particles contain at least five major virion proteins, of which three (VP26, VP24, and VP15) are present in the rod-shaped nucleocapsid and two (VP28 and VP19) reside in the envelope. The mode of

  7. Rif1 acts through Protein Phosphatase 1 but independent of replication timing to suppress telomere extension in budding yeast.

    Science.gov (United States)

    Kedziora, Sylwia; Gali, Vamsi K; Wilson, Rosemary H C; Clark, Kate R M; Nieduszynski, Conrad A; Hiraga, Shin-Ichiro; Donaldson, Anne D

    2018-05-04

    The Rif1 protein negatively regulates telomeric TG repeat length in the budding yeast Saccharomyces cerevisiae, but how it prevents telomere over-extension is unknown. Rif1 was recently shown to control DNA replication by acting as a Protein Phosphatase 1 (PP1)-targeting subunit. Therefore, we investigated whether Rif1 controls telomere length by targeting PP1 activity. We find that a Rif1 mutant defective for PP1 interaction causes a long-telomere phenotype, similar to that of rif1Δ cells. Tethering PP1 at a specific telomere partially substitutes for Rif1 in limiting TG repeat length, confirming the importance of PP1 in telomere length control. Ablating Rif1-PP1 interaction is known to cause precocious activation of telomere-proximal replication origins and aberrantly early telomere replication. However, we find that Rif1 still limits telomere length even if late replication is forced through deletion of nearby replication origins, indicating that Rif1 can control telomere length independent of replication timing. Moreover we find that, even at a de novo telomere created after DNA synthesis during a mitotic block, Rif1-PP1 interaction is required to suppress telomere lengthening and prevent inappropriate recruitment of Tel1 kinase. Overall, our results show that Rif1 controls telomere length by recruiting PP1 to directly suppress telomerase-mediated TG repeat lengthening.

  8. High-sensitivity C-reactive protein to detect metabolic syndrome in a centrally obese population: a cross-sectional analysis

    Directory of Open Access Journals (Sweden)

    den Engelsen Corine

    2012-03-01

    Full Text Available Abstract Background People with central obesity have an increased risk for developing the metabolic syndrome, type 2 diabetes and cardiovascular disease. However, a substantial part of obese individuals have no other cardiovascular risk factors, besides their obesity. High sensitivity C-reactive protein (hs-CRP, a marker of systemic inflammation and a predictor of type 2 diabetes and cardiovascular disease, is associated with the metabolic syndrome and its separate components. We evaluated the use of hs-CRP to discriminate between centrally obese people with and without the metabolic syndrome. Methods 1165 people with central obesity but without any previous diagnosis of hypertension, dyslipidemia, diabetes or cardiovascular disease, aged 20-70 years, underwent a physical examination and laboratory assays to determine the presence of the metabolic syndrome (NCEP ATP III criteria. Multivariable linear regression analyses were performed to assess which metabolic syndrome components were independently associated with hs-CRP. A ROC curve was drawn and the area under the curve was calculated to evaluate whether hs-CRP was capable to predict the presence of the metabolic syndrome. Results Median hs-CRP levels were significantly higher in individuals with central obesity with the metabolic syndrome (n = 417; 35.8% compared to individuals with central obesity without the metabolic syndrome (2.2 mg/L (IQR 1.2-4.0 versus 1.7 mg/L (IQR 1.0-3.4; p Conclusions Hs-CRP has limited capacity to predict the presence of the metabolic syndrome in a population with central obesity.

  9. CRP and SAA1 Haplotypes Are Associated with Both C-Reactive Protein and Serum Amyloid A Levels: Role of Suppression Effects

    Directory of Open Access Journals (Sweden)

    Yu-Lin Ko

    2016-01-01

    Full Text Available To test the statistical association of the CRP and SAA1 locus variants with their corresponding circulating levels and metabolic and inflammatory biomarker levels by using mediation analysis, a sample population of 599 Taiwanese subjects was enrolled and five CRP and four SAA1 variants were genotyped. Correlation analysis revealed that C-reactive protein (CRP and serum amyloid A (SAA levels were significantly associated with multiple metabolic phenotypes and inflammatory marker levels. Our data further revealed a significant association of CRP and SAA1 variants with both CRP and SAA levels. Mediation analysis revealed that SAA levels suppressed the association between SAA1 genotypes/haplotypes and CRP levels and that CRP levels suppressed the association between CRP haplotypes and SAA levels. In conclusion, genetic variants at the CRP and SAA1 loci independently affect both CRP and SAA levels, and their respective circulating levels act as suppressors. These results provided further evidence of the role of the suppression effect in biological science and may partially explain the missing heritability in genetic association studies.

  10. The Histone Deacetylase Inhibitors MS-275 and SAHA Suppress the p38 Mitogen-Activated Protein Kinase Signaling Pathway and Chemotaxis in Rheumatoid Arthritic Synovial Fibroblastic E11 Cells

    Directory of Open Access Journals (Sweden)

    Hai-Shu Lin

    2013-11-01

    Full Text Available MS-275 (entinostat and SAHA (vorinostat, two histone deacetylase (HDAC inhibitors currently in oncological trials, have displayed potent anti-rheumatic activities in rodent models of rheumatoid arthritis (RA. To further elucidate their anti-inflammatory mechanisms, the impact of MS-275 and SAHA on the p38 mitogen-activated protein kinase (MAPK signaling pathway and chemotaxis was assessed in human rheumatoid arthritic synovial fibroblastic E11 cells. MS-275 and SAHA significantly suppressed the expression of p38α  MAPK, but induced the expression of MAPK phosphatase-1 (MKP-1, an endogenous suppressor of p38α  in E11 cells. At the same time, the association between p38α and MKP-1 was up-regulated and consequently, the activation (phosphorylation of p38α  was inhibited. Moreover, MS-275 and SAHA suppressed granulocyte chemotactic protein-2 (GCP-2, monocyte chemotactic protein-2 (MCP-2 and macrophage migration inhibitory factor (MIF in E11 cells in a concentration-dependent manner. Subsequently, E11-driven migration of THP-1 and U937 monocytes was inhibited. In summary, suppression of the p38 MAPK signaling pathway and chemotaxis appear to be important anti-rheumatic mechanisms of action of these HDAC inhibitors.

  11. Induction of macrophage chemotaxis by aortic extracts from patients with Marfan syndrome is related to elastin binding protein.

    Directory of Open Access Journals (Sweden)

    Gao Guo

    Full Text Available Marfan syndrome is an autosomal dominantly inherited disorder of connective tissue with prominent skeletal, ocular, and cardiovascular manifestations. Aortic aneurysm and dissection are the major determinants of premature death in untreated patients. In previous work, we showed that extracts of aortic tissues from the mgR mouse model of Marfan syndrome showed increased chemotactic stimulatory activity related to the elastin-binding protein. Aortic samples were collected from 6 patients with Marfan syndrome and 8 with isolated aneurysms of the ascending aorta. Control samples were obtained from 11 organ donors without known vascular or connective tissue diseases. Soluble proteins extracted from the aortic samples of the two patient groups were compared against buffer controls and against the aortic samples from controls with respect to the ability to induce macrophage chemotaxis as measured using a modified Boyden chamber, as well as the reactivity to a monoclonal antibody BA4 against bioactive elastin peptides using ELISA. Samples from Marfan patients displayed a statistically significant increase in chemotactic inductive activity compared to control samples. Additionally, reactivity to BA4 was significantly increased. Similar statistically significant increases were identified for the samples from patients with idiopathic thoracic aortic aneurysm. There was a significant correlation between the chemotactic index and BA4 reactivity, and the increases in chemotactic activity of extracts from Marfan patients could be inhibited by pretreatment with lactose, VGVAPG peptides, or BA4, which indicates the involvement of EBP in mediating the effects. Our results demonstrate that aortic extracts of patients with Marfan syndrome can elicit macrophage chemotaxis, similar to our previous study on aortic extracts of the mgR mouse model of Marfan syndrome (Guo et al., Circulation 2006; 114:1855-62.

  12. Induction of Macrophage Chemotaxis by Aortic Extracts from Patients with Marfan Syndrome Is Related to Elastin Binding Protein

    Science.gov (United States)

    Guo, Gao; Gehle, Petra; Doelken, Sandra; Martin-Ventura, José Luis; von Kodolitsch, Yskert; Hetzer, Roland; Robinson, Peter N.

    2011-01-01

    Marfan syndrome is an autosomal dominantly inherited disorder of connective tissue with prominent skeletal, ocular, and cardiovascular manifestations. Aortic aneurysm and dissection are the major determinants of premature death in untreated patients. In previous work, we showed that extracts of aortic tissues from the mgR mouse model of Marfan syndrome showed increased chemotactic stimulatory activity related to the elastin-binding protein. Aortic samples were collected from 6 patients with Marfan syndrome and 8 with isolated aneurysms of the ascending aorta. Control samples were obtained from 11 organ donors without known vascular or connective tissue diseases. Soluble proteins extracted from the aortic samples of the two patient groups were compared against buffer controls and against the aortic samples from controls with respect to the ability to induce macrophage chemotaxis as measured using a modified Boyden chamber, as well as the reactivity to a monoclonal antibody BA4 against bioactive elastin peptides using ELISA. Samples from Marfan patients displayed a statistically significant increase in chemotactic inductive activity compared to control samples. Additionally, reactivity to BA4 was significantly increased. Similar statistically significant increases were identified for the samples from patients with idiopathic thoracic aortic aneurysm. There was a significant correlation between the chemotactic index and BA4 reactivity, and the increases in chemotactic activity of extracts from Marfan patients could be inhibited by pretreatment with lactose, VGVAPG peptides, or BA4, which indicates the involvement of EBP in mediating the effects. Our results demonstrate that aortic extracts of patients with Marfan syndrome can elicit macrophage chemotaxis, similar to our previous study on aortic extracts of the mgR mouse model of Marfan syndrome (Guo et al., Circulation 2006; 114:1855-62). PMID:21647416

  13. Factitious Cushing's syndrome masquerading as Cushing's disease.

    Science.gov (United States)

    Thynne, Tilenka; White, Graham H; Burt, Morton G

    2014-03-01

    Factitious Cushing's syndrome is extremely rare. The diagnosis is challenging as cross-reactivity of synthetic corticosteroids or their metabolites in immunoassay measurements of plasma or urinary cortisol can make distinguishing between true and factitious Cushing's syndrome difficult. Adrenocorticotropin (ACTH) is usually suppressed in factitious Cushing's syndrome. A 54-year-old woman presented with clinical and biochemical features of Cushing's syndrome and an unsuppressed ACTH concentration. She denied recent exogenous corticosteroid use. Initial investigations revealed a markedly elevated urinary free cortisol, mildly elevated midnight salivary cortisol and normal morning cortisol concentration. Plasma ACTH was not suppressed at 13 ng/l (RR 10-60 ng/l). A pituitary MRI was normal, but inferior petrosal sinus sampling (IPSS) revealed a post corticotrophin releasing hormone ACTH ratio >20:1 in the left petrosal sinus. Ketoconazole therapy amplified discordance between the urinary free and morning plasma cortisol concentrations. Further investigation of this discordance using high-pressure liquid chromatography tandem mass spectrometry (HPLC-MS/MS) revealed a urinary free cortisol excretion of only 20 nmol/24 h, but prednisolone excretion of 16,200 nmol/24 h. Factitious Cushing's syndrome can mimic endogenous ACTH-dependent hypercortisolism during initial investigations and IPSS. This case highlights the importance of (i) recognizing the significance of discordant results; (ii) using an ACTH assay capable of reliably differentiating ACTH-dependent from ACTH-independent Cushing's syndrome; and (iii) appreciating that IPSS is only useful to localize the source of ACTH in confirmed ACTH-dependent Cushing's syndrome. In this case, measurement of corticosteroids by HPLC-MS/MS was essential in reaching the correct diagnosis. © 2013 John Wiley & Sons Ltd.

  14. Wolfram Syndrome protein, Miner1, regulates sulphydryl redox status, the unfolded protein response, and Ca2+ homeostasis.

    Science.gov (United States)

    Wiley, Sandra E; Andreyev, Alexander Y; Divakaruni, Ajit S; Karisch, Robert; Perkins, Guy; Wall, Estelle A; van der Geer, Peter; Chen, Yi-Fan; Tsai, Ting-Fen; Simon, Melvin I; Neel, Benjamin G; Dixon, Jack E; Murphy, Anne N

    2013-06-01

    Miner1 is a redox-active 2Fe2S cluster protein. Mutations in Miner1 result in Wolfram Syndrome, a metabolic disease associated with diabetes, blindness, deafness, and a shortened lifespan. Embryonic fibroblasts from Miner1(-/-) mice displayed ER stress and showed hallmarks of the unfolded protein response. In addition, loss of Miner1 caused a depletion of ER Ca(2+) stores, a dramatic increase in mitochondrial Ca(2+) load, increased reactive oxygen and nitrogen species, an increase in the GSSG/GSH and NAD(+)/NADH ratios, and an increase in the ADP/ATP ratio consistent with enhanced ATP utilization. Furthermore, mitochondria in fibroblasts lacking Miner1 displayed ultrastructural alterations, such as increased cristae density and punctate morphology, and an increase in O2 consumption. Treatment with the sulphydryl anti-oxidant N-acetylcysteine reversed the abnormalities in the Miner1 deficient cells, suggesting that sulphydryl reducing agents should be explored as a treatment for this rare genetic disease. Copyright © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  15. Middle east respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus ankara efficiently induces virus-neutralizing antibodies

    NARCIS (Netherlands)

    F. Song (Fei); R. Fux (Robert); L.B.V. Provacia (Lisette); A. Volz (Asisa); M. Eickmann; S. Becker (Stephan); A.D.M.E. Osterhaus (Albert); B.L. Haagmans (Bart); G. Suttera (Gerd)

    2013-01-01

    textabstractMiddle East respiratory syndrome coronavirus (MERS-CoV) has recently emerged as a causative agent of severe respiratory disease in humans. Here, we constructed recombinant modified vaccinia virus Ankara (MVA) expressing full-length MERS-CoV spike (S) protein (MVA-MERS-S). The genetic

  16. Secondary Hemophagocytic Syndrome Associated with Herpes Virus Infections

    Directory of Open Access Journals (Sweden)

    S. R. Rodionovskaya

    2015-01-01

    Full Text Available Hemophagocytic syndrome is one of the complications of herpes virus infections. Here, we describe the case of a 8—year-old male with secondary hemophagocytic syndrome. The disease was diagnosed in the early stages. The patient received treatment with dexamethasone, intravenous immunoglobulin, which has led to a weakening of the ignition and the suppression of the disease with rapid treatment.

  17. RPGR-containing protein complexes in syndromic and non ...

    Indian Academy of Sciences (India)

    2009-12-31

    Dec 31, 2009 ... ated with syndromic disorders, including Joubert syndrome,. Meckel–Gruber .... Foundation Fighting Blindness (FFB), and Midwest Eye Banks and ..... Meindl A., Dry K., Herrmann K., Manson F., Ciccodicola A., Edgar. A. et al.

  18. Aqueous fraction from Cuscuta japonica seed suppresses melanin synthesis through inhibition of the p38 mitogen-activated protein kinase signaling pathway in B16F10 cells.

    Science.gov (United States)

    Jang, Ji Yeon; Kim, Ha Neui; Kim, Yu Ri; Choi, Yung Hyun; Kim, Byung Woo; Shin, Hwa Kyoung; Choi, Byung Tae

    2012-05-07

    Semen cuscutae has been used traditionally to treat pimples and alleviate freckles and melasma in Korea. The present study aimed to investigate the inhibitory effect of Cuscuta japonica Choisy seeds on alpha-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis. The aqueous fraction from Semen cuscutae (AFSC) was used to determine anti-melanogenic effects by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay and Western blot analysis for melanin synthesis-related signaling proteins in B16F10 mouse melanoma cells. AFSC markedly inhibited α-MSH-induced melanin synthesis and tyrosinase activity, and also decreased α-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase-related proteins (TRPs). Moreover, AFSC significantly decreased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK) signaling through the down-regulation of α-MSH-induced cAMP. Furthermore, we confirmed that the specific inhibitor of p38 MAPK (SB203580)-mediated suppressed melanin synthesis and tyrosinase activity was further attenuated by AFSC. AFSC also further decreased SB203580-mediated suppression of MITF and TRP expression. These results indicate that AFSC inhibits p38 MAPK phosphorylation with suppressed cAMP levels and subsequently down-regulate MITF and TRP expression, which results in a marked reduction of melanin synthesis and tyrosinase activity in α-MSH-stimulated B16F10 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Suppression of Mediterranean fruit fly populations over mountainous areas through aerial phloxine B - protein bait sprays: Regional Medfly programme in Guatemala

    International Nuclear Information System (INIS)

    McQuate, Grant T.; Peck, Steven L.

    2000-01-01

    The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), was discovered in southern Mexico sometime in 1977 near Tapachula, Mexico. Farmers in Texas and other states of the United States became concerned that the Mediterranean fruit fly would spread northward through Mexico and into the US. In response to this threat to US agriculture, funds were appropriated by Congress to be used by the US Department of Agriculture (USDA) - Animal and Plant Health Inspection Service (APHIS) to eradicate the Mediterranean fruit flies from Mexico and establish a barrier zone in Guatemala to keep the Mediterranean fruit flies from spreading northward into Mexico. In Mexico and Guatemala, the organisation called MOSCAMED was created to support the programme. Aerially applied malathion bait sprays were used in the suppression programme beginning in Mexico in 1982 and beginning in Guatemala in 1985. Mexico has been free of the Mediterranean fruit fly since 1982, except for outbreaks in the southernmost state of Chiapas, adjacent to Guatemala. The spraying of malathion was banned by the government of Guatemala in early 1996 because of concern regarding possible adverse effects on honey bees. By this time, research had been started to evaluate the use of xanthene dyes as a potential alternative to malathion in protein bait sprays for the suppression of the Mediterranean fruit fly (Liquido et al. 1995). Light-activated toxicity of xanthene dyes has been documented for more than two dozen insect species overall (Heitz 1997). Field trials of xanthene dyes, as a safer alternative to malathion in bait sprays targeting the Mediterranean fruit fly, were begun in Hawaii in 1994 and in Guatemala in 1996 and proved to be promising. By the end of 1996, xanthene dyes were registered as a substitute for malathion to suppress/eradicate Mediterranean fruit flies in the barrier zone. In January, 1997, MOSCAMED-Guatemala began a spray programme with xanthene dyes as the toxicant in a protein bait

  20. Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome.

    Science.gov (United States)

    Clarke, S D

    2001-04-01

    This review addresses the hypothesis that polyunsaturated fatty acids (PUFA), particularly those of the (n-3) family, play pivotal roles as "fuel partitioners" in that they direct fatty acids away from triglyceride storage and toward oxidation, and that they enhance glucose flux to glycogen. In doing this, PUFA may protect against the adverse symptoms of the metabolic syndrome and reduce the risk of heart disease. PUFA exert their beneficial effects by up-regulating the expression of genes encoding proteins involved in fatty acid oxidation while simultaneously down-regulating genes encoding proteins of lipid synthesis. PUFA govern oxidative gene expression by activating the transcription factor peroxisome proliferator-activated receptor alpha. PUFA suppress lipogenic gene expression by reducing the nuclear abundance and DNA-binding affinity of transcription factors responsible for imparting insulin and carbohydrate control to lipogenic and glycolytic genes. In particular, PUFA suppress the nuclear abundance and expression of sterol regulatory element binding protein-1 and reduce the DNA-binding activities of nuclear factor Y, Sp1 and possibly hepatic nuclear factor-4. Collectively, the studies discussed suggest that the fuel "repartitioning" and gene expression actions of PUFA should be considered among criteria used in defining the dietary needs of (n-6) and (n-3) and in establishing the dietary ratio of (n-6) to (n-3) needed for optimum health benefit.

  1. Low Proportion of Dietary Plant Protein among Athletes with Premenstrual Syndrome-Related Performance Impairment.

    Science.gov (United States)

    Yamada, Keiko; Takeda, Takashi

    2018-02-01

    Premenstrual syndrome (PMS) is psychosomatic disorder that are limited to the late luteal phase in the menstrual cycle. PMS could impair athletic performance. To investigate associations between proportions of dietary plant and animal protein and PMS-related impairment of athletic performance, we surveyed 135 female athletes aged 18-23 years attending Kindai University. Participants belonged to authorized university clubs, all of which have high rankings in Japanese university sports. Participants completed self-administered questionnaires on diet history, demographics, and PMS-related impairment of athletic performance. Total protein, animal protein, and plant protein intake were examined, and the proportion of dietary plant protein was calculated for each participant. We divided athletes into two groups: those without PMS-related impairment of athletic performance (n = 117) and those with PMS-related performance impairment (n = 18). A t-test was used to compare mean values and multivariable adjusted mean values between groups; adjustment variables were energy intake, body mass index, and daily training duration. Total protein intake was not significantly different between the groups. However, athletes whose performance was affected by PMS reported higher intake of animal protein (mean 50.6 g) than athletes whose performance was unaffected by PMS (mean 34.9 g). Plant protein intake was lower among athletes with PMS-related impairment (mean 25.4 g) than among athletes without impairment (mean 26.9 g). The proportion of dietary plant protein was lower among athletes with PMS-related impairment (39.3%) than those without impairment (45.9%). A low proportion of dietary plant protein may cause PMS-related athletic impairment among athletes.

  2. Congenital nephrotic syndrome.

    Science.gov (United States)

    Hamed, Radi Ma

    2003-01-01

    The congenital nephrotic syndrome (CNS) is an uncommon disorder with onset of the nephrotic syndrome usually in the first three months of life. Several different diseases may cause the syndrome. These may be inherited, sporadic, acquired or part of a general malformation syndrome. The clinical course is marked by failure to thrive, recurrent life threatening bacterial infections, and early death from sepsis and/or uremia. A characteristic phenotype may be seen in children with CNS. The majority of reported cases of CNS are of the Finnish type (CNF). Although the role of the glomerular basement membrane has been emphasized as the barrier for retaining plasma proteins, recent studies have clearly shown that the slit diaphragm is the structure most likely to be the barrier in the glomerular capillary wall. The gene (NPHS1) was shown to encode a novel protein that was termed nephrin, due to its specific location in the kidney filter barrier, where it seems to form a highly organized filter structure. Nephrin is a transmembrane protein that probably forms the main building block of an isoporous zipper-like slit diaphragm filter structure. Defects in nephrin lead to the abnormal or absent slit diaphragm resulting in massive proteinuria and renal failure.

  3. Viral degradasome hijacks mitochondria to suppress innate immunity

    Science.gov (United States)

    Goswami, Ramansu; Majumdar, Tanmay; Dhar, Jayeeta; Chattopadhyay, Saurabh; Bandyopadhyay, Sudip K; Verbovetskaya, Valentina; Sen, Ganes C; Barik, Sailen

    2013-01-01

    The balance between the innate immunity of the host and the ability of a pathogen to evade it strongly influences pathogenesis and virulence. The two nonstructural (NS) proteins, NS1 and NS2, of respiratory syncytial virus (RSV) are critically required for RSV virulence. Together, they strongly suppress the type I interferon (IFN)-mediated innate immunity of the host cells by degrading or inhibiting multiple cellular factors required for either IFN induction or response pathways, including RIG-I, IRF3, IRF7, TBK1 and STAT2. Here, we provide evidence for the existence of a large and heterogeneous degradative complex assembled by the NS proteins, which we named “NS-degradasome” (NSD). The NSD is roughly ∼300-750 kD in size, and its degradative activity was enhanced by the addition of purified mitochondria in vitro. Inside the cell, the majority of the NS proteins and the substrates of the NSD translocated to the mitochondria upon RSV infection. Genetic and pharmacological evidence shows that optimal suppression of innate immunity requires mitochondrial MAVS and mitochondrial motility. Together, we propose a novel paradigm in which the mitochondria, known to be important for the innate immune activation of the host, are also important for viral suppression of the innate immunity. PMID:23877405

  4. Appetite Suppression and Altered Food Preferences Coincide with Changes in Appetite-Mediating Hormones During Energy Deficit at High Altitude, But Are Not Affected by Protein Intake.

    Science.gov (United States)

    Karl, J Philip; Cole, Renee E; Berryman, Claire E; Finlayson, Graham; Radcliffe, Patrick N; Kominsky, Matthew T; Murphy, Nancy E; Carbone, John W; Rood, Jennifer C; Young, Andrew J; Pasiakos, Stefan M

    2018-02-12

    Karl, J. Philip, Renee E. Cole, Claire E. Berryman, Graham Finlayson, Patrick N. Radcliffe, Matthew T. Kominsky, Nancy E. Murphy, John W. Carbone, Jennifer C. Rood, Andrew J. Young, and Stefan M. Pasiakos. Appetite Suppression and Altered Food Preferences Coincide with Changes in Appetite-Mediating Hormones During Energy Deficit at High Altitude, But Are Not Affected by Protein Intake. High Alt Med Biol. 00:000-000, 2018.-Anorexia and unintentional body weight loss are common during high altitude (HA) sojourn, but underlying mechanisms are not fully characterized, and the impact of dietary macronutrient composition on appetite regulation at HA is unknown. This study aimed to determine the effects of a hypocaloric higher protein diet on perceived appetite and food preferences during HA sojourn and to examine longitudinal changes in perceived appetite, appetite mediating hormones, and food preferences during acclimatization and weight loss at HA. Following a 21-day level (SL) period, 17 unacclimatized males ascended to and resided at HA (4300 m) for 22 days. At HA, participants were randomized to consume measured standard-protein (1.0 g protein/kg/d) or higher protein (2.0 g/kg/d) hypocaloric diets (45% carbohydrate, 30% energy restriction) and engaged in prescribed physical activity to induce an estimated 40% energy deficit. Appetite, food preferences, and appetite-mediating hormones were measured at SL and at the beginning and end of HA. Diet composition had no effect on any outcome. Relative to SL, appetite was lower during acute HA (days 0 and 1), but not different after acclimatization and weight loss (HA day 18), and food preferences indicated an increased preference for sweet- and low-protein foods during acute HA, but for high-fat foods after acclimatization and weight loss. Insulin, leptin, and cholecystokinin concentrations were elevated during acute HA, but not after acclimatization and weight loss, whereas acylated ghrelin concentrations were

  5. Hepatitis C Virus Frameshift/Alternate Reading Frame Protein Suppresses Interferon Responses Mediated by Pattern Recognition Receptor Retinoic-Acid-Inducible Gene-I.

    Directory of Open Access Journals (Sweden)

    Seung Bum Park

    Full Text Available Hepatitis C virus (HCV actively evades host interferon (IFN responses but the mechanisms of how it does so are not completely understood. In this study, we present evidence for an HCV factor that contributes to the suppression of retinoic-acid-inducible gene-I (RIG-I-mediated IFN induction. Expression of frameshift/alternate reading frame protein (F/ARFP from HCV -2/+1 frame in Huh7 hepatoma cells suppressed type I IFN responses stimulated by HCV RNA pathogen-associated molecular pattern (PAMP and poly(IC. The suppression occurred independently of other HCV factors; and activation of interferon stimulated genes, TNFα, IFN-λ1, and IFN-λ2/3 was likewise suppressed by HCV F/ARFP. Point mutations in the full-length HCV sequence (JFH1 genotype 2a strain were made to introduce premature termination codons in the -2/+1 reading frame coding for F/ARFP while preserving the original reading frame, which enhanced IFNα and IFNβ induction by HCV. The potentiation of IFN response by the F/ARFP mutations was diminished in Huh7.5 cells, which already have a defective RIG-I, and by decreasing RIG-I expression in Huh7 cells. Furthermore, adding F/ARFP back via trans-complementation suppressed IFN induction in the F/ARFP mutant. The F/ARFP mutants, on the other hand, were not resistant to exogenous IFNα. Finally, HCV-infected human liver samples showed significant F/ARFP antibody reactivity, compared to HCV-uninfected control livers. Therefore, HCV F/ARFP likely cooperates with other viral factors to suppress type I and III IFN induction occurring through the RIG-I signaling pathway. This study identifies a novel mechanism of pattern recognition receptor modulation by HCV and suggests a biological function of the HCV alternate reading frame in the modulation of host innate immunity.

  6. Noonan syndrome

    OpenAIRE

    Roberts, Amy E; Allanson, Judith E; Tartaglia, Marco; Gelb, Bruce D

    2013-01-01

    Noonan syndrome is a genetic multisystem disorder characterised by distinctive facial features, developmental delay, learning difficulties, short stature, congenital heart disease, renal anomalies, lymphatic malformations, and bleeding difficulties. Mutations that cause Noonan syndrome alter genes encoding proteins with roles in the RAS–MAPK pathway, leading to pathway dysregulation. Management guidelines have been developed. Several clinically relevant genotype–phenotype correlations aid ris...

  7. Sex difference in the association of metabolic syndrome with high sensitivity C-reactive protein in a Taiwanese population

    Directory of Open Access Journals (Sweden)

    Lin Wen-Yuan

    2010-07-01

    Full Text Available Abstract Background Although sex differences have been reported for associations between components of metabolic syndrome and inflammation, the question of whether there is an effect modification by sex in the association between inflammation and metabolic syndrome has not been investigated in detail. Therefore, the aim of this study was to compare associations of high sensitivity C-creative protein (hs-CRP with metabolic syndrome and its components between men and women. Methods A total of 1,305 subjects aged 40 years and over were recruited in 2004 in a metropolitan city in Taiwan. The biochemical indices, such as hs-CRP, fasting glucose levels, lipid profiles, urinary albumin, urinary creatinine and anthropometric indices, were measured. Metabolic syndrome was defined using the American Heart Association and the National Heart, lung and Blood Institute (AHA/NHLBI definition. The relationship between metabolic syndrome and hs-CRP was examined using multivariate logistic regression analysis. Results After adjustment for age and lifestyle factors including smoking, and alcohol intake, elevated concentrations of hs-CRP showed a stronger association with metabolic syndrome in women (odds ratio comparing tertile extremes 4.80 [95% CI: 3.31-6.97] than in men (2.30 [1.65-3.21]. The p value for the sex interaction was 0.002. All components were more strongly associated with metabolic syndrome in women than in men, and all sex interactions were significant except for hypertension. Conclusions Our data suggest that inflammatory processes may be of particular importance in the pathogenesis of metabolic syndrome in women.

  8. Direct interaction of the Usher syndrome 1G protein SANS and myomegalin in the retina.

    Science.gov (United States)

    Overlack, Nora; Kilic, Dilek; Bauss, Katharina; Märker, Tina; Kremer, Hannie; van Wijk, Erwin; Wolfrum, Uwe

    2011-10-01

    The human Usher syndrome (USH) is the most frequent cause of combined hereditary deaf-blindness. USH is genetically heterogeneous with at least 11 chromosomal loci assigned to 3 clinical types, USH1-3. We have previously demonstrated that all USH1 and 2 proteins in the eye and the inner ear are organized into protein networks by scaffold proteins. This has contributed essentially to our current understanding of the function of USH proteins and explains why defects in proteins of different families cause very similar phenotypes. We have previously shown that the USH1G protein SANS (scaffold protein containing ankyrin repeats and SAM domain) contributes to the periciliary protein network in retinal photoreceptor cells. This study aimed to further elucidate the role of SANS by identifying novel interaction partners. In yeast two-hybrid screens of retinal cDNA libraries we identified 30 novel putative interacting proteins binding to the central domain of SANS (CENT). We confirmed the direct binding of the phosphodiesterase 4D interacting protein (PDE4DIP), a Golgi associated protein synonymously named myomegalin, to the CENT domain of SANS by independent assays. Correlative immunohistochemical and electron microscopic analyses showed a co-localization of SANS and myomegalin in mammalian photoreceptor cells in close association with microtubules. Based on the present results we propose a role of the SANS-myomegalin complex in microtubule-dependent inner segment cargo transport towards the ciliary base of photoreceptor cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Receptor for activated protein kinase C 1 suppresses gastric tumor progression through nuclear factor-kB pathway.

    Science.gov (United States)

    Yong-Zheng, X; Wan-Li, M; Ji-Ming, M; Xue-Qun, R

    2015-12-01

    Nuclear factor-kB (NF-kB) activity is crucial for survival and proliferation of many kinds of malignancies, including gastric cancer (GC). The receptor for activated protein kinase C 1 (RACK1) is known to regulate tumor development, whereas the underlined mechanism has not been described clearly. We analyzed expression of RACK1 in paired human GC samples by both real-time polymerase chain reaction (PCR) and western blot. Effects of RACK inhibition with small interfering RNA or its overexpression in cultured GC cell lines were evaluated in cell viabilities. NF-kB signaling was investigated using luciferase reporter assay and real-time PCR. RACK1 was significantly decreased in GC samples. Knockdown of RACK elevated GC cell viabilities, whereas overexpression of RACK1 suppressed tumorigenesis of GC cells. Importantly, NF-kB signaling was enhanced after RACK1 expression was inhibited, suggesting the negative regulation of the pro-oncogenic NF-kB activity by RACK1 might contribute to its tumor suppressor role in GC cells. Our results support that RACK1 suppresses gastric tumor progression through the NF-kB signaling pathway.

  10. E2F1-mediated human POMC expression in ectopic Cushing's syndrome.

    Science.gov (United States)

    Araki, Takako; Liu, Ning-Ai; Tone, Yukiko; Cuevas-Ramos, Daniel; Heltsley, Roy; Tone, Masahide; Melmed, Shlomo

    2016-11-01

    Cushing's syndrome is caused by excessive adrenocorticotropic hormone (ACTH) secretion derived from pituitary corticotroph tumors (Cushing disease) or from non-pituitary tumors (ectopic Cushing's syndrome). Hypercortisolemic features of ectopic Cushing's syndrome are severe, and no definitive treatment for paraneoplastic ACTH excess is available. We aimed to identify subcellular therapeutic targets by elucidating transcriptional regulation of the human ACTH precursor POMC (proopiomelanocortin) and ACTH production in non-pituitary tumor cells and in cell lines derived from patients with ectopic Cushing's syndrome. We show that ectopic hPOMC transcription proceeds independently of pituitary-specific Tpit/Pitx1 and demonstrate a novel E2F1-mediated transcriptional mechanism regulating hPOMC We identify an E2F1 cluster binding to the proximal hPOMC promoter region (-42 to +68), with DNA-binding activity determined by the phosphorylation at Ser-337. hPOMC mRNA expression in cancer cells was upregulated (up to 40-fold) by the co-expression of E2F1 and its heterodimer partner DP1. Direct and indirect inhibitors of E2F1 activity suppressed hPOMC gene expression and ACTH by modifying E2F1 DNA-binding activity in ectopic Cushing's cell lines and primary tumor cells, and also suppressed paraneoplastic ACTH and cortisol levels in xenografted mice. E2F1-mediated hPOMC transcription is a potential target for suppressing ACTH production in ectopic Cushing's syndrome. © 2016 Society for Endocrinology.

  11. Efficacy of dexamethasone suppression test during the diagnosis of primary pigmented nodular adrenocortical disease in Chinese adrenocorticotropic hormone-independent Cushing syndrome.

    Science.gov (United States)

    Chen, Shi; Li, Ran; Lu, Lin; Duan, Lian; Zhang, Xuebin; Tong, Anli; Pan, Hui; Zhu, Huijuan; Lu, Zhaolin

    2018-01-01

    To evaluate the cut-off value of the ratio of 24 h urinary free cortisol (24 h UFC) levels post-dexamethasone to prior-dexamethasone in dexamethasone suppression test (DST) during the diagnosis of primary pigmented nodular adrenocortical disease in Chinese adrenocorticotropic hormone-independent Cushing syndrome. Retrospective study. The patients diagnosed with primary pigmented nodular adrenocortical disease (PPNAD, n = 25), bilateral macronodular adrenal hyperplasia (BMAH, n = 27), and adrenocortical adenoma (ADA, n = 84) were admitted to the Peking Union Medical College Hospital from 2001 to 2016. Serum cortisol, adrenocorticotropic hormone (ACTH), and 24 h UFC were measured before and after low-dose dexamethasone suppression test (LDDST) and high-dose dexamethasone suppression test (HDDST). After LDDST and HDDST, 24 h UFC elevated in patients with PPNAD (paired t-test, P = 0.007 and P = 0.001), while it remained unchanged in the BMAH group (paired t-test, P = 0.471 and P = 0.414) and decreased in the ADA group (paired t-test, P = 0.002 and P = 0.004). The 24 h UFC level after LDDST was higher in PPNAD and BMAH as compared to ADA (P < 0.017), while no significant difference was observed between PPNAD and BMAH. After HDDST, 24 h UFC was higher in patients with PPNAD as compared to that of ADA and BMAH (P < 0.017). The cut-off value of 24 h UFC (Post-L-Dex)/(Pre-L-Dex) was 1.16 with 64.0% sensitivity and 77.9% specificity, and the cut-off value of 24 h UFC (Post-H-Dex)/(Pre-H-Dex) was 1.08 with 84.0% sensitivity and 75.6% specificity. The ratio of post-dexamethasone to prior-dexamethasone had a unique advantage in distinguishing PPNAD from BMAH and ADA.

  12. Sjögren's syndrome associated with protein losing gastroenteropathy manifested by intestinal lymphangiectasia successfully treated with prednisolone and hydroxychloroquine.

    Science.gov (United States)

    Liao, C-Y; Chien, S-T; Wang, C-C; Chen, I-H; Chiu, H-W; Liu, M-Y; Lin, C-H; Ben, R-J; Tsai, M-K

    2015-12-01

    Protein-losing gastroenteropathy (PLGE), a rare manifestation of primary Sjögren's syndrome (SS), is characterized by profound edema and severe hypoalbuminemia secondary to excessive serum protein loss from the gastrointestinal tract and is clinically indistinguishable from nephrotic syndrome. We report a case of a 30-year-old Taiwanese woman with PLGE-associated SS. In addition to a positive Schirmer's test, she had eye-dryness, thirst, and high levels of anti-SSA antibodies, fulfilling SS criteria. PLGE diagnosis was highly appropriate given the clinical profile of hypoalbuminemia, hypercholesterolemia, pleural effusion, and ascites, with absent cardiac, hepatic, or renal disease. We were unable to perform technetium-99 m-labeled human serum albumin scintigraphy ((99m)Tc-HAS). However, the patient's edema and albumin level improved dramatically in response to a 3-month regime of oral prednisolone followed by oral hydroxychloroquine. © The Author(s) 2015.

  13. CT and MRI findings of Madelung syndrome

    International Nuclear Information System (INIS)

    Liu Changhua; Zeng Yinglang; Zou Donglu; Wu Guihua

    2011-01-01

    Objective: To determine the CT and MR findings of Madelung syndrome. Methods: Five cases of Madelung syndrome were collected in our hospital from February 2006 to June 2009, including 3 cases of type Ⅰ Madelung syndrome and 2 cases of type Ⅱ Madelung syndrome. The 5 cases were all examined by CT, meanwhile 1 case by CT enhancement scanning and 2 cases by MR. The clinical characteristics and imaging manifestations were analyzed. Results: CT and MR images in 3 patients of type Ⅰ Madelung syndrome displayed fat accumulation within the subcutaneous tissue of the upper trunk and deep layer tissue of neck. The diffuse masses were located around the neck, upper chest and shoulders, which were called 'horse collar' and 'buffalo hump'. The other 2 cases of type Ⅱ Madelung syndrome displayed fat thickening within the subcutaneous tissue of the proximal extremities, anterior chest wall, showing special appearance of 'vigorous sailor'. All the 5 patients showed fat deposit within the subcutaneous tissue of the anterior rectus abdominis, inguina and fat accumulation within the scrotum. CT showed proliferated fat at the subcutaneous tissue of the involved regions. The CT value of proliferated fat were between - 30 and -70 HU. The proliferated fat tissue all could be displayed on MR T 1 WI, T 2 WI and T 2 WI fat suppression sequence, with typical hypointensity on T 1 WI and hyperintensity on T 2 WI, hypointensity on fat-suppression sequence and fibrous septation presenting among fat tissue. Conclusion: Combination with the history of long-term alcohol abuse, the Madelung syndrome could be diagnosed by CT and MR, which had great value in the surgical planning for identifying the extent of disease. (authors)

  14. Evaluation of heart rate reserve and high-sensitivity C-reactive protein in individuals with and without metabolic syndrome in Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Yosef Khaledi

    2012-06-01

    Full Text Available    BACKGROUND: Lack of heart rate increase proportionate to exercise causes poor prognosis. Moreover, inflammatory factors such as C-reactive protein (CRP are associated with atherosclerosis. The current study compared these two indices in individuals with and without metabolic syndrome in Isfahan, Iran.    METHODS: This study was performed on 203 people without and 123 patients with metabolic syndrome who were randomly selected from the participants of the Isfahan Cohort Study. The demographic data, waist circumference, blood pressure, height, and weight of the participants were recorded. Moreover, serum triglyceride (TG, fasting blood sugar (FBS, total cholesterol, high density lipoprotein (HDL, low density lipoprotein (LDL, and high-sensitivity CRP (hs-CRP levels were measured. Exercise test was carried out according to the Bruce standard protocol and heart rate reserve (HRR was determined and recorded. The age-adjusted data was analyzed using generalized linear regression and student's t-test in SPSS15.    RESULTS: The mean ages of participants without and with metabolic syndrome were 54.16 ± 8.61 and 54.29 ± 7.6 years, respectively. The corresponding values for mean LDL levels were 116.17 ± 24.04 and 120.12 ± 29.55 mg/dl. TG levels were 140.38 ± 61.65 and 259.99 ± 184.49 mg/dl for subjects without and with the metabolic syndrome, respectively. The mean FBS levels were 81.81 ± 9.90 mg/dl in the participants without the syndrome and 107.13 ± 48.46 mg/dl in those with metabolic syndrome. The mean systolic blood pressure was 116.06 ± 13.69 mmHg in persons without metabolic syndrome and 130.73 ± 15.15 mmHg in patients with the syndrome. The values for mean diastolic levels in the two groups were 76.52 ± 6.69 and 82.84 ± 8.7 mmHg, respectively. While the two groups were not significantly different in terms of HRR (P = 0.27, hs-CRP levels in the metabolic syndrome group was significantly higher than the other group (P = 0.02.

  15. Magnetic resonance imaging diagnosis of acute Guillain-Barré syndrome in children

    Institute of Scientific and Technical Information of China (English)

    Zhongjun Hou; Xiaojun Yu; Huimin Jiang; Xi Li; Bingyi Cao; Yaotang Chen; Jiao Chen

    2011-01-01

    The present study examined 24 children with acute Guillain-Barré syndrome using magnetic resonance imaging (MRI) plain scans and fat-suppressed enhanced T1-weighted imaging (T1WI)scans. Axial MRI plain scans centering on the medullary conus were positive in nine patients (38%).These displayed variable thickening involving the cauda equina with isointensity on T1WI and isointensity or slight hyperintensity on T2WI. False negatives were obtained in patients with cervical and cranial nerve symptoms. Contrast enhancement of T1WI with fat suppression w as positive in all patients in the cauda equina with varied thickening and enhancement centering on the medullary conus. Five patients (36%) were positive in the cervical nerves and 3 patients (50%) were positive in the cranial nerves. These patients had corresponding cervical and cranial nerve symptoms,respectively. Patients with serious clinical symptoms in the lower limbs exhibited obvious involvement of the cauda equina by MRI. Statistical analysis revealed a positive correlation between the extent of enlargement of the cauda equina, centering on the medullary conus, and cerebrospinal fluid protein concentration.

  16. Does the corticoadrenal adenoma with ''pre-Cushing's syndrome'' exist

    International Nuclear Information System (INIS)

    Charbonnel, B.; Chatal, J.F.; Ozanne, P.

    1981-01-01

    An adrenal tumor was discovered fortuitously in a patient with no clinical features of Cushing's syndrome. On adrenal imaging, there was good uptake in the nodule but no visualization of the contralateral adrenal. The latter was seen, however, in a second scan performed under ACTH treatment. In the hormone assessment, basal cortisol and 17-hydroxycorticoids were normal and cortisol diurnal variation was near normal, but a dexamethasone suppression test and ACTH responses to metyrapone and insulin hypoglycemia were abnormal. Eight months after excision of a spongiocytic-type adenoma, the remaining adrenal was visible on scintigram and the hormonal tests were normal. This pattern suggests that the clinical Cushing's syndrome was enough to partially suppress ACTH and, consequently, visualization of the contralateral gland

  17. Reduced synaptic vesicle protein degradation at lysosomes curbs TBC1D24/sky-induced neurodegeneration.

    Science.gov (United States)

    Fernandes, Ana Clara; Uytterhoeven, Valerie; Kuenen, Sabine; Wang, Yu-Chun; Slabbaert, Jan R; Swerts, Jef; Kasprowicz, Jaroslaw; Aerts, Stein; Verstreken, Patrik

    2014-11-24

    Synaptic demise and accumulation of dysfunctional proteins are thought of as common features in neurodegeneration. However, the mechanisms by which synaptic proteins turn over remain elusive. In this paper, we study Drosophila melanogaster lacking active TBC1D24/Skywalker (Sky), a protein that in humans causes severe neurodegeneration, epilepsy, and DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome, and identify endosome-to-lysosome trafficking as a mechanism for degradation of synaptic vesicle-associated proteins. In fly sky mutants, synaptic vesicles traveled excessively to endosomes. Using chimeric fluorescent timers, we show that synaptic vesicle-associated proteins were younger on average, suggesting that older proteins are more efficiently degraded. Using a genetic screen, we find that reducing endosomal-to-lysosomal trafficking, controlled by the homotypic fusion and vacuole protein sorting (HOPS) complex, rescued the neurotransmission and neurodegeneration defects in sky mutants. Consistently, synaptic vesicle proteins were older in HOPS complex mutants, and these mutants also showed reduced neurotransmission. Our findings define a mechanism in which synaptic transmission is facilitated by efficient protein turnover at lysosomes and identify a potential strategy to suppress defects arising from TBC1D24 mutations in humans. © 2014 Fernandes et al.

  18. Non-cell autonomous or secretory tumor suppression.

    Science.gov (United States)

    Chua, Christelle En Lin; Chan, Shu Ning; Tang, Bor Luen

    2014-10-01

    Many malignancies result from deletions or loss-of-function mutations in one or more tumor suppressor genes, the products of which curb unrestrained growth or induce cell death in those with dysregulated proliferative capacities. Most tumor suppressors act in a cell autonomous manner, and only very few proteins are shown to exert a non-cell autonomous tumor suppressor function on other cells. Examples of these include members of the secreted frizzled-related protein (SFRP) family and the secreted protein acidic and rich in cysteine (SPARC)-related proteins. Very recent findings have, however, considerably expanded our appreciation of non-cell autonomous tumor suppressor functions. Broadly, this may occur in two ways. Intracellular tumor suppressor proteins within cells could in principle inhibit aberrant growth of neighboring cells by conditioning an antitumor microenvironment through secreted factors. This is demonstrated by an apparent non-cell autonomous tumor suppressing property of p53. On the other hand, a tumor suppressor produced by a cell may be secreted extracellularly, and taken up by another cell with its activity intact. Intriguingly, this has been recently shown to occur for the phosphatase and tensin homolog (PTEN) by both conventional and unconventional modes of secretion. These recent findings would aid the development of therapeutic strategies that seek to reinstate tumor suppression activity in therapeutically recalcitrant tumor cells, which have lost it in the first place. © 2014 Wiley Periodicals, Inc.

  19. Suppression of Shrimp Melanization during White Spot Syndrome Virus Infection*

    Science.gov (United States)

    Sutthangkul, Jantiwan; Amparyup, Piti; Charoensapsri, Walaiporn; Senapin, Saengchan; Phiwsaiya, Kornsunee; Tassanakajon, Anchalee

    2015-01-01

    The melanization cascade, activated by the prophenoloxidase (proPO) system, plays a key role in the production of cytotoxic intermediates, as well as melanin products for microbial sequestration in invertebrates. Here, we show that the proPO system is an important component of the Penaeus monodon shrimp immune defense toward a major viral pathogen, white spot syndrome virus (WSSV). Gene silencing of PmproPO(s) resulted in increased cumulative shrimp mortality after WSSV infection, whereas incubation of WSSV with an in vitro melanization reaction prior to injection into shrimp significantly increased the shrimp survival rate. The hemolymph phenoloxidase (PO) activity of WSSV-infected shrimp was extremely reduced at days 2 and 3 post-injection compared with uninfected shrimp but was fully restored after the addition of exogenous trypsin, suggesting that WSSV probably inhibits the activity of some proteinases in the proPO cascade. Using yeast two-hybrid screening and co-immunoprecipitation assays, the viral protein WSSV453 was found to interact with the proPO-activating enzyme 2 (PmPPAE2) of P. monodon. Gene silencing of WSSV453 showed a significant increase of PO activity in WSSV-infected shrimp, whereas co-silencing of WSSV453 and PmPPAE2 did not, suggesting that silencing of WSSV453 partially restored the PO activity via PmPPAE2 in WSSV-infected shrimp. Moreover, the activation of PO activity in shrimp plasma by PmPPAE2 was significantly decreased by preincubation with recombinant WSSV453. These results suggest that the inhibition of the shrimp proPO system by WSSV partly occurs via the PmPPAE2-inhibiting activity of WSSV453. PMID:25572398

  20. Conceptualizing neurodevelopmental disorders through a mechanistic understanding of fragile X syndrome and Williams syndrome.

    Science.gov (United States)

    Fung, Lawrence K; Quintin, Eve-Marie; Haas, Brian W; Reiss, Allan L

    2012-04-01

    The overarching goal of this review is to compare and contrast the cognitive-behavioral features of fragile X syndrome (FraX) and Williams syndrome and to review the putative neural and molecular underpinnings of these features. Information is presented in a framework that provides guiding principles for conceptualizing gene-brain-behavior associations in neurodevelopmental disorders. Abnormalities, in particular cognitive-behavioral domains with similarities in underlying neurodevelopmental correlates, occur in both FraX and Williams syndrome including aberrant frontostriatal pathways leading to executive function deficits, and magnocellular/dorsal visual stream, superior parietal lobe, inferior parietal lobe, and postcentral gyrus abnormalities contributing to deficits in visuospatial function. Compelling cognitive-behavioral and neurodevelopmental contrasts also exist in these two disorders, for example, aberrant amygdala and fusiform cortex structure and function occurring in the context of contrasting social behavioral phenotypes, and temporal cortical and cerebellar abnormalities potentially underlying differences in language function. Abnormal dendritic development is a shared neurodevelopmental morphologic feature between FraX and Williams syndrome. Commonalities in molecular machinery and processes across FraX and Williams syndrome occur as well - microRNAs involved in translational regulation of major synaptic proteins; scaffolding proteins in excitatory synapses; and proteins involved in axonal development. Although the genetic variations leading to FraX and Williams syndrome are different, important similarities and contrasts in the phenotype, neurocircuitry, molecular machinery, and cellular processes in these two disorders allow for a unique approach to conceptualizing gene-brain-behavior links occurring in neurodevelopmental disorders.

  1. Proteomic profiles in hyperandrogenic syndromes.

    Science.gov (United States)

    Misiti, S; Stigliano, A; Borro, M; Gentile, G; Michienzi, S; Cerquetti, L; Bucci, B; Argese, N; Brunetti, E; Simmaco, M; Toscano, V

    2010-03-01

    Polycystic ovary syndrome (PCOS) and congenital adrenal hyperplasia (CAH) represent the most common causes of hyperandrogenism. Although the etiopathogeneses of these syndromes are different, they share many clinical and biochemical signs, such as hirsutism, acne, and chronic anovulation. Experimental data have shown that peripheral T-lymphocytes function as molecular sensors, being able to record molecular signals either at staminal and mature cell levels, or hormones at systemic levels. Twenty PCOS women and 10 CAH with 21-hydroxylase deficiency, aged between 18-35 yr, were studied. T-cells purified from all patients and 20 healthy donors have been analyzed by 2-dimensional gel electrophoresis. Silver-stained proteomic map of each patient was compared with a control map obtained by pooling protein samples of the 20 healthy subjects. Spots of interest were identified by peptide mass fingerprint. Computer analysis evidenced several peptidic spots significantly modulated in all patients examined. Some proteins were modulated in both syndromes, others only in PCOS or in CAH. These proteins are involved in many physiological processes as the functional state of immune system, the regulation of the cytoskeleton structure, the oxidative stress, the coagulation process, and the insulin resistance. Identification of the physiological function of these proteins could help to understand ethiopathogenetic mechanisms of hyperandrogenic syndromes and its complications.

  2. Computed tomography after lymphangiography in the diagnosis of intestinal lymphangiectasia with protein-losing enteropathy in Noonan's syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Keberle, M.; Jenett, M.; Hahn, D. [Univ. of Wuerzburg (Germany). Dept. of Radiology; Moerk, H.; Scheurlen, M. [Wuerzburg Univ. (Germany). Medizinische Poliklinik

    2000-10-01

    Noonan's syndrome is a rare congenital disorder that may be associated with abnormalities in the lymphatic drainage. In this case of a 21-year-old man CT after bipedal lymphangiography confirmed the diagnosis of intestinal lymphangiectasy causing protein-losing enteropathy in Noonan's syndrome by showing contrast-enhanced abnormal lymphatic vessels in the mesentery and the intestinal wall. Because of the benefit of diet in case of intestinal involvement, we recommend a thorough documentation of the lymphatic drainage with lymphangiography followed by CT, if clinical signs of lymphatic dysplasia, such as pleural effusions, lymphedema, or hypoproteinemia are present. (orig.)

  3. Genetics Home Reference: Fraser syndrome

    Science.gov (United States)

    ... FRAS1 gene mutations are the most common cause, accounting for about half of cases of Fraser syndrome . ... Fras1/Frem family of extracellular matrix proteins: structure, function, and association with Fraser syndrome and the mouse ...

  4. Chitin Oligosaccharide Modulates Gut Microbiota and Attenuates High-Fat-Diet-Induced Metabolic Syndrome in Mice

    Directory of Open Access Journals (Sweden)

    Junping Zheng

    2018-02-01

    Full Text Available Gut microbiota has been proved to be an indispensable link between nutrient excess and metabolic syndrome, and chitin oligosaccharide (NACOS has displayed therapeutic effects on multiple diseases such as cancer and gastritis. In this study, we aim to confirm whether NACOS can ameliorate high-fat diet (HFD-induced metabolic syndrome by rebuilding the structure of the gut microbiota community. Male C57BL/6J mice fed with HFD were treated with NACOS (1 mg/mL in drinking water for five months. The results indicate that NACOS improved glucose metabolic disorder in HFD-fed mice and suppressed mRNA expression of the protein regulators related to lipogenesis, gluconeogenesis, adipocyte differentiation, and inflammation in adipose tissues. Additionally, NACOS inhibited the destruction of the gut barrier in HFD-treated mice. Furthermore, 16S ribosome RNA sequencing of fecal samples demonstrates that NACOS promoted the growth of beneficial intestinal bacteria remarkably and decreased the abundance of inflammogenic taxa. In summary, NACOS partly rebuilt the microbial community and improved the metabolic syndrome of HFD-fed mice. These data confirm the preventive effects of NACOS on nutrient excess-related metabolic diseases.

  5. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse)

    OpenAIRE

    Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.

    1997-01-01

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/...

  6. La Crosse bunyavirus nonstructural protein NSs serves to suppress the type I interferon system of mammalian hosts.

    Science.gov (United States)

    Blakqori, Gjon; Delhaye, Sophie; Habjan, Matthias; Blair, Carol D; Sánchez-Vargas, Irma; Olson, Ken E; Attarzadeh-Yazdi, Ghassem; Fragkoudis, Rennos; Kohl, Alain; Kalinke, Ulrich; Weiss, Siegfried; Michiels, Thomas; Staeheli, Peter; Weber, Friedemann

    2007-05-01

    La Crosse virus (LACV) is a mosquito-transmitted member of the Bunyaviridae family that causes severe encephalitis in children. For the LACV nonstructural protein NSs, previous overexpression studies with mammalian cells had suggested two different functions, namely induction of apoptosis and inhibition of RNA interference (RNAi). Here, we demonstrate that mosquito cells persistently infected with LACV do not undergo apoptosis and mount a specific RNAi response. Recombinant viruses that either express (rLACV) or lack (rLACVdelNSs) the NSs gene similarly persisted and were prone to the RNAi-mediated resistance to superinfection. Furthermore, in mosquito cells overexpressed LACV NSs was unable to inhibit RNAi against Semliki Forest virus. In mammalian cells, however, the rLACVdelNSs mutant virus strongly activated the antiviral type I interferon (IFN) system, whereas rLACV as well as overexpressed NSs suppressed IFN induction. Consequently, rLACVdelNSs was attenuated in IFN-competent mouse embryo fibroblasts and animals but not in systems lacking the type I IFN receptor. In situ analyses of mouse brains demonstrated that wild-type and mutant LACV mainly infect neuronal cells and that NSs is able to suppress IFN induction in the central nervous system. Thus, our data suggest little relevance of the NSs-induced apoptosis or RNAi inhibition for growth or pathogenesis of LACV in the mammalian host and indicate that NSs has no function in the insect vector. Since deletion of the viral NSs gene can be fully complemented by inactivation of the host's IFN system, we propose that the major biological function of NSs is suppression of the mammalian innate immune response.

  7. Functional assessment of MeCP2 in Rett syndrome and cancers of breast, colon, and prostate.

    Science.gov (United States)

    Pandey, Somnath; Pruitt, Kevin

    2017-06-01

    Ever since the first report that mutations in methyl-CpG-binding protein 2 (MeCP2) causes Rett syndrome (RTT), a severe neurological disorder in females world-wide, there has been a keen interest to gain a comprehensive understanding of this protein. While the classical model associated with MeCP2 function suggests its role in gene suppression via recruitment of co-repressor complexes and histone deacetylases to methylated CpG-sites, recent discoveries have brought to light its role in transcription activation, modulation of RNA splicing, and chromatin compaction. Various post-translational modifications (PTMs) of MeCP2 further increase its functional versatility. Involvement of MeCP2 in pathologies other than RTT, such as tumorigenesis however, remains poorly explored and understood. This review provides a survey of the literature implicating MeCP2 in breast, colon and prostate cancer.

  8. Capillary leak syndrome: etiologies, pathophysiology, and management.

    Science.gov (United States)

    Siddall, Eric; Khatri, Minesh; Radhakrishnan, Jai

    2017-07-01

    In various human diseases, an increase in capillary permeability to proteins leads to the loss of protein-rich fluid from the intravascular to the interstitial space. Although sepsis is the disease most commonly associated with this phenomenon, many other diseases can lead to a "sepsis-like" syndrome with manifestations of diffuse pitting edema, exudative serous cavity effusions, noncardiogenic pulmonary edema, hypotension, and, in some cases, hypovolemic shock with multiple-organ failure. The term capillary leak syndrome has been used to describe this constellation of disease manifestations associated with an increased capillary permeability to proteins. Diseases other than sepsis that can result in capillary leak syndrome include the idiopathic systemic capillary leak syndrome or Clarkson's disease, engraftment syndrome, differentiation syndrome, the ovarian hyperstimulation syndrome, hemophagocytic lymphohistiocytosis, viral hemorrhagic fevers, autoimmune diseases, snakebite envenomation, and ricin poisoning. Drugs including some interleukins, some monoclonal antibodies, and gemcitabine can also cause capillary leak syndrome. Acute kidney injury is commonly seen in all of these diseases. In addition to hypotension, cytokines are likely to be important in the pathophysiology of acute kidney injury in capillary leak syndrome. Fluid management is a critical part of the treatment of capillary leak syndrome; hypovolemia and hypotension can cause organ injury, whereas capillary leakage of administered fluid can worsen organ edema leading to progressive organ injury. The purpose of this article is to discuss the diseases other than sepsis that produce capillary leak and review their collective pathophysiology and treatment. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  9. Ovarian metastasis from uveal melanoma with MLH1/PMS2 protein loss in a patient with germline MLH1 mutated Lynch syndrome: consequence or coincidence?

    Science.gov (United States)

    Lobo, João; Pinto, Carla; Freitas, Micaela; Pinheiro, Manuela; Vizcaino, Rámon; Oliva, Esther; Teixeira, Manuel R; Jerónimo, Carmen; Bartosch, Carla

    2017-03-01

    Currently, uveal melanoma is not considered within the Lynch syndrome tumor spectrum. However, there are studies suggesting a contribution of microsatellite instability in sporadic uveal melanoma tumorigenesis. We report a 45-year-old woman who was referred for genetic counseling due to a family history of Lynch syndrome caused by a MLH1 mutation. She originally underwent enucleation of the right eye secondary to a uveal spindle cell melanoma diagnosed at age 25. The tumor recurred 22 years later presenting as an ovarian metastasis and concurrently a microscopic endometrial endometrioid carcinoma, grade 1/3 was diagnosed. Subsequent studies highlighted that the uveal melanoma showed high microsatellite instability and loss of MLH1 and PMS2 protein expression, with no MLH1 promoter methylation or BRAF mutation. Additionally, a GNAQ mutation was found. We conclude that our patient's uveal melanoma is most likely related to MLH1 germline mutation and thus Lynch syndrome related. To the best of our knowledge, this is the first report of uveal melanoma showing MLH1/PMS2 protein loss in the context of Lynch syndrome.

  10. Natural history of food protein-induced enterocolitis syndrome.

    Science.gov (United States)

    Katz, Yitzhak; Goldberg, Michael R

    2014-06-01

    Because of the paucity of reports and variability in the diagnostic criteria utilized, little is known regarding the natural outcome of patients with food protein-induced enterocolitis syndrome (FPIES). Data extracted from referenced manuscripts, as well as allergists' unpublished observations from across the globe, were used to form a cohesive opinion regarding its natural outcome. All authors concur that there is a generally high rate of recovery for FPIES. The most common foods causing FPIES are milk and soy. Depending upon which study is analyzed, by the age of 3-5 years, approximately 90% of patients recover from their disease. Recovery from FPIES to solid foods, occurs at a later age, but may reflect a later stage of introduction of the food into the diet. An important clinical outcome, although not common, is a shift from FPIES food hypersensitivity to an IgE-mediated food allergy. This necessitates a change in the oral food challenge protocol, if IgE-mediated sensitization is detected. Over the past several years, there has been an increasing awareness of FPIES. This knowledge should lead to a more timely diagnosis and should reassure parents and practitioners alike regarding its favorable course.

  11. Cytoskeleton-interacting LIM-domain protein CRP1 suppresses cell proliferation and protects from stress-induced cell death

    International Nuclear Information System (INIS)

    Latonen, Leena; Jaervinen, Paeivi M.; Laiho, Marikki

    2008-01-01

    Members of the cysteine-rich protein (CRP) family are actin cytoskeleton-interacting LIM-domain proteins known to act in muscle cell differentiation. We have earlier found that CRP1, a founding member of this family, is transcriptionally induced by UV radiation in human diploid fibroblasts [M. Gentile, L. Latonen, M. Laiho, Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses, Nucleic Acids Res. 31 (2003) 4779-4790]. Here we show that CRP1 is induced by growth-inhibitory signals, such as increased cellular density, and cytotoxic stress induced by UV radiation or staurosporine. We found that high levels of CRP1 correlate with differentiation-associated morphology towards the myofibroblast lineage and that expression of ectopic CRP1 suppresses cell proliferation. Following UV- and staurosporine-induced stresses, expression of CRP1 provides a survival advantage evidenced by decreased cellular death and increased cellular metabolic activity and attachment. Our studies identify that CRP1 is a novel stress response factor, and provide evidence for its growth-inhibitory and cytoprotective functions

  12. Effects of Human C-Reactive Protein on Pathogenesis of Features of the Metabolic Syndrome

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Kajiya, T.; Zídek, Václav; Landa, Vladimír; Mlejnek, Petr; Šimáková, Miroslava; Šilhavý, Jan; Malínská, H.; Oliyarnyk, O.; Kazdová, L.; Fan, J.; Wang, J.; Kurtz, T. W.

    2011-01-01

    Roč. 57, č. 4 (2011), s. 731-737 ISSN 0194-911X R&D Projects: GA MZd(CZ) NS9759; GA MŠk(CZ) ME08006; GA MŠk(CZ) 1M0520; GA ČR(CZ) GAP301/10/0290; GA ČR GAP303/10/0505; GA AV ČR(CZ) IAA500110805 Grant - others:EC(XE) HEALTH-F4-2010-241504 Institutional research plan: CEZ:AV0Z50110509 Keywords : C-reactive protein * metabolic syndrome * transgenic rat Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 6.207, year: 2011

  13. Roux-en-Y gastric bypass surgery suppresses hypothalamic PTP1B protein level and alleviates leptin resistance in obese rats.

    Science.gov (United States)

    Liu, Jia-Yu; Mu, Song; Zhang, Shu-Ping; Guo, Wei; Li, Qi-Fu; Xiao, Xiao-Qiu; Zhang, Jun; Wang, Zhi-Hong

    2017-09-01

    The present study aimed to explore the effect of Roux-en-Y gastric bypass (RYGB) surgery on protein tyrosine phosphatase 1B (PTP1B) expression levels and leptin activity in hypothalami of obese rats. Obese rats induced by a high-fat diet (HFD) that underwent RYGB (n=11) or sham operation (SO, n=9), as well as an obese control cohort (Obese, n=10) and an additional normal-diet group (ND, n=10) were used. Food efficiency was measured at 8 weeks post-operation. Plasma leptin levels were evaluated and hypothalamic protein tyrosine phosphatase 1B (PTP1B) levels and leptin signaling activity were examined at the genetic and protein levels. The results indicated that food efficiency was typically lower in RYGB rats compared with that in the Obese and SO rats. In the RYGB group, leptin receptor expression and proopiomelanocortin was significantly higher, while Neuropeptide Y levels were lower than those in the Obese and SO groups. Furthermore, the gene and protein expression levels of PTP1B in the RYGB group were lower, while levels of phosphorylated signal transducer and activator of transcription 3 protein were much higher compared with those in the Obese and SO groups. In conclusion, RYGB surgery significantly suppressed hypothalamic PTP1B protein expression. PTP1B regulation may partially alleviate leptin resistance.

  14. Association of the Hermansky-Pudlak syndrome type-3 protein with clathrin

    Directory of Open Access Journals (Sweden)

    Gahl William A

    2005-09-01

    Full Text Available Abstract Background Hermansky-Pudlak syndrome (HPS is a disorder of lysosome-related organelle biogenesis characterized by oculocutaneous albinism and prolonged bleeding. These clinical findings reflect defects in the formation of melanosomes in melanocytes and dense bodies in platelets. HPS type-3 (HPS-3 results from mutations in the HPS3 gene, which encodes a 1004 amino acid protein of unknown function that contains a predicted clathrin-binding motif (LLDFE at residues 172–176. Results Clathrin was co-immunoprecipitated by HPS3 antibodies from normal but not HPS3 null melanocytes. Normal melanocytes expressing a GFP-HPS3 fusion protein demonstrated partial co-localization of GFP-HPS3 with clathrin following a 20°C temperature block. GFP-HPS3 in which the predicted clathrin-binding domain of HPS3 was mutated (GFP-HPS3-delCBD did not co-localize with clathrin under the same conditions. Immunoelectron microscopy of normal melanocytes expressing GFP-HPS3 showed co-localization of GFP-HPS3 with clathrin, predominantly on small vesicles in the perinuclear region. In contrast, GFP-HPS3-delCBD did not co-localize with clathrin and exhibited a largely cytoplasmic distribution. Conclusion HPS3 associates with clathrin, predominantly on small clathrin-containing vesicles in the perinuclear region. This association most likely occurs directly via a functional clathrin-binding domain in HPS3. These results suggest a role for HPS3 and its protein complex, BLOC-2, in vesicle formation and trafficking.

  15. Compartment Syndrome as a Result of Systemic Capillary Leak Syndrome

    Directory of Open Access Journals (Sweden)

    Kwadwo Kyeremanteng

    2016-01-01

    Full Text Available Objective. To describe a single case of Systemic Capillary Leak Syndrome (SCLS with a rare complication of compartment syndrome. Patient. Our patient is a 57-year-old male, referred to our hospital due to polycythemia (hemoglobin (Hgb of 220 g/L, hypotension, acute renal failure, and bilateral calf pain. Measurements and Main Results. The patient required bilateral forearm, thigh, and calf fasciotomies during his ICU stay and continuous renal replacement therapy was instituted following onset of acute renal failure and oliguria. Ongoing hemodynamic (Norepinephrine and Milrinone infusion and respiratory (ventilator support in the ICU was provided until resolution of intravascular fluid extravasation. Conclusions. SCLS is an extremely rare disorder characterized by unexplained episodic capillary hyperpermeability, which causes shift of volume and protein from the intravascular space to the interstitial space. Patients present with significant hypotension, hemoconcentration, hypovolemia, and oliguria. Severe edema results from leakage of fluid and proteins into tissue. The most important part of treatment is maintaining stable hemodynamics, ruling out other causes of shock and diligent monitoring for complications. Awareness of the clinical syndrome with the rare complication of compartment syndrome may help guide investigations and diagnoses of these critically ill patients.

  16. Assessment of protein solution versus crystal structure determination using spin- diffusion-suppressed NOE and heteronuclear relaxation data

    International Nuclear Information System (INIS)

    LeMaster, David M.

    1997-01-01

    A spin-diffusion-suppressed NOE buildup series has been measured for E. coli thioredoxin.The extensive 13C and 15N relaxation data previously reported for this protein allow for direct interpretation of dynamical contributions to the 1H-1H cross-relaxation rates for a large proportion of the NOE cross peaks. Estimates of the average accuracy for these derived NOE distances are bounded by 4% and 10%, based on a comparison to the corresponding X-ray distances. An independent fluctuation model is proposed for prediction of the dynamical corrections to 1H-1H cross-relaxation rates, based solely on experimental structural and heteronuclear relaxation data. This analysis is aided by the demonstration that heteronuclear order parameters greater than 0.6 depend only on the variance of the H-X bond orientation,independent of the motional model in either one- or two-dimensional diffusion (i.e., 1- S2 = 3/4 sin2 2 θσ). The combination of spin-diffusion-suppressed NOE data and analysis of dynamical corrections to 1H-1H cross-relaxation rates based on heteronuclear relaxation data has allowed for a detailed interpretation of various discrepancies between the reported solution and crystal structures

  17. Suppressive effects of a novel compound on interphotoreceptor retinoid-binding protein-induced experimental autoimmune uveoretinitis in rats

    Directory of Open Access Journals (Sweden)

    Jun-ichi Sakai

    1999-01-01

    Full Text Available The immunosuppressive effect of ethyl O-(N-(pcarboxyphenyl-carbamoyl-mycophenolate(CAM was examined in interphotoreceptor retinoid-binding protein (IRBP-induced experimental autoimmune uveoretinitis (EAU in rats. Lewis rats immunized with bovine IRBP were treated with various oral doses of CAM postimmunization. The degree of inflammation was assessed clinically each day and histologically on day 14 or day 20. Production of various cytokines and IRBP-specific antibody, as well as IRBP-specific proliferation response, was assessed. Complete inhibition of EAU in rats, both by clinical and histologic criteria, was achieved with 50 mg/kg CAM when administered daily for 14 days following IRBP immunization. Partial inhibition was observed at lesser doses of CAM. This CAM-mediated response was accompanied by diminished production of cytokines interleukin-2, interferon-γ and tumor necrosis factor-α, as well as a reduction in IRBP-specific antibody production. Furthermore, administration of CAM either in the induction phase only (days 0–7 or in the effector phase only (days 9 or 11 to day 20 was also capable of suppressing EAU, as assessed histopathologically on day 20. We conclude that CAM is effective in suppressing EAU in rats and its mechanism of action appears to involve modulation of T cell function.

  18. Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses.

    Science.gov (United States)

    Ramachandran, Sowmya R; Yin, Chuntao; Kud, Joanna; Tanaka, Kiwamu; Mahoney, Aaron K; Xiao, Fangming; Hulbert, Scot H

    2017-01-01

    Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.

  19. Evaluation of steroid laboratory tests and adrenal gland imaging with radiocholesterol in the aetiological diagnosis of Cushing's syndrome

    International Nuclear Information System (INIS)

    Barbarino, A.; De Marinis, L.; Liberale, I.; Menini, E.

    1979-01-01

    Basal values of the urinary excretion of 17-oxogenic steroids and serum levels of cortisol were not satisfactory in the differentiation of 'suspected' subjects from patients with true Cushing's syndrome. With a RIA method for serum cortisol determination, the overnight dexamethasone suppression test provided the most reliable single test in establishing adrenocortical hyperfunction. Thirty-five normal subjects, fifty-nine obese patients, thirteen 'suspected' patients and thirteen patients with disease states other than Cushing's syndrome had suppressed values below 4.0 μg/100 ml. None of the ten patients with Cushing's syndrome had a cortisol concentration less than 16.3 μg/100ml. Adrenal gland scintigraphy after radiocholesterol injection is a more valuable tool than the metyrapone test and the high-dose dexamethasone suppression test in the localization and differential diagnosis of adrenocortical lesions causing Cushing's syndrome. It obviates the need for angiographic procedure in the localization of adenomas. It is a reliable technique for identifying functioning adrenal remnants. Therefore a schedule is proposed for studying patients with suspected adrenocortical hyperfunction. (author)

  20. Down syndrome critical region 2 protein inhibits the transcriptional activity of peroxisome proliferator-activated receptor β in HEK293 cells

    International Nuclear Information System (INIS)

    Song, Hae Jin; Park, Joongkyu; Seo, Su Ryeon; Kim, Jongsun; Paik, Seung R.; Chung, Kwang Chul

    2008-01-01

    Down syndrome is mainly caused by a trisomy of chromosome 21. The Down syndrome critical region 2 (DSCR2) gene is located within a part of chromosome 21, the Down syndrome critical region (DSCR). To investigate the function of DSCR2, we sought to identify DSCR2-interacting proteins using yeast two-hybrid assays. A human fetal brain cDNA library was screened, and DSCR2 was found to interact with a member of the nuclear receptor superfamily, peroxisome proliferator-activated receptor β, (PPARβ). A co-immunoprecipitation assay demonstrated that DSCR2 physically interacts with PPARβ in mammalian HEK293 cells. DSCR2 also inhibited the ligand-induced transcriptional activity of PPARβ. Furthermore, PPARβ also decreased the solubility of DSCR2, which increased levels of insoluble DSCR2

  1. Suppression of shrimp melanization during white spot syndrome virus infection.

    Science.gov (United States)

    Sutthangkul, Jantiwan; Amparyup, Piti; Charoensapsri, Walaiporn; Senapin, Saengchan; Phiwsaiya, Kornsunee; Tassanakajon, Anchalee

    2015-03-06

    The melanization cascade, activated by the prophenoloxidase (proPO) system, plays a key role in the production of cytotoxic intermediates, as well as melanin products for microbial sequestration in invertebrates. Here, we show that the proPO system is an important component of the Penaeus monodon shrimp immune defense toward a major viral pathogen, white spot syndrome virus (WSSV). Gene silencing of PmproPO(s) resulted in increased cumulative shrimp mortality after WSSV infection, whereas incubation of WSSV with an in vitro melanization reaction prior to injection into shrimp significantly increased the shrimp survival rate. The hemolymph phenoloxidase (PO) activity of WSSV-infected shrimp was extremely reduced at days 2 and 3 post-injection compared with uninfected shrimp but was fully restored after the addition of exogenous trypsin, suggesting that WSSV probably inhibits the activity of some proteinases in the proPO cascade. Using yeast two-hybrid screening and co-immunoprecipitation assays, the viral protein WSSV453 was found to interact with the proPO-activating enzyme 2 (PmPPAE2) of P. monodon. Gene silencing of WSSV453 showed a significant increase of PO activity in WSSV-infected shrimp, whereas co-silencing of WSSV453 and PmPPAE2 did not, suggesting that silencing of WSSV453 partially restored the PO activity via PmPPAE2 in WSSV-infected shrimp. Moreover, the activation of PO activity in shrimp plasma by PmPPAE2 was significantly decreased by preincubation with recombinant WSSV453. These results suggest that the inhibition of the shrimp proPO system by WSSV partly occurs via the PmPPAE2-inhibiting activity of WSSV453. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Pediatric acute respiratory distress syndrome: Host factors in Down syndrome and the general population

    NARCIS (Netherlands)

    Bruijn, M.

    2013-01-01

    We find that Down syndrome is an important risk factor for developing acute respiratory distress syndrome (ARDS) in children, but the reason why remains to be elucidated. In addition, we find several differences between adult and pediatric ARDS. The association between C-reactive protein (CRP)

  3. Mutations in the VLGR1 Gene Implicate G-Protein Signaling in the Pathogenesis of Usher Syndrome Type II

    Science.gov (United States)

    Weston, Michael D.; Luijendijk, Mirjam W. J.; Humphrey, Kurt D.; Möller, Claes; Kimberling, William J.

    2004-01-01

    Usher syndrome type II (USH2) is a genetically heterogeneous autosomal recessive disorder with at least three genetic subtypes (USH2A, USH2B, and USH2C) and is classified phenotypically as congenital hearing loss and progressive retinitis pigmentosa. The VLGR1 (MASS1) gene in the 5q14.3-q21.1 USH2C locus was considered a likely candidate on the basis of its protein motif structure and expressed-sequence-tag representation from both cochlear and retinal subtracted libraries. Denaturing high-performance liquid chromatography and direct sequencing of polymerase-chain-reaction products amplified from 10 genetically independent patients with USH2C and 156 other patients with USH2 identified four isoform-specific VLGR1 mutations (Q2301X, I2906FS, M2931FS, and T6244X) from three families with USH2C, as well as two sporadic cases. All patients with VLGR1 mutations are female, a significant deviation from random expectations. The ligand(s) for the VLGR1 protein is unknown, but on the basis of its potential extracellular and intracellular protein-protein interaction domains and its wide mRNA expression profile, it is probable that VLGR1 serves diverse cellular and signaling processes. VLGR1 mutations have been previously identified in both humans and mice and are associated with a reflex-seizure phenotype in both species. The identification of additional VLGR1 mutations to test whether a phenotype/genotype correlation exists, akin to that shown for other Usher syndrome disease genes, is warranted. PMID:14740321

  4. The Y-Box Binding Protein 1 Suppresses Alzheimer's Disease Progression in Two Animal Models.

    Directory of Open Access Journals (Sweden)

    N V Bobkova

    Full Text Available The Y-box binding protein 1 (YB-1 is a member of the family of DNA- and RNA binding proteins. It is involved in a wide variety of DNA/RNA-dependent events including cell proliferation and differentiation, stress response, and malignant cell transformation. Previously, YB-1 was detected in neurons of the neocortex and hippocampus, but its precise role in the brain remains undefined. Here we show that subchronic intranasal injections of recombinant YB-1, as well as its fragment YB-11-219, suppress impairment of spatial memory in olfactory bulbectomized (OBX mice with Alzheimer's type degeneration and improve learning in transgenic 5XFAD mice used as a model of cerebral amyloidosis. YB-1-treated OBX and 5XFAD mice showed a decreased level of brain β-amyloid. In OBX animals, an improved morphological state of neurons was revealed in the neocortex and hippocampus; in 5XFAD mice, a delay in amyloid plaque progression was observed. Intranasally administered YB-1 penetrated into the brain and could enter neurons. In vitro co-incubation of YB-1 with monomeric β-amyloid (1-42 inhibited formation of β-amyloid fibrils, as confirmed by electron microscopy. This suggests that YB-1 interaction with β-amyloid prevents formation of filaments that are responsible for neurotoxicity and neuronal death. Our data are the first evidence for a potential therapeutic benefit of YB-1 for treatment of Alzheimer's disease.

  5. Food protein-induced enterocolitis syndrome in Australia: A population-based study, 2012-2014.

    Science.gov (United States)

    Mehr, Sam; Frith, Katie; Barnes, Elizabeth H; Campbell, Dianne E

    2017-11-01

    Food protein-induced enterocolitis syndrome (FPIES) is a non-IgE-mediated gastrointestinal allergic disorder. Large population-based FPIES studies are lacking. We sought to determine the incidence and clinical characteristics of FPIES in Australian infants. An Australia-wide survey (2012-2014) was undertaken through the Australian Paediatric Surveillance Unit, with monthly notification of new cases of acute FPIES in infants aged less than 24 months by 1400 participating pediatricians. Two hundred thirty infants with FPIES were identified. The incidence of FPIES in Australian infants (disease and FPIES to fruits, vegetables, or both. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  6. [Wolfram syndrome: clinical features, molecular genetics of WFS1 gene].

    Science.gov (United States)

    Tanabe, Katsuya; Matsunaga, Kimie; Hatanaka, Masayuki; Akiyama, Masaru; Tanizawa, Yukio

    2015-02-01

    Wolfram syndrome(WFS: OMIM 222300) is a rare recessive neuro-endocrine degenerative disorder, known as DIDMOAD(Diabetes Insipidus, early-onset Diabetes Mellitus, Optic Atrophy and Deafness) syndrome. Most affected individuals carry recessive mutations in the Wolfram syndrome 1 gene(WFS1). The WFS1 protein is an endoplasmic reticulum(ER) embedded protein, which functions in ER calcium homeostasis and unfolded protein responses. Dysregulation of these cellular processes results in the development of ER stress, leading to apoptosis. In addition, abundantly present WFS1 protein in insulin secretory granules plays a role in the intra-granular acidification. However, the phenotypic pleiomorphism and molecular complexity of this disease limit the understanding of WFS. Here we review clinical features, molecular mechanisms and mutations of WFS1 gene that relate to this syndrome.

  7. Phosphorylation of proteins in Clostridium thermohydrosulfuricum

    International Nuclear Information System (INIS)

    Londesborough, J.

    1986-01-01

    Cell extracts of the thermophile Clostridium thermohydrosulfuricum catalyzed the phosphorylation by (γ- 32 P)ATP of several endogenous proteins with M/sub r/s between 13,000 and 100,000. Serine and tyrosine were the main acceptors. Distinct substrate proteins were found in the soluble (e.g., proteins p66, p63, and p53 of M/sub r/s 66,000, 63,000, and 53,000, respectively) and particulate (p76 and p30) fractions, both of which contained protein kinase and phosphatase activity. The soluble fraction suppressed the phosphorylation of particulate proteins and contained a protein kinase inhibitor. Phosphorylation of p53 was promoted by 10μM fructose 1,6-bisphosphate or glucose 1,6-bisphosphate and suppressed by hexose monophosphates, whereas p30 and p13 were suppressed by 5 μM brain (but not spinach) calmodulin. Polyamines, including the odd polyamines characteristic of thermophiles, modulated the labeling of most of the phosphoproteins. Apart from p66, all the proteins labeled in vitro were also rapidly labeled in intact cells by 32 P/sub i/. Several proteins strongly labeled in vivo were labeled slowly or not at all in vitro

  8. Reward enhances tic suppression in children within months of tic disorder onset

    Directory of Open Access Journals (Sweden)

    Deanna J. Greene

    2015-02-01

    Full Text Available Tic disorders are childhood onset neuropsychiatric disorders characterized by motor and/or vocal tics. Research has demonstrated that children with chronic tics (including Tourette syndrome and Chronic Tic Disorder: TS/CTD can suppress tics, particularly when an immediate, contingent reward is given for successful tic suppression. As a diagnosis of TS/CTD requires tics to be present for at least one year, children in these tic suppression studies had been living with tics for quite some time. Thus, it is unclear whether the ability to inhibit tics is learned over time or present at tic onset. Resolving that issue would inform theories of how tics develop and how behavior therapy for tics works. We investigated tic suppression in school-age children as close to the time of tic onset as possible, and no later than six months after onset. Children were asked to suppress their tics both in the presence and absence of a contingent reward. Results demonstrated that these children, like children with TS/CTD, have some capacity to suppress tics, and that immediate reward enhances that capacity. These findings demonstrate that the modulating effect of reward on inhibitory control of tics is present within months of tic onset, before tics have become chronic.

  9. REWARD ENHANCES TIC SUPPRESSION IN CHILDREN WITHIN MONTHS OF TIC DISORDER ONSET

    Science.gov (United States)

    Greene, Deanna J.; Koller, Jonathan M.; Robichaux-Viehoever, Amy; Bihun, Emily C.; Schlaggar, Bradley L.; Black, Kevin J.

    2014-01-01

    Tic disorders are childhood onset neuropsychiatric disorders characterized by motor and/or vocal tics. Research has demonstrated that children with chronic tics (including Tourette syndrome and Chronic Tic Disorder: TS/CTD) can suppress tics, particularly when an immediate, contingent reward is given for successful tic suppression. As a diagnosis of TS/CTD requires tics to be present for at least one year, children in these tic suppression studies had been living with tics for quite some time. Thus, it is unclear whether the ability to inhibit tics is learned over time or present at tic onset. Resolving that issue would inform theories of how tics develop and how behavior therapy for tics works. We investigated tic suppression in school-age children as close to the time of tic onset as possible, and no later than six months after onset. Children were asked to suppress their tics both in the presence and absence of a contingent reward. Results demonstrated that these children, like children with TS/CTD, have some capacity to suppress tics, and that immediate reward enhances that capacity. These findings demonstrate that the modulating effect of reward on inhibitory control of tics is present within months of tic onset, before tics have become chronic. PMID:25220075

  10. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control

    DEFF Research Database (Denmark)

    Klein, Ditte Kjærsgaard; Hoffmann, Saskia; Ahlskog, Johanna K

    2015-01-01

    an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme...... that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein...

  11. Identification of polycystic ovary syndrome potential drug targets based on pathobiological similarity in the protein-protein interaction network

    Science.gov (United States)

    Li, Wan; Wei, Wenqing; Li, Yiran; Xie, Ruiqiang; Guo, Shanshan; Wang, Yahui; Jiang, Jing; Chen, Binbin; Lv, Junjie; Zhang, Nana; Chen, Lina; He, Weiming

    2016-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrinological disorders in reproductive aged women. PCOS and Type 2 Diabetes (T2D) are closely linked in multiple levels and possess high pathobiological similarity. Here, we put forward a new computational approach based on the pathobiological similarity to identify PCOS potential drug target modules (PPDT-Modules) and PCOS potential drug targets in the protein-protein interaction network (PPIN). From the systems level and biological background, 1 PPDT-Module and 22 PCOS potential drug targets were identified, 21 of which were verified by literatures to be associated with the pathogenesis of PCOS. 42 drugs targeting to 13 PCOS potential drug targets were investigated experimentally or clinically for PCOS. Evaluated by independent datasets, the whole PPDT-Module and 22 PCOS potential drug targets could not only reveal the drug response, but also distinguish the statuses between normal and disease. Our identified PPDT-Module and PCOS potential drug targets would shed light on the treatment of PCOS. And our approach would provide valuable insights to research on the pathogenesis and drug response of other diseases. PMID:27191267

  12. [Protein-energy malnutrition in clinical practice].

    Science.gov (United States)

    Necheva, G I; Druk, I V; Lialiukova, E A

    2013-01-01

    The analysis of the reasons and mechanisms of development of an protein-energy malnutrition, communication of fetal pathology and development of an protein-energy malnutrition at mature age is submitted. Systemic character of a syndrome is marked out. Importance of a problem of an protein-energy malnutrition at patients with a dysplasia of a connecting tissue is bound to high prevalence of a syndrome at this pathology.

  13. A black adrenocortical adenoma causing Cushing's syndrome not imaged by radiocholesterol scintigraphy

    International Nuclear Information System (INIS)

    Reschini, E.; Baldini, M.; Cantalamessa, L.

    1990-01-01

    In a 33-year-old female patient with left adrenal tumour and Cushing's syndrome, adrenocortical scintigraphy with radiocholesterol did not image the tumour nor the suppressed contralateral gland. Histology showed a black adrenocortical adenoma composed only of compact cells; there was no evidence of malignancy. This demonstrates that non-visualization of the adrenal glands in a patient with Cushing's syndrome is not invariably due to adrenal carcinoma. The literature on black adrenal adenomas causing Cushing's syndrome is reviewed. (orig.)

  14. T Cells and Pathogenesis of Hantavirus Cardiopulmonary Syndrome and Hemorrhagic Fever with Renal Syndrome

    Directory of Open Access Journals (Sweden)

    Francis A. Ennis

    2011-07-01

    Full Text Available We previously hypothesized that increased capillary permeability observed in both hantavirus cardiopulmonary syndrome (HCPS and hemorrhagic fever with renal syndrome (HFRS may be caused by hantavirus-specific cytotoxic T cells attacking endothelial cells presenting viral antigens on their surface based on clinical observations and in vitro experiments. In HCPS, hantavirus-specific T cell responses positively correlated with disease severity. In HFRS, in one report, contrary to HCPS, T cell responses negatively correlated with disease severity, but in another report the number of regulatory T cells, which are thought to suppress T cell responses, negatively correlated with disease severity. In rat experiments, in which hantavirus causes persistent infection, depletion of regulatory T cells helped infected rats clear virus without inducing immunopathology. These seemingly contradictory findings may suggest delicate balance in T cell responses between protection and immunopathogenesis. Both too strong and too weak T cell responses may lead to severe disease. It is important to clarify the role of T cells in these diseases for better treatment (whether to suppress T cell functions and protection (vaccine design which may need to take into account viral factors and the influence of HLA on T cell responses.

  15. Progestogens and Cushing's syndrome.

    LENUS (Irish Health Repository)

    Harte, C

    2012-02-03

    We report 3 patients where Medroxyprogesterone Acetate (MPA = Provera) and Megestrol Acetate (Megace) in doses used for therapy of breast cancer, caused clinical hypercortisolism and Cushing\\'s syndrome. Studies of the toxicity of Medroxyprogesterone Acetate list the commonest adverse events at 500 mg\\/day as weight gain, water retention, increased blood pressure, tremor, moon face, sweating, muscle cramps, vaginal bleeding and increased appetite. Glucocorticoid-like effects are seen in up to 30% of patients treated for longer than 6 weeks with mostly large doses of the order of 1500 mg\\/day but Cushing\\'s syndrome has been reported in patients taking 400 mg\\/day. Neither the glucocorticoid-like effects or Cushing\\'s syndrome have been previously observed with Megestrol Acetate. In the elderly female population receiving progestogens for neoplastic disease the progestogen itself could be an appreciable cause of morbidity both by causing glucocorticoid-like effects and Cushing\\'s syndrome but also by lack of awareness of the danger of sudden withdrawal of these compounds when the hypothalmic-pituitary-adrenal (HPA) axis is suppressed. The signs and symptoms could be easily overlooked unless appropriate testing for Cushing\\'s syndrome is carried out. While the progestogen may have to be continued indefinitely a dose decrease may be feasible with reduction of morbidity.

  16. Lynch syndrome: the patients' perspective

    NARCIS (Netherlands)

    Seppen, Jurgen; Bruzzone, Linda

    2013-01-01

    People with Lynch syndrome have a high lifetime risk for the development of colorectal, endometrial and several other types of cancer. Lynch syndrome is caused by germline mutations in genes encoding DNA mismatch repair proteins. In this review, issues that concern Lynch patients are highlighted

  17. Anti-protein C antibodies are associated with resistance to endogenous protein C activation and a severe thrombotic phenotype in antiphospholipid syndrome.

    Science.gov (United States)

    Arachchillage, D R J; Efthymiou, M; Mackie, I J; Lawrie, A S; Machin, S J; Cohen, H

    2014-11-01

    Antiphospholipid antibodies may interfere with the anticoagulant activity of activated protein C (APC) to induce acquired APC resistance (APCr). To investigate the frequency and characteristics of APCr by using recombinant human APC (rhAPC) and endogenous protein C activation in antiphospholipid syndrome (APS). APCr was assessed in APS and non-APS venous thromboembolism (VTE) patients on warfarin and normal controls with rhAPC or Protac by thrombin generation. IgG anti-protein C and anti-protein S antibodies and avidity were assessed by ELISA. APS patients showed greater resistance to both rhAPC and Protac than non-APS patients and normal controls (median normalized endogenous thrombin potential inhibition): APS patients with rhAPC, 81.3% (95% confidence interval [CI] 75.2-88.3%; non-APS patients with rhAPC, 97.7% (95% CI 93.6-101.8%; APS patients with Protac, 66.0% (95% CI 59.5-72.6%); and non-APS patients with Protac, 80.7 (95% CI 74.2-87.2%). APS patients also had a higher frequency and higher levels of anti-protein C antibodies, with 60% (15/25) high-avidity antibodies. High-avidity anti-protein C antibodies were associated with greater APCr and with a severe thrombotic phenotype (defined as the development of recurrent VTE while patients were receiving therapeutic anticoagulation or both venous and arterial thrombosis). Twelve of 15 (80%) patients with high-avidity anti-protein C antibodies were classified as APS category I. Thrombotic APS patients showed greater APCr to both rhAPC and activation of endogenous protein C by Protac. High-avidity anti-protein C antibodies, associated with greater APCr, may provide a marker for a severe thrombotic phenotype in APS. However, in patients with category I APS, it remains to be established whether anti-protein C or anti-β2 -glycoprotein I antibodies are responsible for APCr. © 2014 International Society on Thrombosis and Haemostasis.

  18. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome.

    Science.gov (United States)

    Meteyer, Carol U; Barber, Daniel; Mandl, Judith N

    2012-11-15

    White nose syndrome, caused by Geomyces destructans, has killed more than 5 million cave hibernating bats in eastern North America. During hibernation, the lack of inflammatory cell recruitment at the site of fungal infection and erosion is consistent with a temperature-induced inhibition of immune cell trafficking. This immune suppression allows G. destructans to colonize and erode the skin of wings, ears and muzzle of bat hosts unchecked. Yet, paradoxically, within weeks of emergence from hibernation an intense neutrophilic inflammatory response to G. destructans is generated, causing severe pathology that can contribute to death. We hypothesize that the sudden reversal of immune suppression in bats upon the return to euthermia leads to a form of immune reconstitution inflammatory syndrome (IRIS). IRIS was first described in HIV-infected humans with low helper T lymphocyte counts and bacterial or fungal opportunistic infections. IRIS is a paradoxical and rapid worsening of symptoms in immune compromised humans upon restoration of immunity in the face of an ongoing infectious process. In humans with HIV, the restoration of adaptive immunity following suppression of HIV replication with anti-retroviral therapy (ART) can trigger severe immune-mediated tissue damage that can result in death. We propose that the sudden restoration of immune responses in bats infected with G. destructans results in an IRIS-like dysregulated immune response that causes the post-emergent pathology.

  19. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome

    Science.gov (United States)

    Meteyer, Carol U.; Barber, Daniel; Mandl, Judith N.

    2012-01-01

    White nose syndrome, caused by Geomyces destructans, has killed more than 5 million cave hibernating bats in eastern North America. During hibernation, the lack of inflammatory cell recruitment at the site of fungal infection and erosion is consistent with a temperature-induced inhibition of immune cell trafficking. This immune suppression allows G. destructans to colonize and erode the skin of wings, ears and muzzle of bat hosts unchecked. Yet, paradoxically, within weeks of emergence from hibernation an intense neutrophilic inflammatory response to G. destructans is generated, causing severe pathology that can contribute to death. We hypothesize that the sudden reversal of immune suppression in bats upon the return to euthermia leads to a form of immune reconstitution inflammatory syndrome (IRIS), which was first described in HIV-infected humans with low helper T lymphocyte counts and bacterial or fungal opportunistic infections. IRIS is a paradoxical and rapid worsening of symptoms in immune compromised humans upon restoration of immunity in the face of an ongoing infectious process. In humans with HIV, the restoration of adaptive immunity following suppression of HIV replication with anti-retroviral therapy (ART) can trigger severe immune-mediated tissue damage that can result in death. We propose that the sudden restoration of immune responses in bats infected with G. destructans results in an IRIS-like dysregulated immune response that causes the post-emergent pathology.

  20. Diagnostic criteria for acute food protein-induced enterocolitis syndrome. Is the work in progress?

    Science.gov (United States)

    Miceli Sopo, S; Bersani, G; Fantacci, C; Romano, A; Monaco, S

    2018-02-15

    Food protein-induced enterocolitis syndrome (FPIES) is a non IgE-mediated gastrointestinal food allergic disorder. Some diagnostic criteria have been published for acute FPIES. Of course, they are not all the same, so the clinician must choose which ones to adopt for his/her clinical practice. We present here a brief review of these criteria and, through two clinical cases, show how the choice of one or the other can change the diagnostic destiny of a child with suspect FPIES. Copyright © 2018 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  1. RISC-Target Interaction: Cleavage and Translational Suppression

    Science.gov (United States)

    van den Berg, Arjen; Mols, Johann; Han, Jiahuai

    2008-01-01

    Summary Small RNA molecules have been known and utilized to suppress gene expression for more than a decade. The discovery that these small RNA molecules are endogenously expressed in many organisms and have a critical role in controlling gene expression have led to the arising of a whole new field of research. Termed small interfering RNA (siRNA) or microRNA (miRNA) these ~22 nt RNA molecules have the capability to suppress gene expression through various mechanisms once they are incorporated in the multi-protein RNA-Induced Silencing Complex (RISC) and interact with their target mRNA. This review introduces siRNAs and microRNAs in a historical perspective and focuses on the key molecules in RISC, structural properties and mechanisms underlying the process of small RNA regulated post-transcriptional suppression of gene expression. PMID:18692607

  2. [Suppressive Effects of Extract of Cedar Wood on Heat-induced Expression of Cellular Heat Shock Protein].

    Science.gov (United States)

    Miyakoshi, Junji; Matsubara, Eri; Narita, Eijiro; Koyama, Shin; Shimizu, Yoko; Kawai, Shuichi

    2018-01-01

     In recent years, highly antimicrobial properties of cedar heartwood essential oil against the wood-rotting fungi and pathogenic fungi have been reported in several papers. Antimicrobial properties against oral bacteria by hinokitiol contained in Thujopsis have been also extensively studied. The relation of naturally derived components and human immune system has been studied in some previous papers. In the present study, we focused on Japanese cedar, which has the widest artificial afforestation site in the country among various tree species. Extract oil was obtained from mixture of sapwood and heartwood of about 40-year cedar grown in Oguni, Kumamoto, Japan. We examined the influence of extract components from Japanese cedar woods on the expression of heat shock protein 70 (Hsp70) during heating, and on the micronucleus formation induced by the treatment of bleomycin as a DNA damaging agent. Cell lines used in this study were human fetal glial cells (SVGp12) and human glioma cells (MO54). Remarkable suppression of the Hsp70 expression induced by heating at 43°C was detected by the treatment of cedar extract in both SVGp12 and MO54 cells. We also found that cedar extract had an inhibitory tendency to reduce the micronucleus formation induced by bleomycin. From these results, the extract components from Japanese cedar woods would have an inhibitory effect of the stress response as a suppression of the heat-induced Hsp70 expression, and might have a reductive effect on carcinogenicity.

  3. Lynch syndrome-related small intestinal adenocarcinomas.

    Science.gov (United States)

    Jun, Sun-Young; Lee, Eui-Jin; Kim, Mi-Ju; Chun, Sung Min; Bae, Young Kyung; Hong, Soon Uk; Choi, Jene; Kim, Joon Mee; Jang, Kee-Taek; Kim, Jung Yeon; Kim, Gwang Il; Jung, Soo Jin; Yoon, Ghilsuk; Hong, Seung-Mo

    2017-03-28

    Lynch syndrome is an autosomal-dominant disorder caused by defective DNA mismatch repair (MMR) genes and is associated with increased risk of malignancies in multiple organs. Small-intestinal adenocarcinomas are common initial manifestations of Lynch syndrome. To define the incidence and characteristics of Lynch syndrome-related small-intestinal adenocarcinomas, meticulous familial and clinical histories were obtained from 195 patients with small-intestinal adenocarcinoma, and MMR protein immunohistochemistry, microsatellite instability, MLH1 methylation, and germline mutational analyses were performed. Lynch syndrome was confirmed in eight patients (4%), all of whom had synchronous/metachronous malignancies without noticeable familial histories. Small-intestinal adenocarcinomas were the first clinical manifestation in 37% (3/8) of Lynch syndrome patients, and second malignancies developed within 5 years in 63% (5/8). The patients with accompanying Lynch syndrome were younger (≤50 years; P=0.04) and more likely to have mucinous adenocarcinomas (P=0.003), and tended to survive longer (P=0.11) than those with sporadic cases. A meticulous patient history taking, MMR protein immunolabeling, and germline MMR gene mutational analysis are important for the diagnosis of Lynch syndrome-related small-intestinal adenocarcinomas. Identifying Lynch syndrome in patients with small-intestinal adenocarcinoma can be beneficial for the early detection and treatment of additional Lynch syndrome-related cancers, especially in patients who are young or have mucinous adenocarcinomas.

  4. Ginger extract diminishes chronic fructose consumption-induced kidney injury through suppression of renal overexpression of proinflammatory cytokines in rats.

    Science.gov (United States)

    Yang, Ming; Liu, Changjin; Jiang, Jian; Zuo, Guowei; Lin, Xuemei; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2014-05-27

    The metabolic syndrome is associated with an increased risk of development and progression of chronic kidney disease. Renal inflammation is well known to play an important role in the initiation and progression of tubulointerstitial injury of the kidneys. Ginger, one of the most commonly used spices and medicinal plants, has been demonstrated to improve diet-induced metabolic abnormalities. However, the efficacy of ginger on the metabolic syndrome-associated kidney injury remains unknown. This study aimed to investigate the impact of ginger on fructose consumption-induced adverse effects in the kidneys. The fructose control rats were treated with 10% fructose in drinking water over 5 weeks. The fructose consumption in ginger-treated rats was adjusted to match that of fructose control group. The ethanolic extract of ginger was co-administered (once daily by oral gavage). The indexes of lipid and glucose homeostasis were determined enzymatically, by ELISA and/or histologically. Gene expression was analyzed by Real-Time PCR. In addition to improve hyperinsulinemia and hypertriglyceridemia, supplement with ginger extract (50 mg/kg) attenuated liquid fructose-induced kidney injury as characterized by focal cast formation, slough and dilation of tubular epithelial cells in the cortex of the kidneys in rats. Furthermore, ginger also diminished excessive renal interstitial collagen deposit. By Real-Time PCR, renal gene expression profiles revealed that ginger suppressed fructose-stimulated monocyte chemoattractant protein-1 and its receptor chemokine (C-C motif) receptor-2. In accord, overexpression of two important macrophage accumulation markers CD68 and F4/80 was downregulated. Moreover, overexpressed tumor necrosis factor-alpha, interleukin-6, transforming growth factor-beta1 and plasminogen activator inhibitor (PAI)-1 were downregulated. Ginger treatment also restored the downregulated ratio of urokinase-type plasminogen activator to PAI-1. The present results

  5. Phosphorylation of the Usher syndrome 1G protein SANS controls Magi2-mediated endocytosis.

    Science.gov (United States)

    Bauß, Katharina; Knapp, Barbara; Jores, Pia; Roepman, Ronald; Kremer, Hannie; Wijk, Erwin V; Märker, Tina; Wolfrum, Uwe

    2014-08-01

    The human Usher syndrome (USH) is a complex ciliopathy with at least 12 chromosomal loci assigned to three clinical subtypes, USH1-3. The heterogeneous USH proteins are organized into protein networks. Here, we identified Magi2 (membrane-associated guanylate kinase inverted-2) as a new component of the USH protein interactome, binding to the multifunctional scaffold protein SANS (USH1G). We showed that the SANS-Magi2 complex assembly is regulated by the phosphorylation of an internal PDZ-binding motif in the sterile alpha motif domain of SANS by the protein kinase CK2. We affirmed Magi2's role in receptor-mediated, clathrin-dependent endocytosis and showed that phosphorylated SANS tightly regulates Magi2-mediated endocytosis. Specific depletions by RNAi revealed that SANS and Magi2-mediated endocytosis regulates aspects of ciliogenesis. Furthermore, we demonstrated the localization of the SANS-Magi2 complex in the periciliary membrane complex facing the ciliary pocket of retinal photoreceptor cells in situ. Our data suggest that endocytotic processes may not only contribute to photoreceptor cell homeostasis but also counterbalance the periciliary membrane delivery accompanying the exocytosis processes for the cargo vesicle delivery. In USH1G patients, mutations in SANS eliminate Magi2 binding and thereby deregulate endocytosis, lead to defective ciliary transport modules and ultimately disrupt photoreceptor cell function inducing retinal degeneration. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. C-reactive protein, high-molecular-weight adiponectin and development of metabolic syndrome in the Japanese general population: a longitudinal cohort study.

    Directory of Open Access Journals (Sweden)

    Yoshifumi Saisho

    Full Text Available AIMS: To clarify predictive values of C-reactive protein (CRP and high-molecular-weight (HMW adiponectin for development of metabolic syndrome. RESEARCH DESIGN AND METHODS: We conducted a prospective cohort study of Japanese workers who had participated in an annual health checkup in 2007 and 2011. A total of 750 subjects (558 men and 192 women, age 46±8 years who had not met the criteria of metabolic syndrome and whose CRP and HMW-adiponectin levels had been measured in 2007 were enrolled in this study. Associations between CRP, HMW-adiponectin and development of metabolic syndrome after 4 years were assessed by logistic regression analysis and their predictive values were compared by receiver operating characteristic analysis. RESULTS: Among 750 subjects, 61 (8.1% developed metabolic syndrome defined by modified National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III criteria and 53 (7.1% developed metabolic syndrome defined by Japan Society for the Study of Obesity (JASSO in 2011. Although CRP and HMW-adiponectin were both significantly correlated with development of metabolic syndrome, multivariate logistic regression analysis revealed that HMW-adiponectin but not CRP was associated with metabolic syndrome independently of BMI or waist circumference. Adding these biomarkers to BMI or waist circumference did not improve the predictive value for metabolic syndrome. CONCLUSION: Our findings indicate that the traditional markers of adiposity such as BMI or waist circumference remain superior markers for predicting metabolic syndrome compared to CRP, HMW-adiponectin, or the combination of both among the Japanese population.

  7. MicroRNA-214 Suppresses Gluconeogenesis by Targeting Activating Transcriptional Factor 4*

    Science.gov (United States)

    Li, Kai; Zhang, Jin; Yu, Junjie; Liu, Bin; Guo, Yajie; Deng, Jiali; Chen, Shanghai; Wang, Chunxia; Guo, Feifan

    2015-01-01

    Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis. PMID:25657009

  8. Deficiency in origin licensing proteins impairs cilia formation: implications for the aetiology of Meier-Gorlin syndrome.

    Directory of Open Access Journals (Sweden)

    Tom Stiff

    Full Text Available Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause Meier-Gorlin syndrome (MGS, a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically related disorder. These findings suggest that impaired DNA replication could underlie the developmental defects characteristic of these disorders. Here, we show that although origin licensing capacity is impaired in all patient cells with mutations in origin licensing component proteins, this does not correlate with the rate of progression through S phase. Thus, the replicative capacity in MGS patient cells does not correlate with clinical manifestation. However, ORC1-deficient cells from MGS patients and siRNA-mediated depletion of origin licensing proteins also have impaired centrosome and centriole copy number. As a novel and unexpected finding, we show that they also display a striking defect in the rate of formation of primary cilia. We demonstrate that this impacts sonic hedgehog signalling in ORC1-deficient primary fibroblasts. Additionally, reduced growth factor-dependent signaling via primary cilia affects the kinetics of cell cycle progression following cell cycle exit and re-entry, highlighting an unexpected mechanism whereby origin licensing components can influence cell cycle progression. Finally, using a cell-based model, we show that defects in cilia function impair chondroinduction. Our findings raise the possibility that a reduced efficiency in forming cilia could contribute to the clinical features of MGS, particularly the bone development abnormalities, and could provide a new dimension for considering developmental impacts of licensing deficiency.

  9. GSK3 is required for rapalogs to induce degradation of some oncogenic proteins and to suppress cancer cell growth.

    Science.gov (United States)

    Koo, Junghui; Wang, Xuerong; Owonikoko, Taofeek K; Ramalingam, Suresh S; Khuri, Fadlo R; Sun, Shi-Yong

    2015-04-20

    The single-agent activity of rapalogs (rapamycin and its analogues) in most tumor types has been modest at best. The underlying mechanisms are largely unclear. In this report, we have uncovered a critical role of GSK3 in regulating degradation of some oncogenic proteins induced by rapalogs and cell sensitivity to rapalogs. The basal level of GSK3 activity was positively correlated with cell sensitivity of lung cancer cell lines to rapalogs. GSK3 inhibition antagonized rapamycin's growth inhibitory effects both in vitro and in vivo, while enforced activation of GSK3β sensitized cells to rapamycin. GSK3 inhibition rescued rapamcyin-induced reduction of several oncogenic proteins such as cyclin D1, Mcl-1 and c-Myc, without interfering with the ability of rapamycin to suppress mTORC1 signaling and cap binding. Interestingly, rapamycin induces proteasomal degradation of these oncogenic proteins, as evidenced by their decreased stabilities induced by rapamcyin and rescue of their reduction by proteasomal inhibition. Moreover, acute or short-time rapamycin treatment dissociated not only raptor, but also rictor from mTOR in several tested cell lines, suggesting inhibition of both mTORC1 and mTORC2. Thus, induction of GSK3-dependent degradation of these oncogenic proteins is likely secondary to mTORC2 inhibition; this effect should be critical for rapamycin to exert its anticancer activity.

  10. Insulin Signaling, Resistance, and the Metabolic Syndrome: Insights from Mouse Models to Disease Mechanisms

    Science.gov (United States)

    Guo, Shaodong

    2014-01-01

    Insulin resistance is a major underlying mechanism for the “metabolic syndrome”, which is also known as insulin resistance syndrome. Metabolic syndrome is increasing at an alarming rate, becoming a major public and clinical problem worldwide. Metabolic syndrome is represented by a group of interrelated disorders, including obesity, hyperglycemia, hyperlipidemia, and hypertension. It is also a significant risk factor for cardiovascular disease and increased morbidity and mortality. Animal studies demonstrate that insulin and its signaling cascade normally control cell growth, metabolism and survival through activation of mitogen-activated protein kinases (MAPKs) and phosphotidylinositide-3-kinase (PI3K), of which activation of PI-3K-associated with insulin receptor substrate-1 and -2 (IRS1, 2) and subsequent Akt→Foxo1 phosphorylation cascade has a central role in control of nutrient homeostasis and organ survival. Inactivation of Akt and activation of Foxo1, through suppression IRS1 and IRS2 in different organs following hyperinsulinemia, metabolic inflammation, and over nutrition may provide the underlying mechanisms for metabolic syndrome in humans. Targeting the IRS→Akt→Foxo1 signaling cascade will likely provide a strategy for therapeutic intervention in the treatment of type 2 diabetes and its complications. This review discusses the basis of insulin signaling, insulin resistance in different mouse models, and how a deficiency of insulin signaling components in different organs contributes to the feature of the metabolic syndrome. Emphasis will be placed on the role of IRS1, IRS2, and associated signaling pathways that couple to Akt and the forkhead/winged helix transcription factor Foxo1. PMID:24281010

  11. Lynch Syndrome: Genomics Update and Imaging Review.

    Science.gov (United States)

    Cox, Veronica L; Saeed Bamashmos, Anas A; Foo, Wai Chin; Gupta, Shiva; Yedururi, Sireesha; Garg, Naveen; Kang, Hyunseon Christine

    2018-01-01

    Lynch syndrome is the most common hereditary cancer syndrome, the most common cause of heritable colorectal cancer, and the only known heritable cause of endometrial cancer. Other cancers associated with Lynch syndrome include cancers of the ovary, stomach, urothelial tract, and small bowel, and less frequently, cancers of the brain, biliary tract, pancreas, and prostate. The oncogenic tendency of Lynch syndrome stems from a set of genomic alterations of mismatch repair proteins. Defunct mismatch repair proteins cause unusually high instability of regions of the genome called microsatellites. Over time, the accumulation of mutations in microsatellites and elsewhere in the genome can affect the production of important cellular proteins, spurring tumorigenesis. Universal testing of colorectal tumors for microsatellite instability (MSI) is now recommended to (a) prevent cases of Lynch syndrome being missed owing to the use of clinical criteria alone, (b) reduce morbidity and mortality among the relatives of affected individuals, and (c) guide management decisions. Organ-specific cancer risks and associated screening paradigms vary according to the sex of the affected individual and the type of germline DNA alteration causing the MSI. Furthermore, Lynch syndrome-associated cancers have different pathologic, radiologic, and clinical features compared with their sporadic counterparts. Most notably, Lynch syndrome-associated tumors tend to be more indolent than non-Lynch syndrome-associated neoplasms and thus may respond differently to traditional chemotherapy regimens. The high MSI in cases of colorectal cancer reflects a difference in the biologic features of the tumor, possibly with a unique susceptibility to immunotherapy. © RSNA, 2018.

  12. A novel potential biomarker for metabolic syndrome in Chinese adults: Circulating protein disulfide isomerase family A, member 4.

    Science.gov (United States)

    Chien, Chu-Yen; Hung, Yi-Jen; Shieh, Yi-Shing; Hsieh, Chang-Hsun; Lu, Chieh-Hua; Lin, Fu-Huang; Su, Sheng-Chiang; Lee, Chien-Hsing

    2017-01-01

    Protein disulfide isomerase (PDI) family members are specific endoplasmic reticulum proteins that are involved in the pathogenesis of numerous diseases including neurodegenerative diseases, cancer and obesity. However, the metabolic effects of PDIA4 remain unclear in humans. The aims of this study were to investigate the associations of serum PDIA4 with the metabolic syndrome (MetS) and its components in Chinese adults. A total of 669 adults (399 men and 270 women) were recruited. Serum PDIA4 concentrations and biochemical variables were recorded. Insulin sensitivity and β-cell function were examined by homeostasis model assessment. MetS was defined based on the modified National Cholesterol Education Program Adult Treatment Panel III criteria for Asia Pacific. The participants with MetS had significantly higher serum PDIA4 levels than those without MetS (Pmetabolic syndrome were 67 and 72%, respectively, in male patients and 60 and 78%, respectively, in female patients. Finally, the result showed that PDIA4 had a significantly higher area under the curve compared with blood pressure to detect MetS using receiver operating characteristic analysis. Serum PDIA4 concentrations are closely associated to MetS and its components in Chinese adults.

  13. Genetic heterogeneity in Usher syndrome.

    Science.gov (United States)

    Keats, Bronya J B; Savas, Sevtap

    2004-09-15

    Mutations in seven different genes have been associated with Usher syndrome, and an additional four loci have been mapped. The identified genes encode myosin VIIa, harmonin (a PDZ-domain protein), cadherin 23, protocadherin 15, sans (a scaffold-like protein), usherin and clarin. Three clinical types of Usher syndrome have been described: USH1 patients have severe to profound congenital hearing loss, vestibular dysfunction, and retinal degeneration beginning in childhood, those with USH2 have moderate to severe congenital hearing loss, normal vestibular function, and later onset of retinitis pigmentosa, and USH3 patients have progressive hearing loss, which distinguishes them from the other two types. The shaker-1, waltzer, Ames waltzer, and Jackson shaker mice provide murine models for four of the genetic forms of Usher syndrome. Ongoing studies are enabling early diagnosis of Usher syndrome in children who present with hearing loss, thus providing time to prepare for the onset of visual loss. Copyright 2004 Wiley-Liss, Inc.

  14. Release patterns of pregnancy-associated plasma protein A in patients with acute coronary syndromes assessed by an optimized monoclonal antibody assay

    DEFF Research Database (Denmark)

    Schoos, Mikkel; Iversen, Kasper; Teisner, Ane

    2008-01-01

    Objective. Pregnancy-associated plasma protein A (PAPP-A) is expressed in eroded and ruptured atheromatous plaques, and circulating levels are elevated in acute coronary syndromes (ACS). Our objective was to investigate release patterns of PAPP-A in ACS and whether they differ among different typ...

  15. Pregnancy associated plasma protein A, a potential marker for vulnerable plaque in patients with non-ST-segment elevation acute coronary syndrome

    DEFF Research Database (Denmark)

    Iversen, Kasper K; Teisner, Ane S; Teisner, Borge

    2009-01-01

    OBJECTIVES: To describe the presence and time-related pattern of circulating pregnancy associated plasma protein A (PAPP-A) levels in patients with non ST-segment elevation acute coronary syndrome (NSTE-ACS). DESIGN AND METHODS: Consecutively admitted patients (N=573) with clinical signs of NSTE-...

  16. Liver-Specific Deletion of Protein-Tyrosine Phosphatase 1B (PTP1B) Improves Metabolic Syndrome and Attenuates Diet-Induced Endoplasmic Reticulum Stress

    Science.gov (United States)

    Delibegovic, Mirela; Zimmer, Derek; Kauffman, Caitlin; Rak, Kimberly; Hong, Eun-Gyoung; Cho, You-Ree; Kim, Jason K.; Kahn, Barbara B.; Neel, Benjamin G.; Bence, Kendra K.

    2009-01-01

    OBJECTIVE—The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling; consequently, mice deficient in PTP1B are hypersensitive to insulin. Because PTP1B−/− mice have diminished fat stores, the extent to which PTP1B directly regulates glucose homeostasis is unclear. Previously, we showed that brain-specific PTP1B−/− mice are protected against high-fat diet–induced obesity and glucose intolerance, whereas muscle-specific PTP1B−/− mice have increased insulin sensitivity independent of changes in adiposity. Here we studied the role of liver PTP1B in glucose homeostasis and lipid metabolism. RESEARCH DESIGN AND METHODS—We analyzed body mass/adiposity, insulin sensitivity, glucose tolerance, and lipid metabolism in liver-specific PTP1B−/− and PTP1Bfl/fl control mice, fed a chow or high-fat diet. RESULTS—Compared with normal littermates, liver-specific PTP1B−/− mice exhibit improved glucose homeostasis and lipid profiles, independent of changes in adiposity. Liver-specific PTP1B−/− mice have increased hepatic insulin signaling, decreased expression of gluconeogenic genes PEPCK and G-6-Pase, enhanced insulin-induced suppression of hepatic glucose production, and improved glucose tolerance. Liver-specific PTP1B−/− mice exhibit decreased triglyceride and cholesterol levels and diminished expression of lipogenic genes SREBPs, FAS, and ACC. Liver-specific PTP1B deletion also protects against high-fat diet–induced endoplasmic reticulum stress response in vivo, as evidenced by decreased phosphorylation of p38MAPK, JNK, PERK, and eIF2α and lower expression of the transcription factors C/EBP homologous protein and spliced X box-binding protein 1. CONCLUSIONS—Liver PTP1B plays an important role in glucose and lipid metabolism, independent of alterations in adiposity. Inhibition of PTP1B in peripheral tissues may be useful for the treatment of metabolic syndrome and reduction of cardiovascular risk in addition to

  17. ABHD5/CGI-58, the Chanarin-Dorfman Syndrome Protein, Mobilises Lipid Stores for Hepatitis C Virus Production.

    Directory of Open Access Journals (Sweden)

    Gabrielle Vieyres

    2016-04-01

    Full Text Available Hepatitis C virus (HCV particles closely mimic human very-low-density lipoproteins (VLDL to evade humoral immunity and to facilitate cell entry. However, the principles that govern HCV association with VLDL components are poorly defined. Using an siRNA screen, we identified ABHD5 (α/β hydrolase domain containing protein 5, also known as CGI-58 as a new host factor promoting both virus assembly and release. ABHD5 associated with lipid droplets and triggered their hydrolysis. Importantly, ABHD5 Chanarin-Dorfman syndrome mutants responsible for a rare lipid storage disorder in humans were mislocalised, and unable to consume lipid droplets or support HCV production. Additional ABHD5 mutagenesis revealed a novel tribasic motif that does not influence subcellular localization but determines both ABHD5 lipolytic and proviral properties. These results indicate that HCV taps into the lipid droplet triglyceride reservoir usurping ABHD5 lipase cofactor function. They also suggest that the resulting lipid flux, normally devoted to VLDL synthesis, also participates in the assembly and release of the HCV lipo-viro-particle. Altogether, our study provides the first association between the Chanarin-Dorfman syndrome protein and an infectious disease and sheds light on the hepatic manifestations of this rare genetic disorder as well as on HCV morphogenesis.

  18. Alteration of a recombinant protein N-glycan structure in silkworms by partial suppression of N-acetylglucosaminidase gene expression.

    Science.gov (United States)

    Kato, Tatsuya; Kikuta, Kotaro; Kanematsu, Ayumi; Kondo, Sachiko; Yagi, Hirokazu; Kato, Koichi; Park, Enoch Y

    2017-09-01

    To synthesize complex type N-glycans in silkworms, shRNAs against the fused lobe from Bombyx mori (BmFDL), which codes N-acetylglucosaminidase (GlcNAcase) in the Golgi, was expressed by recombinant B. mori nucleopolyhedrovirus (BmNPV) in silkworm larvae. Expression was under the control of the actin promoter of B. mori or the U6-2 and i.e.-2 promoters from Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV). The reduction of specific GlcNAcase activity was observed in Bm5 cells and silkworm larvae using the U6-2 promoter. In silkworm larvae, the partial suppression of BmFDL gene expression was observed. When shRNA against BmFDL was expressed under the control of U6-2 promoter, the Man 3 GlcNAc(Fuc)GlcNAc structure appeared in a main N-glycans of recombinant human IgG. These results suggested that the control of BmFDL expression by its shRNA in silkworms caused the modification of its N-glycan synthetic pathway, which may lead to the alteration of N-glycans in the expressed recombinant proteins. Suppression of BmFDL gene expression by shRNA is not sufficient to synthesize complex N-glycans in silkworm larvae but can modify the N-glycan synthetic pathway.

  19. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei; Li, Yong, E-mail: 11211220031@fudan.edu.cn

    2016-03-18

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels played a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.

  20. Suppression of NF-κB signal pathway by NLRC3-like protein in stony coral Acropora aculeus under heat stress.

    Science.gov (United States)

    Zhou, Zhi; Wu, Yibo; Zhang, Chengkai; Li, Can; Chen, Guangmei; Yu, Xiaopeng; Shi, Xiaowei; Xu, Yanlai; Wang, Lingui; Huang, Bo

    2017-08-01

    Heat stress is the most common factor for coral bleaching, which has increased both in frequency and severity due to global warming. In the present study, the stony coral Acropora aculeus was subjected to acute heat stress and entire transcriptomes were sequenced via the next generation sequencing platform. Four paired-end libraries were constructed and sequenced in two groups, including a control and a heat stress group. A total of 120,319,751 paired-end reads with lengths of 2 × 100 bp were assembled and 55,021 coral-derived genes were obtained. After read mapping and abundance estimation, 9110 differentially expressed genes were obtained in the comparison between the control and heat stress group, including 4465 significantly upregulated and 4645 significantly downregulated genes. Twenty-three GO terms in the Biological Process category were overrepresented for significantly upregulated genes, and divided into six groups according to their relationship. These three groups were related to the NF-κB signal pathway, and the remaining three groups were relevant for pathogen response, immunocyte activation and protein ubiquitination. Forty-three common genes were found in four GO terms, which were directly related to the NF-κB signal pathway. These included 2 NACHT, LRR, PYD domains-containing protein, 5 nucleotide-binding oligomerization domain-containing protein, 29 NLRC3-like protein, 4 NLRC5-like protein, and 3 uncharacterized protein. For significantly downregulated genes, 27 overrepresented GO terms were found in the Biological Process category, which were relevant to protein ubiquitination and ATP metabolism. Our results indicate that heat stress suppressed the immune response level via the NLRC3-like protein, the fine-tuning of protein turnover activity, and ATP metabolism. This might disrupt the balance of coral-zooxanthellae symbiosis and result in the bleaching of the coral A. aculeus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Chitooligosaccharides suppress the level of protein expression and acetylcholinesterase activity induced by Abeta25-35 in PC12 cells.

    Science.gov (United States)

    Lee, Sang-Hoon; Park, Jin-Sook; Kim, Se-Kwon; Ahn, Chang-Bum; Je, Jae-Young

    2009-02-01

    Clinical applications of acetylcholinesterase (AChE) inhibitors are widespread in Alzheimer's sufferers in order to activate central cholinergic system and alleviate cognitive deficits by inhibiting the hydrolysis of acetylcholine. In this study, six kinds of chitooligosaccharides (COSs) with different molecular weight and degree of deacetylation were examined for their inhibitory effects against AChE. The 90-COSs exhibited potent AChE inhibitory activities compared to 50-COSs, while 90-MMWCOS (1000-5000 Da) in the 90-COSs showed the highest activity. Cell culture experiment revealed that 90-MMWCOS suppressed the level of AChE protein expression and AChE activity induced by Abeta(25-35) in PC12 cell lines.

  2. Soy Germ Protein With or Without-Zn Improve Plasma Lipid Profile in Metabolic Syndrome Women

    Directory of Open Access Journals (Sweden)

    SIWI PRAMATAMA MARS WIJAYANTI

    2012-03-01

    Full Text Available The aim of this research was to determine the effect of soy germ protein on lipid profile of metabolic syndrome (MetS patients. Respondents were 30 women with criteria, i.e. blood glucose level > normal, body mass index > 25 kg/m2, hypertriglyceridemia, low cholesterol-HDL level, 40-65 years old, living in Purwokerto, and signed the informed consent. The project was approved by the ethics committee of the Medical Faculty from Gadjah Mada University-Yogyakarta. Respondents were divided into three randomly chosen groups consisting of ten women each. The first, second, and third groups were treated, respectively, with milk enriched soy germ protein plus Zn, milk enriched soy germ protein (without Zn, and placebo for two months. Blood samples were taken at baseline, one and two months after observation. Two months after observation the groups consuming milk enriched with soy germ protein, both with or without Zn, had their level of cholesterol-total decrease from 215.8 to 180.2 mg/dl (P = 0.03, triglyceride from 240.2 to 162.5 mg/dl (P = 0.02, and LDL from 154.01 to 93.85 mg/dl (P = 0.03. In contrast, HDL increased from 38.91 to 49.49 mg/dl (P = 0.0008. In conclusion, soy germ protein can improve lipid profile, thus it can inhibit atherosclerosis incident.

  3. Inflammatory protein response in CDKL5-Rett syndrome: evidence of a subclinical smouldering inflammation.

    Science.gov (United States)

    Cortelazzo, Alessio; de Felice, Claudio; Leoncini, Silvia; Signorini, Cinzia; Guerranti, Roberto; Leoncini, Roberto; Armini, Alessandro; Bini, Luca; Ciccoli, Lucia; Hayek, Joussef

    2017-03-01

    Mutations in the cyclin-dependent kinase-like 5 gene cause a clinical variant of Rett syndrome (CDKL5-RTT). A role for the acute-phase response (APR) is emerging in typical RTT caused by methyl-CpG-binding protein 2 gene mutations (MECP2-RTT). No information is, to date, available on the inflammatory protein response in CDKL5-RTT. We evaluated, for the first time, the APR protein response in CDKL5-RTT. Protein patterns in albumin- and IgG-depleted plasma proteome from CDKL5-RTT patients were evaluated by two-dimensional gel electrophoresis/mass spectrometry. The resulting data were related to circulating cytokines and compared to healthy controls or MECP2-RTT patients. The effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) were evaluated. CDKL5-RTT mutations resulted in a subclinical attenuated inflammation, specifically characterized by an overexpression of the complement component C3 and CD5 antigen-like, both strictly related to the inflammatory response. Cytokine dysregulation featuring a bulk increase of anti-inflammatory cytokines, predominantly IL-10, could explain the unchanged erythrocyte sedimentation rate and atypical features of inflammation in CDKL5-RTT. Omega-3 PUFAs were able to counterbalance the pro-inflammatory status. For the first time, we revealed a subclinical smouldering inflammation pattern in CDKL5-RTT consisting in the coexistence of an atypical APR coupled with a dysregulated cytokine response.

  4. Sensory dysfunction of bladder mucosa and bladder oversensitivity in a rat model of metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Wei-Chia Lee

    Full Text Available PURPOSE: To study the role of sensory dysfunction of bladder mucosa in bladder oversensitivity of rats with metabolic syndrome. MATERIALS AND METHODS: Female Wistar rats were fed a fructose-rich diet (60% or a normal diet for 3 months. Based on cystometry, the fructose-fed rats (FFRs were divided into a group with normal detrusor function or detrusor overactivity (DO. Acidic adenosine triphosphate (ATP solution (5mM, pH 3.3 was used to elicit reflex micturition. Cystometric parameters were evaluated before and after drug administration. Functional proteins of the bladder mucosa were assessed by western blotting. RESULTS: Compared to the controls, intravesical acidic ATP solution instillation induced a significant increase in provoked phasic contractions in both FFR groups and a significant decrease in the mean functional bladder capacity of group DO. Pretreatment with capsaicin for C-fiber desentization, intravesical liposome for mucosal protection, or intravenous pyridoxal 5-phosphate 6-azophenyl-2',4'-disulfonic acid for antagonized purinergic receptors can interfere with the urodynamic effects of intravesical ATP in FFRs and controls. Over-expression of TRPV1, P2X(3, and iNOS proteins, and down-regulation of eNOS proteins were observed in the bladder mucosa of both fructose-fed groups. CONCLUSIONS: Alterations of sensory receptors and enzymes in the bladder mucosa, including over-expression of TRPV1, P2X(3, and iNOS proteins, can precipitate the emergence of bladder phasic contractions and oversensitivity through the activation of C-afferents during acidic ATP solution stimulation in FFRs. The down-regulation of eNOS protein in the bladder mucosa of FFRs may lead to a failure to suppress bladder oversensitivity and phasic contractions. Sensory dysfunction of bladder mucosa and DO causing by metabolic syndrome are easier to elicit bladder oversensitivity to certain urothelium stimuli.

  5. Urinary albumin excretion and its relation with C-reactive protein and the metabolic syndrome in the prediction Of type 2 diabetes

    NARCIS (Netherlands)

    Brantsma, AH; Bakker, SJL; Hillege, HL; De Zeeuw, D; De Jong, PE; Gansevoort, RT

    2005-01-01

    OBJECTIVE - To investigate urinary albumin excretion (UAE) and its relation with C-reactive protein (CRP) and the metabolic syndrome in the prediction of the development of type 2 diabetes. RESEARCH DESIGN AND METHODS - We used data from the Prevention of Renal and Vascular End Stage Disease

  6. Prenatal low-dose methylmercury exposure impairs neurite outgrowth and synaptic protein expression and suppresses TrkA pathway activity and eEF1A1 expression in the rat cerebellum

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp [Department of Basic Medical Sciences, National Institute for Minamata Disease, Kumamoto (Japan); Usuki, Fusako [Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto (Japan); Cheng, Jinping; Zhao, Wenchang [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-05-01

    Methylmercury (MeHg) is a highly neurotoxic environmental chemical that can cause developmental impairments. Human fetuses and neonates are particularly susceptible to MeHg toxicity; however, the mechanisms governing its effects in the developing brain are unclear. In the present study, we investigated the effects of prenatal and lactational MeHg exposure on the developing cerebellum in rats. We demonstrated that exposure to 5 ppm MeHg decreased postnatal expression of pre- and postsynaptic proteins, suggesting an impairment in synaptic development. MeHg exposure also reduced neurite outgrowth, as shown by a decrease in the expression of the neurite marker neurofilament H. These changes were not observed in rats exposed to 1 ppm MeHg. In order to define the underlying mechanism, we investigated the effects of MeHg exposure on the tropomyosin receptor kinase (Trk) A pathway, which plays important roles in neuronal differentiation and synapse formation. We demonstrated suppression of the TrkA pathway on gestation day 20 in rats exposed to 5 ppm MeHg. In addition, down-regulation of eukaryotic elongation factor 1A1 (eEF1A1) was observed on postnatal day 1. eEF1A1 knockdown in differentiating PC12 cells impaired neurite outgrowth and synaptic protein expression, similar to the results of MeHg exposure in the cerebellum. These results suggest that suppression of the TrkA pathway and subsequent decreases in eEF1A1 expression induced by prenatal exposure to MeHg may lead to reduced neurite outgrowth and synaptic protein expression in the developing cerebellum. - Highlights: • Prenatal exposure to MeHg decreased postnatal expression of synaptic proteins. • MeHg exposure also reduced neurite outgrowth postnatally. • Suppression of the TrkA pathway and eEF1A1 expression was induced by MeHg exposure. • eEF1A1 knockdown impaired neurite outgrowth and synaptic protein expression.

  7. Prenatal low-dose methylmercury exposure impairs neurite outgrowth and synaptic protein expression and suppresses TrkA pathway activity and eEF1A1 expression in the rat cerebellum

    International Nuclear Information System (INIS)

    Fujimura, Masatake; Usuki, Fusako; Cheng, Jinping; Zhao, Wenchang

    2016-01-01

    Methylmercury (MeHg) is a highly neurotoxic environmental chemical that can cause developmental impairments. Human fetuses and neonates are particularly susceptible to MeHg toxicity; however, the mechanisms governing its effects in the developing brain are unclear. In the present study, we investigated the effects of prenatal and lactational MeHg exposure on the developing cerebellum in rats. We demonstrated that exposure to 5 ppm MeHg decreased postnatal expression of pre- and postsynaptic proteins, suggesting an impairment in synaptic development. MeHg exposure also reduced neurite outgrowth, as shown by a decrease in the expression of the neurite marker neurofilament H. These changes were not observed in rats exposed to 1 ppm MeHg. In order to define the underlying mechanism, we investigated the effects of MeHg exposure on the tropomyosin receptor kinase (Trk) A pathway, which plays important roles in neuronal differentiation and synapse formation. We demonstrated suppression of the TrkA pathway on gestation day 20 in rats exposed to 5 ppm MeHg. In addition, down-regulation of eukaryotic elongation factor 1A1 (eEF1A1) was observed on postnatal day 1. eEF1A1 knockdown in differentiating PC12 cells impaired neurite outgrowth and synaptic protein expression, similar to the results of MeHg exposure in the cerebellum. These results suggest that suppression of the TrkA pathway and subsequent decreases in eEF1A1 expression induced by prenatal exposure to MeHg may lead to reduced neurite outgrowth and synaptic protein expression in the developing cerebellum. - Highlights: • Prenatal exposure to MeHg decreased postnatal expression of synaptic proteins. • MeHg exposure also reduced neurite outgrowth postnatally. • Suppression of the TrkA pathway and eEF1A1 expression was induced by MeHg exposure. • eEF1A1 knockdown impaired neurite outgrowth and synaptic protein expression.

  8. Reward enhances tic suppression in children within months of tic disorder onset.

    Science.gov (United States)

    Greene, Deanna J; Koller, Jonathan M; Robichaux-Viehoever, Amy; Bihun, Emily C; Schlaggar, Bradley L; Black, Kevin J

    2015-02-01

    Tic disorders are childhood onset neuropsychiatric disorders characterized by motor and/or vocal tics. Research has demonstrated that children with chronic tics (including Tourette syndrome and Chronic Tic Disorder: TS/CTD) can suppress tics, particularly when an immediate, contingent reward is given for successful tic suppression. As a diagnosis of TS/CTD requires tics to be present for at least one year, children in these tic suppression studies had been living with tics for quite some time. Thus, it is unclear whether the ability to inhibit tics is learned over time or present at tic onset. Resolving that issue would inform theories of how tics develop and how behavior therapy for tics works. We investigated tic suppression in school-age children as close to the time of tic onset as possible, and no later than six months after onset. Children were asked to suppress their tics both in the presence and absence of a contingent reward. Results demonstrated that these children, like children with TS/CTD, have some capacity to suppress tics, and that immediate reward enhances that capacity. These findings demonstrate that the modulating effect of reward on inhibitory control of tics is present within months of tic onset, before tics have become chronic. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. WICH, a member of WASP-interacting protein family, cross-links actin filaments

    International Nuclear Information System (INIS)

    Kato, Masayoshi; Takenawa, Tadaomi

    2005-01-01

    In yeast, Verprolin plays an important role in rearrangement of the actin cytoskeleton. There are three mammalian homologues of Verprolin, WIP, CR16, and WICH, and all of them bind actin and Wiskott-Aldrich syndrome protein (WASP) and/or neural-WASP. Here, we describe a novel function of WICH. In vitro co-sedimentation analysis revealed that WICH not only binds to actin filaments but also cross-links them. Fluorescence and electron microscopy detected that this cross-linking results in straight bundled actin filaments. Overexpression of WICH alone in cultured fibroblast caused the formation of thick actin fibers. This ability of WICH depended on its own actin cross-linking activity. Importantly, the actin cross-linking activity of WICH was modified through a direct association with N-WASP. Taken together, these data suggest that WICH induces a bundled form of actin filament with actin cross-linking activity and the association with N-WASP suppresses that activity. WICH thus appears to be a novel actin bundling protein

  10. Ritonavir and Topical Ocular Corticosteroid Induced Cushing's Syndrome in an Adolescent With HIV-1 Infection.

    Science.gov (United States)

    Rainsbury, Paul G; Sharp, Jessica; Tappin, Alison; Hussey, Martin; Lenko, Alexandra; Foster, Caroline

    2017-05-01

    Cushing's syndrome after topical ocular corticosteroid use is extremely rare. We describe a case of symptomatic Cushing's syndrome in an adolescent male with sight-threatening vernal keratoconjunctivitis on antiretroviral therapy for HIV-1 infection that included ritonavir, a potent cytochrome p450 CYP3A4 inhibitor. CYP3A4 inhibition reduces the metabolism of exogenous corticosteroids leading to suppression of endogenous steroid production and Cushing's syndrome.

  11. Low-protein diet supplemented with keto acids is associated with suppression of small-solute peritoneal transport rate in peritoneal dialysis patients.

    Science.gov (United States)

    Jiang, Na; Qian, Jiaqi; Lin, Aiwu; Fang, Wei; Zhang, Weiming; Cao, Liou; Wang, Qin; Ni, Zhaohui; Yao, Qiang

    2011-01-01

    Objective. We investigate whether low-protein diet would show benefits in suppressing peritoneal transport rate in peritoneal dialysis (PD) patients. Methods. This is a supplemented analysis of our previously published trial, which randomized 60 PD patients to receive low- (LP: dietary protein intake of 0.6-0.8 g/kg/d), keto-acid-supplemented low- (sLP: 0.6-0.8 g/kg/d with 0.12 g/kg/d of keto acids), or high- (HP: 1.0-1.2 g/kg/d) protein diet and lasted for one year. In this study, the variations of peritoneal transport rate were assessed. Results. While baseline D/P(cr) (dialysate-to-plasma concentration ratio for creatinine at 4 hour) and D/D0(glu) (dialysate glucose at 4 hour to baseline dialysate glucose concentration ratio) were similar, D/P(cr) in group sLP was lower, and D/D0(glu) was higher than those in the other two groups (P diet with keto acids may benefit PD patients by maintaining peritoneum at a lower transport rate.

  12. Prader-Willi region non-protein coding RNA 1 suppressed gastric cancer growth as a competing endogenous RNA of microRNA-425-5p.

    Science.gov (United States)

    Chen, Zihao; Ju, Hongping; Yu, Shan; Zhao, Ting; Jing, Xiaojie; Li, Ping; Jia, Jing; Li, Nan; Tan, Bibo; Li, Yong

    2018-03-13

    Gastric cancer (GC) is one of a major global health problem especially in Asia. Nowadays, long non-coding RNA has gained significantly attention in the current research climate such as carcinogenesis. This research desired to explore the mechanism of Prader-Willi region non-protein coding RNA 1 (PWRN1) on regulating GC process. Differentially expressed lncRNAs in GC tissues were screened out through microarray analysis. The RNA and protein expression level was detected by qRT-PCR and western blot. Cell proliferation, apoptosis rate, metastasis abilities were respectively determined by CCK8, flow cytometry, wound healing and transwell assay. The luciferase reporter system was used to verify the targeting relationships between PWRN1, miR-425-5p and PTEN RIP assay was performed to prove whether PWRN1 acted as a competitive endogenous RNA (ceRNA) of miR-425-5p. Tumor xenograft model and immunohistochemistry were developed to study the influence of PWRN1 on tumor growth in vivo Microarray analysis determined that PWRN1 was different expressed between GC tissues and adjacent tissues. QRT-PCR revealed PWRN1 low expression in GC tissues and cells. PWRN1 up-regulated could reduce proliferation and metastasis and increased apoptosis in GC cells, while miR-425-5p had reverse effects. The RIP assay indicated that PWRN1 may target an oncogene miR-425-5p. The tumor xenograft assay found that up-regulated PWRN1 suppressed the tumor growth. The bioinformatic analysis, luciferase assay and western blot indicated that PWRN1 affected PTEN/Akt/MDM2/p53 axis via suppressing miR-425-5p. Our findings suggested that PWRN1 functioned as a ceRNA targeting to miR-425-5p and suppressed GC development via p53 signaling pathway. ©2018 The Author(s).

  13. Autodisplay of the La/SSB protein on LPS-free E. coli for the diagnosis of Sjögren's syndrome.

    Science.gov (United States)

    Yoo, Gu; Dilkaute, Carina; Bong, Ji-Hong; Song, Hyun-Woo; Lee, Misu; Kang, Min-Jung; Jose, Joachim; Pyun, Jae-Chul

    2017-05-01

    The objective of this study was to present an immunoassay for the diagnosis of Sjögren's syndrome based on the autodisplayed La/SSB protein on the outer membrane of intact E. coli (strain UT-5600) and LPS-free E. coli (ClearColi™). As the first step, an autodisplay vector (pCK002) was transfected into intact E. coli and LPS-free E. coli for comparison of efficiency of autdisplay of La/SSB. The maximal level of La/SSB expression was estimated to be similar for LPS-free E. coli and intact E. coli at different optimal induction periods. Intact E. coli was found to grow twofold faster than LPS-free E. coli, and the maximal level of expression for LPS-free E. coli was obtained with a longer induction period. When the zeta potential was measured, both intact E. coli and LPS-free E. coli showed negative values, and the autodisplay of negatively charged La/SSB protein (pIE. coli and LPS-free E. coli resulted in a slight change in zeta potential values. E. coli with autodisplayed La/SSB protein was used for an immunoassay of anti-La/SSB antibodies for the diagnosis of Sjögren's syndrome. The surface of E. coli with the autodisplayed antigen was modified with rabbit serum and papain to prevent false positive signals because of nonspecific binding of unrelated antibodies from human serum. LPS-free E. coli with autodisplayed La/SSB protein yielded sensitivity and selectivity of 81.6% and 78.6%, respectively. The Bland-Altman test showed that the immunoassays based on LPS-free E. coli and intact E. coli with autodisplayed La/SSB protein were statistically equivalent to a clinical immunoassay for detection of anti-La/SSB antibodies (confidence coefficient 95%). Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Cardiovascular and metabolic risk profile and acylation-stimulating protein levels in children with Prader-Willi syndrome and effects of growth hormone treatment

    NARCIS (Netherlands)

    R.F.A. de Lind van Wijngaarden (Roderick); K. Cianflone (Katherine); Y. Gao; R.W.J. Leunissen (Ralph); A.C.S. Hokken-Koelega (Anita)

    2010-01-01

    textabstractContext: Reports on the cardiovascular and metabolic risk profile in children with Prader-Willi syndrome (PWS) and the effects of GH treatment are scarce. Acylation-stimulating protein (ASP) stimulates glucose uptake and triglyceride storage in adipose tissue. Objectives: The aim was to

  15. Cardiac Myosin Binding Protein-C Autoantibodies Are Potential Early Indicators of Cardiac Dysfunction and Patient Outcome in Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Thomas L. Lynch, IVPhD

    2017-04-01

    Full Text Available Summary: The degradation and release of cardiac myosin binding protein-C (cMyBP-C upon cardiac damage may stimulate an inflammatory response and autoantibody (AAb production. We determined whether the presence of cMyBP-C-AAbs associated with adverse cardiac function in cardiovascular disease patients. Importantly, cMyBP-C-AAbs were significantly detected in acute coronary syndrome patient sera upon arrival to the emergency department, particularly in ST-segment elevation myocardial infarction patients. Patients positive for cMyBP-C-AAbs had reduced left ventricular ejection fraction and elevated levels of clinical biomarkers of myocardial infarction. We conclude that cMyBP-C-AAbs may serve as early predictive indicators of deteriorating cardiac function and patient outcome in acute coronary syndrome patients prior to the infarction. Key Words: acute myocardial infarction, autoantibodies, cardiac myosin binding protein-c, cardiomyopathy

  16. ASIC proteins regulate smooth muscle cell migration.

    Science.gov (United States)

    Grifoni, Samira C; Jernigan, Nikki L; Hamilton, Gina; Drummond, Heather A

    2008-03-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated that Epithelial Na(+)Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration; however, the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence individual ASIC expression and determine the importance of ASIC proteins in wound healing and chemotaxis (PDGF-bb)-initiated migration. We found ASIC1, ASIC2, and ASIC3, but not ASIC4, expression in A10 cells. ASIC1, ASIC2, and ASIC3 siRNA molecules significantly suppressed expression of their respective proteins compared to non-targeting siRNA (RISC) transfected controls by 63%, 44%, and 55%, respectively. Wound healing was inhibited by 10, 20, and 26% compared to RISC controls following suppression of ASIC1, ASIC2, and ASIC3, respectively. Chemotactic migration was inhibited by 30% and 45%, respectively, following suppression of ASIC1 and ASIC3. ASIC2 suppression produced a small, but significant, increase in chemotactic migration (4%). Our data indicate that ASIC expression is required for normal migration and may suggest a novel role for ASIC proteins in cellular migration.

  17. Covalent modification of cytoskeletal proteins in neuronal cells by tryptamine-4,5-dione

    Directory of Open Access Journals (Sweden)

    Yoji Kato

    2014-01-01

    Full Text Available Serotonin, 5-hydroxytryptamine, is a systemic bioactive amine that acts in the gut and brain. As a substrate of myeloperoxidase in vitro, serotonin is oxidized to tryptamine-4,5-dione (TD, which is highly reactive with thiols. In this work, we successively prepared a monoclonal antibody to quinone-modified proteins and found that the antibody preferentially recognizes the TD–thiol adduct. Using the antibody, we observed that the chloride ion, the predominant physiological substrate for myeloperoxidase in vivo, is not competitive toward the enzyme catalyzed serotonin oxidation process, suggesting that serotonin is a plausible physiological substrate for the enzyme in vivo. Immunocytochemical analyses revealed that TD staining was observed in the cytosol of SH-SY5Y neuroblastoma cells while blot analyses showed that some cellular proteins were preferentially modified. Pull-down analyses confirmed that the cytoskeletal proteins tubulins, vimentin, and neurofilament-L were modified. When pure tubulins were exposed to micromolar levels of synthetic TD, self-polymerization was initially enhanced and then suppressed. These results suggest that serotonin oxidation by myeloperoxidase or the action of other oxidants could cause functional alteration of cellular proteins, which may be related to neurodegeneration processes or irritable bowel syndrome.

  18. MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4.

    Science.gov (United States)

    Li, Kai; Zhang, Jin; Yu, Junjie; Liu, Bin; Guo, Yajie; Deng, Jiali; Chen, Shanghai; Wang, Chunxia; Guo, Feifan

    2015-03-27

    Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Antisense-mediated suppression of C-hordein biosynthesis in the barley grain results in correlated changes in the transcriptome, protein profile, and amino acid composition

    DEFF Research Database (Denmark)

    Hansen, Mette; Lange, Marianne; Friis, Carsten

    2007-01-01

    Antisense- or RNAi-mediated suppression of the biosynthesis of nutritionally inferior storage proteins is a promising strategy for improving the amino acid profile of seeds. However, the potential pleiotropic effects of this on interconnected pathways and the agronomic quality traits need...... to be addressed. In the current study, a transcriptomic analysis of an antisense C-hordein line of barley was performed, using a grain-specific cDNA array. The C-hordein antisense line is characterized by marked changes in storage protein and amino acid profiles, while the seed weight is within the normal range...... and no external morphological irregularities were observed. The results of the transcriptome analysis showed excellent correlation with data on changes in the relative proportions of storage proteins and amino acid composition. The antisense line had a lower C-hordein level and down-regulated transcript encoding...

  20. Frank-ter Haar syndrome protein Tks4 regulates epidermal growth factor-dependent cell migration.

    Science.gov (United States)

    Bögel, Gábor; Gujdár, Annamária; Geiszt, Miklós; Lányi, Árpád; Fekete, Anna; Sipeki, Szabolcs; Downward, Julian; Buday, László

    2012-09-07

    Mutations in the SH3PXD2B gene coding for the Tks4 protein are responsible for the autosomal recessive Frank-ter Haar syndrome. Tks4, a substrate of Src tyrosine kinase, is implicated in the regulation of podosome formation. Here, we report a novel role for Tks4 in the EGF signaling pathway. In EGF-treated cells, Tks4 is tyrosine-phosphorylated and associated with the activated EGF receptor. This association is not direct but requires the presence of Src tyrosine kinase. In addition, treatment of cells with LY294002, an inhibitor of PI 3-kinase, or mutations of the PX domain reduces tyrosine phosphorylation and membrane translocation of Tks4. Furthermore, a PX domain mutant (R43W) Tks4 carrying a reported point mutation in a Frank-ter Haar syndrome patient showed aberrant intracellular expression and reduced phosphoinositide binding. Finally, silencing of Tks4 was shown to markedly inhibit HeLa cell migration in a Boyden chamber assay in response to EGF or serum. Our results therefore reveal a new function for Tks4 in the regulation of growth factor-dependent cell migration.

  1. Lacrimal proline rich 4 (LPRR4 protein in the tear fluid is a potential biomarker of dry eye syndrome.

    Directory of Open Access Journals (Sweden)

    Saijyothi Venkata Aluru

    Full Text Available Dry eye syndrome (DES is a complex, multifactorial, immune-associated disorder of the tear and ocular surface. DES with a high prevalence world over needs identification of potential biomarkers so as to understand not only the disease mechanism but also to identify drug targets. In this study we looked for differentially expressed proteins in tear samples of DES to arrive at characteristic biomarkers. As part of a prospective case-control study, tear specimen were collected using Schirmer strips from 129 dry eye cases and 73 age matched controls. 2D electrophoresis (2DE and Differential gel electrophoresis (DIGE was done to identify differentially expressed proteins. One of the differentially expressed protein in DES is lacrimal proline rich 4 protein (LPRR4. LPRR4 protein expression was quantified by enzyme immune sorbent assay (ELISA. LPRR4 was down regulated significantly in all types of dry eye cases, correlating with the disease severity as measured by clinical investigations. Further characterization of the protein is required to assess its therapeutic potential in DES.

  2. Frontotemporal dementia with trans-activation response DNA-binding protein 43 presenting with catatonic syndrome.

    Science.gov (United States)

    Watanabe, Ryohei; Kawakami, Ito; Onaya, Mitsumoto; Higashi, Shinji; Arai, Nobutaka; Akiyama, Haruhiko; Hasegawa, Masato; Arai, Tetsuaki

    2017-11-07

    Catatonia is a clinical syndrome characterized by symptoms such as immobility, mutism, stupor, stereotypy, echophenomena, catalepsy, automatic obedience, posturing, negativism, gegenhalten and ambitendency. This syndrome occurs mostly in mood disorder and schizophrenic patients, and is related to neuronal dysfunction involving the frontal lobe. Some cases of frontotemporal dementia (FTD) with catatonia have been reported, but these cases were not examined by autopsy. Here, we report on a FTD case which showed catatonia after the first episode of brief psychotic disorder. At the age of 58, the patient had a sudden onset of disorganized behavior and meaningless speech. Psychotropic drugs were effective for catatonic symptoms. However, after remission apathy, hyperorality, socially inappropriate behavior, hoarding, and an instinctive grasp reaction appeared and persisted. Brain MRI showed significant atrophy of the bilateral fronto-temporal lobes. A neuropathological examination revealed extensive trans-activation response DNA-binding protein 43 (TDP-43) positive neurocytoplasmic inclusions and dystrophic neurites in the brain, including the cerebral cortex, basal ganglia, and brainstem. Pathological diagnosis was frontotemporal lobar degeneration (FTLD) with TDP-43 (FTLD-TDP) type C, which was also confirmed by the band pattern of C-terminal fragments of TDP-43 on western blotting of sarkosyl-insoluble fractions extracted from the frozen brain. Dysfunction of the thalamus, globus pallidus, supplementary motor area, amygdala and cingulate cortex have been said to be related to the catatonic syndrome. In this case, these areas were affected, showing abnormal TDP-43-positive structures. Further studies are expected to confirm further clinical - pathological correlations to FTLD. © 2017 Japanese Society of Neuropathology.

  3. The dexametazone suppression test (DST) for diagnosing of depression syndrome

    International Nuclear Information System (INIS)

    Rejopachi P, L.A.

    1984-09-01

    The dexametazone suppression test (DST) is a very valuable neuroendocrin assay as auxiliar method for diagnosing the depression. The serum cortisol levels of 20 patients of the Hospital de Salud Mental and of a control group were determined by radio-immunoassay technique. Normal concentration was defined as 5 micrograms per deciliter. Among depressed patients the average value was 9.8865 micro-grams per deciliter; having the test a 85% of positiveness. Among the control group the average value found was 1.167 micro-grams per deciliter, with a 20% of positiveness for the test. (author)

  4. ZNF307, a novel zinc finger gene suppresses p53 and p21 pathway

    International Nuclear Information System (INIS)

    Li Jing; Wang Yuequn; Fan Xiongwei; Mo Xiaoyang; Wang Zequn; Li Yongqing; Yin Zhaochu; Deng Yun; Luo Na; Zhu Chuanbing; Liu Mingyao; Ma Qian; Ocorr, Karen; Yuan Wuzhou; Wu Xiushan

    2007-01-01

    We have cloned a novel KRAB-related zinc finger gene, ZNF307, encoding a protein of 545 aa. ZNF307 is conserved across species in evolution and is differentially expressed in human adult and fetal tissues. The fusion protein of EGFP-ZNF307 localizes in the nucleus. Transcriptional activity assays show ZNF307 suppresses transcriptional activity of L8G5-luciferase. Overexpressing ZNF307 in different cell lines also inhibits the transcriptional activities of p53 and p21. Moreover, ZNF307 works by reducing the p53 protein level and p53 protein reduction is achieved by increasing transcription of MDM2 and EP300. ZNF307 might suppress p53-p21 pathway through activating MDM2 and EP300 expression and inducing p53 degradation

  5. Mitochondrial Respiration Inhibitors Suppress Protein Translation and Hypoxic Signaling via the Hyperphosphorylation and Inactivation of Translation Initiation Factor eIF2α and Elongation Factor eEF2

    Science.gov (United States)

    Li, Jun; Mahdi, Fakhri; Du, Lin; Datta, Sandipan; Nagle, Dale G.; Zhou, Yu-Dong

    2011-01-01

    Over 20000 lipid extracts of plants and marine organisms were evaluated in a human breast tumor T47D cell-based reporter assay for hypoxia-inducible factor-1 (HIF-1) inhibitory activity. Bioassay-guided isolation and dereplication-based structure elucidation of an active extract from the Bael tree (Aegle marmelos) afforded two protolimonoids, skimmiarepin A (1) and skimmiarepin C (2). In T47D cells, 1 and 2 inhibited hypoxia-induced HIF-1 activation with IC50 values of 0.063 µM and 0.068 µM, respectively. Compounds 1 and 2 also suppressed hypoxic induction of the HIF-1 target genes GLUT-1 and VEGF. Mechanistic studies revealed that 1 and 2 inhibited HIF-1 activation by blocking the hypoxia-induced accumulation of HIF-1α protein. At the range of concentrations that inhibited HIF-1 activation, 1 and 2 suppressed cellular respiration by selectively inhibiting the mitochondrial electron transport chain at complex I (NADH dehydrogenase). Further investigation indicated that mitochondrial respiration inhibitors such as 1 and rotenone induced the rapid hyperphosphorylation and inhibition of translation initiation factor eIF2α and elongation factor eEF2. The inhibition of protein translation may account for the short-term exposure effects exerted by mitochondrial inhibitors on cellular signaling, while the suppression of cellular ATP production may contribute to the inhibitory effects following extended treatment periods. PMID:21875114

  6. Morvan syndrome: a rare cause of syndrome of inappropriate antidiuretic hormone secretion

    OpenAIRE

    DEMIRBAS, SEREF; AYKAN, MUSA BARIS; ZENGIN, HAYDAR; MAZMAN, SEMIR; SAGLAM, KENAN

    2017-01-01

    The syndrome of inappropriate antidiuretic hormone secretion (SIADH) accounts for an important part of hyponatremia cases. The causes of SIADH can be detected almost always. As a rare disorder, Morvan Syndrome can be defined by the sum of peripheral nerve hyperexcitability, autonomic instability and neuropsychiatric features. Antibodies to voltage-gated potassium channels (Anti ? VGKC-Ab) including contactin associated protein-like 2 antibodies (CASPR2-Ab) and leucine-rich glioma inactivated ...

  7. Low-Protein Diet Supplemented with Keto Acids Is Associated with Suppression of Small-Solute Peritoneal Transport Rate in Peritoneal Dialysis Patients

    Directory of Open Access Journals (Sweden)

    Na Jiang

    2011-01-01

    Full Text Available Objective. We investigate whether low-protein diet would show benefits in suppressing peritoneal transport rate in peritoneal dialysis (PD patients. Methods. This is a supplemented analysis of our previously published trial, which randomized 60 PD patients to receive low- (LP: dietary protein intake of 0.6–0.8 g/kg/d, keto-acid-supplemented low- (sLP: 0.6–0.8 g/kg/d with 0.12 g/kg/d of keto acids, or high- (HP: 1.0–1.2 g/kg/d protein diet and lasted for one year. In this study, the variations of peritoneal transport rate were assessed. Results. While baseline D/Pcr (dialysate-to-plasma concentration ratio for creatinine at 4 hour and D/D0glu (dialysate glucose at 4 hour to baseline dialysate glucose concentration ratio were similar, D/Pcr in group sLP was lower, and D/D0glu was higher than those in the other two groups (P<0.05 at 12th month. D/D0glu increased (P<0.05, and D/Pcr tended to decrease, (P=0.071 in group sLP. Conclusions. Low-protein diet with keto acids may benefit PD patients by maintaining peritoneum at a lower transport rate.

  8. The Loss of Vacuolar Protein Sorting 11 (vps11) Causes Retinal Pathogenesis in a Vertebrate Model of Syndromic Albinism

    Science.gov (United States)

    Thomas, Jennifer L.; Vihtelic, Thomas S.; denDekker, Aaron D.; Willer, Gregory; Luo, Xixia; Murphy, Taylor R.; Gregg, Ronald G.; Hyde, David R.

    2011-01-01

    Purpose. To establish the zebrafish platinum mutant as a model for studying vision defects caused by syndromic albinism diseases such as Chediak-Higashi syndrome, Griscelli syndrome, and Hermansky-Pudlak syndrome (HPS). Methods. Bulked segregant analysis and candidate gene sequencing revealed that the zebrafish platinum mutation is a single-nucleotide insertion in the vps11 (vacuolar protein sorting 11) gene. Expression of vps11 was determined by RT-PCR and in situ hybridization. Mutants were analyzed for pigmentation defects and retinal disease by histology, immunohistochemistry, and transmission electron microscopy. Results. Phenocopy and rescue experiments determined that a loss of Vps11 results in the platinum phenotype. Expression of vps11 appeared ubiquitous during zebrafish development, with stronger expression in the developing retina and retinal pigmented epithelium (RPE). Zebrafish platinum mutants exhibited reduced pigmentation in the body and RPE; however, melanophore development, migration, and dispersion occurred normally. RPE, photoreceptors, and inner retinal neurons formed normally in zebrafish platinum mutants. However, a gradual loss of RPE, an absence of mature melanosomes, and the subsequent degradation of RPE/photoreceptor interdigitation was observed. Conclusions. These data show that Vps11 is not necessary for normal retinal development or initiation of melanin biosynthesis, but is essential for melanosome maturation and healthy maintenance of the RPE and photoreceptors. PMID:21330665

  9. Spatial cognitive deficits in an animal model of Wernicke-Korsakoff syndrome are related to changes in thalamic VDAC protein concentrations.

    Science.gov (United States)

    Bueno, K O; de Souza Resende, L; Ribeiro, A F; Dos Santos, D M; Gonçalves, E C; Vigil, F A B; de Oliveira Silva, I F; Ferreira, L F; de Castro Pimenta, A M; Ribeiro, A M

    2015-05-21

    Proteomic profiles of the thalamus and the correlation between the rats' performance on a spatial learning task and differential protein expression were assessed in the thiamine deficiency (TD) rat model of Wernicke-Korsakoff syndrome. Two-dimensional gel-electrophoresis detected 320 spots and a significant increase or decrease in seven proteins. Four proteins were correlated to rat behavioral performance in the Morris Water Maze. One of the four proteins was identified by mass spectrometry as Voltage-Dependent Anion Channels (VDACs). The association of VDAC is evident in trials in which the rats' performance was worst, in which the VDAC protein was reduced, as confirmed by Western blot. No difference was observed on the mRNA of Vdac genes, indicating that the decreased VDAC expression may be related to a post-transcriptional process. The results show that TD neurodegeneration involves changes in thalamic proteins and suggest that VDAC protein activity might play an important role in an initial stage of the spatial learning process. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Care of the cancer survivor: metabolic syndrome following hormone-modifying therapy

    OpenAIRE

    Redig, Amanda J.; Munshi, Hidayatullah G.

    2010-01-01

    Emerging evidence implicates metabolic syndrome as a long-term cancer risk factor but also suggests that certain cancer therapies may increase patients’ risk of developing metabolic syndrome secondary to cancer therapy. In particular, breast cancer and prostate cancer are driven in part by sex hormones, thus treatment for both diseases is often based on hormone-modifying therapy. Androgen suppression therapy in men with prostate cancer is associated with dyslipidemia, increasing risk of cardi...

  11. A haemolytic syndrome associated with the complete absence of red cell membrane protein 4.2 in two Tunisian siblings.

    Science.gov (United States)

    Ghanem, A; Pothier, B; Marechal, J; Ducluzeau, M T; Morle, L; Alloisio, N; Feo, C; Ben Abdeladhim, A; Fattoum, S; Delaunay, J

    1990-07-01

    We report on the complete absence of protein 4.2 in two Tunisian siblings. The propositus presented with a haemolytic anaemia that evolved in an intermittent fashion until she was cured by splenectomy. Her red cells had a normal morphology, as well as normal deformability upon osmotic gradient ektacytometry. SDS-polyacrylamide gel electrophoresis failed to reveal any protein 4.2. Using anti-protein 4.2 polyclonal antibodies. Western blots were also unable to detect protein 4.2. Preparation of inside out vesicles resulted in no detectable loss of ankyrin. The propositus's sister presented with a haemolytic anaemia but had not undergone splenectomy; she showed the same biochemical features. The two cases presented of missing protein 4.2 are the first ones to be described outside the Japanese population. Considered as homozygotes for some defect that must alter the protein 4.2 gene itself, they exemplify a unique syndrome pertaining neither to elliptocytosis nor to spherocytosis, at least not closely. The parents, who are first cousins and whom we regarded as heterozygotes, were clinically and morphologically normal; they had a normal content of protein 4.2. Therefore, the 4.2 (-) haemolytic anaemia appears as entirely recessive.

  12. Severe Food Protein-Induced Enterocolitis Syndrome to Cow’s Milk in Infants

    Directory of Open Access Journals (Sweden)

    Min Yang

    2015-12-01

    Full Text Available Cow’s milk is the most common cause of food-protein-induced enterocolitis syndrome (FPIES. The aim of this study was to examine the clinical features and treatment outcomes of infants with severe FPIES to cow’s milk. We reviewed all infants ≤12 months of age who were hospitalized and diagnosed with severe FPIES to cow’s milk between 1 January 2011 and 31 August 2014 in a tertiary Children’s Medical Center in China. Patients’ clinical features, feeding patterns, laboratory tests, and treatment outcomes were reviewed. A total of 12 infants met the inclusion criteria. All infants presented with diarrhea, edema, and hypoalbuminemia. Other main clinical manifestations included regurgitation/vomiting, skin rashes, low-grade fever, bloody and/or mucous stools, abdominal distention, and failure to thrive. They had clinical remission with resolution of diarrhea and significant increase of serum albumin after elimination of cow’s milk protein (CMP from the diet. The majority of infants developed tolerance to the CMP challenge test after 12 months of avoidance. In conclusion, we reported the clinical experience of 12 infants with severe FPIES to cow’s milk, which resulted in malnutrition, hypoproteinemia, and failure to thrive. Prompt treatment with CMP-free formula is effective and leads to clinical remission of FPIES in infants.

  13. Monkey Viperin Restricts Porcine Reproductive and Respiratory Syndrome Virus Replication.

    Science.gov (United States)

    Fang, Jianyu; Wang, Haiyan; Bai, Juan; Zhang, Qiaoya; Li, Yufeng; Liu, Fei; Jiang, Ping

    2016-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen which causes huge economic damage globally in the swine industry. Current vaccination strategies provide only limited protection against PRRSV infection. Viperin is an interferon (IFN) stimulated protein that inhibits some virus infections via IFN-dependent or IFN-independent pathways. However, the role of viperin in PRRSV infection is not well understood. In this study, we cloned the full-length monkey viperin (mViperin) complementary DNA (cDNA) from IFN-α-treated African green monkey Marc-145 cells. It was found that the mViperin is up-regulated following PRRSV infection in Marc-145 cells along with elevated IRF-1 gene levels. IFN-α induced mViperin expression in a dose- and time-dependent manner and strongly inhibits PRRSV replication in Marc-145 cells. Overexpression of mViperin suppresses PRRSV replication by blocking the early steps of PRRSV entry and genome replication and translation but not inhibiting assembly and release. And mViperin co-localized with PRRSV GP5 and N protein, but only interacted with N protein in distinct cytoplasmic loci. Furthermore, it was found that the 13-16 amino acids of mViperin were essential for inhibiting PRRSV replication, by disrupting the distribution of mViperin protein from the granular distribution to a homogeneous distribution in the cytoplasm. These results could be helpful in the future development of novel antiviral therapies against PRRSV infection.

  14. Acrolein-Exposed Normal Human Lung Fibroblasts in Vitro: Cellular Senescence, Enhanced Telomere Erosion, and Degradation of Werner’s Syndrome Protein

    Science.gov (United States)

    Jang, Jun-Ho; Bruse, Shannon; Huneidi, Salam; Schrader, Ronald M.; Monick, Martha M.; Lin, Yong; Carter, A. Brent; Klingelhutz, Aloysius J.

    2014-01-01

    Background: Acrolein is a ubiquitous environmental hazard to human health. Acrolein has been reported to activate the DNA damage response and induce apoptosis. However, little is known about the effects of acrolein on cellular senescence. Objectives: We examined whether acrolein induces cellular senescence in cultured normal human lung fibroblasts (NHLF). Methods: We cultured NHLF in the presence or absence of acrolein and determined the effects of acrolein on cell proliferative capacity, senescence-associated β-galactosidase activity, the known senescence-inducing pathways (e.g., p53, p21), and telomere length. Results: We found that acrolein induced cellular senescence by increasing both p53 and p21. The knockdown of p53 mediated by small interfering RNA (siRNA) attenuated acrolein-induced cellular senescence. Acrolein decreased Werner’s syndrome protein (WRN), a member of the RecQ helicase family involved in DNA repair and telomere maintenance. Acrolein-induced down-regulation of WRN protein was rescued by p53 knockdown or proteasome inhibition. Finally, we found that acrolein accelerated p53-mediated telomere shortening. Conclusions: These results suggest that acrolein induces p53-mediated cellular senescence accompanied by enhanced telomere attrition and WRN protein down-regulation. Citation: Jang JH, Bruse S, Huneidi S, Schrader RM, Monick MM, Lin Y, Carter AB, Klingelhutz AJ, Nyunoya T. 2014. Acrolein-exposed normal human lung fibroblasts in vitro: cellular senescence, enhanced telomere erosion, and degradation of Werner’s syndrome protein. Environ Health Perspect 122:955–962; http://dx.doi.org/10.1289/ehp.1306911 PMID:24747221

  15. Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2.

    Science.gov (United States)

    Reiners, Jan; van Wijk, Erwin; Märker, Tina; Zimmermann, Ulrike; Jürgens, Karin; te Brinke, Heleen; Overlack, Nora; Roepman, Ronald; Knipper, Marlies; Kremer, Hannie; Wolfrum, Uwe

    2005-12-15

    Usher syndrome (USH) is the most frequent cause of combined deaf-blindness in man. USH is clinically and genetically heterogeneous with at least 11 chromosomal loci assigned to the three USH types (USH1A-G, USH2A-C, USH3A). Although the different USH types exhibit almost the same phenotype in human, the identified USH genes encode for proteins which belong to very different protein classes and families. We and others recently reported that the scaffold protein harmonin (USH1C-gene product) integrates all identified USH1 molecules in a USH1-protein network. Here, we investigated the relationship between the USH2 molecules and this USH1-protein network. We show a molecular interaction between the scaffold protein harmonin (USH1C) and the USH2A protein, VLGR1 (USH2C) and the candidate for USH2B, NBC3. We pinpoint these interactions to interactions between the PDZ1 domain of harmonin and the PDZ-binding motifs at the C-termini of the USH2 proteins and NBC3. We demonstrate that USH2A, VLGR1 and NBC3 are co-expressed with the USH1-protein harmonin in the synaptic terminals of both retinal photoreceptors and inner ear hair cells. In hair cells, these USH proteins are also localized in the signal uptaking stereocilia. Our data indicate that the USH2 proteins and NBC3 are further partners in the supramolecular USH-protein network in the retina and inner ear which shed new light on the function of USH2 proteins and the entire USH-protein network. These findings provide first evidence for a molecular linkage between the pathophysiology in USH1 and USH2. The organization of USH molecules in a mutual 'interactome' related to the disease can explain the common phenotype in USH.

  16. Suppression of iron-regulatory hepcidin by vitamin D.

    Science.gov (United States)

    Bacchetta, Justine; Zaritsky, Joshua J; Sea, Jessica L; Chun, Rene F; Lisse, Thomas S; Zavala, Kathryn; Nayak, Anjali; Wesseling-Perry, Katherine; Westerman, Mark; Hollis, Bruce W; Salusky, Isidro B; Hewison, Martin

    2014-03-01

    The antibacterial protein hepcidin regulates the absorption, tissue distribution, and extracellular concentration of iron by suppressing ferroportin-mediated export of cellular iron. In CKD, elevated hepcidin and vitamin D deficiency are associated with anemia. Therefore, we explored a possible role for vitamin D in iron homeostasis. Treatment of cultured hepatocytes or monocytes with prohormone 25-hydroxyvitamin D or active 1,25-dihydroxyvitamin D decreased expression of hepcidin mRNA by 0.5-fold, contrasting the stimulatory effect of 25-hydroxyvitamin D or 1,25-dihydroxyvitamin D on related antibacterial proteins such as cathelicidin. Promoter-reporter and chromatin immunoprecipitation analyses indicated that direct transcriptional suppression of hepcidin gene (HAMP) expression mediated by 1,25-dihydroxyvitamin D binding to the vitamin D receptor caused the decrease in hepcidin mRNA levels. Suppression of HAMP expression was associated with a concomitant increase in expression of the cellular target for hepcidin, ferroportin protein, and decreased expression of the intracellular iron marker ferritin. In a pilot study with healthy volunteers, supplementation with a single oral dose of vitamin D (100,000 IU vitamin D2) increased serum levels of 25D-hydroxyvitamin D from 27±2 ng/ml before supplementation to 44±3 ng/ml after supplementation (P<0.001). This response was associated with a 34% decrease in circulating levels of hepcidin within 24 hours of vitamin D supplementation (P<0.05). These data show that vitamin D is a potent regulator of the hepcidin-ferroportin axis in humans and highlight a potential new strategy for the management of anemia in patients with low vitamin D and/or CKD.

  17. Temporal relationship between premonitory urges and tics in Gilles de la Tourette syndrome.

    Science.gov (United States)

    Brandt, Valerie C; Beck, Christian; Sajin, Valeria; Baaske, Magdalena K; Bäumer, Tobias; Beste, Christian; Anders, Silke; Münchau, Alexander

    2016-04-01

    Premonitory urges are a cardinal feature in Tourette syndrome and are commonly viewed as the driving force of tics, building up before and subsiding after the execution of tics. Although the urge-tic interplay is one of the most preeminent features in Tourette syndrome, the temporal relationship between tics and urges has never been examined experimentally, mainly due to the lack of an appropriate assessment tool. We investigated the temporal relationship between urge intensity and tics in 17 Tourette patients and between urge intensity and eye blinks in 16 healthy controls in a free ticcing/blinking condition and a tic/blink suppression condition. For this purpose, an urge assessment tool was developed that allows real-time monitoring and quantification of urge intensity. Compared to free ticcing/blinking, urge intensity was higher during the suppression condition in both Tourette patients and healthy controls, while tics and blinks occurred less frequently. The data show that urge intensity increases prior to tics and decreases after tics in a time window of approximately ±10 sec. Tic suppression had a significant effect on the shape of the urge distribution around tics and led to a decrease in the size of the correlation between urge intensity and tics, indicating that tic suppression led to a de-coupling of tics and urges. In healthy controls, urges to blink were highly associated with eye blink execution, albeit in a narrower time frame (∼±5 sec). Blink suppression had a similar effect on the urge distribution associated with eye blinks as tic suppression had on the urge to tic in Tourette patients. These results corroborate the negative reinforcement model, which proposes that tics are associated with a relief in urges, thereby perpetuating ticcing behaviour. This study also documents similarities and differences between urges to act in healthy controls and urges to tic in Tourette syndrome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Peripheral nerve P2 basic protein and the Guillain-Barre syndrome : In vitro demonstration of P2-specific antibody-secreting cells

    NARCIS (Netherlands)

    Luijten, J.A.F.M.; Jong, W.A.C. de; Demel, R.A.; Heijnen, C.J.; Ballieux, R.E.

    1984-01-01

    An immune response to the peripheral nerve basic protein P2 may be operative in the pathogenesis of the Guillain-Barré syndrome (GBS). A method is described for the purification of P2 of human origin. Purified P2 was used to investigate whether lymphocytes derived from peripheral blood of GBS

  19. Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease.

    Science.gov (United States)

    Reiners, Jan; Nagel-Wolfrum, Kerstin; Jürgens, Karin; Märker, Tina; Wolfrum, Uwe

    2006-07-01

    Usher syndrome (USH) is the most frequent cause of combined deaf-blindness in man. It is clinically and genetically heterogeneous and at least 12 chromosomal loci are assigned to three clinical USH types, namely USH1A-G, USH2A-C, USH3A (Davenport, S.L.H., Omenn, G.S., 1977. The heterogeneity of Usher syndrome. Vth Int. Conf. Birth Defects, Montreal; Petit, C., 2001. Usher syndrome: from genetics to pathogenesis. Annu. Rev. Genomics Hum. Genet. 2, 271-297). Mutations in USH type 1 genes cause the most severe form of USH. In USH1 patients, congenital deafness is combined with a pre-pubertal onset of retinitis pigmentosa (RP) and severe vestibular dysfunctions. Those with USH2 have moderate to severe congenital hearing loss, non-vestibular dysfunction and a later onset of RP. USH3 is characterized by variable RP and vestibular dysfunction combined with progressive hearing loss. The gene products of eight identified USH genes belong to different protein classes and families. There are five known USH1 molecules: the molecular motor myosin VIIa (USH1B); the two cell-cell adhesion cadherin proteins, cadherin 23 (USH1D) and protocadherin 15, (USH1F) and the scaffold proteins, harmonin (USH1C) and SANS (USH1G). In addition, two USH2 genes and one USH3A gene have been identified. The two USH2 genes code for the transmembrane protein USH2A, also termed USH2A ("usherin") and the G-protein-coupled 7-transmembrane receptor VLGR1b (USH2C), respectively, whereas the USH3A gene encodes clarin-1, a member of the clarin family which exhibits 4-transmembrane domains. Molecular analysis of USH1 protein function revealed that all five USH1 proteins are integrated into a protein network via binding to PDZ domains in the USH1C protein harmonin. Furthermore, this scaffold function of harmonin is supported by the USH1G protein SANS. Recently, we have shown that the USH2 proteins USH2A and VLGR1b as well as the candidate for USH2B, the sodium bicarbonate co-transporter NBC3, are also

  20. Case Of Iatrogenic Cushing's Syndrome By Topical Triamcinolone.

    Science.gov (United States)

    Zil-E-Ali, Ahsan; Janjua, Omer Hanif; Latif, Aiza; Aadil, Muhammad

    2018-01-01

    Cushing's syndrome is a collection of signs and symptoms due to hypercortisolism. Prolong use of topical steroid may cause this syndrome and suppression of hypothalamic and pituitary function, however such events are more common with oral and parenteral route. There are very few cases of Cushing's syndrome with a topical application amongst which triamcinolone is the rarest drug. We report a case of 11-year-old boy is presented who developed Cushing's disease by topical application. The child had body rashes for which the caregiver consulted a local quack, a topical cream of triamcinolone was prescribed. After application for three months, the patient became obese and developed a moon-like face. A thorough biochemical workup and diagnostic test for Cushing's disease was done to confirm. The following case report a dramatic example of development of the syndrome from chronic topical application of the least potent corticosteroid.

  1. Differences in manifestations of Marfan syndrome, Ehlers-Danlos syndrome, and Loeys-Dietz syndrome.

    Science.gov (United States)

    Meester, Josephina A N; Verstraeten, Aline; Schepers, Dorien; Alaerts, Maaike; Van Laer, Lut; Loeys, Bart L

    2017-11-01

    Many different heritable connective tissue disorders (HCTD) have been described over the past decades. These syndromes often affect the connective tissue of various organ systems, including heart, blood vessels, skin, joints, bone, eyes, and lungs. The discovery of these HCTD was followed by the identification of mutations in a wide range of genes encoding structural proteins, modifying enzymes, or components of the TGFβ-signaling pathway. Three typical examples of HCTD are Marfan syndrome (MFS), Ehlers-Danlos syndrome (EDS), and Loeys-Dietz syndrome (LDS). These syndromes show some degree of phenotypical overlap of cardiovascular, skeletal, and cutaneous features. MFS is typically characterized by cardiovascular, ocular, and skeletal manifestations and is caused by heterozygous mutations in FBN1 , coding for the extracellular matrix (ECM) protein fibrillin-1. The most common cardiovascular phenotype involves aortic aneurysm and dissection at the sinuses of Valsalva. LDS is caused by mutations in TGBR1/2 , SMAD2/3 , or TGFB2/3 , all coding for components of the TGFβ-signaling pathway. LDS can be distinguished from MFS by the unique presence of hypertelorism, bifid uvula or cleft palate, and widespread aortic and arterial aneurysm and tortuosity. Compared to MFS, LDS cardiovascular manifestations tend to be more severe. In contrast, no association is reported between LDS and the presence of ectopia lentis, a key distinguishing feature of MFS. Overlapping features between MFS and LDS include scoliosis, pes planus, anterior chest deformity, spontaneous pneumothorax, and dural ectasia. EDS refers to a group of clinically and genetically heterogeneous connective tissue disorders and all subtypes are characterized by variable abnormalities of skin, ligaments and joints, blood vessels, and internal organs. Typical presenting features include joint hypermobility, skin hyperextensibility, and tissue fragility. Up to one quarter of the EDS patients show aortic aneurysmal

  2. Differences in manifestations of Marfan syndrome, Ehlers-Danlos syndrome, and Loeys-Dietz syndrome

    Science.gov (United States)

    Meester, Josephina A. N.; Verstraeten, Aline; Schepers, Dorien; Alaerts, Maaike; Van Laer, Lut

    2017-01-01

    Many different heritable connective tissue disorders (HCTD) have been described over the past decades. These syndromes often affect the connective tissue of various organ systems, including heart, blood vessels, skin, joints, bone, eyes, and lungs. The discovery of these HCTD was followed by the identification of mutations in a wide range of genes encoding structural proteins, modifying enzymes, or components of the TGFβ-signaling pathway. Three typical examples of HCTD are Marfan syndrome (MFS), Ehlers-Danlos syndrome (EDS), and Loeys-Dietz syndrome (LDS). These syndromes show some degree of phenotypical overlap of cardiovascular, skeletal, and cutaneous features. MFS is typically characterized by cardiovascular, ocular, and skeletal manifestations and is caused by heterozygous mutations in FBN1, coding for the extracellular matrix (ECM) protein fibrillin-1. The most common cardiovascular phenotype involves aortic aneurysm and dissection at the sinuses of Valsalva. LDS is caused by mutations in TGBR1/2, SMAD2/3, or TGFB2/3, all coding for components of the TGFβ-signaling pathway. LDS can be distinguished from MFS by the unique presence of hypertelorism, bifid uvula or cleft palate, and widespread aortic and arterial aneurysm and tortuosity. Compared to MFS, LDS cardiovascular manifestations tend to be more severe. In contrast, no association is reported between LDS and the presence of ectopia lentis, a key distinguishing feature of MFS. Overlapping features between MFS and LDS include scoliosis, pes planus, anterior chest deformity, spontaneous pneumothorax, and dural ectasia. EDS refers to a group of clinically and genetically heterogeneous connective tissue disorders and all subtypes are characterized by variable abnormalities of skin, ligaments and joints, blood vessels, and internal organs. Typical presenting features include joint hypermobility, skin hyperextensibility, and tissue fragility. Up to one quarter of the EDS patients show aortic aneurysmal

  3. Treacher Collins Syndrome; Anesthetic considerations and Molecular Findings

    Directory of Open Access Journals (Sweden)

    Shahram Sayyadi

    2018-01-01

    Full Text Available Treacher Collins Syndrome (TCS is a rare disease with mandibulofacial dysostosis. The deformities accompanied by this syndrome could cause especial challenges for anesthesiologist. On the other hand Treacher protein is well recognized in the pathogenesis of this syndrome. In this report we want to present a successful management of a patient with Treacher Collins syndrome and also describe new advances in the molecular aspect of this disease.

  4. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  5. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    International Nuclear Information System (INIS)

    Vanamala, Jairam; Reddivari, Lavanya; Radhakrishnan, Sridhar; Tarver, Chris

    2010-01-01

    Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene), a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity) and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Resveratrol (100-150 μM) exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G 0 /G 1 -S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and activation of p53, suggesting its potential role as a

  6. Impact of the Usher syndrome on olfaction.

    Science.gov (United States)

    Jansen, Fabian; Kalbe, Benjamin; Scholz, Paul; Mikosz, Marta; Wunderlich, Kirsten A; Kurtenbach, Stefan; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe; Hatt, Hanns; Osterloh, Sabrina

    2016-02-01

    Usher syndrome is a genetically and clinically heterogeneous disease in humans, characterized by sensorineural hearing loss, retinitis pigmentosa and vestibular dysfunction. This disease is caused by mutations in genes encoding proteins that form complex networks in different cellular compartments. Currently, it remains unclear whether the Usher proteins also form networks within the olfactory epithelium (OE). Here, we describe Usher gene expression at the mRNA and protein level in the OE of mice and showed interactions between these proteins and olfactory signaling proteins. Additionally, we analyzed the odor sensitivity of different Usher syndrome mouse models using electro-olfactogram recordings and monitored significant changes in the odor detection capabilities in mice expressing mutant Usher proteins. Furthermore, we observed changes in the expression of signaling proteins that might compensate for the Usher protein deficiency. In summary, this study provides novel insights into the presence and purpose of the Usher proteins in olfactory signal transduction. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in human liver cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Akio; Fujita, Yoshihito; Abudukadier, Abulizi; Fukushima, Toru; Oguri, Yasuo; Ogura, Masahito; Harashima, Shin-ichi; Hosokawa, Masaya; Inagaki, Nobuya, E-mail: inagaki@metab.kuhp.kyoto-u.ac.jp

    2015-05-15

    Metformin, one of the most commonly used drugs for patients with type 2 diabetes, recently has received much attention regarding its anti-cancer action. It is thought that the suppression of mTOR signaling is involved in metformin's anti-cancer action. Although liver cancer is one of the most responsive types of cancer for reduction of incidence by metformin, the molecular mechanism of the suppression of mTOR in liver remains unknown. In this study, we investigated the mechanism of the suppressing effect of metformin on mTOR signaling and cell proliferation using human liver cancer cells. Metformin suppressed phosphorylation of p70-S6 kinase, and ribosome protein S6, downstream targets of mTOR, and suppressed cell proliferation. We found that DEPTOR, an endogenous substrate of mTOR suppression, is involved in the suppressing effect of metformin on mTOR signaling and cell proliferation in human liver cancer cells. Metformin increases the protein levels of DEPTOR, intensifies binding to mTOR, and exerts a suppressing effect on mTOR signaling. This increasing effect of DEPTOR by metformin is regulated by the proteasome degradation system; the suppressing effect of metformin on mTOR signaling and cell proliferation is in a DEPTOR-dependent manner. Furthermore, metformin exerts a suppressing effect on proteasome activity, DEPTOR-related mTOR signaling, and cell proliferation in an AMPK-dependent manner. We conclude that DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in liver, and could be a novel target for anti-cancer therapy. - Highlights: • We elucidated a novel pathway of metformin's anti-cancer action in HCC cells. • DEPTOR is involved in the suppressing effect of metformin on mTOR signaling. • Metformin increases DEPTOR protein levels via suppression of proteasome activity. • DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action.

  8. DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in human liver cancer cells

    International Nuclear Information System (INIS)

    Obara, Akio; Fujita, Yoshihito; Abudukadier, Abulizi; Fukushima, Toru; Oguri, Yasuo; Ogura, Masahito; Harashima, Shin-ichi; Hosokawa, Masaya; Inagaki, Nobuya

    2015-01-01

    Metformin, one of the most commonly used drugs for patients with type 2 diabetes, recently has received much attention regarding its anti-cancer action. It is thought that the suppression of mTOR signaling is involved in metformin's anti-cancer action. Although liver cancer is one of the most responsive types of cancer for reduction of incidence by metformin, the molecular mechanism of the suppression of mTOR in liver remains unknown. In this study, we investigated the mechanism of the suppressing effect of metformin on mTOR signaling and cell proliferation using human liver cancer cells. Metformin suppressed phosphorylation of p70-S6 kinase, and ribosome protein S6, downstream targets of mTOR, and suppressed cell proliferation. We found that DEPTOR, an endogenous substrate of mTOR suppression, is involved in the suppressing effect of metformin on mTOR signaling and cell proliferation in human liver cancer cells. Metformin increases the protein levels of DEPTOR, intensifies binding to mTOR, and exerts a suppressing effect on mTOR signaling. This increasing effect of DEPTOR by metformin is regulated by the proteasome degradation system; the suppressing effect of metformin on mTOR signaling and cell proliferation is in a DEPTOR-dependent manner. Furthermore, metformin exerts a suppressing effect on proteasome activity, DEPTOR-related mTOR signaling, and cell proliferation in an AMPK-dependent manner. We conclude that DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in liver, and could be a novel target for anti-cancer therapy. - Highlights: • We elucidated a novel pathway of metformin's anti-cancer action in HCC cells. • DEPTOR is involved in the suppressing effect of metformin on mTOR signaling. • Metformin increases DEPTOR protein levels via suppression of proteasome activity. • DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action

  9. Determination of the source of androgen excess in functionally atypical polycystic ovary syndrome by a short dexamethasone androgen-suppression test and a low-dose ACTH test.

    Science.gov (United States)

    Rosenfield, Robert L; Mortensen, Monica; Wroblewski, Kristen; Littlejohn, Elizabeth; Ehrmann, David A

    2011-11-01

    Polycystic ovary syndrome (PCOS) patients typically have 17-hydroxyprogesterone (17OHP) hyperresponsiveness to GnRH agonist (GnRHa) (PCOS-T). The objective of this study was to determine the source of androgen excess in the one-third of PCOS patients who atypically lack this type of ovarian dysfunction (PCOS-A). Aged-matched PCOS-T (n= 40), PCOS-A (n= 20) and controls (n= 39) were studied prospectively in a General Clinical Research Center. Short (4 h) and long (4-7 day) dexamethasone androgen-suppression tests (SDAST and LDAST, respectively) were compared in subsets of subjects. Responses to SDAST and low-dose adrenocorticotropic hormone (ACTH) were then evaluated in all. Testosterone post-SDAST correlated significantly with testosterone post-LDAST and 17OHP post-GnRHa (r = 0.671-0.672), indicating that all detect related aspects of ovarian dysfunction. An elevated dehydroepiandrosterone peak in response to ACTH, which defined functional adrenal hyperandrogenism, was similarly prevalent in PCOS-T (27.5%) and PCOS-A (30%) and correlated significantly with baseline dehydroepiandrosterone sulfate (DHEAS) (r = 0.708). Functional ovarian hyperandrogenism was detected by subnormal testosterone suppression by SDAST in most (92.5%) PCOS-T, but significantly fewer PCOS-A (60%, PPCOS-A, but present in 30% of PCOS-T (P PCOS-A cases with normal testosterone suppression in response to SDAST (5/8) lacked evidence of adrenal hyperandrogenism and were obese. Functional ovarian hyperandrogenism was not demonstrable by SDAST in 40% of PCOS-A. Most of these cases had no evidence of adrenal hyperandrogenism. Obesity may account for most hyperandrogenemic anovulation that lacks a glandular source of excess androgen, and the SDAST seems useful in making this distinction.

  10. Phosphatidylinositol response and proliferation of oxidative enzyme-activated human T lymphocytes: suppression by plasma lipoproteins

    International Nuclear Information System (INIS)

    Akeson, A.L.; Scupham, D.W.; Harmony, J.A.

    1984-01-01

    The phosphatidylinositol (PI) response and DNA synthesis of neuraminidase and galactose oxidase (NAGO)-stimulated human T lymphocytes are suppressed by low density lipoproteins (LDL). To understand the mechanism of lymphocyte activation more fully, the PI response and DNA synthesis and suppression of these events by LDL in NAGO-stimulated T lymphocytes were characterized. Between 30 min and 6 hr after NAGO stimulation, there was an increase of 32 Pi incorporation into PI without increased incorporation into the phosphorylated forms of PI or into other phospholipids. DNA synthesis as determined by [ 3 H]thymidine incorporation depended on the lymphocyte-accessory monocyte ratio and total cell density. Optimal stimulation of the PI response and DNA synthesis occurred at the same concentration of neuraminidase and galactose oxidase. While the PI response was only partially suppressed by LDL with optimal suppression at 10 to 20 micrograms of protein/ml, DNA synthesis was completely suppressed although at much higher LDL concentrations, greater than 100 micrograms protein/ml. As monocyte numbers are increased, LDL suppression of DNA synthesis is decreased. The ability of NAGO to stimulate the PI response and DNA synthesis in a similar way, and the suppression of both events by LDL, suggests the PI response is important for lymphocyte activation and proliferation. Stimulation of human T lymphocytes by oxidative mitogens, neuraminidase, and galactose oxidase caused increased phosphatidylinositol metabolism and increased DNA synthesis. Both responses were suppressed by low density lipoproteins

  11. Immunological studies in acquired immunodeficiency syndrome. Functional studies of lymphocyte subpopulations

    DEFF Research Database (Denmark)

    Hofmann, B; Ødum, Niels; Platz, P

    1985-01-01

    The lymphocyte transformation response in vitro to mitogens (phytohaemagglutinin, concanavalin A, and pokeweed mitogen) and antigens (purified protein derivative and tetanus) was studied in three patients with acquired immunodeficiency syndrome (AIDS), three patients with pre-AIDS, and six healthy...... controls before and after depletion of T4- or T8-positive cells. In controls, T8-depleted lymphocytes responded as well as peripheral blood mononuclear cells (PBMC) when monocytes were added, whereas T4-depleted cells gave about 50% of this response to mitogens and no response at all to antigens....... No evidence of suppression was seen when various mixtures of T4- and T8-depleted cells were made. In particular, there was a virtually linear relationship between the percentage of T8-depleted cells and the response to antigens. The PBMC of all AIDS and pre-AIDS patients had very low or absent responses...

  12. Characteristic proteins in the plasma of postoperative colorectal and liver cancer patients with Yin deficiency of liver-kidney syndrome.

    Science.gov (United States)

    Ji, Qing; Wang, Wenhai; Luo, Yunquan; Cai, Feifei; Lu, Yiyu; Deng, Wanli; Li, Qi; Su, Shibing

    2017-11-28

    Systems biology and bioinformatics provide the feasibility for the basic research associated with "same traditional Chinese medicine (TCM) syndrome in different diseases". In this study, the plasma proteins in postoperative colorectal (PCC) and postoperative liver cancer (PLC) patients with YDLKS (Yin deficiency of liver-kidney syndrome) were screened out using iTRAQ combined with LC-MS/MS technology. The results demonstrated that, KNG1, AMBP, SERPING1, etc, were all differentially expressed in both PCC and PLC patients with YDLKS, and associated closely with complement and coagulation cascades pathway. C7 and C2 were another two representative factors involving in former pathway. Further validation showed that, the C7 levels were increased significantly in PLC ( P patients with YDLKS ( P patients with YDLKS ( P patients with YDLKS.

  13. Heat shock protein 70 negatively regulates the heat-shock-induced suppression of the IκB/NF-κB cascade by facilitating IκB kinase renaturation and blocking its further denaturation

    International Nuclear Information System (INIS)

    Lee, Kyoung-Hee; Lee, Choon-Taek; Kim, Young Whan; Han, Sung Koo; Shim, Young-Soo; Yoo, Chul-Gyu

    2005-01-01

    Heat shock (HS) treatment has been previously shown to suppress the IκB/nuclear factor-κB (NF-κB) cascade by denaturing, and thus inactivating IκB kinase (IKK). HS is characterized by the induction of a group of heat shock proteins (HSPs). However, their role in the HS-induced suppression of the IκB/NF-κB cascade is unclear. Adenovirus-mediated HSP70 overexpression was found not to suppress the TNF-α-induced activation of the IκB/NF-κB pathway, thus suggesting that HSP70 is unlikely to suppress this pathway. When TNF-α-induced activation of the IκB/NF-κB pathway was regained 24 h after HS, HSP70 was found to be highly up-regulated. Moreover, blocking HSP70 induction delayed TNF-α-induced IκBα degradation and the resolubilization of IKK. In addition, HSP70 associated physically with IKK, suggesting that HSP70 is involved in the recovery process via molecular chaperone effect. Adenovirus-mediated HSP70 overexpression prior to HS blocked the IκBα stabilizing effect of HS by suppressing IKK insolubilization. Moreover, the up-regulation of endogenous HSP70 by preheating, suppressed this subsequent HS-induced IKK insolubilization, and this effect was abrogated by blocking HSP70 induction. These findings indicate that HSP70 accumulates during HS and negatively regulates the HS-induced suppression of the IκB/NF-κB cascade by facilitating the renaturation of IKK and blocking its further denaturation

  14. Label-free Proteomic Reveals that Cowpea Severe Mosaic Virus Transiently Suppresses the Host Leaf Protein Accumulation During the Compatible Interaction with Cowpea (Vigna unguiculata [L.] Walp.).

    Science.gov (United States)

    Paiva, Ana L S; Oliveira, Jose T A; de Souza, Gustavo A; Vasconcelos, Ilka M

    2016-12-02

    Viruses are important plant pathogens that threaten diverse crops worldwide. Diseases caused by Cowpea severe mosaic virus (CPSMV) have drawn attention because of the serious damages they cause to economically important crops including cowpea. This work was undertaken to quantify and identify the responsive proteins of a susceptible cowpea genotype infected with CPSMV, in comparison with mock-inoculated controls, using label-free quantitative proteomics and databanks, aiming at providing insights on the molecular basis of this compatible interaction. Cowpea leaves were mock- or CPSMV-inoculated and 2 and 6 days later proteins were extracted and analyzed. More than 3000 proteins were identified (data available via ProteomeXchange, identifier PXD005025) and 75 and 55 of them differentially accumulated in response to CPSMV, at 2 and 6 DAI, respectively. At 2 DAI, 76% of the proteins decreased in amount and 24% increased. However, at 6 DAI, 100% of the identified proteins increased. Thus, CPSMV transiently suppresses the synthesis of proteins involved particularly in the redox homeostasis, protein synthesis, defense, stress, RNA/DNA metabolism, signaling, and other functions, allowing viral invasion and spread in cowpea tissues.

  15. Schiff Base Metal Derivatives Enhance the Expression of HSP70 and Suppress BAX Proteins in Prevention of Acute Gastric Lesion

    Directory of Open Access Journals (Sweden)

    Shahram Golbabapour

    2013-01-01

    Full Text Available Schiff base complexes have appeared to be promising in the treatment of different diseases and disorders and have drawn a lot of attention to their biological activities. This study was conducted to evaluate the regulatory effect of Schiff base metal derivatives on the expression of heat shock proteins (HSP 70 and BAX in protection against acute haemorrhagic gastric ulcer in rats. Rats were assigned to 6 groups of 6 rats: the normal control (Tween 20 5% v/v, 5 mL/kg, the positive control (Tween 20 5% v/v, 5 mL/kg, and four Schiff base derivative groups named Schiff_1, Schiff_2, Schiff_3, and Schiff_4 (25 mg/kg. After 1 h, all of the groups received ethanol 95% (5 mL/kg but the normal control received Tween 20 (Tween 20 5% v/v, 5 mL/kg. The animals were euthanized after 60 min and the stomachs were dissected for histology (H&E, immunohistochemistry, and western blot analysis against HSP70 and BAX proteins. The results showed that the Schiff base metal derivatives enhanced the expression of HSP70 and suppressed the expression of BAX proteins during their gastroprotection against ethanol-induced gastric lesion in rats.

  16. Schiff base metal derivatives enhance the expression of HSP70 and suppress BAX proteins in prevention of acute gastric lesion.

    Science.gov (United States)

    Golbabapour, Shahram; Gwaram, Nura Suleiman; Al-Obaidi, Mazen M Jamil; Soleimani, A F; Ali, Hapipah Mohd; Abdul Majid, Nazia

    2013-01-01

    Schiff base complexes have appeared to be promising in the treatment of different diseases and disorders and have drawn a lot of attention to their biological activities. This study was conducted to evaluate the regulatory effect of Schiff base metal derivatives on the expression of heat shock proteins (HSP) 70 and BAX in protection against acute haemorrhagic gastric ulcer in rats. Rats were assigned to 6 groups of 6 rats: the normal control (Tween 20 5% v/v, 5 mL/kg), the positive control (Tween 20 5% v/v, 5 mL/kg), and four Schiff base derivative groups named Schiff_1, Schiff_2, Schiff_3, and Schiff_4 (25 mg/kg). After 1 h, all of the groups received ethanol 95% (5 mL/kg) but the normal control received Tween 20 (Tween 20 5% v/v, 5 mL/kg). The animals were euthanized after 60 min and the stomachs were dissected for histology (H&E), immunohistochemistry, and western blot analysis against HSP70 and BAX proteins. The results showed that the Schiff base metal derivatives enhanced the expression of HSP70 and suppressed the expression of BAX proteins during their gastroprotection against ethanol-induced gastric lesion in rats.

  17. Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes.

    Science.gov (United States)

    Woo, Hae-Mi; Kang, Ji-Hye; Kawada, Teruo; Yoo, Hoon; Sung, Mi-Kyung; Yu, Rina

    2007-02-13

    Inflammation plays a key role in obesity-related pathologies such as cardiovascular disease, type II diabetes, and several types of cancer. Obesity-induced inflammation entails the enhancement of the recruitment of macrophages into adipose tissue and the release of various proinflammatory proteins from fat tissue. Therefore, the modulation of inflammatory responses in obesity may be useful for preventing or ameliorating obesity-related pathologies. Some spice-derived components, which are naturally occurring phytochemicals, elicit antiobesity and antiinflammatory properties. In this study, we investigated whether active spice-derived components can be applied to the suppression of obesity-induced inflammatory responses. Mesenteric adipose tissue was isolated from obese mice fed a high-fat diet and cultured to prepare an adipose tissue-conditioned medium. Raw 264.7 macrophages were treated with the adipose tissue-conditioned medium with or without active spice-derived components (i.e., diallyl disulfide, allyl isothiocyanate, piperine, zingerone and curcumin). Chemotaxis assay was performed to measure the degree of macrophage migration. Macrophage activation was estimated by measuring tumor necrosis factor-alpha (TNF-alpha), nitric oxide, and monocyte chemoattractant protein-1 (MCP-1) concentrations. The active spice-derived components markedly suppressed the migration of macrophages induced by the mesenteric adipose tissue-conditioned medium in a dose-dependent manner. Among the active spice-derived components studied, allyl isothiocyanate, zingerone, and curcumin significantly inhibited the cellular production of proinflammatory mediators such as TNF-alpha and nitric oxide, and significantly inhibited the release of MCP-1 from 3T3-L1 adipocytes. Our findings suggest that the spice-derived components can suppress obesity-induced inflammatory responses by suppressing adipose tissue macrophage accumulation or activation and inhibiting MCP-1 release from adipocytes

  18. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Milatovic, Dejan [Department of Pediatrics/Pediatric Toxicology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Splittgerber, Ryan [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Fan, Guo-Huang [Department of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, TN 37221 (United States); Richmond, Ann, E-mail: ann.richmond@vanderbilt.edu [VA Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States)

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP

  19. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1α, suppress amyloid β-induced neurotoxicity

    International Nuclear Information System (INIS)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan; Splittgerber, Ryan; Fan, Guo-Huang; Richmond, Ann

    2011-01-01

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-β (Aβ). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1α (SDF-1α), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress Aβ-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1α significantly protected neurons from Aβ-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1α. Intra-cerebroventricular (ICV) injection of Aβ led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The Aβ-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F 2 -isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1α. Additionally, MIP-2 or SDF-1α was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against Aβ neurotoxicity in CXCR2−/− mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: ► Neuroprotective ability of the chemokines MIP2 and CXCL12 against Aβ toxicity. ► MIP-2 or CXCL12 prevented dendritic regression and apoptosis in vitro. ► Neuroprotection through activation of Akt, ERK

  20. Eosinophils from eosinophilic oesophagitis patients have T cell suppressive capacity and express FOXP3.

    Science.gov (United States)

    Lingblom, C; Wallander, J; Ingelsten, M; Bergquist, H; Bove, M; Saalman, R; Welin, A; Wennerås, C

    2017-03-01

    Eosinophilic esophagitis (EoE) is an antigen-driven T cell-mediated chronic inflammatory disease where food and environmental antigens are thought to have a role. Human eosinophils express the immunoregulatory protein galectin-10 and have T cell suppressive capacity similar to regulatory T cells (T regs ). We hypothesized that one function of eosinophils in EoE might be to regulate the T cell-driven inflammation in the oesophagus. This was tested by evaluating the suppressive capacity of eosinophils isolated from the blood of adult EoE patients in a mixed lymphocyte reaction. In addition, eosinophilic expression of forkhead box protein 3 (FOXP3), the canonical transcription factor of T regs , was determined by conventional and imaging flow cytometry, quantitative polymerase chain reaction (qPCR), confocal microscopy and immunoblotting. It was found that blood eosinophils from EoE patients had T cell suppressive capacity, and that a fraction of the eosinophils expressed FOXP3. A comparison of EoE eosinophils with healthy control eosinophils indicated that the patients' eosinophils had inferior suppressive capacity. Furthermore, a higher percentage of the EoE eosinophils expressed FOXP3 protein compared with the healthy eosinophils, and they also had higher FOXP3 protein and mRNA levels. FOXP3 was found in the cytosol and nucleus of the eosinophils from both the patients and healthy individuals, contrasting with the strict nuclear localization of FOXP3 in T regs . To conclude, these findings suggest that the immunoregulatory function of eosinophils may be impaired in EoE. © 2016 British Society for Immunology.

  1. Noonan syndrome - a new survey.

    Science.gov (United States)

    Tafazoli, Alireza; Eshraghi, Peyman; Koleti, Zahra Kamel; Abbaszadegan, Mohammadreza

    2017-02-01

    Noonan syndrome (NS) is an autosomal dominant disorder with vast heterogeneity in clinical and genetic features. Various symptoms have been reported for this abnormality such as short stature, unusual facial characteristics, congenital heart abnormalities, developmental complications, and an elevated tumor incidence rate. Noonan syndrome shares clinical features with other rare conditions, including LEOPARD syndrome, cardio-facio-cutaneous syndrome, Noonan-like syndrome with loose anagen hair, and Costello syndrome. Germline mutations in the RAS-MAPK (mitogen-activated protein kinase) signal transduction pathway are responsible for NS and other related disorders. Noonan syndrome diagnosis is primarily based on clinical features, but molecular testing should be performed to confirm it in patients. Due to the high number of genes associated with NS and other RASopathy disorders, next-generation sequencing is the best choice for diagnostic testing. Patients with NS also have higher risk for leukemia and specific solid tumors. Age-specific guidelines for the management of NS are available.

  2. Ubiquitin in signaling and protein quality control

    DEFF Research Database (Denmark)

    Al-Saoudi, Sofie Vincents

    is related to the cancer-predisposition disease, Lynch syndrome. Of 24 different MSH2 variants, some of which have been linked to Lynch syndrome, we show that there is a strong correlation between the predicted structural stability and the protein half-life. We show that a predicted destabilization of 3 kcal....../mol is sufficient to cause proteasomal degradation of MSH2 variants. Importantly our calculations can, in addition to protein turnover, also predict pathogenicity of MSH2 variants, suggesting that this approach can be applied for Lynch syndrome diagnosis, and perhaps for other hereditary diseases....

  3. Dietary sardine protein lowers insulin resistance, leptin and TNF-α and beneficially affects adipose tissue oxidative stress in rats with fructose-induced metabolic syndrome.

    Science.gov (United States)

    Madani, Zohra; Louchami, Karim; Sener, Abdullah; Malaisse, Willy J; Ait Yahia, Dalila

    2012-02-01

    The present study aims at exploring the effects of sardine protein on insulin resistance, plasma lipid profile, as well as oxidative and inflammatory status in rats with fructose-induced metabolic syndrome. Rats were fed sardine protein (S) or casein (C) diets supplemented or not with high-fructose (HF) for 2 months. Rats fed the HF diets had greater body weight and adiposity and lower food intake as compared to control rats. Increased plasma glucose, insulin, HbA1C, triacylglycerols, free fatty acids and impaired glucose tolerance and insulin resistance was observed in HF-fed rats. Moreover, a decline in adipose tissues antioxidant status and a rise in lipid peroxidation and plasma TNF-α and fibrinogen were noted. Rats fed sardine protein diets exhibited lower food intake and fat mass than those fed casein diets. Sardine protein diets diminished plasma insulin and insulin resistance. Plasma triacylglycerol and free fatty acids were also lower, while those of α-tocopherol, taurine and calcium were enhanced as compared to casein diets. Moreover, S-HF diet significantly decreased plasma glucose and HbA1C. Sardine protein consumption lowered hydroperoxide levels in perirenal and brown adipose tissues. The S-HF diet, as compared to C-HF diet decreased epididymal hydroperoxides. Feeding sardine protein diets decreased brown adipose tissue carbonyls and increased glutathione peroxidase activity. Perirenal and epididymal superoxide dismutase and catalase activities and brown catalase activity were significantly greater in S-HF group than in C-HF group. Sardine protein diets also prevented hyperleptinemia and reduced inflammatory status in comparison with rats fed casein diets. Taken together, these results support the beneficial effect of sardine protein in fructose-induced metabolic syndrome on such variables as hyperglycemia, insulin resistance, hyperlipidemia and oxidative and inflammatory status, suggesting the possible use of sardine protein as a protective

  4. A novel strategy for hemolytic uremic syndrome: successful treatment with thrombomodulin α.

    Science.gov (United States)

    Honda, Takashi; Ogata, Shohei; Mineo, Eri; Nagamori, Yukako; Nakamura, Shinya; Bando, Yuki; Ishii, Masahiro

    2013-03-01

    Hemolytic uremic syndrome (HUS) is a life-threatening infectious disease in childhood for which there is no confirmed therapeutic strategy. Endothelial inflammation leading to microthrombosis formation via complement activation is the main pathology of HUS. Thrombomodulin is an endothelial membrane protein that has anticoagulation and anti-inflammatory effects, including the suppression of complement activity. Recombinant human soluble thrombomodulin (rTM) is a novel therapeutic medicine for disseminated intravascular coagulation. We administered rTM to 3 patients with HUS for 7 days and investigated the outcomes in view of the patients' prognoses, changes in biochemical markers, complications, and adverse effects of rTM. Symptoms and laboratory data improved after initiation of rTM in all 3 patients. Abnormal activation of complements was also dramatically suppressed in 1 patient. The patients recovered without any complications or adverse effects of rTM. They were discharged having normal neurologic status and with no renal dysfunction. To our knowledge, this is the first report of rTM being used to treat HUS. These case reports show the positive effect of rTM in patients with HUS. Randomized controlled studies should be performed to assess the efficacy and safety of rTM for children with HUS.

  5. Impaired methylation as a novel mechanism for proteasome suppression in liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Osna, Natalia A., E-mail: nosna@UNMC.edu [Liver Study Unit, The Omaha Veterans Affairs VA Medical Center, Omaha, NE 68105 (United States); Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 (United States); White, Ronda L.; Donohue, Terrence M. [Liver Study Unit, The Omaha Veterans Affairs VA Medical Center, Omaha, NE 68105 (United States); Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 (United States); Beard, Michael R. [Department of Molecular Biosciences, University of Adelaide (Australia); Tuma, Dean J.; Kharbanda, Kusum K. [Liver Study Unit, The Omaha Veterans Affairs VA Medical Center, Omaha, NE 68105 (United States); Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 (United States)

    2010-01-08

    The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell and hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.

  6. Bardet-Biedl syndrome and Usher syndrome.

    Science.gov (United States)

    Koenig, Rainer

    2003-01-01

    Bardet-Biedl syndrome (BBS) and Usher syndrome (USH) are the most prevalent syndromic forms of retinitis pigmentosa (RP), together they make up almost a quarter of the patients with RP. BBS is defined by the association of retinopathy, obesity, hypogonadism, renal dysfunction, postaxial polydactyly and mental retardation. This clinically complex syndrome is genetically heterogeneous with linkage to more than 6 loci, and 4 genes have been cloned so far. Recent molecular data present evidence that, in some instances, the clinical manifestation of BBS requires recessive mutations in 1 of the 6 BBS loci plus one or two additional mutations in a second BBS locus (tri- or tetra-allelic inheritance). USH is characterized by the combination of congenital or early-onset sensorineural deafness, RP, and variable degrees of vestibular dysfunction. Each of the three clinical types is genetically heterogeneous: 7 loci have been mapped for type 1, three loci for type 2, and two loci for type 3. Currently, 6 USH genes (MYO7A, USH1C, CDH23, PCDH15, USH2A, USH3) have been identified. Pathogenetically, mutations of the USH1 genes seem to result in defects of auditory and retinal sensory cells, the USH 2 phenotype is caused by defects of extracellular matrix or cell surface receptor proteins, and USH3 may be due to synaptic disturbances. The considerable contribution of syndromic forms of RP requires interdisciplinary approaches to the clinical and diagnostic management of RP patients.

  7. Usher protein functions in hair cells and photoreceptors.

    Science.gov (United States)

    Cosgrove, Dominic; Zallocchi, Marisa

    2014-01-01

    The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Adiponectin and C - reactive protein Relationship in the Polycystic Ovary Syndrome: Relation to Cardiovascular Disease

    International Nuclear Information System (INIS)

    Shousha, M.A.; Soliman, S.

    2008-01-01

    The polycystic ovary syndrome (PCOS), one of the most common reproductive abnormalities, shares some components of the metabolic cardiovascular syndrome. Therefore, PCOS patients may represent the largest group of women at high risk for the development of early-onset cardiovascular disease (CVD) and/or diabetes. The adipokine, adiponectin inhibits vascular inflammation and acts as an endogenous modulator of obesity - linked diseases. High - sensitive C-reactive protein (hs-CRP) is recently debated as a risk factor and mediator for atherosclerosis. The objective of this study was to investigate the relation between adiponectin and hs- CRP in The Polycystic Ovary Syndrome and to identify their relation to Cardiovascular Disease. Adiponectin and hs- CRP measurements were undertaken in 90 PCOS patients and 70 body mass index-matched controls with regular menstrual cycles. Whereas 36.8% of the PCOS patients had CRP levels above 5 mg/liter, only 9.6% of the controls exhibited high CRP levels (P < 0.001). The mean ± SD was 5.46 ± 7.0 in the PCOS group vs. 2.04 ± 1.9 mg/liter in the control (P < 0.001). The body mass index, white blood cell count, TSH, glucose, cholesterol, and homocysteine levels were not significantly different between the two groups. CRP levels are elevated in patients with PCOS and may be a marker of early cardiovascular risk in these patients. The plasma adiponectin levels being significantly lower in these patients. These results suggest that elevation of CRP and reduction of adiponectin could emerge as mediators of atherogenesis and insulin resistance. (author)

  9. Identification of viral genes associated with the interferon-inducing phenotype of a synthetic porcine reproductive and respiratory syndrome virus strain.

    Science.gov (United States)

    Sun, Haiyan; Pattnaik, Asit K; Osorio, Fernando A; Vu, Hiep L X

    2016-12-01

    We recently generated a fully synthetic porcine reproductive and respiratory syndrome virus strain (designated as PRRSV-CON), which confers unprecedented levels of heterologous protection. We report herein that the synthetic PRRSV-CON possesses a unique phenotype in that it induces type-I interferons (IFNs) instead of suppressing these cytokines as most of the naturally occurring PRRSV isolates do. Through gain- and loss- of-function studies, the IFN-inducing phenotype of PRRSV-CON was mapped to the 3.3kb genomic fragment encoding three viral nonstructural proteins: nsp1α, nsp1β and the N-terminal part of nsp2. Further studies indicated that a cooperation among these 3 proteins was required for effective induction of IFNs. Collectively, this study constitutes the first step toward understanding the mechanisms by which the synthetic PRRSV-CON confers heterologous protection. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Homozygous disruption of PDZD7 by reciprocal translocation in a consanguineous family: a new member of the Usher syndrome protein interactome causing congenital hearing impairment.

    Science.gov (United States)

    Schneider, Eberhard; Märker, Tina; Daser, Angelika; Frey-Mahn, Gabriele; Beyer, Vera; Farcas, Ruxandra; Schneider-Rätzke, Brigitte; Kohlschmidt, Nicolai; Grossmann, Bärbel; Bauss, Katharina; Napiontek, Ulrike; Keilmann, Annerose; Bartsch, Oliver; Zechner, Ulrich; Wolfrum, Uwe; Haaf, Thomas

    2009-02-15

    A homozygous reciprocal translocation, 46,XY,t(10;11),t(10;11), was detected in a boy with non-syndromic congenital sensorineural hearing impairment. Both parents and their four other children were heterozygous translocation carriers, 46,XX,t(10;11) and 46,XY,t(10;11), respectively. Fluorescence in situ hybridization of region-specific clones to patient chromosomes was used to localize the breakpoints within bacterial artificial chromosome (BAC) RP11-108L7 on chromosome 10q24.3 and within BAC CTD-2527F12 on chromosome 11q23.3. Junction fragments were cloned by vector ligation and sequenced. The chromosome 10 breakpoint was identified within the PDZ domain containing 7 (PDZD7) gene, disrupting the open reading frame of transcript PDZD7-C (without PDZ domain) and the 5'-untranslated region of transcript PDZD7-D (with one PDZ and two prolin-rich domains). The chromosome 11 breakpoint was localized in an intergenic segment. Reverse transcriptase-polymerase chain reaction analysis revealed PDZD7 expression in the human inner ear. A murine Pdzd7 transcript that is most similar in structure to human PDZD7-D is known to be expressed in the adult inner ear and retina. PDZD7 shares sequence homology with the PDZ domain-containing genes, USH1C (harmonin) and DFNB31 (whirlin). Allelic mutations in harmonin and whirlin can cause both Usher syndrome (USH1C and USH2D, respectively) and congenital hearing impairment (DFNB18 and DFNB31, respectively). Protein-protein interaction assays revealed the integration of PDZD7 in the protein network related to the human Usher syndrome. Collectively, our data provide strong evidence that PDZD7 is a new autosomal-recessive deafness-causing gene and also a prime candidate gene for Usher syndrome.

  11. A Systematic Review of the Effects of Plant Compared with Animal Protein Sources on Features of Metabolic Syndrome.

    Science.gov (United States)

    Chalvon-Demersay, Tristan; Azzout-Marniche, Dalila; Arfsten, Judith; Egli, Léonie; Gaudichon, Claire; Karagounis, Leonidas G; Tomé, Daniel

    2017-03-01

    Dietary protein may play an important role in the prevention of metabolic dysfunctions. However, the way in which the protein source affects these dysfunctions has not been clearly established. The aim of the current systematic review was to compare the impact of plant- and animal-sourced dietary proteins on several features of metabolic syndrome in humans. The PubMed database was searched for both chronic and acute interventional studies, as well as observational studies, in healthy humans or those with metabolic dysfunctions, in which the impact of animal and plant protein intake was compared while using the following variables: cholesterolemia and triglyceridemia, blood pressure, glucose homeostasis, and body composition. Based on data extraction, we observed that soy protein consumption (with isoflavones), but not soy protein alone (without isoflavones) or other plant proteins (pea and lupine proteins, wheat gluten), leads to a 3% greater decrease in both total and LDL cholesterol compared with animal-sourced protein ingestion, especially in individuals with high fasting cholesterol concentrations. This observation was made when animal proteins were provided as a whole diet rather than given supplementally. Some observational studies reported an inverse association between plant protein intake and systolic and diastolic blood pressure, but this was not confirmed by intervention studies. Moreover, plant protein (wheat gluten, soy protein) intake as part of a mixed meal resulted in a lower postprandial insulin response than did whey. This systematic review provides some evidence that the intake of soy protein associated with isoflavones may prevent the onset of risk factors associated with cardiovascular disease, i.e., hypercholesterolemia and hypertension, in humans. However, we were not able to draw any further conclusions from the present work on the positive effects of plant proteins relating to glucose homeostasis and body composition. © 2017 American

  12. Hydroxysafflor yellow A suppress oleic acid-induced acute lung injury via protein kinase A

    International Nuclear Information System (INIS)

    Wang, Chaoyun; Huang, Qingxian; Wang, Chunhua; Zhu, Xiaoxi; Duan, Yunfeng; Yuan, Shuai; Bai, Xianyong

    2013-01-01

    Inflammation response and oxidative stress play important roles in acute lung injury (ALI). Activation of the cAMP/protein kinase A (PKA) signaling pathway may attenuate ALI by suppressing immune responses and inhibiting the generation of reactive oxygen species (ROS). Hydroxysafflor yellow A (HSYA) is a natural flavonoid compound that reduces oxidative stress and inflammatory cytokine-mediated damage. In this study, we examined whether HSYA could protect the lungs from oleic acid (OA)-induced injury, which was used to mimic ALI, and determined the role of the cAMP/PKA signaling pathway in this process. Arterial oxygen tension (PaO 2 ), carbon dioxide tension, pH, and the PaO 2 /fraction of inspired oxygen ratio in the blood were detected using a blood gas analyzer. We measured wet/dry lung weight ratio and evaluated tissue morphology. The protein and inflammatory cytokine levels in the bronchoalveolar lavage fluid and serum were determined using enzyme-linked immunoassay. The activities of superoxide dismutase, glutathione peroxidase, PKA, and nicotinamide adenine dinucleotide phosphate oxidase, and the concentrations of cAMP and malondialdehyde in the lung tissue were detected using assay kits. Bcl-2, Bax, caspase 3, and p22 phox levels in the lung tissue were analyzed using Western blotting. OA increased the inflammatory cytokine and ROS levels and caused lung dysfunction by decreasing cAMP synthesis, inhibiting PKA activity, stimulating caspase 3, and reducing the Bcl-2/Bax ratio. H-89 increased these effects. HSYA significantly increased the activities of antioxidant enzymes, inhibited the inflammatory response via cAMP/PKA pathway activation, and attenuated OA-induced lung injury. Our results show that the cAMP/PKA signaling pathway is required for the protective effect of HSYA against ALI. - Highlights: • Oleic acid (OA) cause acute lung injury (ALI) via inhibiting cAMP/PKA signal pathway. • Blocking protein kinase A (PKA) activation may enhance Cytokine

  13. Mapping of the gene encoding the. beta. -amyloid precursor protein and its relationship to the Down syndrome region of chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, D.; Gardiner, K.; Kao, F.T.; Tanzi, R.; Watkins, P.; Gusella, J.F. (Eleanor Roosevelt Institute for Cancer Research, Denver, CO (USA))

    1988-11-01

    The gene encoding the {beta}-amyloid precursor protein has been assigned to human chromosome 21, as has a gene responsible for at least some cases of familial Alzheimer disease. Linkage studies strongly suggest that the {beta}-amyloid precursor protein and the product corresponding to familial Alzheimer disease are from two genes, or at least that several million base pairs of DNA separate the markers. The precise location of the {beta}-amyloid precursor protein gene on chromosome 21 has not yet been determined. Here the authors show, by using a somatic-cell/hybrid-cell mapping panel, in situ hybridization, and transverse-alternating-field electrophoresis, that the {beta}-amyloid precursor protein gene is located on chromosome 21 very near the 21q21/21q/22 border and probably within the region of chromosome 21 that, when trisomic, results in Down syndrome.

  14. Peptides Derived from Type IV Collagen, CXC Chemokines, and Thrombospondin-1 Domain-Containing Proteins Inhibit Neovascularization and Suppress Tumor Growth in MDA-MB-231 Breast Cancer Xenografts

    Directory of Open Access Journals (Sweden)

    Jacob E. Koskimaki

    2009-12-01

    Full Text Available Angiogenesis or neovascularization, the process of new blood vessel formation from preexisting microvasculature, involves interactions among several cell types including parenchymal, endothelial cells, and immune cells. The formation of new vessels is tightly regulated by a balance between endogenous proangiogenic and antiangiogenic factors to maintain homeostasis in tissue; tumor progression and metastasis in breast cancer have been shown to be angiogenesis-dependent. We previously introduced a systematic methodology to identify putative endogenous antiangiogenic peptides and validated these predictions in vitro in human umbilical vein endothelial cell proliferation and migration assays. These peptides are derived from several protein families including type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins. On the basis of the results from the in vitro screening, we have evaluated the ability of one peptide selected from each family named pentastatin-1, chemokinostatin-1, and properdistatin, respectively, to suppress angiogenesis in an MDA-MB-231 human breast cancer orthotopic xenograft model in severe combined immunodeficient mice. Peptides were administered intraperitoneally once per day. We have demonstrated significant suppression of tumor growth in vivo and subsequent reductions in microvascular density, indicating the potential of these peptides as therapeutic agents for breast cancer.

  15. A Case Report of Proteinuria with Sjogren's Syndrome

    Directory of Open Access Journals (Sweden)

    Jong-jin Jeong

    2008-12-01

    Full Text Available Objective : Sjogren's Syndrome is a chronic inflamatory disorder characterized by lymphocytic infiltration of lacrimal and salivary gland. It may be associated with renal disease such as tubulonephritis or glomerulonephritis. Proteinuria is a kidney disorder resulting in an abnormally high amount of protein in the urine. When the glomeruli are damaged, proteins of various sizes pass through them and are excreted in the urine. This report is a case of proteinuria with Sjogren's Syndrome. Methods : The patient was diagnosed as kidney yang deficiency syndrome and treated with Woogyu-eum, Sa-am acupuncture therapy and bee venom acupuncture therapy. Visual Analog Scale was used to estimate the clinical symptoms. Results : Clinical symptoms and proteinuria were improved without steroid therapy. Conclusion Therefore, we concluded that oriental medical therapy may be useful to treat proteinuria with Sjogren's Syndrome.

  16. Long term management of patients with cryopyrin-associated periodic syndromes (CAPS): focus on rilonacept (IL-1 Trap).

    Science.gov (United States)

    Church, Leigh D; Savic, Sinisa; McDermott, Michael F

    2008-12-01

    Cryopyrin-associated periodic syndromes (CAPS) are a group of inherited inflammatory disorders consisting of familial cold-induced autoinflammatory syndrome (FCAS), Muckle-Wells syndrome (MWS), and neonatal-onset multisystem inflammatory disease (NOMID; also known as chronic infantile neurologic, cutaneous, articular [CINCA] syndrome). These rare disorders are associated with heterozygous mutations in the NLRP3 (CIAS1) gene, which encodes the protein NALP3 or cryopyrin, and inflammation driven by excessive production of the cytokine interleukin-1beta (IL-1beta). Amyloidosis is a serious complication with 25% of MWS patients developing amyloidosis, with occasional fatal consequences, whilst up to 20% of CINCA/NOMID patients die from various complications, before reaching the early adulthood. In some CINCA/NOMID adult survivors amyloidosis can also occur. Prior to the discovery of the CIAS1 gene mutations and the advent of IL-1 targeted therapy, treatment was aimed at suppressing inflammation, with limited success. The selective blockade of IL-1beta, with anakinra (IL-1 receptor antagonist), not only provided supportive evidence for the role of IL-1beta in CAPS, but also demonstrated the efficacy of targeting IL-1beta for treatment of these conditions. In February, 2008, 'Orphan Drug' approval from the Food and Drug Administration (FDA) for rilonacept (IL-1 Trap/Arcalyst(), Regeneron Pharmaceuticals, Inc) was given for the treatment of two CAPS disorders, FCAS and MWS in adults and children 12 years and older, making rilonacept the first therapy approved for the treatment of CAPS.

  17. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation

    Energy Technology Data Exchange (ETDEWEB)

    Morooka, Nobukatsu, E-mail: amorooka@gunma-u.ac.jp [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Ueguri, Kei [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Yee, Karen Kar Lye [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Human Resources Cultivation Center, Gunma University, 1-5-1 Tenjin-cho, Kiryushi, Gunma, 376-8515 (Japan); Yanase, Toshihiko [Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka, 814-0180 (Japan); Sato, Takashi [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan)

    2016-09-02

    Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatory macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue. - Highlights: • DHT, non-aromatizable androgen suppresses Mcp-1 expression in adipocytes. • Mcp-1 transcription was negatively regulated by DHT-AR action. • DHT-AR selectively regulates Mcp-1 transcription through distinct NF-κB sites.

  18. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation

    International Nuclear Information System (INIS)

    Morooka, Nobukatsu; Ueguri, Kei; Yee, Karen Kar Lye; Yanase, Toshihiko; Sato, Takashi

    2016-01-01

    Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatory macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue. - Highlights: • DHT, non-aromatizable androgen suppresses Mcp-1 expression in adipocytes. • Mcp-1 transcription was negatively regulated by DHT-AR action. • DHT-AR selectively regulates Mcp-1 transcription through distinct NF-κB sites.

  19. Properties of a mutant recA-encoded protein reveal a possible role for Escherichia coli recF-encoded protein in genetic recombination

    International Nuclear Information System (INIS)

    Madiraju, M.V.; Templin, A.; Clark, A.J.

    1988-01-01

    A mutation partially suppressing the UV sensitivity caused by recF143 in a uvrA6 background was located at codon 37 of recA where GTG (valine) became ATG (methionine). This mutation, originally named srf-803, was renamed recA803. Little if any suppression of the recF143 defect in UV induction of a lexA regulon promoter was detected. This led to the hypothesis that a defect in recombination repair of UV damage was suppressed by recA803. The mutant RecA protein (RecA803) was purified and compared with wild-type protein (RecA+) as a catalyst of formation of joint molecules. Under suboptimal conditions, RecA803 produces both a higher rate of formation and a higher yield of joint molecules. The suboptimal conditions tested included addition of single-stranded DNA binding protein to single-stranded DNA prior to addition of RecA. We hypothesize that the ability of RecA803 to overcome interference by single-stranded DNA binding protein is the property that allows recA803 to suppress partially the deficiency in repair caused by recF mutations in the uvrA6 background. Implications of this hypothesis for the function of RecF protein in recombination are discussed

  20. Aberrant expression of glucagon receptors in adrenal glands of a patient with Cushing's syndrome and ACTH-independent macronodular adrenal hyperplasia

    Directory of Open Access Journals (Sweden)

    Valeria de Miguel

    2010-06-01

    Full Text Available Adrenocorticotropin (ACTH independent bilateral macronodular adrenal hyperplasia (AIMAH is a rare cause of Cushing´s syndrome, characterized by bilateral adrenal lesions and excess cortisol production despite ACTH suppression. Cortisol synthesis is produced in response to abnormal activation of G-protein- coupled receptors, such as gastric inhibitory peptide, vasopressin, beta adrenergic agonists, LH/hCG and serotonin receptors. The aim of this study was to analyze the expression of glucagon receptors in adrenal glands from an AIMAH patient. A patient with ACTH-independent Cushing´s syndrome and bilateral macronodular adrenal hyperplasia was screened for altered activation of adrenal receptors by physiological (mixed meal and pharmacological (gonadotrophin releasing hormone, ACTH and glucagon tests. The results showed abnormally high levels of serum cortisol after stimulation with glucagon. Hypercortisolism was successfully managed with ketoconazole treatment. Interestingly, a 4-month treatment with a somatostatin analogue (octreotide was also able to reduce cortisol secretion. Finally, Cushing's syndrome was cured after bilateral adrenalectomy. Abnormal mRNA expression for glucagon receptor in the patient´s adrenal glands was observed by Real-Time PCR procedure. These results strongly suggest that the mechanism of AIMAH causing Cushing´s syndrome in this case involves the illicit activation of adrenal glucagon receptors. This is the first case reported of AIMAH associated with ectopic glucagon receptors.

  1. Adrenal incidentaloma: A case of pheochromocytoma with sub-clinical Cushing′s syndrome

    Directory of Open Access Journals (Sweden)

    Ashutosh Goyal

    2013-01-01

    Full Text Available Adrenal incidentalomas (AIs are a cluster of different pathologies, but AIs with dual functional aspects are very rare. We report a case of AI with the evidence of both pheochromocytoma and sub-clinical Cushing′s syndrome. A 42-year-old female patient presented with the history of abdominal pain. Abdominal computed tomography revealed right adrenal mass suggestive of pheochromocytoma. On endocrine evaluation, she admitted history of intermittent headache and palpitations for 4 years and was on treatment for hypertension and diabetes. There were no signs and symptoms suggestive of Cushing′s syndrome. The laboratory data demonstrated 10 times raised 24-h urinary fractionated metanephrines with non-suppressible serum cortisol after 2-day low-dose dexamethasone suppression test. She underwent right-sided adrenalectomy with subsequent resolution of both pheochromocytoma and hypercortisolism. Patient was discharged in good clinical condition.

  2. Heart type fatty acid binding protein response and subsequent development of atherosclerosis in insulin resistant polycystic ovary syndrome patients

    OpenAIRE

    Cakir Evrim; Ozbek Mustafa; Sahin Mustafa; Cakal Erman; Gungunes Askin; Ginis Zeynep; Demirci Taner; Delibasi Tuncay

    2012-01-01

    Abstract Background Women with polycystic ovary syndrome (PCOS) have higher risk for cardiovascular disease (CVD). Heart type fatty acid binding protein (HFABP) has been found to be predictive for myocardial ischemia.Wet ested whether HFABP is the predictor for CVD in PCOS patients, who have an increased risk of cardiovascular disease. Methods This was a prospective, cross sectional controlled study conducted in a training and research hospital.The study population consisted of 46 reproductiv...

  3. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    International Nuclear Information System (INIS)

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko; Dohi, Makoto

    2014-01-01

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4 + T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4 + T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects

  4. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    International Nuclear Information System (INIS)

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu

    2007-01-01

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-κB activation and nuclear translocation in an IκBα-dependent manner. The inhibitory effects were associated with reduction of inhibitor IκB kinase activity and stabilization of the NF-κB inhibitor IκB. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations

  5. Brief Communication: Maternal Plasma Autoantibodies Screening in Fetal Down Syndrome

    Directory of Open Access Journals (Sweden)

    Karol Charkiewicz

    2016-01-01

    Full Text Available Imbalance in the metabolites levels which can potentially be related to certain fetal chromosomal abnormalities can stimulate mother’s immune response to produce autoantibodies directed against proteins. The aim of the study was to determine the concentration of 9000 autoantibodies in maternal plasma to detect fetal Down syndrome. Method. We performed 190 amniocenteses and found 10 patients with confirmed fetal Down syndrome (15th–18th weeks of gestation. For the purpose of our control we chose 11 women without confirmed chromosomal aberration. To assess the expression of autoantibodies in the blood plasma, we used a protein microarray, which allows for simultaneous determination of 9000 proteins per sample. Results. We revealed 213 statistically significant autoantibodies, whose expression decreased or increased in the study group with fetal Down syndrome. The second step was to create a classifier of Down syndrome pregnancy, which includes 14 antibodies. The predictive value of the classifier (specificity and sensitivity is 100%, classification errors, 0%, cross-validation errors, 0%. Conclusion. Our findings suggest that the autoantibodies may play a role in the pathophysiology of Down syndrome pregnancy. Defining their potential as biochemical markers of Down syndrome pregnancy requires further investigation on larger group of patients.

  6. Weight Suppression Predicts Bulimic Symptoms at 20-year Follow-up: The Mediating Role of Drive for Thinness

    Science.gov (United States)

    Bodell, Lindsay P.; Brown, Tiffany A.; Keel, Pamela K.

    2016-01-01

    Weight suppression predicts the onset and maintenance of bulimic syndromes. Despite this finding, no study has examined psychological mechanisms contributing to these associations using a longitudinal design. Given societal pressures to be thin and an actual history of higher weight, it is possible that greater weight suppression contributes to increased fear of gaining weight and preoccupation with being thin, which increase vulnerability to eating disorders. The present study investigated whether greater drive for thinness mediates associations between weight suppression and bulimic symptoms over long-term follow-up. Participants were women (n = 1190) and men (n = 509) who completed self-report surveys in college and 10- and 20- years later. Higher weight suppression at baseline predicted higher bulimic symptoms at 20-year follow-up (p symptoms, body mass index, and drive for thinness. Increased drive for thinness at 10-year follow-up mediated this effect. Findings highlight the long-lasting effect of weight suppression on bulimic symptoms and suggest that preoccupation with thinness may help maintain this association. Future studies would benefit from incorporating other hypothesized consequences of weight suppression, including biological factors, into risk models. PMID:27808544

  7. Hsp104 suppresses polyglutamine-induced degeneration post onset in a drosophila MJD/SCA3 model.

    Directory of Open Access Journals (Sweden)

    Mimi Cushman-Nick

    Full Text Available There are no effective therapeutics that antagonize or reverse the protein-misfolding events underpinning polyglutamine (PolyQ disorders, including Spinocerebellar Ataxia Type-3 (SCA3. Here, we augment the proteostasis network of Drosophila SCA3 models with Hsp104, a powerful protein disaggregase from yeast, which is bafflingly absent from metazoa. Hsp104 suppressed eye degeneration caused by a C-terminal ataxin-3 (MJD fragment containing the pathogenic expanded PolyQ tract, but unexpectedly enhanced aggregation and toxicity of full-length pathogenic MJD. Hsp104 suppressed toxicity of MJD variants lacking a portion of the N-terminal deubiquitylase domain and full-length MJD variants unable to engage polyubiquitin, indicating that MJD-ubiquitin interactions hinder protective Hsp104 modalities. Importantly, in staging experiments, Hsp104 suppressed toxicity of a C-terminal MJD fragment when expressed after the onset of PolyQ-induced degeneration, whereas Hsp70 was ineffective. Thus, we establish the first disaggregase or chaperone treatment administered after the onset of pathogenic protein-induced degeneration that mitigates disease progression.

  8. A proteomic analysis identifies candidate early biomarkers to predict ovarian hyperstimulation syndrome in polycystic ovarian syndrome patients.

    Science.gov (United States)

    Wu, Lan; Sun, Yazhou; Wan, Jun; Luan, Ting; Cheng, Qing; Tan, Yong

    2017-07-01

    Ovarian hyperstimulation syndrome (OHSS) is a potentially life‑threatening, iatrogenic complication that occurs during assisted reproduction. Polycystic ovarian syndrome (PCOS) significantly increases the risk of OHSS during controlled ovarian stimulation. Therefore, a more effective early prediction technique is required in PCOS patients. Quantitative proteomic analysis of serum proteins indicates the potential diagnostic value for disease. In the present study, the authors revealed the differentially expressed proteins in OHSS patients with PCOS as new diagnostic biomarkers. The promising proteins obtained from liquid chromatography‑mass spectrometry were subjected to ELISA and western blotting assay for further confirmation. A total of 57 proteins were identified with significant difference, of which 29 proteins were upregulated and 28 proteins were downregulated in OHSS patients. Haptoglobin, fibrinogen and lipoprotein lipase were selected as candidate biomarkers. Receiver operating characteristic curve analysis demonstrated all three proteins may have potential as biomarkers to discriminate OHSS in PCOS patients. Haptoglobin, fibrinogen and lipoprotein lipase have never been reported as a predictive marker of OHSS in PCOS patients, and their potential roles in OHSS occurrence deserve further studies. The proteomic results reported in the present study may gain deeper insights into the pathophysiology of OHSS.

  9. Fanconi syndrome due to prolonged use of low-dose adefovir

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Wang

    2015-01-01

    Full Text Available Fanconi syndrome results from a generalized abnormality of the proximal tubules of the kidney and owing to phosphate depletion can cause hypophosphatemic osteomalacia. Adefovir dipivoxyl (ADV effectively suppresses hepatitis B virus replication but exhibits nephrotoxicity when administered at a low dosage. We report two cases of Fanconi syndrome induced by ADV at 10 mg/day to call for regular screening for evidence of proximal tubular dysfunction and detailed bone metabolic investigations for prompt detection of ADV nephrotoxicity is critically important to ensure timely drug withdrawal before the development of irreversible tubulointerstitial injury.

  10. Self-reported emotion regulation in adults with Tourette's syndrome.

    Science.gov (United States)

    Drury, Helena; Wilkinson, Verity; Robertson, Mary M; Channon, Shelley

    2016-11-30

    Recent work has reported mild impairments in social and emotional processing in Tourette's syndrome (TS), but deliberate attempts to use specific emotion regulation strategies have not been investigated previously. In the present study, adult participants with TS and no comorbidities (TS-alone) were compared to healthy control participants on several self-report measures assessing habitual use of reappraisal and suppression emotion regulation strategies. There were no group differences on measures of reappraisal, but the TS-alone group reported using suppression more frequently than the control group and this was true across a range of negative emotions. The groups did not differ on symptomatology scores of anxiety or depression, although more frequent use of suppression was associated with higher depressive symptomatology for the TS-alone group only. Further work is needed to examine potential factors that may influence emotion regulation in TS, including increased emotional reactivity or expertise in applying strategies to suppress tic symptoms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Understanding protein–protein interactions by genetic suppression

    Indian Academy of Sciences (India)

    Unknown

    Protein–protein interactions influence many cellular processes and it is increasingly being felt that even a weak and ... In a bacterial system where the complete genome sequence is available, it is an arduous ... teins (primary mutations) are useful in these studies. ... of interaction of this antibiotic with the central enzyme.

  12. Current Peptide and Protein Candidates Challenging HIV Therapy beyond the Vaccine Era

    Directory of Open Access Journals (Sweden)

    Koollawat Chupradit

    2017-09-01

    Full Text Available Human immunodeficiency virus (HIV is a causative agent of acquired immune deficiency syndrome (AIDS. Highly active antiretroviral therapy (HAART can slow down the replication of HIV-1, leading to an improvement in the survival of HIV-1-infected patients. However, drug toxicities and poor drug administration has led to the emergence of a drug-resistant strain. HIV-1 immunotherapy has been continuously developed, but antibody therapy and HIV vaccines take time to improve its efficiency and have limitations. HIV-1-specific chimeric antigen receptor (CAR-based immunotherapy founded on neutralizing antibodies is now being developed. In HIV-1 therapy, anti-HIV chimeric antigen receptors showed promising data in the suppression of HIV-1 replication; however, autologous transfusion is still a problem. This has led to the development of effective peptides and proteins for an alternative HIV-1 treatment. In this paper, we provide a comprehensive review of potent anti-HIV-1 peptides and proteins that reveal promising therapeutic activities. The inhibitory mechanisms of each therapeutic molecule in the different stages of the HIV-1 life cycle will be discussed herein.

  13. Neutralization of White Spot Syndrome Virus by Monoclonal Antibodies against Viral Envelope Proteins

    Directory of Open Access Journals (Sweden)

    Hsiu-Hui Shih

    2004-09-01

    Full Text Available Two monoclonal antibodies (MAbs recognizing envelope proteins of the white spot syndrome virus (WSSV, 6E1 against VP28 and 3E8 against VP19, were applied to demonstrate their neutralizing ability to this virus by using both in vitro and in vivo assays. Mixtures of MAb 6E1 with virus filtrate were inoculated into the primary explant monolayer culture derived from the lymphoid Oka organs of Penaeus monodon. Mab was likely to neutralize the infectivity of virus to monolayer since cytopathic effects were apparently blocked in experiment group. WSSV was titrated using Blue-Cell ELISA and the neutralizing index was calculated to be 6.90 for 6EI and 5.83 for 3E8. Neutralized virus fluids injected intramuscularly into post larvae of P. monodon. The shrimp in the positive control, which were injected with WSSV only showed an increasing mortality and a 100% mortality was reached at day 34, whereas no shrimp died in the negative control. The mortality for 6E1 was 6.7% and for 3E8 was 13.3%. These results suggest that Mabs recognizing the WSSV envelope proteins could neutralize viral infectivity to both cultured cells and shrimp.

  14. Saliva C-reactive protein as a biomarker of metabolic syndrome in diabetic patients.

    Science.gov (United States)

    Dezayee, Zhian Mahmood Ibrahim; Al-Nimer, Marwan Salih Mohamad

    2016-01-01

    Human C-reactive protein (CRP) has been used in the risk assessment of coronary events. Human saliva mirrors the body's health and well-being and is noninvasive, easy to collect, and ideal for third-world countries as well as for large patient screening. This study aimed to screen the saliva CRP qualitatively in patients with diabetes (Type 1 and 2) taking in considerations, the diagnostic criteria of metabolic syndrome. Center for diabetes mellitus, prospective study. A total number of 50 Type 2 diabetes (T2D) patients, 25 Type 1 diabetes (T1D) patients, and 25 healthy subjects were recruited from the center for diabetes mellitus. Each patient was assessed clinically, and the anthropometric measures, glycemic status, and lipid profiles were determined. Stimulated salivary flow rate and saliva CRP were determined. All calculations analysis was made using Excel 2003 program for Windows. The results showed that the salivary flow rate in T1D was less than healthy subjects and T2D and CRP was found positive (6 mg/L) in 36% and 56% of patients with T1D and T2D, respectively. Saliva CRP was found to be related to the anthropometric measurement, blood pressure, and glycemic control. We conclude that saliva CRP may be used as a biomarker for metabolic syndrome and its value is obvious in T2D rather than in T1D.

  15. [Epigenome: what we learned from Rett syndrome, a neurological disease caused by mutation of a methyl-CpG binding protein].

    Science.gov (United States)

    Kubota, Takeo

    2013-01-01

    Epigenome is defined as DNA and histone modification-dependent gene regulation system. Abnormalities in this system are known to cause various neuro-developmental diseases. We recently reported that neurological symptoms of Rett syndrome, which is an autistic disorder caused by mutations in methyl-CpG binding protein 2 (MeCP2), was associated with failure of epigenomic gene regulation in neuronal cells, and that clinical differences in the identical twins with Rett syndrome in the differences in DNA methylation in neuronal genes, but not caused by DNA sequence differences. Since central nervus system requires precise gene regulation, neurological diseases including Alzheimer and Parkinson diseases may be caused by acquired DNA modification (epigenomic) changes that results in aberrant gene regulation as well as DNA sequence changes congenitally occurred (mutation).

  16. Bartter syndrome prenatal diagnosis based on amniotic fluid biochemical analysis.

    Science.gov (United States)

    Garnier, Arnaud; Dreux, Sophie; Vargas-Poussou, Rosa; Oury, Jean-François; Benachi, Alexandra; Deschênes, Georges; Muller, Françoise

    2010-03-01

    Bartter syndrome is an autosomic recessive disease characterized by severe polyuria and sodium renal loss. The responsible genes encode proteins involved in electrolyte tubular reabsorption. Prenatal manifestations, mainly recurrent polyhydramnios because of fetal polyuria, lead to premature delivery. After birth, polyuria leads to life-threatening dehydration. Prenatal genetic diagnosis needs an index case. The aim of this study was to analyze amniotic fluid biochemistry for the prediction of Bartter syndrome. We retrospectively studied 16 amniotic fluids of Bartter syndrome-affected fetuses diagnosed after birth, only six of them being genetically proven. We assayed total proteins, alpha-fetoprotein, and electrolytes and defined a Bartter index corresponding to the multiplication of total protein and of alpha-fetoprotein. Results were compared with two control groups matched for gestational age-non-Bartter polyhydramnios (n = 30) and nonpolyhydramnios (n = 60). In Bartter syndrome, we observed significant differences (p Bartter index (0.16, 0.82, and 1.0, respectively). No statistical difference was observed for electrolytes. In conclusion, Bartter syndrome can be prenatally suspected on amniotic fluid biochemistry (sensitivity 93% and specificity 100%), allowing appropriate management before and after birth.

  17. The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-β antagonizing mechanism: attenuation of PACT-mediated RIG-I/ MDA5 activation.

    Science.gov (United States)

    Ding, Zhen; Fang, Liurong; Yuan, Shuangling; Zhao, Ling; Wang, Xunlei; Long, Siwen; Wang, Mohan; Wang, Dang; Foda, Mohamed Frahat; Xiao, Shaobo

    2017-07-25

    Coronaviruses (CoVs) are a huge threat to both humans and animals and have evolved elaborate mechanisms to antagonize interferons (IFNs). Nucleocapsid (N) protein is the most abundant viral protein in CoV-infected cells, and has been identified as an innate immunity antagonist in several CoVs, including mouse hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV. However, the underlying molecular mechanism(s) remain unclear. In this study, we found that MHV N protein inhibited Sendai virus and poly(I:C)-induced IFN-β production by targeting a molecule upstream of retinoic acid-induced gene I (RIG-I) and melanoma differentiation gene 5 (MDA5). Further studies showed that both MHV and SARS-CoV N proteins directly interacted with protein activator of protein kinase R (PACT), a cellular dsRNA-binding protein that can bind to RIG-I and MDA5 to activate IFN production. The N-PACT interaction sequestered the association of PACT and RIG-I/MDA5, which in turn inhibited IFN-β production. However, the N proteins from porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV), which are also classified in the order Nidovirales, did not interact and counteract with PACT. Taken together, our present study confirms that both MHV and SARS-CoV N proteins can perturb the function of cellular PACT to circumvent the innate antiviral response. However, this strategy does not appear to be used by all CoVs N proteins.

  18. Olopatadine Suppresses the Migration of THP-1 Monocytes Induced by S100A12 Protein

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Olopatadine hydrochloride (olopatadine is an antiallergic drug with histamine H 1 receptor antagonistic activity. Recently, olopatadine has been shown to bind to S100A12 which is a member of the S100 family of calcium-binding proteins, and exerts multiple proinflammatory activities including chemotaxis for monocytes and neutrophils. In this study, we examined the possibility that the interaction of olopatadine with S100A12 inhibits the proinflammatory effects of S100A12. Pretreatment of olopatadine with S100A12 reduced migration of THP-1, a monocyte cell line, induced by S100A12 alone, but did not affect recombinant human regulated upon activation, normal T cell expressed and secreted (RANTES-induced migration. Amlexanox, which also binds to S100A12, inhibited the THP-1 migration induced by S100A12. However, ketotifen, another histamine H 1 receptor antagonist, had little effect on the activity of S100A12. These results suggest that olopatadine has a new mechanism of action, that is, suppression of the function of S100A12, in addition to histamine H 1 receptor antagonistic activity.

  19. Erdosteine protects HEI-OC1 auditory cells from cisplatin toxicity through suppression of inflammatory cytokines and induction of Nrf2 target proteins

    International Nuclear Information System (INIS)

    Kim, Se-Jin; Park, Channy; Lee, Joon No; Lim, Hyewon; Hong, Gi-yeon; Moon, Sung K.; Lim, David J.; Choe, Seong-Kyu; Park, Raekil

    2015-01-01

    Cisplatin has many adverse effects, which are a major limitation to its use, including ototoxicity, neurotoxicity, and nephrotoxicity. This study aims to elucidate the protective mechanisms of erdosteine against cisplatin in HEI-OC1 cells. Pretreatment with erdosteine protects HEI-OC1 cells from cisplatin-medicated apoptosis, which is characterized by increase in nuclear fragmentation, DNA laddering, sub-G 0 /G 1 phase, H2AX phosphorylation, PARP cleavage, and caspase-3 activity. Erdosteine significantly suppressed the production of reactive nitrogen/oxygen species and pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in cisplatin-treated cells. Studies using pharmacologic inhibitors demonstrated that phosphatidylinositol-3-kinases (PI3K) and protein kinase B (Akt) have protective roles in the action of erdosteine against cisplatin in HEI-OC1 cells. In addition, pretreatment with erdosteine clearly suppressed the phosphorylation of p53 (Ser15) and expression of p53-upregulated modulator of apoptosis. Erdosteine markedly induces expression of NF-E2-related factor 2 (Nrf2), which may contribute to the increase in expression of glutathione redox genes γ-L-glutamate-L-cysteine-ligase catalytic and γ-L-glutamate-L-cysteine-ligase modifier subunits, as well as in the antioxidant genes HO-1 and SOD2 in cisplatin-treated HEI-OC1 cells. Furthermore, the increase in expression of phosphorylated p53 induced by cisplatin is markedly attenuated by pretreatment with erdosteine in the mitochondrial fraction. This increased expression may inhibit the cytosolic expression of the apoptosis-inducing factor, cytochrome c, and Bax/Bcl-xL ratio. Thus, our results suggest that treatment with erdosteine is significantly attenuated cisplatin-induced damage through the activation of Nrf2-dependent antioxidant genes, inhibition of pro-inflammatory cytokines, activation of the PI3K/Akt signaling, and mitochondrial-related inhibition of pro

  20. Bifurcations in the interplay of messenger RNA, protein and nonprotein coding RNA

    International Nuclear Information System (INIS)

    Zhdanov, Vladimir P

    2008-01-01

    The interplay of messenger RNA (mRNA), protein, produced via translation of this RNA, and nonprotein coding RNA (ncRNA) may include regulation of the ncRNA production by protein and (i) ncRNA-protein association resulting in suppression of the protein regulatory activity or (ii) ncRNA-mRNA association resulting in degradation of the miRNA-mRNA complex. The kinetic models describing these two scenarios are found to predict bistability provided that protein suppresses the ncRNA formation

  1. Macrophage Immune Response Suppression by Recombinant Mycobacterium tuberculosis Antigens, the ESAT-6, CFP-10, and ESAT-6/CFP-10 Fusion Proteins

    Science.gov (United States)

    Seghatoleslam, Atefeh; Hemmati, Mina; Ebadat, Saeedeh; Movahedi, Bahram; Mostafavi-Pour, Zohreh

    2016-01-01

    Background: Macrophage immune responses are affected by the secretory proteins of Mycobacterium tuberculosis (Mtb). This study aimed to examine the immune responses of macrophages to Mtb secretory antigens, namely ESAT-6, CFP-10, and ESAT-6/CFP-10. Methods: THP-1 cells (a human monocytic cell line) were cultured and differentiated to macrophages by phorbol 12-myristate 13-acetate. The cytotoxicity of the recombinant Mtb proteins was assessed using the MTT assay. Two important immune responses of macrophages, namely NO and ROS production, were measured in response to the ESAT-6, CFP-10, and ESAT-6/CFP-10 antigens. The data were analyzed using one-way ANOVA with SPSS, version 16, and considered significant at Pproteins markedly reduced macrophage immune response. The treatment of the THP-1-differentiated cells with ESAT-6, CFP-10, and ESAT-6/CFP-10 reduced NO and ROS production. The treated THP-1-differentiated cells exhibited less inducible NO synthase activity than did the untreated cells. No toxic effect on macrophage viability was observed for the applied proteins at the different concentrations. Conclusion: It seems that the decline in macrophage immune response is due to the suppression of NO and ROS production pathways without any effect on cell viability. PMID:27365551

  2. The effect of modifying dietary protein and carbohydrate in weight loss on arterial compliance and postprandial lipidemia in overweight women with polycystic ovary syndrome.

    Science.gov (United States)

    Moran, Lisa J; Noakes, Manny; Clifton, Peter M; Norman, Robert J

    2010-11-01

    In overweight women with polycystic ovary syndrome, weight loss improves arterial compliance and postprandial lipidemia. Modifying dietary carbohydrate or protein in weight loss provided similar improvements in arterial compliance and postprandial lipidemia. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants.

    Science.gov (United States)

    Postma, Wiebe J; Slootweg, Erik J; Rehman, Sajid; Finkers-Tomczak, Anna; Tytgat, Tom O G; van Gelderen, Kasper; Lozano-Torres, Jose L; Roosien, Jan; Pomp, Rikus; van Schaik, Casper; Bakker, Jaap; Goverse, Aska; Smant, Geert

    2012-10-01

    The potato cyst nematode Globodera rostochiensis invades roots of host plants where it transforms cells near the vascular cylinder into a permanent feeding site. The host cell modifications are most likely induced by a complex mixture of proteins in the stylet secretions of the nematodes. Resistance to nematodes conferred by nucleotide-binding-leucine-rich repeat (NB-LRR) proteins usually results in a programmed cell death in and around the feeding site, and is most likely triggered by the recognition of effectors in stylet secretions. However, the actual role of these secretions in the activation and suppression of effector-triggered immunity is largely unknown. Here we demonstrate that the effector SPRYSEC-19 of G. rostochiensis physically associates in planta with the LRR domain of a member of the SW5 resistance gene cluster in tomato (Lycopersicon esculentum). Unexpectedly, this interaction did not trigger defense-related programmed cell death and resistance to G. rostochiensis. By contrast, agroinfiltration assays showed that the coexpression of SPRYSEC-19 in leaves of Nicotiana benthamiana suppresses programmed cell death mediated by several coiled-coil (CC)-NB-LRR immune receptors. Furthermore, SPRYSEC-19 abrogated resistance to Potato virus X mediated by the CC-NB-LRR resistance protein Rx1, and resistance to Verticillium dahliae mediated by an unidentified resistance in potato (Solanum tuberosum). The suppression of cell death and disease resistance did not require a physical association of SPRYSEC-19 and the LRR domains of the CC-NB-LRR resistance proteins. Altogether, our data demonstrated that potato cyst nematodes secrete effectors that enable the suppression of programmed cell death and disease resistance mediated by several CC-NB-LRR proteins in plants.

  4. Cold-inducible RNA-binding protein through TLR4 signaling induces mitochondrial DNA fragmentation and regulates macrophage cell death after trauma.

    Science.gov (United States)

    Li, Zhigang; Fan, Erica K; Liu, Jinghua; Scott, Melanie J; Li, Yuehua; Li, Song; Xie, Wen; Billiar, Timothy R; Wilson, Mark A; Jiang, Yong; Wang, Ping; Fan, Jie

    2017-05-11

    Trauma is a major cause of systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Macrophages (Mφ) direct trauma-induced inflammation, and Mφ death critically influences the progression of the inflammatory response. In the current study, we explored an important role of trauma in inducing mitochondrial DNA (mtDNA) damage in Mφ and the subsequent regulation of Mφ death. Using an animal pseudo-fracture trauma model, we demonstrated that tissue damage induced NADPH oxidase activation and increased the release of reactive oxygen species via cold-inducible RNA-binding protein (CIRP)-TLR4-MyD88 signaling. This in turn, activates endonuclease G, which serves as an executor for the fragmentation of mtDNA in Mφ. We further showed that fragmented mtDNA triggered both p62-related autophagy and necroptosis in Mφ. However, autophagy activation also suppressed Mφ necroptosis and pro-inflammatory responses. This study demonstrates a previously unidentified intracellular regulation of Mφ homeostasis in response to trauma.

  5. Hydrophilic crosslinked-polymeric surface capable of effective suppression of protein adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Kamon, Yuri; Inoue, Naoko; Mihara, Erika; Kitayama, Yukiya; Ooya, Tooru; Takeuchi, Toshifumi, E-mail: takeuchi@gold.kobe-u.ac.jp

    2016-08-15

    Highlights: • Three hydrophilic crosslinked polymers were examined for protein adsorption. • All polymers showed low nonspecific adsorption of negatively charged proteins. • Poly(MMPC) showed the lowest adsorption for positively charged proteins. • Poly(MMPC) is able to reduce nonspecific adsorption of a wide range of proteins. - Abstract: We investigated the nonspecific adsorption of proteins towards three hydrophilic crosslinked-polymeric thin layers prepared by surface-initiated atom transfer radical polymerization using N,N′-methylenebisacrylamide, 2-(methacryloyloxy)ethyl-[N-(2-methacryloyloxy)ethyl]phosphorylcholine (MMPC), or 6,6′-diacryloyl-trehalose crosslinkers. Protein binding experiments were performed by surface plasmon resonance with six proteins of different pI values including α-lactalbumin, bovine serum albumin (BSA), myoglobin, ribonuclease A, cytochrome C, and lysozyme in buffer solution at pH 7.4. All of the obtained crosslinked-polymeric thin layers showed low nonspecific adsorption of negatively charged proteins at pH 7.4 such as α-lactalbumin, BSA, and myoglobin. Nonspecific adsorption of positively charged proteins including ribonuclease A, cytochrome C, and lysozyme was the lowest for poly(MMPC). These results suggest poly(MMPC) can effectively reduce nonspecific adsorption of a wide range of proteins that are negatively or positively charged at pH 7.4. MMPC is a promising crosslinker for a wide range of polymeric materials requiring low nonspecific protein binding.

  6. Effects of Soy-Germ Protein on Catalase Activity of Plasma and Erythocyte of Metabolic Syndrome Women

    Directory of Open Access Journals (Sweden)

    HERY WINARSI

    2015-01-01

    Full Text Available Oxidative stress always accompany patients with metabolic syndrome (MS. Several researchers reported that soy-protein is able to decrease oxidative stress level. However, there is no report so far about soy-germ protein in relation to its potential to the decrease oxidative stress level of MS patients. The aim of this study was to explore the potential of soy-germ protein on activity of catalase enzyme in blood's plasma as well as erythrocytes of MS patients. Double-blind randomized clinical trial was used as an experimental study. Thirty respondents were included in this study with MS, normal level blood sugar, low-HDL cholesterol but high in triglyceride, 40-65 years old, Body Mass Index > 25 kg/m2, live in Purwokerto and agreed to sign the informed consent. They were randomly grouped into 3 different groups, 10 each: Group I, was given special milk that contains soy-germ protein and Zn; Group II, soy-germ protein, while Group III was placebo; for two consecutive months. Data were taken from blood samples in 3 different periods i.e. 0, 1, and 2 months after treatment. Two months after treatment, there was an increase from 5.36 to 20.17 IU/mg (P = 0.028 in activity of catalase enzyme in blood's plasma respondents who consumed milk containing soy-germ protein with or without Zn. A similar trend of catalase activity, but at a lower level, was also noticed in erythrocyte; which increased from 88.31 to 201.11 IU/mg (P = 0.013. The increase in activity of catalase enzyme in blood's plasma was 2.2 times higher than that in erythrocytes.

  7. CELSR2, encoding a planar cell polarity protein, is a putative gene in Joubert syndrome with cortical heterotopia, microophthalmia, and growth hormone deficiency.

    Science.gov (United States)

    Vilboux, Thierry; Malicdan, May Christine V; Roney, Joseph C; Cullinane, Andrew R; Stephen, Joshi; Yildirimli, Deniz; Bryant, Joy; Fischer, Roxanne; Vemulapalli, Meghana; Mullikin, James C; Steinbach, Peter J; Gahl, William A; Gunay-Aygun, Meral

    2017-03-01

    Joubert syndrome is a ciliopathy characterized by a specific constellation of central nervous system malformations that result in the pathognomonic "molar tooth sign" on imaging. More than 27 genes are associated with Joubert syndrome, but some patients do not have mutations in any of these genes. Celsr1, Celsr2, and Celsr3 are the mammalian orthologues of the drosophila planar cell polarity protein, flamingo; they play important roles in neural development, including axon guidance, neuronal migration, and cilium polarity. Here, we report bi-allelic mutations in CELSR2 in a Joubert patient with cortical heterotopia, microophthalmia, and growth hormone deficiency. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Is reactivation of autophagy a possible therapeutic solution for obesity and metabolic syndrome?

    Science.gov (United States)

    Sciarretta, Sebastiano; Volpe, Massimo; Sadoshima, Junichi

    2012-08-01

    The molecular mechanism regulating the cardiomyocyte response to energy stress has been a hot topic in cardiac research in recent years, since this mechanism could be targeted for treatment of patients with ischemic heart disease. We have shown recently that the activity of RAS homolog enriched in brain (RHEB), a small GTP binding protein, is inhibited in response to glucose deprivation (GD) in cardiomyocytes and ischemia in the mouse heart. This is a physiological adaptation, since it inhibits complex 1 of the mechanistic target of rapamycin (MTORC1) and activates autophagy, thereby promoting cell survival during GD and prolonged ischemia. Importantly, the physiological inhibition of RHEB-MTORC1 signaling during myocardial ischemia is impaired in the presence of obesity and metabolic syndrome caused by high-fat diet (HFD) feeding, leading to a dramatic increase in ischemic injury. Although MTORC1 and autophagy can be regulated through RHEB-independent mechanisms, such as the AMPK-dependent phosphorylation of RPTOR and ULK1, RHEB appears to be critical in the regulation of MTORC1 and autophagy during ischemia in cardiomyocytes, and its dysregulation is relevant to human disease. Here we discuss the biological relevance of the dysregulation of RHEB-MTORC1 signaling and the suppression of autophagy in obesity and metabolic syndrome.

  9. USP10 Antagonizes c-Myc Transcriptional Activation through SIRT6 Stabilization to Suppress Tumor Formation

    Directory of Open Access Journals (Sweden)

    Zhenghong Lin

    2013-12-01

    Full Text Available The reduced protein expression of SIRT6 tumor suppressor is involved in tumorigenesis. The molecular mechanisms underlying SIRT6 protein downregulation in human cancers remain unknown. Using a proteomic approach, we have identified the ubiquitin-specific peptidase USP10, another tumor suppressor, as one of the SIRT6-interacting proteins. USP10 suppresses SIRT6 ubiquitination to protect SIRT6 from proteasomal degradation. USP10 antagonizes the transcriptional activity of the c-Myc oncogene through SIRT6, as well as p53, to inhibit cell-cycle progression, cancer cell growth, and tumor formation. To support this conclusion, we detected significant reductions in both USP10 and SIRT6 protein expression in human colon cancers. Our study discovered crosstalk between two tumor-suppressive genes in regulating cell-cycle progression and proliferation and showed that dysregulated USP10 function promotes tumorigenesis through SIRT6 degradation.

  10. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation.

    Science.gov (United States)

    Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C J; Makino, Shinji

    2009-02-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, and fever and high rates of abortions in livestock. A nonstructural RVFV NSs protein inhibits the transcription of host mRNAs, including interferon-beta mRNA, and is a major virulence factor. The present study explored a novel function of the RVFV NSs protein by testing the replication of RVFV lacking the NSs gene in the presence of actinomycin D (ActD) or alpha-amanitin, both of which served as a surrogate of the host mRNA synthesis suppression function of the NSs. In the presence of the host-transcriptional inhibitors, the replication of RVFV lacking the NSs protein, but not that carrying NSs, induced double-stranded RNA-dependent protein kinase (PKR)-mediated eukaryotic initiation factor (eIF)2alpha phosphorylation, leading to the suppression of host and viral protein translation. RVFV NSs promoted post-transcriptional downregulation of PKR early in the course of the infection and suppressed the phosphorylated eIF2alpha accumulation. These data suggested that a combination of RVFV replication and NSs-induced host transcriptional suppression induces PKR-mediated eIF2alpha phosphorylation, while the NSs facilitates efficient viral translation by downregulating PKR and inhibiting PKR-mediated eIF2alpha phosphorylation. Thus, the two distinct functions of the NSs, i.e., the suppression of host transcription, including that of type I interferon mRNAs, and the downregulation of PKR, work together to prevent host innate antiviral functions, allowing efficient replication and survival of RVFV in infected mammalian hosts.

  11. The Vici Syndrome Protein EPG5 Is a Rab7 Effector that Determines the Fusion Specificity of Autophagosomes with Late Endosomes/Lysosomes.

    Science.gov (United States)

    Wang, Zheng; Miao, Guangyan; Xue, Xue; Guo, Xiangyang; Yuan, Chongzhen; Wang, Zhaoyu; Zhang, Gangming; Chen, Yingyu; Feng, Du; Hu, Junjie; Zhang, Hong

    2016-09-01

    Mutations in the human autophagy gene EPG5 cause the multisystem disorder Vici syndrome. Here we demonstrated that EPG5 is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes. EPG5 is recruited to late endosomes/lysosomes by direct interaction with Rab7 and the late endosomal/lysosomal R-SNARE VAMP7/8. EPG5 also binds to LC3/LGG-1 (mammalian and C. elegans Atg8 homolog, respectively) and to assembled STX17-SNAP29 Qabc SNARE complexes on autophagosomes. EPG5 stabilizes and facilitates the assembly of STX17-SNAP29-VAMP7/8 trans-SNARE complexes, and promotes STX17-SNAP29-VAMP7-mediated fusion of reconstituted proteoliposomes. Loss of EPG5 activity causes abnormal fusion of autophagosomes with various endocytic vesicles, in part due to elevated assembly of STX17-SNAP25-VAMP8 complexes. SNAP25 knockdown partially suppresses the autophagy defect caused by EPG5 depletion. Our study reveals that EPG5 is a Rab7 effector involved in autophagosome maturation, providing insight into the molecular mechanism underlying Vici syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Ectopic corticotroph syndrome

    Directory of Open Access Journals (Sweden)

    Penezić Zorana

    2004-01-01

    Full Text Available INTRODUCTION Endogenous Cushing's syndrome is a clinical state resulting from prolonged, inappropriate exposure to excessive endogenous secretion of Cortisol and hence excess circulating free cortisol, characterized by loss of the normal feedback mechanisms of the hypothalamo-pituitary-adrenal axis and the normal circadian rhythm of cortisol secretion [2]. The etiology of Cushing's syndrome may be excessive ACTH secretion from the pituitary gland, ectopic ACTH secretion by nonpituitary tumor, or excessive autonomous secretion of cortisol from a hyperfunctioning adrenal adenoma or carcinoma. Other than this broad ACTH-dependent and ACTH-independent categories, the syndrome may be caused by ectopic CRH secretion, PPNAD, MAH, ectopic action of GIP or catecholamines, and other adrenel-dependent processes associated with adrenocortical hyperfunction. CASE REPORT A 31 year-old men with b-month history of hyperpigmentation, weight gain and proximal myopathy was refereed to Institute of Endocrinology for evaluation of hypercortisolism. At admission, patient had classic cushingoid habit with plethoric face, dermal and muscle atrophy, abdominal strie rubrae and centripetal obesity. The standard laboratory data showed hyperglycaemia and hypokaliemia with high potassium excretion level. The circadian rhythm of cortisol secretion was blunted, with moderately elevated ACTH level, and without cortisol suppression after low-dose and high-dose dexamethason suppression test. Urinary 5HIAA was elevated. Abdominal and sellar region magnetic resonance imaging was negative. CRH stimulation resulted in ACTH increase of 87% of basal, but without significant increase of cortisol level, only 7%. Thoracal CT scan revealed 14 mm mass in right apical pulmonary segment. A wedge resection of anterior segment of right upper lobe was performed. Microscopic evaluation showed tumor tissue consisting of solid areas of uniform, oval cells with eosinophilic cytoplasm and centrally

  13. Levetiracetam as an alternative therapy for Tourette syndrome

    Directory of Open Access Journals (Sweden)

    MA Martínez-Granero

    2010-05-01

    Full Text Available MA Martínez-Granero, A García-Pérez, F MontañesDepartment of Pediatrics and Psychiatry, Hospital Universitario Fundación Alcorcón, Madrid, SpainAbstract: Tourette syndrome is a common childhood-onset neuropsychiatric disorder characterized by chronic tics and frequent comorbid conditions such as attention deficit disorder. Most currently used tic-suppressing drugs are frequently associated with serious adverse events. Thus, alternative therapeutic agents with more favorable side-effect profiles are being evaluated. New hypotheses and recent studies involving GABAergic system in the pathophysiology of Tourette syndrome suppose a reason for the evaluation of GABAergic drugs. Levetiracetam is a drug with an atypical GABAergic mechanism of action that might be expected to improve tics. Although trials performed to evaluate the efficacy of levetiracetam in the treatment of Tourette syndrome have provided conflicting results, it may be useful in some patients. The established safe profile of levetiracetam makes this drug an alternative for treatment if intolerance to currently used drugs appears, but additional evaluation with larger and longer duration controlled studies are necessary to assess the real efficacy in patients with Tourette syndrome.Keywords: Tourette syndrome, levetiracetam, tics, children, adolescents, GABA

  14. Proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome or Fowler syndrome: Report of a family and insight into the disease's mechanism.

    Science.gov (United States)

    Radio, Francesca Clementina; Di Meglio, Lavinia; Agolini, Emanuele; Bellacchio, Emanuele; Rinelli, Martina; Toscano, Paolo; Boldrini, Renata; Novelli, Antonio; Di Meglio, Aniello; Dallapiccola, Bruno

    2018-03-03

    Fowler syndrome is a rare autosomal recessive disorder characterized by hydranencephaly-hydrocephaly and multiple pterygium due to fetal akinesia. To date, around 45 cases from 27 families have been reported, and the pathogenic bi-allelic mutations in FLVCR2 gene described in 15 families. The pathogenesis of this condition has not been fully elucidated so far. We report on an additional family with two affected fetuses carrying a novel homozygous mutation in FLVCR2 gene, and describe the impact of known mutants on the protein structural and functional impairment. The present report confirms the genetic homogeneity of Fowler syndrome and describes a new FLVCR2 mutation affecting the protein function. The structural analysis of the present and previously published FLVCR2 mutations supports the hypothesis of a reduced heme import as the underlying disease's mechanism due to the stabilization of the occluded conformation or a protein misfolding. Our data suggest the hypothesis of heme deficiency as the major pathogenic mechanism of Fowler syndrome. © 2018 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  15. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko [Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Dohi, Makoto, E-mail: mdohi-tky@umin.ac.jp [Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Institute of Respiratory Immunology, Shibuya Clinic for Respiratory Diseases and Allergology, Tokyo (Japan)

    2014-01-03

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4{sup +} T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4{sup +} T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects.

  16. Noonan syndrome – a new survey

    Science.gov (United States)

    Tafazoli, Alireza; Eshraghi, Peyman; Koleti, Zahra Kamel

    2016-01-01

    Noonan syndrome (NS) is an autosomal dominant disorder with vast heterogeneity in clinical and genetic features. Various symptoms have been reported for this abnormality such as short stature, unusual facial characteristics, congenital heart abnormalities, developmental complications, and an elevated tumor incidence rate. Noonan syndrome shares clinical features with other rare conditions, including LEOPARD syndrome, cardio-facio-cutaneous syndrome, Noonan-like syndrome with loose anagen hair, and Costello syndrome. Germline mutations in the RAS-MAPK (mitogen-activated protein kinase) signal transduction pathway are responsible for NS and other related disorders. Noonan syndrome diagnosis is primarily based on clinical features, but molecular testing should be performed to confirm it in patients. Due to the high number of genes associated with NS and other RASopathy disorders, next-generation sequencing is the best choice for diagnostic testing. Patients with NS also have higher risk for leukemia and specific solid tumors. Age-specific guidelines for the management of NS are available. PMID:28144274

  17. Activity in the circular alley does not produce the activity anorexia syndrome in rats.

    Science.gov (United States)

    Koh, M T; Lett, B T; Grant, V L

    2000-04-01

    The activity anorexia syndrome is characterized by reduced food intake and body weight compared to control levels and increasing levels of physical activity. To induce it, food-restricted rats are confined in running wheels except during the daily meal. We tested whether activity in a flat circular alley also produces the activity anorexia syndrome. In Experiment 1, food-restricted rats were maintained in alleys, wheels, or home cages (control condition). In Experiment 2, they were maintained in alleys, wheels, novel cages, or home cages. The novel cage was added to control for the possibility that the alley might produce an anorectic effect simply because it was a new living space. The alley did not produce the activity anorexia syndrome whereas the wheel did. Although weight loss was greater in the alley than home-cage condition, the alley produced weak, inconsistent suppression of feeding. Moreover, the suppression produced by the alley may have stemmed simply from living in a novel environment. Finally, in contrast to wheel running, alley activity decreased over days. Alley activity, unlike wheel running, may not be reinforcing. Likely, a physical activity must be reinforcing to produce the activity anorexia syndrome. Implications for anorexia nervosa were discussed. Copyright 2000 Academic Press.

  18. n-3 polyunsaturated fatty acids suppress phosphatidylinositol 4,5-bisphosphate-dependent actin remodelling during CD4+ T-cell activation.

    Science.gov (United States)

    Hou, Tim Y; Monk, Jennifer M; Fan, Yang-Yi; Barhoumi, Rola; Chen, Yong Q; Rivera, Gonzalo M; McMurray, David N; Chapkin, Robert S

    2012-04-01

    n-3 PUFA (polyunsaturated fatty acids), i.e. DHA (docosahexaenoic acid), found in fish oil, exhibit anti-inflammatory properties; however, the molecular mechanisms remain unclear. Since PtdIns(4,5)P2 resides in raft domains and DHA can alter the size of rafts, we hypothesized that PtdIns(4,5)P2 and downstream actin remodelling are perturbed by the incorporation of n-3 PUFA into membranes, resulting in suppressed T-cell activation. CD4+ T-cells isolated from Fat-1 transgenic mice (membranes enriched in n-3 PUFA) exhibited a 50% decrease in PtdIns(4,5)P2. Upon activation by plate-bound anti-CD3/anti-CD28 or PMA/ionomycin, Fat-1 CD4+ T-cells failed to metabolize PtdIns(4,5)P2. Furthermore, actin remodelling failed to initiate in Fat-1 CD4+ T-cells upon stimulation; however, the defect was reversed by incubation with exogenous PtdIns(4,5)P2. When Fat-1 CD4+ T-cells were stimulated with anti-CD3/anti-CD28-coated beads, WASP (Wiskott-Aldrich syndrome protein) failed to translocate to the immunological synapse. The suppressive phenotype, consisting of defects in PtdIns(4,5)P2 metabolism and actin remodelling, were recapitulated in CD4+ T-cells isolated from mice fed on a 4% DHA triacylglycerol-enriched diet. Collectively, these data demonstrate that n-3 PUFA, such as DHA, alter PtdIns(4,5)P2 in CD4+ T-cells, thereby suppressing the recruitment of WASP to the immunological synapse, and impairing actin remodelling in CD4+ T-cells.

  19. Suppression of Virulence of Toxigenic Vibrio cholerae by Anethole through the Cyclic AMP (cAMP-cAMP Receptor Protein Signaling System.

    Directory of Open Access Journals (Sweden)

    M Shamim Hasan Zahid

    Full Text Available Use of natural compounds as antivirulence drugs could be an alternative therapeutic approach to modify the outcome of bacterial infections, particularly in view of growing resistance to available antimicrobials. Here, we show that sub-bactericidal concentration of anethole, a component of sweet fennel seed, could suppress virulence potential in O1 El Tor biotype strains of toxigenic Vibrio cholerae, the causative agent of the ongoing 7th cholera pandemic. The expression of cholera toxin (CT and toxin coregulated pilus (TCP, the major virulence factors of V. cholerae, is controlled through a regulatory cascade involving activation of ToxT with synergistic coupling interaction of ToxR/ToxS with TcpP/TcpH. We present evidence that anethole inhibits in vitro expression of CT and TCP in a toxT-dependent but toxR/toxS-independent manner and through repression of tcpP/tcpH, by using bead-ELISA, western blotting and quantitative real-time RT-PCR assays. The cyclic AMP (cAMP-cAMP receptor protein (CRP is a well-studied global signaling system in bacterial pathogens, and this complex is known to suppress expression of tcpP/tcpH in V. cholerae. We find that anethole influences the virulence regulatory cascade by over-expressing cyaA and crp genes. Moreover, suppression of toxigenic V. cholerae-mediated fluid accumulation in ligated ileum of rabbit by anethole demonstrates its potentiality as an antivirulence drug candidate against the diseases caused by toxigenic V. cholerae. Taken altogether, these results revealing a mechanism of virulence inhibition in V. cholerae by the natural compound anethole, may have relevance in designing antivirulence compounds, particularly against multiple antibiotic resistant bacterial pathogens.

  20. Suppression of Virulence of Toxigenic Vibrio cholerae by Anethole through the Cyclic AMP (cAMP)-cAMP Receptor Protein Signaling System.

    Science.gov (United States)

    Zahid, M Shamim Hasan; Awasthi, Sharda Prasad; Asakura, Masahiro; Chatterjee, Shruti; Hinenoya, Atsushi; Faruque, Shah M; Yamasaki, Shinji

    2015-01-01

    Use of natural compounds as antivirulence drugs could be an alternative therapeutic approach to modify the outcome of bacterial infections, particularly in view of growing resistance to available antimicrobials. Here, we show that sub-bactericidal concentration of anethole, a component of sweet fennel seed, could suppress virulence potential in O1 El Tor biotype strains of toxigenic Vibrio cholerae, the causative agent of the ongoing 7th cholera pandemic. The expression of cholera toxin (CT) and toxin coregulated pilus (TCP), the major virulence factors of V. cholerae, is controlled through a regulatory cascade involving activation of ToxT with synergistic coupling interaction of ToxR/ToxS with TcpP/TcpH. We present evidence that anethole inhibits in vitro expression of CT and TCP in a toxT-dependent but toxR/toxS-independent manner and through repression of tcpP/tcpH, by using bead-ELISA, western blotting and quantitative real-time RT-PCR assays. The cyclic AMP (cAMP)-cAMP receptor protein (CRP) is a well-studied global signaling system in bacterial pathogens, and this complex is known to suppress expression of tcpP/tcpH in V. cholerae. We find that anethole influences the virulence regulatory cascade by over-expressing cyaA and crp genes. Moreover, suppression of toxigenic V. cholerae-mediated fluid accumulation in ligated ileum of rabbit by anethole demonstrates its potentiality as an antivirulence drug candidate against the diseases caused by toxigenic V. cholerae. Taken altogether, these results revealing a mechanism of virulence inhibition in V. cholerae by the natural compound anethole, may have relevance in designing antivirulence compounds, particularly against multiple antibiotic resistant bacterial pathogens.

  1. Eosinophils from hematopoietic stem cell recipients suppress allogeneic T cell proliferation.

    Science.gov (United States)

    Andersson, Jennie; Cromvik, Julia; Ingelsten, Madeleine; Lingblom, Christine; Andersson, Kerstin; Johansson, Jan-Erik; Wennerås, Christine

    2014-12-01

    Eosinophilia has been associated with less severe graft-versus-host disease (GVHD), but the underlying mechanism is unknown. We hypothesized that eosinophils diminish allogeneic T cell activation in patients with chronic GVHD. The capacity of eosinophils derived from healthy subjects and hematopoietic stem cell (HSC) transplant recipients, with or without chronic GVHD, to reduce allogeneic T cell proliferation was evaluated using a mixed leukocyte reaction. Eosinophil-mediated inhibition of proliferation was observed for the eosinophils of both healthy subjects and patients who underwent HSC transplantation. Eosinophils from patients with and without chronic GVHD were equally suppressive. Healthy eosinophils required cell-to-cell contact for their suppressive capacity, which was directed against CD4(+) T cells and CD8(+) T cells. Neither eosinophilic cationic protein, eosinophil-derived neurotoxin, indoleamine 2,3-dioxygenase, or increased numbers of regulatory T cells could account for the suppressive effect of healthy eosinophils. Real-time quantitative PCR analysis revealed significantly increased mRNA levels of the immunoregulatory protein galectin-10 in the eosinophils of both chronic GVHD patients and patients without GVHD, as compared with those from healthy subjects. The upregulation of galectin-10 expression in eosinophils from patients suggests a stimulatory effect of HSC transplantation in itself on eosinophilic galectin-10 expression, regardless of chronic GVHD status. To conclude, eosinophils from HSC transplant recipients and healthy subjects have a T cell suppressive capacity. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  2. Suppression of radiation-induced in vitro carcinogenesis by ascorbic acid

    International Nuclear Information System (INIS)

    Tauchi, Hiroshi; Sawada, Shozo

    1993-01-01

    The effects of ascorbic acid on radiation-induced in vitro carcinogenesis have been reported using neoplastic transformation system of C3H 10T1/2 cells. In these reports, no suppressive effect on X-ray-induced transformation was observed with 6 weeks' administration of ascorbic acid (daily addition for 5 days per week) by Kennedy (1984), whereas apparent suppression was observed with daily addition for 7 days by Yasukawa et al (1989). We have tested the effects of ascorbic acid on 60 Co gamma-ray or 252 Cf fission neutron-induced transformation in Balb/c 3T3 cells. The transformation induced by both types of radiations was markedly suppressed when ascorbic acid was daily added to the medium during first 8 days of the post-irradiation period. If ascorbic acid was added for a total of 8 days but with a day's interruption in the middle, the suppression of transformation was decreased. These results suggest that continuous presence of ascorbic acid for a certain number of days is needed to suppress radiation-induced transformation. Since ascorbic acid also suppressed the promotion of radiation-induced transformation by TPA when both chemicals were added together into the medium, ascorbic acid might act on the promotion stage of transformation. Therefore, the effect of ascorbic acid on the distribution of protein kinase C activity was also investigated, and possible mechanisms of suppression of radiation-induced transformation by ascorbic acid will be discussed. (author)

  3. Induction of cell death by tospoviral protein NSs and the motif critical for cell death does not control RNA silencing suppression activity.

    Science.gov (United States)

    Singh, Ajeet; Permar, Vipin; Jain, R K; Goswami, Suneha; Kumar, Ranjeet Ranjan; Canto, Tomas; Palukaitis, Peter; Praveen, Shelly

    2017-08-01

    Groundnut bud necrosis virus induces necrotic symptoms in different hosts. Previous studies showed reactive oxygen species-mediated programmed cell death (PCD) resulted in necrotic symptoms. Transgenic expression of viral protein NSs mimics viral symptoms. Here, we showed a role for NSs in influencing oxidative burst in the cell, by analyzing H 2 O 2 accumulation, activities of antioxidant enzymes and expression levels of vacuolar processing enzymes, H 2 O 2 -responsive microRNA 319a.2 plus its possible target metacaspase-8. The role of NSs in PCD, was shown using two NSs mutants: one in the Trp/GH3 motif (a homologue of pro-apototic domain) (NSs S189R ) and the other in a non-Trp/GH3 motif (NSs L172R ). Tobacco rattle virus (TRV) expressing NSs S189R enhanced the PCD response, but not TRV-NSs L172R , while RNA silencing suppression activity was lost in TRV-NSs L172R , but not in TRV-NSs S189R . Therefore, we propose dual roles of NSs in RNA silencing suppression and induction of cell death, controlled by different motifs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A novel ICK mutation causes ciliary disruption and lethal endocrine-cerebro-osteodysplasia syndrome.

    Science.gov (United States)

    Oud, Machteld M; Bonnard, Carine; Mans, Dorus A; Altunoglu, Umut; Tohari, Sumanty; Ng, Alvin Yu Jin; Eskin, Ascia; Lee, Hane; Rupar, C Anthony; de Wagenaar, Nathalie P; Wu, Ka Man; Lahiry, Piya; Pazour, Gregory J; Nelson, Stanley F; Hegele, Robert A; Roepman, Ronald; Kayserili, Hülya; Venkatesh, Byrappa; Siu, Victoria M; Reversade, Bruno; Arts, Heleen H

    2016-01-01

    Endocrine-cerebro-osteodysplasia (ECO) syndrome [MIM:612651] caused by a recessive mutation (p.R272Q) in Intestinal cell kinase (ICK) shows significant clinical overlap with ciliary disorders. Similarities are strongest between ECO syndrome, the Majewski and Mohr-Majewski short-rib thoracic dysplasia (SRTD) with polydactyly syndromes, and hydrolethalus syndrome. In this study, we present a novel homozygous ICK mutation in a fetus with ECO syndrome and compare the effect of this mutation with the previously reported ICK variant on ciliogenesis and cilium morphology. Through homozygosity mapping and whole-exome sequencing, we identified a second variant (c.358G > T; p.G120C) in ICK in a Turkish fetus presenting with ECO syndrome. In vitro studies of wild-type and mutant mRFP-ICK (p.G120C and p.R272Q) revealed that, in contrast to the wild-type protein that localizes along the ciliary axoneme and/or is present in the ciliary base, mutant proteins rather enrich in the ciliary tip. In addition, immunocytochemistry revealed a decreased number of cilia in ICK p.R272Q-affected cells. Through identification of a novel ICK mutation, we confirm that disruption of ICK causes ECO syndrome, which clinically overlaps with the spectrum of ciliopathies. Expression of ICK-mutated proteins result in an abnormal ciliary localization compared to wild-type protein. Primary fibroblasts derived from an individual with ECO syndrome display ciliogenesis defects. In aggregate, our findings are consistent with recent reports that show that ICK regulates ciliary biology in vitro and in mice, confirming that ECO syndrome is a severe ciliopathy.

  5. Cardiorespiratory fitness and the metabolic syndrome

    DEFF Research Database (Denmark)

    Wedell-Neergaard, Anne-Sophie; Krogh-Madsen, Rikke; Petersen, Gitte Lindved

    2018-01-01

    and plasma levels of cytokines and high sensitive C-reactive protein as outcomes and measures of abdominal obesity were added to test if they explained the potential association. Similarly, multiple linear regression models were performed with CR-fitness as exposure and factors of the metabolic syndrome...... sensitive C-reactive protein, Interleukin (IL)-6, and IL-18, and directly associated with the anti-inflammatory cytokine IL-10, but not associated with tumor necrosis factor alpha, interferon gamma or IL-1β. Abdominal obesity could partly explain the significant associations. Moreover, CR...... these associations. CONCLUSION: Data suggest that CR-fitness has anti-inflammatory effects that are partly explained by a reduction in abdominal obesity and a decrease in the metabolic syndrome risk profile. The overall inflammatory load was mainly driven by high sensitive C-reactive protein and IL-6....

  6. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Yolanda Williams-Bey

    Full Text Available The omega-3 (ω3 fatty acid docosahexaenoic acid (DHA can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR 4 (also known as GPR120, a G-protein coupled receptor (GPR known to bind DHA. The exposure of cells to DHA recruited the adapter protein β-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-κB. DHA also reduced IL-1β levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity.

  7. Protein-energy malnutrition is frequent and precocious in children with cri du chat syndrome.

    Science.gov (United States)

    Lefranc, Violaine; de Luca, Arnaud; Hankard, Régis

    2016-05-01

    Protein-energy malnutrition (PEM) is poorly reported in cri du chat syndrome (CDCS) (OMIM #123450), a genetic disease that causes developmental delay and global growth retardation. The objective was to determine the nutritional status at different ages in children with CDCS and factors associated with PEM. A questionnaire focused on growth and nutritional care was sent to 190 families. Among 36 analyzable questionnaires, growth and nutritional indices compatible with PEM occurred in 47% of patients: 19% before 6 months of age, 24% between 6-12 months and 34% after 12 months. Eight patients received enteral feeding. Speech therapy for swallowing education was performed more often in malnourished children (63% vs. 22%, P < 0.02). PEM is frequent and occurs early in this disease, requiring closed nutritional monitoring. © 2016 Wiley Periodicals, Inc.

  8. The Nance-Horan syndrome protein encodes a functional WAVE homology domain (WHD) and is important for co-ordinating actin remodelling and maintaining cell morphology.

    Science.gov (United States)

    Brooks, Simon P; Coccia, Margherita; Tang, Hao R; Kanuga, Naheed; Machesky, Laura M; Bailly, Maryse; Cheetham, Michael E; Hardcastle, Alison J

    2010-06-15

    Nance-Horan syndrome (NHS) is an X-linked developmental disorder, characterized by bilateral congenital cataracts, dental anomalies, facial dysmorphism and mental retardation. Null mutations in a novel gene, NHS, cause the syndrome. The NHS gene appears to have multiple isoforms as a result of alternative transcription, but a cellular function for the NHS protein has yet to be defined. We describe NHS as a founder member of a new protein family (NHS, NHSL1 and NHSL2). Here, we demonstrate that NHS is a novel regulator of actin remodelling and cell morphology. NHS localizes to sites of cell-cell contact, the leading edge of lamellipodia and focal adhesions. The N-terminus of isoforms NHS-A and NHS-1A, implicated in the pathogenesis of NHS, have a functional WAVE homology domain that interacts with the Abi protein family, haematopoietic stem/progenitor cell protein 300 (HSPC300), Nap1 and Sra1. NHS knockdown resulted in the disruption of the actin cytoskeleton. We show that NHS controls cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. NHS knockdown led to a striking increase in cell spreading. Conversely, ectopic overexpression of NHS inhibited lamellipod formation. Remodelling of the actin cytoskeleton and localized actin polymerization into branched actin filaments at the plasma membrane are essential for mediating changes in cell shape, migration and cell contact. Our data identify NHS as a new regulator of actin remodelling. We suggest that NHS orchestrates actin regulatory protein function in response to signalling events during development.

  9. The Nance–Horan syndrome protein encodes a functional WAVE homology domain (WHD) and is important for co-ordinating actin remodelling and maintaining cell morphology

    Science.gov (United States)

    Brooks, Simon P.; Coccia, Margherita; Tang, Hao R.; Kanuga, Naheed; Machesky, Laura M.; Bailly, Maryse; Cheetham, Michael E.; Hardcastle, Alison J.

    2010-01-01

    Nance–Horan syndrome (NHS) is an X-linked developmental disorder, characterized by bilateral congenital cataracts, dental anomalies, facial dysmorphism and mental retardation. Null mutations in a novel gene, NHS, cause the syndrome. The NHS gene appears to have multiple isoforms as a result of alternative transcription, but a cellular function for the NHS protein has yet to be defined. We describe NHS as a founder member of a new protein family (NHS, NHSL1 and NHSL2). Here, we demonstrate that NHS is a novel regulator of actin remodelling and cell morphology. NHS localizes