WorldWideScience

Sample records for syndrome protein modulates

  1. The Severe Acute Respiratory Syndrome (SARS-coronavirus 3a protein may function as a modulator of the trafficking properties of the spike protein

    Directory of Open Access Journals (Sweden)

    Tan Yee-Joo

    2005-02-01

    Full Text Available Abstract Background A recent publication reported that a tyrosine-dependent sorting signal, present in cytoplasmic tail of the spike protein of most coronaviruses, mediates the intracellular retention of the spike protein. This motif is missing from the spike protein of the severe acute respiratory syndrome-coronavirus (SARS-CoV, resulting in high level of surface expression of the spike protein when it is expressed on its own in vitro. Presentation of the hypothesis It has been shown that the severe acute respiratory syndrome-coronavirus genome contains open reading frames that encode for proteins with no homologue in other coronaviruses. One of them is the 3a protein, which is expressed during infection in vitro and in vivo. The 3a protein, which contains a tyrosine-dependent sorting signal in its cytoplasmic domain, is expressed on the cell surface and can undergo internalization. In addition, 3a can bind to the spike protein and through this interaction, it may be able to cause the spike protein to become internalized, resulting in a decrease in its surface expression. Testing the hypothesis The effects of 3a on the internalization of cell surface spike protein can be examined biochemically and the significance of the interplay between these two viral proteins during viral infection can be studied using reverse genetics methodology. Implication of the hypothesis If this hypothesis is proven, it will indicate that the severe acute respiratory syndrome-coronavirus modulates the surface expression of the spike protein via a different mechanism from other coronaviruses. The interaction between 3a and S, which are expressed from separate subgenomic RNA, would be important for controlling the trafficking properties of S. The cell surface expression of S in infected cells significantly impacts viral assembly, viral spread and viral pathogenesis. Modulation by this unique pathway could confer certain advantages during the replication of the severe

  2. Nonstructural Protein 4 of Porcine Reproductive and Respiratory Syndrome Virus Modulates Cell Surface Swine Leukocyte Antigen Class I Expression by Downregulating β2-Microglobulin Transcription.

    Science.gov (United States)

    Qi, Pengfei; Liu, Ke; Wei, Jianchao; Li, Yuming; Li, Beibei; Shao, Donghua; Wu, Zhuanchang; Shi, Yuanyuan; Tong, Guangzhi; Qiu, Yafeng; Ma, Zhiyong

    2017-03-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of PRRS, which has important impacts on the pig industry. PRRSV infection results in disruption of the swine leukocyte antigen class I (SLA-I) antigen presentation pathway. In this study, highly pathogenic PRRSV (HP-PRRSV) infection inhibited transcription of the β2-microglobulin (β2M) gene ( B2M ) and reduced cellular levels of β2M, which forms a heterotrimeric complex with the SLA-I heavy chain and a variable peptide and plays a critical role in SLA-I antigen presentation. HP-PRRSV nonstructural protein 4 (Nsp4) was involved in the downregulation of β2M expression. Exogenous expression of Nsp4 downregulated β2M expression at both the mRNA and the protein level and reduced SLA-I expression on the cell surface. Nsp4 bound to the porcine B2M promoter and inhibited its transcriptional activity. Domain III of Nsp4 and the enhancer PAM element of the porcine B2M promoter were identified as essential for the interaction between Nsp4 and B2M These findings demonstrate a novel mechanism whereby HP-PRRSV may modulate the SLA-I antigen presentation pathway and provide new insights into the functions of HP-PRRSV Nsp4. IMPORTANCE PRRSV modulates the host response by disrupting the SLA-I antigen presentation pathway. We show that HP-PRRSV downregulates SLA-I expression on the cell surface via transcriptional inhibition of B2M expression by viral Nsp4. The interaction between domain III of Nsp4 and the enhancer PAM element of the porcine B2M promoter is essential for inhibiting B2M transcription. These observations reveal a novel mechanism whereby HP-PRRSV may modulate SLA-I antigen presentation and provide new insights into the functions of viral Nsp4. Copyright © 2017 American Society for Microbiology.

  3. The bHLH proteins BEE and BIM positively modulate the shade avoidance syndrome in Arabidopsis seedlings.

    Science.gov (United States)

    Cifuentes-Esquivel, Nicolás; Bou-Torrent, Jordi; Galstyan, Anahit; Gallemí, Marçal; Sessa, Giovanna; Salla Martret, Mercè; Roig-Villanova, Irma; Ruberti, Ida; Martínez-García, Jaime F

    2013-09-01

    The shade avoidance syndrome (SAS) refers to a set of plant responses initiated after perception by the phytochromes of light with a reduced red to far-red ratio, indicative of vegetation proximity or shade. These responses, including elongation growth, anticipate eventual shading from potential competitor vegetation by overgrowing neighboring plants or flowering to ensure production of viable seeds for the next generation. In Arabidopsis thaliana seedlings, the SAS includes dramatic changes in gene expression, such as induction of PHYTOCHROME RAPIDLY REGULATED 1 (PAR1), encoding an atypical basic helix-loop-helix (bHLH) protein that acts as a transcriptional co-factor to repress hypocotyl elongation. Indeed, PAR1 has been proposed to act fundamentally as a dominant negative antagonist of conventional bHLH transcription factors by forming heterodimers with them to prevent their binding to DNA or other transcription factors. Here we report the identification of PAR1-interacting factors, including the brassinosteroid signaling components BR-ENHANCED EXPRESSION (BEE) and BES1-INTERACTING MYC-LIKE (BIM), and characterize their role as networked positive regulators of SAS hypocotyl responses. We provide genetic evidence that these bHLH transcriptional regulators not only control plant growth and development under shade and non-shade conditions, but are also redundant in the control of plant viability. Our results suggest that SAS responses are initiated as a consequence of a new balance of transcriptional regulators within the pre-existing bHLH network triggered by plant proximity, eventually causing hypocotyls to elongate. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  4. Magel2, a Prader-Willi syndrome candidate gene, modulates the activities of circadian rhythm proteins in cultured cells

    Directory of Open Access Journals (Sweden)

    Devos Julia

    2011-12-01

    Full Text Available Abstract Background The Magel2 gene is most highly expressed in the suprachiasmatic nucleus of the hypothalamus, where its expression cycles in a circadian pattern comparable to that of clock-controlled genes. Mice lacking the Magel2 gene have hypothalamic dysfunction, including circadian defects that include reduced and fragmented total activity, excessive activity during the subjective day, but they have a normal circadian period. Magel2 is a member of the MAGE family of proteins that have various roles in cellular function, but the specific function of Magel2 is unknown. Methods We used a variety of cell-based assays to determine whether Magel2 modifies the properties of core circadian rhythm proteins. Results Magel2 represses the activity of the Clock:Bmal1 heterodimer in a Per2-luciferase assay. Magel2 interacts with Bmal1 and with Per2 as measured by co-immunoprecipitation in co-transfected cells, and exhibits a subcellular distribution consistent with these interactions when visualized by immunofluorescence. As well, Magel2 induces the redistribution of the subcellular localization of Clock towards the cytoplasm, in contrast to the nucleus-directed effect of Bmal1 on Clock subcellular localization. Conclusion Consistent with the blunted circadian rhythm observed in Magel2-null mice, these data suggest that Magel2 normally promotes negative feedback regulation of the cellular circadian cycle, through interactions with key core circadian rhythm proteins.

  5. Positive modulator of bone morphogenic protein-2

    Science.gov (United States)

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2009-01-27

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  6. Positive modulator of bone morphogenic protein-2

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua; Kazuyuki, Takahashi

    2017-06-06

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  7. Improving microphage innate immunity by modulating protein ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Improving microphage innate immunity by modulating protein tyrosine phosphatases: The complete mouse and human PTPomes. Diseases that result from an infection are most often resolved by cells that use an immune response to clear foreign agents. These cells include macrophages, which are the predominant type of ...

  8. Arousal Modulation in Females with Fragile X or Turner Syndrome

    Science.gov (United States)

    Roberts, Jane; Mazzocco, Michele M. M.; Murphy, Melissa M.; Hoehn-Saric, Rudolf

    2008-01-01

    The present study was carried out to examine physiological arousal modulation (heart activity and skin conductance), across baseline and cognitive tasks, in females with fragile X or Turner syndrome and a comparison group of females with neither syndrome. Relative to the comparison group, for whom a greater increase in skin conductance was…

  9. Protein Carbonylation in Patients with Myelodysplastic Syndromes

    Czech Academy of Sciences Publication Activity Database

    Hlaváčková, A.; Štikarová, J.; Kotlín, R.; Chrastinová, L.; Šácha, Pavel; Májek, P.; Čermák, J.; Suttnar, J.; Dyr, J. E.

    2015-01-01

    Roč. 126, č. 23 (2015), s. 5232 ISSN 0006-4971. [Annual Meeting and Exposition of the American Society of Hematology /55./. 07.12.2013-10.12.2013, New Orleans] Institutional support: RVO:61388963 Keywords : protein carbonylation * myelodysplastic syndromes Subject RIV: CE - Biochemistry

  10. Sneddon syndrome associated with Protein S deficiency

    Directory of Open Access Journals (Sweden)

    Refah Sayin

    2012-01-01

    Full Text Available Sneddon syndrome (SS is rare, arterio-occlusive disorder characterized by generalized livedo racemosa of the skin and various central nervous symptoms due to occlusion of medium-sized arteries of unknown. Seizure, cognitive impairment, hypertension, and history of repetitive miscarriages are the other symptoms seen in this disease. Livedo racemosa involves persisting irreversible skin lesions red or blue in color with irregular margins. Usually, SS occurs in women of childbearing age. Protein S deficiency is an inherited or acquired disorder associated with an increased risk of thrombosis. We present a 33-year-old woman with SS with diffuse livedo racemosa, recurrent cerebrovascular diseases, migraine-type headache, sinus vein thrombosis, and protein S deficiency. Protein S deficiency and with Sneddon syndrome rarely encountered in the literature.

  11. Fragile X syndrome: From protein function to therapy.

    Science.gov (United States)

    Bagni, Claudia; Oostra, Ben A

    2013-11-01

    Fragile X syndrome (FXS) is the leading monogenic cause of intellectual disability and autism. The FMR1 gene contains a CGG repeat present in the 5'-untranslated region which can be unstable upon transmission to the next generation. The repeat is up to 55 CGGs long in the normal population. In patients with fragile X syndrome (FXS), a repeat length exceeding 200 CGGs generally leads to methylation of the repeat and the promoter region, which is accompanied by silencing of the FMR1 gene. The disease is a result of lack of expression of the fragile X mental retardation protein leading to severe symptoms, including intellectual disability, hyperactivity, and autistic-like behavior. The FMR1 protein (FMRP) has a number of functions. The translational dysregulation of a subset of mRNAs targeted by FMRP is probably the major contribution to FXS. FMRP is also involved in mRNA transport to synapses where protein synthesis occurs. For some FMRP-bound mRNAs, FMRP is a direct modulator of mRNA stability either by sustaining or preventing mRNA decay. Increased knowledge about the role of FMRP has led to the identification of potential treatments for fragile X syndrome that were often tested first in the different animal models. This review gives an overview about the present knowledge of the function of FMRP and the therapeutic strategies in mouse and man. © 2013 Wiley Periodicals, Inc.

  12. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling.

    Science.gov (United States)

    Woodard, Geoffrey E; Jardín, Isaac; Berna-Erro, A; Salido, Gines M; Rosado, Juan A

    2015-01-01

    Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. MicroRNA modulation in complex regional pain syndrome

    Directory of Open Access Journals (Sweden)

    Orlova Irina A

    2011-11-01

    Full Text Available Abstract Background Aberrant expression of small noncoding RNAs called microRNAs (miRNAs is a common feature of several human diseases. The objective of the study was to identify miRNA modulation in patients with complex regional pain syndrome (CRPS a chronic pain condition resulting from dysfunction in the central and/or peripheral nervous systems. Due to a multitude of inciting pathologies, symptoms and treatment conditions, the CRPS patient population is very heterogeneous. Our goal was to identify differentially expressed miRNAs in blood and explore their utility in patient stratification. Methods We profiled miRNAs in whole blood from 41 patients with CRPS and 20 controls using TaqMan low density array cards. Since neurogenic inflammation is known to play a significant role in CRPS we measured inflammatory markers including chemokines, cytokines, and their soluble receptors in blood from the same individuals. Correlation analyses were performed for miRNAs, inflammatory markers and other parameters including disease symptoms, medication, and comorbid conditions. Results Three different groups emerged from miRNA profiling. One group was comprised of 60% of CRPS patients and contained no control subjects. miRNA profiles from the remaining patients were interspersed among control samples in the other two groups. We identified differential expression of 18 miRNAs in CRPS patients. Analysis of inflammatory markers showed that vascular endothelial growth factor (VEGF, interleukin1 receptor antagonist (IL1Ra and monocyte chemotactic protein-1 (MCP1 were significantly elevated in CRPS patients. VEGF and IL1Ra showed significant correlation with the patients reported pain levels. Analysis of the patients who were clustered according to their miRNA profile revealed correlations that were not significant in the total patient population. Correlation analysis of miRNAs detected in blood with additional parameters identified miRNAs associated with

  14. SUMO modulation of protein aggregation and degradation

    Directory of Open Access Journals (Sweden)

    Marco Feligioni

    2015-09-01

    Full Text Available Small ubiquitin-like modifier (SUMO conjugation and binding to target proteins regulate a wide variety of cellular pathways. The functional aspects of SUMOylation include changes in protein-protein interactions, intracellular trafficking as well as protein aggregation and degradation. SUMO has also been linked to specialized cellular pathways such as neuronal development and synaptic transmission. In addition, SUMOylation is associated with neurological diseases associated with abnormal protein accumulations. SUMOylation of the amyloid and tau proteins involved in Alzheimer's disease and other tauopathies may contribute to changes in protein solubility and proteolytic processing. Similar events have been reported for α-synuclein aggregates found in Parkinson's disease, polyglutamine disorders such as Huntington's disease as well as protein aggregates found in amyotrophic lateral sclerosis (ALS. This review provides a detailed overview of the impact SUMOylation has on the etiology and pathology of these related neurological diseases.

  15. Functional module identification in protein interaction networks by interaction patterns

    Science.gov (United States)

    Wang, Yijie; Qian, Xiaoning

    2014-01-01

    Motivation: Identifying functional modules in protein–protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of ‘higher than expected connectivity’, those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks. Results: In this article, we propose a novel optimization formulation LCP2 (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP2 by random walk. A spectral approximate algorithm SLCP2 is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP2 to a new algorithm (greedy algorithm for LCP2) GLCP2 to identify overlapping functional modules. We compare SLCP2 and GLCP2 with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP2 outperform all other compared algorithms. Availability and implementation: All data and code are available at http://www.cse.usf.edu/∼xqian/fmi/slcp2hop

  16. Evaluating Modulators of ‘Regulator of G-protein Signaling’ (RGS) Proteins

    OpenAIRE

    Bosch, Dustin E.; Zielinski, Thomas; Lowery, Robert G.; Siderovski, David P.

    2012-01-01

    ‘Regulator of G-protein Signaling’ (RGS) proteins constitute a class of intracellular signaling regulators that accelerate GTP hydrolysis by heterotrimeric Gα subunits. In recent years, RGS proteins have emerged as potential drug targets for small molecule modulation. Described in this unit are high-throughput screening procedures for identifying modulators of RGS protein-mediated GTPase acceleration (‘GAP activity’), for assessment of RGS domain/Gα interactions (most avid in vitro when Gα is...

  17. Modulating fracture properties of mixed protein systems

    NARCIS (Netherlands)

    Ersch, C.E.; Laak, I. ter; Linden, E. van der; Venema, P.; Martin, A.H.

    2015-01-01

    To design foods with desired textures it is important to understand structure build-up and breakdown. One can obtain a wide range of structures using mixtures of different structuring ingredients such as for example protein mixtures. Mixed soy protein isolate (SPI)/gelatine gels were analyzed for

  18. Integrated Modules Analysis to Explore the Molecular Mechanisms of Phlegm-Stasis Cementation Syndrome with Ischemic Heart Disease

    Science.gov (United States)

    Xu, Wei-Ming; Yang, Kuo; Jiang, Li-Jie; Hu, Jing-Qing; Zhou, Xue-Zhong

    2018-01-01

    Background: Ischemic heart disease (IHD) has been the leading cause of death for several decades globally, IHD patients usually hold the symptoms of phlegm-stasis cementation syndrome (PSCS) as significant complications. However, the underlying molecular mechanisms of PSCS complicated with IHD have not yet been fully elucidated. Materials and Methods: Network medicine methods were utilized to elucidate the underlying molecular mechanisms of IHD phenotypes. Firstly, high-quality IHD-associated genes from both human curated disease-gene association database and biomedical literatures were integrated. Secondly, the IHD disease modules were obtained by dissecting the protein-protein interaction (PPI) topological modules in the String V9.1 database and the mapping of IHD-associated genes to the PPI topological modules. After that, molecular functional analyses (e.g., Gene Ontology and pathway enrichment analyses) for these IHD disease modules were conducted. Finally, the PSCS syndrome modules were identified by mapping the PSCS related symptom-genes to the IHD disease modules, which were further validated by both pharmacological and physiological evidences derived from published literatures. Results: The total of 1,056 high-quality IHD-associated genes were integrated and evaluated. In addition, eight IHD disease modules (the PPI sub-networks significantly relevant to IHD) were identified, in which two disease modules were relevant to PSCS syndrome (i.e., two PSCS syndrome modules). These two modules had enriched pathways on Toll-like receptor signaling pathway (hsa04620) and Renin-angiotensin system (hsa04614), with the molecular functions of angiotensin maturation (GO:0002003) and response to bacterium (GO:0009617), which had been validated by classical Chinese herbal formulas-related targets, IHD-related drug targets, and the phenotype features derived from human phenotype ontology (HPO) and published biomedical literatures. Conclusion: A network medicine

  19. A functional network module for Smith-Magenis syndrome.

    Science.gov (United States)

    Girirajan, S; Truong, H T; Blanchard, C L; Elsea, S H

    2009-04-01

    Disorders with overlapping diagnostic features are grouped into a network module. Based on phenotypic similarities or differential diagnoses, it is possible to identify functional pathways leading to individual features. We generated a Smith-Magenis syndrome (SMS)-specific network module utilizing patient clinical data, text mining from the Online Mendelian Inheritance in Man database, and in vitro functional analysis. We tested our module by functional studies based on a hypothesis that RAI1 acts through phenotype-specific pathways involving several downstream genes, which are altered due to RAI1 haploinsufficiency. A preliminary genome-wide gene expression study was performed using microarrays on RAI1 haploinsufficient cells created by RNAi-based approximately 50% knockdown of RAI1 in HEK293T cells. The top dysregulated genes were involved in growth signaling and insulin sensitivity, neuronal differentiation, lipid biosynthesis and fat mobilization, circadian activity, behavior, renal, cardiovascular and skeletal development, gene expression, and cell-cycle regulation and recombination, reflecting the spectrum of clinical features observed in SMS. Validation using real-time quantitative reverse transcriptase polymerase chain reaction confirmed the gene expression profile of 75% of the selected genes analyzed in both HEK293T RAI1 knockdown cells and SMS lymphoblastoid cell lines. Overall, these data support a method for identifying genes and pathways responsible for individual clinical features in a complex disorder such as SMS.

  20. The modulator protein dissociates the catalytic subunit of hepatic protein phosphatase G from glycogen.

    OpenAIRE

    Bollen, M; Stalmans, W

    1988-01-01

    1. The phosphorylase phosphatase and glycogen-synthase phosphatase activities associated with the glycogen particles from rat liver were progressively inhibited by incubation with modulator protein. However, the phosphorylase phosphatase activity of the catalytic subunit was entirely recovered after destruction of the modulator and the regulatory subunit(s) by trypsin. 2. Inhibition of protein phosphatase G by modulator was associated with a translocation of the phosphorylase phosphatase acti...

  1. Plasma protein haptoglobin modulates renal iron loading

    DEFF Research Database (Denmark)

    Fagoonee, Sharmila; Gburek, Jakub; Hirsch, Emilio

    2005-01-01

    distribution of hemoglobin in haptoglobin-deficient mice resulted in abnormal iron deposits in proximal tubules during aging. Moreover, iron also accumulated in proximal tubules after renal ischemia-reperfusion injury or after an acute plasma heme-protein overload caused by muscle injury, without affecting...... morphological and functional parameters of renal damage. These data demonstrate that haptoglobin crucially prevents glomerular filtration of hemoglobin and, consequently, renal iron loading during aging and following acute plasma heme-protein overload....

  2. Renal Fanconi syndrome with ultrastructural defects in lysinuric protein intolerance

    NARCIS (Netherlands)

    Benninga, M. A.; Lilien, M.; de Koning, T. J.; Duran, M.; Versteegh, F. G. A.; Goldschmeding, R.; Poll-The, B. T.

    2007-01-01

    Renal Fanconi syndrome developed rapidly in a 3-year-old Moroccan girl with established lysinuric protein intolerance. She was hospitalized because of lowered consciousness, uncoordinated movements and hepatosplenomegaly after a febrile period. Laboratory investigations revealed plasma ammonia 270

  3. Protein source in a high-protein diet modulates reductions in insulin resistance and hepatic steatosis in fa/fa Zucker rats.

    Science.gov (United States)

    Wojcik, Jennifer L; Devassy, Jessay G; Wu, Yinghong; Zahradka, Peter; Taylor, Carla G; Aukema, Harold M

    2016-01-01

    High-protein diets are being promoted to reduce insulin resistance and hepatic steatosis in metabolic syndrome. Therefore, the effect of protein source in high-protein diets on reducing insulin resistance and hepatic steatosis was examined. Fa/fa Zucker rats were provided normal-protein (15% of energy) casein, high-protein (35% of energy) casein, high-protein soy, or high-protein mixed diets with animal and plant proteins. The high-protein mixed diet reduced area under the curve for insulin during glucose tolerance testing, fasting serum insulin and free fatty acid concentrations, homeostatic model assessment index, insulin to glucose ratio, and pancreatic islet cell area. The high-protein mixed and the high-protein soy diets reduced hepatic lipid concentrations, liver to body weight ratio, and hepatic steatosis rating. These improvements were observed despite no differences in body weight, feed intake, or adiposity among high-protein diet groups. The high-protein casein diet had minimal benefits. A high-protein mixed diet was the most effective for modulating reductions in insulin resistance and hepatic steatosis independent of weight loss, indicating that the source of protein within a high-protein diet is critical for the management of these metabolic syndrome parameters. © 2015 The Obesity Society.

  4. Sex hormones in the modulation of irritable bowel syndrome.

    Science.gov (United States)

    Mulak, Agata; Taché, Yvette; Larauche, Muriel

    2014-03-14

    Compelling evidence indicates sex and gender differences in epidemiology, symptomatology, pathophysiology, and treatment outcome in irritable bowel syndrome (IBS). Based on the female predominance as well as the correlation between IBS symptoms and hormonal status, several models have been proposed to examine the role of sex hormones in gastrointestinal (GI) function including differences in GI symptoms expression in distinct phases of the menstrual cycle, in pre- and post-menopausal women, during pregnancy, hormonal treatment or after oophorectomy. Sex hormones may influence peripheral and central regulatory mechanisms of the brain-gut axis involved in the pathophysiology of IBS contributing to the alterations in visceral sensitivity, motility, intestinal barrier function, and immune activation of intestinal mucosa. Sex differences in stress response of the hypothalamic-pituitary-adrenal axis and autonomic nervous system, neuroimmune interactions triggered by stress, as well as estrogen interactions with serotonin and corticotropin-releasing factor signaling systems are being increasingly recognized. A concept of "microgenderome" related to the potential role of sex hormone modulation of the gut microbiota is also emerging. Significant differences between IBS female and male patients regarding symptomatology and comorbidity with other chronic pain syndromes and psychiatric disorders, together with differences in efficacy of serotonergic medications in IBS patients confirm the necessity for more sex-tailored therapeutic approach in this disorder.

  5. Deciphering peculiar protein-protein interacting modules in Deinococcus radiodurans

    Directory of Open Access Journals (Sweden)

    Barkallah Insaf

    2009-04-01

    Full Text Available Abstract Interactomes of proteins under positive selection from ionizing-radiation-resistant bacteria (IRRB might be a part of the answer to the question as to how IRRB, particularly Deinococcus radiodurans R1 (Deira, resist ionizing radiation. Here, using the Database of Interacting Proteins (DIP and the Protein Structural Interactome (PSI-base server for PSI map, we have predicted novel interactions of orthologs of the 58 proteins under positive selection in Deira and other IRRB, but which are absent in IRSB. Among these, 18 domains and their interactomes have been identified in DNA checkpoint and repair; kinases pathways; energy and nucleotide metabolisms were the important biological processes that were found to be involved. This finding provides new clues to the cellular pathways that can to be important for ionizing-radiation resistance in Deira.

  6. Pneumonia, Acute Respiratory Distress Syndrome, and Early Immune-Modulator Therapy

    Directory of Open Access Journals (Sweden)

    Kyung-Yil Lee

    2017-02-01

    Full Text Available Acute respiratory distress syndrome (ARDS is caused by infectious insults, such as pneumonia from various pathogens or related to other noninfectious events. Clinical and histopathologic characteristics are similar across severely affected patients, suggesting that a common mode of immune reaction may be involved in the immunopathogenesis of ARDS. There may be etiologic substances that have an affinity for respiratory cells and induce lung cell injury in cases of ARDS. These substances originate not only from pathogens, but also from injured host cells. At the molecular level, these substances have various sizes and biochemical characteristics, classifying them as protein substances and non-protein substances. Immune cells and immune proteins may recognize and act on these substances, including pathogenic proteins and peptides, depending upon the size and biochemical properties of the substances (this theory is known as the protein-homeostasis-system hypothesis. The severity or chronicity of ARDS depends on the amount of etiologic substances with corresponding immune reactions, the duration of the appearance of specific immune cells, or the repertoire of specific immune cells that control the substances. Therefore, treatment with early systemic immune modulators (corticosteroids and/or intravenous immunoglobulin as soon as possible may reduce aberrant immune responses in the potential stage of ARDS.

  7. Dynamic protein interaction modules in human hepatocellular carcinoma progression.

    Science.gov (United States)

    Yu, Hui; Lin, Chen-Ching; Li, Yuan-Yuan; Zhao, Zhongming

    2013-01-01

    Gene expression profiles have been frequently integrated with the human protein interactome to uncover functional modules under specific conditions like disease state. Beyond traditional differential expression analysis, differential co-expression analysis has emerged as a robust approach to reveal condition-specific network modules, with successful applications in a few human disease studies. Hepatocellular carcinoma (HCC), which is often interrelated with the Hepatitis C virus, typically develops through multiple stages. A comprehensive investigation of HCC progression-specific differential co-expression modules may advance our understanding of HCC's pathophysiological mechanisms. Compared with differentially expressed genes, differentially co-expressed genes were found more likely enriched with Hepatitis C virus binding proteins and cancer-mutated genes, and they were clustered more densely in the human reference protein interaction network. These observations indicated that a differential co-expression approach could outperform the standard differential expression network analysis in searching for disease-related modules. We then proposed a differential co-expression network approach to uncover network modules involved in HCC development. Specifically, we discovered subnetworks that enriched differentially co-expressed gene pairs in each HCC transition stage, and further resolved modules with coherent co-expression change patterns over all HCC developmental stages. Our identified network modules were enriched with HCC-related genes and implicated in cancer-related biological functions. In particular, APC and YWHAZ were highlighted as two most remarkable genes in the network modules, and their dynamic interaction partnership was resolved in HCC development. We demonstrated that integration of differential co-expression with the protein interactome could outperform the traditional differential expression approach in discovering network modules of human diseases

  8. Translational Modulation of Proteins Expressed from Bicistronic Vectors

    Directory of Open Access Journals (Sweden)

    Prasun J. Mishra

    2009-11-01

    Full Text Available Bicistronic vectors are useful tools for exogenous expression of two gene products from a single promoter element; however, reduced expression of protein from the second cistron compared with the first cistron is a common limitation to this approach. To overcome this limitation, we explored use of dihydrofolate reductase (DHFR complementary DNA encoded in bicistronic vectors to induce a second protein of interest by methotrexate (MTX treatment. Previous studies have demonstrated that levels of DHFR protein and DHFR fusion protein can be induced translationally following MTX treatment of cells. We demonstrated that in response to MTX treatment, DHFR partner protein in a bicistronic construct is induced for longer periods of time when compared with endogenous DHFR and DHFR fusion protein, in vitro and in vivo. Using rapamycin pretreatment followed by MTX treatment, we also devised a strategy to modulate levels of two proteins expressed from a bicistronic construct in a cap-independent manner. To our knowledge, this is the first report demonstrating that levels of proteins in DHFR-based bicistronic constructs can be induced and modulated using MTX and rapamycin treatment.

  9. Evaluating Modulators of ‘Regulator of G-protein Signaling’ (RGS) Proteins

    Science.gov (United States)

    Bosch, Dustin E.; Zielinski, Thomas; Lowery, Robert G.; Siderovski, David P.

    2012-01-01

    ‘Regulator of G-protein Signaling’ (RGS) proteins constitute a class of intracellular signaling regulators that accelerate GTP hydrolysis by heterotrimeric Gα subunits. In recent years, RGS proteins have emerged as potential drug targets for small molecule modulation. Described in this unit are high-throughput screening procedures for identifying modulators of RGS protein-mediated GTPase acceleration (‘GAP activity’), for assessment of RGS domain/Gα interactions (most avid in vitro when Gα is bound by aluminum tetrafluoride), and for validation of candidate GAP-modulatory molecules with the single turnover GTP hydrolysis assay. PMID:22382998

  10. Analysis of peripheral amyloid precursor protein in Angelman Syndrome.

    Science.gov (United States)

    Erickson, Craig A; Wink, Logan K; Baindu, Bayon; Ray, Balmiki; Schaefer, Tori L; Pedapati, Ernest V; Lahiri, Debomoy K

    2016-09-01

    Angelman Syndrome is a rare neurodevelopmental disorder associated with significant developmental and communication delays, high risk for epilepsy, motor dysfunction, and a characteristic behavioral profile. While Angelman Syndrome is known to be associated with the loss of maternal expression of the ubiquitin-protein ligase E3A gene, the molecular sequelae of this loss remain to be fully understood. Amyloid precursor protein (APP) is involved in neuronal development and APP dysregulation has been implicated in the pathophysiology of other developmental disorders including fragile X syndrome and idiopathic autism. APP dysregulation has been noted in preclinical model of chromosome 15q13 duplication, a disorder whose genetic abnormality results in duplication of the region that is epigenetically silenced in Angelman Syndrome. In this duplication model, APP levels have been shown to be significantly reduced leading to the hypothesis that enhanced ubiquitin-protein ligase E3A expression may be associated with this phenomena. We tested the hypothesis that ubiquitin-protein ligase E3A regulates APP protein levels by comparing peripheral APP and APP derivative levels in humans with Angelman Syndrome to those with neurotypical development. We report that APP total, APP alpha (sAPPα) and A Beta 40 and 42 are elevated in the plasma of humans with Angelman Syndrome compared to neurotypical matched human samples. Additionally, we found that elevations in APP total and sAPPα correlated positively with peripheral brain derived neurotrophic factor levels previously reported in this same patient cohort. Our pilot report on APP protein levels in Angelman Syndrome warrants additional exploration and may provide a molecular target of treatment for the disorder. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Growing functional modules from a seed protein via integration of protein interaction and gene expression data

    Directory of Open Access Journals (Sweden)

    Dimitrakopoulou Konstantina

    2007-10-01

    Full Text Available Abstract Background Nowadays modern biology aims at unravelling the strands of complex biological structures such as the protein-protein interaction (PPI networks. A key concept in the organization of PPI networks is the existence of dense subnetworks (functional modules in them. In recent approaches clustering algorithms were applied at these networks and the resulting subnetworks were evaluated by estimating the coverage of well-established protein complexes they contained. However, most of these algorithms elaborate on an unweighted graph structure which in turn fails to elevate those interactions that would contribute to the construction of biologically more valid and coherent functional modules. Results In the current study, we present a method that corroborates the integration of protein interaction and microarray data via the discovery of biologically valid functional modules. Initially the gene expression information is overlaid as weights onto the PPI network and the enriched PPI graph allows us to exploit its topological aspects, while simultaneously highlights enhanced functional association in specific pairs of proteins. Then we present an algorithm that unveils the functional modules of the weighted graph by expanding a kernel protein set, which originates from a given 'seed' protein used as starting-point. Conclusion The integrated data and the concept of our approach provide reliable functional modules. We give proofs based on yeast data that our method manages to give accurate results in terms both of structural coherency, as well as functional consistency.

  12. Proteomic analysis of differentially expressed proteins in Fenneropenaeus chinensis hemocytes upon white spot syndrome virus infection.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available To elucidate molecular responses of shrimp hemocytes to white spot syndrome virus (WSSV infection, two-dimensional gel electrophoresis was applied to investigate differentially expressed proteins in hemocytes of Chinese shrimp (Fenneropenaeus chinensis at 24 h post infection (hpi. Approximately 580 protein spots were detected in hemocytes of healthy and WSSV-infected shrimps. Quantitative intensity analysis revealed 26 protein spots were significantly up-regulated, and 19 spots were significantly down-regulated. By mass spectrometry, small ubiquitin-like modifier (SUMO 1, cytosolic MnSOD, triosephosphate isomerase, tubulin alpha-1 chain, microtubule-actin cross-linking factor 1, nuclear receptor E75 protein, vacuolar ATP synthase subunit B L form, inositol 1,4,5-trisphosphate receptor, arginine kinase, etc., amounting to 33 differentially modulated proteins were identified successfully. According to Gene Ontology annotation, the identified proteins were classified into nine categories, consisting of immune related proteins, stimulus response proteins, proteins involved in glucose metabolic process, cytoskeleton proteins, DNA or protein binding proteins, proteins involved in steroid hormone mediated signal pathway, ATP synthases, proteins involved in transmembrane transport and ungrouped proteins. Meanwhile, the expression profiles of three up-regulated proteins (SUMO, heat shock protein 70, and arginine kinase and one down-regulated protein (prophenoloxidase were further analyzed by real-time RT-PCR at the transcription level after WSSV infection. The results showed that SUMO and heat shock protein 70 were significantly up-regulated at each sampling time point, while arginine kinase was significantly up-regulated at 12 and 24 hpi. In contrast, prophenoloxidase was significantly down-regulated at each sampling time point. The results of this work provided preliminary data on proteins in shrimp hemocytes involved in WSSV infection.

  13. Distribution of Wfs1 protein in the central nervous system of the mouse and its relation to clinical symptoms of the Wolfram syndrome

    DEFF Research Database (Denmark)

    Luuk, H.; Koks, S.; Plaas, M.

    2008-01-01

    Mutations in the coding region of the WFS1 gene cause Wolfram syndrome, a rare multisystem neurodegenerative disorder of autosomal recessive inheritance. Patients with Wolfram syndrome display considerable clinical pleiomorphism, and symptoms such as neurological complications and psychiatric...... and psychiatric symptoms found in Wolfram syndrome. Enrichment of Wfs1 protein in the central extended amygdala suggests a role in the modulation of anxiety and fear Udgivelsesdato: 2008/8/20...

  14. Roles of Werner syndrome protein in protection of genome integrity

    DEFF Research Database (Denmark)

    Rossi, Marie L; Ghosh, Avik K; Bohr, Vilhelm A

    2010-01-01

    Werner syndrome protein (WRN) is one of a family of five human RecQ helicases implicated in the maintenance of genome stability. The conserved RecQ family also includes RecQ1, Bloom syndrome protein (BLM), RecQ4, and RecQ5 in humans, as well as Sgs1 in Saccharomyces cerevisiae, Rqh1...... in Schizosaccharomyces pombe, and homologs in Caenorhabditis elegans, Xenopus laevis, and Drosophila melanogaster. Defects in three of the RecQ helicases, RecQ4, BLM, and WRN, cause human pathologies linked with cancer predisposition and premature aging. Mutations in the WRN gene are the causative factor of Werner...

  15. Distribution in rat tissues of modulator-binding protein of particulate nature

    International Nuclear Information System (INIS)

    Sobue, K.; Muramoto, Y.; Kakiuchi, S.; Yamazaki, R.

    1979-01-01

    Studies on Ca 2+ -activatable cyclic nucleotide phosphodiesterase led to the discovery of a protein modulator that is required for the activation of this enzyme by Ca 2+ . Later, this protein has been shown to cause the Ca 2+ -dependent activation of several enzymes that include phosphodiesterase, adenylate cyclase, a protein kinase from muscles, phosphorylase b kinase, actomyosin ATPase, membranous ATPase from erythrocytes and nerve synapses. Thus, modulator protein appears to be an intracellular mediator of actions of Ca 2+ . The present work shows the distribution of this particulate modulator-binding component in rat tissues. This paper also describes the labeling of modulator protein with tritium without deteriorating its biological activities and application of this 3 H-modulator protein to the determination of the Ca ++ dependent binding of modulator protein with membranous protein. This technique proves to be useful in studying enzymes or proteins whose functions are regulated by Ca ++ /modulator protein system. (Auth.)

  16. Influenza pathogenesis: mechanisms of modulation by agent proteins

    Directory of Open Access Journals (Sweden)

    M. Yu. Shchelkanov

    2015-01-01

    Full Text Available Modern concepts of the influence of the proteins from viruses-etiological agents of flu – Influenzavirus A, B and C (Orthomyxoviridae – on the development of different elements of the main disease pathogenesis are analyzed in the review. In particular, the short description of life cycle of Influenza viruses is alleguered with special attention to those its stages which are capable to modulate pathogenetic mechanisms. The interrelation between the structure of hemagglutinin receptor-binding site and virus tropism as well as the influence of the receptor-destroying virus proteins on this phenomenon is described. The mechanism of suppression of interferon production in the infected cell by virus NS1 protein is presented. The induction of apoptosis by nonstructural PB1-F2 protein of Influenza A virusis described. 

  17. Synaptosomal protein synthesis is selectively modulated by learning.

    Science.gov (United States)

    Eyman, Maria; Cefaliello, Carolina; Ferrara, Eugenia; De Stefano, Rosanna; Crispino, Marianna; Giuditta, Antonio

    2007-02-09

    Synaptosomes from rat brain have long been used to investigate the properties of synaptic protein synthesis. Comparable analyses have now been made in adult male rats trained for a two-way active avoidance task to examine the hypothesis of its direct participation in brain plastic events. Using Ficoll-purified synaptosomes from neocortex, hippocampus and cerebellum, our data indicate that the capacity of synaptosomal protein synthesis and the specific activity of newly synthesized proteins were not different in trained rats in comparison with home-caged control rats. On the other hand, the synthesis of two proteins of 66.5 kDa and 87.6 kDa separated by SDS-PAGE and analyzed by quantitative densitometry was selectively enhanced in trained rats. In addition, the synthesis of the 66.5 kDa protein, but not of the 87.6 kDa protein, correlated with avoidances and escapes and inversely correlated with freezings in the neocortex, while in the cerebellum it correlated with avoidances and escapes. The data demonstrate the participation of synaptic protein synthesis in plastic events of behaving rats, and the selective, region-specific modulation of the synthesis of a synaptic 66.5 kDa protein by the newly acquired avoidance response and by the reprogramming of innate neural circuits subserving escape and freezing responses.

  18. Food protein-induced enterocolitis syndrome: pitfalls in the diagnosis.

    Science.gov (United States)

    Guibas, George V; Tsabouri, Sophia; Makris, Michael; Priftis, Kostas N

    2014-11-01

    Food protein-induced enterocolitis syndrome (FPIES) represents the severe end of the spectrum of gastrointestinal food hypersensitivity; its acute episodes can culminate in severe dehydration and hypovolemic shock, and its chronic form entails considerable morbidity associated with feeding difficulty and failure to thrive. Nevertheless, awareness for this syndrome remains rather low. Many factors hamper the establishment of FPIES diagnosis. Such factors pertain to the pathophysiological mechanism of the syndrome, causal food proteins, clinical manifestations, diagnostic procedures, differential diagnosis considerations, and prevailing perceptions which may require critical appraisal. Throughout this review, we will present and discuss these issues and put the focus on factors that could lead to under-diagnosis of FPIES, cause numerous acute episodes, and substantially increase the diseases morbidity and financial burden. We will also address other issues that are clinically relevant to FPIES. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Molecular tweezers modulate 14-3-3 protein-protein interactions

    Science.gov (United States)

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins—a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)—in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions.

  20. Multiple proteins of White spot syndrome virus involved in ...

    Indian Academy of Sciences (India)

    The recognition and attachment of virus to its host cell surface is a critical step for viral infection. Recent research revealed that -integrin was involved in White spot syndrome virus (WSSV) infection. In this study, the interaction of -integrin with structure proteins of WSSV and motifs involved in WSSV infection was ...

  1. Immune modulation by the hepatitis C virus core protein.

    Science.gov (United States)

    Fernández-Ponce, C; Dominguez-Villar, M; Muñoz-Miranda, J P; Arbulo-Echevarria, M M; Litrán, R; Aguado, E; García-Cozar, F

    2017-05-01

    Hepatitis C virus (HCV) infection is currently the most important cause of chronic viral hepatitis in the world and one of the most frequent indications for liver transplantation. HCV uses different strategies to evade the innate and adaptive immune response, and this evasion plays a key role in determining viral persistence. Several HCV viral proteins have been described as immune modulators. In this review, we will focus on the effect of HCV nucleocapsid core protein in the function of immune cells and its correlation with the findings observed in HCV chronically infected patients. Effects on immune cell function related to both extracellular and intracellular HCV core localization will be considered. This review provides an updated perspective on the mechanisms involved in HCV evasion related to one single HCV protein, which could become a key tool in the development of new antiviral strategies able to control and/or eradicate HCV infection. © 2017 John Wiley & Sons Ltd.

  2. Training old rats selectively modulates synaptosomal protein synthesis.

    Science.gov (United States)

    Eyman, Maria; Cefaliello, Carolina; Mandile, Paola; Piscopo, Stefania; Crispino, Marianna; Giuditta, Antonio

    2013-01-01

    We have previously shown that the local synthesis of two synaptic proteins of 66.5-kDa and 87.6-kDa is selectively enhanced in male adult rats trained for a two-way active avoidance task. We report here that a comparable but not identical response occurs in 2-year-old male rats trained for the same task. In the latter age group, the local synthesis of the 66.5-kDa protein markedly increases in cerebral cortex, brainstem, and cerebellum, with a somewhat lower increment in synthesis of the 87.6-kDa protein. On the other hand, the newly synthesized 87.6-kDa protein correlates with avoidances and escapes and inversely correlates with freezings in cerebral cortex and brainstem, whereas the correlations of the newly synthesized 66.5-kDa protein remain below significance. These correlative patterns are sharply at variance with those present in trained adult rats. Our data confirm that the local system of synaptic protein synthesis is selectively modulated by training and show that the synaptic response of old rats differs from that of adult rats as reflected in behavioral responses. Copyright © 2012 Wiley Periodicals, Inc.

  3. Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules

    OpenAIRE

    Zhu, Jinwei; Shang, Yuan; Xia, Caihao; Wang, Wenning; Wen, Wenyu; Zhang, Mingjie

    2011-01-01

    Membrane-associated guanylate kinases (MAGUK) family proteins contain an inactive guanylate kinase (GK) domain, whose function has been elusive. Here, this domain is revealed as a new type of phospho-peptide-binding module, in which the GMP-binding site has evolved to accommodate phospho-serines or -threonines.

  4. Role of distinct phospholipases A2 and their modulators in meconium aspiration syndrome in human neonates.

    Science.gov (United States)

    De Luca, Daniele; Minucci, Angelo; Tripodi, Domenico; Piastra, Marco; Pietrini, Domenico; Zuppi, Cecilia; Conti, Giorgio; Carnielli, Virgilio P; Capoluongo, Ettore

    2011-07-01

    Meconium aspiration syndrome (MAS) is a life-threatening neonatal lung injury, whose pathophysiology has been mainly studied in animal models. In such models, pancreatic secretory phospholipase A2 (sPLA2-IB) and proinflammatory cytokines present in meconium challenge the lungs, catabolising surfactant and harming the alveoli. Locally produced phospholipases might perpetuate the injury and influence clinical pictures and therapeutic approaches. Our aim is to verify whether pulmonary phospholipase A2 (sPLA2-IIA) is involved in the damage and to determine if phospholipases and their modulators are associated with MAS clinical pictures. We studied distinct phospholipases A2 and their modulators in broncho-alveolar lavage (BAL) fluids and in meconium of five MAS neonates and in five control neonates ventilated for extrapulmonary reasons. MAS patients have higher amounts of pulmonary phospholipase (sPLA2-IIA; P = 0.016) and Clara cell secretory protein (CCSP; P = 0.032). The local production of such proteins by the lung is confirmed by their very low levels in meconium. sPLA2-IIA contributes to the higher total enzyme activity in MAS patients, as compared to controls (P = 0.008). Cytosolic phospholipase was not detected in meconium or alveolar fluid. sPLA2 activity and sPLA2-IIA concentrations are correlated with the TNFα and with the release of CCSP. sPLA2 total activity, sPLA2-IIA and TNFα concentrations in BAL fluids correlate with the oxygenation impairment and haemorrhagic lung oedema. Pulmonary sPLA2 is locally produced and contributes to the total sPLA2 activity during MAS. CCSP is also produced in trying to lower the inflammation. Both sPLA2 activity and sPLA2-IIA are significantly correlated with oxygenation impairment and haemorrhagic lung oedema.

  5. Associations of Dietary Protein and Energy Intakes With Protein-Energy Wasting Syndrome in Hemodialysis Patients.

    Science.gov (United States)

    Beddhu, Srinivasan; Wei, Guo; Chen, Xiaorui; Boucher, Robert; Kiani, Rabia; Raj, Dominic; Chonchol, Michel; Greene, Tom; Murtaugh, Maureen A

    2017-09-01

    The associations of dietary protein and/or energy intakes with protein or energy wasting in patients on maintenance hemodialysis are controversial. We examined these in the Hemodialysis (HEMO) Study. In 1487 participants in the HEMO Study, baseline dietary protein intake (grams per kilogram per day) and dietary energy intake (kilocalories per kilograms per day) were related to the presence of the protein-energy wasting (PEW) syndrome at month 12 (defined as the presence of at least 1 criteria in 2 of the 3 categories of low serum chemistry, low body mass, and low muscle mass) in logistic regression models. In additional separate models, protein intake estimated from equilibrated normalized protein catabolic rate (enPCR) was also related to the PEW syndrome. Compared with the lowest quartile, the highest quartile of baseline dietary protein intake was paradoxically associated with increased risk of the PEW syndrome at month 12 (odds ratio [OR]: 4.11; 95% confidence interval [CI]: 2.79-6.05). This relationship was completely attenuated (OR: 1.35; 95% CI: 0.88-2.06) with adjustment for baseline body weight, which suggested mathematical coupling. Results were similar for dietary energy intake. Compared with the lowest quartile of baseline enPCR, the highest quartile was not associated with the PEW syndrome at 12 months (OR: 0.78; 95% CI: 0.54-1.12). These data do not support the use of dietary protein intake or dietary energy intake criteria in the definition of the PEW syndrome in patients on maintenance hemodialysis.

  6. Modulating carbohydrate–protein interactions through glycoengineering of monoclonal antibodies to impact cancer physiology

    DEFF Research Database (Denmark)

    Chiang, Austin W.T.; Li, Shangzhong; Spahn, Philipp N.

    2016-01-01

    Diverse glycans on proteins impact cell and organism physiology, along with drug activity. Since many protein-based biotherapeutics are glycosylated and these glycans have biological activity, there is a desire to engineer glycosylation for recombinant protein-based biotherapeutics. Engineered...... glycosylation can impact the recombinant protein efficacy and also influence many cell pathways by first changing glycan–protein interactions and consequently modulating disease physiologies. However, its complexity is enormous. Recent advances in glycoengineering now make it easier to modulate protein...

  7. C2 Domains as Protein-Protein Interaction Modules in the Ciliary Transition Zone

    Directory of Open Access Journals (Sweden)

    Kim Remans

    2014-07-01

    Full Text Available RPGR-interacting protein 1 (RPGRIP1 is mutated in the eye disease Leber congenital amaurosis (LCA and its structural homolog, RPGRIP1-like (RPGRIP1L, is mutated in many different ciliopathies. Both are multidomain proteins that are predicted to interact with retinitis pigmentosa G-protein regulator (RPGR. RPGR is mutated in X-linked retinitis pigmentosa and is located in photoreceptors and primary cilia. We solved the crystal structure of the complex between the RPGR-interacting domain (RID of RPGRIP1 and RPGR and demonstrate that RPGRIP1L binds to RPGR similarly. RPGRIP1 binding to RPGR affects the interaction with PDEδ, the cargo shuttling factor for prenylated ciliary proteins. RPGRIP1-RID is a C2 domain with a canonical β sandwich structure that does not bind Ca2+ and/or phospholipids and thus constitutes a unique type of protein-protein interaction module. Judging from the large number of C2 domains in most of the ciliary transition zone proteins identified thus far, the structure presented here seems to constitute a cilia-specific module that is present in multiprotein transition zone complexes.

  8. Understanding curcumin-induced modulation of protein aggregation.

    Science.gov (United States)

    Ahmad, Basir; Borana, Mohanish S; Chaudhary, Ankur P

    2017-07-01

    Curcumin, a diarylheptanoid compound, found in spice turmeric is known to alter the aggregation of proteins and reduce the toxicity of the aggregates. This review looks at the molecular basis of modulating protein aggregation and toxicity of the aggregates. Foremost, we identify the interaction of curcumin and its derivatives with proteins/peptides and the effect of their interaction on the conformational stability and unfolding/folding pathway(s). The unfolding/folding processes generate partially folded/unfolded intermediate, which serve as aggregation precursor state. Secondly, we discuss the effect of curcumin binding on the kinetics parameters of the aggregation process, which give information about the mechanism of the aggregation inhibition. We describe, in addition, that curcumin can accelerate/promote fibril formation by binding to oligomeric intermediate(s) accumulated in the aggregation pathway. Finally, we discuss the correlation of curcumin-induced monomeric and/or oligomeric precursor states with aggregate structure and toxicity. On the basis of these discussions, we propose a model describing curcumin-induced inhibition/promotion of formation of amyloid-like fibrils. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. [Glucose transporter protein type 1 (GLUT-1) deficiency syndrome].

    Science.gov (United States)

    Ramm-Pettersen, Anette; Selmer, Kaja Kristine; Nakken, Karl O

    2011-05-06

    Glucose is the brain's main source of energy. To pass the blood-brain barrier, glucose transporter protein type 1 (GLUT-1) is essential. Mutations in the SLC2A1 gene which codes for GLUT-1 may therefore compromise the supply of glucose to the brain. The aim of this review is to describe the clinical consequences of such mutations, with special emphasis on GLUT-1 encephalopathy. This review is based on a non-systematic literature search in PubMed and the authors' experience within the field. Epileptic or epilepsy-like are usually the first symptom in children with the GLUT-1 deficiency syndrome. Later on these children suffer delayed psychomotor development, microcephaly, ataxia, spasticity or movement disorders. EEG abnormalities may develop. GLUT-1 deficiency syndrome should be suspected in children with epilepsy-like seizures and delayed development combined with a low content of glucose in spinal fluid. The diagnosis is confirmed by genetic testing. Treatment is a ketogenic diet, as ketone bodies pass the blood-brain barrier using other transport proteins than GLUT-1. GLUT-1-deficiency syndrome is a rare metabolic encephalopathy which is not well known and probably underdiagnosed. An early diagnosis and early start of a ketogenic diet may give these children a normal or nearly normal life.

  10. Differential diagnosis of food protein-induced enterocolitis syndrome.

    Science.gov (United States)

    Fiocchi, Alessandro; Claps, Alessia; Dahdah, Lamia; Brindisi, Giulia; Dionisi-Vici, Carlo; Martelli, Alberto

    2014-06-01

    To assess all the possible differential diagnosis of food protein-induced enterocolitis syndrome (FPIES), both in acute and chronic presentation, reviewing the data reported in published studies. There is an increase of reported cases of FPIES in recent years. As the disease presents with nonspecific symptoms, it can be misunderstood in many ways. The differential diagnosis includes, in acute presentations, the following: sepsis, other infectious diseases, acute gastrointestinal episodes, surgical emergencies, food allergies. In its chronic forms, FPIES may mimic malabsorption syndromes, metabolic disorders, primary immunodeficiencies, neurological conditions, coagulation defects, and other types of non-IgE-mediated food allergy. A thorough clinical evaluation, including symptoms, signs, and laboratory findings, is necessary to lead the clinicians toward the diagnosis of FPIES. The major reason for delayed diagnosis appears to be the lack of knowledge of the disease.

  11. Low-carbohydrate/high-protein diet improves diastolic cardiac function and the metabolic syndrome in overweight-obese patients with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    H. von Bibra

    2014-03-01

    Conclusions: These data indicate, that a low-glycaemic/high-protein but not a low-fat/high-carbohydrate nutrition modulates diastolic dysfunction in overweight T2D patients, improves insulin resistance and may prevent or delay the onset of diabetic cardiomyopathy and the metabolic syndrome.

  12. Phenotypic Screening Identifies Modulators of Amyloid Precursor Protein Processing in Human Stem Cell Models of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Philip W. Brownjohn

    2017-04-01

    Full Text Available Summary: Human stem cell models have the potential to provide platforms for phenotypic screens to identify candidate treatments and cellular pathways involved in the pathogenesis of neurodegenerative disorders. Amyloid precursor protein (APP processing and the accumulation of APP-derived amyloid β (Aβ peptides are key processes in Alzheimer's disease (AD. We designed a phenotypic small-molecule screen to identify modulators of APP processing in trisomy 21/Down syndrome neurons, a complex genetic model of AD. We identified the avermectins, commonly used as anthelmintics, as compounds that increase the relative production of short Aβ peptides at the expense of longer, potentially more toxic peptides. Further studies demonstrated that this effect is not due to an interaction with the core γ-secretase responsible for Aβ production. This study demonstrates the feasibility of phenotypic drug screening in human stem cell models of Alzheimer-type dementia, and points to possibilities for indirectly modulating APP processing, independently of γ-secretase modulation. : In this article, Livesey and colleagues perform a phenotypic drug screen in a human stem cell model of Alzheimer's disease. The anthelminthic avermectins are identified as a family of compounds that increase the production of short Aβ peptides over longer more toxic Aβ forms. The effect is analogous to existing γ-secretase modulators, but is independent of the core γ-secretase complex. Keywords: neural stem cells, Alzheimer's disease, phenotypic screening, iPSCs, human neurons, dementia, Down syndrome, amyloid beta, ivermectin, selamectin

  13. Anti-thrombin III, Protein C, and Protein S deficiency in acute coronary syndrome

    Directory of Open Access Journals (Sweden)

    Dasnan Ismail

    2002-06-01

    Full Text Available The final most common pathway for the majority of coronary artery disease is occlusion of a coronary vessel. Under normal conditions, antithrombin III (AT III, protein C, and protein S as an active protein C cofactor, are natural anticoagulants (hemostatic control that balances procoagulant activity (thrombin antithrombin complex balance to prevent thrombosis. If the condition becomes unbalanced, natural anticoagulants and the procoagulants can lead to thrombosis. Thirty subjects with acute coronary syndrome (ACS were studied for the incidence of antithrombin III (AT III, protein C, and protein S deficiencies, and the result were compare to the control group. Among patients with ACS, the frequency of distribution of AT-III with activity < 75% were 23,3% (7 of 30, and only 6,7% ( 2 of 30 in control subject. No one of the 30 control subject have protein C activity deficient, in ACS with activity < 70% were 13,3% (4 of 30. Fifteen out of the 30 (50% control subjects had protein S activity deficiency, while protein S deficiency activity < 70% was found 73.3.% (22 out of 30. On linear regression, the deterministic coefficient of AT-III activity deficiency to the development ACS was 13,25 %, and the deterministic coefficient of protein C activity deficient to the development of ACS was 9,06 %. The cut-off point for AT-III without protein S deficiency expected to contribute to the development of vessel disease was 45%. On discriminant analysis, protein C activity deficiency posed a risk for ACS of 4,5 greater than non deficient subjects, and AT-III activity deficiency posed a risk for ACS of 3,5 times greater than non deficient subjects. On binary logistic regression, protein S activity acted only as a reinforcing factor of AT-III activity deficiency in the development of ACS. Protein C and AT III deficiency can trigger ACS, with determinant coefficients of 9,06% and 13,25% respectively. Low levels of protein C posed a greater risk of

  14. Protein modulator of multidrug efflux gene expression in Pseudomonas aeruginosa.

    Science.gov (United States)

    Daigle, Denis M; Cao, Lily; Fraud, Sebastien; Wilke, Mark S; Pacey, Angela; Klinoski, Rachael; Strynadka, Natalie C; Dean, Charles R; Poole, Keith

    2007-08-01

    nalC multidrug-resistant mutants of Pseudomonas aeruginosa show enhanced expression of the mexAB-oprM multidrug efflux system as a direct result of the production of a ca. 6,100-Da protein, PA3719, in these mutants. Using a bacterial two-hybrid system, PA3719 was shown to interact in vivo with MexR, a repressor of mexAB-oprM expression. Isothermal titration calorimetry (ITC) studies confirmed a high-affinity interaction (equilibrium dissociation constant [K(D)], 158.0 +/- 18.1 nM) of PA3719 with MexR in vitro. PA3719 binding to and formation of a complex with MexR obviated repressor binding to its operator, which overlaps the efflux operon promoter, suggesting that mexAB-oprM hyperexpression in nalC mutants results from PA3719 modulation of MexR repressor activity. Consistent with this, MexR repression of mexA transcription in an in vitro transcription assay was alleviated by PA3719. Mutations in MexR compromising its interaction with PA3719 in vivo were isolated and shown to be located internally and distributed throughout the protein, suggesting that they impacted PA3719 binding by altering MexR structure or conformation rather than by having residues interacting specifically with PA3719. Four of six mutant MexR proteins studied retained repressor activity even in a nalC strain producing PA3719. Again, this is consistent with a PA3719 interaction with MexR being necessary to obviate MexR repressor activity. The gene encoding PA3719 has thus been renamed armR (antirepressor for MexR). A representative "noninteracting" mutant MexR protein, MexR(I104F), was purified, and ITC confirmed that it bound PA3719 with reduced affinity (5.4-fold reduced; K(D), 853.2 +/- 151.1 nM). Consistent with this, MexR(I104F) repressor activity, as assessed using the in vitro transcription assay, was only weakly compromised by PA3719. Finally, two mutations (L36P and W45A) in ArmR compromising its interaction with MexR have been isolated and mapped to a putative C-terminal alpha

  15. Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production

    Energy Technology Data Exchange (ETDEWEB)

    Khunchai, Sasiprapa [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Junking, Mutita [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Suttitheptumrong, Aroonroong; Yasamut, Umpa [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Sawasdee, Nunghathai [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Netsawang, Janjuree [Faculty of Medical Technology, Rangsit University, Bangkok (Thailand); Morchang, Atthapan [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Chaowalit, Prapaipit [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Noisakran, Sansanee [Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); and others

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer For the first time how DENV NS5 increases RANTES production. Black-Right-Pointing-Pointer DENV NS5 physically interacts with human Daxx. Black-Right-Pointing-Pointer Nuclear localization of NS5 is required for Daxx interaction and RANTES production. -- Abstract: Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called 'cytokine storm', is observed in the patients with DHF/DSS. A complex interaction between DENV proteins and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.

  16. Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production

    International Nuclear Information System (INIS)

    Khunchai, Sasiprapa; Junking, Mutita; Suttitheptumrong, Aroonroong; Yasamut, Umpa; Sawasdee, Nunghathai; Netsawang, Janjuree; Morchang, Atthapan; Chaowalit, Prapaipit; Noisakran, Sansanee; Yenchitsomanus, Pa-thai

    2012-01-01

    Highlights: ► For the first time how DENV NS5 increases RANTES production. ► DENV NS5 physically interacts with human Daxx. ► Nuclear localization of NS5 is required for Daxx interaction and RANTES production. -- Abstract: Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called ‘cytokine storm’, is observed in the patients with DHF/DSS. A complex interaction between DENV proteins and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.

  17. Intestinal protein leakage in the acquired immunodeficiency syndrome.

    Science.gov (United States)

    Becker, K; Lindner, C; Frieling, T; Niederau, C; Reinauer, H; Häussinger, D

    1997-09-01

    Body wasting, protein catabolism, and hypoalbuminemia are complicating features of the acquired immunodeficiency syndrome (AIDS). Given their multifactorial causes, the contributing role of intestinal protein loss has not yet been fully elucidated. To quantify enteric protein leakage, determination of fecal alpha 1-antitrypsin (AAT) excretion has been established as an accurate and reliable endogenous marker. We estimated AAT concentration by standard immune nephelometry in duplicate random stool samples of 49 patients with AIDS, and we compared it to that of 43 patients with chronic inflammatory bowel disease and to 34 healthy controls. When compared with healthy persons, patients with AIDS had increased fecal AAT excretion regardless of current opportunistic intestinal infections and fecal AAT excretion similar to that of patients with quiescent chronic inflammatory bowel disease. The ratio of fecal and serum AAT concentration was not different between AIDS patients and healthy controls, although it was consistently increased in those with chronic inflammatory bowel disease. Significant intestinal protein leakage occurs in patients with AIDS, probably due to primary impairment of gut permeability. Enteric protein loss may be an important feature of human immunodeficiency virus-associated enteropathy with altered mucosal barrier function.

  18. Negative Allosteric Modulation of mGluR5 Partially Corrects Pathophysiology in a Mouse Model of Rett Syndrome.

    Science.gov (United States)

    Tao, Jifang; Wu, Hao; Coronado, Amanda A; de Laittre, Elizabeth; Osterweil, Emily K; Zhang, Yi; Bear, Mark F

    2016-11-23

    Rett syndrome (RTT) is caused by mutations in the gene encoding methyl-CpG binding protein 2 (MECP2), an epigenetic regulator of mRNA transcription. Here, we report a test of the hypothesis of shared pathophysiology of RTT and fragile X, another monogenic cause of autism and intellectual disability. In fragile X, the loss of the mRNA translational repressor FMRP leads to exaggerated protein synthesis downstream of metabotropic glutamate receptor 5 (mGluR5). We found that mGluR5- and protein-synthesis-dependent synaptic plasticity were similarly altered in area CA1 of Mecp2 KO mice. CA1 pyramidal cell-type-specific, genome-wide profiling of ribosome-bound mRNAs was performed in wild-type and Mecp2 KO hippocampal CA1 neurons to reveal the MeCP2-regulated "translatome." We found significant overlap between ribosome-bound transcripts overexpressed in the Mecp2 KO and FMRP mRNA targets. These tended to encode long genes that were functionally related to either cytoskeleton organization or the development of neuronal connectivity. In the Fmr1 KO mouse, chronic treatment with mGluR5-negative allosteric modulators (NAMs) has been shown to ameliorate many mutant phenotypes by correcting excessive protein synthesis. In Mecp2 KO mice, we found that mGluR5 NAM treatment significantly reduced the level of overexpressed ribosome-associated transcripts, particularly those that were also FMRP targets. Some Rett phenotypes were also ameliorated by treatment, most notably hippocampal cell size and lifespan. Together, these results suggest a potential mechanistic link between MeCP2-mediated transcription regulation and mGluR5/FMRP-mediated protein translation regulation through coregulation of a subset of genes relevant to synaptic functions. Altered regulation of synaptic protein synthesis has been hypothesized to contribute to the pathophysiology that underlies multiple forms of intellectual disability and autism spectrum disorder. Here, we show in a mouse model of Rett syndrome

  19. [Lumbar post-laminectomy syndrome: II. Pain management using neuro-modulation techniques].

    Science.gov (United States)

    Robaina Padrón, F J

    2008-02-01

    The application of neuro-modulation techniques in general is currently gaining acceptance in various aspects of medicine. Neuro-modulation is defined as: "Therapeutical interventions using implantable devices to modify the functioning of central, peripheral and autonomic nervous systems". Following lumbar disc surgery, or lumbar spine surgery in general, several chronic pain syndromes can result, either in the lumbar region and/or in the lower limbs. The current status is for the application of surgery to the degenerative spine (degenerative disc disease and lumbar stenosis) for the relief of chronic pain. A review of the methodology of evidence based medicine, show that the instrumented and fusion techniques are not the answered despite 20 years of the use of these techniques following failure of surgery for the relief of back pain syndrome. Neuro-modulation techniques represent a step in the right direction for the management of these chronic pain syndromes. Frequently they enable the resolution of chronic pain following spine surgery without having to resort to repeat surgery. We describe here the different neuro-modulation techniques (spinal cord stimulation, spinal drug infusions) which can be used in the case of back surgery failure, and we describe technical aspects and "tricks of the trade" for the correct implantation of the devices used in techniques. Neuro-modulation techniques are applied to the management of chronic pain following disc surgery and represent a valid alternative to repeat surgery and/or arthrodesis (instrumented or not). Neurosurgeons are again called to play active roles in the field of neuro-modulation for the treatment.

  20. Proteostasis Modulators Prolong Missense VHL Protein Activity and Halt Tumor Progression

    Directory of Open Access Journals (Sweden)

    Chunzhang Yang

    2013-01-01

    Full Text Available Although missense mutations of the von Hippel-Lindau disease (VHL gene are the most common germline mutation underlying this heritable cancer syndrome, the mechanism of tumorigenesis is unknown. We found a quantitative reduction of missense mutant VHL protein (pVHL in tumors associated with physiologic mRNA expression. Although mutant pVHL is unstable and degraded contemporarily with translation, it retains its E3 ligase function, including hypoxia-inducible factor degradation. The premature pVHL degradation is due to misfolding and imbalance of chaperonin binding. Histone deacetylase inhibitors (HDACIs can modulate this pathway by inhibiting the HDAC-Hsp90 chaperone axis, stabilizing pVHL, and restoring activity comparable to wild-type protein, both in vitro and in animal models. Furthermore, HDACI-mediated stabilization of missense pVHL significantly attenuates the growth of 786-O rodent tumor model. These findings provide direct biological insight into VHL-associated tumors and elucidate a treatment paradigm for VHL.

  1. Functional brain asymmetry, attentional modulation, and interhemispheric transfer in boys with Tourette syndrome

    DEFF Research Database (Denmark)

    Plessen, Kerstin J; Lundervold, Arvid; Grüner, Renate

    2007-01-01

    We tested the hypothesis that children with Tourette syndrome (TS) would exhibit aberrant brain lateralization compared to a healthy control (HC) group in an attention-modulation version of a verbal dichotic listening task using consonant-vowel syllables. The modulation of attention to focus...... by exploring the correlations between CC size and left ear score in the forced-left condition. Twenty boys with TS were compared with 20 age- and handedness-matched healthy boys. Results indicated similar performance in the TS and HC groups for lateralization of hemispheric function. TS subjects were also able...

  2. Modulation of PML protein expression regulates JCV infection

    International Nuclear Information System (INIS)

    Gasparovic, Megan L.; Maginnis, Melissa S.; O'Hara, Bethany A.; Dugan, Aisling S.; Atwood, Walter J.

    2009-01-01

    JC virus (JCV) is a human polyomavirus that infects the majority of the human population worldwide. It is responsible for the fatal demyelinating disease Progressive Multifocal Leukoencephalopathy. JCV binds to cells using the serotonin receptor 5-HT 2A R and α(2-6)- or α(2-3)-linked sialic acid. It enters cells using clathrin-dependent endocytosis and traffics to the early endosome and possibly to the endoplasmic reticulum. Viral DNA is then delivered to the nucleus where transcription, replication, and assembly of progeny occur. We found that the early regulatory protein large T antigen accumulates in microdomains in the nucleus adjacent to ND-10 or PML domains. This observation prompted us to explore the role of these domains in JCV infection. We found that a reduction of nuclear PML enhanced virus infection and that an increase in nuclear PML reduced infection. Infection with JCV did not directly modulate nuclear levels of PML but our data indicate that a host response involving interferon beta is likely to restrict virus infection by increasing nuclear PML.

  3. Mutations in plasmalemma vesicle-associated protein cause severe syndromic protein-losing enteropathy.

    Science.gov (United States)

    Broekaert, Ilse Julia; Becker, Kerstin; Gottschalk, Ingo; Körber, Friederike; Dötsch, Jörg; Thiele, Holger; Altmüller, Janine; Nürnberg, Peter; Hünseler, Christoph; Cirak, Sebahattin

    2018-04-16

    Protein-losing enteropathy (PLE) is characterised by gastrointestinal protein leakage due to loss of mucosal integrity or lymphatic abnormalities. PLE can manifest as congenital diarrhoea and should be differentiated from other congenital diarrhoeal disorders. Primary PLEs are genetically heterogeneous and the underlying genetic defects are currently emerging. We report an infant with fatal PLE for whom we aimed to uncover the underlying pathogenic mutation. We performed whole exome sequencing (WES) for the index patient. Variants were classified based on the American College of Medical Genetics and Genomics guidelines. WES results and our detailed clinical description of the patient were compared with the literature. We discovered a novel homozygous stop mutation (c.988C>T, p.Q330*) in the Plasmalemma Vesicle-Associated Protein ( PLVAP ) gene in a newborn with fatal PLE, facial dysmorphism, and renal, ocular and cardiac anomalies. The Q330* mutation is predicted to result in complete loss of PLVAP protein expression leading to deletion of the diaphragms of endothelial fenestrae, resulting in plasma protein extravasation and PLE. Recently, another single homozygous stop mutation in PLVAP causing lethal PLE in an infant was reported. Our findings validate PLVAP mutations as a cause of syndromic PLE. Prenatal anomalies, severe PLE and syndromic features may guide the diagnosis of this rare disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Disrupted Module Efficiency of Structural and Functional Brain Connectomes in Clinically Isolated Syndrome and Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Yaou Liu

    2018-04-01

    Full Text Available Recent studies have demonstrated disrupted topological organization of brain connectome in multiple sclerosis (MS. However, whether the communication efficiency between different functional systems is affected in the early stage of MS remained largely unknown. In this study, we constructed the structural connectivity (SC and functional connectivity (FC networks in 41 patients with clinically isolated syndrome (CIS, 32 MS patients and 35 healthy controls (HC based on diffusion and resting-state functional MRI. To quantify the communication efficiency within and between different functional systems, we proposed two measures called intra- and inter-module efficiency. Based on the module parcellation of functional backbone network, the intra- and inter-module efficiency of SC and FC networks was calculated for each participant. For the SC network, CIS showed decreased inter-module efficiency between the sensory-motor network (SMN, the visual network (VN, the default-mode network (DMN and the fronto-parietal network (FPN compared with HC, while MS showed more widespread decreased module efficiency both within and between modules relative to HC and CIS. For the FC network, no differences were found between CIS and HC, and a decreased inter-module efficiency between SMN and FPN and between VN and FPN was identified in MS, compared with HC and CIS. Moreover, both intra- and inter-module efficiency of SC network were correlated with the disability and cognitive scores in MS. Therefore, our results demonstrated early SC changes between modules in CIS, and more widespread SC alterations and inter-module FC changes were observed in MS, which were further associated with cognitive impairment and physical disability.

  5. Analysis of hepatocellular carcinoma and metastatic hepatic carcinoma via functional modules in a protein-protein interaction network

    Directory of Open Access Journals (Sweden)

    Jun Pan

    2014-01-01

    Full Text Available Introduction: This study aims to identify protein clusters with potential functional relevance in the pathogenesis of hepatocellular carcinoma (HCC and metastatic hepatic carcinoma using network analysis. Materials and Methods: We used human protein interaction data to build a protein-protein interaction network with Cytoscape and then derived functional clusters using MCODE. Combining the gene expression profiles, we calculated the functional scores for the clusters and selected statistically significant clusters. Meanwhile, Gene Ontology was used to assess the functionality of these clusters. Finally, a support vector machine was trained on the gold standard data sets. Results: The differentially expressed genes of HCC were mainly involved in metabolic and signaling processes. We acquired 13 significant modules from the gene expression profiles. The area under the curve value based on the differentially expressed modules were 98.31%, which outweighed the classification with DEGs. Conclusions: Differentially expressed modules are valuable to screen biomarkers combined with functional modules.

  6. Overcoming Resistance to Inhibitors of the Akt Protein Kinase by Modulation of the Pim Kinase Pathway

    Science.gov (United States)

    2017-01-01

    prostate cancer patients have abnormalities in the AKT signaling pathway. These abnormalities are driven by mutations in the PTEN and AKT proteins as...AWARD NUMBER: W81XWH-12-1-0560 TITLE: Overcoming Resistance to Inhibitors of the Akt Protein Kinase by Modulation of the Pim Kinase Pathway...2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Overcoming Resistance to Inhibitors of the Akt Protein Kinase by Modulation of the Pim Kinase

  7. iPPI-DB: an online database of modulators of protein-protein interactions.

    Science.gov (United States)

    Labbé, Céline M; Kuenemann, Mélaine A; Zarzycka, Barbara; Vriend, Gert; Nicolaes, Gerry A F; Lagorce, David; Miteva, Maria A; Villoutreix, Bruno O; Sperandio, Olivier

    2016-01-04

    In order to boost the identification of low-molecular-weight drugs on protein-protein interactions (PPI), it is essential to properly collect and annotate experimental data about successful examples. This provides the scientific community with the necessary information to derive trends about privileged physicochemical properties and chemotypes that maximize the likelihood of promoting a given chemical probe to the most advanced stages of development. To this end we have developed iPPI-DB (freely accessible at http://www.ippidb.cdithem.fr), a database that contains the structure, some physicochemical characteristics, the pharmacological data and the profile of the PPI targets of several hundreds modulators of protein-protein interactions. iPPI-DB is accessible through a web application and can be queried according to two general approaches: using physicochemical/pharmacological criteria; or by chemical similarity to a user-defined structure input. In both cases the results are displayed as a sortable and exportable datasheet with links to external databases such as Uniprot, PubMed. Furthermore each compound in the table has a link to an individual ID card that contains its physicochemical and pharmacological profile derived from iPPI-DB data. This includes information about its binding data, ligand and lipophilic efficiencies, location in the PPI chemical space, and importantly similarity with known drugs, and links to external databases like PubChem, and ChEMBL. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Semantic integration to identify overlapping functional modules in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Ramanathan Murali

    2007-07-01

    Full Text Available Abstract Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification.

  9. Hydrogen sulfide restores a normal morphological phenotype in Werner syndrome fibroblasts, attenuates oxidative damage and modulates mTOR pathway

    NARCIS (Netherlands)

    Talaei, F.; van Praag, V. M.; Henning, R. H.

    Werner syndrome (WS) protein is involved in DNA repair and its truncation causes Werner syndrome, an autosomal recessive genetic disorder with a premature aging phenotype. WRN protein mutation is currently known as the primary cause of WS. In cultured WS fibroblasts, we found an increase in

  10. Uncoupling proteins, dietary fat and the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Warden Craig H

    2006-09-01

    Full Text Available Abstract There has been intense interest in defining the functions of UCP2 and UCP3 during the nine years since the cloning of these UCP1 homologues. Current data suggest that both UCP2 and UCP3 proteins share some features with UCP1, such as the ability to reduce mitochondrial membrane potential, but they also have distinctly different physiological roles. Human genetic studies consistently demonstrate the effect of UCP2 alleles on type-2 diabetes. Less clear is whether UCP2 alleles influence body weight or body mass index (BMI with many studies showing a positive effect while others do not. There is strong evidence that both UCP2 and UCP3 protect against mitochondrial oxidative damage by reducing the production of reactive oxygen species. The evidence that UCP2 protein is a negative regulator of insulin secretion by pancreatic β-cells is also strong: increased UCP2 decreases glucose stimulated insulin secretion ultimately leading to β-cell dysfunction. UCP2 is also neuroprotective, reducing oxidative stress in neurons. UCP3 may also transport fatty acids out of mitochondria thereby protecting the mitochondria from fatty acid anions or peroxides. Current data suggest that UCP2 plays a role in the metabolic syndrome through down-regulation of insulin secretion and development of type-2 diabetes. However, UCP2 may protect against atherosclerosis through reduction of oxidative stress and both UCP2 and UCP3 may protect against obesity. Thus, these UCP1 homologues may both contribute to and protect from the markers of the metabolic syndrome.

  11. Envelope protein requirements for the assembly of infectious virions of porcine reproductive and respiratory syndrome virus

    NARCIS (Netherlands)

    Wissink, E.H.J.; Kroese, M.V.; Wijk, van H.A.; Rijsewijk, F.A.M.; Meulenberg, J.J.; Rottier, P.J.M.

    2005-01-01

    Virions of porcine reproductive and respiratory syndrome virus (PRRSV) contain six membrane proteins: the major proteins GP5 and M and the minor proteins GP2a, E, GP3, and GP4. Here, we studied the envelope protein requirements for PRRSV particle formation and infectivity using full-length cDNA

  12. G protein-coupled receptor modulation with pepducins

    DEFF Research Database (Denmark)

    Dimond, Patricia; Carlson, Kenneth; Bouvier, Michel

    2011-01-01

    of the structure and function of this ubiquitous superfamily of membrane receptors and their potential modulation for disease treatment. Presentations also focused on how GPCR mechanisms might be exploited to treat diseases with pepducins, novel synthetic lipopeptide pharmacophores that modulate heptahelical GPCR...

  13. Heat shock protein 70-mediated sensitization of cells to apoptosis by Carboxyl-Terminal Modulator Protein

    Directory of Open Access Journals (Sweden)

    Sack Ragna

    2009-07-01

    Full Text Available Abstract Background The serine/threonine protein kinase B (PKB/Akt is involved in insulin signaling, cellular survival, and transformation. Carboxyl-terminal modulator protein (CTMP has been identified as a novel PKB binding partner in a yeast two-hybrid screen, and appears to be a negative PKB regulator with tumor suppressor-like properties. In the present study we investigate novel mechanisms by which CTMP plays a role in apoptosis process. Results CTMP is localized to mitochondria. Furthermore, CTMP becomes phosphorylated following the treatment of cells with pervanadate, an insulin-mimetic. Two serine residues (Ser37 and Ser38 were identified as novel in vivo phosphorylation sites of CTMP. Association of CTMP and heat shock protein 70 (Hsp70 inhibits the formation of complexes containing apoptotic protease activating factor 1 and Hsp70. Overexpression of CTMP increased the sensitivity of cells to apoptosis, most likely due to the inhibition of Hsp70 function. Conclusion Our data suggest that phosphorylation on Ser37/Ser38 of CTMP is important for the prevention of mitochondrial localization of CTMP, eventually leading to cell death by binding to Hsp70. In addition to its role in PKB inhibition, CTMP may therefore play a key role in mitochondria-mediated apoptosis by localizing to mitochondria.

  14. Regulating the ethylene response of a plant by modulation of F-box proteins

    Science.gov (United States)

    Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

    2014-01-07

    The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.

  15. Combining sequence and Gene Ontology for protein module detection in the Weighted Network.

    Science.gov (United States)

    Yu, Yang; Liu, Jie; Feng, Nuan; Song, Bo; Zheng, Zeyu

    2017-01-07

    Studies of protein modules in a Protein-Protein Interaction (PPI) network contribute greatly to the understanding of biological mechanisms. With the development of computing science, computational approaches have played an important role in locating protein modules. In this paper, a new approach combining Gene Ontology and amino acid background frequency is introduced to detect the protein modules in the weighted PPI networks. The proposed approach mainly consists of three parts: the feature extraction, the weighted graph construction and the protein complex detection. Firstly, the topology-sequence information is utilized to present the feature of protein complex. Secondly, six types of the weighed graph are constructed by combining PPI network and Gene Ontology information. Lastly, protein complex algorithm is applied to the weighted graph, which locates the clusters based on three conditions, including density, network diameter and the included angle cosine. Experiments have been conducted on two protein complex benchmark sets for yeast and the results show that the approach is more effective compared to five typical algorithms with the performance of f-measure and precision. The combination of protein interaction network with sequence and gene ontology data is helpful to improve the performance and provide a optional method for protein module detection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. C-Reactive Protein Levels in the Brugada Syndrome

    Directory of Open Access Journals (Sweden)

    Aimé Bonny

    2011-01-01

    Full Text Available Background. Inflammation in the Brugada syndrome (BrS and its clinical implication have been little studied. Aims. To assess the level of inflammation in BrS patients. Methods. All studied BrS patients underwent blood samples drawn for C-reactive protein (CRP levels at admission, prior to any invasive intervention. Patients with a previous ICD placement were controlled to exclude those with a recent (<14 days shock. We divided subjects into symptomatic (syncope or aborted sudden death and asymptomatic groups. In a multivariable analysis, we adjusted for significant variables (age, CRP ≥ 2 mg/L. Results. Fifty-four subjects were studied (mean age 45 ± 13 years, 49 (91% male. Twenty (37% were symptomatic. Baseline characteristics were similar in both groups. Mean CRP level was 1,4 ± 0,9 mg/L in asymptomatic and 2,4 ± 1,4 mg/L in symptomatic groups (P = .003. In the multivariate model, CRP concentrations ≥ 2 mg/L remained an independent marker for being symptomatic (P = .018; 95% CI: 1.3 to 19.3. Conclusion. Inflammation seems to be more active in symptomatic BrS. C-reactive protein concentrations ≥ 2 mg/L might be associated with the previous symptoms in BrS. The value of inflammation as a risk factor of arrhythmic events in BrS needs to be studied.

  17. Josef Rudinger Memorial Lecture: Use of peptides to modulate protein-protein interactions.

    Science.gov (United States)

    Giralt, Ernest

    2015-06-01

    Peptides are destined to play a major role as therapeutic agents. My laboratory is contributing to speeding up this process. On the one hand, we devote efforts to studying the molecular details and dynamics of the events that occur during molecular recognition at protein surfaces. We succeeded to design and synthesize peptides able to modulate these recognition events either permanently or in response to light. On the other hand, we are discovering and designing peptides able to cross biological barriers. Our aim is to use these peptides as shuttles for targeting therapeutic agents to organs, tissues, or cells, with a special emphasis on drug delivery to the brain. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  18. Allosteric modulation of G-protein coupled receptors

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Spalding, Tracy A

    2004-01-01

    are believed to activate (agonists) or inhibit (competitive antagonists) receptor signalling by binding the receptor at the same site as the endogenous agonist, the orthosteric site. In contrast, allosteric ligands modulate receptor function by binding to different regions in the receptor, allosteric sites....... In recent years, combinatorial chemistry and high throughput screening have helped identify several allosteric GPCR modulators with novel structures, several of which already have become valuable pharmacological tools and may be candidates for clinical testing in the near future. This mini review outlines...... the current status and perspectives of allosteric modulation of GPCR function with emphasis on the pharmacology of endogenous and synthesised modulators, their receptor interactions and the therapeutic prospects of allosteric ligands compared to orthosteric ligands....

  19. Descending pain modulation in irritable bowel syndrome (IBS): a systematic review and meta-analysis.

    Science.gov (United States)

    Chakiath, Rosemary J; Siddall, Philip J; Kellow, John E; Hush, Julia M; Jones, Mike P; Marcuzzi, Anna; Wrigley, Paul J

    2015-12-10

    Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder. While abdominal pain is a dominant symptom of IBS, many sufferers also report widespread hypersensitivity and present with other chronic pain conditions. The presence of widespread hypersensitivity and extra-intestinal pain conditions suggests central nervous dysfunction. While central nervous system dysfunction may involve the spinal cord (central sensitisation) and brain, this review will focus on one brain mechanism, descending pain modulation. We will conduct a comprehensive search for the articles indexed in the databases Ovid MEDLINE, Ovid Embase, Ovid PsycINFO and Cochrane Central Register of Controlled Trial (CENTRAL) from their inception to August 2015, that report on any aspect of descending pain modulation in irritable bowel syndrome. Two independent reviewers will screen studies for eligibility, assess risk of bias and extract relevant data. Results will be tabulated and, if possible, a meta-analysis will be carried out. The systematic review outlined in this protocol aims to summarise current knowledge regarding descending pain modulation in IBS. PROSPERO CRD42015024284.

  20. Simulation of modulated protein crystal structure and diffraction data in a supercell and in superspace

    Czech Academy of Sciences Publication Activity Database

    Lovelace, J.J.; Simone, P.D.; Petříček, Václav; Borgstahl, G.E.O.

    2013-01-01

    Roč. 69, Part 6 (2013), 1062-1072 ISSN 0907-4449 Institutional support: RVO:68378271 Keywords : protein crystallograhy * superspace approach * incommensurately modulated structures Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.232, year: 2013

  1. Modulator of Apoptosis 1 (MOAP-1) Is a Tumor Suppressor Protein Linked to the RASSF1A Protein*

    OpenAIRE

    Law, Jennifer; Salla, Mohamed; Zare, Alaa; Wong, Yoke; Luong, Le; Volodko, Natalia; Svystun, Orysya; Flood, Kayla; Lim, Jonathan; Sung, Miranda; Dyck, Jason R. B.; Tan, Chong Teik; Su, Yu-Chin; Yu, Victor C.; Mackey, John

    2015-01-01

    Modulator of apoptosis 1 (MOAP-1) is a BH3-like protein that plays key roles in cell death or apoptosis. It is an integral partner to the tumor suppressor protein, Ras association domain family 1A (RASSF1A), and functions to activate the Bcl-2 family pro-apoptotic protein Bax. Although RASSF1A is now considered a bona fide tumor suppressor protein, the role of MOAP-1 as a tumor suppressor protein has yet to be determined. In this study, we present several lines of evidence from cancer databas...

  2. Modulating surface rheology by electrostatic protein/polysaccharide interactions

    NARCIS (Netherlands)

    Ganzevles, R.A.; Zinoviadou, K.; Vliet, T. van; Stuart, M.A.C.; Jongh, H.H.J. de

    2006-01-01

    There is a large interest in mixed protein/polysaccharide layers at air-water and oil-water interfaces because of their ability to stabilize foams and emulsions. Mixed protein/polysaccharide adsorbed layers at air-water interfaces can be prepared either by adsorption of soluble protein/

  3. Food protein induced enterocolitis syndrome caused by rice beverage.

    Science.gov (United States)

    Caminiti, Lucia; Salzano, Giuseppina; Crisafulli, Giuseppe; Porcaro, Federica; Pajno, Giovanni Battista

    2013-05-14

    Food protein-induced enterocolitis syndrome (FPIES) is an uncommon and potentially severe non IgE-mediated gastrointestinal food allergy. It is usually caused by cow's milk or soy proteins, but may also be triggered by ingestion of solid foods. The diagnosis is made on the basis of clinical history and symptoms. Management of acute phase requires fluid resuscitation and intravenous steroids administration, but avoidance of offending foods is the only effective therapeutic option.Infant with FPIES presented to our emergency department with vomiting, watery stools, hypothension and metabolic acidosis after ingestion of rice beverage. Intravenous fluids and steroids were administered with good clinical response. Subsequently, a double blind placebo control food challenge (DBPCFC) was performed using rice beverage and hydrolyzed formula (eHF) as placebo. The "rice based formula" induced emesis, diarrhoea and lethargy. Laboratory investigations reveal an increase of absolute count of neutrophils and the presence of faecal eosinophils. The patient was treated with both intravenous hydration and steroids. According to Powell criteria, oral food challenge was considered positive and diagnosis of FPIES induced by rice beverage was made. Patient was discharged at home with the indication to avoid rice and any rice beverage as well as to reintroduce hydrolyzed formula. A case of FPIES induced by rice beverage has never been reported. The present case clearly shows that also beverage containing rice proteins can be responsible of FPIES. For this reason, the use of rice beverage as cow's milk substitute for the treatment of non IgE-mediated food allergy should be avoided.

  4. Adiponectin and C - reactive protein Relationship in the Polycystic Ovary Syndrome: Relation to Cardiovascular Disease

    International Nuclear Information System (INIS)

    Shousha, M.A.; Soliman, S.

    2008-01-01

    The polycystic ovary syndrome (PCOS), one of the most common reproductive abnormalities, shares some components of the metabolic cardiovascular syndrome. Therefore, PCOS patients may represent the largest group of women at high risk for the development of early-onset cardiovascular disease (CVD) and/or diabetes. The adipokine, adiponectin inhibits vascular inflammation and acts as an endogenous modulator of obesity - linked diseases. High - sensitive C-reactive protein (hs-CRP) is recently debated as a risk factor and mediator for atherosclerosis. The objective of this study was to investigate the relation between adiponectin and hs- CRP in The Polycystic Ovary Syndrome and to identify their relation to Cardiovascular Disease. Adiponectin and hs- CRP measurements were undertaken in 90 PCOS patients and 70 body mass index-matched controls with regular menstrual cycles. Whereas 36.8% of the PCOS patients had CRP levels above 5 mg/liter, only 9.6% of the controls exhibited high CRP levels (P < 0.001). The mean ± SD was 5.46 ± 7.0 in the PCOS group vs. 2.04 ± 1.9 mg/liter in the control (P < 0.001). The body mass index, white blood cell count, TSH, glucose, cholesterol, and homocysteine levels were not significantly different between the two groups. CRP levels are elevated in patients with PCOS and may be a marker of early cardiovascular risk in these patients. The plasma adiponectin levels being significantly lower in these patients. These results suggest that elevation of CRP and reduction of adiponectin could emerge as mediators of atherogenesis and insulin resistance. (author)

  5. Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules.

    Science.gov (United States)

    Zhu, Jinwei; Shang, Yuan; Xia, Caihao; Wang, Wenning; Wen, Wenyu; Zhang, Mingjie

    2011-11-25

    Membrane-associated guanylate kinases (MAGUKs) are a large family of scaffold proteins that play essential roles in tissue developments, cell-cell communications, cell polarity control, and cellular signal transductions. Despite extensive studies over the past two decades, the functions of the signature guanylate kinase domain (GK) of MAGUKs are poorly understood. Here we show that the GK domain of DLG1/SAP97 binds to asymmetric cell division regulatory protein LGN in a phosphorylation-dependent manner. The structure of the DLG1 SH3-GK tandem in complex with a phospho-LGN peptide reveals that the GMP-binding site of GK has evolved into a specific pSer/pThr-binding pocket. Residues both N- and C-terminal to the pSer are also critical for the specific binding of the phospho-LGN peptide to GK. We further demonstrate that the previously reported GK domain-mediated interactions of DLGs with other targets, such as GKAP/DLGAP1/SAPAP1 and SPAR, are also phosphorylation dependent. Finally, we provide evidence that other MAGUK GKs also function as phospho-peptide-binding modules. The discovery of the phosphorylation-dependent MAGUK GK/target interactions indicates that MAGUK scaffold-mediated signalling complex organizations are dynamically regulated.

  6. Regulatory landscape of AGE-RAGE-oxidative stress axis and its modulation by PPARγ activation in high fructose diet-induced metabolic syndrome.

    Science.gov (United States)

    Cannizzaro, Luca; Rossoni, Giuseppe; Savi, Federica; Altomare, Alessandra; Marinello, Cristina; Saethang, Thammakorn; Carini, Marina; Payne, D Michael; Pisitkun, Trairak; Aldini, Giancarlo; Leelahavanichkul, Asada

    2017-01-01

    The AGE-RAGE-oxidative stress (AROS) axis is involved in the onset and progression of metabolic syndrome induced by a high-fructose diet (HFD). PPARγ activation is known to modulate metabolic syndrome; however a systems-level investigation looking at the protective effects of PPARγ activation as related to the AROS axis has not been performed. The aim of this work is to simultaneously characterize multiple molecular parameters within the AROS axis, using samples taken from different body fluids and tissues of a rat model of HFD-induced metabolic syndrome, in the presence or absence of a PPARγ agonist, Rosiglitazone (RGZ). Rats were fed with 60% HFD for the first half of the treatment duration (21 days) then continued with either HFD alone or HFD plus RGZ for the second half. Rats receiving HFD alone showed metabolic syndrome manifestations including hypertension, dyslipidemia, increased glucose levels and insulin resistance, as well as abnormal kidney and inflammatory parameters. Systolic blood pressure, plasma triglyceride and glucose levels, plasma creatinine, and albuminuria were significantly improved in the presence of RGZ. The following molecular parameters of the AROS axis were significantly upregulated in our rat model: carboxymethyl lysine (CML) in urine and liver; carboxyethyl lysine (CEL) in urine; advanced glycation end products (AGEs) in plasma; receptor for advanced glycation end products (RAGE) in liver and kidney; advanced oxidation protein products (AOPP) in plasma; and 4-hydroxynonenal (HNE) in plasma, liver, and kidney. Conversely, with RGZ administration, the upregulation of AOPP and AGEs in plasma, CML and CEL in urine, RAGE in liver as well as HNE in plasma and liver was significantly counteracted/prevented. Our data demonstrate (i) the systems-level regulatory landscape of HFD-induced metabolic syndrome involving multiple molecular parameters, including HNE, AGEs and their receptor RAGE, and (ii) attenuation of metabolic syndrome by

  7. Angelman syndrome protein UBE3A interacts with primary microcephaly protein ASPM, localizes to centrosomes and regulates chromosome segregation.

    Directory of Open Access Journals (Sweden)

    Pooja Singhmar

    Full Text Available Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.

  8. Angelman syndrome protein UBE3A interacts with primary microcephaly protein ASPM, localizes to centrosomes and regulates chromosome segregation.

    Science.gov (United States)

    Singhmar, Pooja; Kumar, Arun

    2011-01-01

    Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH) proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly) protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.

  9. Elevation of tau protein levels in the cerebrospinal fluid of children with West syndrome.

    Science.gov (United States)

    Inoue, Hirofumi; Matsushige, Takeshi; Hasegawa, Shunji; Abe, Arisa; Iida, Yasunori; Inoue, Teruaki; Ichiyama, Takashi

    2012-11-01

    West syndrome is an epileptic encephalopathy with a poor developmental outcome. Tau protein levels in the cerebrospinal fluid (CSF) are reported to be markers of axonal damage and neurodegeneration. This study aimed to investigate axonal damage and the effects of adrenocorticotropic hormone (ACTH) therapy on axons in West syndrome, as measured by tau protein levels in CSF. Tau protein levels in CSF before and after ACTH therapy were determined by an enzyme-linked immunosorbent assay in 26 children with West syndrome. Of these 26 children, 18 were symptomatic, and 8 had a cryptogenic form of West syndrome. A group of 41 unaffected children was included in the study as a control group. The levels of tau protein in CSF were significantly higher in children with West syndrome than in the control group, and these levels remained high after ACTH therapy. ACTH therapy was effective for 20 of the 26 children with West syndrome, and their CSF tau protein levels were significantly higher after ACTH therapy than before therapy. Our results suggest that axonal damage occurs in West syndrome, as judged by tau protein levels in CSF. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Systematic review: serotonergic modulators in the treatment of irritable bowel syndrome--influence on psychiatric and gastrointestinal symptoms.

    Science.gov (United States)

    Kilkens, T O C; Honig, A; Rozendaal, N; Van Nieuwenhoven, M A; Brummer, R-J M

    2003-01-01

    Both central and peripheral serotonergic modulators are used in the treatment of irritable bowel syndrome. The majority of patients with irritable bowel syndrome presenting to a gastroenterologist demonstrate affective dysregulation. Serotonin may play a regulatory role in both gastrointestinal motility and sensitivity, as well as in affective dysregulation, in irritable bowel syndrome. To analyse, systematically, randomized controlled trials studying the influence of serotonergic modulators on both gastrointestinal and psychiatric symptoms in irritable bowel syndrome, in order to elucidate baseline irritable bowel syndrome symptomatology and possible differential effects of serotonergic modulation on this symptomatology. A standardized qualitative analysis was performed of studies investigating the influence of serotonergic modulators on both gastrointestinal and psychiatric symptoms in irritable bowel syndrome using a blind review approach. The studies were ranked according to their total quality score (maximum 100 points). Eleven studies fulfilled the entry criteria, six of which scored above 55 points. An association between gastroenterological and psychiatric changes was present in five of the six studies. The results strengthen the serotonergic association between gastroenterological and psychiatric symptoms. Adjusted guidelines for combined gastrointestinal and psychiatric assessments are recommended in order to further elucidate the serotonergic interaction between gastrointestinal and psychiatric symptoms.

  11. Molecular chaperones antagonize proteotoxicity by differentially modulating protein aggregation pathways.

    Science.gov (United States)

    Douglas, Peter M; Summers, Daniel W; Cyr, Douglas M

    2009-01-01

    The self-association of misfolded or damaged proteins into ordered amyloid-like aggregates characterizes numerous neurodegenerative disorders. Insoluble amyloid plaques are diagnostic of many disease states. Yet soluble, oligomeric intermediates in the aggregation pathway appear to represent the toxic culprit. Molecular chaperones regulate the fate of misfolded proteins and thereby influence their aggregation state. Chaperones conventionally antagonize aggregation of misfolded, disease proteins and assist in refolding or degradation pathways. Recent work suggests that chaperones may also suppress neurotoxicity by converting toxic, soluble oligomers into benign aggregates. Chaperones can therefore suppress or promote aggregation of disease proteins to ameliorate the proteotoxic accumulation of soluble, assembly intermediates.

  12. Characterization and Modulation of Proteins Involved in Sulfur Mustard Vesication

    Science.gov (United States)

    2006-05-01

    manipulated at the level of a cell surface (Fas/TNF) receptor, these two molecules represent attractive targets for the modulation of the effects of SM in...and Catsoulacos, P. (1990). Effects of alkylating antineoplastics alone or in combination with 3- aminobenzamide on genotoxicity, antitumor

  13. Molecular chaperones antagonize proteotoxicity by differentially modulating protein aggregation pathways

    OpenAIRE

    Douglas, Peter M; Summers, Daniel W; Cyr, Douglas M

    2009-01-01

    The self-association of misfolded or damaged proteins into ordered amyloid-like aggregates characterizes numerous neurodegenerative disorders. Insoluble amyloid plaques are diagnostic of many disease states. Yet soluble, oligomeric intermediates in the aggregation pathway appear to represent the toxic culprit. Molecular chaperones regulate the fate of misfolded proteins and thereby influence their aggregation state. Chaperones conventionally antagonize aggregation of misfolded, disease protei...

  14. Discovering overlapped protein complexes from weighted PPI networks by removing inter-module hubs.

    Science.gov (United States)

    Maddi, A M A; Eslahchi, Ch

    2017-06-12

    Detecting known protein complexes and predicting undiscovered protein complexes from protein-protein interaction (PPI) networks help us to understand principles of cell organization and its functions. Nevertheless, the discovery of protein complexes based on experiment still needs to be explored. Therefore, computational methods are useful approaches to overcome the experimental limitations. Nevertheless, extraction of protein complexes from PPI network is often nontrivial. Two major constraints are large amount of noise and ignorance of occurrence time of different interactions in PPI network. In this paper, an efficient algorithm, Inter Module Hub Removal Clustering (IMHRC), is developed based on inter-module hub removal in the weighted PPI network which can detect overlapped complexes. By removing some of the inter-module hubs and module hubs, IMHRC eliminates high amount of noise in dataset and implicitly considers different occurrence time of the PPI in network. The performance of the IMHRC was evaluated on several benchmark datasets and results were compared with some of the state-of-the-art models. The protein complexes discovered with the IMHRC method show significantly better agreement with the real complexes than other current methods. Our algorithm provides an accurate and scalable method for detecting and predicting protein complexes from PPI networks.

  15. Upper tract urothelial carcinomas: frequency of association with mismatch repair protein loss and lynch syndrome.

    Science.gov (United States)

    Harper, Holly L; McKenney, Jesse K; Heald, Brandie; Stephenson, Andrew; Campbell, Steven C; Plesec, Thomas; Magi-Galluzzi, Cristina

    2017-01-01

    Increased risk for upper tract urothelial carcinoma is described in patients with Lynch syndrome, caused by germline mutations in mismatch repair genes. We aimed to identify the frequency of mismatch repair protein loss in upper tract urothelial carcinoma and its potential for identifying an association with Lynch syndrome. We queried our database to identify upper tract urothelial carcinomas. Patients were cross-referenced for history of colorectal carcinoma or other common Lynch syndrome-associated neoplasms to enrich for potential Lynch syndrome cases. Tumor histopathologic characteristics were reviewed and each case was analyzed for loss of mismatch repair proteins, MLH1, MSH2, MSH6, and PMS2, by immunohistochemistry. Of 444 patients with upper tract urothelial carcinoma, a subset of 215 (encompassing 30 with upper tract urothelial carcinoma and another common Lynch syndrome-associated neoplasm) was analyzed for loss of mismatch repair protein expression. Of 30 patients with Lynch syndrome-associated neoplasms, six had documented Lynch syndrome, including two with Muir-Torre syndrome. Mismatch repair protein loss was identified in 7% of total upper tract urothelial carcinomas and 30% of patients with Lynch syndrome-associated neoplasms (including all patients with Lynch syndrome/Muir-Torre syndrome). Of patients without history of Lynch syndrome-associated neoplasms, 5 of 184 (2.7%) had loss of mismatch repair protein expression. Twelve cases with mismatch repair protein loss demonstrated loss of MSH2 and MSH6, and 2 had isolated loss of MSH6. MLH1 and PMS2 expression were consistently retained. Although increased intratumoral lymphocytes, inverted growth, pushing tumor-stromal interface, and lack of nuclear pleomorphism were more commonly seen in cases with mismatch repair protein loss, only intratumoral lymphocytes and presence of pushing borders were statistically significant. MLH1 and PMS2 testing appear to have little utility in upper tract urothelial

  16. 17β Estradiol Modulates Perfusion Pressure and Expression of 5-LOX and CYP450 4A in the Isolated Kidney of Metabolic Syndrome Female Rats

    OpenAIRE

    Zúñiga-Muñoz, A. M.; Guarner Lans, V.; Soria-Castro, E.; Diaz-Diaz, E.; Torrico-Lavayen, R.; Tena-Betancourt, E.; Pérez-Torres, I.

    2015-01-01

    Prevalence of metabolic syndrome and progression of nephropathy depend on sex. We examined a protective effect of estradiol against nephropathy in metabolic syndrome through the modulation of the arachidonic acid metabolism by activating the 5-lipoxygenase and cytochrome p450 4A pathways. 28 female Wistar rats were divided into four groups of seven animals each: control, intact metabolic syndrome, ovariectomized metabolic syndrome, and metabolic syndrome ovariectomized plus estradiol. Blood p...

  17. Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways.

    Directory of Open Access Journals (Sweden)

    Martin H Schaefer

    2014-06-01

    Full Text Available Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line protein abundance and variability, and evolutionary conservation onto functional pathway components and topological layers in the pathway hierarchy. We found that the input (receptors and the output (transcription factors layers evolve more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from the input to the output layer. We observed that the differences in protein variability between the input and transmission layer can be attributed to both the network position and the tendency of variable proteins to physically interact with constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to the specificity of the signal response in different cell types.

  18. Rubella virus capsid protein modulation of viral genomic and subgenomic RNA synthesis

    International Nuclear Information System (INIS)

    Tzeng, W.-P.; Frey, Teryl K.

    2005-01-01

    The ratio of the subgenomic (SG) to genome RNA synthesized by rubella virus (RUB) replicons expressing the green fluorescent protein reporter gene (RUBrep/GFP) is substantially higher than the ratio of these species synthesized by RUB (4.3 for RUBrep/GFP vs. 1.3-1.4 for RUB). It was hypothesized that this modulation of the viral RNA synthesis was by one of the virus structural protein genes and it was found that introduction of the capsid (C) protein gene into the replicons as an in-frame fusion with GFP resulted in an increase of genomic RNA production (reducing the SG/genome RNA ratio), confirming the hypothesis and showing that the C gene was the moiety responsible for the modulation effect. The N-terminal one-third of the C gene was required for the effect of be exhibited. A similar phenomenon was not observed with the replicons of Sindbis virus, a related Alphavirus. Interestingly, modulation was not observed when RUBrep/GFP was co-transfected with either other RUBrep or plasmid constructs expressing the C gene, demonstrating that modulation could occur only when the C gene was provided in cis. Mutations that prevented translation of the C protein failed to modulate RNA synthesis, indicating that the C protein was the moiety responsible for modulation; consistent with this conclusion, modulation of RNA synthesis was maintained when synonymous codon mutations were introduced at the 5' end of the C gene that changed the C gene sequence without altering the amino acid sequence of the C protein. These results indicate that C protein translated in proximity of viral replication complexes, possibly from newly synthesized SG RNA, participate in regulating the replication of viral RNA

  19. Retracted: Nrf2: a novel therapeutic target in fragile X syndrome is modulated by NNZ2566.

    Science.gov (United States)

    Deacon, R M J; Hurley, M J; Rebolledo, C M; Snape, M; Altimiras, F J; Farías, L; Pino, M; Biekofsky, R; Glass, L; Cogram, P

    2017-09-01

    Retraction: "Nrf2: a novel therapeutic target in fragile X syndrome is modulated by NNZ2566" by R. M. J. Deacon, M. J. Hurley, C. M. Rebolledo, M. Snape, F. J. Altimiras, L. Farías, M. Pino, R. Biekofsky, L. Glass and P. Cogram. The above article, from Genes, Brain and Behavior, published online on 12th May 2017 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Andrew Holmes and John Wiley & Sons Ltd. The retraction has been agreed as all authors cannot agree on a revised author order, and at least one author continues to dispute the original order. In this case, the original article is being retracted on the grounds that the journal does not have permission to publish. Reference: Deacon, R. M. J., Hurley, M. J., Rebolledo, C. M., Snape, M., Altimiras, F. J., Farías, L., Pino, M., Biekofsky, R., Glass, L. and Cogram, P. (2017), Nrf2: a novel therapeutic target in fragile X syndrome is modulated by NNZ2566. Genes, Brain and Behavior. doi:10.1111/gbb.12373. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. Characterization and Modulation of Proteins Involved in SM Vesication

    National Research Council Canada - National Science Library

    Rosenthal, Dean

    2001-01-01

    .... A number of studies in the past several years have shown that the central signaling proteins for many of the pathways that coordinate apoptosis are members of the caspase family of cysteine proteases...

  1. Modulating Protein Adsorption on Oxygen Plasma Modified Polysiloxane Surfaces

    International Nuclear Information System (INIS)

    Marletta, G.

    2006-01-01

    In the present paper we report the study on the adsorption behaviour of three model globular proteins, Human Serum Albumin, Lactoferrin and Egg Chicken Lysozyme onto both unmodified surfaces of a silicon-based polymer and the corresponding plasma treated surfaces. In particular, thin films of hydrophobic polysiloxane (about 90 degree of static water contact angle, WCA) were converted by oxygen plasma treatment at reduced pressure into very hydrophilic phases of SiOx (WCA less than 5 degree). The kinetics of protein adsorption processes were investigated by QCM-D technique, while the chemical structure and topography of the protein adlayer have been studied by Angular resolved-XPS and AFM respectively. It turned out that Albumin and Lysozyme exhibited the opposite preferential adsorption respectively onto the hydrophobic and hydrophilic surfaces, while Lactoferrin did not exhibit significant differences. The observed protein behaviour are discussed both in terms of surface-dependent parameters, including surface free energy and chemical structure, and in terms of protein-dependent parameters, including charge as well as the average molecular orientation in the adlayers. Finally, some examples of differential adsorption behaviour of the investigated proteins are reported onto nanopatterned polysiloxane surfaces consisting of hydrophobic nanopores surrounded by hydrophilic (plasma-treated) matrix and the reverse

  2. Neuroplasticity pathways and protein-interaction networks are modulated by vortioxetine in rodents

    DEFF Research Database (Denmark)

    Waller, Jessica A.; Nygaard, Sara Holm; Li, Yan

    2017-01-01

    and rat in response to distinct treatment regimens and in different brain regions. Furthermore, analysis of complexes of physically-interacting proteins reveal that biomarkers involved in transcriptional regulation, neurodevelopment, neuroplasticity, and endocytosis are modulated by vortioxetine....... A subsequent qPCR study examining the expression of targets in the protein-protein interactome space in response to chronic vortioxetine treatment over a range of doses provides further biological validation that vortioxetine engages neuroplasticity networks. Thus, the same biology is regulated in different...

  3. Identification of Lipid Binding Modulators Using the Protein-Lipid Overlay Assay.

    Science.gov (United States)

    Tang, Tuo-Xian; Xiong, Wen; Finkielstein, Carla V; Capelluto, Daniel G S

    2017-01-01

    The protein-lipid overlay assay is an inexpensive, easy-to-implement, and high-throughput methodology that employs nitrocellulose membranes to immobilize lipids in order to rapid screen and identify protein-lipid interactions. In this chapter, we show how this methodology can identify potential modulators of protein-lipid interactions by screening water-soluble lipid competitors or even the introduction of pH changes during the binding assay to identify pH-dependent lipid binding events.

  4. Simplified quantification of urinary protein excretion in children with nephrotic syndrome

    International Nuclear Information System (INIS)

    Mustafa, G.; Khan, P.A.; Hussain, Z.; Iqbal, M.

    2007-01-01

    To assess the value of single voided random (spot) urinary protein to creatinine ratio in accurately predicting the 24-hour urinary protein excretion in Pakistani pediatric population with nephrotic syndrome. Fifty seven children between 1-18 years with nephrotic syndrome were included. Seventy pairs of spot urine (5 milliliter) and 24-hour urine were collected in different phases of their disease e.g. initial, induction and remission. The protein to creatinine ratio was determined in spot urine samples and total protein content in 24-hour urine samples. The correlation between the ratio and 24-hour urinary protein excreted was determined using Pearson's coefficient (r) linear regression analysis. The protein to creatinine ratio in a spot urine sample was significantly correlated with the 24-hour urinary protein. The correlation coefficient (least square method) was found to be significant (r=0.9444). A random (spot) urinary protein to creatinine ratio of greater than 2 correlated well with the massive proteinuria (i.e. nephrotic syndrome), between 2 to 0.2 indicated glomerulopathy while a ratio of less than 0.2 was suggestive of physiological values. The random spot urinary protein to creatinine ratio can reliably be used to assess the degree of proteinuria in children with nephrotic syndrome and can replace the 24-hour urinary protein excretion/collection. (author)

  5. Intrinsic disorder modulates protein self-assembly and aggregation.

    Science.gov (United States)

    De Simone, Alfonso; Kitchen, Craig; Kwan, Ann H; Sunde, Margaret; Dobson, Christopher M; Frenkel, Daan

    2012-05-01

    Protein molecules have evolved to adopt distinctive and well-defined functional and soluble states under physiological conditions. In some circumstances, however, proteins can self-assemble into fibrillar aggregates designated as amyloid fibrils. In vivo these processes are normally associated with severe pathological conditions but can sometimes have functional relevance. One such example is the hydrophobins, whose aggregation at air-water interfaces serves to create robust protein coats that help fungal spores to resist wetting and thus facilitate their dispersal in the air. We have performed multiscale simulations to address the molecular determinants governing the formation of functional amyloids by the class I fungal hydrophobin EAS. Extensive samplings of full-atom replica-exchange molecular dynamics and coarse-grained simulations have allowed us to identify factors that distinguish aggregation-prone from highly soluble states of EAS. As a result of unfavourable entropic terms, highly dynamical regions are shown to exert a crucial influence on the propensity of the protein to aggregate under different conditions. More generally, our findings suggest a key role that specific flexible structural elements can play to ensure the existence of soluble and functional states of proteins under physiological conditions.

  6. Modulation of protein quality control systems by food phytochemicals.

    Science.gov (United States)

    Murakami, Akira

    2013-05-01

    There is compelling evidence showing that dietary phytochemicals have exhibited pronounced bioactivities in a number of experimental models. In addition, a variety of epidemiological surveys have demonstrated that frequent ingestion of vegetables and fruits, which contain abundant phytochemicals, lowers the risk of onset of some diseases. However, the action mechanisms by which dietary phytochemicals show bioactivity remain to be fully elucidated and a fundamental question is why this class of chemicals has great potential for regulating health. Meanwhile, maintenance and repair of biological proteins by molecular chaperones, such as heat shock proteins, and clearance of abnormal proteins by the ubiquitin-proteasome system and autophagy play central roles in health, some disease prevention, and longevity. Interestingly, several recent studies have revealed that phytochemicals, including curcumin (yellow pigment in turmeric), resveratrol (phytoalexin in grapes), quercetin (general flavonol in onions and others), and isothiocyanates (preferentially present in cruciferous vegetables, such as broccoli and cabbage), are remarkable regulators of protein quality control systems, suggesting that their physiological and biological functions are exerted, at least in part, through activation of such unique mechanisms. This review article highlights recent findings regarding the effects of representative phytochemicals on protein quality control systems and their possible molecular mechanisms.

  7. The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae

    Directory of Open Access Journals (Sweden)

    C.W. Galvão

    2012-12-01

    Full Text Available DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecX Hs can interact with the H. seropedicaeRecA protein (RecA Hs and that RecA Hs possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecX Hs inhibited 90% of the RecA Hs DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecA Hs. RecA Hs ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecX Hs was present before the formation of RecA filaments (RecA-ssDNA, inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecX Hs protein negatively modulates the RecA Hs activities by protein-protein interactions and also by DNA-protein interactions.

  8. The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae

    International Nuclear Information System (INIS)

    Galvão, C.W.; Souza, E.M.; Etto, R.M.; Pedrosa, F.O.; Chubatsu, L.S.; Yates, M.G.; Schumacher, J.; Buck, M.; Steffens, M.B.R.

    2012-01-01

    DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecX Hs ) can interact with the H. seropedicae RecA protein (RecA Hs ) and that RecA Hs possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecX Hs inhibited 90% of the RecA Hs DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecA Hs . RecA Hs ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecX Hs was present before the formation of RecA filaments (RecA-ssDNA), inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecX Hs protein negatively modulates the RecA Hs activities by protein-protein interactions and also by DNA-protein interactions

  9. The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae

    Energy Technology Data Exchange (ETDEWEB)

    Galvão, C.W. [Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR (Brazil); Souza, E.M. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil); Etto, R.M. [Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR (Brazil); Pedrosa, F.O.; Chubatsu, L.S.; Yates, M.G. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil); Schumacher, J.; Buck, M. [Department of Life Sciences, Imperial College London, London (United Kingdom); Steffens, M.B.R. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil)

    2012-10-15

    DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecX{sub Hs}) can interact with the H. seropedicae RecA protein (RecA{sub Hs}) and that RecA{sub Hs} possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecX{sub Hs} inhibited 90% of the RecA{sub Hs} DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecA{sub Hs}. RecA{sub Hs} ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecX{sub Hs} was present before the formation of RecA filaments (RecA-ssDNA), inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecX{sub Hs} protein negatively modulates the RecA{sub Hs} activities by protein-protein interactions and also by DNA-protein interactions.

  10. Protein-directed modulation of high-LET hyperthermic radiosensitization

    International Nuclear Information System (INIS)

    Chang, P.Y.

    1991-01-01

    A pair of Chinese Hamster Ovary cell lines, the wild-type CHO-SC1, and its temperature-sensitive mutant (CHO-tsH1) was used to examine the importance of protein synthesis in the development of thermotolerance. The classical biphasic thermotolerant survival response to hyperthermia was observed in the SC1 cells after continuous heating at 41.5C to 42.5C, while tsH1 showed no thermotolerance. In separate experiments, each cell line was triggered and challenged at 45C. The heat doses were separated with graded incubaton periods at 35C or 40C for thermotolerance development. SC1 cells expressed thermoresistance, with the synthesis of heat shock proteins, under both incubation conditions. tsH1 cells expressed thermotolerance similar to that seen in the SC1 cells when incubated at 35C, but the survival response with the non-permissive 40C incubation was much reduced in the absence of protein synthesis. The combined effects of heavy-ion radiation and hyperthermia were examined using the same cell system. A mild heat dose of 41.5C was used in conjunction with Neon particle radiation of various high LET values. The cell killing effects were highly dependent on the sequence of application of heat and Neon radiation. Heat applied immediately after Neon irradiation was more cytotoxic to SC1 cells than when heat was applied prior to the irradiation. The ability of cells to synthesize new proteins plays a key role in this sequence-dependent thermal radiosensitization. In the absence of protein synthesis in the tsH1 cells, the high-LET thermal enhancement for cell-killing was unchanged regardless of the sequence. In the presence of protein synthetic activity in the SC1 cells, the thermal enhancement of radiation-induced cell killing was LET-dependent

  11. Infection by chikungunya virus modulates the expression of several proteins in Aedes aegypti salivary glands

    Directory of Open Access Journals (Sweden)

    Tchankouo-Nguetcheu Stephane

    2012-11-01

    Full Text Available Abstract Background Arthropod-borne viral infections cause several emerging and resurging infectious diseases. Among the diseases caused by arboviruses, chikungunya is responsible for a high level of severe human disease worldwide. The salivary glands of mosquitoes are the last barrier before pathogen transmission. Methods We undertook a proteomic approach to characterize the key virus/vector interactions and host protein modifications that occur in the salivary glands that could be responsible for viral transmission by using quantitative two-dimensional electrophoresis. Results We defined the protein modulations in the salivary glands of Aedes aegypti that were triggered 3 and 5 days after an oral infection (3 and 5 DPI with chikungunya virus (CHIKV. Gel profile comparisons showed that CHIKV at 3 DPI modulated the level of 13 proteins, and at 5 DPI 20 proteins. The amount of 10 putatively secreted proteins was regulated at both time points. These proteins were implicated in blood-feeding or in immunity, but many have no known function. CHIKV also modulated the quantity of proteins involved in several metabolic pathways and in cell signalling. Conclusion Our study constitutes the first analysis of the protein response of Aedes aegypti salivary glands infected with CHIKV. We found that the differentially regulated proteins in response to viral infection include structural proteins and enzymes for several metabolic pathways. Some may favour virus survival, replication and transmission, suggesting a subversion of the insect cell metabolism by arboviruses. For example, proteins involved in blood-feeding such as the short D7, an adenosine deaminase and inosine-uridine preferring nucleoside hydrolase, may favour virus transmission by exerting an increased anti-inflammatory effect. This would allow the vector to bite without the bite being detected. Other proteins, like the anti-freeze protein, may support vector protection.

  12. Modulation of the Chromatin Phosphoproteome by the Haspin Protein Kinase

    DEFF Research Database (Denmark)

    Maiolica, Alessio; de Medina-Redondo, Maria; Schoof, Erwin

    2014-01-01

    , histone H3 is the only confirmed Haspin substrate. We used a combination of biochemical, pharmacological, and mass spectrometric approaches to study the consequences of Haspin inhibition in mitotic cells. We quantified 3964 phosphorylation sites on chromatin- associated proteins and identified a Haspin...

  13. Prion protein self-peptides modulate prion interactions and conversion

    NARCIS (Netherlands)

    Rigter, A.; Priem, J.; Timmers-Parohi, D.; Langeveld, J.P.M.; Zijderveld, van F.G.; Bossers, A.

    2009-01-01

    Background: Molecular mechanisms underlying prion agent replication, converting host-encoded cellular prion protein (PrPC) into the scrapie associated isoform (PrPSc), are poorly understood. Selective self-interaction between PrP molecules forms a basis underlying the observed differences of the

  14. Multimodal chromatography: Characterization of protein binding and selectivity enhancement through mobile phase modulators.

    Science.gov (United States)

    Wolfe, Leslie S; Barringer, Cartney P; Mostafa, Sigma S; Shukla, Abhinav A

    2014-05-02

    The unique selectivity of mixed mode chromatography resins is driving increasing utilization of these novel selectivities into bioprocess applications. There is a need for improved fundamental understanding of protein binding to these stationary phases to enable the development of efficient and robust purification processes. A panel of four monoclonal antibodies and two model proteins were employed to characterize protein interaction with a mixed-mode chromatographic resin comprising a hydrophobic ligand with cation-exchange functionality. Binding of these proteins was studied as a function of salt concentration and pH in the presence of various mobile phase modulators. This knowledge was applied towards screening mobile phase modulators that could selectively decrease host cell protein levels during monoclonal antibody purification. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs

    Science.gov (United States)

    Dror, Ron O.; Green, Hillary F.; Valant, Celine; Borhani, David W.; Valcourt, James R.; Pan, Albert C.; Arlow, Daniel H.; Canals, Meritxell; Lane, J. Robert; Rahmani, Raphaël; Baell, Jonathan B.; Sexton, Patrick M.; Christopoulos, Arthur; Shaw, David E.

    2013-11-01

    The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15Å from the classical, `orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.

  16. Inferring modules of functionally interacting proteins using the Bond Energy Algorithm

    Directory of Open Access Journals (Sweden)

    Vallejo Edgar E

    2008-06-01

    Full Text Available Abstract Background Non-homology based methods such as phylogenetic profiles are effective for predicting functional relationships between proteins with no considerable sequence or structure similarity. Those methods rely heavily on traditional similarity metrics defined on pairs of phylogenetic patterns. Proteins do not exclusively interact in pairs as the final biological function of a protein in the cellular context is often hold by a group of proteins. In order to accurately infer modules of functionally interacting proteins, the consideration of not only direct but also indirect relationships is required. In this paper, we used the Bond Energy Algorithm (BEA to predict functionally related groups of proteins. With BEA we create clusters of phylogenetic profiles based on the associations of the surrounding elements of the analyzed data using a metric that considers linked relationships among elements in the data set. Results Using phylogenetic profiles obtained from the Cluster of Orthologous Groups of Proteins (COG database, we conducted a series of clustering experiments using BEA to predict (upper level relationships between profiles. We evaluated our results by comparing with COG's functional categories, And even more, with the experimentally determined functional relationships between proteins provided by the DIP and ECOCYC databases. Our results demonstrate that BEA is capable of predicting meaningful modules of functionally related proteins. BEA outperforms traditionally used clustering methods, such as k-means and hierarchical clustering by predicting functional relationships between proteins with higher accuracy. Conclusion This study shows that the linked relationships of phylogenetic profiles obtained by BEA is useful for detecting functional associations between profiles and extending functional modules not found by traditional methods. BEA is capable of detecting relationship among phylogenetic patterns by linking them through a

  17. Ubiquilin 1 modulates amyloid precursor protein trafficking and Abeta secretion.

    Science.gov (United States)

    Hiltunen, Mikko; Lu, Alice; Thomas, Anne V; Romano, Donna M; Kim, Minji; Jones, Phill B; Xie, Zhongcong; Kounnas, Maria Z; Wagner, Steven L; Berezovska, Oksana; Hyman, Bradley T; Tesco, Giuseppina; Bertram, Lars; Tanzi, Rudolph E

    2006-10-27

    Ubiquilin 1 (UBQLN1) is a ubiquitin-like protein, which has been shown to play a central role in regulating the proteasomal degradation of various proteins, including the presenilins. We recently reported that DNA variants in UBQLN1 increase the risk for Alzheimer disease, by influencing expression of this gene in brain. Here we present the first assessment of the effects of UBQLN1 on the metabolism of the amyloid precursor protein (APP). For this purpose, we employed RNA interference to down-regulate UBQLN1 in a variety of neuronal and non-neuronal cell lines. We demonstrate that down-regulation of UBQLN1 accelerates the maturation and intracellular trafficking of APP, while not interfering with alpha-, beta-, or gamma-secretase levels or activity. UBQLN1 knockdown increased the ratio of APP mature/immature, increased levels of full-length APP on the cell surface, and enhanced the secretion of sAPP (alpha- and beta-forms). Moreover, UBQLN1 knockdown increased levels of secreted Abeta40 and Abeta42. Finally, employing a fluorescence resonance energy transfer-based assay, we show that UBQLN1 and APP come into close proximity in intact cells, independently of the presence of the presenilins. Collectively, our findings suggest that UBQLN1 may normally serve as a cytoplasmic "gatekeeper" that may control APP trafficking from intracellular compartments to the cell surface. These findings suggest that changes in UBQLN1 steady-state levels affect APP trafficking and processing, thereby influencing the generation of Abeta.

  18. Altering protein surface charge with chemical modification modulates protein–gold nanoparticle aggregation

    International Nuclear Information System (INIS)

    Jamison, Jennifer A.; Bryant, Erika L.; Kadali, Shyam B.; Wong, Michael S.; Colvin, Vicki L.; Matthews, Kathleen S.; Calabretta, Michelle K.

    2011-01-01

    Gold nanoparticles (AuNP) can interact with a wide range of molecules including proteins. Whereas significant attention has focused on modifying the nanoparticle surface to regulate protein–AuNP assembly or influence the formation of the protein “corona,” modification of the protein surface as a mechanism to modulate protein–AuNP interaction has been less explored. Here, we examine this possibility utilizing three small globular proteins—lysozyme with high isoelectric point (pI) and established interactions with AuNP; α-lactalbumin with similar tertiary fold to lysozyme but low pI; and myoglobin with a different globular fold and an intermediate pI. We first chemically modified these proteins to alter their charged surface functionalities, and thereby shift protein pI, and then applied multiple methods to assess protein–AuNP assembly. At pH values lower than the anticipated pI of the modified protein, AuNP exposure elicits changes in the optical absorbance of the protein–NP solutions and other properties due to aggregate formation. Above the expected pI, however, protein–AuNP interaction is minimal, and both components remain isolated, presumably because both species are negatively charged. These data demonstrate that protein modification provides a powerful tool for modulating whether nanoparticle–protein interactions result in material aggregation. The results also underscore that naturally occurring protein modifications found in vivo may be critical in defining nanoparticle–protein corona compositions.

  19. Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome.

    NARCIS (Netherlands)

    Mayr, J.A.; Haack, T.B.; Graf, E.; Zimmermann, F.A.; Wieland, T.; Haberberger, B.; Superti-Furga, A.; Kirschner, J.; Steinmann, B.; Baumgartner, M.R.; Moroni, I.; Lamantea, E.; Zeviani, M.; Rodenburg, R.J.T.; Smeitink, J.; Strom, T.M.; Meitinger, T.; Sperl, W.; Prokisch, H.

    2012-01-01

    Exome sequencing of an individual with congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, and lactic acidosis, all typical symptoms of Sengers syndrome, discovered two nonsense mutations in the gene encoding mitochondrial acylglycerol kinase (AGK). Mutation screening of AGK in

  20. Functional significance of conserved residues in the phosphohydrolase module of Escherichia coli MutT protein

    OpenAIRE

    Shimokawa, Hidetoshi; Fujii, Yoshimitsu; Furuichi, Masato; Sekiguchi, Mutsuo; Nakabeppu, Yusaku

    2000-01-01

    Escherichia coli MutT protein hydrolyzes 8-oxo-7,8-dihydro-2′-dGTP (8-oxo-dGTP) to the monophosphate, thus avoiding the incorporation of 8-oxo-7,8-dihydroguanine (8-oxo-G) into nascent DNA. Bacterial and mammalian homologs of MutT protein share the phosphohydrolase module (MutT: Gly37→Gly59). By saturation mutagenesis of conserved residues in the MutT module, four of the 10 conserved residues (Gly37, Gly38, Glu53 and Glu57) were revealed to be essential to suppress spontaneous A:T→C:G transve...

  1. Immunological Features of the Non-Structural Proteins of Porcine Reproductive and Respiratory Syndrome Virus

    Directory of Open Access Journals (Sweden)

    Edgar Rascón-Castelo

    2015-02-01

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV is currently one of the most important viruses affecting the swine industry worldwide. Despite the large number of papers published each year, the participation of non-structural proteins (nsps in the immune response is not completely clear. nsps have been involved in the host innate immune response, specifically, nsp1α/β, nsp2, nsp4 and nsp11 have been associated with the immunomodulation capability of the virus. To date, only participation by nsp1, nsp2, nsp4 and nsp7 in the humoral immune response has been reported, with the role of other nsps being overlooked. Furthermore, nsp1, nsp2, nsp5, nsp7 nsp9, nsp10, nsp11 have been implicated in the induction of IFN-γ and probably in the development of the cell-mediated immune response. This review discusses recent reports involving the participation of nsps in the modulation of the innate immune response and their role in the induction of both the humoral and cellular immune responses.

  2. Chitin Oligosaccharide Modulates Gut Microbiota and Attenuates High-Fat-Diet-Induced Metabolic Syndrome in Mice

    Directory of Open Access Journals (Sweden)

    Junping Zheng

    2018-02-01

    Full Text Available Gut microbiota has been proved to be an indispensable link between nutrient excess and metabolic syndrome, and chitin oligosaccharide (NACOS has displayed therapeutic effects on multiple diseases such as cancer and gastritis. In this study, we aim to confirm whether NACOS can ameliorate high-fat diet (HFD-induced metabolic syndrome by rebuilding the structure of the gut microbiota community. Male C57BL/6J mice fed with HFD were treated with NACOS (1 mg/mL in drinking water for five months. The results indicate that NACOS improved glucose metabolic disorder in HFD-fed mice and suppressed mRNA expression of the protein regulators related to lipogenesis, gluconeogenesis, adipocyte differentiation, and inflammation in adipose tissues. Additionally, NACOS inhibited the destruction of the gut barrier in HFD-treated mice. Furthermore, 16S ribosome RNA sequencing of fecal samples demonstrates that NACOS promoted the growth of beneficial intestinal bacteria remarkably and decreased the abundance of inflammogenic taxa. In summary, NACOS partly rebuilt the microbial community and improved the metabolic syndrome of HFD-fed mice. These data confirm the preventive effects of NACOS on nutrient excess-related metabolic diseases.

  3. Alphacoronavirus Protein 7 Modulates Host Innate Immune Response

    Science.gov (United States)

    Cruz, Jazmina L. G.; Becares, Martina; Sola, Isabel; Oliveros, Juan Carlos; Zúñiga, Sonia

    2013-01-01

    Innate immune response is the first line of antiviral defense resulting, in most cases, in pathogen clearance with minimal clinical consequences. Viruses have developed diverse strategies to subvert host defense mechanisms and increase their survival. In the transmissible gastroenteritis virus (TGEV) as a model, we previously reported that accessory gene 7 counteracts the host antiviral response by associating with the catalytic subunit of protein phosphatase 1 (PP1c). In the present work, the effect of the absence of gene 7 on the host cell, during infection, was further analyzed by transcriptomic analysis. The pattern of gene expression of cells infected with a recombinant mutant TGEV, lacking gene 7 expression (rTGEV-Δ7), was compared to that of cells infected with the parental virus (rTGEV-wt). Genes involved in the immune response, the interferon response, and inflammation were upregulated during TGEV infection in the absence of gene 7. An exacerbated innate immune response during infection with rTGEV-Δ7 virus was observed both in vitro and in vivo. An increase in macrophage recruitment and activation in lung tissues infected with rTGEV-Δ7 virus was observed compared to cells infected with the parental virus. In summary, the absence of protein 7 both in vitro and in vivo led to increased proinflammatory responses and acute tissue damage after infection. In a porcine animal model, which is immunologically similar to humans, we present a novel example of how viral proteins counteract host antiviral pathways to determine the infection outcome and pathogenesis. PMID:23824792

  4. Cellular prion protein and NMDA receptor modulation: protecting against excitotoxicity

    Directory of Open Access Journals (Sweden)

    Stefanie A.G. Black

    2014-08-01

    Full Text Available Although it is well established that misfolding of the cellular prion protein (PrPC into the beta-sheet-rich, aggregated scrapie conformation (PrPSc causes a variety of transmissible spongiform encephalopathies (TSEs, the physiological roles of PrPC are still incompletely understood. There is accumulating evidence describing the roles of PrPC in neurodegeneration and neuroinflammation. Recently, we identified a functional regulation of NMDA receptors by PrPC that involves formation of a physical protein complex between these proteins. Excessive NMDA receptor activity during conditions such as ischemia mediates enhanced Ca2+ entry into cells and contributes to excitotoxic neuronal death. In addition, NMDA receptors and/or PrPC play critical roles in neuroinflammation and glial cell toxicity. Inhibition of NMDA receptor activity protects against PrPSc-induced neuronal death. Moreover, in mice lacking PrPC, infarct size is increased after focal cerebral ischemia, and absence of PrPC increases susceptibility of neurons to NMDA receptor-dependent death. Recently, PrPC was found to be a receptor for oligomeric beta-amyloid (Abeta peptides, suggesting a role for PrPC in Alzheimer’s disease. Our recent findings suggest that Abeta peptides enhance NMDA receptor current by perturbing the normal copper- and PrPC-dependent regulation of these receptors. Here, we review evidence highlighting a role for PrPC in preventing NMDA receptor-mediated excitotoxicity and inflammation. There is a need for more detailed molecular characterization of PrPC-mediated regulation of NMDA receptors, such as determining which NMDA receptor subunits mediate pathogenic effects upon loss of PrPC-mediated regulation and identifying PrPC binding site(s on the receptor. This knowledge will allow development of novel therapeutic interventions for not only TSEs, but also for Alzheimer’s disease and other neurodegenerative disorders involving dysfunction of PrPC.

  5. Bcl-XL-templated assembly of its own protein-protein interaction modulator from fragments decorated with thio acids and sulfonyl azides

    Science.gov (United States)

    Hu, Xiangdong; Sun, Jiazhi; Wang, Hong-Gang; Manetsch, Roman

    2008-01-01

    Protein-protein interactions have key importance in various biological processes and modulation of particular protein-protein interactions has been shown to have therapeutic effects. However, disrupting or modulating protein-protein interactions with low-molecular-weight compounds is extremely difficult due to the lack of deep binding pockets on protein surfaces. Herein we describe the development of an unprecedented lead synthesis and discovery method that generates only biologically active compounds from a library of reactive fragments. Using the protein Bcl-XL, a central regulator of programmed cell death, we demonstrated that an amidation reaction between thio acids and sulfonyl azides is applicable for Bcl-XL-templated assembly of inhibitory compounds. We have demonstrated for the first time that kinetic target-guided synthesis can be applied not only on enzymatic targets but also for the discovery of small molecules modulating protein-protein interactions. PMID:18811158

  6. Recombinant protein-based assays for detection of antibodies to severe acute respiratory syndrome coronavirus spike and nucleocapsid proteins.

    Science.gov (United States)

    Haynes, Lia M; Miao, Congrong; Harcourt, Jennifer L; Montgomery, Joel M; Le, Mai Quynh; Dryga, Sergey A; Kamrud, Kurt I; Rivers, Bryan; Babcock, Gregory J; Oliver, Jennifer Betts; Comer, James A; Reynolds, Mary; Uyeki, Timothy M; Bausch, Daniel; Ksiazek, Thomas; Thomas, William; Alterson, Harold; Smith, Jonathan; Ambrosino, Donna M; Anderson, Larry J

    2007-03-01

    Recombinant severe acute respiratory syndrome (SARS) nucleocapsid and spike protein-based immunoglobulin G immunoassays were developed and evaluated. Our assays demonstrated high sensitivity and specificity to the SARS coronavirus in sera collected from patients as late as 2 years postonset of symptoms. These assays will be useful not only for routine SARS coronavirus diagnostics but also for epidemiological and antibody kinetic studies.

  7. Nucleocapsid protein VP15 is the basic DNA binding protein of white spot syndrome virus of shrimp

    NARCIS (Netherlands)

    Witteveldt, J.; Vermeesch, A.M.G.; Langenhof, M.; Lang, de A.; Vlak, J.M.; Hulten, van M.C.W.

    2005-01-01

    White spot syndrome virus (WSSV) is type species of the genus Whispovirus of the new family Nimaviridae. Despite the elucidation of its genomic sequence, very little is known about the virus as only 6% of its ORFs show homology to known genes. One of the structural virion proteins, VP15, is part of

  8. TRANSCUTANEOUS ELECTRIC NERVE STIMULATION IN MODULATION OF PAIN OF TENDER POINTS IN SYNDROME FIBROMYALGIA: CASE STUDY

    Directory of Open Access Journals (Sweden)

    Isabel Mara Magalhães Rori

    2008-08-01

    Full Text Available The Fibromyalgia is a syndrome of pain and chronic diffuse, characterized by the presence of at least 11 of 18 points called anatomically specific tender points, painful on palpation. As the pain diffuse the main symptom of fibromyalgia. The current treatment is focused mainly to the reduction of symptoms. Physiotherapy has animportant role in improving the control of pain. This study aimed to verify the effectiveness of the main TENS of low frequency and high intensity in modulating pain of tender points of patients with fibromyalgia. For this was a case study of patient R. S. S., 38-yearold female carrier of the syndrome of fibromyalgia attended school in the clinic of the Faculty of Integrated Ceará (FISIOFIC. The patient was treated with the TENS-pain Acupuncture points in a total of twelve care and pain assessed before starting treatment and after three attendants. There was a significant reduction in pain intensity at 77.7% of the tender points in the second evaluation and 88.8% of the points in the other assessments. It was concluded that there was a reduction in the pain of tender points of the patient showing the analgesia promoted by TENS, so it should be used as a complementary treatment programs associated with other treatments and also served as a good technique to locate the tender points.

  9. Complement factor H family proteins in their non-canonical role as modulators of cellular functions.

    Science.gov (United States)

    Józsi, Mihály; Schneider, Andrea E; Kárpáti, Éva; Sándor, Noémi

    2018-01-04

    Complement factor H is a major regulator of the alternative pathway of the complement system. The factor H-related proteins are less characterized, but recent data indicate that they rather promote complement activation. These proteins have some common ligands with factor H and have both overlapping and distinct functions depending on domain composition and the degree of conservation of amino acid sequence. Factor H and some of the factor H-related proteins also appear in a non-canonical function that is beyond their role in the modulation of complement activation. This review covers our current understanding on this emerging role of factor H family proteins in modulating the activation and function of various cells by binding to receptors or receptor ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. ER/K linked GPCR-G protein fusions systematically modulate second messenger response in cells.

    Science.gov (United States)

    Malik, Rabia U; Dysthe, Matthew; Ritt, Michael; Sunahara, Roger K; Sivaramakrishnan, Sivaraj

    2017-08-10

    FRET and BRET approaches are well established for detecting ligand induced GPCR-G protein interactions in cells. Currently, FRET/BRET assays rely on co-expression of GPCR and G protein, and hence depend on the stoichiometry and expression levels of the donor and acceptor probes. On the other hand, GPCR-G protein fusions have been used extensively to understand the selectivity of GPCR signaling pathways. However, the signaling properties of fusion proteins are not consistent across GPCRs. In this study, we describe and characterize novel sensors based on the Systematic Protein Affinity Strength Modulation (SPASM) technique. Sensors consist of a GPCR and G protein tethered by an ER/K linker flanked by FRET probes. SPASM sensors are tested for the β2-, α1-, and α2- adrenergic receptors, and adenosine type 1 receptor (A 1 R), tethered to Gαs-XL, Gαi 2 , or Gαq subunits. Agonist stimulation of β2-AR and α2-AR increases FRET signal comparable to co-expressed FRET/BRET sensors. SPASM sensors also retain signaling through the endogenous G protein milieu. Importantly, ER/K linker length systematically tunes the GPCR-G protein interaction, with consequent modulation of second messenger signaling for cognate interactions. SPASM GPCR sensors serve the dual purpose of detecting agonist-induced changes in GPCR-G protein interactions, and linking these changes to downstream signaling.

  11. A Splice Variant of Bardet-Biedl Syndrome 5 (BBS5 Protein that Is Selectively Expressed in Retina.

    Directory of Open Access Journals (Sweden)

    Susan N Bolch

    Full Text Available Bardet-Biedl syndrome is a complex ciliopathy that usually manifests with some form of retinal degeneration, amongst other ciliary-related deficiencies. One of the genetic causes of this syndrome results from a defect in Bardet-Biedl Syndrome 5 (BBS5 protein. BBS5 is one component of the BBSome, a complex of proteins that regulates the protein composition in cilia. In this study, we identify a smaller molecular mass form of BBS5 as a variant formed by alternative splicing and show that expression of this splice variant is restricted to the retina.Reverse transcription PCR from RNA was used to isolate and identify potential alternative transcripts of Bbs5. A peptide unique to the C-terminus of the BBS5 splice variant was synthesized and used to prepare antibodies that selectively recognized the BBS5 splice variant. These antibodies were used on immunoblots of tissue extracts to determine the extent of expression of the alternative transcript and on tissue slices to determine the localization of expressed protein. Pull-down of fluorescently labeled arrestin1 by immunoprecipitation of the BBS5 splice variant was performed to assess functional interaction between the two proteins.PCR from mouse retinal cDNA using Bbs5-specific primers amplified a unique cDNA that was shown to be a splice variant of BBS5 resulting from the use of cryptic splicing sites in Intron 7. The resulting transcript codes for a truncated form of the BBS5 protein with a unique 24 amino acid C-terminus, and predicted 26.5 kD molecular mass. PCR screening of RNA isolated from various ciliated tissues and immunoblots of protein extracts from these same tissues showed that this splice variant was expressed in retina, but not brain, heart, kidney, or testes. Quantitative PCR showed that the splice variant transcript is 8.9-fold (+/- 1.1-fold less abundant than the full-length transcript. In the retina, the splice variant of BBS5 appears to be most abundant in the connecting cilium

  12. Bio::Homology::InterologWalk--a Perl module to build putative protein-protein interaction networks through interolog mapping.

    Science.gov (United States)

    Gallone, Giuseppe; Simpson, T Ian; Armstrong, J Douglas; Jarman, Andrew P

    2011-07-18

    Protein-protein interaction (PPI) data are widely used to generate network models that aim to describe the relationships between proteins in biological systems. The fidelity and completeness of such networks is primarily limited by the paucity of protein interaction information and by the restriction of most of these data to just a few widely studied experimental organisms. In order to extend the utility of existing PPIs, computational methods can be used that exploit functional conservation between orthologous proteins across taxa to predict putative PPIs or 'interologs'. To date most interolog prediction efforts have been restricted to specific biological domains with fixed underlying data sources and there are no software tools available that provide a generalised framework for 'on-the-fly' interolog prediction. We introduce Bio::Homology::InterologWalk, a Perl module to retrieve, prioritise and visualise putative protein-protein interactions through an orthology-walk method. The module uses orthology and experimental interaction data to generate putative PPIs and optionally collates meta-data into an Interaction Prioritisation Index that can be used to help prioritise interologs for further analysis. We show the application of our interolog prediction method to the genomic interactome of the fruit fly, Drosophila melanogaster. We analyse the resulting interaction networks and show that the method proposes new interactome members and interactions that are candidates for future experimental investigation. Our interolog prediction tool employs the Ensembl Perl API and PSICQUIC enabled protein interaction data sources to generate up to date interologs 'on-the-fly'. This represents a significant advance on previous methods for interolog prediction as it allows the use of the latest orthology and protein interaction data for all of the genomes in Ensembl. The module outputs simple text files, making it easy to customise the results by post-processing, allowing the

  13. Bio::Homology::InterologWalk - A Perl module to build putative protein-protein interaction networks through interolog mapping

    Directory of Open Access Journals (Sweden)

    Armstrong J Douglas

    2011-07-01

    Full Text Available Abstract Background Protein-protein interaction (PPI data are widely used to generate network models that aim to describe the relationships between proteins in biological systems. The fidelity and completeness of such networks is primarily limited by the paucity of protein interaction information and by the restriction of most of these data to just a few widely studied experimental organisms. In order to extend the utility of existing PPIs, computational methods can be used that exploit functional conservation between orthologous proteins across taxa to predict putative PPIs or 'interologs'. To date most interolog prediction efforts have been restricted to specific biological domains with fixed underlying data sources and there are no software tools available that provide a generalised framework for 'on-the-fly' interolog prediction. Results We introduce Bio::Homology::InterologWalk, a Perl module to retrieve, prioritise and visualise putative protein-protein interactions through an orthology-walk method. The module uses orthology and experimental interaction data to generate putative PPIs and optionally collates meta-data into an Interaction Prioritisation Index that can be used to help prioritise interologs for further analysis. We show the application of our interolog prediction method to the genomic interactome of the fruit fly, Drosophila melanogaster. We analyse the resulting interaction networks and show that the method proposes new interactome members and interactions that are candidates for future experimental investigation. Conclusions Our interolog prediction tool employs the Ensembl Perl API and PSICQUIC enabled protein interaction data sources to generate up to date interologs 'on-the-fly'. This represents a significant advance on previous methods for interolog prediction as it allows the use of the latest orthology and protein interaction data for all of the genomes in Ensembl. The module outputs simple text files, making it easy

  14. Modulation of microfilament protein composition by transfected cytoskeletal actin genes

    Energy Technology Data Exchange (ETDEWEB)

    Ng, S.Y.; Erba, H.; Latter, G.; Kedes, L.; Leavitt, J.

    1988-04-01

    HuT-14T is a highly tumorigenic fibroblast cell line which exhibits a reduced steady-state level of ..beta..-actin due to coding mutations in one of two ..beta..-actin alleles. The normal rate of total actin synthesis could be restored in some clones of cells following transfection of the functional ..beta..-actin gene but not following transfection of the functional ..gamma..-actin gene. In ..gamma..-actin gene-transfected substrains that have increased rates of ..gamma..-actin synthesis, ..beta..-actin synthesis is further reduced in a manner consistent with an autoregulatory mechanism, resulting in abnormal ratios of actin isoforms. Thus, both ..beta..- and ..gamma..-actin proteins can apparently regulate the synthesis of their coexpressed isoforms. In addition, decreased synthesis of normal ..beta..-actin seems to correlate with a concomitant down-regulation of tropomyosin isoforms.

  15. Analysis of Sebaceous Neoplasms for DNA Mismatch Repair Proteins in Muir-Torre Syndrome.

    Science.gov (United States)

    Pollinger, Tess H; Kieliszak, Christopher R; Logemann, Nicholas; Gratrix, Max L

    2017-01-01

    Muir-Torre syndrome is a rare genodermatosis inherited most frequently in an autosomal dominant fashion. Current criteria for its diagnosis include at least one sebaceous tumor and an underlying visceral malignancy. Muir-Torre syndrome is strongly associated with a germline mutation in DNA mismatch repair genes. We report two patients with a history of colorectal carcinoma who presented with sebaceous neoplasms on the face and trunk. Immunohistochemical staining of the sebaceous neoplasms demonstrated absence of mismatch repair proteins MSH2 and MSH6. Genetic studies confirmed deletions in the MSH2 gene, and a diagnosis of Lynch syndrome was made. Immunohistochemical staining for mismatch repair genes MLH1, MSH2, MSH6 and PMS2 may aid in the diagnosis of Muir-Torre syndrome in cases where there is high suspicion. Genetic testing is an important final step in the confirmation of Muir-Torre syndrome.

  16. MeCP2, A Modulator of Neuronal Chromatin Organization Involved in Rett Syndrome.

    Science.gov (United States)

    Martínez de Paz, Alexia; Ausió, Juan

    2017-01-01

    From an epigenetic perspective, the genomic chromatin organization of neurons exhibits unique features when compared to somatic cells. Methyl CpG binding protein 2 (MeCP2), through its ability to bind to methylated DNA, seems to be a major player in regulating such unusual organization. An important contribution to this uniqueness stems from the intrinsically disordered nature of this highly abundant chromosomal protein in neurons. Upon its binding to methylated/hydroxymethylated DNA, MeCP2 is able to recruit a plethora of interacting protein and RNA partners. The final outcome is a highly specialized chromatin organization wherein linker histones (histones of the H1 family) and MeCP2 share an organizational role that dynamically changes during neuronal development and that it is still poorly understood. MeCP2 mutations alter its chromatin-binding dynamics and/or impair the ability of the protein to interact with some of its partners, resulting in Rett syndrome (RTT). Therefore, deciphering the molecular details involved in the MeCP2 neuronal chromatin arrangement is critical for our understanding of the proper and altered functionality of these cells.

  17. Relation of albumin/creatinine ratio to C-reactive protein and to the metabolic syndrome.

    Science.gov (United States)

    Messerli, Adrian W; Seshadri, Niranjan; Pearce, Gregory L; Sachar, Ravish; Hoogwerf, Byron J; Sprecher, Dennis L

    2003-09-01

    We hypothesized that the association of high sensitivity C-reactive protein (CRP) with urinary albumin excretion (UAE) is predominately mediated through its correlation with the metabolic syndrome. Serum CRP and urine albumin:creatinine ratios (ACR) from 720 preventive cardiology patients were analyzed to estimate age- and gender-adjusted relative risk of high CRP and metabolic syndrome for high ACR. These data demonstrate that CRP independently predicts the presence of UAE, a marker of endothelial dysfunction.

  18. Modulation of Src Activity by Low Molecular Weight Protein Tyrosine Phosphatase During Osteoblast Differentiation

    NARCIS (Netherlands)

    Zambuzzi, Willian F.; Granjeiro, Jose M.; Parikh, Kaushal; Yuvaraj, Saravanan; Peppelenbosch, Maikel P.; Ferreira, Carmen V.

    2008-01-01

    Background: Src kinase plays a critical role in bone metabolism, particularly in osteoclasts. However, the ability of Src kinase to modulate the activity of other bone cells is less well understood. In this work, we examined the expression and activity of Src and low molecular weight protein

  19. Association between C-reactive protein and features of the metabolic syndrome

    DEFF Research Database (Denmark)

    Fröhlich, M; Imhof, A; Berg, Gabriele

    2000-01-01

    OBJECTIVE: To assess the association of circulating levels of C-reactive protein, a sensitive systemic marker of inflammation, with different components of the metabolic syndrome. RESEARCH DESIGN AND METHODS: Total cholesterol (TC), HDL cholesterol, triglycerides, uric acid, BMI , and prevalence...... concentrations in subjects grouped according to the presence of 0-1, 2-3, and > or =4 features of the metabolic syndrome were 1.11, 1.27, and 2.16 mg/l, respectively, with a statistically highly significant trend (P metabolic syndrome...

  20. Expression and diagnostic use of recombinant M protein of the porcine reproductive and respiratory syndrome virus

    Directory of Open Access Journals (Sweden)

    Jitka Frölichová

    2017-01-01

    Full Text Available Matrix M protein combined with nucleocapsid N protein could be a promising combination of virus antigens for diagnosing the porcine reproductive and respiratory syndrome. The goal of this work was to express the recombinant M protein of the porcine reproductive and respiratory syndrome virus in Escherichia coli cells and compare its serological reactivity with the N protein of the virus. The gene coding for the M protein was cloned into the pDest17 vector. The resulting protein was purified by metalochelating affinity chromatography. Recombinant M protein was applied as an antigen in immunoblot test and compared on a panel of porcine sera with N protein based IDEXX test. Of 120 examined samples, the majority (78.3% gave identical results using both compared tests. From the group of discrepant results, IDEXX test identified considerably more positive sera (17.5% than M protein based test (4.2%. The main contribution of the work is finding that although IDEXX test proved to be more sensitive than M protein based test, 4.2% of sera would escape detection by serological test based on N protein. Further development and purification of the M protein for the use in Enzyme Linked Immunosorbent Assay format test could increase the performance of serological testing.

  1. Targeting HSP90 and monoclonal protein trafficking modulates the unfolded protein response, chaperone regulation and apoptosis in myeloma cells

    International Nuclear Information System (INIS)

    Born, E J; Hartman, S V; Holstein, S A

    2013-01-01

    Multiple myeloma is characterized by the production of substantial quantities of monoclonal protein. We have previously demonstrated that select inhibitors of the isoprenoid biosynthetic pathway (IBP) induce apoptosis of myeloma cells via inhibition of Rab geranylgeranylation, leading to disruption of monoclonal protein trafficking and induction of the unfolded protein response (UPR) pathway. Heat-shock protein 90 (HSP90) inhibitors disrupt protein folding and are currently under clinical investigation in myeloma. The effects of combining IBP and HSP90 inhibitors on cell death, monoclonal protein trafficking, the UPR and chaperone regulation were investigated in monoclonal protein-producing cells. An enhanced induction of cell death was observed following treatment with IBP and HSP90 inhibitors, which occurred through both ER stress and non-ER stress pathways. The HSP90 inhibitor 17-AAG abrogated the effects of the IBP inhibitors on intracellular monoclonal protein levels and localization as well as induction of the UPR in myeloma cells. Disparate effects on chaperone expression were observed in myeloma vs amyloid light chain cells. Here we demonstrate that the novel strategy of targeting MP trafficking in concert with HSP90 enhances myeloma cell death via a complex modulation of ER stress, UPR, and cell death pathways

  2. Ceramide-Protein Interactions Modulate Ceramide-Associated Lipotoxic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Stanley M. Walls

    2018-03-01

    Full Text Available Lipotoxic cardiomyopathy (LCM is characterized by abnormal myocardial accumulation of lipids, including ceramide; however, the contribution of ceramide to the etiology of LCM is unclear. Here, we investigated the association of ceramide metabolism and ceramide-interacting proteins (CIPs in LCM in the Drosophila heart model. We find that ceramide feeding or ceramide-elevating genetic manipulations are strongly associated with cardiac dilation and defects in contractility. High ceramide-associated LCM is prevented by inhibiting ceramide synthesis, establishing a robust model of direct ceramide-associated LCM, corroborating previous indirect evidence in mammals. We identified several CIPs from mouse heart and Drosophila extracts, including caspase activator Annexin-X, myosin chaperone Unc-45, and lipogenic enzyme FASN1, and remarkably, their cardiac-specific manipulation can prevent LCM. Collectively, these data suggest that high ceramide-associated lipotoxicity is mediated, in part, through altering caspase activation, sarcomeric maintenance, and lipogenesis, thus providing evidence for conserved mechanisms in LCM pathogenesis in mammals.

  3. Heat Shock Protein 70 Modulates Influenza A Virus Polymerase Activity*

    Science.gov (United States)

    Manzoor, Rashid; Kuroda, Kazumichi; Yoshida, Reiko; Tsuda, Yoshimi; Fujikura, Daisuke; Miyamoto, Hiroko; Kajihara, Masahiro; Kida, Hiroshi; Takada, Ayato

    2014-01-01

    The role of heat shock protein 70 (Hsp70) in virus replication has been discussed for many viruses. The known suppressive role of Hsp70 in influenza virus replication is based on studies conducted in cells with various Hsp70 expression levels. In this study, we determined the role of Hsp70 in influenza virus replication in HeLa and HEK293T cells, which express Hsp70 constitutively. Co-immunoprecipitation and immunofluorescence studies revealed that Hsp70 interacted with PB2 or PB1 monomers and PB2/PB1 heterodimer but not with the PB1/PA heterodimer or PB2/PB1/PA heterotrimer and translocated into the nucleus with PB2 monomers or PB2/PB1 heterodimers. Knocking down Hsp70 resulted in reduced virus transcription and replication activities. Reporter gene assay, immunofluorescence assay, and Western blot analysis of nuclear and cytoplasmic fractions from infected cells demonstrated that the increase in viral polymerase activity during the heat shock phase was accompanied with an increase in Hsp70 and viral polymerases levels in the nuclei, where influenza virus replication takes place, whereas a reduction in viral polymerase activity was accompanied with an increase in cytoplasmic relocation of Hsp70 along with viral polymerases. Moreover, significantly higher levels of viral genomic RNA (vRNA) were observed during the heat shock phase than during the recovery phase. Overall, for the first time, these findings suggest that Hsp70 may act as a chaperone for influenza virus polymerase, and the modulatory effect of Hsp70 appears to be a sequel of shuttling of Hsp70 between nuclear and cytoplasmic compartments. PMID:24474693

  4. Simplified Swarm Optimization-Based Function Module Detection in Protein–Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Xianghan Zheng

    2017-04-01

    Full Text Available Proteomics research has become one of the most important topics in the field of life science and natural science. At present, research on protein–protein interaction networks (PPIN mainly focuses on detecting protein complexes or function modules. However, existing approaches are either ineffective or incomplete. In this paper, we investigate detection mechanisms of functional modules in PPIN, including open database, existing detection algorithms, and recent solutions. After that, we describe the proposed approach based on the simplified swarm optimization (SSO algorithm and the knowledge of Gene Ontology (GO. The proposed solution implements the SSO algorithm for clustering proteins with similar function, and imports biological gene ontology knowledge for further identifying function complexes and improving detection accuracy. Furthermore, we use four different categories of species datasets for experiment: fruitfly, mouse, scere, and human. The testing and analysis result show that the proposed solution is feasible, efficient, and could achieve a higher accuracy of prediction than existing approaches.

  5. Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data

    Directory of Open Access Journals (Sweden)

    Li Min

    2012-05-01

    Full Text Available Abstract Background Identification of protein complexes and functional modules from protein-protein interaction (PPI networks is crucial to understanding the principles of cellular organization and predicting protein functions. In the past few years, many computational methods have been proposed. However, most of them considered the PPI networks as static graphs and overlooked the dynamics inherent within these networks. Moreover, few of them can distinguish between protein complexes and functional modules. Results In this paper, a new framework is proposed to distinguish between protein complexes and functional modules by integrating gene expression data into protein-protein interaction (PPI data. A series of time-sequenced subnetworks (TSNs is constructed according to the time that the interactions were activated. The algorithm TSN-PCD was then developed to identify protein complexes from these TSNs. As protein complexes are significantly related to functional modules, a new algorithm DFM-CIN is proposed to discover functional modules based on the identified complexes. The experimental results show that the combination of temporal gene expression data with PPI data contributes to identifying protein complexes more precisely. A quantitative comparison based on f-measure reveals that our algorithm TSN-PCD outperforms the other previous protein complex discovery algorithms. Furthermore, we evaluate the identified functional modules by using “Biological Process” annotated in GO (Gene Ontology. The validation shows that the identified functional modules are statistically significant in terms of “Biological Process”. More importantly, the relationship between protein complexes and functional modules are studied. Conclusions The proposed framework based on the integration of PPI data and gene expression data makes it possible to identify protein complexes and functional modules more effectively. Moveover, the proposed new framework and

  6. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    DEFF Research Database (Denmark)

    Ngo, HT; Pham, Long; Kim, JW

    2013-01-01

    and protein levels of MAPKAPK3 were elevated in both HCV subgenomic replicon cells and cell culture-derived HCV (HCVcc)-infected cells. Silencing of MAPKAPK3 expression resulted in decreases in both protein and HCV infectivity levels but not in the intracellular HCV RNA level. We showed that MAPKAPK3......Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray......, approximately 100 cellular proteins were identified as HCV core-interacting partners. Of these candidates, mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3) was selected for further characterization. MAPKAPK3 is a serine/threonine protein kinase that is activated by stress and growth...

  7. Reverse micelles as a tool for probing solvent modulation of protein dynamics: Reverse micelle encapsulated hemoglobin

    Science.gov (United States)

    Roche, Camille J.; Dantsker, David; Heller, Elizabeth R.; Sabat, Joseph E.; Friedman, Joel M.

    2013-08-01

    Hydration waters impact protein dynamics. Dissecting the interplay between hydration waters and dynamics requires a protein that manifests a broad range of dynamics. Proteins in reverse micelles (RMs) have promise as tools to achieve this objective because the water content can be manipulated. Hemoglobin is an appropriate tool with which to probe hydration effects. We describe both a protocol for hemoglobin encapsulation in reverse micelles and a facile method using PEG and cosolvents to manipulate water content. Hydration properties are probed using the water-sensitive fluorescence from Hb bound pyranine and covalently attached Badan. Protein dynamics are probed through ligand recombination traces derived from photodissociated carbonmonoxy hemoglobin on a log scale that exposes the potential role of both α and β solvent fluctuations in modulating protein dynamics. The results open the possibility of probing hydration level phenomena in this system using a combination of NMR and optical probes.

  8. In Vitro Calcite Crystal Morphology Is Modulated by Otoconial Proteins Otolin-1 and Otoconin-90

    Science.gov (United States)

    Moreland, K. Trent; Hong, Mina; Lu, Wenfu; Rowley, Christopher W.; Ornitz, David M.; De Yoreo, James J.; Thalmann, Ruediger

    2014-01-01

    Otoconia are formed embryonically and are instrumental in detecting linear acceleration and gravity. Degeneration and fragmentation of otoconia in elderly patients leads to imbalance resulting in higher frequency of falls that are positively correlated with the incidence of bone fractures and death. In this work we investigate the roles otoconial proteins Otolin-1 and Otoconin 90 (OC90) perform in the formation of otoconia. We demonstrate by rotary shadowing and atomic force microscopy (AFM) experiments that Otolin-1 forms homomeric protein complexes and self-assembled networks supporting the hypothesis that Otolin-1 serves as a scaffold protein of otoconia. Our calcium carbonate crystal growth data demonstrate that Otolin-1 and OC90 modulate in vitro calcite crystal morphology but neither protein is sufficient to produce the shape of otoconia. Coadministration of these proteins produces synergistic effects on crystal morphology that contribute to morphology resembling otoconia. PMID:24748133

  9. The Natural Killer Cell Cytotoxic Function Is Modulated by HIV-1 Accessory Proteins

    Directory of Open Access Journals (Sweden)

    Edward Barker

    2011-07-01

    Full Text Available Natural killer (NK cells’ major role in the control of viruses is to eliminate established infected cells. The capacity of NK cells to kill virus-infected cells is dependent on the interactions between ligands on the infected cell and receptors on the NK cell surface. Because of the importance of ligand-receptor interactions in modulating the NK cell cytotoxic response, HIV has developed strategies to regulate various NK cell ligands making the infected cell surprisingly refractory to NK cell lysis. This is perplexing because the HIV-1 accessory protein Vpr induces expression of ligands for the NK cell activating receptor, NKG2D. In addition, the accessory protein Nef removes the inhibitory ligands HLA-A and -B. The reason for the ineffective killing by NK cells despite the strong potential to eliminate infected cells is due to HIV-1 Vpu’s ability to down modulate the co-activation ligand, NTB-A, from the cell surface. Down modulation of NTB-A prevents efficient NK cell degranulation. This review will focus on the mechanisms through which the HIV-1 accessory proteins modulate their respective ligands, and its implication for NK cell killing of HIV-infected cells.

  10. Microglia modulate brainstem serotonergic expression following neonatal sustained hypoxia exposure: implications for sudden infant death syndrome.

    Science.gov (United States)

    MacFarlane, P M; Mayer, C A; Litvin, D G

    2016-06-01

    Neonatal sustained hypoxia exposure modifies brainstem microglia and serotonin expression. The altered brainstem neurochemistry is associated with impaired ventilatory responses to acute hypoxia and mortality. The deleterious effects of sustained hypoxia exposure can be prevented by an inhibitor of activated microglia. These observations demonstrate a potential cause of the brainstem serotonin abnormalities thought to be involved in sudden infant death syndrome. We showed previously that the end of the second postnatal week (days P11-15) represents a period of development during which the respiratory neural control system exhibits a heightened vulnerability to sustained hypoxia (SH, 11% O2 , 5 days) exposure. In the current study, we investigated whether the vulnerability to SH during the same developmental time period is associated with changes in brainstem serotonin (5-HT) expression and whether it can be prevented by the microglia inhibitor minocycline. Using whole-body plethysmography, SH attenuated the acute (5 min) hypoxic ventilatory response (HVR) and caused a high incidence of mortality compared to normoxia rats. SH also increased microglia cell numbers and decreased 5-HT immunoreactivity in the nucleus of the solitary tract (nTS) and dorsal motor nucleus of the vagus (DMNV). The attenuated HVR, mortality, and changes in nTS and DMNV immunoreactivity was prevented by minocycline (25 mg kg(-1) /2 days during SH). These data demonstrate that the 5-HT abnormalities in distinct respiratory neural control regions can be initiated by prolonged hypoxia exposure and may be modulated by microglia activity. These observations share several commonalities with the risk factors thought to underlie the aetiology of sudden infant death syndrome, including: (1) a vulnerable neonate; (2) a critical period of development; (3) evidence of hypoxia; (4) brainstem gliosis (particularly the nTS and DMNV); and (5) 5-HT abnormalities. © 2015 The Authors. The Journal of

  11. Serotonergic Modulation as Effective Treatment for Dravet Syndrome in a Zebrafish Mutant Model.

    Science.gov (United States)

    Sourbron, Jo; Schneider, Henning; Kecskés, Angéla; Liu, Yusu; Buening, Ellen M; Lagae, Lieven; Smolders, Ilse; de Witte, Peter

    2016-05-18

    Dravet syndrome (DS) is a severe epilepsy syndrome that starts within the first year of life. In a clinical study, add-on treatment with fenfluramine, a potent 5-hydroxytryptamine (5-HT) releaser activating multiple 5-HT receptor subtypes, made 70% of DS children seizure free. Others and we recently confirmed the efficacy of fenfluramine as an antiepileptiform compound in zebrafish models of DS. By using a large set of subtype selective agonists, in this study we examined which 5-HT receptor subtypes can be targeted to trigger antiseizure effects in homozygous scn1Lab(-/-) mutant zebrafish larvae that recapitulate DS well. We also provide evidence that zebrafish larvae express the orthologues of all human 5-HT receptor subtypes. Using an automated larval locomotor behavior assay, we were able to show that selective 5-HT1D-, 5-HT1E-, 5-HT2A-, 5-HT2C-, and 5-HT7-agonists significantly decreased epileptiform activity in the mutant zebrafish at 7 days post fertilization (dpf). By measuring local field potentials in the zebrafish larval forebrain, we confirmed the antiepileptiform activity of the 5-HT1D-, 5-HT2C-, and especially the 5-HT2A-agonist. Interestingly, we also found a significant decrease of serotonin in the heads of homozygous scn1Lab(-/-) mutants as compared to the wild type zebrafish, which suggest that neurochemical defects might play a crucial role in the pathophysiology of DS. Taken together, our results emphasize the high conservation of the serotonergic receptors in zebrafish larvae. Modulating certain serotonergic receptors was shown to effectively reduce seizures. Our findings therefore open new avenues for the development of future novel DS therapeutics.

  12. Modulation of the GABAergic pathway for the treatment of fragile X syndrome.

    Science.gov (United States)

    Lozano, Reymundo; Hare, Emma B; Hagerman, Randi J

    2014-01-01

    Fragile X syndrome (FXS) is the most common genetic cause of intellectual disability and the most common single-gene cause of autism. It is caused by mutations on the fragile X mental retardation gene (FMR1) and lack of fragile X mental retardation protein, which in turn, leads to decreased inhibition of translation of many synaptic proteins. The metabotropic glutamate receptor (mGluR) hypothesis states that the neurological deficits in individuals with FXS are due mainly to downstream consequences of overstimulation of the mGluR pathway. The main efforts have focused on mGluR5 targeted treatments; however, investigation on the gamma-aminobutyric acid (GABA) system and its potential as a targeted treatment is less emphasized. The fragile X mouse models (Fmr1-knock out) show decreased GABA subunit receptors, decreased synthesis of GABA, increased catabolism of GABA, and overall decreased GABAergic input in many regions of the brain. Consequences of the reduced GABAergic input in FXS include oversensitivity to sensory stimuli, seizures, and anxiety. Deficits in the GABA receptors in different regions of the brain are associated with behavioral and attentional processing deficits linked to anxiety and autistic behaviors. The understanding of the neurobiology of FXS has led to the development of targeted treatments for the core behavioral features of FXS, which include social deficits, inattention, and anxiety. These symptoms are also observed in individuals with autism and other neurodevelopmental disorders, therefore the targeted treatments for FXS are leading the way in the treatment of other neurodevelopmental syndromes and autism. The GABAergic system in FXS represents a target for new treatments. Herein, we discuss the animal and human trials of GABAergic treatment in FXS. Arbaclofen and ganaxolone have been used in individuals with FXS. Other potential GABAergic treatments, such as riluzole, gaboxadol, tiagabine, and vigabatrin, will be also discussed. Further

  13. iPPI-DB: an online database of modulators of protein-protein interactions

    NARCIS (Netherlands)

    Labbe, C.M.; Kuenemann, M.A.; Zarzycka, B.; Vriend, G.; Nicolaes, G.A.; Lagorce, D.; Miteva, M.A.; Villoutreix, B.O.; Sperandio, O.

    2016-01-01

    In order to boost the identification of low-molecular-weight drugs on protein-protein interactions (PPI), it is essential to properly collect and annotate experimental data about successful examples. This provides the scientific community with the necessary information to derive trends about

  14. Impact of weight loss and maintenance with ad libitum diets varying in protein and glycemic index content on metabolic syndrome

    DEFF Research Database (Denmark)

    Papadaki, Angeliki; Linardakis, Manolis; Plada, Maria

    2014-01-01

    We investigated the effects of weight loss and maintenance with diets that varied with regard to protein content and glycemic index (GI) on metabolic syndrome (MetSyn) status.......We investigated the effects of weight loss and maintenance with diets that varied with regard to protein content and glycemic index (GI) on metabolic syndrome (MetSyn) status....

  15. Association between C-reactive protein and features of the metabolic syndrome

    DEFF Research Database (Denmark)

    Fröhlich, M; Imhof, A; Berg, Gabriele

    2000-01-01

    OBJECTIVE: To assess the association of circulating levels of C-reactive protein, a sensitive systemic marker of inflammation, with different components of the metabolic syndrome. RESEARCH DESIGN AND METHODS: Total cholesterol (TC), HDL cholesterol, triglycerides, uric acid, BMI , and prevalence...... C-reactive protein and TC (R = 0.19), TG (R = 0.29), BMI (R = 0.32), glucose (R = 0.11), and uric acid (R = 0.14) (all P protein and HDL cholesterol (R = 0.13, P protein...

  16. Endoplasmic reticulum stress and N-glycosylation modulate expression of WFS1 protein

    International Nuclear Information System (INIS)

    Yamaguchi, Suguru; Ishihara, Hisamitsu; Tamura, Akira; Yamada, Takahiro; Takahashi, Rui; Takei, Daisuke; Katagiri, Hideki; Oka, Yoshitomo

    2004-01-01

    Mutations of the WFS1 gene are responsible for two hereditary diseases, Wolfram syndrome and low frequency sensorineural hearing loss. The WFS1 protein is a glycoprotein located in the endoplasmic reticulum (ER) membrane but its function is poorly understood. Herein we show WFS1 mRNA and protein levels in pancreatic islets to be increased with ER-stress inducers, thapsigargin and dithiothreitol. Another ER-stress inducer, the N-glycosylation inhibitor tunicamycin, also raised WFS1 mRNA but not protein levels. Site-directed mutagenesis showed both Asn-663 and Asn-748 to be N-glycosylated in mouse WFS1 protein. The glycosylation-defective WFS1 protein, in which Asn-663 and Asn-748 had been substituted with aspartate, exhibited an increased protein turnover rate. Consistent with this, the WFS1 protein was more rapidly degraded in the presence of tunicamycin. These data indicate that ER-stress and N-glycosylation play important roles in WFS1 expression and stability, and also suggest regulatory roles for this protein in ER-stress induced cell death

  17. Mutations in Three Genes Encoding Proteins Involved in Hair Shaft Formation Cause Uncombable Hair Syndrome

    DEFF Research Database (Denmark)

    Ü Basmanav, F Buket; Cau, Laura; Tafazzoli, Aylar

    2016-01-01

    Uncombable hair syndrome (UHS), also known as "spun glass hair syndrome," "pili trianguli et canaliculi," or "cheveux incoiffables" is a rare anomaly of the hair shaft that occurs in children and improves with age. UHS is characterized by dry, frizzy, spangly, and often fair hair that is resistant...... in the majority of UHS case subjects. The two enzymes PADI3 and TGM3, responsible for posttranslational protein modifications, and their target structural protein TCHH are all involved in hair shaft formation. Elucidation of the molecular outcomes of the disease-causing mutations by cell culture experiments...... and tridimensional protein models demonstrated clear differences in the structural organization and activity of mutant and wild-type proteins. Scanning electron microscopy observations revealed morphological alterations in hair coat of Padi3 knockout mice. All together, these findings elucidate the molecular genetic...

  18. Neuronal signaling modulates protein homeostasis in Caenorhabditis elegans post-synaptic muscle cells.

    Science.gov (United States)

    Garcia, Susana M; Casanueva, M Olivia; Silva, M Catarina; Amaral, Margarida D; Morimoto, Richard I

    2007-11-15

    Protein homeostasis maintains proper intracellular balance by promoting protein folding and clearance mechanisms while minimizing the stress caused by the accumulation of misfolded and damaged proteins. Chronic expression of aggregation-prone proteins is deleterious to the cell and has been linked to a wide range of conformational disorders. The molecular response to misfolded proteins is highly conserved and generally studied as a cell-autonomous process. Here, we provide evidence that neuronal signaling is an important modulator of protein homeostasis in post-synaptic muscle cells. In a forward genetic screen in Caenorhabditis elegans for enhancers of polyglutamine aggregation in muscle cells, we identified unc-30, a neuron-specific transcription factor that regulates the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). We used additional sensors of protein conformational states to show that defective GABA signaling or increased acetylcholine (ACh) signaling causes a general imbalance in protein homeostasis in post-synaptic muscle cells. Moreover, exposure to GABA antagonists or ACh agonists has a similar effect, which reveals that toxins that act at the neuromuscular junction are potent modifiers of protein conformational disorders. These results demonstrate the importance of intercellular communication in intracellular homeostasis.

  19. Association between C-reactive protein and features of the metabolic syndrome

    DEFF Research Database (Denmark)

    Fröhlich, M; Imhof, A; Berg, Gabriele

    2000-01-01

    OBJECTIVE: To assess the association of circulating levels of C-reactive protein, a sensitive systemic marker of inflammation, with different components of the metabolic syndrome. RESEARCH DESIGN AND METHODS: Total cholesterol (TC), HDL cholesterol, triglycerides, uric acid, BMI , and prevalence...... C-reactive protein and TC (R = 0.19), TG (R = 0.29), BMI (R = 0.32), glucose (R = 0.11), and uric acid (R = 0.14) (all P

  20. Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response

    OpenAIRE

    Ciccia, Alberto; Huang, Jen-Wei; Izhar, Lior; Sowa, Mathew E.; Harper, J. Wade; Elledge, Stephen J.

    2014-01-01

    The DNA damage response (DDR) maintains genomic integrity following DNA damage to prevent cancer and developmental disorders. The DDR operates in part through controlling localization of factors to chromatin. Here, we detail an interaction between the DDR protein NBS1 and TCOF1, a nucleolar protein mutated in Treacher Collins syndrome that regulates ribosomal DNA transcription. We show that NBS1 relocalizes to nucleoli after DNA damage in a manner dependent on TCOF1 and independent on the NBS...

  1. Nance-Horan syndrome protein, NHS, associates with epithelial cell junctions.

    Science.gov (United States)

    Sharma, Shiwani; Ang, Sharyn L; Shaw, Marie; Mackey, David A; Gécz, Jozef; McAvoy, John W; Craig, Jamie E

    2006-06-15

    Nance-Horan syndrome, characterized by congenital cataracts, craniofacial, dental abnormalities and mental disturbances, is an X-linked disorder with significant phenotypic heterogeneity. Affected individuals have mutations in the NHS (Nance-Horan syndrome) gene typically resulting in premature truncation of the protein. This report underlines the complexity of the regulation of the NHS gene that transcribes several isoforms. We demonstrate the differential expression of the two NHS isoforms, NHS-A and NHS-1A, and differences in the subcellular localization of the proteins encoded by these isoforms. This may in part explain the pleiotropic features of the syndrome. We show that the endogenous and exogenous NHS-A isoform localizes to the cell membrane of mammalian cells in a cell-type-dependent manner and that it co-localizes with the tight junction (TJ) protein ZO-1 in the apical aspect of cell membrane in epithelial cells. We also show that the NHS-1A isoform is a cytoplasmic protein. In the developing mammalian lens, we found continuous expression of NHS that became restricted to the lens epithelium in pre- and postnatal lens. Consistent with the in vitro findings, the NHS-A isoform associates with the apical cell membrane in the lens epithelium. This study suggests that disturbances in intercellular contacts underlie cataractogenesis in the Nance-Horan syndrome. NHS is the first gene localized at TJs that has been implicated in congenital cataracts.

  2. Three functionally diverged major White Spot Syndrome Virus structural proteins evolved by gene duplication

    NARCIS (Netherlands)

    Hulten, van M.C.W.; Goldbach, R.W.; Vlak, J.M.

    2000-01-01

    White spot syndrome virus (WSSV) is an invertebrate virus causing considerable mortality in penaeid shrimp. The oval-to-bacilliform shaped virions, isolated from infected Penaeus monodon, contain four major proteins: VP28, VP26, VP24 and VP19 (28, 26, 24 and 19 kDa, respectively). VP26 and VP24 are

  3. Circulating adipocyte fatty acid-binding protein, juvenile obesity, and metabolic syndrome

    NARCIS (Netherlands)

    Krzystek-Korpacka, Malgorzata; Patryn, Eliza; Bednarz-Misa, Iwona; Mierzchala, Magdalena; Hotowy, Katarzyna; Czapinska, Elzbieta; Kustrzeba-Wojcicka, Irena; Gamian, Andrzej; Noczynska, Anna

    2011-01-01

    Adipocyte fatty acid-binding protein (A-FABP) links obesity and metabolic syndrome (MetS) and might be targeted in future therapies. Its utility as a MetS biomarker has been suggested in adults but has not been examined in children/adolescents. Our objectives were to identify metabolic parameters

  4. S100B protein, glia and Gilles de la Tourette syndrome.

    NARCIS (Netherlands)

    Passel, R. van; Schlooz, W.A.; Lamers, K.J.B.; Lemmens, W.A.J.G.; Rotteveel, J.J.

    2001-01-01

    Activated glial cells play an important role in a variety of neurological disorders. This study examines S100B protein levels in the serum of patients with Gilles de la Tourette syndrome, as potential marker for glial cell function. Two groups of children were examined: 61 reference patients and 33

  5. Role of inhibitory proteins as modulators of oscillations in NFB signalling.

    Science.gov (United States)

    Nikolov, S; Vera, J; Rath, O; Kolch, W; Wolkenhauer, O

    2009-03-01

    The authors discuss the role of the Raf kinase inhibitory protein (RKIP) as a modulator of oscillations in NFB signalling. A mathematical model of the NFB signalling pathway was derived and the Lyapunov-Andronov theory was used to analyse dynamical properties of the system. The analytical results were complemented by predictive numerical simulations. Our results suggest that the nature of oscillations, emerging under sustained stimulation of the system, depends on the interplay between the IB kinase (IKK) stimulation and the inhibitory action of RKIP. The authors found a mathematical relation that defines isoclines in IKK and RKIP levels for which the properties of oscillations are conserved and changes in the stimulation can be compensated by modulating RKIP inhibition. On the other hand, the shifting from the current isocline provokes modulation in either the amplitude (for stronger stimulation) or the frequency (for weaker stimulation).

  6. C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein.

    Science.gov (United States)

    Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis

    2011-02-15

    The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus, and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the virus-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in the extent of cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F protein fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in the extent of fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of addition of the HA tag varied with other fusion proteins, as parainfluenza virus 5 F-HA showed a decreased level of surface expression and no stimulation of fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope-tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in the modulation of the membrane fusion reaction promoted by these viral glycoproteins.

  7. A surface plasmon resonance interferometer based on spatial phase modulation for protein array detection

    Science.gov (United States)

    Yu, Xinglong; Ding, Xiang; Liu, Fangfang; Wei, Xing; Wang, Dingxin

    2008-01-01

    Thousands of kinds of proteins exist in a single cell. Proteomics research aims to characterize these proteins and simultaneously analyse modifications and interactions on a large scale. Here we present a label-free surface plasmon resonance (SPR) imaging interferometer based on spatial phase modulation, which can be useful in this field. It consists of a light source, a SPR sensing unit, a special phase modulator, a photoelectric conversion unit and a computer. Collimated light is projected into a prism and reflected at the gold-glass interface. The p- and s-polarized components of the reflected light pass through a one-dimensional beam expander and a Wollaston prism, and form an interference pattern on a CCD. Interference images are acquired and transferred to the computer for data processing. Protein interaction on the gold surface leads to a local refractive index change and results in interference fringe phase shift. By calculating the phase shift, interaction information can be obtained. It is demonstrated that this technique can detect different concentrations of NaCl solutions, and the phase change generated by a 0.9% NaCl solution is about 10°. In protein-protein interaction experiments, a model system of rabbit IgG and goat-anti-rabbit IgG is tested. The maximum phase change is up to 12°. The phase resolution of the system is 0.2°, equivalent to the refractive index resolution of 3 × 10-5 RIU, and this value can be improved to 2 × 10-6 RIU just by increasing the gold thickness of the sensing chip. It is concluded that the sensitivity of the interferometer is enough to achieve larger capacity than that detected by the present protein micro-array products. These results suggest that the SPR interferometer based on spatial phase modulation provides a potential facility to meet the requirements in proteomics research.

  8. Modulator of apoptosis 1 (MOAP-1) is a tumor suppressor protein linked to the RASSF1A protein.

    Science.gov (United States)

    Law, Jennifer; Salla, Mohamed; Zare, Alaa; Wong, Yoke; Luong, Le; Volodko, Natalia; Svystun, Orysya; Flood, Kayla; Lim, Jonathan; Sung, Miranda; Dyck, Jason R B; Tan, Chong Teik; Su, Yu-Chin; Yu, Victor C; Mackey, John; Baksh, Shairaz

    2015-10-02

    Modulator of apoptosis 1 (MOAP-1) is a BH3-like protein that plays key roles in cell death or apoptosis. It is an integral partner to the tumor suppressor protein, Ras association domain family 1A (RASSF1A), and functions to activate the Bcl-2 family pro-apoptotic protein Bax. Although RASSF1A is now considered a bona fide tumor suppressor protein, the role of MOAP-1 as a tumor suppressor protein has yet to be determined. In this study, we present several lines of evidence from cancer databases, immunoblotting of cancer cells, proliferation, and xenograft assays as well as DNA microarray analysis to demonstrate the role of MOAP-1 as a tumor suppressor protein. Frequent loss of MOAP-1 expression, in at least some cancers, appears to be attributed to mRNA down-regulation and the rapid proteasomal degradation of MOAP-1 that could be reversed utilizing the proteasome inhibitor MG132. Overexpression of MOAP-1 in several cancer cell lines resulted in reduced tumorigenesis and up-regulation of genes involved in cancer regulatory pathways that include apoptosis (p53, Fas, and MST1), DNA damage control (poly(ADP)-ribose polymerase and ataxia telangiectasia mutated), those within the cell metabolism (IR-α, IR-β, and AMP-activated protein kinase), and a stabilizing effect on microtubules. The loss of RASSF1A (an upstream regulator of MOAP-1) is one of the earliest detectable epigenetically silenced tumor suppressor proteins in cancer, and we speculate that the additional loss of function of MOAP-1 may be a second hit to functionally compromise the RASSF1A/MOAP-1 death receptor-dependent pathway and drive tumorigenesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Modulator of Apoptosis 1 (MOAP-1) Is a Tumor Suppressor Protein Linked to the RASSF1A Protein*

    Science.gov (United States)

    Law, Jennifer; Salla, Mohamed; Zare, Alaa; Wong, Yoke; Luong, Le; Volodko, Natalia; Svystun, Orysya; Flood, Kayla; Lim, Jonathan; Sung, Miranda; Dyck, Jason R. B.; Tan, Chong Teik; Su, Yu-Chin; Yu, Victor C.; Mackey, John; Baksh, Shairaz

    2015-01-01

    Modulator of apoptosis 1 (MOAP-1) is a BH3-like protein that plays key roles in cell death or apoptosis. It is an integral partner to the tumor suppressor protein, Ras association domain family 1A (RASSF1A), and functions to activate the Bcl-2 family pro-apoptotic protein Bax. Although RASSF1A is now considered a bona fide tumor suppressor protein, the role of MOAP-1 as a tumor suppressor protein has yet to be determined. In this study, we present several lines of evidence from cancer databases, immunoblotting of cancer cells, proliferation, and xenograft assays as well as DNA microarray analysis to demonstrate the role of MOAP-1 as a tumor suppressor protein. Frequent loss of MOAP-1 expression, in at least some cancers, appears to be attributed to mRNA down-regulation and the rapid proteasomal degradation of MOAP-1 that could be reversed utilizing the proteasome inhibitor MG132. Overexpression of MOAP-1 in several cancer cell lines resulted in reduced tumorigenesis and up-regulation of genes involved in cancer regulatory pathways that include apoptosis (p53, Fas, and MST1), DNA damage control (poly(ADP)-ribose polymerase and ataxia telangiectasia mutated), those within the cell metabolism (IR-α, IR-β, and AMP-activated protein kinase), and a stabilizing effect on microtubules. The loss of RASSF1A (an upstream regulator of MOAP-1) is one of the earliest detectable epigenetically silenced tumor suppressor proteins in cancer, and we speculate that the additional loss of function of MOAP-1 may be a second hit to functionally compromise the RASSF1A/MOAP-1 death receptor-dependent pathway and drive tumorigenesis. PMID:26269600

  10. Nucleation phenomena in protein folding: the modulating role of protein sequence

    International Nuclear Information System (INIS)

    Travasso, Rui D M; FaIsca, Patricia F N; Gama, Margarida M Telo da

    2007-01-01

    For the vast majority of naturally occurring, small, single-domain proteins, folding is often described as a two-state process that lacks detectable intermediates. This observation has often been rationalized on the basis of a nucleation mechanism for protein folding whose basic premise is the idea that, after completion of a specific set of contacts forming the so-called folding nucleus, the native state is achieved promptly. Here we propose a methodology to identify folding nuclei in small lattice polymers and apply it to the study of protein molecules with a chain length of N = 48. To investigate the extent to which protein topology is a robust determinant of the nucleation mechanism, we compare the nucleation scenario of a native-centric model with that of a sequence-specific model sharing the same native fold. To evaluate the impact of the sequence's finer details in the nucleation mechanism, we consider the folding of two non-homologous sequences. We conclude that, in a sequence-specific model, the folding nucleus is, to some extent, formed by the most stable contacts in the protein and that the less stable linkages in the folding nucleus are solely determined by the fold's topology. We have also found that, independently of the protein sequence, the folding nucleus performs the same 'topological' function. This unifying feature of the nucleation mechanism results from the residues forming the folding nucleus being distributed along the protein chain in a similar and well-defined manner that is determined by the fold's topological features

  11. Effectiveness of trimebutine maleate on modulating intestinal hypercontractility in a mouse model of postinfectious irritable bowel syndrome.

    Science.gov (United States)

    Long, Yanqin; Liu, Ying; Tong, Jingjing; Qian, Wei; Hou, Xiaohua

    2010-06-25

    Trimebutine maleate, which modulates the calcium and potassium channels, relieves abdominal pain in patients with irritable bowel syndrome. However, its effect on postinfectious irritable bowel syndrome is not clarified. The aim of this study was to investigate the effectiveness of trimebutine maleate on modulating colonic hypercontractility in a mouse model of postinfectious irritable bowel syndrome. Mice infected up to 8 weeks with T. spiralis underwent abdominal withdrawal reflex to colorectal distention to evaluate the visceral sensitivity at different time points. Tissues were examined for histopathology scores. Colonic longitudinal muscle strips were prepared in the organ bath under basal condition or to be stimulated by acetylcholine and potassium chloride, and consecutive concentrations of trimebutine maleate were added to the bath to record the strip responses. Significant inflammation was observed in the intestines of the mice infected 2 weeks, and it resolved in 8 weeks after infection. Visceral hyperalgesia and colonic muscle hypercontractility emerged after infection, and trimebutine maleate could effectively reduce the colonic hyperreactivity. Hypercontractility of the colonic muscle stimulated by acetylcholine and high K(+) could be inhibited by trimebutine maleate in solution with Ca(2+), but not in Ca(2+) free solution. Compared with 8-week postinfectious irritable bowel syndrome group, 2-week acute infected strips were much more sensitive to the stimulators and the drug trimebutine maleate. Trimebutine maleate was effective in reducing the colonic muscle hypercontractility of postinfectious irritable bowel syndrome mice. The findings may provide evidence for trimebutine maleate to treat postinfectious irritable bowel syndrome patients effectively. (c) 2010 Elsevier B.V. All rights reserved.

  12. Differential modulations of KCNQ1 by auxiliary proteins KCNE1 and KCNE2.

    Science.gov (United States)

    Li, Pan; Liu, Haowen; Lai, Chaohua; Sun, Peibei; Zeng, Wenping; Wu, Fangming; Zhang, Longhua; Wang, Sheng; Tian, Changlin; Ding, Jiuping

    2014-05-15

    KCNQ1 channels play vital roles in cardiovascular, gastric and other systems. The conductance and dynamics of KCNQ1 could be modulated by different single transmembrane helical auxiliary proteins (such as KCNE1, KCNE2 and others). In this study, detail KCNQ1 function modulations by different regions of KCNE1 or KCNE2 were examined using combinational methods of electrophysiology, immunofluorescence, solution NMR and related backbone flexibility analysis. In the presence of KCNE2 N-terminus, decreased surface expression and consequent low activities of KCNQ1 were observed. The transmembrane domains (TMDs) of KCNE1 and KCNE2 were illustrated to associate with the KCNQ1 channel in different modes: Ile64 in KCNE2-TMD interacting with Phe340 and Phe275 in KCNQ1, while two pairs of interacting residues (Phe340-Thr58 and Ala244-Tyr65) in the KCNQ1/KCNE1 complex. The KCNE1 C-terminus could modulate gating property of KCNQ1, whereas KCNE2 C-terminus had only minimal influences on KCNQ1. All of the results demonstrated different KCNQ1 function modulations by different regions of the two auxiliary proteins.

  13. Fasting and refeeding modulate the expression of stress proteins along the gastrointestinal tract of weaned pigs.

    Science.gov (United States)

    Lallès, J P; David, J C

    2011-08-01

    The gastrointestinal tract (GIT) of young mammals is submitted to aggressions early in life and GIT stress proteins are up-regulated in pigs following weaning. We hypothesized that transient food deprivation may contribute to these changes. Therefore, the effects of fasting and refeeding on GIT stress proteins in weaned pigs were investigated. A complete block experimental design with three groups of five pigs each was set up with the following treatments: A - food offered, B - fasted for 1.5 days, C - fasted for 1.5 days and then re-fed for 2.5 days. After slaughter, the GIT was removed, weighed and sampled. Intestinal villi and crypts were measured and alkaline phosphatase activity was determined. GIT tissue stress protein concentrations were measured by Western blotting. Fasting led to intestinal mucosa and villous-crypt atrophy (p fasting. Inducible NOS (iNOS) did so in the stomach (p fasting and refeeding modulate GIT HSP proteins and nNOS in pigs following weaning. Changes in digesta and intestinal mucosa weights and alkaline phosphatase activity may be involved in the modulation of stress proteins along the GIT. © 2010 Blackwell Verlag GmbH.

  14. Exploring protein structure and dynamics through a project-oriented biochemistry laboratory module.

    Science.gov (United States)

    Lipchock, James M; Ginther, Patrick S; Douglas, Bonnie B; Bird, Kelly E; Patrick Loria, J

    2017-09-01

    Here, we present a 10-week project-oriented laboratory module designed to provide a course-based undergraduate research experience in biochemistry that emphasizes the importance of biomolecular structure and dynamics in enzyme function. This module explores the impact of mutagenesis on an important active site loop for a biomedically-relevant human enzyme, protein tyrosine phosphatase 1B (PTP1B). Over the course of the semester students guide their own mutant of PTP1B from conception to characterization in a cost-effective manner and gain exposure to fundamental techniques in biochemistry, including site-directed DNA mutagenesis, bacterial recombinant protein expression, affinity column purification, protein quantitation, SDS-PAGE, and enzyme kinetics. This project-based approach allows an instructor to simulate a research setting and prepare students for productive research beyond the classroom. Potential modifications to expand or contract this module are also provided. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):403-410, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  15. Middle East Respiratory Syndrome Coronavirus Nonstructural Protein 16 Is Necessary for Interferon Resistance and Viral Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Menachery, Vineet D.; Gralinski, Lisa E.; Mitchell, Hugh D.; Dinnon, Kenneth H.; Leist, Sarah R.; Yount, Boyd L.; Graham, Rachel L.; McAnarney, Eileen T.; Stratton, Kelly G.; Cockrell, Adam S.; Debbink, Kari; Sims, Amy C.; Waters, Katrina M.; Baric, Ralph S.; Fernandez-Sesma, Ana

    2017-11-15

    ABSTRACT

    Coronaviruses (CoVs) encode a mixture of highly conserved and novel genes, as well as genetic elements necessary for infection and pathogenesis, raising the possibility of common targets for attenuation and therapeutic design. In this study, we focused on highly conserved nonstructural protein 16 (NSP16), a viral 2'O-methyltransferase (2'O-MTase) that encodes critical functions in immune modulation and infection. Using reverse genetics, we disrupted a key motif in the conserved KDKE motif of Middle East respiratory syndrome CoV (MERS-CoV) NSP16 (D130A) and evaluated the effect on viral infection and pathogenesis. While the absence of 2'O-MTase activity had only a marginal impact on propagation and replication in Vero cells, dNSP16 mutant MERS-CoV demonstrated significant attenuation relative to the control both in primary human airway cell cultures andin vivo. Further examination indicated that dNSP16 mutant MERS-CoV had a type I interferon (IFN)-based attenuation and was partially restored in the absence of molecules of IFN-induced proteins with tetratricopeptide repeats. Importantly, the robust attenuation permitted the use of dNSP16 mutant MERS-CoV as a live attenuated vaccine platform protecting from a challenge with a mouse-adapted MERS-CoV strain. These studies demonstrate the importance of the conserved 2'O-MTase activity for CoV pathogenesis and highlight NSP16 as a conserved universal target for rapid live attenuated vaccine design in an expanding CoV outbreak setting.

    IMPORTANCECoronavirus (CoV) emergence in both humans and livestock represents a significant threat to global public health, as evidenced by the sudden emergence of severe acute respiratory syndrome CoV (SARS-CoV), MERS-CoV, porcine epidemic diarrhea virus, and swine delta CoV in the 21st century. These studies describe an approach that

  16. Brucella Modulates Secretory Trafficking via Multiple Type IV Secretion Effector Proteins

    Science.gov (United States)

    Myeni, Sebenzile; Child, Robert; Ng, Tony W.; Kupko, John J.; Wehrly, Tara D.; Porcella, Stephen F.; Knodler, Leigh A.; Celli, Jean

    2013-01-01

    The intracellular pathogenic bacterium Brucella generates a replicative vacuole (rBCV) derived from the endoplasmic reticulum via subversion of the host cell secretory pathway. rBCV biogenesis requires the expression of the Type IV secretion system (T4SS) VirB, which is thought to translocate effector proteins that modulate membrane trafficking along the endocytic and secretory pathways. To date, only a few T4SS substrates have been identified, whose molecular functions remain unknown. Here, we used an in silico screen to identify putative T4SS effector candidate proteins using criteria such as limited homology in other bacterial genera, the presence of features similar to known VirB T4SS effectors, GC content and presence of eukaryotic-like motifs. Using β-lactamase and CyaA adenylate cyclase reporter assays, we identified eleven proteins translocated into host cells by Brucella, five in a VirB T4SS-dependent manner, namely BAB1_0678 (BspA), BAB1_0712 (BspB), BAB1_0847 (BspC), BAB1_1671 (BspE) and BAB1_1948 (BspF). A subset of the translocated proteins targeted secretory pathway compartments when ectopically expressed in HeLa cells, and the VirB effectors BspA, BspB and BspF inhibited protein secretion. Brucella infection also impaired host protein secretion in a process requiring BspA, BspB and BspF. Single or combined deletions of bspA, bspB and bspF affected Brucella ability to replicate in macrophages and persist in the liver of infected mice. Taken together, these findings demonstrate that Brucella modulates secretory trafficking via multiple T4SS effector proteins that likely act coordinately to promote Brucella pathogenesis. PMID:23950720

  17. Rapid Modulation of Protein Expression in the Rat Hippocampus Following Deep Brain Stimulation of the Fornix.

    Science.gov (United States)

    Gondard, Elise; Chau, Hien N; Mann, Amandeep; Tierney, Travis S; Hamani, Clement; Kalia, Suneil K; Lozano, Andres M

    2015-01-01

    The forniceal area is currently being evaluated as a target for deep brain stimulation (DBS) to improve cognitive function in patients with Alzheimer's disease. The molecular changes at downstream targets within the stimulated circuit are unknown. To analyze the modulation of hippocampal protein expression following 1 h of fornix DBS in the rat. Animals underwent bilateral forniceal DBS for 1 h and sacrificed at different time-points after the initiation of the stimulation (1 h, 2.5 h, 5 h, 25 h). Bilateral hippocampi were isolated for western blot analyses. Forniceal DBS led to a dramatic elevation of cFos post-stimulation, suggesting that forniceal DBS activates the hippocampus. There was also a significant increase in candidate proteins including several trophic factors, such as brain derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) but not glial cell-derived neurotrophic factor (GDNF). There was in addition, increased expression of the synaptic markers growth associated protein 43 (GAP-43), synaptophysin and α-synuclein. No changes were observed at the studied time-points in Alzheimer's-related proteins including amyloid precursor protein (APP), tau, phosphorylated tau (ptau), or selected chaperone proteins (HSP40, HSP70 and CHIP). Forniceal DBS triggers hippocampal activity and rapidly modulate the expression of neurotrophic factors and markers of synaptic plasticity known to play key roles in memory processing. The clinical effects of DBS of the fornix may, in part, be mediated by producing changes in the expression of these proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The effects of GH and hormone replacement therapy on serum concentrations of mannan-binding lectin, surfactant protein D and vitamin D binding protein in Turner syndrome

    DEFF Research Database (Denmark)

    Gravholt, Claus Højbjerg; Leth-Larsen, Rikke; Lauridsen, Anna Lis

    2004-01-01

    function. In the present study we examined whether GH or hormone replacement therapy (HRT) in Turner syndrome (TS) influence the serum concentrations of MBL and two other proteins partaking in the innate immune defence, surfactant protein D (SP-D) and vitamin D binding protein (DBP). DESIGN: Study 1...

  19. Modulation of the GABAergic pathway for the treatment of fragile X syndrome

    Directory of Open Access Journals (Sweden)

    Lozano R

    2014-09-01

    Full Text Available Reymundo Lozano,1,2 Emma B Hare,1,2 Randi J Hagerman1,2 1MIND Institute, 2Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA Abstract: Fragile X syndrome (FXS is the most common genetic cause of intellectual disability and the most common single-gene cause of autism. It is caused by mutations on the fragile X mental retardation gene (FMR1 and lack of fragile X mental retardation protein, which in turn, leads to decreased inhibition of translation of many synaptic proteins. The metabotropic glutamate receptor (mGluR hypothesis states that the neurological deficits in individuals with FXS are due mainly to downstream consequences of overstimulation of the mGluR pathway. The main efforts have focused on mGluR5 targeted treatments; however, investigation on the gamma-aminobutyric acid (GABA system and its potential as a targeted treatment is less emphasized. The fragile X mouse models (Fmr1-knock out show decreased GABA subunit receptors, decreased synthesis of GABA, increased catabolism of GABA, and overall decreased GABAergic input in many regions of the brain. Consequences of the reduced GABAergic input in FXS include oversensitivity to sensory stimuli, seizures, and anxiety. Deficits in the GABA receptors in different regions of the brain are associated with behavioral and attentional processing deficits linked to anxiety and autistic behaviors. The understanding of the neurobiology of FXS has led to the development of targeted treatments for the core behavioral features of FXS, which include social deficits, inattention, and anxiety. These symptoms are also observed in individuals with autism and other neurodevelopmental disorders, therefore the targeted treatments for FXS are leading the way in the treatment of other neurodevelopmental syndromes and autism. The GABAergic system in FXS represents a target for new treatments. Herein, we discuss the animal and human trials of GABAergic treatment in FXS. Arbaclofen and

  20. Multiple proteins of White spot syndrome virus involved in ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... of LvInt was assayed by SDS-PAGE. 2.2 SDS-PAGE and Western blot assay. Expression cultures were subjected to 12% SDS-PAGE anal- ysis according to the method of Laemmli (1970). For West- ern blotting, the separated proteins were then transferred to a polyvinylidene difluoride (PVDF) membrane.

  1. RPGR-containing protein complexes in syndromic and non ...

    Indian Academy of Sciences (India)

    2009-12-31

    Dec 31, 2009 ... 2Neurobiology-Neurodegeneration and Repair laboratory (N-NRL), National Eye Institute,. National Institutes of Health, Bethesda, MD ... According to the current model of IFT, protein and membrane cargo are ..... most human RPGR mutations were hypothesized to have a null phenotype in males; however, ...

  2. Cockayne Syndrome group B protein stimulates NEIL2 DNA glycosylase activity

    DEFF Research Database (Denmark)

    Aamann, Maria Diget; Hvitby, Christina Poulsen; Popuri, Venkateswarlu

    2014-01-01

    Cockayne Syndrome is a segmental premature aging syndrome, which can be caused by loss of function of the CSB protein. CSB is essential for genome maintenance and has numerous interaction partners with established roles in different DNA repair pathways including transcription coupled nucleotide...... activity on a 5-hydroxyl uracil lesion in a DNA bubble structure substrate in vitro. A novel 4,6-diamino-5-formamidopyrimidine (FapyA) specific incision activity of NEIL2 was also stimulated by CSB. To further elucidate the biological role of the interaction, immunofluorescence studies were performed...

  3. Successful diuretics treatment of protein-losing enteropathy in Noonan syndrome.

    Science.gov (United States)

    Mizuochi, Tatsuki; Suda, Kenji; Seki, Yoshitaka; Yanagi, Tadahiro; Yoshimoto, Hironaga; Kudo, Yoshiyuki; Iemura, Motofumi; Tanikawa, Ken; Matsuishi, Toyojiro

    2015-04-01

    There are few reports on successful high-dose spironolactone treatment of refractory protein-losing enteropathy (PLE) caused by Fontan procedure. We report successful diuretics treatment with spironolactone and furosemide at standard dose, of refractory PLE in a patient with Noonan syndrome and repaired congenital heart disease. This is the first successful application of diuretics treatment in a patient with refractory PLE without Fontan procedure. This case illustrates that diuretics treatment can be the first-line treatment of PLE regardless of the causative physiology, and can be effective in refractory PLE with Noonan syndrome. © 2015 Japan Pediatric Society.

  4. Fatty acids modulate the expression levels of key proteins for cholesterol absorption in Caco-2 monolayer.

    Science.gov (United States)

    Yang, Fang; Chen, Guoxun; Ma, Meihu; Qiu, Ning; Zhu, Lingjiao; Li, Jing

    2018-02-20

    Fatty acids have been shown to modulate intestinal cholesterol absorption in cells and animals, a process that is mediated by several transporter proteins. Of these proteins, Niemann-Pick C1-Like 1 (NPC1L1) is a major contributor to this process. The current study investigates the unknown mechanism by which fatty acids modulate cholesterol absorption. We evaluated the effects of six fatty acids palmitic acid (PAM), oleic acid (OLA), linoleic acid (LNA), arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cholesterol uptake and transport in human enterocytes Caco-2 cells, and on the mRNA expression levels of NPC1L1, others proteins (ABCG5, ABCG8, ABCA1, ACAT2, MTP, Caveolin 1, Annexin-2) involved in cholesterol absorption, and SREBP-1 and SREBP-2 that are responsible for lipid metabolism. The polyunsaturated fatty acids (PUFAs), especially for EPA and DHA, dose-dependently inhibited cholesterol uptake and transport in Caco-2 monolayer, while saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) had no inhibitory effects. EPA and DHA inhibited cholesterol absorption in Caco-2 monolayer might be caused by down-regulating NPC1L1 mRNA and protein levels, which were associated with inhibition of SREBP-1/- 2 mRNA expression levels. Results from this study indicate that functional food containing high PUFAs may have potential therapeutic benefit to reduce cholesterol absorption. Further studies on this topic may provide approaches to control lipid metabolism and to promote health.

  5. KCNQ1 channel modulation by KCNE proteins via the voltage-sensing domain.

    Science.gov (United States)

    Nakajo, Koichi; Kubo, Yoshihiro

    2015-06-15

    The gating of the KCNQ1 potassium channel is drastically regulated by auxiliary subunit KCNE proteins. KCNE1, for example, slows the activation kinetics of KCNQ1 by two orders of magnitude. Like other voltage-gated ion channels, the opening of KCNQ1 is regulated by the voltage-sensing domain (VSD; S1-S4 segments). Although it has been known that KCNE proteins interact with KCNQ1 via the pore domain, some recent reports suggest that the VSD movement may be altered by KCNE. The altered VSD movement of KCNQ1 by KCNE proteins has been examined by site-directed mutagenesis, the scanning cysteine accessibility method (SCAM), voltage clamp fluorometry (VCF) and gating charge measurements. These accumulated data support the idea that KCNE proteins interact with the VSDs of KCNQ1 and modulate the gating of the KCNQ1 channel. In this review, we will summarize recent findings and current views of the KCNQ1 modulation by KCNE via the VSD. In this context, we discuss our recent findings that KCNE1 may alter physical interactions between the S4 segment (VSD) and the S5 segment (pore domain) of KCNQ1. Based on these findings from ourselves and others, we propose a hypothetical mechanism for how KCNE1 binding alters the VSD movement and the gating of the channel. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  6. IQGAP1 Binds to Yes-associated Protein (YAP) and Modulates Its Transcriptional Activity *

    Science.gov (United States)

    Sayedyahossein, Samar; Li, Zhigang; Hedman, Andrew C.; Morgan, Chase J.

    2016-01-01

    During development, the Hippo signaling pathway regulates key physiological processes, such as control of organ size, regeneration, and stem cell biology. Yes-associated protein (YAP) is a major transcriptional co-activator of the Hippo pathway. The scaffold protein IQGAP1 interacts with more than 100 binding partners to integrate diverse signaling pathways. In this study, we report that IQGAP1 binds to YAP and modulates its activity. IQGAP1 and YAP co-immunoprecipitated from cells. In vitro analysis with pure proteins demonstrated a direct interaction between IQGAP1 and YAP. Analysis with multiple fragments of each protein showed that the interaction occurs via the IQ domain of IQGAP1 and the TEAD-binding domain of YAP. The interaction between IQGAP1 and YAP has functional effects. Knock-out of endogenous IQGAP1 significantly increased the formation of nuclear YAP-TEAD complexes. Transcription assays were performed with IQGAP1-null mouse embryonic fibroblasts and HEK293 cells with IQGAP1 knockdown by CRISPR/Cas9. Quantification demonstrated that YAP-TEAD-mediated transcription in cells lacking IQGAP1 was significantly greater than in control cells. These data reveal that IQGAP1 binds to YAP and modulates its co-transcriptional function, suggesting that IQGAP1 participates in Hippo signaling. PMID:27440047

  7. Profiling Proteins in the Hypothalamus and Hippocampus of a Rat Model of Premenstrual Syndrome Irritability

    Science.gov (United States)

    Wei, Sheng; Wei, Xia; Wu, Jibiao

    2017-01-01

    Premenstrual syndrome (PMS) refers to several physical and mental symptoms (such as irritability) commonly encountered in clinical gynaecology. The incidence of PMS has been increasing, attracting greater attention from medical fields. However, PMS pathogenesis remains unclear. This study employed two-dimensional gel electrophoresis (2DE) for proteomic map analysis of the hypothalamus and hippocampus of rat models of premenstrual syndrome (PMS) irritability. Matrix-assisted laser desorption/ionisation time of flight mass spectroscopy (MALDI-TOF-MS) was used to identify proteins possibly related with PMS irritability. Baixiangdan, a traditional Chinese medicine effective against PMS irritability, was used in the rat model to study putative target proteins of this medicine. The hypothalamus and hippocampus of each group modelling PMS displayed the following features: decreased expression of Ulip2, tubulin beta chain 15, α actin, and interleukin 1 receptor accessory protein; increased expression of kappa-B motif-binding phosphoprotein; decreased expression of hydrolase at the end of ubiquitin carboxy, albumin, and aldolase protein; and increased expression of M2 pyruvate kinase, panthenol-cytochrome C reductase core protein I, and calcium-binding protein. Contrasting with previous studies, the current study identified new proteins related to PMS irritability. Our findings contribute to understanding the pathogenesis of PMS irritability and could provide a reference point for further studies. PMID:28255462

  8. Profiling Proteins in the Hypothalamus and Hippocampus of a Rat Model of Premenstrual Syndrome Irritability

    Directory of Open Access Journals (Sweden)

    Mingqi Qiao

    2017-01-01

    Full Text Available Premenstrual syndrome (PMS refers to several physical and mental symptoms (such as irritability commonly encountered in clinical gynaecology. The incidence of PMS has been increasing, attracting greater attention from medical fields. However, PMS pathogenesis remains unclear. This study employed two-dimensional gel electrophoresis (2DE for proteomic map analysis of the hypothalamus and hippocampus of rat models of premenstrual syndrome (PMS irritability. Matrix-assisted laser desorption/ionisation time of flight mass spectroscopy (MALDI-TOF-MS was used to identify proteins possibly related with PMS irritability. Baixiangdan, a traditional Chinese medicine effective against PMS irritability, was used in the rat model to study putative target proteins of this medicine. The hypothalamus and hippocampus of each group modelling PMS displayed the following features: decreased expression of Ulip2, tubulin beta chain 15, α actin, and interleukin 1 receptor accessory protein; increased expression of kappa-B motif-binding phosphoprotein; decreased expression of hydrolase at the end of ubiquitin carboxy, albumin, and aldolase protein; and increased expression of M2 pyruvate kinase, panthenol-cytochrome C reductase core protein I, and calcium-binding protein. Contrasting with previous studies, the current study identified new proteins related to PMS irritability. Our findings contribute to understanding the pathogenesis of PMS irritability and could provide a reference point for further studies.

  9. Quantitation of proteinuria in nephrotic syndrome by spot urine protein creatinine ratio estimation in children.

    Science.gov (United States)

    Biswas, A; Kumar, R; Chaterjee, A; Ghosh, J K; Basu, K

    2009-01-01

    In Nephrotic Syndrome the amount of protein excretion is a reflection of activity of disease. Quantitative measurement of proteinuria by a 24-hour urine collection has been the accepted method of evaluation. Recent studies have shown that calculation of protein/creatinine ratio in a spot urine sample correlates well with the 24-hour urine protein (24-HUP) excretion. A study was conducted to compare the accuracy of a spot urinary protein/creatinine ratio (P/C ratio) and urinary dipstick with the 24-hour urine protein. Fifty two samples from 26 patients of nephrotic syndrome were collected. This included a 24-hour urine sample followed by the next voided random spot sample. The protein/creatinine ratio was calculated and dipstick was performed on the spot sample. This was compared with the 24-hour urine protein excretion. The correlation between the three samples was statistically highly significant (pprotein/creatinine ratio in Indian children was also estimated on 50 normal children admitted in the ward without any renal diseases calculated to be 0.053 (SE of mean+/-0.003).

  10. The PAM domain, a multi-protein complex-associated module with an all-alpha-helix fold

    Directory of Open Access Journals (Sweden)

    Izaurralde Elisa

    2003-12-01

    Full Text Available Abstract Background Multimeric protein complexes have a role in many cellular pathways and are highly interconnected with various other proteins. The characterization of their domain composition and organization provides useful information on the specific role of each region of their sequence. Results We identified a new module, the PAM domain (PCI/PINT associated module, present in single subunits of well characterized multiprotein complexes, like the regulatory lid of the 26S proteasome, the COP-9 signalosome and the Sac3-Thp1 complex. This module is an around 200 residue long domain with a predicted TPR-like all-alpha-helical fold. Conclusions The occurrence of the PAM domain in specific subunits of multimeric protein complexes, together with the role of other all-alpha-helical folds in protein-protein interactions, suggest a function for this domain in mediating transient binding to diverse target proteins.

  11. The ribosomal protein uL22 modulates the shape of the nascent protein exit tunnel

    DEFF Research Database (Denmark)

    Wekselman, I.; Zimmerman, E.; Davidovich, C.

    2017-01-01

    Nascent proteins progress through an elongated tunnel until theyexit from the ribosome. Biochemical, genetic and structural stud-ies have shown that the tunnel is not just a passive path, but alsohas regulatory properties. Erythromycin is a clinically usefulantibiotic that binds to an rRNA pocket...... and specific sequences within nascent chains trigger confor-mational rearrangements in the exit tunnel that are essential forthe translation of specific genes...

  12. Protein-protein interactions in paralogues: Electrostatics modulates specificity on a conserved steric scaffold.

    Science.gov (United States)

    Ivanov, Stefan M; Cawley, Andrew; Huber, Roland G; Bond, Peter J; Warwicker, Jim

    2017-01-01

    An improved knowledge of protein-protein interactions is essential for better understanding of metabolic and signaling networks, and cellular function. Progress tends to be based on structure determination and predictions using known structures, along with computational methods based on evolutionary information or detailed atomistic descriptions. We hypothesized that for the case of interactions across a common interface, between proteins from a pair of paralogue families or within a family of paralogues, a relatively simple interface description could distinguish between binding and non-binding pairs. Using binding data for several systems, and large-scale comparative modeling based on known template complex structures, it is found that charge-charge interactions (for groups bearing net charge) are generally a better discriminant than buried non-polar surface. This is particularly the case for paralogue families that are less divergent, with more reliable comparative modeling. We suggest that electrostatic interactions are major determinants of specificity in such systems, an observation that could be used to predict binding partners.

  13. Protein-protein interactions in paralogues: Electrostatics modulates specificity on a conserved steric scaffold.

    Directory of Open Access Journals (Sweden)

    Stefan M Ivanov

    Full Text Available An improved knowledge of protein-protein interactions is essential for better understanding of metabolic and signaling networks, and cellular function. Progress tends to be based on structure determination and predictions using known structures, along with computational methods based on evolutionary information or detailed atomistic descriptions. We hypothesized that for the case of interactions across a common interface, between proteins from a pair of paralogue families or within a family of paralogues, a relatively simple interface description could distinguish between binding and non-binding pairs. Using binding data for several systems, and large-scale comparative modeling based on known template complex structures, it is found that charge-charge interactions (for groups bearing net charge are generally a better discriminant than buried non-polar surface. This is particularly the case for paralogue families that are less divergent, with more reliable comparative modeling. We suggest that electrostatic interactions are major determinants of specificity in such systems, an observation that could be used to predict binding partners.

  14. Integrating Protein Engineering and Bioorthogonal Click Conjugation for Extracellular Vesicle Modulation and Intracellular Delivery.

    Directory of Open Access Journals (Sweden)

    Ming Wang

    Full Text Available Exosomes are small, cell-secreted vesicles that transfer proteins and genetic information between cells. This intercellular transmission regulates many physiological and pathological processes. Therefore, exosomes have emerged as novel biomarkers for disease diagnosis and as nanocarriers for drug delivery. Here, we report an easy-to-adapt and highly versatile methodology to modulate exosome composition and conjugate exosomes for intracellular delivery. Our strategy combines the metabolic labeling of newly synthesized proteins or glycan/glycoproteins of exosome-secreting cells with active azides and bioorthogonal click conjugation to modify and functionalize the exosomes. The azide-integrated can be conjugated to a variety of small molecules and proteins and can efficiently deliver conjugates into cells. The metabolic engineering of exosomes diversifies the chemistry of exosomes and expands the functions that can be introduced into exosomes, providing novel, powerful tools to study the roles of exosomes in biology and expand the biomedical potential of exosomes.

  15. Nitric oxide modulation in protective role of antidepressants against chronic fatigue syndrome in mice.

    Science.gov (United States)

    Kumar, Anil; Garg, Ruchika; Gaur, Vaibhav; Kumar, Puneet

    2011-05-01

    The present study was designed to elucidate the possible nitric oxide (NO) mechanism in the protective effect of antidepressants using mice model of chronic fatigue syndrome (CFS). Male albino laca mice were forced to swim for each 6 min session for 7 days and immobility period was measured on every alternate day (1(st), 3(rd), 5(th), 7(th)). After 7 days various behavioral tests (locomotor, mirror chamber, and plus maze tests for anxiety) were performed and biochemical estimations (lipid peroxidation, nitrite levels, GSH (reduced glutathione), and catalase activity) in mice brain were performed. Animals were pretreated with citalopram (5 and 10 mg/kg) and imipramine (10 and 20 mg/kg) daily for 7 days. The present study showed that continued forced swimming for 7 days caused chronic fatigue-induced anxiety-like behavior as assessed in mirror chamber, plus maze tests, and impairment in locomotor activity followed by oxidative damage (as evidenced by increased lipid peroxidation, nitrite levels, depleted reduced glutathione, and catalase activity) in animals. Seven days pretreatment with citalopram (5 and 10 mg/kg) and imipramine (10 and 20 mg/kg) significantly improved behavioral and biochemical alterations. Further, L-nitro-arginine methyl ester (L-NAME,5 mg/kg) and methylene blue (MB, 10 mg/kg) pretreatment with citalopram (5 mg/kg) or imipramine (10 mg/kg) potentiated their protective effect. However, l-arginine (100 mg/kg) pretreatment with citalopram (5 mg/kg) or imipramine (10 mg/kg) reversed their protective effect as compared with their effect per se (P < 0.05). The present study suggests that protective effect of citalopram and imipramine might be due to its NO modulation against chronic fatigue induced behavioral and biochemical alterations.

  16. The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties

    International Nuclear Information System (INIS)

    Lee, Changhee; Yoo, Dongwan

    2006-01-01

    The small envelope (E) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is a hydrophobic 73 amino acid protein encoded in the internal open reading frame (ORF) of the bicistronic mRNA2. As a first step towards understanding the biological role of E protein during PRRSV replication, E gene expression was blocked in a full-length infectious clone by mutating the ATG translational initiation to GTG, such that the full-length mutant genomic clone was unable to synthesize the E protein. DNA transfection of PRRSV-susceptible cells with the E gene knocked-out genomic clone showed the absence of virus infectivity. P129-ΔE-transfected cells however produced virion particles in the culture supernatant, and these particles contained viral genomic RNA, demonstrating that the E protein is essential for PRRSV infection but dispensable for virion assembly. Electron microscopy suggests that the P129-ΔE virions assembled in the absence of E had a similar appearance to the wild-type particles. Strand-specific RT-PCR demonstrated that the E protein-negative, non-infectious P129-ΔE virus particles were able to enter cells but further steps of replication were interrupted. The entry of PRRSV has been suggested to be via receptor-mediated endocytosis, and lysomotropic basic compounds and known ion-channel blocking agents both inhibited PRRSV replication effectively during the uncoating process. The expression of E protein in Escherichia coli-mediated cell growth arrests and increased the membrane permeability. Cross-linking experiments in cells infected with PRRSV or transfected with E gene showed that the E protein was able to form homo-oligomers. Taken together, our data suggest that the PRRSV E protein is likely an ion-channel protein embedded in the viral envelope and facilitates uncoating of virus and release of the genome in the cytoplasm

  17. Cycle modulation of insulin-like growth factor-binding protein 1 in human endometrium

    Directory of Open Access Journals (Sweden)

    Corleta H.

    2000-01-01

    Full Text Available Endometrium is one of the fastest growing human tissues. Sex hormones, estrogen and progesterone, in interaction with several growth factors, control its growth and differentiation. Insulin-like growth factor 1 (IGF-1 interacts with cell surface receptors and also with specific soluble binding proteins. IGF-binding proteins (IGF-BP have been shown to modulate IGF-1 action. Of six known isoforms, IGF-BP-1 has been characterized as a marker produced by endometrial stromal cells in the late secretory phase and in the decidua. In the current study, IGF-1-BP concentration and affinity in the proliferative and secretory phase of the menstrual cycle were measured. Endometrial samples were from patients of reproductive age with regular menstrual cycles and taking no steroid hormones. Cytosolic fractions were prepared and binding of 125I-labeled IGF-1 performed. Cross-linking reaction products were analyzed by SDS-polyacrylamide gel electrophoresis (7.5% followed by autoradiography. 125I-IGF-1 affinity to cytosolic proteins was not statistically different between the proliferative and secretory endometrium. An approximately 35-kDa binding protein was identified when 125I-IGF-1 was cross-linked to cytosol proteins. Secretory endometrium had significantly more IGF-1-BP when compared to proliferative endometrium. The specificity of the cross-linking process was evaluated by the addition of 100 nM unlabeled IGF-1 or insulin. Unlabeled IGF-1 totally abolished the radioactivity from the band, indicating specific binding. Insulin had no apparent effect on the intensity of the labeled band. These results suggest that IGF-BP could modulate the action of IGF-1 throughout the menstrual cycle. It would be interesting to study this binding protein in other pathologic conditions of the endometrium such as adenocarcinomas and hyperplasia.

  18. Rac1 modulates G-protein-coupled receptor-induced bronchial smooth muscle contraction.

    Science.gov (United States)

    Sakai, Hiroyasu; Kai, Yuki; Sato, Ken; Ikebe, Mitsuo; Chiba, Yohihiko

    2018-01-05

    Increasing evidence suggests a functional role of RhoA/Rho-kinase signalling as a mechanism for smooth muscle contraction; however, little is known regarding the roles of Rac1 and other members of the Rho protein family. This study aimed to examine whether Rac1 modulates bronchial smooth muscle contraction. Ring preparations of bronchi isolated from rats were suspended in an organ bath, and isometric contraction of circular smooth muscle was measured. Immunoblotting was used to examine myosin light chain phosphorylation in bronchial smooth muscle. Our results demonstrated that muscle contractions induced by carbachol (CCh) and endothelin-1 (ET-1) were inhibited by EHT1864, a selective Rac1 inhibitor, and NSC23766, a selective inhibitor of Rac1-specific guanine nucleotide exchange factors. Similarly, myosin light chain and myosin phosphatase target subunit 1 (MYPT1) at Thr853 phosphorylation induced by contractile agonist were inhibited with Rac1 inhibition. However, contractions induced by high K + , calyculin A (a potent protein phosphatase inhibitor) and K + /PDBu were not inhibited by these Rac1 inhibitors. Interestingly, NaF (a G-protein activator)-induced contractions were inhibited by EHT1864 but not by NSC23766. We next examined the effects of a trans-acting activator of transcription protein transduction domain (PTD) fusion protein with Rac1 (PTD-Rac1) on muscle contraction. The constitutively active form of PTD-Rac1 directly induced force development and contractions were abolished by EHT1864. These results suggest that Rac1, activated by G protein-coupled receptor agonists, such as CCh and ET-1, may induce myosin light chain and MYPT phosphorylation and modulate the contraction of bronchial smooth muscle. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Calcium-regulatory proteins as modulators of chemotherapy in human neuroblastoma.

    Science.gov (United States)

    Florea, Ana-Maria; Varghese, Elizabeth; McCallum, Jennifer E; Mahgoub, Safa; Helmy, Irfan; Varghese, Sharon; Gopinath, Neha; Sass, Steffen; Theis, Fabian J; Reifenberger, Guido; Büsselberg, Dietrich

    2017-04-04

    Neuroblastoma (NB) is a pediatric cancer treated with poly-chemotherapy including platinum complexes (e.g. cisplatin (CDDP), carboplatin), DNA alkylating agents, and topoisomerase I inhibitors (e.g. topotecan (TOPO)). Despite aggressive treatment, NB may become resistant to chemotherapy. We investigated whether CDDP and TOPO treatment of NB cells interacts with the expression and function of proteins involved in regulating calcium signaling. Human neuroblastoma cell lines SH-SY5Y, IMR-32 and NLF were used to investigate the effects of CDDP and TOPO on cell viability, apoptosis, calcium homeostasis, and expression of selected proteins regulating intracellular calcium concentration ([Ca2+]i). In addition, the impact of pharmacological inhibition of [Ca2+]i-regulating proteins on neuroblastoma cell survival was studied. Treatment of neuroblastoma cells with increasing concentrations of CDDP (0.1-10 μM) or TOPO (0.1 nM-1 μM) induced cytotoxicity and increased apoptosis in a concentration- and time-dependent manner. Both drugs increased [Ca2+]i over time. Treatment with CDDP or TOPO also modified mRNA expression of selected genes encoding [Ca2+]i-regulating proteins. Differentially regulated genes included S100A6, ITPR1, ITPR3, RYR1 and RYR3. With FACS and confocal laser scanning microscopy experiments we validated their differential expression at the protein level. Importantly, treatment of neuroblastoma cells with pharmacological modulators of [Ca2+]i-regulating proteins in combination with CDDP or TOPO increased cytotoxicity. Thus, our results confirm an important role of calcium signaling in the response of neuroblastoma cells to chemotherapy and suggest [Ca2+]i modulation as a promising strategy for adjunctive treatment.

  20. Topology Engineering of Proteins in Vivo Using Genetically Encoded, Mechanically Interlocking SpyX Modules for Enhanced Stability.

    Science.gov (United States)

    Liu, Dong; Wu, Wen-Hao; Liu, Ya-Jie; Wu, Xia-Ling; Cao, Yang; Song, Bo; Li, Xiaopeng; Zhang, Wen-Bin

    2017-05-24

    Recombinant proteins are traditionally limited to linear configuration. Herein, we report in vivo protein topology engineering using highly efficient, mechanically interlocking SpyX modules named AXB and BXA. SpyX modules are protein domains composed of p53dim (X), SpyTag (A), and SpyCatcher (B). The p53dim guides the intertwining of the two nascent protein chains followed by autocatalytic isopeptide bond formation between SpyTag and SpyCatcher to fulfill the interlocking, leading to a variety of backbone topologies. Direct expression of AXB or BXA produces protein catenanes with distinct ring sizes. Recombinant proteins containing SpyX modules are obtained either as mechanically interlocked obligate dimers if the protein of interest is fused to the N- or C-terminus of SpyX modules, or as star proteins if the protein is fused to both N- and C-termini. As examples, cellular syntheses of dimers of (GB1) 2 (where GB1 stands for immunoglobulin-binding domain B1 of streptococcal protein G) and of four-arm elastin-like star proteins were demonstrated. Comparison of the catenation efficiencies in different constructs reveals that BXA is generally much more effective than AXB, which is rationalized by the arrangement of three domains in space. Mechanical interlocking induces considerable stability enhancement. Both AXB and BXA have a melting point ∼20 °C higher than the linear controls and the BXA catenane has a melting point ~2 °C higher than the cyclic control BX'A. Notably, four-arm elastin-like star proteins demonstrate remarkable tolerance against trypsin digestion. The SpyX modules provide a convenient and versatile approach to construct unconventional protein topologies via the "assembly-reaction" synergy, which opens a new horizon in protein science for stability enhancement and function reinforcement via topology engineering.

  1. The Role of Maternal Dietary Proteins in Development of Metabolic Syndrome in Offspring

    Directory of Open Access Journals (Sweden)

    Alireza Jahan-Mihan

    2015-11-01

    Full Text Available The prevalence of metabolic syndrome and obesity has been increasing. Pre-natal environment has been suggested as a factor influencing the risk of metabolic syndrome in adulthood. Both observational and experimental studies showed that maternal diet is a major modifier of the development of regulatory systems in the offspring in utero and post-natally. Both protein content and source in maternal diet influence pre- and early post-natal development. High and low protein dams’ diets have detrimental effect on body weight, blood pressure191 and metabolic and intake regulatory systems in the offspring. Moreover, the role of the source of protein in a nutritionally adequate maternal diet in programming of food intake regulatory system, body weight, glucose metabolism and blood pressure in offspring is studied. However, underlying mechanisms are still elusive. The purpose of this review is to examine the current literature related to the role of proteins in maternal diets in development of characteristics of the metabolic syndrome in offspring.

  2. Identification of a conserved anti-apoptotic protein that modulates the mitochondrial apoptosis pathway.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available Here we identified an evolutionarily highly conserved and ubiquitously expressed protein (C9orf82 that shows structural similarities to the death effector domain of apoptosis-related proteins. RNAi knockdown of C9orf82 induced apoptosis in A-549 and MCF7/casp3-10b lung and breast carcinoma cells, respectively, but not in cells lacking caspase-3, caspase-10 or both. Apoptosis was associated with activated caspases-3, -8, -9 and -10, and inactivation of caspases 10 or 3 was sufficient to block apoptosis in this pathway. Apoptosis upon knockdown of C9orf82 was associated with increased caspase-10 expression and activation, which was required for the generation of an 11 kDa tBid fragment and activation of Caspase-9. These data suggest that C9orf82 functions as an anti-apoptotic protein that modulates a caspase-10 dependent mitochondrial caspase-3/9 feedback amplification loop. We designate this ubiquitously expressed and evolutionarily conserved anti-apoptotic protein Conserved Anti-Apoptotic Protein (CAAP. We also demonstrated that treatment of MCF7/casp3-10b cells with staurosporine and etoposides induced apoptosis and knockdown of CAAP expression. This implies that the CAAP protein could be a target for chemotherapeutic agents.

  3. Does protein binding modulate the effect of angiotensin II receptor antagonists?

    Directory of Open Access Journals (Sweden)

    Marc P Maillard

    2001-03-01

    Full Text Available IntroductionAngiotensin II AT 1-receptor antagonists are highly bound to plasma proteins (≥ 99%. With some antagonists, such as DuP-532, the protein binding was such that no efficacy of the drug could be demonstrated clinically. Whether protein binding interferes with the efficacy of other antagonists is not known. We have therefore investigated in vitro how plasma proteins may affect the antagonistic effect of different AT1-receptor antagonists.MethodsA radio-receptor binding assay was used to analyse the interaction between proteins and the ability of various angiotensin II (Ang II antagonists to block AT1-receptors. In addition, the Biacore technology, a new technique which enables the real-time monitoring of binding events between two molecules, was used to evaluate the dissociation rate constants of five AT1-receptor antagonists from human serum albumin.ResultsThe in vitro AT 1-antagonistic effects of different Ang II receptor antagonists were differentially affected by the presence of human plasma, with rightward shifts of the IC50 ranging from one to several orders of magnitude. The importance of the shift correlates with the dissociation rate constants of these drugs from albumin. Our experiments also show that the way that AT1-receptor antagonists bind to proteins differs from one compound to another. These results suggest that the interaction with plasma proteins appears to modulate the efficacy of some Ang II antagonists.ConclusionAlthough the high binding level of Ang II receptor antagonist to plasma proteins appears to be a feature common to this class of compounds, the kinetics and characteristics of this binding is of great importance. With some antagonists, protein binding interferes markedly with their efficacy to block AT1-receptors.

  4. Coxiella burnetii Nine Mile II proteins modulate gene expression of monocytic host cells during infection

    Directory of Open Access Journals (Sweden)

    Shaw Edward I

    2010-09-01

    Full Text Available Abstract Background Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV of eukaryotic cells, the biogenesis and maintenance of which is dependent on C. burnetii protein synthesis. These observations suggest that C. burnetii actively subverts host cell processes, however little is known about the cellular biology mechanisms manipulated by the pathogen during infection. Here, we examined host cell gene expression changes specifically induced by C. burnetii proteins during infection. Results We have identified 36 host cell genes that are specifically regulated when de novo C. burnetii protein synthesis occurs during infection using comparative microarray analysis. Two parallel sets of infected and uninfected THP-1 cells were grown for 48 h followed by the addition of chloramphenicol (CAM to 10 μg/ml in one set. Total RNA was harvested at 72 hpi from all conditions, and microarrays performed using Phalanx Human OneArray™ slides. A total of 784 (mock treated and 901 (CAM treated THP-1 genes were up or down regulated ≥2 fold in the C. burnetii infected vs. uninfected cell sets, respectively. Comparisons between the complementary data sets (using >0 fold, eliminated the common gene expression changes. A stringent comparison (≥2 fold between the separate microarrays revealed 36 host cell genes modulated by C. burnetii protein synthesis. Ontological analysis of these genes identified the innate immune response, cell death and proliferation, vesicle trafficking and development, lipid homeostasis, and cytoskeletal organization as predominant cellular functions modulated by C. burnetii protein synthesis. Conclusions Collectively, these data indicate that C. burnetii proteins actively regulate the expression of specific host cell genes and pathways. This is in addition to host cell genes that respond to the presence of the

  5. Retinoblastoma Binding Protein 4 Modulates Temozolomide Sensitivity in Glioblastoma by Regulating DNA Repair Proteins

    Directory of Open Access Journals (Sweden)

    Gaspar J. Kitange

    2016-03-01

    Full Text Available Here we provide evidence that RBBP4 modulates temozolomide (TMZ sensitivity through coordinate regulation of two key DNA repair genes critical for recovery from TMZ-induced DNA damage: methylguanine-DNA-methyltransferase (MGMT and RAD51. Disruption of RBBP4 enhanced TMZ sensitivity, induced synthetic lethality to PARP inhibition, and increased DNA damage signaling in response to TMZ. Moreover, RBBP4 silencing enhanced TMZ-induced H2AX phosphorylation and apoptosis in GBM cells. Intriguingly, RBBP4 knockdown suppressed the expression of MGMT, RAD51, and other genes in association with decreased promoter H3K9 acetylation (H3K9Ac and increased H3K9 tri-methylation (H3K9me3. Consistent with these data, RBBP4 interacts with CBP/p300 to form a chromatin-modifying complex that binds within the promoter of MGMT, RAD51, and perhaps other genes. Globally, RBBP4 positively and negatively regulates genes involved in critical cellular functions including tumorigenesis. The RBBP4/CBP/p300 complex may provide an interesting target for developing therapy-sensitizing strategies for GBM and other tumors.

  6. Accumulation of the PX domain mutant Frank-ter Haar syndrome protein Tks4 in aggresomes.

    Science.gov (United States)

    Ádám, Csaba; Fekete, Anna; Bőgel, Gábor; Németh, Zsuzsanna; Tőkési, Natália; Ovádi, Judit; Liliom, Károly; Pesti, Szabolcs; Geiszt, Miklós; Buday, László

    2015-07-17

    Cells deploy quality control mechanisms to remove damaged or misfolded proteins. Recently, we have reported that a mutation (R43W) in the Frank-ter Haar syndrome protein Tks4 resulted in aberrant intracellular localization. Here we demonstrate that the accumulation of Tks4(R43W) depends on the intact microtubule network. Detergent-insoluble Tks4 mutant colocalizes with the centrosome and its aggregate is encaged by the intermediate filament protein vimentin. Both the microtubule inhibitor nocodazole and the histone deacetylase inhibitor Trichostatin A inhibit markedly the aggresome formation in cells expressing Tks4(R43W). Finally, pretreatment of cells with the proteasome inhibitor MG132 markedly increases the level of aggresomes formed by Tks4(R43W). Furthermore, two additional mutant Tks4 proteins (Tks4(1-48) or Tks4(1-341)) have been investigated. Whereas the shorter Tks4 mutant, Tks4(1-48), shows no expression at all, the longer Tks4 truncation mutant accumulates in the nuclei of the cells. Our results suggest that misfolded Frank-ter Haar syndrome protein Tks4(R43W) is transported via the microtubule system to the aggresomes. Lack of expression of Tks4(1-48) or aberrant intracellular expressions of Tks4(R43W) and Tks4(1-341) strongly suggest that these mutations result in dysfunctional proteins which are not capable of operating properly, leading to the development of FTHS.

  7. Effects of inspiratory muscle exercise in the pulmonary function, autonomic modulation, and hemodynamic variables in older women with metabolic syndrome

    Science.gov (United States)

    Feriani, Daniele Jardim; Coelho, Hélio José; Scapini, Kátia Bilhar; de Moraes, Oscar Albuquerque; Mostarda, Cristiano; Ruberti, Olivia Moraes; Uchida, Marco Carlos; Caperuto, Érico Chagas; Irigoyen, Maria Cláudia; Rodrigues, Bruno

    2017-01-01

    The aim of the present study was to investigate the effects of inspiratory muscle exercise (IME) on metabolic and hemodynamic parameters, cardiac autonomic modulation and respiratory function of older women with metabolic syndrome (MS). For this, sixteen older women with MS and 12 aged-matched controls participated of the present study. Two days before and 2 days after the main experiment, fasting blood samples (i.e., total cholesterol, triglycerides and blood glucose), cardiac autonomic modulation (i.e., heart rate variability), and respiratory muscle function were obtained and evaluated. The sessions of physical exercise was based on a IME, which was performed during 7 days. Each session of IME was performed during 20 min, at 30% of maximal static inspiratory pressure. In the results, MS group presented higher levels of triglycerides, blood glucose, and systolic blood pressure when compared to control group. IME was not able to change these variables. However, although MS group showed impaired respiratory muscle strength and function, as well as cardiac autonomic modulation, IME was able to improve these parameters. Thus, the data showed that seven days of IME are capable to improve respiratory function and cardiac autonomic modulation of older women with MS. These results indicate that IME can be a profitable therapy to counteracting the clinical markers of MS, once repeated sessions of acute IME can cause chronical alterations on respiratory function and cardiac autonomic modulation. PMID:28503537

  8. Modulation of Wound Healing and Scar Formation by MG53 Protein-mediated Cell Membrane Repair*

    Science.gov (United States)

    Li, Haichang; Duann, Pu; Lin, Pei-Hui; Zhao, Li; Fan, Zhaobo; Tan, Tao; Zhou, Xinyu; Sun, Mingzhai; Fu, Minghuan; Orange, Matthew; Sermersheim, Matthew; Ma, Hanley; He, Duofen; Steinberg, Steven M.; Higgins, Robert; Zhu, Hua; John, Elizabeth; Zeng, Chunyu; Guan, Jianjun; Ma, Jianjie

    2015-01-01

    Cell membrane repair is an important aspect of physiology, and disruption of this process can result in pathophysiology in a number of different tissues, including wound healing, chronic ulcer and scarring. We have previously identified a novel tripartite motif family protein, MG53, as an essential component of the cell membrane repair machinery. Here we report the functional role of MG53 in the modulation of wound healing and scarring. Although MG53 is absent from keratinocytes and fibroblasts, remarkable defects in skin architecture and collagen overproduction are observed in mg53−/− mice, and these animals display delayed wound healing and abnormal scarring. Recombinant human MG53 (rhMG53) protein, encapsulated in a hydrogel formulation, facilitates wound healing and prevents scarring in rodent models of dermal injuries. An in vitro study shows that rhMG53 protects against acute injury to keratinocytes and facilitates the migration of fibroblasts in response to scratch wounding. During fibrotic remodeling, rhMG53 interferes with TGF-β-dependent activation of myofibroblast differentiation. The resulting down-regulation of α smooth muscle actin and extracellular matrix proteins contributes to reduced scarring. Overall, these studies establish a trifunctional role for MG53 as a facilitator of rapid injury repair, a mediator of cell migration, and a modulator of myofibroblast differentiation during wound healing. Targeting the functional interaction between MG53 and TGF-β signaling may present a potentially effective means for promoting scarless wound healing. PMID:26306047

  9. Ribosomal protein S6 phosphorylation is controlled by TOR and modulated by PKA in Candida albicans.

    Science.gov (United States)

    Chowdhury, Tahmeena; Köhler, Julia R

    2015-10-01

    TOR and PKA signaling pathways control eukaryotic cell growth and proliferation. TOR activity in model fungi, such as Saccharomyces cerevisiae, responds principally to nutrients, e.g., nitrogen and phosphate sources, which are incorporated into the growing cell mass; PKA signaling responds to the availability of the cells' major energy source, glucose. In the fungal commensal and pathogen, Candida albicans, little is known of how these pathways interact. Here, the signal from phosphorylated ribosomal protein S6 (P-S6) was defined as a surrogate marker for TOR-dependent anabolic activity in C. albicans. Nutritional, pharmacologic and genetic modulation of TOR activity elicited corresponding changes in P-S6 levels. The P-S6 signal corresponded to translational activity of a GFP reporter protein. Contributions of four PKA pathway components to anabolic activation were then examined. In high glucose concentrations, only Tpk2 was required to upregulate P-S6 to physiologic levels, whereas all four tested components were required to downregulate P-S6 in low glucose. TOR was epistatic to PKA components with respect to P-S6. In many host niches inhabited by C. albicans, glucose is scarce, with protein being available as a nitrogen source. We speculate that PKA may modulate TOR-dependent cell growth to a rate sustainable by available energy sources, when monomers of anabolic processes, such as amino acids, are abundant. © 2015 John Wiley & Sons Ltd.

  10. Protein degradation mechanisms modulate abscisic acid signaling and responses during abiotic stress.

    Science.gov (United States)

    Jurkiewicz, Pawel; Batoko, Henri

    2018-02-01

    Abiotic stresses such as salinity, drought, high temperature or freezing can be perceived, in part, as a transient or permanent hyperosmotic stress by the plant cell. As sessile organisms, the detrimental effects of these environmental insults limit plants productivity but also their geographical distribution. Sensing and signaling events that detect the hyperosmotic (or simply osmotic) stress involve the cellular increase of active abscisic acid (ABA). The stress phytohormone ABA regulates fundamental growth and developmental processes in the plant by marshalling metabolic and gene-expression reprogramming. Among the ABA-responsive genes, some are strictly ABA-dependent in that their expression is almost undetectable in absence of elevated levels of cellular ABA, thus their physiological role may be required only transiently. In addition, ABA-dependent modulation of some of the signaling effectors can be irreversible. In this review, without any pretention to being exhaustive, we use specific examples to illustrate how mechanistically conserved eukaryotic cell proteolytic pathways affect ABA-dependent signaling. We describe how defined proteolysis mechanisms in the plant cell, including Regulated Intramembrane Proteolysis (RIP), the Ubiquitin 26S Proteasomal System (UPS), the endocytic and autophagy pathways, contribute to regulate the spatiotemporal level and activity of PP2Cs (protein phosphatases 2C), and how an intriguing ABA-induced protein, the plant Translocator protein (TSPO), is targeted for degradation. Degradation of regulatory or effector molecules modulates or desensitizes ABA-dependent signaling and reestablishes cellular homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    International Nuclear Information System (INIS)

    Vogel, R F; Linke, K; Teichert, H; Ehrmann, M A

    2008-01-01

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property

  12. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, R F; Linke, K; Teichert, H; Ehrmann, M A [Technische Universitaet Muenchen, Technische Mikrobiologie, Weihenstephaner Steig 16, 85350 Freising (Germany)], E-mail: rudi.vogel@wzw.tum.de

    2008-07-15

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property.

  13. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    Science.gov (United States)

    Vogel, R. F.; Linke, K.; Teichert, H.; Ehrmann, M. A.

    2008-07-01

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property.

  14. The effect of milk and milk proteins on risk factors of metabolic syndrome in overweight adolecents

    DEFF Research Database (Denmark)

    Arnberg, Karina

    This PhD is based on data from an intervention study with milk and milk proteins conducted in Danish adolescents with overweight. There is a high prevalence of overweight in Danish adolescents. Metabolic syndrome is a cluster of risk factors related to overweight and believed to increase the risk...... of type-2 diabetes and atherosclerotic cardiovascular diseases. Overweight children have higher concentrations of the metabolic syndrome risk factors than normal weight children and the pathological condition underlying cardiovascular diseases, called atherosclerosis, seems to start in childhood. A well...... skimmed milk, whey, casein or water for three months. The background for the intervention is that milk is an important source of protein in the Western diet and epidemiological studies in children have shown that children drinking low amounts of milk have higher concentrations of the metabolic risk...

  15. Modulation of matrix mineralization by Vwc2-like protein and its novel splicing isoforms.

    Science.gov (United States)

    Ohyama, Yoshio; Katafuchi, Michitsuna; Almehmadi, Ahmed; Venkitapathi, Sundharamani; Jaha, Haytham; Ehrenman, Jason; Morcos, Joseph; Aljamaan, Reem; Mochida, Yoshiyuki

    2012-02-03

    In search of new cysteine knot protein (CKP) family members, we found a novel gene called von Willebrand factor C domain-containing protein 2-like (Vwc2l, also known as Brorin-like) and its transcript variants (Vwc2l-1, Vwc2l-2 and Vwc2l-3). Based on the deduced amino acid sequence, Vwc2l-1 has a signal peptide and 2 cysteine-rich (CR) domains, while Vwc2l-2 lacks a part of 2nd CR domain and Vwc2l-3 both CR domains. Although it has been reported that the expression of Brorin-like was predominantly observed in brain, we found that Vwc2l transcript variants were detected in more ubiquitous tissues. In osteoblasts, the induction of Vwc2l expression was observed at matrix mineralization stage. When Vwc2l was stably transfected into osteoblasts, the matrix mineralization was markedly accelerated in Vwc2l-expressing clones compared to that in the control, indicating the modulatory effect of Vwc2l protein on osteoblastic cell function. The mechanistic insight of Vwc2l-modulation was further investigated and we found that the expression of Osterix, one of the key osteogenic markers, was significantly increased by addition of all Vwc2l isoform proteins. Taken together, Vwc2l is a novel secreted protein that promotes matrix mineralization by modulating Osterix expression likely through TGF-β superfamily growth factor signaling pathway. Our data may provide mechanistic insights into the biological functions of this novel CKP member in bone and further suggest a novel approach to enhance osteoblast function, which enables to accerelate bone formation, regeneration and healing. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Altered intracellular localization and mobility of SBDS protein upon mutation in Shwachman-Diamond syndrome.

    Science.gov (United States)

    Orelio, Claudia; van der Sluis, Renée M; Verkuijlen, Paul; Nethe, Micha; Hordijk, Peter L; van den Berg, Timo K; Kuijpers, Taco W

    2011-01-01

    Shwachman-Diamond Syndrome (SDS) is a rare inherited disease caused by mutations in the SBDS gene. Hematopoietic defects, exocrine pancreas dysfunction and short stature are the most prominent clinical features. To gain understanding of the molecular properties of the ubiquitously expressed SBDS protein, we examined its intracellular localization and mobility by live cell imaging techniques. We observed that SBDS full-length protein was localized in both the nucleus and cytoplasm, whereas patient-related truncated SBDS protein isoforms localize predominantly to the nucleus. Also the nucleo-cytoplasmic trafficking of these patient-related SBDS proteins was disturbed. Further studies with a series of SBDS mutant proteins revealed that three distinct motifs determine the intracellular mobility of SBDS protein. A sumoylation motif in the C-terminal domain, that is lacking in patient SBDS proteins, was found to play a pivotal role in intracellular motility. Our structure-function analyses provide new insight into localization and motility of the SBDS protein, and show that patient-related mutant proteins are altered in their molecular properties, which may contribute to the clinical features observed in SDS patients.

  17. Altered intracellular localization and mobility of SBDS protein upon mutation in Shwachman-Diamond syndrome.

    Directory of Open Access Journals (Sweden)

    Claudia Orelio

    Full Text Available Shwachman-Diamond Syndrome (SDS is a rare inherited disease caused by mutations in the SBDS gene. Hematopoietic defects, exocrine pancreas dysfunction and short stature are the most prominent clinical features. To gain understanding of the molecular properties of the ubiquitously expressed SBDS protein, we examined its intracellular localization and mobility by live cell imaging techniques. We observed that SBDS full-length protein was localized in both the nucleus and cytoplasm, whereas patient-related truncated SBDS protein isoforms localize predominantly to the nucleus. Also the nucleo-cytoplasmic trafficking of these patient-related SBDS proteins was disturbed. Further studies with a series of SBDS mutant proteins revealed that three distinct motifs determine the intracellular mobility of SBDS protein. A sumoylation motif in the C-terminal domain, that is lacking in patient SBDS proteins, was found to play a pivotal role in intracellular motility. Our structure-function analyses provide new insight into localization and motility of the SBDS protein, and show that patient-related mutant proteins are altered in their molecular properties, which may contribute to the clinical features observed in SDS patients.

  18. Functional significance of conserved residues in the phosphohydrolase module of Escherichia coli MutT protein.

    Science.gov (United States)

    Shimokawa, H; Fujii, Y; Furuichi, M; Sekiguchi, M; Nakabeppu, Y

    2000-09-01

    Escherichia coli MutT protein hydrolyzes 8-oxo-7,8-dihydro-2'-dGTP (8-oxo-dGTP) to the monophosphate, thus avoiding the incorporation of 8-oxo-7,8-dihydroguanine (8-oxo-G) into nascent DNA. Bacterial and mammalian homologs of MutT protein share the phosphohydrolase module (MutT: Gly37-->Gly59). By saturation mutagenesis of conserved residues in the MutT module, four of the 10 conserved residues (Gly37, Gly38, Glu53 and Glu57) were revealed to be essential to suppress spontaneous A:T-->C:G transversion mutation in a mutT(-) mutator strain. For the other six residues (Lys39, Glu44, Thr45, Arg52, Glu56 and Gly59), many positive mutants which can suppress the spontaneous mutation were obtained; however, all of the positive mutants for Glu44 and Arg52 either partially or inefficiently suppressed the mutation, indicating that these two residues are also important for MutT function. Several positive mutants for Lys39, Thr45, Glu56 and Gly59 efficiently decreased the elevated spontaneous mutation rate, as seen with the wild-type, hence, these four residues are non-essential for MutT function. As Lys38 and Glu55 in human MTH1, corresponding to the non-essential residues Lys39 and Glu56 in MutT, could not be replaced by any other residue without loss of function, different structural features between the two modules of MTH1 and MutT proteins are evident.

  19. Mycolactone activation of Wiskott-Aldrich syndrome proteins underpins Buruli ulcer formation

    OpenAIRE

    Guenin-Mace, Laure; Veyron-Churlet, Romain; Thoulouze, Maria-Isabel; Romet-Lemonne, Guillaume; Hong, Hui; Leadlay, Peter F.; Danckaert, Anne; Ruf, Marie-Therese; Mostowy, Serge; Zurzolo, Chiara; Bousso, Philippe; Chretien, Fabrice; Carlier, Marie-France; Demangel, Caroline

    2013-01-01

    Mycolactone is a diffusible lipid secreted by the human pathogen Mycobacterium ulcerans, which induces the formation of open skin lesions referred to as Buruli ulcers. Here, we show that mycolactone operates by hijacking the Wiskott-Aldrich syndrome protein (WASP) family of actin-nucleating factors. By disrupting WASP autoinhibition, mycolactone leads to uncontrolled activation of ARP2/3-mediated assembly of actin in the cytoplasm. In epithelial cells, mycolactone-induced stimulation of ARP2/...

  20. Direct and tunable modulation of protein levels in rice and wheat with a synthetic small molecule.

    Science.gov (United States)

    Zhang, Jingbo; Yin, Kangquan; Sun, Juan; Gao, Jinlan; Du, Qiuli; Li, Huali; Qiu, Jin-Long

    2018-02-01

    Direct control of protein level enables rapid and efficient analyses of gene functions in crops. Previously, we developed the RDDK-Shield1 (Shld1) system in the model plant Arabidopsis thaliana for direct modulation of protein stabilization using a synthetic small molecule. However, it was unclear whether this system is applicable to economically important crops. In this study, we show that the RDDK-Shld1 system enables rapid and tunable control of protein levels in rice and wheat. Accumulation of RDDK fusion proteins can be reversibly and spatio-temporally controlled by the synthetic small-molecule Shld1. Moreover, RDDK-Bar and RDDK-Pid3 fusions confer herbicide and rice blast resistance, respectively, in a Shld1-dependent manner. Therefore, the RDDK-Shld1 system provides a reversible and tunable technique for controlling protein functions and conditional expression of transgenes in crops. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. The CRM domain: An RNA binding module derived from an ancient ribosome-associated protein

    Science.gov (United States)

    Barkan, Alice; Klipcan, Larik; Ostersetzer, Oren; Kawamura, Tetsuya; Asakura, Yukari; Watkins, Kenneth P.

    2007-01-01

    The CRS1–YhbY domain (also called the CRM domain) is represented as a stand-alone protein in Archaea and Bacteria, and in a family of single- and multidomain proteins in plants. The function of this domain is unknown, but structural data and the presence of the domain in several proteins known to interact with RNA have led to the proposal that it binds RNA. Here we describe a phylogenetic analysis of the domain, its incorporation into diverse proteins in plants, and biochemical properties of a prokaryotic and eukaryotic representative of the domain family. We show that a bacterial member of the family, Escherichia coli YhbY, is associated with pre-50S ribosomal subunits, suggesting that YhbY functions in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. We show further that an isolated maize CRM domain has RNA binding activity in vitro, and that a small motif shared with KH RNA binding domains, a conserved “GxxG” loop, contributes to its RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes. PMID:17105995

  2. The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein.

    Science.gov (United States)

    Barkan, Alice; Klipcan, Larik; Ostersetzer, Oren; Kawamura, Tetsuya; Asakura, Yukari; Watkins, Kenneth P

    2007-01-01

    The CRS1-YhbY domain (also called the CRM domain) is represented as a stand-alone protein in Archaea and Bacteria, and in a family of single- and multidomain proteins in plants. The function of this domain is unknown, but structural data and the presence of the domain in several proteins known to interact with RNA have led to the proposal that it binds RNA. Here we describe a phylogenetic analysis of the domain, its incorporation into diverse proteins in plants, and biochemical properties of a prokaryotic and eukaryotic representative of the domain family. We show that a bacterial member of the family, Escherichia coli YhbY, is associated with pre-50S ribosomal subunits, suggesting that YhbY functions in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. We show further that an isolated maize CRM domain has RNA binding activity in vitro, and that a small motif shared with KH RNA binding domains, a conserved "GxxG" loop, contributes to its RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes.

  3. Modulator of Apoptosis 1: A Highly Regulated RASSF1A-Interacting BH3-Like Protein

    OpenAIRE

    Law, Jennifer; Yu, Victor C.; Baksh, Shairaz

    2012-01-01

    Modulator of apoptosis 1 (MOAP-1) is a BH3-like protein that plays key roles in both the intrinsic and extrinsic modes of cell death or apoptosis. MOAP-1 is part of the Ras association domain family 1A (RASSF1A)/MOAP-1 pro-apoptotic extrinsic signaling pathway that regulates apoptosis by utilizing death receptors such as tumor necrosis factor α (TNF α ) or TNF-related apoptosis-inducing ligand (TRAIL) to inhibit abnormal growth. RASSF1A is a bona fide tumor suppressor gene that is epigenetica...

  4. 17β Estradiol Modulates Perfusion Pressure and Expression of 5-LOX and CYP450 4A in the Isolated Kidney of Metabolic Syndrome Female Rats.

    Science.gov (United States)

    Zúñiga-Muñoz, A M; Guarner Lans, V; Soria-Castro, E; Diaz-Diaz, E; Torrico-Lavayen, R; Tena-Betancourt, E; Pérez-Torres, I

    2015-01-01

    Prevalence of metabolic syndrome and progression of nephropathy depend on sex. We examined a protective effect of estradiol against nephropathy in metabolic syndrome through the modulation of the arachidonic acid metabolism by activating the 5-lipoxygenase and cytochrome p450 4A pathways. 28 female Wistar rats were divided into four groups of seven animals each: control, intact metabolic syndrome, ovariectomized metabolic syndrome, and metabolic syndrome ovariectomized plus estradiol. Blood pressure, body weight, body fat, triglycerides, insulin, HOMA-index, albuminuria, and TNF-α were increased in ovariectomized metabolic syndrome rats (p metabolic syndrome rats in presence of 4 μg of arachidonic acid was increased. The inhibitors of the arachidonic acid metabolism Baicalein, Miconazole, and Indomethacin in these rats decreased the perfusion pressure by 57.62%, 99.83%, and 108.5%, respectively and they decreased creatinine clearance and the arachidonic acid percentage. Phospholipase A2 expression in the kidney of ovariectomized metabolic syndrome rats was not modified. 5-lipoxygenase was increased in metabolic syndrome ovariectomized rats while cytochrome p450 4A was decreased. In conclusion, the loss of estradiol increases renal damage while the treatment with estradiol benefits renal function by modulating arachidonic acid metabolism through the 5-lipoxygenase and cytochrome p450 4A pathways.

  5. 17β Estradiol Modulates Perfusion Pressure and Expression of 5-LOX and CYP450 4A in the Isolated Kidney of Metabolic Syndrome Female Rats

    Directory of Open Access Journals (Sweden)

    A. M. Zúñiga-Muñoz

    2015-01-01

    Full Text Available Prevalence of metabolic syndrome and progression of nephropathy depend on sex. We examined a protective effect of estradiol against nephropathy in metabolic syndrome through the modulation of the arachidonic acid metabolism by activating the 5-lipoxygenase and cytochrome p450 4A pathways. 28 female Wistar rats were divided into four groups of seven animals each: control, intact metabolic syndrome, ovariectomized metabolic syndrome, and metabolic syndrome ovariectomized plus estradiol. Blood pressure, body weight, body fat, triglycerides, insulin, HOMA-index, albuminuria, and TNF-α were increased in ovariectomized metabolic syndrome rats (p<0.001. The perfusion pressure in isolated kidneys of ovariectomized metabolic syndrome rats in presence of 4 μg of arachidonic acid was increased. The inhibitors of the arachidonic acid metabolism Baicalein, Miconazole, and Indomethacin in these rats decreased the perfusion pressure by 57.62%, 99.83%, and 108.5%, respectively and they decreased creatinine clearance and the arachidonic acid percentage. Phospholipase A2 expression in the kidney of ovariectomized metabolic syndrome rats was not modified. 5-lipoxygenase was increased in metabolic syndrome ovariectomized rats while cytochrome p450 4A was decreased. In conclusion, the loss of estradiol increases renal damage while the treatment with estradiol benefits renal function by modulating arachidonic acid metabolism through the 5-lipoxygenase and cytochrome p450 4A pathways.

  6. Modulation of protein C activation by histones, platelet factor 4, and heparinoids: new insights into activated protein C formation.

    Science.gov (United States)

    Kowalska, M Anna; Zhao, Guohua; Zhai, Li; David, George; Marcus, Stephen; Krishnaswamy, Sriram; Poncz, Mortimer

    2014-01-01

    Histones are detrimental in late sepsis. Both activated protein C (aPC) and heparin can reverse their effect. Here, we investigated whether histones can modulate aPC generation in a manner similar to another positively charged molecule, platelet factor 4, and how heparinoids (unfractionated heparin or oxygen-desulfated unfractionated heparin with marked decrease anticoagulant activity) may modulate this effect. We measured in vitro and in vivo effects of histones, platelet factor 4, and heparinoids on aPC formation, activated partial thromboplastin time, and murine survival. In vitro, histones and platelet factor 4 both affect thrombin/thrombomodulin aPC generation following a bell-shaped curve, with a peak of >5-fold enhancement. Heparinoids shift these curves rightward. Murine aPC generation studies after infusions of histones, platelet factor 4, and heparinoids supported the in vitro data. Importantly, although unfractionated heparin and 2-O, 3-O desulfated heparin both reversed the lethality of high-dose histone infusions, only mice treated with 2-O, 3-O desulfated heparin demonstrated corrected activated partial thromboplastin times and had significant levels of aPC. Our data provide a new contextual model of how histones affect aPC generation, and how heparinoid therapy may be beneficial in sepsis. These studies provide new insights into the complex interactions controlling aPC formation and suggest a novel therapeutic interventional strategy.

  7. Prediction of the anti-inflammatory mechanisms of curcumin by module-based protein interaction network analysis.

    Science.gov (United States)

    Gan, Yanxiong; Zheng, Shichao; Baak, Jan P A; Zhao, Silei; Zheng, Yongfeng; Luo, Nini; Liao, Wan; Fu, Chaomei

    2015-11-01

    Curcumin, the medically active component from Curcuma longa (Turmeric), is widely used to treat inflammatory diseases. Protein interaction network (PIN) analysis was used to predict its mechanisms of molecular action. Targets of curcumin were obtained based on ChEMBL and STITCH databases. Protein-protein interactions (PPIs) were extracted from the String database. The PIN of curcumin was constructed by Cytoscape and the function modules identified by gene ontology (GO) enrichment analysis based on molecular complex detection (MCODE). A PIN of curcumin with 482 nodes and 1688 interactions was constructed, which has scale-free, small world and modular properties. Based on analysis of these function modules, the mechanism of curcumin is proposed. Two modules were found to be intimately associated with inflammation. With function modules analysis, the anti-inflammatory effects of curcumin were related to SMAD, ERG and mediation by the TLR family. TLR9 may be a potential target of curcumin to treat inflammation.

  8. Alanine and proline content modulate global sensitivity to discrete perturbations in disordered proteins.

    Science.gov (United States)

    Perez, Romel B; Tischer, Alexander; Auton, Matthew; Whitten, Steven T

    2014-12-01

    Molecular transduction of biological signals is understood primarily in terms of the cooperative structural transitions of protein macromolecules, providing a mechanism through which discrete local structure perturbations affect global macromolecular properties. The recognition that proteins lacking tertiary stability, commonly referred to as intrinsically disordered proteins (IDPs), mediate key signaling pathways suggests that protein structures without cooperative intramolecular interactions may also have the ability to couple local and global structure changes. Presented here are results from experiments that measured and tested the ability of disordered proteins to couple local changes in structure to global changes in structure. Using the intrinsically disordered N-terminal region of the p53 protein as an experimental model, a set of proline (PRO) and alanine (ALA) to glycine (GLY) substitution variants were designed to modulate backbone conformational propensities without introducing non-native intramolecular interactions. The hydrodynamic radius (R(h)) was used to monitor changes in global structure. Circular dichroism spectroscopy showed that the GLY substitutions decreased polyproline II (PP(II)) propensities relative to the wild type, as expected, and fluorescence methods indicated that substitution-induced changes in R(h) were not associated with folding. The experiments showed that changes in local PP(II) structure cause changes in R(h) that are variable and that depend on the intrinsic chain propensities of PRO and ALA residues, demonstrating a mechanism for coupling local and global structure changes. Molecular simulations that model our results were used to extend the analysis to other proteins and illustrate the generality of the observed PRO and alanine effects on the structures of IDPs. © 2014 Wiley Periodicals, Inc.

  9. Automating tasks in protein structure determination with the clipper python module.

    Science.gov (United States)

    McNicholas, Stuart; Croll, Tristan; Burnley, Tom; Palmer, Colin M; Hoh, Soon Wen; Jenkins, Huw T; Dodson, Eleanor; Cowtan, Kevin; Agirre, Jon

    2018-01-01

    Scripting programming languages provide the fastest means of prototyping complex functionality. Those with a syntax and grammar resembling human language also greatly enhance the maintainability of the produced source code. Furthermore, the combination of a powerful, machine-independent scripting language with binary libraries tailored for each computer architecture allows programs to break free from the tight boundaries of efficiency traditionally associated with scripts. In the present work, we describe how an efficient C++ crystallographic library such as Clipper can be wrapped, adapted and generalized for use in both crystallographic and electron cryo-microscopy applications, scripted with the Python language. We shall also place an emphasis on best practices in automation, illustrating how this can be achieved with this new Python module. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  10. Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors

    Directory of Open Access Journals (Sweden)

    Sabrina M de Munnik

    2015-03-01

    Full Text Available Human herpesviruses are widespread infectious pathogens that have been associated with proliferative and inflammatory diseases. During viral evolution, human herpesviruses have pirated genes encoding viral G protein-coupled receptors (vGPCRs, which are expressed on infected host cells. These vGPCRs show highest homology to human chemokine receptors, which play a key role in the immune system. Importantly, vGPCRs have acquired unique properties such as constitutive activity and the ability to bind a broad range of human chemokines. This allows vGPCRs to hijack human proteins and modulate cellular signaling for the benefit of the virus, ultimately resulting in immune evasion and viral dissemination to establish a widespread and lifelong infection. Knowledge on the mechanisms by which herpesviruses reprogram cellular signaling might provide insight in the contribution of vGPCRs to viral survival and herpesvirus-associated pathologies.

  11. FGF/FGFR signaling coordinates skull development by modulating magnitude of morphological integration: evidence from Apert syndrome mouse models.

    Directory of Open Access Journals (Sweden)

    Neus Martínez-Abadías

    Full Text Available The fibroblast growth factor and receptor system (FGF/FGFR mediates cell communication and pattern formation in many tissue types (e.g., osseous, nervous, vascular. In those craniosynostosis syndromes caused by FGFR1-3 mutations, alteration of signaling in the FGF/FGFR system leads to dysmorphology of the skull, brain and limbs, among other organs. Since this molecular pathway is widely expressed throughout head development, we explore whether and how two specific mutations on Fgfr2 causing Apert syndrome in humans affect the pattern and level of integration between the facial skeleton and the neurocranium using inbred Apert syndrome mouse models Fgfr2(+/S252W and Fgfr2(+/P253R and their non-mutant littermates at P0. Skull morphological integration (MI, which can reflect developmental interactions among traits by measuring the intensity of statistical associations among them, was assessed using data from microCT images of the skull of Apert syndrome mouse models and 3D geometric morphometric methods. Our results show that mutant Apert syndrome mice share the general pattern of MI with their non-mutant littermates, but the magnitude of integration between and within the facial skeleton and the neurocranium is increased, especially in Fgfr2(+/S252W mice. This indicates that although Fgfr2 mutations do not disrupt skull MI, FGF/FGFR signaling is a covariance-generating process in skull development that acts as a global factor modulating the intensity of MI. As this pathway evolved early in vertebrate evolution, it may have played a significant role in establishing the patterns of skull MI and coordinating proper skull development.

  12. Intracellular calcium levels determine differential modulation of allosteric interactions within G protein-coupled receptor heteromers.

    Science.gov (United States)

    Navarro, Gemma; Aguinaga, David; Moreno, Estefania; Hradsky, Johannes; Reddy, Pasham P; Cortés, Antoni; Mallol, Josefa; Casadó, Vicent; Mikhaylova, Marina; Kreutz, Michael R; Lluís, Carme; Canela, Enric I; McCormick, Peter J; Ferré, Sergi

    2014-11-20

    The pharmacological significance of the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer is well established and it is being considered as an important target for the treatment of Parkinson’s disease and other neuropsychiatric disorders. However, the physiological factors that control its distinctive biochemical properties are still unknown. We demonstrate that different intracellular Ca2+ levels exert a differential modulation of A2AR-D2R heteromer-mediated adenylyl-cyclase and MAPK signaling in striatal cells. This depends on the ability of low and high Ca2+ levels to promote a selective interaction of the heteromer with the neuronal Ca2+-binding proteins NCS-1 and calneuron-1, respectively. These Ca2+-binding proteins differentially modulate allosteric interactions within the A2AR-D2R heteromer, which constitutes a unique cellular device that integrates extracellular (adenosine and dopamine) and intracellular (Ca+2) signals to produce a specific functional response.

  13. Insulin Stimulates S100B Secretion and These Proteins Antagonistically Modulate Brain Glucose Metabolism.

    Science.gov (United States)

    Wartchow, Krista Minéia; Tramontina, Ana Carolina; de Souza, Daniela F; Biasibetti, Regina; Bobermin, Larissa D; Gonçalves, Carlos-Alberto

    2016-06-01

    Brain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways. Glucose uptake in the brain does not involve insulin-dependent glucose transporters; however, this hormone affects the glucose influx to the brain. Changes in cerebrospinal fluid levels of S100B (an astrocyte-derived protein) have been associated with alterations in glucose metabolism; however, there is no evidence whether insulin modulates glucose metabolism and S100B secretion. Herein, we investigated the effect of S100B on glucose metabolism, measuring D-(3)H-glucose incorporation in two preparations, C6 glioma cells and acute hippocampal slices, and we also investigated the effect of insulin on S100B secretion. Our results showed that: (a) S100B at physiological levels decreases glucose uptake, through the multiligand receptor RAGE and mitogen-activated protein kinase/ERK signaling, and (b) insulin stimulated S100B secretion via PI3K signaling. Our findings indicate the existence of insulin-S100B modulation of glucose utilization in the brain tissue, and may improve our understanding of glucose metabolism in several conditions such as ketosis, streptozotocin-induced dementia and pharmacological exposure to antipsychotics, situations that lead to changes in insulin signaling and extracellular levels of S100B.

  14. Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states.

    Science.gov (United States)

    LeBon, Lauren; Lee, Tom V; Sprinzak, David; Jafar-Nejad, Hamed; Elowitz, Michael B

    2014-09-25

    The Notch signaling pathway consists of multiple types of receptors and ligands, whose interactions can be tuned by Fringe glycosyltransferases. A major challenge is to determine how these components control the specificity and directionality of Notch signaling in developmental contexts. Here, we analyzed same-cell (cis) Notch-ligand interactions for Notch1, Dll1, and Jag1, and their dependence on Fringe protein expression in mammalian cells. We found that Dll1 and Jag1 can cis-inhibit Notch1, and Fringe proteins modulate these interactions in a way that parallels their effects on trans interactions. Fringe similarly modulated Notch-ligand cis interactions during Drosophila development. Based on these and previously identified interactions, we show how the design of the Notch signaling pathway leads to a restricted repertoire of signaling states that promote heterotypic signaling between distinct cell types, providing insight into the design principles of the Notch signaling system, and the specific developmental process of Drosophila dorsal-ventral boundary formation.

  15. Could Low-Protein Diet Modulate Nrf2 Pathway in Chronic Kidney Disease?

    Science.gov (United States)

    Anjos, Juliana Saraiva; Cardozo, Ludmila F M F; Esgalhado, Marta; Lindholm, Bengt; Stenvinkel, Peter; Fouque, Denis; Mafra, Denise

    2018-02-13

    Oxidative stress and inflammation are common findings in chronic kidney disease (CKD) patients, and they are directly linked to clinical outcomes such as protein energy wasting and cardiovascular disease. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is the master regulator of antioxidant genes, regulating the expression of detoxifying enzymes of phase II and antioxidant responses. Furthermore, Nrf2 can also regulate anti-inflammatory cellular responses, by inhibiting nuclear factor kappa B activity (transcription factor that promotes inflammation). Therefore, modulating Nrf2 can be a new therapeutic approach to reduce inflammation and oxidative stress in CKD. Low-protein diet (LPD) prescribed for nondialysis CKD patients presents numerous benefits already well established, including reduction of inflammation and oxidative stress. However, there is no available data regarding the relationship between LPD and Nrf2 modulation in these patients. This review aims to discuss the impact, if any, of LPD on Nrf2 expression, in nondialysis CKD patients. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  16. Leucine Rich α-2 Glycoprotein: A Novel Neutrophil Granule Protein and Modulator of Myelopoiesis.

    Directory of Open Access Journals (Sweden)

    Lawrence J Druhan

    Full Text Available Leucine-rich α2 glycoprotein (LRG1, a serum protein produced by hepatocytes, has been implicated in angiogenesis and tumor promotion. Our laboratory previously reported the expression of LRG1 in murine myeloid cell lines undergoing neutrophilic granulocyte differentiation. However, the presence of LRG1 in primary human neutrophils and a role for LRG1 in regulation of hematopoiesis have not been previously described. Here we show that LRG1 is packaged into the granule compartment of human neutrophils and secreted upon neutrophil activation to modulate the microenvironment. Using immunofluorescence microscopy and direct biochemical measurements, we demonstrate that LRG1 is present in the peroxidase-negative granules of human neutrophils. Exocytosis assays indicate that LRG1 is differentially glycosylated in neutrophils, and co-released with the secondary granule protein lactoferrin. Like LRG1 purified from human serum, LRG1 secreted from activated neutrophils also binds cytochrome c. We also show that LRG1 antagonizes the inhibitory effects of TGFβ1 on colony growth of human CD34+ cells and myeloid progenitors. Collectively, these data invoke an additional role for neutrophils in innate immunity that has not previously been reported, and suggest a novel mechanism whereby neutrophils may modulate the microenvironment via extracellular release of LRG1.

  17. Glial fibrillary acidic protein (GFAP: modulation by growth factors and its implication in astrocyte differentiation

    Directory of Open Access Journals (Sweden)

    F.C.A. Gomes

    1999-05-01

    Full Text Available Intermediate filament (IF proteins constitute an extremely large multigene family of developmentally and tissue-regulated cytoskeleton proteins abundant in most vertebrate cell types. Astrocyte precursors of the CNS usually express vimentin as the major IF. Astrocyte maturation is followed by a switch between vimentin and glial fibrillary acidic protein (GFAP expression, with the latter being recognized as an astrocyte maturation marker. Levels of GFAP are regulated under developmental and pathological conditions. Upregulation of GFAP expression is one of the main characteristics of the astrocytic reaction commonly observed after CNS lesion. In this way, studies on GFAP regulation have been shown to be useful to understand not only brain physiology but also neurological disease. Modulators of GFAP expression include several hormones such as thyroid hormone, glucocorticoids and several growth factors such as FGF, CNTF and TGFß, among others. Studies of the GFAP gene have already identified several putative growth factor binding domains in its promoter region. Data obtained from transgenic and knockout mice have provided new insights into IF protein functions. This review highlights the most recent studies on the regulation of IF function by growth factors and hormones.

  18. Find pairs: the module for protein quantification of the PeakQuant software suite.

    Science.gov (United States)

    Eisenacher, Martin; Kohl, Michael; Wiese, Sebastian; Hebeler, Romano; Meyer, Helmut E; Warscheid, Bettina; Stephan, Christian

    2012-09-01

    Accurate quantification of proteins is one of the major tasks in current proteomics research. To address this issue, a wide range of stable isotope labeling techniques have been developed, allowing one to quantitatively study thousands of proteins by means of mass spectrometry. In this article, the FindPairs module of the PeakQuant software suite is detailed. It facilitates the automatic determination of protein abundance ratios based on the automated analysis of stable isotope-coded mass spectrometric data. Furthermore, it implements statistical methods to determine outliers due to biological as well as technical variance of proteome data obtained in replicate experiments. This provides an important means to evaluate the significance in obtained protein expression data. For demonstrating the high applicability of FindPairs, we focused on the quantitative analysis of proteome data acquired in (14)N/(15)N labeling experiments. We further provide a comprehensive overview of the features of the FindPairs software, and compare these with existing quantification packages. The software presented here supports a wide range of proteomics applications, allowing one to quantitatively assess data derived from different stable isotope labeling approaches, such as (14)N/(15)N labeling, SILAC, and iTRAQ. The software is publicly available at http://www.medizinisches-proteom-center.de/software and free for academic use.

  19. Marfan Syndrome

    Science.gov (United States)

    Marfan syndrome is a disorder that affects connective tissue. Connective tissues are proteins that support skin, bones, blood ... fibrillin. A problem with the fibrillin gene causes Marfan syndrome. Marfan syndrome can be mild to severe, and ...

  20. Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells

    International Nuclear Information System (INIS)

    Lesinski, Gregory B; Zimmerer, Jason M; Kreiner, Melanie; Trefry, John; Bill, Matthew A; Young, Gregory S; Becknell, Brian; Carson, William E III

    2010-01-01

    Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells. Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr 701 -phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR. SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr 701 -phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation. These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ

  1. The challenge of nutritional profiling of a protein-free feed module for children on low protein tube feeds with organic acidaemias.

    Science.gov (United States)

    Daly, A; Evans, S; Ashmore, C; Chahal, S; Santra, S; MacDonald, A

    2017-06-01

    Enteral tube feeding for children with organic acidaemias (OA) is recommended. Protein restriction, providing minimum safe levels of protein intake, is advocated. Standard paediatric tube feeding formulae provide more than the minimum safe protein requirements and are unsuitable in OA without modification. Modified paediatric enteral feeds consist of several modular ingredients. The aim of this prospective longitudinal interventional study was to assess the efficacy of a premeasured novel protein-free module developed for children aged over 12 months compared to conventional practice. In total, 15 children with OA (11.6-31 kg) needing enteral feeding were recruited. The protein-free module, from either a protein-free infant feed or modular ingredients, was replaced by the study feed. To ensure metabolic stability, energy and protein intake were unchanged. Dietary intake, anthropometry and nutritional biochemistry were recorded at baseline and week 26. Dietary intakes of magnesium (P = 0.02), sodium (P = 0.005), vitamin D (P = 0.04), docosahexaenoic acid (P = 0.01) and arachidonic acid (P = 0.001) significantly improved; plasma selenium (P = 0.002) and whole blood glutathione peroxidase (P = 0.02) significantly increased. Feed preparation accuracy as measured by composition analysis showed consistent errors both in pre- and study feeds. A protein-free module improved nutritional intake and biochemistry, although feed preparation errors remained a common finding. © 2017 The British Dietetic Association Ltd.

  2. Defining structural and evolutionary modules in proteins: a community detection approach to explore sub-domain architecture.

    Science.gov (United States)

    Hleap, Jose Sergio; Susko, Edward; Blouin, Christian

    2013-10-16

    Assessing protein modularity is important to understand protein evolution. Still the question of the existence of a sub-domain modular architecture remains. We propose a graph-theory approach with significance and power testing to identify modules in protein structures. In the first step, clusters are determined by optimizing the partition that maximizes the modularity score. Second, each cluster is tested for significance. Significant clusters are referred to as modules. Evolutionary modules are identified by analyzing homologous structures. Dynamic modules are inferred from sets of snapshots of molecular simulations. We present here a methodology to identify sub-domain architecture robustly, biologically meaningful, and statistically supported. The robustness of this new method is tested using simulated data with known modularity. Modules are correctly identified even when there is a low correlation between landmarks within a module. We also analyzed the evolutionary modularity of a data set of α-amylase catalytic domain homologs, and the dynamic modularity of the Niemann-Pick C1 (NPC1) protein N-terminal domain.The α-amylase contains an (α/β)8 barrel (TIM barrel) with the polysaccharides cleavage site and a calcium-binding domain. In this data set we identified four robust evolutionary modules, one of which forms the minimal functional TIM barrel topology.The NPC1 protein is involved in the intracellular lipid metabolism coordinating sterol trafficking. NPC1 N-terminus is the first luminal domain which binds to cholesterol and its oxygenated derivatives. Our inferred dynamic modules in the protein NPC1 are also shown to match functional components of the protein related to the NPC1 disease. A domain compartmentalization can be found and described in correlation space. To our knowledge, there is no other method attempting to identify sub-domain architecture from the correlation among residues. Most attempts made focus on sequence motifs of protein-protein

  3. Modulation of wound healing and scar formation by MG53 protein-mediated cell membrane repair.

    Science.gov (United States)

    Li, Haichang; Duann, Pu; Lin, Pei-Hui; Zhao, Li; Fan, Zhaobo; Tan, Tao; Zhou, Xinyu; Sun, Mingzhai; Fu, Minghuan; Orange, Matthew; Sermersheim, Matthew; Ma, Hanley; He, Duofen; Steinberg, Steven M; Higgins, Robert; Zhu, Hua; John, Elizabeth; Zeng, Chunyu; Guan, Jianjun; Ma, Jianjie

    2015-10-02

    Cell membrane repair is an important aspect of physiology, and disruption of this process can result in pathophysiology in a number of different tissues, including wound healing, chronic ulcer and scarring. We have previously identified a novel tripartite motif family protein, MG53, as an essential component of the cell membrane repair machinery. Here we report the functional role of MG53 in the modulation of wound healing and scarring. Although MG53 is absent from keratinocytes and fibroblasts, remarkable defects in skin architecture and collagen overproduction are observed in mg53(-/-) mice, and these animals display delayed wound healing and abnormal scarring. Recombinant human MG53 (rhMG53) protein, encapsulated in a hydrogel formulation, facilitates wound healing and prevents scarring in rodent models of dermal injuries. An in vitro study shows that rhMG53 protects against acute injury to keratinocytes and facilitates the migration of fibroblasts in response to scratch wounding. During fibrotic remodeling, rhMG53 interferes with TGF-β-dependent activation of myofibroblast differentiation. The resulting down-regulation of α smooth muscle actin and extracellular matrix proteins contributes to reduced scarring. Overall, these studies establish a trifunctional role for MG53 as a facilitator of rapid injury repair, a mediator of cell migration, and a modulator of myofibroblast differentiation during wound healing. Targeting the functional interaction between MG53 and TGF-β signaling may present a potentially effective means for promoting scarless wound healing. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Low Proportion of Dietary Plant Protein among Athletes with Premenstrual Syndrome-Related Performance Impairment.

    Science.gov (United States)

    Yamada, Keiko; Takeda, Takashi

    2018-02-01

    Premenstrual syndrome (PMS) is psychosomatic disorder that are limited to the late luteal phase in the menstrual cycle. PMS could impair athletic performance. To investigate associations between proportions of dietary plant and animal protein and PMS-related impairment of athletic performance, we surveyed 135 female athletes aged 18-23 years attending Kindai University. Participants belonged to authorized university clubs, all of which have high rankings in Japanese university sports. Participants completed self-administered questionnaires on diet history, demographics, and PMS-related impairment of athletic performance. Total protein, animal protein, and plant protein intake were examined, and the proportion of dietary plant protein was calculated for each participant. We divided athletes into two groups: those without PMS-related impairment of athletic performance (n = 117) and those with PMS-related performance impairment (n = 18). A t-test was used to compare mean values and multivariable adjusted mean values between groups; adjustment variables were energy intake, body mass index, and daily training duration. Total protein intake was not significantly different between the groups. However, athletes whose performance was affected by PMS reported higher intake of animal protein (mean 50.6 g) than athletes whose performance was unaffected by PMS (mean 34.9 g). Plant protein intake was lower among athletes with PMS-related impairment (mean 25.4 g) than among athletes without impairment (mean 26.9 g). The proportion of dietary plant protein was lower among athletes with PMS-related impairment (39.3%) than those without impairment (45.9%). A low proportion of dietary plant protein may cause PMS-related athletic impairment among athletes.

  5. Shwachman-Diamond Syndrome Protein SBDS Maintains Human Telomeres by Regulating Telomerase Recruitment

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2018-02-01

    Full Text Available Shwachman-Diamond syndrome (SDS is a rare pediatric disease characterized by various systemic disorders, including hematopoietic dysfunction. The mutation of Shwachman-Bodian-Diamond syndrome (SBDS gene has been proposed to be a major causative reason for SDS. Although SBDS patients were reported to have shorter telomere length in granulocytes, the underlying mechanism is still unclear. Here we provide data to elucidate the role of SBDS in telomere protection. We demonstrate that SBDS deficiency leads to telomere shortening. We found that overexpression of disease-associated SBDS mutants or knockdown of SBDS hampered the recruitment of telomerase onto telomeres, while the overall reverse transcriptase activity of telomerase remained unaffected. Moreover, we show that SBDS could specifically bind to TPP1 during the S phase of cell cycle, likely functioning as a stabilizer for TPP1-telomerase interaction. Our findings suggest that SBDS is a telomere-protecting protein that participates in regulating telomerase recruitment.

  6. Prediction of the anti-inflammatory mechanisms of curcumin by module-based protein interaction network analysis

    Directory of Open Access Journals (Sweden)

    Yanxiong Gan

    2015-11-01

    Full Text Available Curcumin, the medically active component from Curcuma longa (Turmeric, is widely used to treat inflammatory diseases. Protein interaction network (PIN analysis was used to predict its mechanisms of molecular action. Targets of curcumin were obtained based on ChEMBL and STITCH databases. Protein–protein interactions (PPIs were extracted from the String database. The PIN of curcumin was constructed by Cytoscape and the function modules identified by gene ontology (GO enrichment analysis based on molecular complex detection (MCODE. A PIN of curcumin with 482 nodes and 1688 interactions was constructed, which has scale-free, small world and modular properties. Based on analysis of these function modules, the mechanism of curcumin is proposed. Two modules were found to be intimately associated with inflammation. With function modules analysis, the anti-inflammatory effects of curcumin were related to SMAD, ERG and mediation by the TLR family. TLR9 may be a potential target of curcumin to treat inflammation.

  7. SUMO-2 and PIAS1 Modulate Insoluble Mutant Huntingtin Protein Accumulation

    Directory of Open Access Journals (Sweden)

    Jacqueline Gire O’Rourke

    2013-07-01

    Full Text Available A key feature in Huntington disease (HD is the accumulation of mutant Huntingtin (HTT protein, which may be regulated by posttranslational modifications. Here, we define the primary sites of SUMO modification in the amino-terminal domain of HTT, show modification downstream of this domain, and demonstrate that HTT is modified by the stress-inducible SUMO-2. A systematic study of E3 SUMO ligases demonstrates that PIAS1 is an E3 SUMO ligase for both HTT SUMO-1 and SUMO-2 modification and that reduction of dPIAS in a mutant HTT Drosophila model is protective. SUMO-2 modification regulates accumulation of insoluble HTT in HeLa cells in a manner that mimics proteasome inhibition and can be modulated by overexpression and acute knockdown of PIAS1. Finally, the accumulation of SUMO-2-modified proteins in the insoluble fraction of HD postmortem striata implicates SUMO-2 modification in the age-related pathogenic accumulation of mutant HTT and other cellular proteins that occurs during HD progression.

  8. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    International Nuclear Information System (INIS)

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih; Zhao, Bo; Kieff, Elliott; Peng, Chih-Wen

    2013-01-01

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection

  9. Protein synthesis in presynaptic endings from squid brain: modulation by calcium ions.

    Science.gov (United States)

    Benech, J C; Crispino, M; Kaplan, B B; Giuditta, A

    1999-03-15

    Previous biochemical, autoradiographic, and ultrastructural data have shown that, in the synaptosomal fraction of the squid optic lobe, protein synthesis is largely due to the presynaptic terminals of the retinal photoreceptor neurons (Crispino et al. [1993a] Mol. Cell. Neurosci. 4:366-374; Crispino et al. [1993b] J. Neurochem. 61:1144-1146; Crispino et al. [1997] J. Neurosci. 17:7694-7702). We now report that this process is close to its maximum at the basal concentration of cytosolic Ca++, and is markedly inhibited when the concentration of this ion is either decreased or increased. This conclusion is supported by the results of experiments with: 1) compounds known to increase the level of cytosolic Ca++, such as A23187, ionomycin, thapsigargin, and caffeine; 2) compounds sequestering cytosolic calcium ions such as BAPTA-AM; and 3) agents that block the role of Ca++ as second messenger, such as TFP and W7, which inhibit calmodulin, and calphostin, which inhibits protein kinase C. We conclude that variations in the level of cytosolic Ca++ induced in presynaptic terminals by neuronal activity may contribute to the modulation of the local synthesis of protein.

  10. Modulation of electronic structures of bases through DNA recognition of protein.

    Science.gov (United States)

    Hagiwara, Yohsuke; Kino, Hiori; Tateno, Masaru

    2010-04-21

    The effects of environmental structures on the electronic states of functional regions in a fully solvated DNA·protein complex were investigated using combined ab initio quantum mechanics/molecular mechanics calculations. A complex of a transcriptional factor, PU.1, and the target DNA was used for the calculations. The effects of solvent on the energies of molecular orbitals (MOs) of some DNA bases strongly correlate with the magnitude of masking of the DNA bases from the solvent by the protein. In the complex, PU.1 causes a variation in the magnitude among DNA bases by means of directly recognizing the DNA bases through hydrogen bonds and inducing structural changes of the DNA structure from the canonical one. Thus, the strong correlation found in this study is the first evidence showing the close quantitative relationship between recognition modes of DNA bases and the energy levels of the corresponding MOs. Thus, it has been revealed that the electronic state of each base is highly regulated and organized by the DNA recognition of the protein. Other biological macromolecular systems can be expected to also possess similar modulation mechanisms, suggesting that this finding provides a novel basis for the understanding for the regulation functions of biological macromolecular systems.

  11. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China); Zhao, Bo; Kieff, Elliott [Department of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Ave., Boston 02115, MA (United States); Peng, Chih-Wen, E-mail: pengcw@mail.tcu.edu.tw [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China)

    2013-01-18

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection.

  12. Modulation of Apoptotic Signaling by the Hepatitis B Virus X Protein

    Directory of Open Access Journals (Sweden)

    Michael J. Bouchard

    2012-11-01

    Full Text Available Worldwide, an estimated 350 million people are chronically infected with the Hepatitis B Virus (HBV; chronic infection with HBV is associated with the development of severe liver diseases including hepatitis and cirrhosis. Individuals who are chronically infected with HBV also have a significantly higher risk of developing hepatocellular carcinoma (HCC than uninfected individuals. The HBV X protein (HBx is a key regulatory HBV protein that is important for HBV replication, and likely plays a cofactor role in the development of HCC in chronically HBV-infected individuals. Although some of the functions of HBx that may contribute to the development of HCC have been characterized, many HBx activities, and their putative roles during the development of HBV-associated HCC, remain incompletely understood. HBx is a multifunctional protein that localizes to the cytoplasm, nucleus, and mitochondria of HBV‑infected hepatocytes. HBx regulates numerous cellular signal transduction pathways and transcription factors as well as cell cycle progression and apoptosis. In this review, we will summarize reports in which the impact of HBx expression on cellular apoptotic pathways has been analyzed. Although various effects of HBx on apoptotic pathways have been observed in different model systems, studies of HBx activities in biologically relevant hepatocyte systems have begun to clarify apoptotic effects of HBx and suggest mechanisms that could link HBx modulation of apoptotic pathways to the development of HBV-associated HCC.

  13. Mutations in the Treacher Collins syndrome gene lead to mislocalization of the nucleolar protein treacle.

    Science.gov (United States)

    Marsh, K L; Dixon, J; Dixon, M J

    1998-10-01

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. The TCS gene ( TCOF1 ), which is localized to chromosome 5q32-q33.1, recently has been identified by positional cloning. Analysis of TCOF1 revealed that the majority of TCS mutations result in the creation of a premature termination codon. The function of the predicted protein, treacle, is unknown, although indirect evidence from database analyses suggests that it may function as a shuttling nucleolar phosphoprotein. In the current study, we provide the first direct evidence that treacle is a nucleolar protein. An antibody generated against treacle shows that it localizes to the nucleolus. Fusion proteins tagged to a green fluorescent protein reporter were shown to localize to different compartments of the cell when putative nuclear localization signals were deleted. Parallel experiments using conserved regions of the murine homologue of TCOF1 confirmed these results. Site-directed mutagenesis has been used to recreate mutations observed in individuals with TCS. The resulting truncated proteins are mislocalized within the cell, which further supports the hypothesis that an integral part of treacle's function involves shuttling between the nucleolus and the cytoplasm. TCS is, therefore, the first Mendelian disorder resulting from mutations which lead to aberrant expression of a nucleolar protein.

  14. Advanced oxidation protein products are more related to metabolic syndrome components than biomarkers of lipid peroxidation.

    Science.gov (United States)

    Venturini, Danielle; Simão, Andréa Name Colado; Dichi, Isaias

    2015-09-01

    Although advanced oxidation protein products (AOPPs) have been reported as the most appropriate parameter for determination of oxidative stress in patients with metabolic syndrome (MetS), a direct comparison between protein and lipid peroxidation has not been performed yet. The aim of this study was to compare protein peroxidation with lipid peroxidation measured by 2 different methodologies (tert-butyl hydroperoxide-initiated chemiluminescence and ferrous oxidation-xylenol orange assay). The hypothesis of this study was that AOPPs would be more related to MetS than to oxidative markers of lipid peroxidation. This cross-sectional study evaluated 76 patients with MetS and 20 healthy subjects. Prooxidant-antioxidant index (PAI) assessed as AOPP/total radical-trapping antioxidant parameter ratio progressively increased (P protein (r = 0.275, P protein (r = 0.278, P protein peroxidation determined by AOPPs, and especially by PAI, is more related to MetS components than lipid peroxidation. In addition, PAI progressively increased with the number of MetS components. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Molecular pathogenesis of Spondylocheirodysplastic Ehlers-Danlos syndrome caused by mutant ZIP13 proteins

    Science.gov (United States)

    Bin, Bum-Ho; Hojyo, Shintaro; Hosaka, Toshiaki; Bhin, Jinhyuk; Kano, Hiroki; Miyai, Tomohiro; Ikeda, Mariko; Kimura-Someya, Tomomi; Shirouzu, Mikako; Cho, Eun-Gyung; Fukue, Kazuhisa; Kambe, Taiho; Ohashi, Wakana; Kim, Kyu-Han; Seo, Juyeon; Choi, Dong-Hwa; Nam, Yeon-Ju; Hwang, Daehee; Fukunaka, Ayako; Fujitani, Yoshio; Yokoyama, Shigeyuki; Superti-Furga, Andrea; Ikegawa, Shiro; Lee, Tae Ryong; Fukada, Toshiyuki

    2014-01-01

    The zinc transporter protein ZIP13 plays critical roles in bone, tooth, and connective tissue development, and its dysfunction is responsible for the spondylocheirodysplastic form of Ehlers-Danlos syndrome (SCD-EDS, OMIM 612350). Here, we report the molecular pathogenic mechanism of SCD-EDS caused by two different mutant ZIP13 proteins found in human patients: ZIP13G64D, in which Gly at amino acid position 64 is replaced by Asp, and ZIP13ΔFLA, which contains a deletion of Phe-Leu-Ala. We demonstrated that both the ZIP13G64D and ZIP13ΔFLA protein levels are decreased by degradation via the valosin-containing protein (VCP)-linked ubiquitin proteasome pathway. The inhibition of degradation pathways rescued the protein expression levels, resulting in improved intracellular Zn homeostasis. Our findings uncover the pathogenic mechanisms elicited by mutant ZIP13 proteins. Further elucidation of these degradation processes may lead to novel therapeutic targets for SCD-EDS. PMID:25007800

  16. RBM28, a protein deficient in ANE syndrome, regulates hair follicle growth via miR-203 and p63.

    Science.gov (United States)

    Warshauer, Emily; Samuelov, Liat; Sarig, Ofer; Vodo, Dan; Bindereif, Albrecht; Kanaan, Moien; Gat, Uri; Fuchs-Telem, Dana; Shomron, Noam; Farberov, Luba; Pasmanik-Chor, Metsada; Nardini, Gil; Winkler, Eyal; Meilik, Benjamin; Petit, Isabelle; Aberdam, Daniel; Paus, Ralf; Sprecher, Eli; Nousbeck, Janna

    2015-08-01

    Alopecia-neurological defects-endocrinopathy (ANE) syndrome is a rare inherited hair disorder, which was shown to result from decreased expression of the RNA-binding motif protein 28 (RBM28). In this study, we attempted to delineate the role of RBM28 in hair biology. First, we sought to obtain evidence for the direct involvement of RBM28 in hair growth. When RBM28 was downregulated in human hair follicle (HF) organ cultures, we observed catagen induction and HF growth arrest, indicating that RBM28 is necessary for normal hair growth. We also aimed at identifying molecular targets of RBM28. Given that an RBM28 homologue was recently found to regulate miRNA biogenesis in C. elegans and given the known pivotal importance of miRNAs for proper hair follicle development, we studied global miRNA expression profile in cells knocked down for RBM28. This analysis revealed that RBM28 controls the expression of miR-203. miR-203 was found to regulate in turn TP63, encoding the transcription factor p63, which is critical for hair morphogenesis. In conclusion, RBM28 contributes to HF growth regulation through modulation of miR-203 and p63 activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Posttranslational Protein Modification in the Salivary Glands of Sjögren’s Syndrome Patients

    Directory of Open Access Journals (Sweden)

    Rafael Herrera-Esparza

    2013-01-01

    Full Text Available The present study investigated posttranslational reactions in the salivary glands of patients with Sjögren’s syndrome. We analysed the biopsies of primary Sjögren’s patients using immunohistochemistry and a tag-purified anticyclic citrullinated protein (CCP antibody to detect citrullinated peptides, and the presence of peptidylarginine deiminase 2 (PAD2 was assessed simultaneously. The present work demonstrated the weak presence of the PAD2 enzyme in some normal salivary glands, although PAD2 expression was increased considerably in Sjögren’s patients. The presence of citrullinated proteins was also detected in the salivary tissues of Sjögren’s patients, which strongly supports the in situ posttranslational modification of proteins in this setting. Furthermore, the mutual expression of CCP and PAD2 suggests that this posttranslational modification is enzyme dependent. In conclusion, patients with Sjögren’s syndrome expressed the catalytic machinery to produce posttranslational reactions that may result in autoantigen triggering.

  18. High expression of G-protein signaling modulator 2 in hepatocellular carcinoma facilitates tumor growth and metastasis by activating the PI3K/AKT signaling pathway.

    Science.gov (United States)

    He, Xiao-Qin; Zhang, Yue-Feng; Yu, Jia-Jun; Gan, Yuan-Yuan; Han, Na-Na; Zhang, Mei-Xia; Ge, Wei; Deng, Jun-Jian; Zheng, Yong-Fa; Xu, Xi-Ming

    2017-03-01

    The aim of this study was to investigate the role of G-protein signaling modulator 2 in the carcinogenesis and progression of hepatocellular carcinoma. We previously showed that G-protein signaling modulator 2 was upregulated in hepatitis B virus-related hepatocellular carcinoma tissues through a hierarchical clustering analysis. With this study, we first assessed the expression pattern of G-protein signaling modulator 2 in hepatocellular carcinoma specimens and adjacent noncancerous tissues; clinical data were analyzed, along survival times, utilizing the Kaplan-Meier method. Moreover, the functions of G-protein signaling modulator 2 were examined using small-interfering RNAs in vitro. The results showed that G-protein signaling modulator 2 was clearly overexpressed in hepatocellular carcinoma tissues and cell lines and that the G-protein signaling modulator 2 expression level was related to tumor size and hepatitis B virus infection. Furthermore, G-protein signaling modulator 2 knockdown studies suggested that G-protein signaling modulator 2 accelerates cell growth, cell cycle, migration, and invasion and inhibits apoptosis, acting as an oncogene in hepatocellular carcinoma. Western blotting indicated that silencing of G-protein signaling modulator 2 in HepG2 and SMMC-7721 cells increased the expression levels of Bax, caspase-3, and E-cadherin, while notably suppressing the cyclin-dependent kinase 4, cyclin-dependent kinase 6, CyclinD1, Snail1, Vimentin, and matrix metallopeptidase 9 expression levels, compared with that in the control groups. In addition, we found that G-protein signaling modulator 2 can affect the expression of key proteins involved in protein kinase B activation. In conclusion, high expression of G-protein signaling modulator 2 was involved in the pathological processes of hepatocellular carcinoma through activation of the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, which may provide an attractive potential diagnostic

  19. Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics.

    Science.gov (United States)

    Tocchetti, Guillermo Nicolás; Rigalli, Juan Pablo; Arana, Maite Rocío; Villanueva, Silvina Stella Maris; Mottino, Aldo Domingo

    2016-07-15

    The multidrug resistance-associated protein 2 (MRP2/ABCC2) is a transporter that belongs to the ATP-binding cassette (ABC) superfamily. In the intestine, it is localized to the apical membrane of the enterocyte and plays a key role in limiting the absorption of xenobiotics incorporated orally. MRP2 may also play a role in systemic clearance of xenobiotics available from the serosal side of the intestine. MRP2 transports a wide range of substrates, mainly organic anions conjugated with glucuronic acid, glutathione and sulfate and its expression can be modulated by xenobiotics at transcriptional- and post-transcriptional levels. Transcriptional regulation is usually mediated by a group of nuclear receptors. The pregnane X receptor (PXR) is a major member of this group. Relevant drugs described to up-regulate intestinal MRP2 via PXR are rifampicin, spironolactone and carbamazepine, among others. The constitutive androstane receptor (CAR, NR1I3) was also reported to modulate MRP2 expression, phenobarbital being a typical activator. Dietary compounds, including micronutrients and other natural products, are also capable of regulating intestinal MRP2 expression transcriptionally. We have given them particular attention since the composition of the food ingested daily is not necessarily supervised and may result in interactions with therapeutic drugs. Post-transcriptional regulation of MRP2 activity by xenobiotics, e.g. as a consequence of inhibitory actions, is also described in this review. Unfortunately, only few studies report on drug-drug or nutrient-drug interactions as a consequence of modulation of intestinal MRP2 activity by xenobiotics. Future clinical studies are expected to identify additional interactions resulting in changes in efficacy or safety of therapeutic drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A Survey of Strategies to Modulate the Bone Morphogenetic Protein Signaling Pathway: Current and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Jonathan W. Lowery

    2016-01-01

    Full Text Available Bone morphogenetic proteins (BMPs constitute the largest subdivision of the TGF-β family of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-β pathways.

  1. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression.

    Science.gov (United States)

    Cheng, Kevin P; Kiernan, Elizabeth A; Eliceiri, Kevin W; Williams, Justin C; Watters, Jyoti J

    2016-02-17

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS.

  2. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression

    Science.gov (United States)

    Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.

    2016-01-01

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795

  3. Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus

    DEFF Research Database (Denmark)

    Deng, Ling; Kenchappa, Chandra Shekar; Peng, Xu

    2012-01-01

    CRISPR loci are essential components of the adaptive immune system of archaea and bacteria. They consist of long arrays of repeats separated by DNA spacers encoding guide RNAs (crRNA), which target foreign genetic elements. Cbp1 (CRISPR DNA repeat binding protein) binds specifically to the multiple...... direct repeats of CRISPR loci of members of the acidothermophilic, crenarchaeal order Sulfolobales. cbp1 gene deletion from Sulfolobus islandicus REY15A produced a strong reduction in pre-crRNA yields from CRISPR loci but did not inhibit the foreign DNA targeting capacity of the CRISPR/Cas system....... Conversely, overexpression of Cbp1 in S. islandicus generated an increase in pre-crRNA yields while the level of reverse strand transcripts from CRISPR loci remained unchanged. It is proposed that Cbp1 modulates production of longer pre-crRNA transcripts from CRISPR loci. A possible mechanism...

  4. G protein-coupled receptor modulation with pepducins: moving closer to the clinic.

    Science.gov (United States)

    Dimond, Patricia; Carlson, Kenneth; Bouvier, Michel; Gerard, Craig; Xu, Lei; Covic, Lidija; Agarwal, Anika; Ernst, Oliver P; Janz, Jay M; Schwartz, Thue W; Gardella, Thomas J; Milligan, Graeme; Kuliopulos, Athan; Sakmar, Thomas P; Hunt, Stephen W

    2011-05-01

    At the 2nd Pepducin Science Symposium held in Cambridge, Massachusetts, on November 4-5, 2010, investigators working in G protein-coupled receptor (GPCR) research convened to discuss progress since last year's inaugural conference. This year's symposium focused on increasing knowledge of the structure and function of this ubiquitous superfamily of membrane receptors and their potential modulation for disease treatment. Presentations also focused on how GPCR mechanisms might be exploited to treat diseases with pepducins, novel synthetic lipopeptide pharmacophores that modulate heptahelical GPCR activity. While the multiple roles of GPCRs in physiological and pathophysiological processes offer significant opportunities for novel drug development, the global nature of their activity challenges drug-specific and validated target identification. This year's conference highlighted advances in understanding of GPCR agonist and antagonist ligand-binding motifs, their ligand-independent functions, structure-activity relationships (SARs), and evolving unique methods to probe GPCR structure and function. Study results summarized at the meeting also provided evidence for evolving views of how signaling mechanisms work through these receptors. © 2011 New York Academy of Sciences.

  5. MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability.

    Science.gov (United States)

    Zhao, Chunzhao; Wang, Pengcheng; Si, Tong; Hsu, Chuan-Chih; Wang, Lu; Zayed, Omar; Yu, Zheping; Zhu, Yingfang; Dong, Juan; Tao, W Andy; Zhu, Jian-Kang

    2017-12-04

    Mitogen-activated protein kinase cascades are important signaling modules that convert environmental stimuli into cellular responses. We show that MPK3, MPK4, and MPK6 are rapidly activated after cold treatment. The mpk3 and mpk6 mutants display increased expression of CBF genes and enhanced freezing tolerance, whereas constitutive activation of the MKK4/5-MPK3/6 cascade in plants causes reduced expression of CBF genes and hypersensitivity to freezing, suggesting that the MKK4/5-MPK3/6 cascade negatively regulates the cold response. MPK3 and MPK6 can phosphorylate ICE1, a basic-helix-loop-helix transcription factor that regulates the expression of CBF genes, and the phosphorylation promotes the degradation of ICE1. Interestingly, the MEKK1-MKK2-MPK4 pathway constitutively suppresses MPK3 and MPK6 activities and has a positive role in the cold response. Furthermore, the MAPKKK YDA and two calcium/calmodulin-regulated receptor-like kinases, CRLK1 and CRLK2, negatively modulate the cold activation of MPK3/6. Our results uncover important roles of MAPK cascades in the regulation of plant cold response. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Cardiac remodeling is not modulated by overexpression of muscle LIM protein (MLP).

    Science.gov (United States)

    Kuhn, Christian; Frank, Derk; Dierck, Franziska; Oehl, Ulrike; Krebs, Jutta; Will, Rainer; Lehmann, Lorenz H; Backs, Johannes; Katus, Hugo A; Frey, Norbert

    2012-05-01

    Muscle LIM protein (MLP) has been proposed to be a central player in the pathogenesis of heart muscle disease. In line with this notion, the homozygous loss of MLP results in cardiac hypertrophy and dilated cardiomyopathy. Moreover, MLP is induced in several models of cardiac hypertrophy such as aortic banding and myocardial infarction. We thus hypothesized that overexpression of MLP might change the hypertrophic response to cardiac stress. In order to answer the question whether MLP modulates cardiac hypertrophy in vivo, we generated a novel transgenic mouse model with cardiac-specific overexpression of MLP. Three independent transgenic lines did not show a pathological phenotype under baseline conditions. Specifically, contractile function and heart weight to body weight ratios at different ages were normal. Next, the transgenic animals were challenged with pressure overload due to aortic constriction. Surprisingly, transgenic mice developed cardiac hypertrophy to the same extent as their wild-type littermates. Moreover, neither contractile dysfunction nor pathological gene expression in response to pressure overload were differentially affected by MLP overexpression. Finally, in a milder in vivo model of hypertrophy induced by chronic infusion of angiotensin-II, cardiac mass and hypertrophic gene expression were again identical in MLP transgenic mice and controls. Taken together, we provide evidence that cardiac overexpression of MLP does not modulate the heart's response to various forms of pathological stress.

  7. Effects of Human C-Reactive Protein on Pathogenesis of Features of the Metabolic Syndrome

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Kajiya, T.; Zídek, Václav; Landa, Vladimír; Mlejnek, Petr; Šimáková, Miroslava; Šilhavý, Jan; Malínská, H.; Oliyarnyk, O.; Kazdová, L.; Fan, J.; Wang, J.; Kurtz, T. W.

    2011-01-01

    Roč. 57, č. 4 (2011), s. 731-737 ISSN 0194-911X R&D Projects: GA MZd(CZ) NS9759; GA MŠk(CZ) ME08006; GA MŠk(CZ) 1M0520; GA ČR(CZ) GAP301/10/0290; GA ČR GAP303/10/0505; GA AV ČR(CZ) IAA500110805 Grant - others:EC(XE) HEALTH-F4-2010-241504 Institutional research plan: CEZ:AV0Z50110509 Keywords : C-reactive protein * metabolic syndrome * transgenic rat Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 6.207, year: 2011

  8. Food protein-induced enterocolitis syndrome in Australia: A population-based study, 2012-2014.

    Science.gov (United States)

    Mehr, Sam; Frith, Katie; Barnes, Elizabeth H; Campbell, Dianne E

    2017-11-01

    Food protein-induced enterocolitis syndrome (FPIES) is a non-IgE-mediated gastrointestinal allergic disorder. Large population-based FPIES studies are lacking. We sought to determine the incidence and clinical characteristics of FPIES in Australian infants. An Australia-wide survey (2012-2014) was undertaken through the Australian Paediatric Surveillance Unit, with monthly notification of new cases of acute FPIES in infants aged less than 24 months by 1400 participating pediatricians. Two hundred thirty infants with FPIES were identified. The incidence of FPIES in Australian infants (disease and FPIES to fruits, vegetables, or both. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  9. Compound A, a Selective Glucocorticoid Receptor Modulator, Enhances Heat Shock Protein Hsp70 Gene Promoter Activation

    Science.gov (United States)

    Beck, Ilse M.; Drebert, Zuzanna J.; Hoya-Arias, Ruben; Bahar, Ali A.; Devos, Michael; Clarisse, Dorien; Desmet, Sofie; Bougarne, Nadia; Ruttens, Bart; Gossye, Valerie; Denecker, Geertrui; Lievens, Sam; Bracke, Marc; Tavernier, Jan; Declercq, Wim; Gevaert, Kris; Berghe, Wim Vanden; Haegeman, Guy; De Bosscher, Karolien

    2013-01-01

    Compound A possesses glucocorticoid receptor (GR)-dependent anti-inflammatory properties. Just like classical GR ligands, Compound A can repress NF-κB-mediated gene expression. However, the monomeric Compound A-activated GR is unable to trigger glucocorticoid response element-regulated gene expression. The heat shock response potently activates heat shock factor 1 (HSF1), upregulates Hsp70, a known GR chaperone, and also modulates various aspects of inflammation. We found that the selective GR modulator Compound A and heat shock trigger similar cellular effects in A549 lung epithelial cells. With regard to their anti-inflammatory mechanism, heat shock and Compound A are both able to reduce TNF-stimulated IκBα degradation and NF-κB p65 nuclear translocation. We established an interaction between Compound A-activated GR and Hsp70, but remarkably, although the presence of the Hsp70 chaperone as such appears pivotal for the Compound A-mediated inflammatory gene repression, subsequent novel Hsp70 protein synthesis is uncoupled from an observed CpdA-induced Hsp70 mRNA upregulation and hence obsolete in mediating CpdA’s anti-inflammatory effect. The lack of a Compound A-induced increase in Hsp70 protein levels in A549 cells is not mediated by a rapid proteasomal degradation of Hsp70 or by a Compound A-induced general block on translation. Similar to heat shock, Compound A can upregulate transcription of Hsp70 genes in various cell lines and BALB/c mice. Interestingly, whereas Compound A-dependent Hsp70 promoter activation is GR-dependent but HSF1-independent, heat shock-induced Hsp70 expression alternatively occurs in a GR-independent and HSF1-dependent manner in A549 lung epithelial cells. PMID:23935933

  10. Sensitization of human breast cancer cells to gemcitabine by the protein kinase C modulator bryostatin 1.

    Science.gov (United States)

    Ali, Shadan; Aranha, Olivia; Li, Yiwei; Pettit, George R; Sarkar, Fazlul H; Philip, Philip Agop

    2003-09-01

    Protein kinase C (PKC) plays an important role in cell proliferation, differentiation, and apoptosis. The interaction between the PKC modulator bryostatin 1 (BRYO), and gemcitabine in human breast cancer MCF-7 and MDA-MB-231 cells and in the non-transformed MCF-10A human breast epithelial cells was investigated. Immunoblotting was used to determine the expression of PKC isoenzymes and proteins involved in the cell cycle and apoptosis. MTT, ELISA and flow cytometry assays were used to determine cell survival. Treatment of cells with BRYO 200 n M resulted in a significant downregulation of cytoplasmic PKC in all three cell lines. However, the expression of membranous PKC was differentially affected in these cells. BRYO (1-200 n M) had no significant effects on cell viability in any of the cell lines. Nevertheless, BRYO significantly enhanced the antiproliferative and apoptotic effects of gemcitabine in the MCF-7 and MDA-MB-231 cells, but not in the MCF-10A cells. This was associated with significant reduction in the bcl-2/bax ratio. There was a significant upregulation of p53, p21(waf1), and p27 in MCF7 and MCF-10A cells treated with the combination of gemcitabine and BRYO compared to gemcitabine-treated cells. The potentiation of the effect of gemcitabine by BRYO was demonstrated in MCF-7 and MDA-MB-231 cells and was associated with a specific pattern of PKC modulation. Further investigation of the role of specific isoforms of PKC in the downstream molecular events of gemcitabine-induced cytotoxicity is warranted.

  11. Antigenic structure of the nucleocapsid protein of porcine reproductive and respiratory syndrome virus.

    Science.gov (United States)

    Wootton, S K; Nelson, E A; Yoo, D

    1998-11-01

    A collection of 12 monoclonal antibodies (MAbs) raised against porcine reproductive and respiratory syndrome (PRRS) virus was used to study the antigenic structure of the virus nucleocapsid protein (N). The full-length N gene, encoded by open reading frame 7, was cloned from the Canadian PRRS virus, PA-8. Deletions were introduced into the N gene to produce a series of nine overlapping protein fragments ranging in length from 25 to 112 amino acids. The individual truncated genes were cloned as glutathione S-transferase fusions into a eukaryotic expression vector downstream of the T7 RNA polymerase promoter. HeLa cells infected with recombinant vaccinia virus expressing T7 RNA polymerase were transfected with plasmid DNA encoding the N protein fragments, and the antigenicity of the synthesized proteins was analyzed by immunoprecipitation. Based on the immunoreactivities of the N protein deletion mutants with the panel of N-specific MAbs, five domains of antigenic importance were identified. MAbs SDOW17, SR30, and 5H2.3B12.1C9 each identified independent domains defined by amino acids 30 to 52, 69 to 123, and 37 to 52, respectively. Seven of the MAbs tested specifically recognized the local protein conformation formed in part by the amino acid residues 52 to 69. Furthermore, deletion of 11 amino acids from the carboxy terminus of the nucleocapsid protein disrupted the epitope configuration recognized by all of the conformation-dependent MAbs, suggesting that the carboxy-terminal region plays an important role in maintaining local protein conformation.

  12. Soy Germ Protein With or Without-Zn Improve Plasma Lipid Profile in Metabolic Syndrome Women

    Directory of Open Access Journals (Sweden)

    HERY WINARSI

    2012-03-01

    Full Text Available The aim of this research was to determine the effect of soy germ protein on lipid profile of metabolic syndrome (MetS patients. Respondents were 30 women with criteria, i.e. blood glucose level > normal, body mass index > 25 kg/m2, hypertriglyceridemia, low cholesterol-HDL level, 40-65 years old, living in Purwokerto, and signed the informed consent. The project was approved by the ethics committee of the Medical Faculty from Gadjah Mada University-Yogyakarta. Respondents were divided into three randomly chosen groups consisting of ten women each. The first, second, and third groups were treated, respectively, with milk enriched soy germ protein plus Zn, milk enriched soy germ protein (without Zn, and placebo for two months. Blood samples were taken at baseline, one and two months after observation. Two months after observation the groups consuming milk enriched with soy germ protein, both with or without Zn, had their level of cholesterol-total decrease from 215.8 to 180.2 mg/dl (P = 0.03, triglyceride from 240.2 to 162.5 mg/dl (P = 0.02, and LDL from 154.01 to 93.85 mg/dl (P = 0.03. In contrast, HDL increased from 38.91 to 49.49 mg/dl (P = 0.0008. In conclusion, soy germ protein can improve lipid profile, thus it can inhibit atherosclerosis incident.

  13. Age exacerbates abnormal protein expression in a mouse model of Down syndrome.

    Science.gov (United States)

    Ahmed, Md Mahiuddin; Block, Aaron; Tong, Suhong; Davisson, Muriel T; Gardiner, Katheleen J

    2017-09-01

    The Ts65Dn is a popular mouse model of Down syndrome (DS). It displays DS-relevant features of learning/memory deficits and age-related loss of functional markers in basal forebrain cholinergic neurons. Here we describe protein expression abnormalities in brain regions of 12-month-old male Ts65Dn mice. We show that the magnitudes of abnormalities of human chromosome 21 and non-human chromosome 21 orthologous proteins are greater at 12 months than at ∼6 months. Age-related exacerbations involve the number of components affected in the mechanistic target of rapamycin pathway, the levels of components of the mitogen-activated protein kinase pathway, and proteins associated with Alzheimer's disease. Among brain regions, the number of abnormalities in cerebellum decreased while the number in cortex greatly increased with age. The Ts65Dn is being used in preclinical evaluations of drugs for cognition in DS. Most commonly, drug evaluations are tested in ∼4- to 6-month-old mice. Data on age-related changes in magnitude and specificity of protein perturbations can be used to understand the molecular basis of changes in cognitive ability and to predict potential age-related specificities in drug efficacies. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The Brugada Syndrome Susceptibility Gene HEY2 Modulates Cardiac Transmural Ion Channel Patterning and Electrical Heterogeneity

    NARCIS (Netherlands)

    Veerman, Christiaan C.; Podliesna, Svitlana; Tadros, Rafik; Lodder, Elisabeth M.; Mengarelli, Isabella; de Jonge, Berend; Beekman, Leander; Barc, Julien; Wilders, Ronald; Wilde, Arthur A.; Boukens, Bastiaan J.; Coronel, Ruben; Verkerk, Arie; Remme, Carol Ann; Bezzina, Connie R.

    2017-01-01

    Genome-wide association studies previously identified an association of rs9388451 at chromosome 6q22.3 (near HEY2) with Brugada syndrome. The causal gene and underlying mechanism remain unresolved. We used an integrative approach entailing transcriptomic studies in human hearts and

  15. Ca(2+)/calmodulin-dependent protein kinase IIα (αCaMKII) controls the activity of the dopamine transporter: implications for Angelman syndrome.

    Science.gov (United States)

    Steinkellner, Thomas; Yang, Jae-Won; Montgomery, Therese R; Chen, Wei-Qiang; Winkler, Marie-Therese; Sucic, Sonja; Lubec, Gert; Freissmuth, Michael; Elgersma, Ype; Sitte, Harald H; Kudlacek, Oliver

    2012-08-24

    The dopamine transporter (DAT) is a crucial regulator of dopaminergic neurotransmission, controlling the length and brevity of dopaminergic signaling. DAT is also the primary target of psychostimulant drugs such as cocaine and amphetamines. Conversely, methylphenidate and amphetamine are both used clinically in the treatment of attention-deficit hyperactivity disorder and narcolepsy. The action of amphetamines, which induce transport reversal, relies primarily on the ionic composition of the intra- and extracellular milieus. Recent findings suggest that DAT interacting proteins may also play a significant role in the modulation of reverse dopamine transport. The pharmacological inhibition of the serine/threonine kinase αCaMKII attenuates amphetamine-triggered DAT-mediated 1-methyl-4-phenylpyridinium (MPP(+)) efflux. More importantly, αCaMKII has also been shown to bind DAT in vitro and is therefore believed to be an important player within the DAT interactome. Herein, we show that αCaMKII co-immunoprecipitates with DAT in mouse striatal synaptosomes. Mice, which lack αCaMKII or which express a permanently self-inhibited αCaMKII (αCaMKII(T305D)), exhibit significantly reduced amphetamine-triggered DAT-mediated MPP(+) efflux. Additionally, we investigated mice that mimic a neurogenetic disease known as Angelman syndrome. These mice possess reduced αCaMKII activity. Angelman syndrome mice demonstrated an impaired DAT efflux function, which was comparable with that of the αCaMKII mutant mice, indicating that DAT-mediated dopaminergic signaling is affected in Angelman syndrome.

  16. Tumor protein 53 mutations and inherited cancer: beyond Li-Fraumeni syndrome.

    Science.gov (United States)

    Palmero, Edenir I; Achatz, Maria Iw; Ashton-Prolla, Patricia; Olivier, Magali; Hainaut, Pierre

    2010-01-01

    Germline TP53 (tumor protein 53) mutations are the molecular basis of a complex cancer predisposition syndrome, the Li-Fraumeni syndrome. The present review discusses the diversity of tumor patterns in TP53 mutation carriers, focusing on molecular factors that may explain familial and individual differences, such as genotype/phenotype correlations, genetic modifiers and genetic anticipation. Initially identified 20 years ago, germline TP53 mutations appear to be associated with an extremely diverse range of cancers. Although no other gene has been found in Li-Fraumeni syndrome, recent results show that the functional effects of particular mutations, polymorphisms in TP53 or in regulators such as MDM2 (murine double minute 2), variations in DNA copy number and variations in telomere length, have a strong impact on individual risk and on tumor patterns. Furthermore, recent studies in large cohorts suggest that TP53 germline mutations may occur in up to 1: 5000 individuals. Germline TP53 mutations may be responsible for a large fraction (15-20%) of all inherited cancers. Although mutations are detectable by sequencing, counseling and follow-up remain problematic due to the wide variations in disease presentation. Elucidating the molecular mechanisms underlying the predisposition caused by TP53 deficiency may help to develop better, evidence-based and personalized clinical protocols.

  17. Glucokinase regulatory protein genetic variant interacts with omega-3 PUFA to influence insulin resistance and inflammation in metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Pablo Perez-Martinez

    Full Text Available Glucokinase Regulatory Protein (GCKR plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3 PUFA have been of considerable interest, due to their potential to reduce metabolic syndrome (MetS risk.To examine whether genetic variability at the GCKR gene locus was associated with the degree of insulin resistance, plasma concentrations of C-reactive protein (CRP and n-3 PUFA in MetS subjects.Homeostasis model assessment of insulin resistance (HOMA-IR, HOMA-B, plasma concentrations of C-peptide, CRP, fatty acid composition and the GCKR rs1260326-P446L polymorphism, were determined in a cross-sectional analysis of 379 subjects with MetS participating in the LIPGENE dietary cohort.Among subjects with n-3 PUFA levels below the population median, carriers of the common C/C genotype had higher plasma concentrations of fasting insulin (P = 0.019, C-peptide (P = 0.004, HOMA-IR (P = 0.008 and CRP (P = 0.032 as compared with subjects carrying the minor T-allele (Leu446. In contrast, homozygous C/C carriers with n-3 PUFA levels above the median showed lower plasma concentrations of fasting insulin, peptide C, HOMA-IR and CRP, as compared with individuals with the T-allele.We have demonstrated a significant interaction between the GCKR rs1260326-P446L polymorphism and plasma n-3 PUFA levels modulating insulin resistance and inflammatory markers in MetS subjects. Further studies are needed to confirm this gene-diet interaction in the general population and whether targeted dietary recommendations can prevent MetS in genetically susceptible individuals.ClinicalTrials.gov NCT00429195.

  18. Opa-interacting protein 5 modulates docetaxel-induced cell death via regulation of mitophagy in gastric cancer.

    Science.gov (United States)

    Kim, Tae Woo; Lee, Seon-Jin; Park, Young-Jun; Park, Sang Yoon; Oh, Byung Moo; Park, Yun Sun; Kim, Bo-Yeon; Lee, Young-Ha; Cho, Hee Jun; Yoon, Suk Ran; Choe, Yong-Kyung; Lee, Hee Gu

    2017-10-01

    Damage to mitochondria induces mitophagy, a cellular process that is gaining interest for its therapeutic relevance to a variety of human diseases. However, the mechanism underlying mitochondrial depolarization and clearance in mitophagy remains poorly understood. We previously reported that mitochondria-induced cell death was caused by knockdown of Neisseria gonorrhoeae opacity-associated-interacting protein 5 in gastric cancer. In this study, we show that Neisseria gonorrhoeae opacity-associated-interacting protein 5 loss and gain of function modulates mitophagy induced by treatment with docetaxel, a chemotherapy drug for gastric cancer. The activation of mitophagy by Neisseria gonorrhoeae opacity-associated-interacting protein 5 overexpression promoted cell survival, preventing docetaxel-induced mitochondrial clearance. Conversely, short interfering RNA-mediated knockdown of Neisseria gonorrhoeae opacity-associated-interacting protein 5 accelerated docetaxel-induced apoptosis while increasing mitochondrial depolarization, reactive oxygen species, and endoplasmic reticulum stress and decreasing adenosine triphosphate production. We also found that the mitochondrial outer membrane proteins mitofusin 2 and phosphatase and tensin homolog-induced putative kinase 1 colocalized with Neisseria gonorrhoeae opacity-associated-interacting protein 5 in mitochondria and that mitofusin 2 knockdown altered Neisseria gonorrhoeae opacity-associated-interacting protein 5 expression. These findings indicate that Neisseria gonorrhoeae opacity-associated-interacting protein 5 modulates docetaxel-induced mitophagic cell death and therefore suggest that this protein comprises a potential therapeutic target for gastric cancer treatment.

  19. Distinct activities of Bartonella henselae type IV secretion effector proteins modulate capillary-like sprout formation.

    Science.gov (United States)

    Scheidegger, F; Ellner, Y; Guye, P; Rhomberg, T A; Weber, H; Augustin, H G; Dehio, C

    2009-07-01

    The zoonotic pathogen Bartonella henselae (Bh) can lead to vasoproliferative tumour lesions in the skin and inner organs known as bacillary angiomatosis and bacillary peliosis. The knowledge on the molecular and cellular mechanisms involved in this pathogen-triggered angiogenic process is confined by the lack of a suitable animal model and a physiologically relevant cell culture model of angiogenesis. Here we employed a three-dimensional in vitro angiogenesis assay of collagen gel-embedded endothelial cell (EC) spheroids to study the angiogenic properties of Bh. Spheroids generated from Bh-infected ECs displayed a high capacity to form sprouts, which represent capillary-like projections into the collagen gel. The VirB/VirD4 type IV secretion system and a subset of its translocated Bartonella effector proteins (Beps) were found to profoundly modulate this Bh-induced sprouting activity. BepA, known to protect ECs from apoptosis, strongly promoted sprout formation. In contrast, BepG, triggering cytoskeletal rearrangements, potently inhibited sprouting. Hence, the here established in vitro model of Bartonella- induced angiogenesis revealed distinct and opposing activities of type IV secretion system effector proteins, which together with a VirB/VirD4-independent effect may control the angiogenic activity of Bh during chronic infection of the vasculature.

  20. iPPI-DB: an online database of modulators of protein–protein interactions

    Science.gov (United States)

    Labbé, Céline M.; Kuenemann, Mélaine A.; Zarzycka, Barbara; Vriend, Gert; Nicolaes, Gerry A.F.; Lagorce, David; Miteva, Maria A.; Villoutreix, Bruno O.; Sperandio, Olivier

    2016-01-01

    In order to boost the identification of low-molecular-weight drugs on protein–protein interactions (PPI), it is essential to properly collect and annotate experimental data about successful examples. This provides the scientific community with the necessary information to derive trends about privileged physicochemical properties and chemotypes that maximize the likelihood of promoting a given chemical probe to the most advanced stages of development. To this end we have developed iPPI-DB (freely accessible at http://www.ippidb.cdithem.fr), a database that contains the structure, some physicochemical characteristics, the pharmacological data and the profile of the PPI targets of several hundreds modulators of protein–protein interactions. iPPI-DB is accessible through a web application and can be queried according to two general approaches: using physicochemical/pharmacological criteria; or by chemical similarity to a user-defined structure input. In both cases the results are displayed as a sortable and exportable datasheet with links to external databases such as Uniprot, PubMed. Furthermore each compound in the table has a link to an individual ID card that contains its physicochemical and pharmacological profile derived from iPPI-DB data. This includes information about its binding data, ligand and lipophilic efficiencies, location in the PPI chemical space, and importantly similarity with known drugs, and links to external databases like PubChem, and ChEMBL. PMID:26432833

  1. Lithium blocks ethanol-induced modulation of protein kinases in the developing brain

    International Nuclear Information System (INIS)

    Chakraborty, Goutam; Saito, Mitsuo; Mao, Rui-Fen; Wang, Ray; Vadasz, Csaba; Saito, Mariko

    2008-01-01

    Lithium has been shown to be neuroprotective against various insults including ethanol exposure. We previously reported that ethanol-induced apoptotic neurodegeneration in the postnatal day 7 (P7) mice is associated with decreases in phosphorylation levels of Akt, glycogen synthase kinase-3β (GSK-3β), and AMP-activated protein kinase (AMPK), and alteration in lipid profiles in the brain. Here, P7 mice were injected with ethanol and lithium, and the effects of lithium on ethanol-induced alterations in phosphorylation levels of protein kinases and lipid profiles in the brain were examined. Immunoblot and immunohistochemical analyses showed that lithium significantly blocked ethanol-induced caspase-3 activation and reduction in phosphorylation levels of Akt, GSK-3β, and AMPK. Further, lithium inhibited accumulation of cholesterol ester (ChE) and N-acylphosphatidylethanolamine (NAPE) triggered by ethanol in the brain. These results suggest that Akt, GSK-3β, and AMPK are involved in ethanol-induced neurodegeneration and the neuroprotective effects of lithium by modulating both apoptotic and survival pathways

  2. Non-local effects of point mutations on the stability of a protein module

    Science.gov (United States)

    Chwastyk, Mateusz; Vera, Andrés M.; Galera-Prat, Albert; Gunnoo, Melissabye; Thompson, Damien; Carrión-Vázquez, Mariano; Cieplak, Marek

    2017-09-01

    We combine experimental and theoretical methods to assess the effect of a set of point mutations on c7A, a highly mechanostable type I cohesin module from scaffoldin CipA from Clostridium thermocellum. We propose a novel robust and computationally expedient theoretical method to determine the effects of point mutations on protein structure and stability. We use all-atom simulations to predict structural shifts with respect to the native protein and then analyze the mutants using a coarse-grained model. We examine transitions in contacts between residues and find that changes in the contact map usually involve a non-local component that can extend up to 50 Å. We have identified mutations that may lead to a substantial increase in mechanical and thermodynamic stabilities by making systematic substitutions into alanine and phenylalanine in c7A. Experimental measurements of the mechanical stability and circular dichroism data agree qualitatively with the predictions provided the thermal stability is calculated using only the contacts within the secondary structures.

  3. Mutations in Three Genes Encoding Proteins Involved in Hair Shaft Formation Cause Uncombable Hair Syndrome.

    Science.gov (United States)

    Ü Basmanav, F Buket; Cau, Laura; Tafazzoli, Aylar; Méchin, Marie-Claire; Wolf, Sabrina; Romano, Maria Teresa; Valentin, Frederic; Wiegmann, Henning; Huchenq, Anne; Kandil, Rima; Garcia Bartels, Natalie; Kilic, Arzu; George, Susannah; Ralser, Damian J; Bergner, Stefan; Ferguson, David J P; Oprisoreanu, Ana-Maria; Wehner, Maria; Thiele, Holger; Altmüller, Janine; Nürnberg, Peter; Swan, Daniel; Houniet, Darren; Büchner, Aline; Weibel, Lisa; Wagner, Nicola; Grimalt, Ramon; Bygum, Anette; Serre, Guy; Blume-Peytavi, Ulrike; Sprecher, Eli; Schoch, Susanne; Oji, Vinzenz; Hamm, Henning; Farrant, Paul; Simon, Michel; Betz, Regina C

    2016-12-01

    Uncombable hair syndrome (UHS), also known as "spun glass hair syndrome," "pili trianguli et canaliculi," or "cheveux incoiffables" is a rare anomaly of the hair shaft that occurs in children and improves with age. UHS is characterized by dry, frizzy, spangly, and often fair hair that is resistant to being combed flat. Until now, both simplex and familial UHS-affected case subjects with autosomal-dominant as well as -recessive inheritance have been reported. However, none of these case subjects were linked to a molecular genetic cause. Here, we report the identification of UHS-causative mutations located in the three genes PADI3 (peptidylarginine deiminase 3), TGM3 (transglutaminase 3), and TCHH (trichohyalin) in a total of 11 children. All of these individuals carry homozygous or compound heterozygous mutations in one of these three genes, indicating an autosomal-recessive inheritance pattern in the majority of UHS case subjects. The two enzymes PADI3 and TGM3, responsible for posttranslational protein modifications, and their target structural protein TCHH are all involved in hair shaft formation. Elucidation of the molecular outcomes of the disease-causing mutations by cell culture experiments and tridimensional protein models demonstrated clear differences in the structural organization and activity of mutant and wild-type proteins. Scanning electron microscopy observations revealed morphological alterations in hair coat of Padi3 knockout mice. All together, these findings elucidate the molecular genetic causes of UHS and shed light on its pathophysiology and hair physiology in general. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. Wolfram Syndrome protein, Miner1, regulates sulphydryl redox status, the unfolded protein response, and Ca2+ homeostasis.

    Science.gov (United States)

    Wiley, Sandra E; Andreyev, Alexander Y; Divakaruni, Ajit S; Karisch, Robert; Perkins, Guy; Wall, Estelle A; van der Geer, Peter; Chen, Yi-Fan; Tsai, Ting-Fen; Simon, Melvin I; Neel, Benjamin G; Dixon, Jack E; Murphy, Anne N

    2013-06-01

    Miner1 is a redox-active 2Fe2S cluster protein. Mutations in Miner1 result in Wolfram Syndrome, a metabolic disease associated with diabetes, blindness, deafness, and a shortened lifespan. Embryonic fibroblasts from Miner1(-/-) mice displayed ER stress and showed hallmarks of the unfolded protein response. In addition, loss of Miner1 caused a depletion of ER Ca(2+) stores, a dramatic increase in mitochondrial Ca(2+) load, increased reactive oxygen and nitrogen species, an increase in the GSSG/GSH and NAD(+)/NADH ratios, and an increase in the ADP/ATP ratio consistent with enhanced ATP utilization. Furthermore, mitochondria in fibroblasts lacking Miner1 displayed ultrastructural alterations, such as increased cristae density and punctate morphology, and an increase in O2 consumption. Treatment with the sulphydryl anti-oxidant N-acetylcysteine reversed the abnormalities in the Miner1 deficient cells, suggesting that sulphydryl reducing agents should be explored as a treatment for this rare genetic disease. Copyright © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  5. Modulation of histone deacetylase attenuates naloxone-precipitated opioid withdrawal syndrome.

    Science.gov (United States)

    Rehni, Ashish K; Singh, Nirmal; Rachamalla, Mahesh; Tikoo, Kulbhushan

    2012-06-01

    The present study has been designed to investigate the effect of selective inhibitors of histone deacetylase and/or N-acetyl-Asp-Glu-Val-Asp-al (Ac-DEVD-CHO), a selective interleukin-1β converting enzyme inhibitor, on the development of naloxone-induced opioid withdrawal syndrome both in vitro and in vivo and the effect of histone deacetylase inhibition on histone H3 acetylation in brain. Sub-acute morphine administration followed by a single injection of naloxone (8 mg/kg, i.p.) was used to precipitate opioid withdrawal syndrome in mice. Behavioral observations were made immediately after naloxone treatment. Withdrawal syndrome was quantitatively assessed in terms of withdrawal severity score and frequency of jumping, rearing, fore paw licking and circling. Separately naloxone-induced contraction in morphine-dependent isolated rat ileum was employed as an in vitro model. An isobolographic study design was employed to assess potential synergistic activity between trichostatin A and Ac-DEVD-CHO. Brain histone acetylation status was examined by western blotting. Injection of naloxone precipitated a severe form of abstinence syndrome in morphine-dependent mice along with strong contracture in isolated rat ileum. Administration of tributyrin (1.5, 3 and 6 g/kg, p.o.), trichostatin A (0.3, 1.0 and 3.0 mg/kg, p.o.) and Ac-DEVD-CHO (0.3, 1.0 and 3.0 mg/kg, p.o.) markedly and dose dependently attenuated naloxone-induced morphine withdrawal syndrome in vivo as well as in vitro in rat ileum. Trichostatin A was also observed to exert a synergistic interaction with Ac-DEVD-CHO. Western blot analysis revealed that multiple administration with the effective dose of tributyrin or trichostatin A in the in vivo experiments induced hyperacetylation of histone H3 in the mouse brain. Thus, it is proposed that histone deacetylase activation linked mechanism might be involved in the development of opioid dependence and the precipitation of its withdrawal syndrome.

  6. Modulation of the beta-catenin signaling pathway by the dishevelled-associated protein Hipk1.

    Directory of Open Access Journals (Sweden)

    Sarah H Louie

    Full Text Available BACKGROUND: Wnts are evolutionarily conserved ligands that signal through beta-catenin-dependent and beta-catenin-independent pathways to regulate cell fate, proliferation, polarity, and movements during vertebrate development. Dishevelled (Dsh/Dvl is a multi-domain scaffold protein required for virtually all known Wnt signaling activities, raising interest in the identification and functions of Dsh-associated proteins. METHODOLOGY: We conducted a yeast-2-hybrid screen using an N-terminal fragment of Dsh, resulting in isolation of the Xenopus laevis ortholog of Hipk1. Interaction between the Dsh and Hipk1 proteins was confirmed by co-immunoprecipitation assays and mass spectrometry, and further experiments suggest that Hipk1 also complexes with the transcription factor Tcf3. Supporting a nuclear function during X. laevis development, Myc-tagged Hipk1 localizes primarily to the nucleus in animal cap explants, and the endogenous transcript is strongly expressed during gastrula and neurula stages. Experimental manipulations of Hipk1 levels indicate that Hipk1 can repress Wnt/beta-catenin target gene activation, as demonstrated by beta-catenin reporter assays in human embryonic kidney cells and by indicators of dorsal specification in X. laevis embryos at the late blastula stage. In addition, a subset of Wnt-responsive genes subsequently requires Hipk1 for activation in the involuting mesoderm during gastrulation. Moreover, either over-expression or knock-down of Hipk1 leads to perturbed convergent extension cell movements involved in both gastrulation and neural tube closure. CONCLUSIONS: These results suggest that Hipk1 contributes in a complex fashion to Dsh-dependent signaling activities during early vertebrate development. This includes regulating the transcription of Wnt/beta-catenin target genes in the nucleus, possibly in both repressive and activating ways under changing developmental contexts. This regulation is required to modulate gene

  7. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways

    Science.gov (United States)

    Guo, Fang; Zhao, Qiong; Cheng, Junjun; Qi, Yonghe; Su, Qing; Wei, Lai; Li, Wenhui; Chang, Jinhong

    2017-01-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or “empty” capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B. PMID:28945802

  8. A Hydrophobic Pocket in the Active Site of Glycolytic Aldolase Mediates Interactions with Wiskott-Aldrich Syndrome Protein

    Energy Technology Data Exchange (ETDEWEB)

    St-Jean,M.; Izard, T.; Sygusch, J.

    2007-01-01

    Aldolase plays essential catalytic roles in glycolysis and gluconeogenesis. However, aldolase is a highly abundant protein that is remarkably promiscuous in its interactions with other cellular proteins. In particular, aldolase binds to highly acidic amino acid sequences, including the C-terminus of the Wiskott-Aldrich syndrome protein, an actin nucleation promoting factor. Here we report the crystal structure of tetrameric rabbit muscle aldolase in complex with a C-terminal peptide of Wiskott-Aldrich syndrome protein. Aldolase recognizes a short, 4-residue DEWD motif (residues 498-501), which adopts a loose hairpin turn that folds about the central aromatic residue, enabling its tryptophan side chain to fit into a hydrophobic pocket in the active site of aldolase. The flanking acidic residues in this binding motif provide further interactions with conserved aldolase active site residues, Arg-42 and Arg-303, aligning their side chains and forming the sides of the hydrophobic pocket. The binding of Wiskott-Aldrich syndrome protein to aldolase precludes intramolecular interactions of its C-terminus with its active site, and is competitive with substrate as well as with binding by actin and cortactin. Finally, based on this structure a novel naphthol phosphate-based inhibitor of aldolase was identified and its structure in complex with aldolase demonstrated mimicry of the Wiskott-Aldrich syndrome protein-aldolase interaction. The data support a model whereby aldolase exists in distinct forms that regulate glycolysis or actin dynamics.

  9. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture.

    Science.gov (United States)

    Miller, Bradley R; Drake, Eric J; Shi, Ce; Aldrich, Courtney C; Gulick, Andrew M

    2016-10-21

    Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived from understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Bradley R.; Drake, Eric J.; Shi, Ce; Aldrich, Courtney C.; Gulick, Andrew M. (UMM); (HWMRI)

    2016-09-05

    Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived from understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa. These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain.

  11. Necdin plays a role in the serotonergic modulation of the mouse respiratory network: implication for Prader-Willi syndrome.

    Science.gov (United States)

    Zanella, Sébastien; Watrin, Françoise; Mebarek, Saïda; Marly, Fabienne; Roussel, Michel; Gire, Catherine; Diene, Gwenaëlle; Tauber, Maïté; Muscatelli, Françoise; Hilaire, Gérard

    2008-02-13

    Prader-Willi syndrome is a neurogenetic disease resulting from the absence of paternal expression of several imprinted genes, including NECDIN. Prader-Willi children and adults have severe breathing defects with irregular rhythm, frequent sleep apneas, and blunted respiratory regulations. For the first time, we show that Prader-Willi infants have sleep apneas already present at birth. In parallel, in wild-type and Necdin-deficient mice, we studied the respiratory system with in vivo plethysmography, in vitro electrophysiology, and pharmacology. Because serotonin is known to contribute to CNS development and to affect maturation and function of the brainstem respiratory network, we also investigated the serotonergic system with HPLC, immunohistochemistry, Rabies virus tracing approaches, and primary culture experiments. We report first that Necdin-deficiency in mice induces central respiratory deficits reminiscent of Prader-Willi syndrome (irregular rhythm, frequent apneas, and blunted respiratory regulations), second that Necdin is expressed by medullary serotonergic neurons, and third that Necdin deficiency alters the serotonergic metabolism, the morphology of serotonin vesicles in medullary serotonergic neurons but not the number of these cells. We also show that Necdin deficiency in neonatal mice alters the serotonergic modulation of the respiratory rhythm generator. Thus, we propose that the lack of Necdin expression induces perinatal serotonergic alterations that affect the maturation and function of the respiratory network, inducing breathing deficits in mice and probably in Prader-Willi patients.

  12. High-sensitivity C-reactive protein predicts target organ damage in Chinese patients with metabolic syndrome

    DEFF Research Database (Denmark)

    Zhao, Zhigang; Nie, Hai; He, Hongbo

    2007-01-01

    with metabolic syndrome. A total of 1082 consecutive patients of Chinese origin were screened for the presence of metabolic syndrome according to the National Cholesterol Education Program's Adult Treatment Panel III. High-sensitivity C-reactive protein and target organ damage, including cardiac hypertrophy......, carotid intima-media thickness, and renal impairment, were investigated. The median (25th and 75th percentiles) of high-sensitivity C-reactive protein in 619 patients with metabolic syndrome was 2.42 mg/L (0.75 and 3.66 mg/L) compared with 1.13 mg/L (0.51 and 2.46 mg/L) among 463 control subjects (P ...). There was a progressive increase in high-sensitivity C-reactive protein level with the number of components of the metabolic syndrome. Stratification of patients with metabolic syndrome into 3 groups according to their high-sensitivity C-reactive protein concentrations (3.0 mg/L) showed that the subjects...

  13. Modulation of intestinal and liver fatty acid-binding proteins in Caco-2 cells by lipids, hormones and cytokines.

    NARCIS (Netherlands)

    Dube, N.; Delvin, E.; Yotov, W.; Garofalo, C.; Bendayan, M.; Veerkamp, J.H.; Levy, E.

    2001-01-01

    Intestinal and liver fatty acid binding proteins (I- and L-FABP) are thought to play a role in enterocyte fatty acid (FA) trafficking. Their modulation by cell differentiation and various potential effectors was investigated in the human Caco-2 cell line. With the acquisition of enterocytic

  14. Intracellular Localization of the Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein: Absence of Nucleolar Accumulation during Infection and after Expression as a Recombinant Protein in Vero Cells

    OpenAIRE

    Rowland, Raymond R. R.; Chauhan, Vinita; Fang, Ying; Pekosz, Andrew; Kerrigan, Maureen; Burton, Miriam D.

    2005-01-01

    The nucleocapsid (N) protein of several members within the order Nidovirales localizes to the nucleolus during infection and after transfection of cells with N genes. However, confocal microscopy of N protein localization in Vero cells infected with the severe acute respiratory syndrome coronavirus (SARS-CoV) or transfected with the SARS-CoV N gene failed to show the presence of N in the nucleoplasm or nucleolus. Amino acids 369 to 389, which contain putative nuclear localization signal (NLS)...

  15. Modulators of drug dependence phenomena : factors affecting morphine withdrawal syndrome and cocaine-intake in rodents

    NARCIS (Netherlands)

    S.L.T. Cappendijk (Susanne)

    1995-01-01

    textabstractThis thesis compiles the experimental studies on several drugs, which modulate drug dependence phenomena in rodents. The main part of the studies is related to the morphine withdrawal (chapters 3-7), while a minor part is dealing with cocaine psychic dependence (chapter 9).

  16. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons.

    Directory of Open Access Journals (Sweden)

    Khursheed A Wani

    Full Text Available Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1 required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior.

  17. D1 Dopamine Receptor Signaling Is Modulated by the R7 RGS Protein EAT-16 and the R7 Binding Protein RSBP-1 in Caenoerhabditis elegans Motor Neurons

    Science.gov (United States)

    Wani, Khursheed A.; Catanese, Mary; Normantowicz, Robyn; Herd, Muriel; Maher, Kathryn N.; Chase, Daniel L.

    2012-01-01

    Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1) required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior. PMID:22629462

  18. Disruption of a Ciliary B9 Protein Complex Causes Meckel Syndrome

    Science.gov (United States)

    Dowdle, William E.; Robinson, Jon F.; Kneist, Andreas; Sirerol-Piquer, M. Salomé; Frints, Suzanna G.M.; Corbit, Kevin C.; Zaghloul, Norran A.; van Lijnschoten, Gesina; Mulders, Leon; Verver, Dideke E.; Zerres, Klaus; Reed, Randall R.; Attié-Bitach, Tania; Johnson, Colin A.; García-Verdugo, José Manuel; Katsanis, Nicholas; Bergmann, Carsten; Reiter, Jeremy F.

    2011-01-01

    Nearly every ciliated organism possesses three B9 domain-containing proteins: MKS1, B9D1, and B9D2. Mutations in human MKS1 cause Meckel syndrome (MKS), a severe ciliopathy characterized by occipital encephalocele, liver ductal plate malformations, polydactyly, and kidney cysts. Mouse mutations in either Mks1 or B9d2 compromise ciliogenesis and result in phenotypes similar to those of MKS. Given the importance of these two B9 proteins to ciliogenesis, we examined the role of the third B9 protein, B9d1. Mice lacking B9d1 displayed polydactyly, kidney cysts, ductal plate malformations, and abnormal patterning of the neural tube, concomitant with compromised ciliogenesis, ciliary protein localization, and Hedgehog (Hh) signal transduction. These data prompted us to screen MKS patients for mutations in B9D1 and B9D2. We identified a homozygous c.301A>C (p.Ser101Arg) B9D2 mutation that segregates with MKS, affects an evolutionarily conserved residue, and is absent from controls. Unlike wild-type B9D2 mRNA, the p.Ser101Arg mutation failed to rescue zebrafish phenotypes induced by the suppression of b9d2. With coimmunoprecipitation and mass spectrometric analyses, we found that Mks1, B9d1, and B9d2 interact physically, but that the p.Ser101Arg mutation abrogates the ability of B9d2 to interact with Mks1, further suggesting that the mutation compromises B9d2 function. Our data indicate that B9d1 is required for normal Hh signaling, ciliogenesis, and ciliary protein localization and that B9d1 and B9d2 are essential components of a B9 protein complex, disruption of which causes MKS. PMID:21763481

  19. Proteins involved in platelet signaling are differentially regulated in acute coronary syndrome: a proteomic study.

    Directory of Open Access Journals (Sweden)

    Andrés Fernández Parguiña

    Full Text Available BACKGROUND: Platelets play a fundamental role in pathological events underlying acute coronary syndrome (ACS. Because platelets do not have a nucleus, proteomics constitutes an optimal approach to follow platelet molecular events associated with the onset of the acute episode. METHODOLOGY/PRINCIPAL FINDINGS: We performed the first high-resolution two-dimensional gel electrophoresis-based proteome analysis of circulating platelets from patients with non-ST segment elevation ACS (NSTE-ACS. Proteins were identified by mass spectrometry and validations were by western blotting. Forty protein features (corresponding to 22 unique genes were found to be differentially regulated between NSTE-ACS patients and matched controls with chronic ischemic cardiopathy. The number of differences decreased at day 5 (28 and 6 months after the acute event (5. Interestingly, a systems biology approach demonstrated that 16 of the 22 differentially regulated proteins identified are interconnected as part of a common network related to cell assembly and organization and cell morphology, processes very related to platelet activation. Indeed, 14 of those proteins are either signaling or cytoskeletal, and nine of them are known to participate in platelet activation by αIIbβ3 and/or GPVI receptors. Several of the proteins identified participate in platelet activation through post-translational modifications, as shown here for ILK, Src and Talin. Interestingly, the platelet-secreted glycoprotein SPARC was down-regulated in NSTE-ACS patients compared to stable controls, which is consistent with a secretion process from activated platelets. CONCLUSIONS/SIGNIFICANCE: The present study provides novel information on platelet proteome changes associated with platelet activation in NSTE-ACS, highlighting the presence of proteins involved in platelet signaling. This investigation paves the way for future studies in the search for novel platelet-related biomarkers and drug targets

  20. The effect of acute serotonergic modulation on rectal motor function in diarrhea-predominant irritable bowel syndrome and healthy controls.

    Science.gov (United States)

    van Nieuwenhoven, Michiel A; Kilkens, Tessa O C

    2012-11-01

    Irritable bowel syndrome (IBS) patients suffer from visceral hypersensitivity and show increased activity in the brain emotional arousal network following a rectal stimulus, compared with controls. Serotonergic activity can be decreased by acute tryptophan depletion (ATD), which increases visceral perception and also increases activity in the brain's emotional arousal network during rectal stimulation. Treatment with a serotonin reuptake inhibitor such as citalopram is effective in some IBS patients. Hence, serotonergic modulation alters visceral perception. However, it is not clear whether serotonergic modulation alters rectal motor function. The aims of the study were to evaluate the effect of the administration of ATD and citalopram on rectal motor function in diarrhea-predominant IBS (d-IBS) patients and controls using a barostat procedure. Following a randomized, double-blind placebo-controlled crossover design, an ATD and citalopram experiment was conducted. Fourteen d-IBS patients and 14 healthy, matched (age, sex, BMI) controls participated. Rectal volume (RV), adaptive relaxation (RAR), and compliance (RC) were determined using a barostat procedure. d-IBS patients showed significantly decreased RV (P0.1). d-IBS patients have disturbed rectal pressure-volume relations. Visceral perception in IBS is associated with both increased activity in the brain's emotional arousal network and decreased RC. Acutely decreasing or increasing serotonergic activity does not affect these characteristics in d-IBS patients or healthy controls. The pathophysiology in d-IBS contains both a rectal motor component and a central neuropsychologic component.

  1. Structure of a group C streptococcal protein that binds to fibrinogen, albumin and immunoglobulin G via overlapping modules.

    Science.gov (United States)

    Talay, S R; Grammel, M P; Chhatwal, G S

    1996-04-15

    Pathogenic streptococci express surface proteins that bind to host serum proteins. A novel multiple-ligand-binding protein has now been identified in a species belonging to serotype C streptococci. This protein binds to fibrinogen, albumin and IgG and was therefore designated FAI protein. The structure of the fai gene has been determined, and deletion analysis and expression of FAI fusion polypeptides revealed that the binding domain for fibrinogen and IgG is located within the nonrepetitive N-terminal half of the protein. A 93-amino acid peptide retained the ability to bind both proteins, whereas a 56-amino acid subpeptide only bound fibrinogen. IgG-binding activity required the complete fibrinogen-binding domain and an additional 37 amino acids C-terminal to it, and albumin-binding activity was only obtained with a polypeptide reflecting the complete surface-exposed region of FAI protein indicating that the binding sites for each ligand were located on overlapping modules. Signal sequence, C repeat region and C-terminus revealed high homology to group A streptococcal M proteins whereas the N-terminal region containing the fibrinogen/IgG-binding domains is completely different and exhibits no similarity to any other previously characterized protein. Thus FAI protein exhibits a framework structure that might have evolved in group C streptococci via fusion of unrelated sequences, thereby generating an albumin-binding domain in the functional context of multiple-ligand-binding activity.

  2. Efficacy of a New Ocular Surface Modulator in Restoring Epithelial Changes in an In Vitro Model of Dry Eye Syndrome.

    Science.gov (United States)

    Barabino, Stefano; De Servi, Barbara; Aragona, Salvatore; Manenti, Demetrio; Meloni, Marisa

    2017-03-01

    So far tear substitutes have demonstrated a limited role in restoring ocular surface damage in dry eye syndrome (DES). The aim of this study was to assess the efficacy of a new ocular surface modulator in an in vitro model of human corneal epithelium (HCE) damaged by severe osmotic stress mirroring the features of dry eye conditions. A reconstructed HCE model challenged by the introduction of sorbitol in the culture medium for 16 h was used to induce an inflammatory pathway and to impair the tight junctions integrity determining a severe modification of the superficial layer ultrastructure. At the end of the overnight stress period in the treated HCE series, 30 μl of the ocular surface modulator (T-LysYal, Sildeha, Switzerland) and of hyaluronic acid (HA) in the control HCE series were applied for 24 h. The following parameters were quantified: scanning electron microscopy (SEM), trans-epithelial electrical resistance (TEER), immunofluorescence analysis of integrin β1 (ITG-β1), mRNA expression of Cyclin D-1 (CCND1), and ITG-β1. In the positive control after the osmotic stress the HCE surface damage was visible at the ultrastructural level with loss of cell-cell interconnections, intercellular matrix destruction, and TEER reduction. After 24 h of treatment with T-LysYal, HCE showed a significant improvement of the ultrastructural morphological organization and increased expression of ITG-β1 at the tissue level when compared to positive and control series. A significant increase of mRNA expression for ITG-β1 and CCND1 was shown in the HA-treated cells compared to T-LysYal. TEER measurement showed a significant reduction in all groups after 16 h without modifications after the treatment period. This study has shown the possibility of a new class of agents denominated ocular surface modulators to restore corneal cells damaged by dry eye conditions. Further in vivo studies are certainly necessary to confirm these results.

  3. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.

    Science.gov (United States)

    Zeyer, Karina A; Reinhardt, Dieter P

    2015-01-01

    Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB) domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular and organismal levels. Representative point mutations associated with Marfan syndrome in affected individuals have been introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a structural and functional level. Mutations which impair folding of cbEGF domains can affect protein trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome. Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights into the pathogenic molecular mechanisms exerted by mutated fibrillin-1. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. EFFECT OF ULTRAVIOLET B RADIATION ON ACTIVATOR PROTEIN 1 CONSTITUENT PROTEINS AND MODULATION BY DIETARY ENERGY RESTRICTION IN SKH-1 MOUSE SKIN

    Science.gov (United States)

    Hopper, Brian D.; Przybyszewski, Joseph; Chen, Haw-Wen; Hammer, Kimberly D.P.; Birt, Diane F.

    2009-01-01

    The study examined the timing of modulation of activator protein 1(AP-1):DNA binding and production of AP-1 constituent proteins by ultraviolet B (UVB) radiation and effect of dietary energy restriction [DER, 40% calorie reduction from fat and carbohydrate compared to control ad-libitum (AL) diet] in SKH-1 mouse epidermis. AP-1:DNA binding by electromobility shift assay (EMSA) was increased in a biphasic manner after treatment with a tumor promoting suberythemal dose (750mJ/cm2) of UVB light (311-313nm) with peaks at 3 and 18 hours post irradiation. DER overall reduced AP-1:DNA binding in mock-treated and UVB treated skin at 3 and 18 hours after UVB treatment. The timing of modulation of production of AP-1 constituent proteins by western blot analysis was examined at 0hr (mock treatment), 3hr, 9hr, 18hr, and 24hr. We found that c-jun (9 hr), jun-B (9 and 18hrs), phosphorylated c-jun (3hr), and fra-1 (18hr) protein levels were increased after UVB treatment compared to mock controls. In a follow-up diet experiment, animals were placed on DER or AL diet for 10-12 weeks and treated with UVB as before. DER was found to completely block the UVB induced increase in phosphorylated c-jun protein levels and decrease in fra-2 protein levels at 18hr. In addition, DER enhanced UVB-induced increase in jun-B levels and lowered basal levels of c-fos seen 18 hours after UVB. These data suggest that DER may be able to assist in the prevention of UVB induced skin carcinogenesis by modulating AP-1:DNA binding and AP-1 constituent protein levels. PMID:19263438

  5. Schwangerschafts Protein 1 (SP1) adds little to the age-related detection of fetal Down syndrome in the first trimester of pregnancy

    NARCIS (Netherlands)

    Kornman, LH; Morssink, LP; Ten Hoor, KA; De Wolf, BTHM; Kloosterman, MD; Beekhuis, [No Value; Mantingh, A

    1998-01-01

    Schwangerschafts Protein 1 (SP1), being a placental protein appearing in the maternal circulation early in pregnancy, has been investigated as a potential marker for Down syndrome in the first trimester. Our study compared SP1 levels in 15 pregnancies with a Down syndrome fetus and 97 matched

  6. Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation[OPEN

    Science.gov (United States)

    2015-01-01

    The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especially SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets. PMID:26362606

  7. Spinal translocator protein (TSPO) modulates pain behavior in rats with CFA-induced monoarthritis.

    Science.gov (United States)

    Hernstadt, Hayley; Wang, Shuxing; Lim, Grewo; Mao, Jianren

    2009-08-25

    Translocator protein 18 kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund's Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on Days 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral laminae I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Days 7 and 14. Moreover, TSPO was colocalized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain.

  8. γ-Secretase Modulators and APH1 Isoforms Modulate γ-Secretase Cleavage but Not Position of ε-Cleavage of the Amyloid Precursor Protein (APP.

    Directory of Open Access Journals (Sweden)

    Christian B Lessard

    Full Text Available The relative increase in Aβ42 peptides from familial Alzheimer disease (FAD linked APP and PSEN mutations can be related to changes in both ε-cleavage site utilization and subsequent step-wise cleavage. Cleavage at the ε-site releases the amyloid precursor protein (APP intracellular domain (AICD, and perturbations in the position of ε-cleavage are closely associated with changes in the profile of amyloid β-protein (Aβ species that are produced and secreted. The mechanisms by which γ-secretase modulators (GSMs or FAD mutations affect the various γ-secretase cleavages to alter the generation of Aβ peptides have not been fully elucidated. Recent studies suggested that GSMs do not modulate ε-cleavage of APP, but the data were derived principally from recombinant truncated epitope tagged APP substrate. Here, using full length APP from transfected cells, we investigated whether GSMs modify the ε-cleavage of APP under more native conditions. Our results confirmed the previous findings that ε-cleavage is insensitive to GSMs. In addition, fenofibrate, an inverse GSM (iGSM, did not alter the position or kinetics of ε-cleavage position in vitro. APH1A and APH1B, a subunit of the γ-secretase complex, also modulated Aβ42/Aβ40 ratio without any alterations in ε-cleavage, a result in contrast to what has been observed with PS1 and APP FAD mutations. Consequently, GSMs and APH1 appear to modulate γ-secretase activity and Aβ42 generation by altering processivity but not ε-cleavage site utilization.

  9. Erythropoietin modulates the structure of bone morphogenetic protein 2-engineered cranial bone.

    Science.gov (United States)

    Sun, Hongli; Jung, Younghun; Shiozawa, Yusuke; Taichman, Russell S; Krebsbach, Paul H

    2012-10-01

    The ideally engineered bone should have similar structural and functional properties to the native tissue. Although structural integrity is critical for functional bone regeneration, we know less about modulating the structural properties of the engineered bone elicited by bone morphogenetic protein (BMP) than efficacy and safety. Erythropoietin (Epo), a primary erythropoietic hormone, has been used to augment blood transfusion in orthopedic surgery. However, the effects of Epo on bone regeneration are not well known. Here, we determined the role of Epo in BMP2-induced bone regeneration using a cranial defect model. Epo administration improved the quality of BMP2-induced bone and more closely resembled natural cranial bone with a higher bone volume (BV) fraction and lower marrow fraction when compared with BMP2 treatment alone. Epo increased red blood cells (RBCs) in peripheral blood and also increased hematopoietic and mesenchymal stem cell (MSC) populations in bone marrow. Consistent with our previous work, Epo increased osteoclastogenesis both in vitro and in vivo. Results from a metatarsal organ culture assay suggested that Epo-promoted osteoclastogenesis contributed to angiogenesis because angiogenesis was blunted when osteoclastogenesis was blocked by alendronate (ALN) or osteoprotegerin (OPG). Earlier calcification of BMP2-induced temporary chondroid tissue was observed in the Epo+BMP group compared to BMP2 alone. We conclude that Epo significantly enhanced the outcomes of BMP2-induced cranial bone regeneration in part through its actions on osteoclastogenesis and angiogenesis.

  10. Modulator of Apoptosis 1: A Highly Regulated RASSF1A-Interacting BH3-Like Protein.

    Science.gov (United States)

    Law, Jennifer; Yu, Victor C; Baksh, Shairaz

    2012-01-01

    Modulator of apoptosis 1 (MOAP-1) is a BH3-like protein that plays key roles in both the intrinsic and extrinsic modes of cell death or apoptosis. MOAP-1 is part of the Ras association domain family 1A (RASSF1A)/MOAP-1 pro-apoptotic extrinsic signaling pathway that regulates apoptosis by utilizing death receptors such as tumor necrosis factor α (TNFα) or TNF-related apoptosis-inducing ligand (TRAIL) to inhibit abnormal growth. RASSF1A is a bona fide tumor suppressor gene that is epigenetically silenced by promoter-specific methylation in numerous human cancers. MOAP-1 is a downstream effector of RASSF1A that promotes Bax activation and cell death and is highly regulated during apoptosis. We speculate that MOAP-1 and RASSF1A are important elements of an "apoptotic checkpoint" that directly influences the outcome of cell death. The failure to regulate this pro-apoptotic pathway may result in the appearance of cancer and possibly other disorders. Although loss of RASSF1A expression is frequently observed in human cancers, it is currently unknown if MOAP-1 expression may also be affected during carcinogenesis to result in uncontrolled malignant growth. In this article, we will summarize what is known about the biological role(s) of MOAP-1 and how it functions as a downstream effector to RASSF1A.

  11. Alzheimer's associated β-amyloid protein inhibits influenza A virus and modulates viral interactions with phagocytes.

    Directory of Open Access Journals (Sweden)

    Mitchell R White

    Full Text Available Accumulation of β-Amyloid (βA is a key pathogenetic factor in Alzheimer's disease; however, the normal function of βA is unknown. Recent studies have shown that βA can inhibit growth of bacteria and fungi. In this paper we show that βA also inhibits replication of seasonal and pandemic strains of H3N2 and H1N1 influenza A virus (IAV in vitro. The 42 amino acid fragment of βA (βA42 had greater activity than the 40 amino acid fragment. Direct incubation of the virus with βA42 was needed to achieve optimal inhibition. Using quantitative PCR assays βA42 was shown to reduce viral uptake by epithelial cells after 45 minutes and to reduce supernatant virus at 24 hours post infection. βA42 caused aggregation of IAV particles as detected by light transmission assays and electron and confocal microscopy. βA42 did not stimulate neutrophil H2O2 production or extracellular trap formation on its own, but it increased both responses stimulated by IAV. In addition, βA42 increased uptake of IAV by neutrophils. βA42 reduced viral protein synthesis in monocytes and reduced IAV-induced interleukin-6 production by these cells. Hence, we demonstrate for the first time that βA has antiviral activity and modulates viral interactions with phagocytes.

  12. Engineer Medium and Feed for Modulating N-Glycosylation of Recombinant Protein Production in CHO Cell Culture.

    Science.gov (United States)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell. In this chapter, we will focus on how to carry out experiments for N-glycosylation modulation through medium and feed optimization. The workflow and typical methods involved in the experiment process will be presented.

  13. Uncovering packaging features of co-regulated modules based on human protein interaction and transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    He Weiming

    2010-07-01

    Full Text Available Abstract Background Network co-regulated modules are believed to have the functionality of packaging multiple biological entities, and can thus be assumed to coordinate many biological functions in their network neighbouring regions. Results Here, we weighted edges of a human protein interaction network and a transcriptional regulatory network to construct an integrated network, and introduce a probabilistic model and a bipartite graph framework to exploit human co-regulated modules and uncover their specific features in packaging different biological entities (genes, protein complexes or metabolic pathways. Finally, we identified 96 human co-regulated modules based on this method, and evaluate its effectiveness by comparing it with four other methods. Conclusions Dysfunctions in co-regulated interactions often occur in the development of cancer. Therefore, we focussed on an example co-regulated module and found that it could integrate a number of cancer-related genes. This was extended to causal dysfunctions of some complexes maintained by several physically interacting proteins, thus coordinating several metabolic pathways that directly underlie cancer.

  14. Circulating Protein Carbonyls, Antioxidant Enzymes and Related Trace Minerals among Preterms with Respiratory Distress Syndrome.

    Science.gov (United States)

    Ahmed, Ahmed El-Abd; Abd-Elmawgood, Eman Ahmed; Hassan, Mohammed H

    2017-07-01

    Information about oxidative stress in preterms with Respiratory Distress Syndrome (RDS) is defective, so various researches in this area are required, which may open new roads in understanding the pathogenesis of the disease, hence provide additional helpful therapeutic approaches. To assess and compare the plasma level of protein carbonyls as a marker for oxidant status and the antioxidant enzymes; Superoxide Dismutase (SOD) and Glutathione Peroxidase (GPx) and the related trace minerals in the form of Copper (Cu), Zinc (Zn) and Selenium (Se) as markers for antioxidant status, in preterms with and without RDS. A hospital-based case-control study was conducted on fifty-seven preterm neonates (37 preterms with RDS and 20 preterms without RDS) admitted to neonatal intensive care unit of Qena University Hospitals after approval of the University Hospital Ethical Committee. Plasma protein carbonyls assay was done using commercially available ELISA assay kit. Plasma Cu, Zn, Se, erythrocyte SOD and GPx activities assays were done using commercially available colorimetric assay kits. Significant higher plasma levels of protein carbonyls and oxidant/antioxidants ratio (protein carbonyls/{SOD+GPx}) with significant lower plasma levels of Zn, Cu, Se, erythrocyte SOD and GPx activities were found in the preterms with RDS when compared with the preterms without RDS (p<0.001 for all measured markers for both groups). In terms of birth weights and gestational ages, they were negatively correlated with both plasma protein carbonyls and oxidant/antioxidants ratio and positively correlated with plasma copper, zinc, selenium, erythrocyte SOD and GPx activities in a statistically significant manner. Non-significant correlations were found between the measured oxidative stress markers and the severity of RDS. Oxidative stress may have a contributory role in the development of RDS among preterms. Lower birth weight and prematurity may increase the susceptibity to oxidative stress among

  15. Modulating thrombotic diathesis in hereditary thrombophilia and antiphospholipid antibody syndrome: a role for circulating microparticles?

    Science.gov (United States)

    Campello, Elena; Radu, Claudia M; Spiezia, Luca; Simioni, Paolo

    2017-06-27

    Over the past decades, there have been great advances in the understanding of the pathogenesis of venous thromboembolism (VTE) in patients with inherited and acquired thrombophilia [mainly antiphospholipid antibody syndrome (APS)]. However, a number of questions remain unanswered. Prognostic markers capable of estimating the individual VTE risk would be of great use. Microparticles (MPs) are sub-micron membrane vesicles constitutively released from the surface of cells after cellular activation and apoptosis. The effects of MPs on thrombogenesis include the exposure of phopshatidylserine and the expression of tissue factor and MPs have been described in clinical studies as possible diagnostic and prognostic biomarkers for VTE. This review will provide a novel perspective on the current knowledge and research trends on the possible role of MPs in hereditary thrombophilia and APS. Basically, the published data show that circulating MPs may contribute to the development of VTE in thrombophilic carriers, both in mild and severe states. Moreover, the presence of endothelial-MPs and platelet-MPs has been described in antiphospholipid syndrome and seems to be directly linked to antiphospholipid antibodies and not to other underlying autoimmune disorders or the thrombotic event itself. In conclusion, circulating MPs may constitute an epiphenomenon of thrombophilia itself and could be up-regulated in acute particular conditions, promoting a global prothrombotic state up to the threshold of the clinical relevant thrombotic event.

  16. Modulation of autonomic activity in neurological conditions: Epilepsy and Tourette syndrome

    Directory of Open Access Journals (Sweden)

    Yoko eNagai

    2015-09-01

    Full Text Available This manuscript considers the central but neglected role of the autonomic nervous system in the expression and control of seizures in Epilepsy and tics in Tourette Syndrome (TS. In epilepsy, consideration of autonomic involvement is typically confined to differential diagnoses (e.g. syncope, or in relation to Sudden Unexpected Death in Epilepsy (SUDEP. Investigation is more limited in Tourette Syndrome. The role of the autonomic nervous system in the generation and prevention of epileptic seizures is largely overlooked. Emotional stimuli such as anxiety and stress are potent causes of seizures and tic activity in TS, respectively. This manuscript will describe a possible neural mechanism by which afferent autonomic projections linked to cognition and behaviour influence central nervous system thalamo-cortical regulation, which appears to be an important means for controlling both seizure and tic activity. It also summarizes the link between the integrity of the default mode network and autonomic regulation in patients with epilepsy as well as the link between impaired motor control and autonomic regulation in patients with TS. Two neurological conditions; epilepsy and TS were chosen, as seizures and tics represent parameters that can be easily measured to investigate influences of autonomic functions. The EDA biofeedback approach is anticipated

  17. Frontotemporal dementia with trans-activation response DNA-binding protein 43 presenting with catatonic syndrome.

    Science.gov (United States)

    Watanabe, Ryohei; Kawakami, Ito; Onaya, Mitsumoto; Higashi, Shinji; Arai, Nobutaka; Akiyama, Haruhiko; Hasegawa, Masato; Arai, Tetsuaki

    2017-11-07

    Catatonia is a clinical syndrome characterized by symptoms such as immobility, mutism, stupor, stereotypy, echophenomena, catalepsy, automatic obedience, posturing, negativism, gegenhalten and ambitendency. This syndrome occurs mostly in mood disorder and schizophrenic patients, and is related to neuronal dysfunction involving the frontal lobe. Some cases of frontotemporal dementia (FTD) with catatonia have been reported, but these cases were not examined by autopsy. Here, we report on a FTD case which showed catatonia after the first episode of brief psychotic disorder. At the age of 58, the patient had a sudden onset of disorganized behavior and meaningless speech. Psychotropic drugs were effective for catatonic symptoms. However, after remission apathy, hyperorality, socially inappropriate behavior, hoarding, and an instinctive grasp reaction appeared and persisted. Brain MRI showed significant atrophy of the bilateral fronto-temporal lobes. A neuropathological examination revealed extensive trans-activation response DNA-binding protein 43 (TDP-43) positive neurocytoplasmic inclusions and dystrophic neurites in the brain, including the cerebral cortex, basal ganglia, and brainstem. Pathological diagnosis was frontotemporal lobar degeneration (FTLD) with TDP-43 (FTLD-TDP) type C, which was also confirmed by the band pattern of C-terminal fragments of TDP-43 on western blotting of sarkosyl-insoluble fractions extracted from the frozen brain. Dysfunction of the thalamus, globus pallidus, supplementary motor area, amygdala and cingulate cortex have been said to be related to the catatonic syndrome. In this case, these areas were affected, showing abnormal TDP-43-positive structures. Further studies are expected to confirm further clinical - pathological correlations to FTLD. © 2017 Japanese Society of Neuropathology.

  18. CYFIP family proteins between autism and intellectual disability: links with Fragile X syndrome

    Directory of Open Access Journals (Sweden)

    Barbara eBardoni

    2014-03-01

    Full Text Available Intellectual disability (ID and autism spectrum disorders (ADS have in common alterations in some brain circuits and brain abnormalities, such as synaptic transmission and dendritic spines morphology. Recent studies have indicated a differential expression for specific categories of genes as a cause for both types of disease, while an increasing number of genes is recognized to produce both disorders. An example is the Fragile X Mental retardation gene, FMR1, whose silencing causes the Fragile X syndrome, the most common form of intellectual disability and autism, also characterized by physical hallmarks. FMRP, the protein encoded by FMR1, is an RNA-binding protein with an important role in translational control. Among the interactors of FMRP, CYFIP1/2 proteins are good candidates for intellectual disability and autism, on the bases of their genetic implication and functional properties, even if the precise functional significance of the CYFIP/FMRP interaction is not understood yet. CYFIP1 and CYFIP2 represent a link between Rac1, the Wave complex and FMRP, favoring the cross talk between actin polymerization and translational control

  19. Changes in adenosine 5'-monophosphate-activated protein kinase as a mechanism of visceral obesity in Cushing's syndrome.

    Science.gov (United States)

    Kola, Blerina; Christ-Crain, Mirjam; Lolli, Francesca; Arnaldi, Giorgio; Giacchetti, Gilberta; Boscaro, Marco; Grossman, Ashley B; Korbonits, Márta

    2008-12-01

    Features of the metabolic syndrome such as central obesity with insulin resistance and dyslipidemia are typical signs of Cushing's syndrome and common side effects of prolonged glucocorticoid treatment. AMP-activated protein kinase (AMPK), a key regulatory enzyme of lipid and carbohydrate metabolism as well as appetite, is involved in the development of the deleterious metabolic effects of excess glucocorticoids, but no data are available in humans. In the current study, we demonstrate the effect of high glucocorticoid levels on AMPK activity of human adipose tissue samples from patients with Cushing's syndrome. AMPK activity and mRNA expression of genes involved in lipid metabolism were assessed in visceral adipose tissue removed at abdominal surgery of 11 patients with Cushing's syndrome, nine sex-, age-, and weight-matched patients with adrenal incidentalomas, and in visceral adipose tissue from four patients with non-endocrine-related abdominal surgery. The patients with Cushing's syndrome exhibited a 70% lower AMPK activity in visceral adipose tissue as compared with both incidentalomas and control patients (P = 0.007 and P Cushing's syndrome. AMPK activity was inversely correlated with 0900 h serum cortisol and with urinary free cortisol. Our data suggest that glucocorticoids inhibit AMPK activity in adipose tissue, suggesting a novel mechanism to explain the deposition of visceral adipose tissue and the consequent central obesity observed in patients with iatrogenic or endogenous Cushing's syndrome.

  20. Synaptosomal-associated protein 25 (Snap-25) gene Polymorphism frequency in fibromyalgia syndrome and relationship with clinical symptoms

    OpenAIRE

    Balkarli, Ayse; Sengül, Cem; Tepeli, Emre; Balkarli, Huseyin; Cobankara, Veli

    2014-01-01

    Background SNAP-25 protein is contributory to plasma membrane and synaptic vesicle fusions that are critical points in neurotransmission. SNAP-25 gene is associated with behavioral symptoms, personality and psychological disorders. In addition, SNAP-25 protein can be related to different neurotransmitter functions due to its association with vesicle membrane transition and fusion. This is important because neurologic, cognitive, and psychologic disorders in fibromyalgia syndrome (FMS) can be ...

  1. Biogenesis of non-structural protein 1 (nsp1) and nsp1-mediated type I interferon modulation in arteriviruses

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mingyuan; Kim, Chi Yong [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802 (United States); Rowland, Raymond R.R.; Fang, Ying [Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506 (United States); Kim, Daewoo [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802 (United States); Yoo, Dongwan, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802 (United States)

    2014-06-15

    Type I interferons (IFNs-α/β) play a key role for the antiviral state of host, and the porcine arterivirus; porcine reproductive and respiratory syndrome virus (PRRSV), has been shown to down-regulate the production of IFNs during infection. Non-structural protein (nsp) 1 of PRRSV has been identified as a viral IFN antagonist, and the nsp1α subunit of nsp1 has been shown to degrade the CREB-binding protein (CBP) and to inhibit the formation of enhanceosome thus resulting in the suppression of IFN production. The study was expanded to other member viruses in the family Arteriviridae: equine arteritis virus (EAV), murine lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV). While PRRSV–nsp1 and LDV–nsp1 were auto-cleaved to produce the nsp1α and nsp1β subunits, EAV–nsp1 remained uncleaved. SHFV–nsp1 was initially predicted to be cleaved to generate three subunits (nsp1α, nsp1β, and nsp1γ), but only two subunits were generated as SHFV–nsp1αβ and SHFV–nsp1γ. The papain-like cysteine protease (PLP) 1α motif in nsp1α remained inactive for SHFV, and only the PLP1β motif of nsp1β was functional to generate SHFV–nsp1γ subunit. All subunits of arterivirus nsp1 were localized in the both nucleus and cytoplasm, but PRRSV–nsp1β, LDV–nsp1β, EAV–nsp1, and SHFV–nsp1γ were predominantly found in the nucleus. All subunits of arterivirus nsp1 contained the IFN suppressive activity and inhibited both interferon regulatory factor 3 (IRF3) and NF-κB mediated IFN promoter activities. Similar to PRRSV–nsp1α, CBP degradation was evident in cells expressing LDV–nsp1α and SHFV–nsp1γ, but no such degradation was observed for EAV–nsp1. Regardless of CBP degradation, all subunits of arterivirus nsp1 suppressed the IFN-sensitive response element (ISRE)-promoter activities. Our data show that the nsp1-mediated IFN modulation is a common strategy for all arteriviruses but their mechanism of action may differ

  2. Frank-ter Haar syndrome protein Tks4 regulates epidermal growth factor-dependent cell migration.

    Science.gov (United States)

    Bögel, Gábor; Gujdár, Annamária; Geiszt, Miklós; Lányi, Árpád; Fekete, Anna; Sipeki, Szabolcs; Downward, Julian; Buday, László

    2012-09-07

    Mutations in the SH3PXD2B gene coding for the Tks4 protein are responsible for the autosomal recessive Frank-ter Haar syndrome. Tks4, a substrate of Src tyrosine kinase, is implicated in the regulation of podosome formation. Here, we report a novel role for Tks4 in the EGF signaling pathway. In EGF-treated cells, Tks4 is tyrosine-phosphorylated and associated with the activated EGF receptor. This association is not direct but requires the presence of Src tyrosine kinase. In addition, treatment of cells with LY294002, an inhibitor of PI 3-kinase, or mutations of the PX domain reduces tyrosine phosphorylation and membrane translocation of Tks4. Furthermore, a PX domain mutant (R43W) Tks4 carrying a reported point mutation in a Frank-ter Haar syndrome patient showed aberrant intracellular expression and reduced phosphoinositide binding. Finally, silencing of Tks4 was shown to markedly inhibit HeLa cell migration in a Boyden chamber assay in response to EGF or serum. Our results therefore reveal a new function for Tks4 in the regulation of growth factor-dependent cell migration.

  3. Fragile X Mental Retardation Syndrome: Structure of the KH1-KH2 Domains of Fragile X Mental Retardation Protein

    Energy Technology Data Exchange (ETDEWEB)

    Valverde,R.; Poznyakova, I.; Kajander, T.; Venkatraman, J.; Regan, L.

    2007-01-01

    Fragile X syndrome is the most common form of inherited mental retardation in humans, with an estimated prevalence of about 1 in 4000 males. Although several observations indicate that the absence of functional Fragile X Mental Retardation Protein (FMRP) is the underlying basis of Fragile X syndrome, the structure and function of FMRP are currently unknown. Here, we present an X-ray crystal structure of the tandem KH domains of human FMRP, which reveals the relative orientation of the KH1 and KH2 domains and the location of residue Ile304, whose mutation to Asn is associated with a particularly severe incidence of Fragile X syndrome. We show that the Ile304Asn mutation both perturbs the structure and destabilizes the protein.

  4. In vivo and in vitro attenuation of naloxone-precipitated experimental opioid withdrawal syndrome by insulin and selective KATP channel modulator.

    Science.gov (United States)

    Singh, Prabhat; Sharma, Bhupesh; Gupta, Surbhi; Sharma, B M

    2015-01-01

    Opiate exposure for longer duration develops state of dependence in humans and animals, which is revealed by signs and symptoms of withdrawal precipitated by opioid receptor antagonists. The sudden withdrawal of opioids produces a withdrawal syndrome in opioid-dependent subjects. Insulin and ATP-sensitive potassium (KATP) channel-mediated glucose homeostasis have been shown to modulate morphine withdrawal. Present study has been structured to investigate the role of insulin and pharmacological modulator of KATP channel (gliclazide) in experimental morphine withdrawal syndrome, both invivo and invitro. In this study, naloxone-precipitated morphine withdrawal syndrome in mice (invivo) as well as in rat ileum (invitro) were utilized to assess opioid withdrawal phenomenon. Morphine withdrawal syndromes like jumping and rearing frequency, forepaw licking, circling, fore paw tremor, wet dog shake, sneezing, overall morphine withdrawal severity (OMWS), serum glucose, brain malondialdehyde (MDA), glutathione (GSH), nitrite/nitrate, and calcium (Ca(+2)) were assessed. Naloxone has significantly increased morphine withdrawal syndrome, both invivo and invitro. Insulin and gliclazide have significantly attenuated, naloxone induced behavioral changes like jumping and rearing frequency, forepaw licking, wet dog shake, sneezing, straightening, circling, OMWS, and various biochemical impairments such as serum glucose, brain MDA, GSH, nitrite/nitrate, and Ca(+2) in morphine-dependent animals (invivo). In vitro, insulin and gliclazide have significantly reduced naloxone-induced contraction in morphine-withdrawn rat ileum preparation. Insulin and gliclazide (KATP channel blocker) have attenuated naloxone-precipitated morphine withdrawal syndrome, both invivo and invitro. Thus, insulin and KATP channel modulation may provide new avenues for research in morphine withdrawal.

  5. Markedly Increased High-Mobility Group Box 1 Protein in a Patient with Small-for-Size Syndrome

    Directory of Open Access Journals (Sweden)

    Darren G. Craig

    2014-01-01

    Full Text Available Background. Small-for-size syndrome (SFSS occurs in the presence of insufficient liver mass to maintain normal function after liver transplantation. Murine mortality following 85% hepatectomy can be reduced by the use of soluble receptor for advanced glycation end products (sRAGE to scavenge damage-associated molecular patterns and prevent their engagement with membrane-bound RAGE. Aims. To explore serum levels of sRAGE, high-mobility group box-1 (HMGB1 protein, and other soluble inflammatory mediators in a fatal case of SFSS. Methods. Serum levels of HMGB1, sRAGE, IL-18, and other inflammatory mediators were measured by ELISA in a case of SFSS, and the results were compared with 8 patients with paracetamol-induced acute liver failure (ALF and 6 healthy controls (HC. Results. HMGB1 levels were markedly higher in the SFSS patient (92.1 ng/mL compared with the ALF patients (median (IQR 11.4 (3.7–14.8 ng/mL and HC (1.42 (1.38–1.56 ng/mL. In contrast, sRAGE levels were lower in the SFSS patient (1.88 ng/mL compared with the ALF patients (3.53 (2.66–12.37 ng/mL and were similar to HC levels (1.40 (1.23–1.89 ng/mL. Conclusion. These results suggest an imbalance between pro- and anti-inflammatory innate immune pathways in SFSS. Modulation of the HMGB1-RAGE axis may represent a future therapeutic avenue in this condition.

  6. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes

    DEFF Research Database (Denmark)

    Schubert, J.; Siekierska, A.; Langlois, M.

    2014-01-01

    Febrile seizures affect 2-4% of all children(1) and have a strong genetic component(2). Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2)(3-5) have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding...... syntaxin-1B(6), that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees(7,8) identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations....... Wild-type human syntaxin-1B but not a mutated protein rescued the effects of stx1b knockdown in zebrafish. Our results thus implicate STX1B and the presynaptic release machinery in fever-associated epilepsy syndromes....

  7. Protein-energy malnutrition is frequent and precocious in children with cri du chat syndrome.

    Science.gov (United States)

    Lefranc, Violaine; de Luca, Arnaud; Hankard, Régis

    2016-05-01

    Protein-energy malnutrition (PEM) is poorly reported in cri du chat syndrome (CDCS) (OMIM #123450), a genetic disease that causes developmental delay and global growth retardation. The objective was to determine the nutritional status at different ages in children with CDCS and factors associated with PEM. A questionnaire focused on growth and nutritional care was sent to 190 families. Among 36 analyzable questionnaires, growth and nutritional indices compatible with PEM occurred in 47% of patients: 19% before 6 months of age, 24% between 6-12 months and 34% after 12 months. Eight patients received enteral feeding. Speech therapy for swallowing education was performed more often in malnourished children (63% vs. 22%, P < 0.02). PEM is frequent and occurs early in this disease, requiring closed nutritional monitoring. © 2016 Wiley Periodicals, Inc.

  8. Dynamic Evolution of Nitric Oxide Detoxifying Flavohemoglobins, a Family of Single-Protein Metabolic Modules in Bacteria and Eukaryotes.

    Science.gov (United States)

    Wisecaver, Jennifer H; Alexander, William G; King, Sean B; Hittinger, Chris Todd; Rokas, Antonis

    2016-08-01

    Due to their functional independence, proteins that comprise standalone metabolic units, which we name single-protein metabolic modules, may be particularly prone to gene duplication (GD) and horizontal gene transfer (HGT). Flavohemoglobins (flavoHbs) are prime examples of single-protein metabolic modules, detoxifying nitric oxide (NO), a ubiquitous toxin whose antimicrobial properties many life forms exploit, to nitrate, a common source of nitrogen for organisms. FlavoHbs appear widespread in bacteria and have been identified in a handful of microbial eukaryotes, but how the distribution of this ecologically and biomedically important protein family evolved remains unknown. Reconstruction of the evolutionary history of 3,318 flavoHb protein sequences covering the family's known diversity showed evidence of recurrent HGT at multiple evolutionary scales including intrabacterial HGT, as well as HGT from bacteria to eukaryotes. One of the most striking examples of HGT is the acquisition of a flavoHb by the dandruff- and eczema-causing fungus Malassezia from Corynebacterium Actinobacteria, a transfer that growth experiments show is capable of mediating NO resistance in fungi. Other flavoHbs arose via GD; for example, many filamentous fungi possess two flavoHbs that are differentially targeted to the cytosol and mitochondria, likely conferring protection against external and internal sources of NO, respectively. Because single-protein metabolic modules such as flavoHb function independently, readily undergo GD and HGT, and are frequently involved in organismal defense and competition, we suggest that they represent "plug-and-play" proteins for ecological arms races. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Dreng med diarré og svær dehydrering havde food protein-induced enterocolitis syndrome

    DEFF Research Database (Denmark)

    Henriksen, Pernille; Børresen, Malene Landbo; Dahl, Kathrin

    2016-01-01

    Food protein-induced enterocolitis syndrome (FPIES) is a rare non-IgE mediated condition. Symptoms of acute FPIES include vomiting, diarrhoea and dehydration. Symptoms are often misread as acute abdomen or sepsis. The condition can be fatal. There are no biomarkers for FPIES, and skin prick test...... confronted with the very ill, dehydrated infant....

  10. Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module

    DEFF Research Database (Denmark)

    Salcini, A E; Confalonieri, S; Doria, M

    1997-01-01

    EH is a recently identified protein-protein interaction domain found in the signal transducers Eps15 and Eps15R and several other proteins of yeast nematode. We show that EH domains from Eps15 and Eps15R bind in vitro to peptides containing an asparagine-proline-phenylalanine (NPF) motif. Direct...

  11. Recombinant FAdV-4 fiber-2 protein protects chickens against hepatitis-hydropericardium syndrome (HHS).

    Science.gov (United States)

    Schachner, Anna; Marek, Ana; Jaskulska, Barbara; Bilic, Ivana; Hess, Michael

    2014-02-19

    Virulent fowl adenovirus (FAdV) serotype 4 strains are the etiological agents of hepatitis-hydropericardium syndrome (HHS), a highly infectious disease in chickens with severe economic impact. In the present study, three different FAdV-4 derived capsid proteins, fiber-1, fiber-2, and hexon loop-1, were expressed in a baculovirus system and tested for their capacity to induce protection in chickens. Purified recombinant proteins were administered to day-old specific pathogen-free (SPF) chickens allocated in three separate groups and challenged with virulent FAdV-4 at 21 days of life. Two additional groups served as controls, a challenge control group with mock-vaccinated but infected birds and a negative control group with PBS injection substituting both vaccination and challenge. The fiber-2 vaccinated group displayed high resistance against the adverse effects of the challenge with only one dead bird out of 28, as compared to the challenge control group where the infection caused 78% mortality. A moderate protective effect resulting in 38% mortality was observed for fiber-1, whereas the hexon loop-1 vaccinated group was not effectively protected as manifested by 73% mortality. While a fiber-2 specific ELISA showed a gradual antibody increase after immunization of birds with the homologous protein, a commercial ELISA did not detect vaccination-induced antibodies in any of the groups but displayed a difference in challenge virus-directed response in protected and non-protected birds. Although immunoblotting confirmed the presence of specific antibodies in all vaccinated groups, the anti-protein sera did not exhibit neutralizing activity. Fecal excretion of challenge virus DNA was detected with a real-time PCR in the majority of tested birds until termination of the study independent of protection, indicating the prevention of clinical symptoms, but not infection, by vaccination. In conclusion, recombinant fiber-2 was identified as a protective immunogen and is

  12. Sleep/Wake Modulation of Polysomnographic Patterns has Prognostic Value in Pediatric Unresponsive Wakefulness Syndrome.

    Science.gov (United States)

    Molteni, Erika; Avantaggiato, Paolo; Formica, Francesca; Pastore, Valentina; Colombo, Katia; Galbiati, Sara; Arrigoni, Filippo; Strazzer, Sandra

    2016-08-15

    Sleep patterns of pediatric patients in unresponsive wakefulness syndrome (UWS) have been poorly investigated, and the prognostic potential of polysomnography (PSG) in these subjects is still uncertain. The goal of the study was to identify quantitative PSG indices to be applied as possible prognostic markers in pediatric UWS. We performed PSG in 27 children and adolescents with UWS due to acquired brain damage in the subacute phase. Patients underwent neurological examination and clinical assessment with standardized scales. Outcome was assessed after 36 mo. PSG tracks were scored for sleep stages and digitally filtered. The spectral difference between sleep and wake was computed, as the percent difference at specific spectral frequencies. We computed (1) the ratio between percent power in the delta and alpha frequency bands, (2) the ratio between alpha and theta frequency bands, and (3) the power ratio index, during wake and sleep, as proposed in previous literature. The predictive role of several clinical and PSG measures was tested by logistic regression. Correlation was found between the differential measures of electroencephalographic activity during sleep and wake in several frequency bands and the clinical scales (Glasgow Outcome Score, Level of Cognitive Functioning Assessment Scale, and Disability Rating Scale) at follow-up; the Sleep Patterns for Pediatric Unresponsive Wakefulness Syndrome (SPPUWS) scores correlated with the differential measures, and allowed outcome prediction with 96.3% of accuracy. The differential measure of electroencephalographic activity during sleep and wake in the beta band and, more incisively, SPPUWS can help in determining the capability to recover from pediatric UWS well before the confirmation provided by suitable clinical scales. © 2016 American Academy of Sleep Medicine.

  13. CP-25 Alleviates Experimental Sjögren's Syndrome Features in NOD/Ltj Mice and Modulates T Lymphocyte Subsets.

    Science.gov (United States)

    Gu, Fang; Xu, Shixia; Zhang, Pengying; Chen, Xiaoyun; Wu, Yujing; Wang, Chun; Gao, Mei; Si, Min; Wang, Xinming; Heinrich, Korner; Wu, Huaxun; Wei, Wei

    2018-04-17

    Primary Sjögren's syndrome (pSS) is a chronic inflammatory autoimmune illness of the moisture-producing glands such as salivary glands that is characterized by various immune abnormalities. The aetiology of pSS remains unclear and there is no curative agent. In this study, we investigated the putative therapeutic effects on a NOD/Ltj mouse model of Sjögren's syndrome-like disorders of an ester derivative of paeoniflorin, Paeoniflorin-6'O-benzene (termed CP-25). Our study showed that CP-25 alleviated effectively clinical manifestations in NOD/Ltj mice resulting for example in increased salivary flow and reduced histopathological scores. Furthermore, CP-25 decreased lymphocyte viability in NOD/Ltj mice and attenuated the infiltration of Th1 cells and Th2 cells into the salivary glands of NOD/Ltj mice. In the spleen on NOD/Ltj mice, CP-25 skewed the ratio of Th17 and regulatory T cells towards regulatory T cells. After treatment, concentrations of anti-La/SSB and IgG antibodies were reduced and the titer of the inflammatory cytokines IFN-γ, IL-4, IL-6 and IL-17A in the serum on NOD/Ltj mice was alleviated. Thus, we define CP-25 as a novel compound that is a potent therapeutic agent for pSS by modulating T lymphocyte subsets. Future studies will validate the use of CP-25 as a therapeutic strategy for the treatment of pSS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Peanut protein structure, polyphenol content and immune response to peanut proteins in vivo are modulated by laccase.

    Science.gov (United States)

    Mihajlovic, L; Radosavljevic, J; Nordlund, E; Krstic, M; Bohn, T; Smit, J; Buchert, J; Cirkovic Velickovic, T

    2016-05-18

    Food texture can be improved by enzyme-mediated covalent cross-linking of different food components, such as proteins and carbohydrates. Cross-linking changes the biological and immunological properties of proteins and may change the sensitizing potential of food allergens. In this study we applied a microbial polyphenol oxidase, laccase, to cross-link peanut proteins. The size and morphology of the obtained cross-linked proteins were analyzed by electrophoresis and electron microscopy. Structural changes in proteins were analyzed by CD spectroscopy and by using specific antibodies to major peanut allergens. The bioavailability of peanut proteins was analyzed using a Caco-2 epithelial cell model. The in vivo sensitizing potential of laccase-treated peanut proteins was analyzed using a mouse model of food allergy. Finally, peanut polyphenols were analyzed by UHPLC-MS/MS, before and after the enzymatic reaction with laccase. Laccase treatment of peanut proteins yielded a covalently cross-linked material, with the modified tertiary structure of peanut proteins, improved bioavailability of Ara h 2 (by 70 fold, p polyphenol content and profile by HPLC-MS/MS revealed that laccase treatment depleted the peanut extract of polyphenol compounds leaving mostly isorhamnetin derivatives and procyanidin dimer B-type in detectable amounts. Treatment of complex food extracts rich in polyphenols with laccase results in both protein cross-linking and modification of polyphenol compounds. These extensively cross-linked proteins have unchanged potency to induce allergic sensitization in vivo, but certain immunomodulatory changes were observed.

  15. VP24 Is a Chitin-Binding Protein Involved in White Spot Syndrome Virus Infection

    Science.gov (United States)

    Li, Zaipeng; Han, Yali; Xu, Limei

    2015-01-01

    ABSTRACT Oral ingestion is the major route of infection for the white spot syndrome virus (WSSV). However, the mechanism by which virus particles in the digestive tract invade host cells is unknown. In the present study, we demonstrate that WSSV virions can bind to chitin through one of the major envelope proteins (VP24). Mutagenesis analysis indicated that amino acids (aa) 186 to 200 in the C terminus of VP24 were required for chitin binding. Moreover, the P-VP24186–200 peptide derived from the VP24 chitin binding region significantly inhibited the VP24-chitin interaction and the WSSV-chitin interaction, implying that VP24 participates in WSSV binding to chitin. Oral inoculation experiments showed that P-VP24186–200 treatment reduced the number of virus particles remaining in the digestive tract during the early stage of infection and greatly hindered WSSV proliferation in shrimp. These data indicate that binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection and provide new ideas for preventing WSSV infection in shrimp farms. IMPORTANCE In this study, we show that WSSV can bind to chitin through the envelope protein VP24. The chitin-binding domain of VP24 maps to amino acids 186 to 200 in the C terminus. Binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection. These findings not only extend our knowledge of WSSV infection but also provide new insights into strategies to prevent WSSV infection in shrimp farms. PMID:26512091

  16. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels

    Directory of Open Access Journals (Sweden)

    Takashi eMaejima

    2013-05-01

    Full Text Available Serotonergic neurons project to virtually all regions of the CNS and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing and reproductive success. Therefore serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo.

  17. Identification and characterization of the host protein DNAJC14 as a broadly active flavivirus replication modulator.

    Directory of Open Access Journals (Sweden)

    Zhigang Yi

    2011-01-01

    Full Text Available Viruses in the Flavivirus genus of the Flaviviridae family are arthropod-transmitted and contribute to staggering numbers of human infections and significant deaths annually across the globe. To identify cellular factors with antiviral activity against flaviviruses, we screened a cDNA library using an iterative approach. We identified a mammalian Hsp40 chaperone protein (DNAJC14 that when overexpressed was able to mediate protection from yellow fever virus (YFV-induced cell death. Further studies revealed that DNAJC14 inhibits YFV at the step of viral RNA replication. Since replication of bovine viral diarrhea virus (BVDV, a member of the related Pestivirus genus, is also known to be modulated by DNAJC14, we tested the effect of this host factor on diverse Flaviviridae family members. Flaviviruses, including the pathogenic Asibi strain of YFV, Kunjin, and tick-borne Langat virus, as well as a Hepacivirus, hepatitis C virus (HCV, all were inhibited by overexpression of DNAJC14. Mutagenesis showed that both the J-domain and the C-terminal domain, which mediates self-interaction, are required for anti-YFV activity. We found that DNAJC14 does not block YFV nor HCV NS2-3 cleavage, and using non-inhibitory mutants demonstrate that DNAJC14 is recruited to YFV replication complexes. Immunofluorescence analysis demonstrated that endogenous DNAJC14 rearranges during infection and is found in replication complexes identified by dsRNA staining. Interestingly, silencing of endogenous DNAJC14 results in impaired YFV replication suggesting a requirement for DNAJC14 in YFV replication complex assembly. Finally, the antiviral activity of overexpressed DNAJC14 occurs in a time- and dose-dependent manner. DNAJC14 overexpression may disrupt the proper stoichiometry resulting in inhibition, which can be overcome upon restoration of the optimal ratios due to the accumulation of viral nonstructural proteins. Our findings, together with previously published work

  18. The modulation of protein kinase C activity by membrane lipid bilayer structure.

    Science.gov (United States)

    Slater, S J; Kelly, M B; Taddeo, F J; Ho, C; Rubin, E; Stubbs, C D

    1994-02-18

    The hypothesis that protein kinase C (PKC) activity is sensitive to phospholipid head group interactions was tested using lipid bilayers of defined composition with PKC purified from rat brain. The head group interactions were modulated by varying phosphatidylcholine cis-unsaturation, vesicle curvature, and by the addition of phosphatidylethanolamine and cholesterol. With unilamellar vesicles (including 20 mol% brain phosphatidylserine), increased phosphatidylcholine unsaturation potentiated basal and phorbol ester stimulated PKC activity. By contrast, in the presence of phosphatidylethanolamine, the activity decreased with increasing phosphatidylcholine unsaturation. Weakening phospholipid head group interactions spaces the head group region and increases interstitial water, and this effect was assessed from its effect on the fluorescence intensity of the phospholipid-labeled fluorophore 1-palmitoyl-2-N-(4-nitrobenzo-2-oxa-1,3-diazole)aminohexanoylphosphat idylcholin e (C6-NBD-PC). When the PKC activities with vesicles of varying phosphatidylcholine unsaturation, with and without phosphatidylethanolamine, were plotted as a function of the fluorescence intensity of C6-NBD-PC-labeled vesicles, a biphasic profile was obtained, which had an optimum value of intensity, relating to head group spacing, that corresponded to a maximal enzyme activity. A similar biphasic curve was also found when PKC activities were plotted as a function of published bilayer intrinsic curvature x-ray diffraction data, a parameter closely related to head group spacing. By contrast, no simple relationship was evident between PKC activity and 1,6-diphenyl-1,3,5-hexatriene anisotropy, taken as a measure of lipid order or fluidity. Therefore, increasing the level of phosphatidylcholine unsaturation, phosphatidylethanolamine, or cholesterol either potentiates or attenuates PKC activity, dependent on whether the initial condition is above or below its optimum.

  19. Kaempferol modulates Angiopoietin-like protein 2 expression to lessen the mastitis in mice.

    Science.gov (United States)

    Xiao, Hong-Bo; Sui, Guo-Guang; Lu, Xiang-Yang; Sun, Zhi-Liang

    2017-11-22

    Mastitis is inflammation of a breast (or udder). Angiopoietin-like protein 2 (ANGPTL2) has been found as a key inflammatory mediator in mastitis. Purpose of this research was to investigate the mechanisms about repressing effect of kaempferol on mastitis. Forty mice were randomly divided into 4 groups (n = 10): C57BL/6J control mice, untreated murine mastitis, 10 mg/kg kaempferol treated murine mastitis (ip), and 30 mg/kg kaempferol treated murine mastitis (ip). Primary cultured mouse mammary epithelial cells (MMEC) were indiscriminately divided into seven groups including control group, 10 mmol/L vehicle of kaempferol group, 10 μmol/L kaempferol treated group, 20 μg/mL LPS treated group, 1 μmol/L kaempferol plus LPS treated group, 3 μmol/L kaempferol plus LPS treated group, and 10 μmol/L kaempferol plus LPS treated group. In murine mastitis, kaempferol (10 or 30 mg/kg) treatment prevented mastitis development, decreased myeloperoxidase (MPO) production, interleukin (IL)-6 level, tumour necrosis factor-α (TNF-α) concentration, and ANGPTL2 expression. In MMEC, kaempferol (1, 3, or 10 μM) reduced MPO production, TNF-α concentration, IL-6 level, and ANGPTL2 expression. The results in present study show that kaempferol modulates the expression of ANGPTL2 to lessen the mastitis in mice. Copyright © 2018 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  20. Pitavastatin Differentially Modulates MicroRNA-Associated Cholesterol Transport Proteins in Macrophages.

    Directory of Open Access Journals (Sweden)

    Haijun Zhang

    Full Text Available There is emerging evidence identifying microRNAs (miRNAs as mediators of statin-induced cholesterol efflux, notably through the ATP-binding cassette transporter A1 (ABCA1 in macrophages. The objective of this study was to assess the impact of an HMG-CoA reductase inhibitor, pitavastatin, on macrophage miRNAs in the presence and absence of oxidized-LDL, a hallmark of a pro-atherogenic milieu. Treatment of human THP-1 cells with pitavastatin prevented the oxLDL-mediated suppression of miR-33a, -33b and -758 mRNA in these cells, an effect which was not uniquely attributable to induction of SREBP2. Induction of ABCA1 mRNA and protein by oxLDL was inhibited (30% by pitavastatin, while oxLDL or pitavastatin alone significantly induced and repressed ABCA1 expression, respectively. These findings are consistent with previous reports in macrophages. miRNA profiling was also performed using a miRNA array. We identified specific miRNAs which were up-regulated (122 and down-regulated (107 in THP-1 cells treated with oxLDL plus pitavastatin versus oxLDL alone, indicating distinct regulatory networks in these cells. Moreover, several of the differentially expressed miRNAs identified are functionally associated with cholesterol trafficking (six miRNAs in cells treated with oxLDL versus oxLDL plus pitavastatin. Our findings indicate that pitavastatin can differentially modulate miRNA in the presence of oxLDL; and, our results provide evidence that the net effect on cholesterol homeostasis is mediated by a network of miRNAs.

  1. Effect of protein kinase C modulation on gonadotrophin-induced granulosa cell steroidogenesis.

    Science.gov (United States)

    He, H; Herington, A C; Roupas, P

    1995-01-01

    The effect of protein kinase C (PKC) modulation on gonadotrophin-induced ovarian granulosa cell differentiation was investigated by using an activator of PKC, phorbol 12-myristate 13-acetate (PMA) and inhibitors of PKC, sphingosine (SPH) and staurosporine (ST). The effects of PMA (at doses which activate PKC (10 ng mL-1), and down-regulate PKC (1000 ng mL-1)), sphingosine (25 microM) and staurosporine (10(-10)-10(-7) M) on gonadotrophin-induced granulosa cell differentiation were studied by the determination of steroidogenesis and cAMP accumulation in immature rat ovarian granulosa cells treated with or without pregnant mare serum gonadotrophin (100 mU mL-1). PMA (10 ng mL-1) inhibited gonadotrophin-induced granulosa cell steroidogenesis and cAMP accumulation. PMA (1000 ng mL-1)-induced down-regulation of PKC did not affect gonadotrophin-induced steroidogenesis. The inhibitory effect of PMA (10 ng mL-1) on gonadotrophin-induced granulosa cell steroidogenesis was not present in PKC-down-regulated cells. These data indicate that PKC activation by PMA inhibits gonadotrophin-induced steroidogenesis. SPH also inhibited gonadotrophin-induced steroidogenesis and cAMP accumulation. This effect of SPH was not affected by PMA-induced PKC down-regulation, indicating that this action of SPH does not require PKC or is mediated via a phorbol ester-insensitive PKC isoform. ST induced steroidogenesis in the absence of gonadotrophin, but was not synergistic with gonadotrophin. PMA-induced down-regulation of PKC abolished the effect of ST, suggesting that the action of ST requires PKC. The data suggest that ST and PMA, which antagonize each other in gonadotrophin-induced steroidogenesis, act via a PKC-mediated mechanism whereas the cAMP-associated actions of gonadotrophins and SPH are not dependent on PKC.

  2. PI3K/AKT signaling modulates transcriptional expression of EWS/FLI1 through specificity protein 1.

    Science.gov (United States)

    Giorgi, Chiara; Boro, Aleksandar; Rechfeld, Florian; Lopez-Garcia, Laura A; Gierisch, Maria E; Schäfer, Beat W; Niggli, Felix K

    2015-10-06

    Ewing sarcoma (ES) is the second most frequent bone cancer in childhood and is characterized by the presence of the balanced translocation t(11;22)(q24;q12) in more than 85% of cases, generating a dysregulated transcription factor EWS/FLI1. This fusion protein is an essential oncogenic component of ES development which is necessary for tumor cell maintenance and represents an attractive therapeutic target. To search for modulators of EWS/FLI1 activity we screened a library of 153 targeted compounds and identified inhibitors of the PI3K pathway to directly modulate EWS/FLI1 transcription. Surprisingly, treatment of four different ES cell lines with BEZ235 resulted in down regulation of EWS/FLI1 mRNA and protein by ~50% with subsequent modulation of target gene expression. Analysis of the EWS/FLI1 promoter region (-2239/+67) using various deletion constructs identified two 14 bp minimal elements as being important for EWS/FLI1 transcription. We identified SP1 as modulator of EWS/FLI1 gene expression and demonstrated direct binding to one of these regions in the EWS/FLI1 promoter by EMSA and ChIP experiments. These results provide the first insights on the transcriptional regulation of EWS/FLI1, an area that has not been investigated so far, and offer an additional molecular explanation for the known sensitivity of ES cell lines to PI3K inhibition.

  3. A calcineurin inhibitory protein overexpressed in Down's syndrome interacts with the product of a ubiquitously expressed transcript

    Directory of Open Access Journals (Sweden)

    H.C.S. Silveira

    2004-06-01

    Full Text Available The Down's syndrome candidate region 1 (DSCR1 protein, encoded by a gene located in the human chromosome 21, interacts with calcineurin and is overexpressed in Down's syndrome patients. As an approach to clarifying a putative function for this protein, in the present study we used the yeast two-hybrid system to identify DSCR1 partners. The two-hybrid system is a method that allows the identification of protein-protein interactions through reconstitution of the activity of the yeast GAL 4 transcriptional activator. The gene DSCR1 fused to the GAL 4 binding domain (BD was used to screen a human fetal brain cDNA library cloned in fusion with the GAL 4 activation domain (AD. Three positive clones were found and sequence analysis revealed that all the plasmids coded for the ubiquitously expressed transcript (UXT. UXT, which is encoded in human Xp11, is a 157-amino acid protein present in both cytosol and nucleus of the cells. This positive interaction of DSCR1 and UXT was confirmed in vivo by mating the yeast strain AH109 (MATaexpressing AD-UXT with the strain Y187 (MATalpha expressing BD-DSCR1, and in vitro by co-immunoprecipitation experiments. These results may help elucidate a new function for DSCR1 and its participation in Down's syndrome pathogenesis.

  4. Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner.

    Directory of Open Access Journals (Sweden)

    Daniel J Sobczynski

    Full Text Available The nanoscale plasma protein interaction with intravenously injected particulate carrier systems is known to modulate their organ distribution and clearance from the bloodstream. However, the role of this plasma protein interaction in prescribing the adhesion of carriers to the vascular wall remains relatively unknown. Here, we show that the adhesion of vascular-targeted poly(lactide-co-glycolic-acid (PLGA spheres to endothelial cells is significantly inhibited in human blood flow, with up to 90% reduction in adhesion observed relative to adhesion in simple buffer flow, depending on the particle size and the magnitude and pattern of blood flow. This reduced PLGA adhesion in blood flow is linked to the adsorption of certain high molecular weight plasma proteins on PLGA and is donor specific, where large reductions in particle adhesion in blood flow (>80% relative to buffer is seen with ∼60% of unique donor bloods while others exhibit moderate to no reductions. The depletion of high molecular weight immunoglobulins from plasma is shown to successfully restore PLGA vascular wall adhesion. The observed plasma protein effect on PLGA is likely due to material characteristics since the effect is not replicated with polystyrene or silica spheres. These particles effectively adhere to the endothelium at a higher level in blood over buffer flow. Overall, understanding how distinct plasma proteins modulate the vascular wall interaction of vascular-targeted carriers of different material characteristics would allow for the design of highly functional delivery vehicles for the treatment of many serious human diseases.

  5. Soy Protein Supplementation Reduces Clinical Indices in Type 2 Diabetes and Metabolic Syndrome.

    Science.gov (United States)

    Zhang, Xi-Mei; Zhang, Yun-Bo; Chi, Mei-Hua

    2016-05-01

    Clinical trials have studied the use of soy protein for treating type 2 diabetes (T2D) and metabolic syndrome (MS). The purpose of this study was to outline evidence on the effects of soy protein supplementation on clinical indices in T2D and MS subjects by performing a meta-analysis of randomized controlled trials (RCTs). We searched PubMed, EMBASE, and Cochrane databases up to March 2015 for RCTs. Pooled estimates and 95% confidence intervals (CIs) were calculated by the fixed-and-random-effects model. A total of eleven studies with eleven clinical variables met the inclusion criteria. The meta-analysis showed that fasting plasma glucose (FPG) [weighted mean difference (WMD), -0.207; 95% CI, -0.374 to -0.040; p=0.015], fasting serum insulin (FSI) (WMD, -0.292; 95% CI, -0.496 to -0.088; p=0.005), homeostasis model of assessment for insulin resistance index (HOMA-IR) (WMD, -0.346; 95% CI, -0.570 to -0.123; p=0.002), diastolic blood pressure (DBP) (WMD, -0.230; 95% CI, -0.441 to -0.019; p=0.033), low-density lipoprotein cholesterol (LDL-C) (WMD, -0.304; 95% CI, -0.461 to -0.148; p=0.000), total cholesterol (TC) (WMD, -0.386; 95% CI, -0.548 to -0.225; p=0.000), and C-reactive protein (CRP) (WMD, -0.510; 95% CI, -0.722 to -0.299; p=0.000) are significant reduced with soy protein supplementation, compared with a placebo control group, in T2D and MS patients. Furthermore, soy protein supplementation for longer duration (≥6 mo) significantly reduced FPG, LDL-C, and CRP, while that for a shorter duration (protein supplementation could be beneficial for FPG, FSI, HOMA-IR, DBP, LDL-C, TC, and CRP control in plasma.

  6. Characterization of polyclonal antibodies against nonstructural protein 9 from the porcine reproductive and respiratory syndrome virus

    Directory of Open Access Journals (Sweden)

    Mengmeng ZHAO,Juanjuan QIAN,Jiexiong XIE,Tiantian CUI,Songling FENG,Guoqiang WANG,Ruining WANG,Guihong ZHANG

    2016-06-01

    Full Text Available Porcine reproductive and respiratory syndrome (PRRS is considered to be one of the most important infectious diseases impacting the swine industry and is characterized by reproductive failure in late term gestation in sows and respiratory disease in pigs of all ages. The nonstructural protein 9 gene, Nsp9, encoding the RNA-dependent RNA polymerase, is generally regarded as fairly conserved when compared to other viral proteins. Antibodies against Nsp9 will be of great importance for the diagnosis and treatment of the causal agent, PRRS virus. A study was undertaken to generate polyclonal antibodies against the immunodominant Nsp9. For this purpose, the Nsp9 was expressed in Escherichia coli and subsequently used as an antigen to immunize New Zealand rabbits. Antiserum was identified via an indirect ELISA, and then verified based on the ability to react with both naturally and artificially expressed Nsp9. Results of virus neutralization test showed that this antiserum could not neutralize the PRRSV. Nevertheless, this antiserum as a diagnostic core reagent should prove invaluable for further investigations into the mechanism of PRRS pathogenesis.

  7. Hematochezia before the First Feeding in a Newborn with Food Protein-Induced Enterocolitis Syndrome

    Directory of Open Access Journals (Sweden)

    Masanori Mizuno

    2011-09-01

    Full Text Available The prevalence and incidence of food protein-induced enterocolitis syndrome (FPIES are clearly not known; its onset before first feeding at birth especially has been rarely reported. A female newborn was referred to our institution due to blood-stained diarrhea before her first feeding at birth. Examination of the stool with Wright-Giemsa staining on day 6 revealed numerous fecal eosinophils, including Charcot-Leyden crystals. Lymphocyte stimulation test (LST against cow's milk protein also showed positive values on day 12. The hematochezia resolved immediately after starting intravenous nutrition. She was fed with breast milk and extensively hydrolyzed formula and discharged from hospital on day 49. FPIES was diagnosed based on these symptoms and data. Our case was thought to have acquired allergic enterocolitis after sensitization in her fetal period, which caused severe FPIES triggered by the first intake of cow's milk soon after birth. The patient with FPIES presents atypical clinical findings, which is likely to cause misdiagnosis and delay of appropriate treatment. Heightened awareness and increased attention may be necessary to diagnose FPIES, even soon after birth. Evaluating fecal eosinophils and LST, which may be difficult to perform in every clinical hospital, is thought to be useful for the detection of FPIES without oral food challenge.

  8. Severe Food Protein-Induced Enterocolitis Syndrome to Cow’s Milk in Infants

    Directory of Open Access Journals (Sweden)

    Min Yang

    2015-12-01

    Full Text Available Cow’s milk is the most common cause of food-protein-induced enterocolitis syndrome (FPIES. The aim of this study was to examine the clinical features and treatment outcomes of infants with severe FPIES to cow’s milk. We reviewed all infants ≤12 months of age who were hospitalized and diagnosed with severe FPIES to cow’s milk between 1 January 2011 and 31 August 2014 in a tertiary Children’s Medical Center in China. Patients’ clinical features, feeding patterns, laboratory tests, and treatment outcomes were reviewed. A total of 12 infants met the inclusion criteria. All infants presented with diarrhea, edema, and hypoalbuminemia. Other main clinical manifestations included regurgitation/vomiting, skin rashes, low-grade fever, bloody and/or mucous stools, abdominal distention, and failure to thrive. They had clinical remission with resolution of diarrhea and significant increase of serum albumin after elimination of cow’s milk protein (CMP from the diet. The majority of infants developed tolerance to the CMP challenge test after 12 months of avoidance. In conclusion, we reported the clinical experience of 12 infants with severe FPIES to cow’s milk, which resulted in malnutrition, hypoproteinemia, and failure to thrive. Prompt treatment with CMP-free formula is effective and leads to clinical remission of FPIES in infants.

  9. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice

    OpenAIRE

    Chaplin, Alice; Parra, Pilar; Serra, Francisca; Palou, Andreu

    2015-01-01

    The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA) have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute...

  10. Infusion of Hibiscus sabdariffa L. Modulates Oxidative Stress in Patients with Marfan Syndrome

    Science.gov (United States)

    Soto, María Elena; Zuñiga-Muñoz, Alejandra; Guarner Lans, Verónica; Duran-Hernández, Erendira Janet; Pérez-Torres, Israel

    2016-01-01

    Marfan syndrome (MFS) is associated with progressive aortic dilatation, endothelial dysfunction, and oxidative stress that contribute to the early acute dissection of the vessel and can end up in rupture of the aorta and sudden death. Many studies have described that the organic acids from Hibiscus sabdariffa Linne (HSL) calyces increase cellular antioxidant capacity and decrease oxidative stress. Here we evaluate if the antioxidant properties of HSL infusion improve oxidative stress in MFS patients. Activities of extra cellular super oxide dismutase (ECSOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GSSG-R), glutathione (GSH), lipid peroxidation (LPO) index, total antioxidant capacity (TAC), and ascorbic acid were determined in plasma from MFS patients. Values before and after 3 months of the treatment with 2% HSL infusion were compared in control and MFS subjects. After treatment, there was a significant decrease in ECSOD (p = 0.03), EGPx (p = 0.04), GST (p = 0.03), GSH (p = 0.01), and TAC and ascorbic acid (p = 0.02) but GSSG-R activity (p = 0.04) and LPO (p = 0.02) were increased in MFS patients in comparison to patients receiving the HSL treatment and C subjects. Therefore, the infusion of HSL calyces has antioxidant properties that allow an increase in antioxidant capacity of both the enzymatic and nonenzymatic systems, in the plasma of the MSF patients. PMID:27413258

  11. Infusion of Hibiscus sabdariffa L. Modulates Oxidative Stress in Patients with Marfan Syndrome.

    Science.gov (United States)

    Soto, María Elena; Zuñiga-Muñoz, Alejandra; Guarner Lans, Verónica; Duran-Hernández, Erendira Janet; Pérez-Torres, Israel

    2016-01-01

    Marfan syndrome (MFS) is associated with progressive aortic dilatation, endothelial dysfunction, and oxidative stress that contribute to the early acute dissection of the vessel and can end up in rupture of the aorta and sudden death. Many studies have described that the organic acids from Hibiscus sabdariffa Linne (HSL) calyces increase cellular antioxidant capacity and decrease oxidative stress. Here we evaluate if the antioxidant properties of HSL infusion improve oxidative stress in MFS patients. Activities of extra cellular super oxide dismutase (ECSOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GSSG-R), glutathione (GSH), lipid peroxidation (LPO) index, total antioxidant capacity (TAC), and ascorbic acid were determined in plasma from MFS patients. Values before and after 3 months of the treatment with 2% HSL infusion were compared in control and MFS subjects. After treatment, there was a significant decrease in ECSOD (p = 0.03), EGPx (p = 0.04), GST (p = 0.03), GSH (p = 0.01), and TAC and ascorbic acid (p = 0.02) but GSSG-R activity (p = 0.04) and LPO (p = 0.02) were increased in MFS patients in comparison to patients receiving the HSL treatment and C subjects. Therefore, the infusion of HSL calyces has antioxidant properties that allow an increase in antioxidant capacity of both the enzymatic and nonenzymatic systems, in the plasma of the MSF patients.

  12. Infusion of Hibiscus sabdariffa L. Modulates Oxidative Stress in Patients with Marfan Syndrome

    Directory of Open Access Journals (Sweden)

    María Elena Soto

    2016-01-01

    Full Text Available Marfan syndrome (MFS is associated with progressive aortic dilatation, endothelial dysfunction, and oxidative stress that contribute to the early acute dissection of the vessel and can end up in rupture of the aorta and sudden death. Many studies have described that the organic acids from Hibiscus sabdariffa Linne (HSL calyces increase cellular antioxidant capacity and decrease oxidative stress. Here we evaluate if the antioxidant properties of HSL infusion improve oxidative stress in MFS patients. Activities of extra cellular super oxide dismutase (ECSOD, glutathione peroxidase (GPx, glutathione-S-transferase (GST, glutathione reductase (GSSG-R, glutathione (GSH, lipid peroxidation (LPO index, total antioxidant capacity (TAC, and ascorbic acid were determined in plasma from MFS patients. Values before and after 3 months of the treatment with 2% HSL infusion were compared in control and MFS subjects. After treatment, there was a significant decrease in ECSOD (p=0.03, EGPx (p=0.04, GST (p=0.03, GSH (p=0.01, and TAC and ascorbic acid (p=0.02 but GSSG-R activity (p=0.04 and LPO (p=0.02 were increased in MFS patients in comparison to patients receiving the HSL treatment and C subjects. Therefore, the infusion of HSL calyces has antioxidant properties that allow an increase in antioxidant capacity of both the enzymatic and nonenzymatic systems, in the plasma of the MSF patients.

  13. Hormonal Modulation in Aging Patients with Erectile Dysfunction and Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Inês Campos Costa

    2013-01-01

    Full Text Available Erectile dysfunction (ED, metabolic syndrome (MetS, and hypogonadism are closely related, often coexisting in the aging male. Obesity was shown to raise the risk of ED and hypogonadism, as well as other endocrinological disturbances with impact on erectile function. We selected 179 patients referred for ED to our andrology unit, aiming to evaluate gonadotropins and estradiol interplay in context of ED, MetS, and hypogonadism. Patients were stratified into groups in accordance with the presence (or not of MetS and/or hypogonadism. Noticeable differences in total testosterone (TT and free testosterone (FT levels were found between patients with and without MetS. Men with MetS evidenced lower TT circulating levels with an increasing number of MetS parameters, for which hypertriglyceridemia and waist circumference strongly contributed. Regarding the hypothalamic-pituitary-gonadal axis, patients with hypogonadism did not exhibit raised LH levels. Interestingly, among those with higher LH levels, estradiol values were also increased. Possible explanations for this unexpected profile of estradiol may be the age-related adiposity, other estrogen-raising pathways, or even unknown mechanisms. Estradiol is possibly a molecule with further interactions beyond the currently described. Our results further enlighten this still unclear multidisciplinary and complex subject, raising new investigational opportunities.

  14. Abnormal neuronal activity in Tourette syndrome and its modulation using deep brain stimulation

    Science.gov (United States)

    Israelashvili, Michal; Loewenstern, Yocheved

    2015-01-01

    Tourette syndrome (TS) is a common childhood-onset disorder characterized by motor and vocal tics that are typically accompanied by a multitude of comorbid symptoms. Pharmacological treatment options are limited, which has led to the exploration of deep brain stimulation (DBS) as a possible treatment for severe cases. Multiple lines of evidence have linked TS with abnormalities in the motor and limbic cortico-basal ganglia (CBG) pathways. Neurophysiological data have only recently started to slowly accumulate from multiple sources: noninvasive imaging and electrophysiological techniques, invasive electrophysiological recordings in TS patients undergoing DBS implantation surgery, and animal models of the disorder. These converging sources point to system-level physiological changes throughout the CBG pathway, including both general altered baseline neuronal activity patterns and specific tic-related activity. DBS has been applied to different regions along the motor and limbic pathways, primarily to the globus pallidus internus, thalamic nuclei, and nucleus accumbens. In line with the findings that also draw on the more abundant application of DBS to Parkinson's disease, this stimulation is assumed to result in changes in the neuronal firing patterns and the passage of information through the stimulated nuclei. We present an overview of recent experimental findings on abnormal neuronal activity associated with TS and the changes in this activity following DBS. These findings are then discussed in the context of current models of CBG function in the normal state, during TS, and finally in the wider context of DBS in CBG-related disorders. PMID:25925326

  15. Transcriptomic and Protein Expression Analysis Reveals Clinicopathological Significance of Bloom Syndrome Helicase (BLM) in Breast Cancer.

    Science.gov (United States)

    Arora, Arvind; Abdel-Fatah, Tarek M A; Agarwal, Devika; Doherty, Rachel; Moseley, Paul M; Aleskandarany, Mohammed A; Green, Andrew R; Ball, Graham; Alshareeda, Alaa T; Rakha, Emad A; Chan, Stephen Y T; Ellis, Ian O; Madhusudan, Srinivasan

    2015-04-01

    Bloom syndrome helicase (BLM) has key roles in homologous recombination repair, telomere maintenance, and DNA replication. Germ-line mutations in the BLM gene causes Bloom syndrome, a rare disorder characterized by premature aging and predisposition to multiple cancers, including breast cancer. The clinicopathologic significance of BLM in sporadic breast cancers is unknown. We investigated BLM mRNA expression in the Molecular Taxonomy of Breast Cancer International Consortium cohort (n = 1,950) and validated in an external dataset of 2,413 tumors. BLM protein level was evaluated in the Nottingham Tenovus series comprising 1,650 breast tumors. BLM mRNA overexpression was significantly associated with high histologic grade, larger tumor size, estrogen receptor-negative (ER(-)), progesterone receptor-negative (PR(-)), and triple-negative phenotypes (ps < 0.0001). BLM mRNA overexpression was also linked to aggressive molecular phenotypes, including PAM50.Her2 (P < 0.0001), PAM50.Basal (P < 0.0001), and PAM50.LumB (P < 0.0001) and Genufu subtype (ER(+)/Her2(-)/high proliferation; P < 0.0001). PAM50.LumA tumors and Genufu subtype (ER(+)/Her2(-)/low proliferation) were more likely to express low levels of BLM mRNA (ps < 0.0001). Integrative molecular clusters (intClust) intClust.1 (P < 0.0001), intClust.5 (P < 0.0001), intClust.9 (P < 0.0001), and intClust.10 (P < 0.0001) were also more likely in tumors with high BLM mRNA expression. BLM mRNA overexpression was associated with poor breast cancer-specific survival (BCSS; ps < 0.000001). At the protein level, altered subcellular localization with high cytoplasmic BLM and low nuclear BLM was linked to aggressive phenotypes. In multivariate analysis, BLM mRNA and BLM protein levels independently influenced BCSS. This is the first and the largest study to provide evidence that BLM is a promising biomarker in breast cancer. ©2015 American Association for Cancer Research.

  16. Dopamine D2 Receptors Modulate Pyramidal Neurons in Mouse Medial Prefrontal Cortex through a Stimulatory G-Protein Pathway.

    Science.gov (United States)

    Robinson, Sarah E; Sohal, Vikaas S

    2017-10-18

    implicated in schizophrenia, Tourette syndrome, and bipolar disorder. Recently, we described a new mechanism through which D2R activation can enhance the excitability of pyramidal neurons in the PFC. Here, we explore the underlying cellular mechanisms. Surprisingly, although D2Rs are classically assumed to signal through G i/o -coupled G-proteins and/or scaffolding proteins, such as β-arrestin, we find that the effects of D2Rs on prefrontal pyramidal neurons are actually mediated by pathways associated with G s -mediated signaling. Furthermore, we show how, via this D2R-dependent phenomenon, synaptic input can enhance the excitability of prefrontal neurons over timescales on the order of seconds. These results elucidate cellular mechanisms underlying a novel signaling pathway downstream of D2Rs that may contribute to prefrontal function under normal and pathological conditions. Copyright © 2017 the authors 0270-6474/17/3710063-11$15.00/0.

  17. Antigenic modules in the N-terminal S1 region of the transmissible gastroenteritis virus spike protein

    Science.gov (United States)

    Reguera, Juan; Ordoño, Desiderio; Santiago, César; Enjuanes, Luis

    2011-01-01

    The N-terminal S1 region of the transmissible gastroenteritis virus (TGEV) spike (S) glycoprotein contains four antigenic sites (C, B, D and A, from the N- to the C-terminal end) and is engaged in host-cell receptor recognition. The most N-terminal portion of the S1 region, which comprises antigenic sites C and B, is needed for the enteric tropism of TGEV, whereas the major antigenic site A at the C-terminal moiety is required for both respiratory and enteric cell tropism, and is engaged in recognition of the aminopeptidase N (APN) receptor. This study determined the kinetics for binding of a soluble S1 protein to the APN protein. Moreover, the S1 region of the TGEV S protein was dissected, with the aim of identifying discrete modules displaying unique antigenic sites and receptor-binding functions. Following protease treatments and mammalian cell expression methods, four modules or domains (D1–D4) were defined at the S1 region. Papain treatment identified an N-terminal domain (D1) resistant to proteolysis, whereas receptor binding defined a soluble and functional APN receptor-binding domain (D3). This domain was recognized by neutralizing antibodies belonging to the antigenic site A and therefore could be used as an immunogen for the prevention of viral infection. The organization of the four modules in the S1 region of the TGEV S glycoprotein is discussed. PMID:21228126

  18. Reactive oxygen species modulator 1, a novel protein, combined with carcinoembryonic antigen in differentiating malignant from benign pleural effusion.

    Science.gov (United States)

    Chen, Xianmeng; Zhang, Na; Dong, Jiahui; Sun, Gengyun

    2017-05-01

    The differential diagnosis of malignant pleural effusion and benign pleural effusion remains a clinical problem. Reactive oxygen species modulator 1 is a novel protein overexpressed in various human tumors. The objective of this study was to evaluate the diagnostic value of joint detection of reactive oxygen species modulator 1 and carcinoembryonic antigen in the differential diagnosis of malignant pleural effusion and benign pleural effusion. One hundred two consecutive patients with pleural effusion (including 52 malignant pleural effusion and 50 benign pleural effusion) were registered in this study. Levels of reactive oxygen species modulator 1 and carcinoembryonic antigen were measured by enzyme-linked immunosorbent assay and radioimmunoassay, respectively. Results showed that the concentrations of reactive oxygen species modulator 1 both in pleural fluid and serum of patients with malignant pleural effusion were significantly higher than those of benign pleural effusion (both p carcinoembryonic antigen were 69.23% and 88.00%, respectively, at the cutoff value of 3.05 ng/mL, while serum carcinoembryonic antigen were 80.77% and 72.00% at the cutoff value of 2.60 ng/mL. The sensitivity could be raised to 88.17% in parallel detection of plural fluid reactive oxygen species modulator 1 and carcinoembryonic antigen concentration, and the specificity could be improved to 97.84% in serial detection.

  19. Exploring Protein Structure and Dynamics through a Project-Oriented Biochemistry Laboratory Module

    Science.gov (United States)

    Lipchock, James M.; Ginther, Patrick S.; Douglas, Bonnie B.; Bird, Kelly E.; Loria, J. Patrick

    2017-01-01

    Here, we present a 10-week project-oriented laboratory module designed to provide a course-based undergraduate research experience in biochemistry that emphasizes the importance of biomolecular structure and dynamics in enzyme function. This module explores the impact of mutagenesis on an important active site loop for a biomedically-relevant…

  20. Saffron supplements modulate serum pro-oxidant-antioxidant balance in patients with metabolic syndrome: A randomized, placebo-controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Tayyebeh Kermani

    2015-08-01

    Full Text Available Objectives: We have investigated the effect of a saffron supplement, given at a dose of 100 mg/kg, on prooxidant-antioxidant balance (PAB in individuals with metabolic syndrome. Materials and Methods: A randomized, placebo-controlled trial design was used in 75 subjects with metabolic syndrome who were randomly allocated to one of two study groups: (1 the case group received 100mg/kg saffron and (2 the placebo control group received placebo for 12 weeks. The serum PAB assay was applied to all subjects before (week 0 and after (weeks 6 and 12 the intervention. Results: There was a significant (p=0.035 reduction in serum PAB between week 0 to week 6 and also from week 0 to week 12.  Conclusion: Saffron supplements can modulate serum PAB in subjects with metabolic syndrome, implying an improvement in some aspects of oxidative stress or antioxidant protection.

  1. Dauer pheromone and G-protein signaling modulate the coordination of intraflagellar transport kinesin motor proteins in C. elegans

    NARCIS (Netherlands)

    J.A. Burghoorn (Jan); M.P.J. Dekkers (Martijn); S. Rademakers (Suzanne); A.A.W. de Jong (Ton); R. Willemsen (Rob); P. Swoboda (Peter); J. McCafferty (Gert)

    2010-01-01

    textabstractCilia length and function are dynamically regulated by modulation of intraflagellar transport (IFT). The cilia of C. elegans amphid channel neurons provide an excellent model to study this process, since they use two different kinesins for anterograde transport: kinesin-II and OSM-3

  2. Peanut protein structure, polyphenol content and immune response to peanut proteins in vivo are modulated by laccase

    NARCIS (Netherlands)

    Mihajlovic, L; Radosavljevic, J; Nordlund, E; Krstic, M; Bohn, T; Smit, Joost; Buchert, J; Cirkovic Velickovic, T

    2016-01-01

    Food texture can be improved by enzyme-mediated covalent cross-linking of different food components, such as proteins and carbohydrates. Cross-linking changes the biological and immunological properties of proteins and may change the sensitizing potential of food allergens. In this study we applied

  3. Proinflammatory proteins in female and male patients with primary antiphospholipid syndrome: preliminary data.

    Science.gov (United States)

    Bećarević, Mirjana; Ignjatović, Svetlana

    2016-10-01

    The latest classification criteria for the diagnosis of the antiphospholipid syndrome (APS, an autoimmune disease characterized by thromboses, miscarriages and presence of antiphospholipid antibodies (Abs)) emphasized that thrombotic manifestations of APS should be without any signs of an inflammatory process. However, atherosclerosis (a chronic inflammatory response to the accumulation of lipoproteins in the walls of arteries) and APS are characterized by some similar features. We evaluated whether proinflammatory proteins were associated with the features of the primary APS (PAPS). PAPS patients without obstetric complications and with impaired lipid profile were included in the study. Antiphospholipid antibodies, TNF-alpha, and apo(a) were determined by ELISA. Complement components and hsCRP were measured by immunonephelometry. Decreased C3c was observed in female patients with increased titers of IgG anti-β2gpI (χ(2) = 3.939, P = 0.047) and in male patients with increased IgM anticardiolipin Abs (χ(2) = 4.286, P = 0.038). Pulmonary emboli were associated with interleukin (IL)-6 in male (χ(2) = 6.519, P = 0.011) and in female (χ(2) = 10.405, P = 0.001) patients. Cerebrovascular insults were associated with LDL-cholesterol (P = 0.05, 95 % CI: 1.003 - 12.739) in female and with apo(a) (P = 0.016, 95 % CI: 0.000-0.003) in male patients. Older female patients had increased LDL-cholesterol levels and frequency of myocardial infarctions. Proinflammatory proteins were associated with features of primary APS. No real gender differences in regard to proinflammatory protein levels were observed. Premenopausal state of female PAPS patients confers lower cardiovascular risk.

  4. Association of the Hermansky-Pudlak syndrome type-3 protein with clathrin

    Directory of Open Access Journals (Sweden)

    Gahl William A

    2005-09-01

    Full Text Available Abstract Background Hermansky-Pudlak syndrome (HPS is a disorder of lysosome-related organelle biogenesis characterized by oculocutaneous albinism and prolonged bleeding. These clinical findings reflect defects in the formation of melanosomes in melanocytes and dense bodies in platelets. HPS type-3 (HPS-3 results from mutations in the HPS3 gene, which encodes a 1004 amino acid protein of unknown function that contains a predicted clathrin-binding motif (LLDFE at residues 172–176. Results Clathrin was co-immunoprecipitated by HPS3 antibodies from normal but not HPS3 null melanocytes. Normal melanocytes expressing a GFP-HPS3 fusion protein demonstrated partial co-localization of GFP-HPS3 with clathrin following a 20°C temperature block. GFP-HPS3 in which the predicted clathrin-binding domain of HPS3 was mutated (GFP-HPS3-delCBD did not co-localize with clathrin under the same conditions. Immunoelectron microscopy of normal melanocytes expressing GFP-HPS3 showed co-localization of GFP-HPS3 with clathrin, predominantly on small vesicles in the perinuclear region. In contrast, GFP-HPS3-delCBD did not co-localize with clathrin and exhibited a largely cytoplasmic distribution. Conclusion HPS3 associates with clathrin, predominantly on small clathrin-containing vesicles in the perinuclear region. This association most likely occurs directly via a functional clathrin-binding domain in HPS3. These results suggest a role for HPS3 and its protein complex, BLOC-2, in vesicle formation and trafficking.

  5. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis.

    Directory of Open Access Journals (Sweden)

    Marta L DeDiego

    2011-10-01

    Full Text Available Severe acute respiratory syndrome virus (SARS-CoV that lacks the envelope (E gene (rSARS-CoV-ΔE is attenuated in vivo. To identify factors that contribute to rSARS-CoV-ΔE attenuation, gene expression in cells infected by SARS-CoV with or without E gene was compared. Twenty-five stress response genes were preferentially upregulated during infection in the absence of the E gene. In addition, genes involved in signal transduction, transcription, cell metabolism, immunoregulation, inflammation, apoptosis and cell cycle and differentiation were differentially regulated in cells infected with rSARS-CoV with or without the E gene. Administration of E protein in trans reduced the stress response in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, or treated with drugs, such as tunicamycin and thapsigargin that elicit cell stress by different mechanisms. In addition, SARS-CoV E protein down-regulated the signaling pathway inositol-requiring enzyme 1 (IRE-1 of the unfolded protein response, but not the PKR-like ER kinase (PERK or activating transcription factor 6 (ATF-6 pathways, and reduced cell apoptosis. Overall, the activation of the IRE-1 pathway was not able to restore cell homeostasis, and apoptosis was induced probably as a measure to protect the host by limiting virus production and dissemination. The expression of proinflammatory cytokines was reduced in rSARS-CoV-ΔE-infected cells compared to rSARS-CoV-infected cells, suggesting that the increase in stress responses and the reduction of inflammation in the absence of the E gene contributed to the attenuation of rSARS-CoV-ΔE.

  6. Sex difference in the association of metabolic syndrome with high sensitivity C-reactive protein in a Taiwanese population

    Directory of Open Access Journals (Sweden)

    Lin Wen-Yuan

    2010-07-01

    Full Text Available Abstract Background Although sex differences have been reported for associations between components of metabolic syndrome and inflammation, the question of whether there is an effect modification by sex in the association between inflammation and metabolic syndrome has not been investigated in detail. Therefore, the aim of this study was to compare associations of high sensitivity C-creative protein (hs-CRP with metabolic syndrome and its components between men and women. Methods A total of 1,305 subjects aged 40 years and over were recruited in 2004 in a metropolitan city in Taiwan. The biochemical indices, such as hs-CRP, fasting glucose levels, lipid profiles, urinary albumin, urinary creatinine and anthropometric indices, were measured. Metabolic syndrome was defined using the American Heart Association and the National Heart, lung and Blood Institute (AHA/NHLBI definition. The relationship between metabolic syndrome and hs-CRP was examined using multivariate logistic regression analysis. Results After adjustment for age and lifestyle factors including smoking, and alcohol intake, elevated concentrations of hs-CRP showed a stronger association with metabolic syndrome in women (odds ratio comparing tertile extremes 4.80 [95% CI: 3.31-6.97] than in men (2.30 [1.65-3.21]. The p value for the sex interaction was 0.002. All components were more strongly associated with metabolic syndrome in women than in men, and all sex interactions were significant except for hypertension. Conclusions Our data suggest that inflammatory processes may be of particular importance in the pathogenesis of metabolic syndrome in women.

  7. Integrated Yoga and Naturopathy module in management of Metabolic Syndrome: A case report.

    Science.gov (United States)

    Gowda, Swathi; Mohanty, Sriloy; Saoji, Apar; Nagarathna, Raghuram

    A 50-year-old male participant with sedentary lifestyle, diagnosed with Metabolic Syndrome (MetS) [obesity, Type-2 diabetes mellitus, hypertension] and hypothyroidism since 2013, was administered integrated Yoga and Naturopathy (IYN) for 6 weeks as a tailor made individualized protocol at the residential integrative medical facility in Bangalore between October and November 2015. The results showed reduction in weight (97.9 kg to 74.6 kg), Body Mass Index (BMI) (35.1 kg/m 2 to 27.86 kg/m 2 ), total cholesterol (192 mg% to 145 mg%), triglycerides (153 mg% to 90 mg%), Low Density Lipoprotein (LDL) (124 mg% to 81 mg%), High Density Lipoprotein (HDL) (40 mg% to 46 mg%), fasting blood glucose (110 mg/dl to 75 mg/dl), postprandial glucose (267 mg/dl to 100 mg/dl), glycated hemoglobin (HbA1c) (7.8%-7.1%), Thyroid Stimulating Hormone (TSH) (6.90 μIU/ml to 3.052 μIU/ml). Following the intervention, the anti-hypertensive, oral hypoglycemic, thyroid raising and analgesic medicines were not required to be continued. His knee pain minimized on discharge as observed on a Visual Analog Scale. He had an improved feeling of wellness and overall functional health. All his parameters were within normal range at the 12-weeks follow-up, as he had incorporated the lifestyle program into his daily routine. This case report suggests that lifestyle change by integration of specific non-drug Yoga and Naturopathic intervention is useful in the management of MetS. Copyright © 2016 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  8. Integrated Yoga and Naturopathy module in management of Metabolic Syndrome: A case report

    Directory of Open Access Journals (Sweden)

    Swathi Gowda

    2017-01-01

    Full Text Available A 50-year-old male participant with sedentary lifestyle, diagnosed with Metabolic Syndrome (MetS [obesity, Type-2 diabetes mellitus, hypertension] and hypothyroidism since 2013, was administered integrated Yoga and Naturopathy (IYN for 6 weeks as a tailor made individualized protocol at the residential integrative medical facility in Bangalore between October and November 2015. The results showed reduction in weight (97.9 kg to 74.6 kg, Body Mass Index (BMI (35.1 kg/m2 to 27.86 kg/m2, total cholesterol (192 mg% to 145 mg%, triglycerides (153 mg% to 90 mg%, Low Density Lipoprotein (LDL (124 mg% to 81 mg%, High Density Lipoprotein (HDL (40 mg% to 46 mg%, fasting blood glucose (110 mg/dl to 75 mg/dl, postprandial glucose (267 mg/dl to 100 mg/dl, glycated hemoglobin (HbA1c (7.8%–7.1%, Thyroid Stimulating Hormone (TSH (6.90 μIU/ml to 3.052 μIU/ml. Following the intervention, the anti-hypertensive, oral hypoglycemic, thyroid raising and analgesic medicines were not required to be continued. His knee pain minimized on discharge as observed on a Visual Analog Scale. He had an improved feeling of wellness and overall functional health. All his parameters were within normal range at the 12-weeks follow-up, as he had incorporated the lifestyle program into his daily routine. This case report suggests that lifestyle change by integration of specific non-drug Yoga and Naturopathic intervention is useful in the management of MetS.

  9. Characterization of the Drosophila ortholog of the human Usher Syndrome type 1G protein sans.

    Directory of Open Access Journals (Sweden)

    Fabio Demontis

    Full Text Available BACKGROUND: The Usher syndrome (USH is the most frequent deaf-blindness hereditary disease in humans. Deafness is attributed to the disorganization of stereocilia in the inner ear. USH1, the most severe subtype, is associated with mutations in genes encoding myosin VIIa, harmonin, cadherin 23, protocadherin 15, and sans. Myosin VIIa, harmonin, cadherin 23, and protocadherin 15 physically interact in vitro and localize to stereocilia tips in vivo, indicating that they form functional complexes. Sans, in contrast, localizes to vesicle-like structures beneath the apical membrane of stereocilia-displaying hair cells. How mutations in sans result in deafness and blindness is not well understood. Orthologs of myosin VIIa and protocadherin 15 have been identified in Drosophila melanogaster and their genetic analysis has identified essential roles in auditory perception and microvilli morphogenesis, respectively. PRINCIPAL FINDINGS: Here, we have identified and characterized the Drosophila ortholog of human sans. Drosophila Sans is expressed in tubular organs of the embryo, in lens-secreting cone cells of the adult eye, and in microvilli-displaying follicle cells during oogenesis. Sans mutants are viable, fertile, and mutant follicle cells appear to form microvilli, indicating that Sans is dispensable for fly development and microvilli morphogenesis in the follicle epithelium. In follicle cells, Sans protein localizes, similar to its vertebrate ortholog, to intracellular punctate structures, which we have identified as early endosomes associated with the syntaxin Avalanche. CONCLUSIONS: Our work is consistent with an evolutionary conserved function of Sans in vesicle trafficking. Furthermore it provides a significant basis for further understanding of the role of this Usher syndrome ortholog in development and disease.

  10. Metabolic syndrome: prevalence, associated factors, and C-reactive protein: the MADRIC (MADrid RIesgo Cardiovascular) Study.

    Science.gov (United States)

    Martínez, Maria A; Puig, Juan G; Mora, Marta; Aragón, Rosa; O'Dogherty, Pascual; Antón, José L; Sánchez-Villares, Teresa; Rubio, José M; Rosado, Javier; Torres, Rosa; Marcos, Joaquín; Pallardo, Luis F; Banegas, José R

    2008-09-01

    The metabolic syndrome (MS) is defined by the clustering of a number of cardiovascular risk factors. The aims of the present study were to estimate the prevalence of MS in Madrid (Spain) by 2 definitions and to investigate its relationship with several sociodemographic factors and C-reactive protein (CRP) levels. This was a cross-sectional population study, and participants were 1344 subjects aged 31 to 70 years. Clinical evaluation included data on sociodemographic and cardiovascular background, physical examination, fasting glucose, triglycerides, and high-density lipoprotein cholesterol. The CRP levels were determined in a subgroup of 843 subjects. The diagnosis of MS was made according to the 2005 Adult Treatment Panel III (ATP III) and International Diabetes Federation (IDF) definitions. The age- and sex-adjusted prevalence of MS was 24.6% (95% confidence interval [CI], 22.3%-26.9%) using the ATP III definition and 30.9% (95% CI, 28.4%-33.3%) using the International Diabetes Federation definition. The overall agreement rate was 91.5% (kappa = 0.80; 95% CI, 0.76-0.83). Prevalence figures by both definitions were higher in men than in women and increased with age. Male sex, older age, low educational level, and physical inactivity were all determinants of ATP III-defined MS. The presence of MS or any of its components was associated with high CRP levels. In a logistic regression analysis, low educational level and waist circumference were the best predictors for high CRP level. The prevalence of MS in the Madrid region is one of the highest in Europe and confirms the strong Spanish regional variability in this syndrome frequency. Some sociodemographic and lifestyle factors, particularly educational level, are predictors for MS and high CRP levels.

  11. Human Papillomavirus Types 16 and 18 Early-expressed Proteins Differentially Modulate the Cellular Redox State and DNA Damage

    Science.gov (United States)

    Cruz-Gregorio, Alfredo; Manzo-Merino, Joaquín; Gonzaléz-García, María Cecilia; Pedraza-Chaverri, José; Medina-Campos, Omar Noel; Valverde, Mahara; Rojas, Emilio; Rodríguez-Sastre, María Alexandra; García-Cuellar, Claudia María; Lizano, Marcela

    2018-01-01

    Oxidative stress has been proposed as a risk factor for cervical cancer development. However, few studies have evaluated the redox state associated with human papillomavirus (HPV) infection. The aim of this work was to determine the role of the early expressed viral proteins E1, E2, E6 and E7 from HPV types 16 and 18 in the modulation of the redox state in an integral form. Therefore, generation of reactive oxygen species (ROS), concentration of reduced glutathione (GSH), levels and activity of the antioxidant enzymes catalase and superoxide dismutase (SOD) and deoxyribonucleic acid (DNA) damage, were analysed in epithelial cells ectopically expressing the viral proteins. Our research shows that E6 oncoproteins decreased GSH and catalase protein levels, as well as its enzymatic activity, which was associated with an increase in ROS production and DNA damage. In contrast, E7 oncoproteins increased GSH, as well as catalase protein levels and its activity, which correlated with a decrease in ROS without affecting DNA integrity. The co-expression of both E6 and E7 oncoproteins neutralized the effects that were independently observed for each of the viral proteins. Additionally, the combined expression of E1 and E2 proteins increased ROS levels with the subsequent increase in the marker for DNA damage phospho-histone 2AX (γH2AX). A decrease in GSH, as well as SOD2 levels and activity were also detected in the presence of E1 and E2, even though catalase activity increased. This study demonstrates that HPV early expressed proteins differentially modulate cellular redox state and DNA damage. PMID:29483822

  12. Localization of a region in the fusion protein of avian metapneumovirus that modulates cell-cell fusion.

    Science.gov (United States)

    Wei, Yongwei; Feng, Kurtis; Yao, Xiangjie; Cai, Hui; Li, Junan; Mirza, Anne M; Iorio, Ronald M; Li, Jianrong

    2012-11-01

    The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented.

  13. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice.

    Directory of Open Access Journals (Sweden)

    Alice Chaplin

    Full Text Available The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute to body weight regulation. Adult mice were fed either a normal fat (NF, 12% kJ content as fat or a high-fat (HF, 43% kJ content as fat diet. In the latter case, half of the animals received daily oral supplementation of CLA. Expression and content of stomach proteins and specific bacterial populations from caecum were analysed. CLA supplementation was associated with an increase in stomach protein expression, and exerted a prebiotic action on both Bacteroidetes/Prevotella and Akkermansia muciniphila. However, CLA supplementation was not able to override the negative effects of HF diet on Bifidobacterium spp., which was decreased in both HF and HF+CLA groups. Our data show that CLA are able to modulate stomach protein expression and exert a prebiotic effect on specific gut bacterial species.

  14. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice.

    Science.gov (United States)

    Chaplin, Alice; Parra, Pilar; Serra, Francisca; Palou, Andreu

    2015-01-01

    The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA) have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute to body weight regulation. Adult mice were fed either a normal fat (NF, 12% kJ content as fat) or a high-fat (HF, 43% kJ content as fat) diet. In the latter case, half of the animals received daily oral supplementation of CLA. Expression and content of stomach proteins and specific bacterial populations from caecum were analysed. CLA supplementation was associated with an increase in stomach protein expression, and exerted a prebiotic action on both Bacteroidetes/Prevotella and Akkermansia muciniphila. However, CLA supplementation was not able to override the negative effects of HF diet on Bifidobacterium spp., which was decreased in both HF and HF+CLA groups. Our data show that CLA are able to modulate stomach protein expression and exert a prebiotic effect on specific gut bacterial species.

  15. Flavonoid Interaction with a Chitinase from Grape Berry Skin: Protein Identification and Modulation of the Enzymatic Activity

    Directory of Open Access Journals (Sweden)

    Antonio Filippi

    2016-09-01

    Full Text Available In the present study, an antibody raised against a peptide sequence of rat bilitranslocase (anti-peptide Ab was tested on microsomal proteins obtained from red grape berry skin. Previously, this antibody had demonstrated to recognize plant membrane proteins associated with flavonoid binding and transport. Immuno-proteomic assays identified a number of proteins reacting with this particular antibody, suggesting that the flavonoid binding and interaction may be extended not only to carriers of these molecules, but also to enzymes with very different functions. One of these proteins is a pathogenesis-related (PR class IV chitinase, whose in vitro chitinolytic activity was modulated by two of the most representative flavonoids of grape, quercetin and catechin, as assessed by both spectrophotometric and fluorimetric assays in grape microsomes and commercial enzyme preparations. The effect of these flavonoids on the catalysis and its kinetic parameters was also evaluated, evidencing that they determine a hormetic dose-dependent response. These results highlight the importance of flavonoids not only as antioxidants or antimicrobial effectors, but also as modulators of plant growth and stress response. Implications of the present suggestion are here discussed in the light of environment and pesticide-reduction concerns.

  16. Tumor necrosis factor-alpha activates signal transduction in hypothalamus and modulates the expression of pro-inflammatory proteins and orexigenic/anorexigenic neurotransmitters.

    Science.gov (United States)

    Amaral, Maria E; Barbuio, Raquel; Milanski, Marciane; Romanatto, Talita; Barbosa, Helena C; Nadruz, Wilson; Bertolo, Manoel B; Boschero, Antonio C; Saad, Mario J A; Franchini, Kleber G; Velloso, Licio A

    2006-07-01

    Tumor necrosis factor-alpha (TNF-alpha) is known to participate in the wastage syndrome that accompanies cancer and severe infectious diseases. More recently, a role for TNF-alpha in the pathogenesis of type 2 diabetes mellitus and obesity has been shown. Much of the regulatory action exerted by TNF-alpha upon the control of energy stores depends on its action on the hypothalamus. In this study, we show that TNF-alpha activates canonical pro-inflammatory signal transduction pathways in the hypothalamus of rats. These signaling events lead to the transcriptional activation of an early responsive gene and to the induction of expression of cytokines and a cytokine responsive protein such as interleukin-1beta, interleukin-6, interleukin-10 and suppressor of cytokine signalling-3, respectively. In addition, TNF-alpha induces the expression of neurotransmitters involved in the control of feeding and thermogenesis. Thus, TNF-alpha may act directly in the hypothalamus inducing a pro-inflammatory response and the modulation of expression of neurotransmitters involved in energy homeostasis.

  17. Treatment of metabolic syndrome by combination of physical activity and diet needs an optimal protein intake: a randomized controlled trial.

    Science.gov (United States)

    Dutheil, Frédéric; Lac, Gérard; Courteix, Daniel; Doré, Eric; Chapier, Robert; Roszyk, Laurence; Sapin, Vincent; Lesourd, Bruno

    2012-09-17

    The recommended dietary allowance (RDA) for protein intake has been set at 1.0-1.3 g/kg/day for senior. To date, no consensus exists on the lower threshold intake (LTI = RDA/1.3) for the protein intake (PI) needed in senior patients ongoing both combined caloric restriction and physical activity treatment for metabolic syndrome. Considering that age, caloric restriction and exercise are three increasing factors of protein need, this study was dedicated to determine the minimal PI in this situation, through the determination of albuminemia that is the blood marker of protein homeostasis. Twenty eight subjects (19 M, 9 F, 61.8 ± 6.5 years, BMI 33.4 ± 4.1 kg/m²) with metabolic syndrome completed a three-week residential programme (Day 0 to Day 21) controlled for nutrition (energy balance of -500 kcal/day) and physical activity (3.5 hours/day). Patients were randomly assigned in two groups: Normal-PI (NPI: 1.0 g/kg/day) and High-PI (HPI: 1.2 g/kg/day). Then, patients returned home and were followed for six months. Albuminemia was measured at D0, D21, D90 and D180. At baseline, PI was spontaneously 1.0 g/kg/day for both groups. Albuminemia was 40.6 g/l for NPI and 40.8 g/l for HPI. A marginal protein under-nutrition appeared in NPI with a decreased albuminemia at D90 below 35 g/l (34.3 versus 41.5 g/l for HPI, p treatment based on restricted diet and exercise in senior people with metabolic syndrome, the lower threshold intake for protein must be set at 1.2 g/kg/day to maintain blood protein homeostasis.

  18. Cysteine residues of the porcine reproductive and respiratory syndrome virus ORF5a protein are not essential for virus viability.

    Science.gov (United States)

    Sun, Lichang; Zhou, Yan; Liu, Runxia; Li, Yanhua; Gao, Fei; Wang, Xiaomin; Fan, Hongjie; Yuan, Shishan; Wei, Zuzhang; Tong, Guangzhi

    2015-02-02

    ORF5a protein was recently identified as a novel structural protein in porcine reproductive and respiratory syndrome virus (PRRSV). The ORF5a protein possesses two cysteines at positions 29 and 30 that are highly conserved among type 2 PRRSV. In this study, the significance of the ORF5a protein cysteine residues on virus replication was determined based on a type 2 PRRSV cDNA clone (pAJXM). Each cysteine was substituted by serine or glycine and the mutations were introduced into pAJXM. We found that the replacement of cysteine to glycine at position 30 was lethal for virus viability, but all serine mutant clones produced infectious progeny viruses. This data indicated that cysteine residues in the ORF5a protein were not essential for replication of type 2 PRRSV. The bimolecular fluorescence complementation (BiFC) and Co-immunoprecipitation (Co-IP) assay were used to study ORF5a protein interacted with other enveloped proteins. These results showed that ORF5a protein interacted non-covalently with itself and interacted with GP4 and 2b protein. The replacement of cysteine to glycine at position 30 affected the ORF5a protein interacted non-covalently with itself, which may account for the lethal phenotype of mutants carrying substitution of cysteine to glycine at position 30. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Negative Affectivity, Depression, and Resting Heart Rate Variability (HRV as Possible Moderators of Endogenous Pain Modulation in Functional Somatic Syndromes

    Directory of Open Access Journals (Sweden)

    Maaike Van Den Houte

    2018-03-01

    Full Text Available Background: Several studies have shown that patients with functional somatic syndromes (FSS have, on average, deficient endogenous pain modulation (EPM, as well as elevated levels of negative affectivity (NA and high comorbidity with depression and reduced resting heart rate variability (HRV compared to healthy controls (HC. The goals of this study were (1 to replicate these findings and (2 to investigate the moderating role of NA, depression, and resting HRV in EPM efficiency within a patient group with fibromyalgia and/or chronic fatigue syndrome (CFS. Resting HRV was quantified as the root mean square of successive differences between inter-beat intervals (RMSSD in rest, a vagally mediated time domain measure of HRV.Methods: Seventy-eight patients with fibromyalgia and/or CFS and 33 HC completed a counter-irritation paradigm as a measure of EPM efficiency. Participants rated the painfulness of electrocutaneous stimuli (of individually calibrated intensity on the ankle before (baseline phase, during (counter-irritation phase and after (recovery phase the application of a cold pain stimulus on the forearm. A larger reduction in pain in the counter-irritation phase compared to the baseline phase reflects a more efficient EPM.Results: In contrast to our expectations, there was no difference between pain ratings in the baseline compared to counter-irritation phase for both patients and HC. Therefore, reliable conclusions on the moderating effect of NA, depression, and RMSSD could not be made. Surprisingly, patients reported more pain in the recovery compared to the counter-irritation and baseline phase, while HC did not. This latter effect was more pronounced in patients with comorbid depression, patients who rated the painfulness of the counter-irritation stimulus as high and patients who rated the painfulness of the electrocutaneous stimuli as low. We did not manage to successfully replicate the counter-irritation effect in HC or FSS patients

  20. Human protein status modulates brain reward responses to food cues1–3

    NARCIS (Netherlands)

    Griffioen-Roose, S.; Smeets, P.A.M.; Heuvel, van den E.M.; Boesveldt, S.; Finlayson, G.; Graaf, de C.

    2014-01-01

    Background: Protein is indispensable in the human diet, and its intake appears tightly regulated. The role of sensory attributes of foods in protein intake regulation is far from clear. Objective: We investigated the effect of human protein status on neural responses to different food cues with the

  1. REEPs are membrane shaping adapter proteins that modulate specific g protein-coupled receptor trafficking by affecting ER cargo capacity.

    Directory of Open Access Journals (Sweden)

    Susann Björk

    Full Text Available Receptor expression enhancing proteins (REEPs were identified by their ability to enhance cell surface expression of a subset of G protein-coupled receptors (GPCRs, specifically GPCRs that have proven difficult to express in heterologous cell systems. Further analysis revealed that they belong to the Yip (Ypt-interacting protein family and that some REEP subtypes affect ER structure. Yip family comparisons have established other potential roles for REEPs, including regulation of ER-Golgi transport and processing/neuronal localization of cargo proteins. However, these other potential REEP functions and the mechanism by which they selectively enhance GPCR cell surface expression have not been clarified. By utilizing several REEP family members (REEP1, REEP2, and REEP6 and model GPCRs (α2A and α2C adrenergic receptors, we examined REEP regulation of GPCR plasma membrane expression, intracellular processing, and trafficking. Using a combination of immunolocalization and biochemical methods, we demonstrated that this REEP subset is localized primarily to ER, but not plasma membranes. Single cell analysis demonstrated that these REEPs do not specifically enhance surface expression of all GPCRs, but affect ER cargo capacity of specific GPCRs and thus their surface expression. REEP co-expression with α2 adrenergic receptors (ARs revealed that this REEP subset interacts with and alter glycosidic processing of α2C, but not α2A ARs, demonstrating selective interaction with cargo proteins. Specifically, these REEPs enhanced expression of and interacted with minimally/non-glycosylated forms of α2C ARs. Most importantly, expression of a mutant REEP1 allele (hereditary spastic paraplegia SPG31 lacking the carboxyl terminus led to loss of this interaction. Thus specific REEP isoforms have additional intracellular functions besides altering ER structure, such as enhancing ER cargo capacity, regulating ER-Golgi processing, and interacting with select cargo

  2. Functional significance of the conserved residues for the 23-residue module among MTH1 and MutT family proteins.

    Science.gov (United States)

    Fujii, Y; Shimokawa, H; Sekiguchi, M; Nakabeppu, Y

    1999-12-31

    Human MTH1 and Escherichia coli MutT proteins hydrolyze 7, 8-dihydro-8-oxo-dGTP (8-oxo-dGTP) to monophosphate, thus avoiding the incorporation of 8-oxo-7,8-dihydroguanine into nascent DNA. Although only 30 amino acid residues (23%) are identical between MTH1 and MutT, there is a highly conserved region consisting of 23 residues (MTH1, Gly(36)-Gly(58)) with 14 identical residues. A chimeric protein MTH1-Ec, in which the 23-residue sequence of MTH1 was replaced with that of MutT, retains its capability to hydrolyze 8-oxo-dGTP, thereby indicating that the 23-residue sequences of MTH1 and MutT are functionally and structurally equivalent and constitute functional modules. By saturation mutagenesis of the module in MTH1, 14 of the 23 residues proved to be essential to exert 8-oxo-dGTPase activity. For the other 9 residues (40, 42, 44, 46, 47, 49, 50, 54, and 58), positive mutants were obtained, and Arg(50) can be replaced with hydrophobic residues (Val, Leu, or Ile), with a greater stability and higher specific activity of the enzyme. Indispensabilities of Val(39), Ile(45), and Leu(53) indicate that an amphipathic property of alpha-helix I consisting of 14 residues of the module (Thr(44)-Gly(58)) is essential to maintain the stable catalytic surface for 8-oxo-dGTPase.

  3. Medium pH in submerged cultivation modulates differences in the intracellular protein profile of Fusarium oxysporum.

    Science.gov (United States)

    da Rosa-Garzon, Nathália Gonsales; Laure, Hélen Julie; Souza-Motta, Cristina Maria de; Rosa, José César; Cabral, Hamilton

    2017-08-09

    Fusarium oxysporum is a filamentous fungus that damages a wide range of plants and thus causes severe crop losses. In fungal pathogens, the genes and proteins involved in virulence are known to be controlled by environmental pH. Here, we report the influence of culture-medium pH (5, 6, 7, and 8) on the production of degradative enzymes involved in the pathogenesis of F. oxysporum URM 7401 and on the 2D-electrophoresis profile of intracellular proteins in this fungus. F. oxysporum URM 7401 was grown in acidic, neutral, and alkaline culture media in a submerged bioprocess. After 96 hr, the crude extract was processed to enzyme activity assays, while the intracellular proteins were obtained from mycelium and analyzed using 2D electrophoresis and mass spectrometry. We note that the diversity of secreted enzymes was changed quantitatively in different culture-medium pH. Also, the highest accumulated biomass and the intracellular protein profile of F. oxysporum URM 7401 indicate an increase in metabolism in neutral-alkaline conditions. The differential profiles of secreted enzymes and intracellular proteins under the evaluated conditions indicate that the global protein content in F. oxysporum URM 7401 is modulated by extracellular pH.

  4. The effects of wet cupping on serum high-sensitivity C-reactive protein and heat shock protein 27 antibody titers in patients with metabolic syndrome.

    Science.gov (United States)

    Farahmand, Seyed Kazem; Gang, Li Zhi; Saghebi, Seyed Ahmad; Mohammadi, Maryam; Mohammadi, Shabnam; Mohammadi, Ghazaleh; Ferns, Gordan A; Ghanbarzadeh, Majid; Razmgah, Gholamreza Ghayour; Ramazani, Zahra; Ghayour-Mobarhan, Majid; Esmaily, Habibollah; Bahrami Taghanaki, Hamidreza; Azizi, Hoda

    2014-08-01

    It has previously been reported that increased level of serum heat shock proteins (Hsps) antibody in patients with metabolic syndrome. It is possible that the expression of Hsp and inflammatory markers can be affected by cupping and traditional Chinese medicine. There is a little data investigating the effects of cupping on markers of inflammation and Hsp proteins, hence, the objective of this study was evaluation of the effects of wet cupping on serum high-sensitivity C-reactive protein (hs-CRP) and Hsp27 antibody titers in patients with metabolic syndrome. Serum Hs-CRP and Hsp27 antibody titers were assessed in samples from 126 patients with metabolic syndrome (18-65 years of age) at baseline, and after 6 and 12 weeks after treatment. One hundred and twenty-six patients were randomly divided into the experimental group treated with wet cupping combined with dietary advice, and the control group treated with dietary advice alone using a random number table. Eight patients in case group and five subjects in control groups were excluded from the study. Data were analyzed using SPSS 15.0 software and a repeated measure ANCOVA. Serum hs-CRP titers did not change significantly between groups (p>0.05) and times (p=0.27). The same result was found for Hsp27 titers (p>0.05). Wet-cupping on the interscapular region has no effect on serum hs-CRP and Hsp27 patients with metabolic syndrome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Recognition of hybrid peptidyl carrier proteins/acyl carrier proteins in nonribosomal peptide synthetase modules by the 4'-phosphopantetheinyl transferases AcpS and Sfp.

    Science.gov (United States)

    Mofid, Mohammad Reza; Finking, Robert; Marahiel, Mohamed A

    2002-05-10

    The acyl carrier proteins (ACPs) of fatty acid synthase and polyketide synthase as well as peptidyl carrier proteins (PCPs) of nonribosomal peptide synthetases are modified by 4'-phosphopantetheinyl transferases from inactive apo-enzymes to their active holo forms by transferring the 4'-phosphopantetheinyl moiety of coenzyme A to a conserved serine residue of the carrier protein. 4'-Phosphopantetheinyl transferases have been classified into two types; the AcpS type accepts ACPs of fatty acid synthase and some ACPs of type II polyketide synthase as substrates, whereas the Sfp type exhibits an extraordinarily broad substrate specificity. Based on the previously published co-crystal structure of Bacillus subtilis AcpS and ACP that provided detailed information about the interacting residues of the two proteins, we designed a novel hybrid PCP by replacing the Bacillus brevis TycC3-PCP helix 2 with the corresponding helix of B. subtilis ACP that contains the interacting residues. This was performed for the PCP domain as a single protein as well as for the TycA-PCP domain within the nonribosomal peptide synthetase module TycA from B. brevis. Both resulting proteins, designated hybrid PCP (hPCP) and hybrid TycA (hTycA), were modified in vivo during heterologous expression in Escherichia coli (hPCP, 51%; hTycA, 75%) and in vitro with AcpS as well as Sfp to 100%. The designated hTycA module contains two other domains: an adenylation domain (activating phenylalanine to Phe-AMP and afterward transferring the Phe to the PCP domain) and an epimerization domain (converting the PCP-bound l-Phe to d-Phe). We show here that the modified PCP domain of hTycA communicates with the adenylation domain and that the co-factor of holo-hPCP is loaded with Phe. However, communication between the hybrid PCP and the epimerization domain seems to be disabled. Nevertheless, hTycA is recognized by the next proline-activating elongation module TycB1 in vitro, and the dipeptide is formed and

  6. Regenerating Gene Protein as a Novel Autoantigen in the Pathogenesis of Sjögren’s Syndrome

    Directory of Open Access Journals (Sweden)

    Takashi Fujimoto

    2015-12-01

    Full Text Available Sjögren’s syndrome, an autoimmune disease characterized by exocrine gland dysfunction leading to dry mouth and dry eye diseases, is typified by lymphoplasmacytic infiltrations and a progressive destruction of the salivary and lacrimal glands. Despite an ever-increasing focus on identifying the underlying etiology of Sjögren’s syndrome, the factors that initiate this autoimmune disease and the mechanisms that cause the subsequent exocrine gland dysfunction remain a mystery. The original explanatory concept for the pathogenesis of Sjögren’s syndrome proposed a specific, self-perpetuating, immune-mediated loss of acinar and ductal cells as the principal cause of salivary gland dysfunction. We highlight the possible involvement of regenerating gene (Reg in the regeneration and destruction of salivary gland acinar and ductal cells in Sjögren’s syndrome. The Reg gene was originally isolated as a gene specifically overexpressed in regenerating pancreatic islets and constitutes a growth factor family (Reg family. We describe how salivary gland dysfunction is initiated and maintained and how it can be regenerated or progressed, mediated by the Reg gene, Reg protein, and anti-REG autoantibodies in Sjögren’s syndrome.

  7. Oxidant production and SOD1 protein expression in single skeletal myofibers from Down syndrome mice

    Directory of Open Access Journals (Sweden)

    Patrick M. Cowley

    2017-10-01

    Full Text Available Down syndrome (DS is a genetic condition caused by the triplication of chromosome 21. Persons with DS exhibit pronounced muscle weakness, which also occurs in the Ts65Dn mouse model of DS. Oxidative stress is thought to be an underlying factor in the development of DS-related pathologies including muscle dysfunction. High-levels of oxidative stress have been attributed to triplication and elevated expression of superoxide dismutase 1 (SOD1; a gene located on chromosome 21. The elevated expression of SOD1 is postulated to increase production of hydrogen peroxide and cause oxidative injury and cell death. However, it is unknown whether SOD1 protein expression is associated with greater oxidant production in skeletal muscle from Ts65Dn mice. Thus, our objective was to assess levels of SOD1 expression and oxidant production in skeletal myofibers from the flexor digitorum brevis obtained from Ts65Dn and control mice. Measurements of oxidant production were obtained from myofibers loaded with 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA in the basal state and following 15 min of stimulated unloaded contraction. Ts65Dn myofibers exhibited a significant decrease in basal DCF emissions (p 0.05. Myofibers from Ts65Dn mice tended to be smaller and myonuclear domain was lower (p < 0.05. In summary, myofibers from Ts65Dn mice exhibited decreased basal DCF emissions that were coupled with elevated protein expression of SOD1. Stimulated contraction in isolated myofibers did not affect DCF emissions in either group. These findings suggest the skeletal muscle dysfunction in the adult Ts65Dn mouse is not associated with skeletal muscle oxidative stress.

  8. Role of Shwachman-Bodian-Diamond syndrome protein in translation machinery and cell chemotaxis: a comparative genomics approach

    Directory of Open Access Journals (Sweden)

    Vasieva O

    2011-09-01

    Full Text Available Olga VasievaInstitute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Fellowship for the Interpretation of Genomes, Burr Ridge, IL, USAAbstract: Shwachman-Bodian-Diamond syndrome (SBDS is linked to a mutation in a single gene. The SBDS proinvolved in RNA metabolism and ribosome-associated functions, but SBDS mutation is primarily linked to a defect in polymorphonuclear leukocytes unable to orient correctly in a spatial gradient of chemoattractants. Results of data mining and comparative genomic approaches undertaken in this study suggest that SBDS protein is also linked to tRNA metabolism and translation initiation. Analysis of crosstalk between translation machinery and cytoskeletal dynamics provides new insights into the cellular chemotactic defects caused by SBDS protein malfunction. The proposed functional interactions provide a new approach to exploit potential targets in the treatment and monitoring of this disease.Keywords: Shwachman-Bodian-Diamond syndrome, wybutosine, tRNA, chemotaxis, translation, genomics, gene proximity

  9. Mycolactone activation of Wiskott-Aldrich syndrome proteins underpins Buruli ulcer formation.

    Science.gov (United States)

    Guenin-Macé, Laure; Veyron-Churlet, Romain; Thoulouze, Maria-Isabel; Romet-Lemonne, Guillaume; Hong, Hui; Leadlay, Peter F; Danckaert, Anne; Ruf, Marie-Thérèse; Mostowy, Serge; Zurzolo, Chiara; Bousso, Philippe; Chrétien, Fabrice; Carlier, Marie-France; Demangel, Caroline

    2013-04-01

    Mycolactone is a diffusible lipid secreted by the human pathogen Mycobacterium ulcerans, which induces the formation of open skin lesions referred to as Buruli ulcers. Here, we show that mycolactone operates by hijacking the Wiskott-Aldrich syndrome protein (WASP) family of actin-nucleating factors. By disrupting WASP autoinhibition, mycolactone leads to uncontrolled activation of ARP2/3-mediated assembly of actin in the cytoplasm. In epithelial cells, mycolactone-induced stimulation of ARP2/3 concentrated in the perinuclear region, resulting in defective cell adhesion and directional migration. In vivo injection of mycolactone into mouse ears consistently altered the junctional organization and stratification of keratinocytes, leading to epidermal thinning, followed by rupture. This degradation process was efficiently suppressed by coadministration of the N-WASP inhibitor wiskostatin. These results elucidate the molecular basis of mycolactone activity and provide a mechanism for Buruli ulcer pathogenesis. Our findings should allow for the rationale design of competitive inhibitors of mycolactone binding to N-WASP, with anti-Buruli ulcer therapeutic potential.

  10. C-reactive protein level and obesity as cardiovascular risk factors in polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Eda Ülkü Uludağ

    2013-09-01

    Full Text Available Objective: To investigate the role of C-reactive protein(CRP level elevation and obesity for the increased cardiovasculardisease risk in polycystic ovary syndrome(PCOS.Methods: A hundred and nine patients with PCOS and 30age matched healthy volunteers with regular menstrualcycle are involved in the study. PCOS group is furthersubdivided into three subgroups according to the bodymass index (BMI. Subgroups included 54 with BMI30. Blood samplesfor glucose, insulin, uric acid, and CRP were collected inthe morning after overnight fasting (12 hours. Homeostasismodel assessment-insulin resistance (HOMA-IRwas calculated. Results: Fasting blood glucose, insulin,and HOMA-IR was significantly higher in PCOS group(p=0.02, p=0.01 and p=0.02. CRP level was higher insubgroup with BMI>30. High CRP level in PCOS wasfound to be independent from BMI (p30.When compared with the control group high insulin levelwas the only to be statistically significant in obese PCOSpatients (p=0.005. HOMA-IR was higher in PCOS subgroupwith BMI>30 when compared with controls and thePCOS subgroup with BMI<25 (p<0.001, p= 0.003.Conclusion: Obesity, hyperinsulinemia, and high CRPlevels are seemed to be related and potentiating eachother in PCOS. Struggling with obesity is one of the mostimportant issues for preventive medicine.Key words: PCOS, CRP, obesity, cardiovascular risk

  11. Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response.

    Science.gov (United States)

    Ciccia, Alberto; Huang, Jen-Wei; Izhar, Lior; Sowa, Mathew E; Harper, J Wade; Elledge, Stephen J

    2014-12-30

    The signal transduction pathway of the DNA damage response (DDR) is activated to maintain genomic integrity following DNA damage. The DDR promotes genomic integrity by regulating a large network of cellular activities that range from DNA replication and repair to transcription, RNA splicing, and metabolism. In this study we define an interaction between the DDR factor NBS1 and TCOF1, a nucleolar protein that regulates ribosomal DNA (rDNA) transcription and is mutated in Treacher Collins syndrome. We show that NBS1 relocalizes to nucleoli after DNA damage in a manner dependent on TCOF1 and on casein kinase II and ATM, which are known to modify TCOF1 by phosphorylation. Moreover, we identify a putative ATM phosphorylation site that is required for NBS1 relocalization to nucleoli in response to DNA damage. Last, we report that TCOF1 promotes cellular resistance to DNA damaging agents. Collectively, our findings identify TCOF1 as a DDR factor that could cooperate with ATM and NBS1 to suppress inappropriate rDNA transcription and maintain genomic integrity after DNA damage.

  12. Metabolic syndrome and C-reactive protein in patients with depressive disorder on antidepressive medication.

    Science.gov (United States)

    Stanojević, Albina; Popović, Irena; Nenadović, Milutin; Ravanić, Dragan; Paunović-Milosavljević, Gordana

    2013-01-01

    Recurrent depression is a psychiatric disorder of which etiology and pathogenesis might be related to immune response. Metabolic Syndrome (MetS) and its components are also strongly associated with elevated inflammatory indicators, as so as the body mass index (BMI) and total cholesterol levels. Objective of this study was to investigate if there was any difference in C-reactive protein (CRP) levels in patients with recurrent depressive disorder, treated with antidepressants, compared to a healthy control group of subjects and if there was an association between increased CRP levels and the presence of MetS in these two groups. Sixty subjects entered the study; of these 35 patients with the diagnosis of recurrent depressive disorder, while the healthy control group included 25 subjects. MetS was defined according to the NCEP ATP III criteria. The cut-off point for CRP was set at > 5 mg/L. There was no statistically significant difference in the prevalence of MetS and CRP values between the studied groups. Waist circumference and total cholesterol levels were significantly higher in the experimental group. Patients that fulfilled the criteria for MetS showed significantly higher values of central obesity and arterial hypertension in the experimental group as well. The elevated CRP levels were associated with increased frequency of MetS in depressed patients. Both CRP levels and metabolic risk profile screening, according to the international criteria, may be beneficial in order to obtain better assessment for depressive long-term medicated patients.

  13. S-Nitrosothiols modulate G protein-coupled receptor signaling in a reversible and highly receptor-specific manner

    Directory of Open Access Journals (Sweden)

    Mönkkönen Kati S

    2005-04-01

    Full Text Available Abstract Background Recent studies indicate that the G protein-coupled receptor (GPCR signaling machinery can serve as a direct target of reactive oxygen species, including nitric oxide (NO and S-nitrosothiols (RSNOs. To gain a broader view into the way that receptor-dependent G protein activation – an early step in signal transduction – might be affected by RSNOs, we have studied several receptors coupling to the Gi family of G proteins in their native cellular environment using the powerful functional approach of [35S]GTPγS autoradiography with brain cryostat sections in combination with classical G protein activation assays. Results We demonstrate that RSNOs, like S-nitrosoglutathione (GSNO and S-nitrosocysteine (CysNO, can modulate GPCR signaling via reversible, thiol-sensitive mechanisms probably involving S-nitrosylation. RSNOs are capable of very targeted regulation, as they potentiate the signaling of some receptors (exemplified by the M2/M4 muscarinic cholinergic receptors, inhibit others (P2Y12 purinergic, LPA1lysophosphatidic acid, and cannabinoid CB1 receptors, but may only marginally affect signaling of others, such as adenosine A1, μ-opioid, and opiate related receptors. Amplification of M2/M4 muscarinic responses is explained by an accelerated rate of guanine nucleotide exchange, as well as an increased number of high-affinity [35S]GTPγS binding sites available for the agonist-activated receptor. GSNO amplified human M4 receptor signaling also under heterologous expression in CHO cells, but the effect diminished with increasing constitutive receptor activity. RSNOs markedly inhibited P2Y12 receptor signaling in native tissues (rat brain and human platelets, but failed to affect human P2Y12 receptor signaling under heterologous expression in CHO cells, indicating that the native cellular signaling partners, rather than the P2Y12 receptor protein, act as a molecular target for this action. Conclusion These in vitro studies

  14. Recombinant Protein-Based Assays for Detection of Antibodies to Severe Acute Respiratory Syndrome Coronavirus Spike and Nucleocapsid Proteins▿

    Science.gov (United States)

    Haynes, Lia M.; Miao, Congrong; Harcourt, Jennifer L.; Montgomery, Joel M.; Le, Mai Quynh; Dryga, Sergey A.; Kamrud, Kurt I.; Rivers, Bryan; Babcock, Gregory J.; Oliver, Jennifer Betts; Comer, James A.; Reynolds, Mary; Uyeki, Timothy M.; Bausch, Daniel; Ksiazek, Thomas; Thomas, William; Alterson, Harold; Smith, Jonathan; Ambrosino, Donna M.; Anderson, Larry J.

    2007-01-01

    Recombinant severe acute respiratory syndrome (SARS) nucleocapsid and spike protein-based immunoglobulin G immunoassays were developed and evaluated. Our assays demonstrated high sensitivity and specificity to the SARS coronavirus in sera collected from patients as late as 2 years postonset of symptoms. These assays will be useful not only for routine SARS coronavirus diagnostics but also for epidemiological and antibody kinetic studies. PMID:17229882

  15. Egg consumption modulates HDL lipid composition and increases the cholesterol-accepting capacity of serum in metabolic syndrome.

    Science.gov (United States)

    Andersen, Catherine J; Blesso, Christopher N; Lee, Jiyoung; Barona, Jacqueline; Shah, Dharika; Thomas, Michael J; Fernandez, Maria Luz

    2013-06-01

    We recently demonstrated that daily whole egg consumption during moderate carbohydrate restriction leads to greater increases in plasma HDL-cholesterol (HDL-C) and improvements in HDL profiles in metabolic syndrome (MetS) when compared to intake of a yolk-free egg substitute. We further investigated the effects of this intervention on HDL composition and function, hypothesizing that the phospholipid species present in egg yolk modulate HDL lipid composition to increase the cholesterol-accepting capacity of subject serum. Men and women classified with MetS were randomly assigned to consume either three whole eggs (EGG, n = 20) per day or the equivalent amount of egg substitute (SUB, n = 17) throughout a 12-week moderate carbohydrate-restricted (25-30 % of energy) diet. Relative to other HDL lipids, HDL-cholesteryl ester content increased in all subjects, with greater increases in the SUB group. Further, HDL-triacylglycerol content was reduced in EGG group subjects with normal baseline plasma HDL-C, resulting in increases in HDL-CE/TAG ratios in both groups. Phospholipid analysis by mass spectrometry revealed that HDL became enriched in phosphatidylethanolamine in the EGG group, and that EGG group HDL better reflected sphingomyelin species present in the whole egg product at week 12 compared to baseline. Further, macrophage cholesterol efflux to EGG subject serum increased from baseline to week 12, whereas no changes were observed in the SUB group. Together, these findings suggest that daily egg consumption promotes favorable shifts in HDL lipid composition and function beyond increasing plasma HDL-C in MetS.

  16. Proteomic profiling of SupT1 cells reveal modulation of host proteins by HIV-1 Nef variants.

    Directory of Open Access Journals (Sweden)

    Reshu Saxena

    Full Text Available Nef is an accessory viral protein that promotes HIV-1 replication, facilitating alterations in cellular pathways via multiple protein-protein interactions. The advent of proteomics has expanded the focus on better identification of novel molecular pathways regulating disease progression. In this study, nef was sequenced from randomly selected patients, however, sequence variability identified did not elicited any specific mutation that could have segregated HIV-1 patients in different stages of disease progression. To explore the difference in Nef functionality based on sequence variability we used proteomics approach. Proteomic profiling was done to compare the effect of Nef variants in host cell protein expression. 2DGE in control and Nef transfected SupT1 cells demonstrated several differentially expressed proteins. Fourteen protein spots were detected with more than 1.5 fold difference. Significant down regulation was seen in six unique protein spots in the Nef treated cells. Proteins were identified as Cyclophilin A, EIF5A-1 isoform B, Rho GDI 1 isoform a, VDAC1, OTUB1 and α-enolase isoform 1 (ENO1 through LC-MS/MS. The differential expression of the 6 proteins was analyzed by Real time PCR, Western blotting and Immunofluorescence studies with two Nef variants (RP14 and RP01 in SupT1 cells. There was contrasting difference between the effect of these Nef variants upon the expression of these six proteins. Downregulation of α-enolase (ENO1, VDAC1 and OTUB1 was more significant by Nef RP01 whereas Cyclophilin A and RhoGDI were found to be more downregulated by Nef RP14. This difference in Nef variants upon host protein expression was also studied through a site directed mutant of Nef RP01 (55AAAAAAA61 and the effect was found to be reversed. Deciphering the role of these proteins mediated by Nef variants will open a new avenue of research in understanding Nef mediated pathogenesis. Overall study determines modulation of cellular protein

  17. A Novel Prebiotic Blend Product Prevents Irritable Bowel Syndrome in Mice by Improving Gut Microbiota and Modulating Immune Response

    Directory of Open Access Journals (Sweden)

    Qian Chen

    2017-12-01

    Full Text Available Irritable bowel syndrome (IBS is the most common functional gastrointestinal disorder yet it still lacks effective prevention therapies. The aim of this study is to determine whether a novel prebiotic blend (PB composed of fructo-oligosaccharide (FOS, galactooligosaccharide (GOS, inulin and anthocyanins could be effective in preventing the development of IBS. We explored the possible mechanisms both in animal and in cells. Post-infectious IBS models in C57BL/6 mice were established and were pretreated with the PB, PB and probiotic strains 8 weeks in advance of infection. Eight weeks after infection, intestinal tissues were collected for assessing histomorphology, visceral sensitivity, barrier function, pro-inflammatory cytokines expression and proteomics analysis. Fecal samples were also collected for microbiota analysis. The pro-inflammatory cytokines expression in Caco-2 cells were evaluated after co-incubation with PB and Salmonella typhimurium 14028. The results showed that PB significantly decreased the pro-inflammatory cytokines both in infected Caco-2 cells and PI-IBS models. The loss of body weight, decreased expression of tight junction protein Occludin (OCLN, and changes of the microbiota composition induced by infections could be greatly improved by PB intervention (p < 0.05. The proteomics analysis revealed that this function was associated with Peroxisome proliferator-activated receptor (PPARγ pathway.

  18. A Novel Prebiotic Blend Product Prevents Irritable Bowel Syndrome in Mice by Improving Gut Microbiota and Modulating Immune Response

    Science.gov (United States)

    Chen, Qian; Ren, Yiping; Lu, Jihong; Bartlett, Mark; Chen, Lei; Zhang, Yan; Guo, Xiaokui; Liu, Chang

    2017-01-01

    Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder yet it still lacks effective prevention therapies. The aim of this study is to determine whether a novel prebiotic blend (PB) composed of fructo-oligosaccharide (FOS), galactooligosaccharide (GOS), inulin and anthocyanins could be effective in preventing the development of IBS. We explored the possible mechanisms both in animal and in cells. Post-infectious IBS models in C57BL/6 mice were established and were pretreated with the PB, PB and probiotic strains 8 weeks in advance of infection. Eight weeks after infection, intestinal tissues were collected for assessing histomorphology, visceral sensitivity, barrier function, pro-inflammatory cytokines expression and proteomics analysis. Fecal samples were also collected for microbiota analysis. The pro-inflammatory cytokines expression in Caco-2 cells were evaluated after co-incubation with PB and Salmonella typhimurium 14028. The results showed that PB significantly decreased the pro-inflammatory cytokines both in infected Caco-2 cells and PI-IBS models. The loss of body weight, decreased expression of tight junction protein Occludin (OCLN), and changes of the microbiota composition induced by infections could be greatly improved by PB intervention (p < 0.05). The proteomics analysis revealed that this function was associated with Peroxisome proliferator-activated receptor (PPAR)γ pathway. PMID:29232851

  19. The catechin flavonoid reduces proliferation and induces apoptosis of murine lymphoma cells LB02 through modulation of antiapoptotic proteins

    Directory of Open Access Journals (Sweden)

    Daniela Laura Papademetrio

    2013-03-01

    Full Text Available Flavonoids are products of secondary metabolism of plants. They are present in herbs and trees and also act as natural chemopreventives and anticancer agents. Ligaria cuneifolia (Ruiz & Pav. Tiegh., Loranthaceae, is a hemiparasite species that belongs to Argentine flora. Phytochemical studies have disclosed the presence of quercetin, catechin-4β-ol and pro-anthocyanidine as polyphenolic compounds in the active extracts. We previously demonstrated that ethyl acetate extract was capable of reducing cell proliferation and inducing apoptotic death of lymphoid tumor cells. The aim of the current study is to determine whether or not catechin, isolated from L. cuneifolia extracts can induce leukemia cell death and to determine its effect on the cytoplasmatic proteins that modulate cell survival. Our results show that catechin can reduce proliferation of murine lymphoma cell line LB02. The effect is mediated by apoptosis at concentrations upper to 100 µg/mL. Cell death is related to the loss of mitochondrial membrane potential (ΔΨm and a down regulation of survivin and Bcl-2 together with the increase of pro-apoptotic protein Bax. In summary, the current study indicates that catechin present in the extract of L. cuneifolia is in part, responsible for the anti-proliferative activity of whole extracts by induction of ΔΨm disruption and modulation of the anti-apoptotic proteins over expressed in tumor cells. These results give new findings into the potential anticancer and chemopreventive activities of L. cuneifolia.

  20. Modulation of valosin-containing protein by Kyoto University Substances (KUS as a novel therapeutic strategy for ischemic neuronal diseases

    Directory of Open Access Journals (Sweden)

    Masayuki Hata

    2017-01-01

    Full Text Available Retinal ischemia causes several vision-threatening diseases, including diabetic retinopathy, retinal artery occlusion, and retinal vein occlusion. Intracellular adenosine triphosphate (ATP depletion and subsequent induced endoplasmic reticulum (ER stress are proposed to be the underlying mechanisms of ischemic retinal cell death. Recently, we found that a naphthalene derivative can inhibit ATPase activity of valosin-containing protein, universally expressed within various types of cells, including retinal neural cells, with strong cytoprotective activity. Based on the chemical structure, we developed novel valosin-containing protein modulators, Kyoto University Substances (KUSs, that not only inhibit intracellular ATP depletion, but also ameliorate ER stress. Suppressing ER stress by KUSs is associated with neural cell survival in animal models of several neurodegenerative diseases, such as glaucoma and retinal degeneration. Given that a major pathology of ischemic retinal diseases, other than intracellular ATP depletion, is ER stress-induced cell death, KUSs may provide a novel strategy for cell protection in ischemic conditions. Hence, we investigated the efficacy of KUS121 in a rat model of retinal ischemic injury. Intravitreal injections of KUS121, which is clinically preferable route of drug administration in retinal diseases, significantly suppressed inner retinal thinning and retinal cell death, and maintained visual functions. Valosin-containing protein modulation by KUS is a promising novel therapeutic strategy for ischemic retinal diseases.

  1. The catechin flavonoid reduces proliferation and induces apoptosis of murine lymphoma cells LB02 through modulation of antiapoptotic proteins

    Directory of Open Access Journals (Sweden)

    Daniela Laura Papademetrio

    2013-06-01

    Full Text Available Flavonoids are products of secondary metabolism of plants. They are present in herbs and trees and also act as natural chemopreventives and anticancer agents. Ligaria cuneifolia (Ruiz & Pav. Tiegh., Loranthaceae, is a hemiparasite species that belongs to Argentine flora. Phytochemical studies have disclosed the presence of quercetin, catechin-4β-ol and pro-anthocyanidine as polyphenolic compounds in the active extracts. We previously demonstrated that ethyl acetate extract was capable of reducing cell proliferation and inducing apoptotic death of lymphoid tumor cells. The aim of the current study is to determine whether or not catechin, isolated from L. cuneifolia extracts can induce leukemia cell death and to determine its effect on the cytoplasmatic proteins that modulate cell survival. Our results show that catechin can reduce proliferation of murine lymphoma cell line LB02. The effect is mediated by apoptosis at concentrations upper to 100 µg/mL. Cell death is related to the loss of mitochondrial membrane potential (ΔΨm and a down regulation of survivin and Bcl-2 together with the increase of pro-apoptotic protein Bax. In summary, the current study indicates that catechin present in the extract of L. cuneifolia is in part, responsible for the anti-proliferative activity of whole extracts by induction of ΔΨm disruption and modulation of the anti-apoptotic proteins over expressed in tumor cells. These results give new findings into the potential anticancer and chemopreventive activities of L. cuneifolia.

  2. Competition between the DNA unwinding and strand pairing activities of the Werner and Bloom syndrome proteins

    Directory of Open Access Journals (Sweden)

    Orren David K

    2006-01-01

    Full Text Available Abstract Background The premature aging and cancer-prone Werner and Bloom syndromes are caused by defects in the RecQ helicase enzymes WRN and BLM, respectively. Recently, both WRN and BLM (as well as several other RecQ members have been shown to possess a strand annealing activity in addition to the requisite DNA unwinding activity. Since an annealing function would appear to directly oppose the action of a helicase, we have examined in this study the dynamic equilibrium between unwinding and annealing mediated by either WRN or BLM. Results Our investigation into the competition between annealing and unwinding demonstrates that, under standard reaction conditions, WRN- or BLM-mediated annealing can partially or completely mask unwinding as measured in standard helicase assays. Several strategies were employed to suppress the annealing activity so that the actual strength of WRN- or BLM-dependent unwinding could be more accurately assessed. Interestingly, if a DNA oligomer complementary to one strand of the DNA substrate to be unwound is added during the helicase reaction, both WRN and BLM unwinding is enhanced, presumably by preventing protein-mediated re-annealing. This strategy allowed measurement of WRN-catalyzed unwinding of long (80 base pair duplex regions and fully complementary, blunt-ended duplexes, both of which were otherwise quite refractory to the helicase activity of WRN. Similarly, the addition of trap strand stimulated the ability of BLM to unwind long and blunt-ended duplexes. The stimulatory effect of the human replication protein A (hRPA, the eukaryotic single-stranded DNA binding protein on both WRN- and BLM-dependent unwinding was also re-examined in light of its possible role in preventing re-annealing. Our results show that hRPA influences the outcome of WRN and BLM helicase assays by both inhibiting re-annealing and directly promoting unwinding, with the larger contribution from the latter mechanism. Conclusion These

  3. Reverse micelles as a tool for probing solvent modulation of protein dynamics: Reverse micelle encapsulated hemoglobin☆

    OpenAIRE

    Roche, Camille J.; Dantsker, David; Heller, Elizabeth R.; Sabat, Joseph E.; Friedman, Joel M.

    2013-01-01

    Hydration waters impact protein dynamics. Dissecting the interplay between hydration waters and dynamics requires a protein that manifests a broad range of dynamics. Proteins in reverse micelles (RMs) have promise as tools to achieve this objective because the water content can be manipulated. Hemoglobin is an appropriate tool with which to probe hydration effects. We describe both a protocol for hemoglobin encapsulation in reverse micelles and a facile method using PEG and cosolvents to mani...

  4. Optimisation of ultrafiltration of a highly viscous protein solution using spiral-wound modules

    DEFF Research Database (Denmark)

    Lipnizki, Jens; Casani, S.; Jonsson, Gunnar Eigil

    2005-01-01

    and not by the high osmotic pressure. In laboratory experiments, the concept of the critical flux was proved to reduce fouling. Additionally, the reduction of the effect of concentration polarisation by spacers at laboratory and pilot scale was evaluated. While at laboratory scale the spacers influenced the mass...... transfer, the effect in spiral-wound modules was low. However, pilot plant experiments showed that operating at low pressures to reduce the fouling and avoid local fouling required a spacer with a low pressure drop along the module. A cleaning strategy including a hygienic evaluation was tested...

  5. Sorafenib modulates the gene expression of multi-drug resistance mediating ATP-binding cassette proteins in experimental hepatocellular carcinoma.

    Science.gov (United States)

    Hoffmann, Katrin; Franz, Clemens; Xiao, Zhi; Mohr, Elvira; Serba, Susanne; Büchler, Markus W; Schemmer, Peter

    2010-11-01

    High ATP-binding cassette (ABC) protein expression leads to intrinsic drug resistance of hepatocellular carcinoma (HCC). The aim of this study was to investigate the potential chemosensitizing effects of sorafenib on the multi-drug resistance (MDR) phenotype. The ABC-protein gene expression and the cellular survival were determined by RT-PCR analysis and MTT assay in HUH7 cells. Sorafenib inhibits MDR. The ABC-protein mRNA expression decreased by up to 51% (p ≤ 0.01). Addition of sorafenib to conventional chemotherapy restored the chemosensitivity. Combination of gemcitabine plus sorafenib decreased the ABC-protein mRNA levels by up to 77%, compared to gemcitabine monotherapy (p ≤ 0.001). Doxorubicin plus sorafenib decreased the ABC-protein mRNA levels up to 74% compared to doxorubicin monotherapy (p ≤ 0.001). This study provides evidence that the MDR phenotype of HCC cells can be modulated by the multi-kinase inhibitor sorafenib and consequentially may lead towards personalized therapies in patients with highly resistant tumors.

  6. O6-alkylguanine-DNA transferase (SNAP) as capture module for site-specific covalent bioconjugation of targeting protein on nanoparticles

    Science.gov (United States)

    Mazzucchelli, Serena; Colombo, Miriam; Galbiati, Elisabetta; Corsi, Fabio; Montenegro, Josè M.; Parak, Wolfgang J.; Prosperi, Davide

    2013-02-01

    A bimodular genetic fusion comprising a delivery module (scFv) and a capture module (SNAP) is proposed as a novel strategy for the biologically mediated site-specific covalent conjugation of targeting proteins to nanoparticles. ScFv800E6, an scFv mutant selective for HER2 antigen overexpressed in breast cancer cells was chosen as targeting ligand. The fusion protein SNAP-scFv was irreversibly immobilized on magnetofluorescent nanoparticles through the recognition between SNAP module and pegylated O6-alkylguanine derivative. The targeting efficiency of the resulting nanoparticle against HER2-positive breast cancer cells was assessed by flow cytometry and immunofluorescence.

  7. The Ginkgo biloba Extract EGb 761 Modulates Proteasome Activity and Polyglutamine Protein Aggregation

    Directory of Open Access Journals (Sweden)

    Marcel Stark

    2014-01-01

    Full Text Available The standardized Ginkgo biloba extract EGb 761 has well-described antioxidative activities and effects on different cytoprotective signaling pathways. Consequently, a potential use of EGb 761 in neurodegenerative diseases has been proposed. A common characteristic feature of a variety of such disorders is the pathologic formation of protein aggregates, suggesting a crucial role for protein homeostasis. In this study, we show that EGb 761 increased the catalytic activity of the proteasome and enhanced protein degradation in cultured cells. We further investigated this effect in a cellular model of Huntington’s disease (HD by employing cells expressing pathologic variants of a polyglutamine protein (polyQ protein. We show that EGb 761 affected these cells by (i increasing proteasome activity and (ii inducing a more efficient degradation of aggregation-prone proteins. These results demonstrate a novel activity of EGb 761 on protein aggregates by enhancing proteasomal protein degradation, suggesting a therapeutic use in neurodegenerative disorders with a disturbed protein homeostasis.

  8. The Arabidopsis CROWDED NUCLEI genes regulate seed germination by modulating degradation of ABI5 protein.

    Science.gov (United States)

    Zhao, Wenming; Guan, Chunmei; Feng, Jian; Liang, Yan; Zhan, Ni; Zuo, Jianru; Ren, Bo

    2016-07-01

    In Arabidopsis, the phytohormone abscisic acid (ABA) plays a vital role in inhibiting seed germination and in post-germination seedling establishment. In the ABA signaling pathway, ABI5, a basic Leu zipper transcription factor, has important functions in the regulation of seed germination. ABI5 protein localizes in nuclear bodies, along with AFP, COP1, and SIZ1, and was degraded through the 26S proteasome pathway. However, the mechanisms of ABI5 nuclear body formation and ABI5 protein degradation remain obscure. In this study, we found that the Arabidopsis CROWDED NUCLEI (CRWN) proteins, predicted nuclear matrix proteins essential for maintenance of nuclear morphology, also participate in ABA-controlled seed germination by regulating the degradation of ABI5 protein. During seed germination, the crwn mutants are hypersensitive to ABA and have higher levels of ABI5 protein compared to wild type. Genetic analysis suggested that CRWNs act upstream of ABI5. The observation that CRWN3 colocalizes with ABI5 in nuclear bodies indicates that CRWNs might participate in ABI5 protein degradation in nuclear bodies. Moreover, we revealed that the extreme C-terminal of CRWN3 protein is necessary for its function in the response to ABA in germination. Our results suggested important roles of CRWNs in ABI5 nuclear body organization and ABI5 protein degradation during seed germination. © 2015 Institute of Botany, Chinese Academy of Sciences.

  9. Induction of Macrophage Chemotaxis by Aortic Extracts from Patients with Marfan Syndrome Is Related to Elastin Binding Protein

    Science.gov (United States)

    Guo, Gao; Gehle, Petra; Doelken, Sandra; Martin-Ventura, José Luis; von Kodolitsch, Yskert; Hetzer, Roland; Robinson, Peter N.

    2011-01-01

    Marfan syndrome is an autosomal dominantly inherited disorder of connective tissue with prominent skeletal, ocular, and cardiovascular manifestations. Aortic aneurysm and dissection are the major determinants of premature death in untreated patients. In previous work, we showed that extracts of aortic tissues from the mgR mouse model of Marfan syndrome showed increased chemotactic stimulatory activity related to the elastin-binding protein. Aortic samples were collected from 6 patients with Marfan syndrome and 8 with isolated aneurysms of the ascending aorta. Control samples were obtained from 11 organ donors without known vascular or connective tissue diseases. Soluble proteins extracted from the aortic samples of the two patient groups were compared against buffer controls and against the aortic samples from controls with respect to the ability to induce macrophage chemotaxis as measured using a modified Boyden chamber, as well as the reactivity to a monoclonal antibody BA4 against bioactive elastin peptides using ELISA. Samples from Marfan patients displayed a statistically significant increase in chemotactic inductive activity compared to control samples. Additionally, reactivity to BA4 was significantly increased. Similar statistically significant increases were identified for the samples from patients with idiopathic thoracic aortic aneurysm. There was a significant correlation between the chemotactic index and BA4 reactivity, and the increases in chemotactic activity of extracts from Marfan patients could be inhibited by pretreatment with lactose, VGVAPG peptides, or BA4, which indicates the involvement of EBP in mediating the effects. Our results demonstrate that aortic extracts of patients with Marfan syndrome can elicit macrophage chemotaxis, similar to our previous study on aortic extracts of the mgR mouse model of Marfan syndrome (Guo et al., Circulation 2006; 114:1855-62). PMID:21647416

  10. Induction of macrophage chemotaxis by aortic extracts from patients with Marfan syndrome is related to elastin binding protein.

    Directory of Open Access Journals (Sweden)

    Gao Guo

    Full Text Available Marfan syndrome is an autosomal dominantly inherited disorder of connective tissue with prominent skeletal, ocular, and cardiovascular manifestations. Aortic aneurysm and dissection are the major determinants of premature death in untreated patients. In previous work, we showed that extracts of aortic tissues from the mgR mouse model of Marfan syndrome showed increased chemotactic stimulatory activity related to the elastin-binding protein. Aortic samples were collected from 6 patients with Marfan syndrome and 8 with isolated aneurysms of the ascending aorta. Control samples were obtained from 11 organ donors without known vascular or connective tissue diseases. Soluble proteins extracted from the aortic samples of the two patient groups were compared against buffer controls and against the aortic samples from controls with respect to the ability to induce macrophage chemotaxis as measured using a modified Boyden chamber, as well as the reactivity to a monoclonal antibody BA4 against bioactive elastin peptides using ELISA. Samples from Marfan patients displayed a statistically significant increase in chemotactic inductive activity compared to control samples. Additionally, reactivity to BA4 was significantly increased. Similar statistically significant increases were identified for the samples from patients with idiopathic thoracic aortic aneurysm. There was a significant correlation between the chemotactic index and BA4 reactivity, and the increases in chemotactic activity of extracts from Marfan patients could be inhibited by pretreatment with lactose, VGVAPG peptides, or BA4, which indicates the involvement of EBP in mediating the effects. Our results demonstrate that aortic extracts of patients with Marfan syndrome can elicit macrophage chemotaxis, similar to our previous study on aortic extracts of the mgR mouse model of Marfan syndrome (Guo et al., Circulation 2006; 114:1855-62.

  11. Non-structural protein 2 of the porcine reproductive and respiratory syndrome (PRRS) virus: a crucial protein in viral pathogenesis, immunity and diagnosis.

    Science.gov (United States)

    Wang, Feng-Xue; Song, Ni; Chen, Li-Zhi; Cheng, Shi-Peng; Wu, Hua; Wen, Yong-Jun

    2013-08-01

    Porcine reproductive and respiratory syndrome (PRRS) is a swine disease of significant economic importance that causes reproductive and respiratory problems in pigs. The replicase non-structural protein 2 (Nsp2) of the porcine reproductive and respiratory syndrome virus (PRRSV) is recognized as the most variable region within the PRRSV genome. This review discusses the molecular characteristics and biological and immunological functions of the PRRSV Nsp2 and its involvement in the virus's pathogenesis. The role of Nsp2 in cell and tissue tropism, replication and growth, and variation and pathogenicity of PRRSV and the differences in virulence among different strains are described in the present review. Nsp2 is an ideal marker for monitoring genetic variation and for developing differential diagnostic tests. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Protein–Protein Interactions Modulate the Docking-Dependent E3-Ubiquitin Ligase Activity of Carboxy-Terminus of Hsc70-Interacting Protein (CHIP)*

    Science.gov (United States)

    Narayan, Vikram; Landré, Vivien; Ning, Jia; Hernychova, Lenka; Muller, Petr; Verma, Chandra; Walkinshaw, Malcolm D.; Blackburn, Elizabeth A.; Ball, Kathryn L.

    2015-01-01

    CHIP is a tetratricopeptide repeat (TPR) domain protein that functions as an E3-ubiquitin ligase. As well as linking the molecular chaperones to the ubiquitin proteasome system, CHIP also has a docking-dependent mode where it ubiquitinates native substrates, thereby regulating their steady state levels and/or function. Here we explore the effect of Hsp70 on the docking-dependent E3-ligase activity of CHIP. The TPR-domain is revealed as a binding site for allosteric modulators involved in determining CHIP's dynamic conformation and activity. Biochemical, biophysical and modeling evidence demonstrate that Hsp70-binding to the TPR, or Hsp70-mimetic mutations, regulate CHIP-mediated ubiquitination of p53 and IRF-1 through effects on U-box activity and substrate binding. HDX-MS was used to establish that conformational-inhibition-signals extended from the TPR-domain to the U-box. This underscores inter-domain allosteric regulation of CHIP by the core molecular chaperones. Defining the chaperone-associated TPR-domain of CHIP as a manager of inter-domain communication highlights the potential for scaffolding modules to regulate, as well as assemble, complexes that are fundamental to protein homeostatic control. PMID:26330542

  13. Novel Entropically Driven Conformation-specific Interactions with Tomm34 Protein Modulate Hsp70 Protein Folding and ATPase Activities

    Czech Academy of Sciences Publication Activity Database

    Durech, M.; Trčka, F.; Man, Petr; Blackburn, E.A.; Hernychová, L.; Dvořáková, P.; Coufalová, D.; Kavan, Daniel; Vojtěšek, B.; Muller, P.

    2016-01-01

    Roč. 15, č. 5 (2016), s. 1710-1727 ISSN 1535-9476 R&D Projects: GA MŠk(CZ) LO1509 EU Projects: Wellcome Trust(CZ) 01527/Z/13/Z Institutional support: RVO:61388971 Keywords : HEAT-SHOCK-PROTEIN * MOLECULAR CHAPERONE DNAK * SUBSTRATE-BINDING DOMAIN * INVASIVE BREAST-CANCER Subject RIV: CE - Biochemistry Impact factor: 6.540, year: 2016

  14. Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins.

    Directory of Open Access Journals (Sweden)

    Pietro Scaturro

    Full Text Available Non-structural protein 1 (NS1 is one of the most enigmatic proteins of the Dengue virus (DENV, playing distinct functions in immune evasion, pathogenesis and viral replication. The recently reported crystal structure of DENV NS1 revealed its peculiar three-dimensional fold; however, detailed information on NS1 function at different steps of the viral replication cycle is still missing. By using the recently reported crystal structure, as well as amino acid sequence conservation, as a guide for a comprehensive site-directed mutagenesis study, we discovered that in addition to being essential for RNA replication, DENV NS1 is also critically required for the production of infectious virus particles. Taking advantage of a trans-complementation approach based on fully functional epitope-tagged NS1 variants, we identified previously unreported interactions between NS1 and the structural proteins Envelope (E and precursor Membrane (prM. Interestingly, coimmunoprecipitation revealed an additional association with capsid, arguing that NS1 interacts via the structural glycoproteins with DENV particles. Results obtained with mutations residing either in the NS1 Wing domain or in the β-ladder domain suggest that NS1 might have two distinct functions in the assembly of DENV particles. By using a trans-complementation approach with a C-terminally KDEL-tagged ER-resident NS1, we demonstrate that the secretion of NS1 is dispensable for both RNA replication and infectious particle production. In conclusion, our results provide an extensive genetic map of NS1 determinants essential for viral RNA replication and identify a novel role of NS1 in virion production that is mediated via interaction with the structural proteins. These studies extend the list of NS1 functions and argue for a central role in coordinating replication and assembly/release of infectious DENV particles.

  15. CHIPMUNK: A Virtual Synthesizable Small-Molecule Library for Medicinal Chemistry, Exploitable for Protein-Protein Interaction Modulators.

    Science.gov (United States)

    Humbeck, Lina; Weigang, Sebastian; Schäfer, Till; Mutzel, Petra; Koch, Oliver

    2018-03-20

    A common issue during drug design and development is the discovery of novel scaffolds for protein targets. On the one hand the chemical space of purchasable compounds is rather limited; on the other hand artificially generated molecules suffer from a grave lack of accessibility in practice. Therefore, we generated a novel virtual library of small molecules which are synthesizable from purchasable educts, called CHIPMUNK (CHemically feasible In silico Public Molecular UNiverse Knowledge base). Altogether, CHIPMUNK covers over 95 million compounds and encompasses regions of the chemical space that are not covered by existing databases. The coverage of CHIPMUNK exceeds the chemical space spanned by the Lipinski rule of five to foster the exploration of novel and difficult target classes. The analysis of the generated property space reveals that CHIPMUNK is well suited for the design of protein-protein interaction inhibitors (PPIIs). Furthermore, a recently developed structural clustering algorithm (StruClus) for big data was used to partition the sub-libraries into meaningful subsets and assist scientists to process the large amount of data. These clustered subsets also contain the target space based on ChEMBL data which was included during clustering. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. MCT-1 protein interacts with the cap complex and modulates messenger RNA translational profiles

    DEFF Research Database (Denmark)

    Reinert, Line; Shi, B; Nandi, S

    2006-01-01

    -regulation of MCT-1 was able to modulate the translation profiles of BCL2L2, TFDP1, MRE11A, cyclin D1, and E2F1 mRNAs, despite equivalent levels of mRNAs in the cytoplasm. Our data establish a role for MCT-1 in translational regulation, and support a linkage between translational control and oncogenesis....

  17. Gene and process level modulation to overcome the bottlenecks of recombinant proteins expression in Pichia pastoris.

    Science.gov (United States)

    Prabhu, Ashish A; Boro, Bibari; Bharali, Biju; Chakraborty, Shuchishloka; Dasu, V Venkata

    2018-03-28

    Process development involving system metabolic engineering and bioprocess engineering has become one of the major thrust for the development of therapeutic proteins or enzymes. Pichia pastoris has emerged as a prominent host for the production of therapeutic protein or enzymes. Despite of producing high protein titers, various cellular and process level bottlenecks hinders the expression of recombinant proteins in P. pastoris. In the present review, we have summarized the recent developments in the expression of foreign proteins in P. pastoris. Further, we have discussed various cellular engineering strategies which include codon optimization, pathway engineering, signal peptide processing, development of protease deficient strain and glyco-engineered strains for the high yield protein secretion of recombinant protein. Bioprocess development of recombinant proteins in large scale bioreactor including medium optimization, optimum feeding strategy and co-substrate feeding in fed batch as well as continuous cultivation have been described. The recent advances in system and synthetic biology studies including metabolic flux analysis in understanding the phenotypic characteristics of recombinant Pichia and genome editing with CRISPR-CAS system have also been summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Localization of a Region in the Fusion Protein of Avian Metapneumovirus That Modulates Cell-Cell Fusion

    Science.gov (United States)

    Wei, Yongwei; Feng, Kurtis; Yao, Xiangjie; Cai, Hui; Li, Junan; Mirza, Anne M.; Iorio, Ronald M.

    2012-01-01

    The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented. PMID:22915815

  19. STATE TRANSITION7-Dependent Phosphorylation Is Modulated by Changing Environmental Conditions, and Its Absence Triggers Remodeling of Photosynthetic Protein Complexes.

    Science.gov (United States)

    Bergner, Sonja Verena; Scholz, Martin; Trompelt, Kerstin; Barth, Johannes; Gäbelein, Philipp; Steinbeck, Janina; Xue, Huidan; Clowez, Sophie; Fucile, Geoffrey; Goldschmidt-Clermont, Michel; Fufezan, Christian; Hippler, Michael

    2015-06-01

    In plants and algae, the serine/threonine kinase STN7/STT7, orthologous protein kinases in Chlamydomonas reinhardtii and Arabidopsis (Arabidopsis thaliana), respectively, is an important regulator in acclimation to changing light environments. In this work, we assessed STT7-dependent protein phosphorylation under high light in C. reinhardtii, known to fully induce the expression of light-harvesting complex stress-related protein3 (LHCSR3) and a nonphotochemical quenching mechanism, in relationship to anoxia where the activity of cyclic electron flow is stimulated. Our quantitative proteomics data revealed numerous unique STT7 protein substrates and STT7-dependent protein phosphorylation variations that were reliant on the environmental condition. These results indicate that STT7-dependent phosphorylation is modulated by the environment and point to an intricate chloroplast phosphorylation network responding in a highly sensitive and dynamic manner to environmental cues and alterations in kinase function. Functionally, the absence of the STT7 kinase triggered changes in protein expression and photoinhibition of photosystem I (PSI) and resulted in the remodeling of photosynthetic complexes. This remodeling initiated a pronounced association of LHCSR3 with PSI-light harvesting complex I (LHCI)-ferredoxin-NADPH oxidoreductase supercomplexes. Lack of STT7 kinase strongly diminished PSII-LHCII supercomplexes, while PSII core complex phosphorylation and accumulation were significantly enhanced. In conclusion, our study provides strong evidence that the regulation of protein phosphorylation is critical for driving successful acclimation to high light and anoxic growth environments and gives new insights into acclimation strategies to these environmental conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Arginine supplementation modulates pig plasma lipids, but not hepatic fatty acids, depending on dietary protein level with or without leucine.

    Science.gov (United States)

    Madeira, Marta Sofia Morgado Dos Santos; Rolo, Eva Sofia Alves; Pires, Virgínia Maria Rico; Alfaia, Cristina Maria Riscado Pereira Mateus; Coelho, Diogo Francisco Maurício; Lopes, Paula Alexandra Antunes Brás; Martins, Susana Isabel Vargas; Pinto, Rui Manuel Amaro; Prates, José António Mestre

    2017-05-30

    In the present study, the effect of arginine and leucine supplementation, and dietary protein level, were investigated in commercial crossbred pigs to clarify their individual or combined impact on plasma metabolites, hepatic fatty acid composition and mRNA levels of lipid sensitive factors. The experiment was conducted on fifty-four entire male pigs (Duroc × Pietrain × Large White × Landrace crossbred) from 59 to 92 kg of live weight. Each pig was randomly assigned to one of six experimental treatments (n = 9). The treatments followed a 2 × 3 factorial arrangement, providing two levels of arginine supplementation (0 vs. 1%) and three levels of basal diet (normal protein diet, NPD; reduced protein diet, RPD; reduced protein diet with 2% of leucine, RPDL). Significant interactions between arginine supplementation and protein level were observed across plasma lipids. While dietary arginine increased total lipids, total cholesterol, HDL-cholesterol, LDL-cholesterol, VLDL-cholesterol and triacylglycerols in NPD, the inverse effect was observed in RPD. Overall, dietary treatments had a minor impact on hepatic fatty acid composition. RPD increased 18:1c9 fatty acid while the combination of leucine and RPD reduced 18:0 fatty acid. Arginine supplementation increased the gene expression of FABP1, which contributes for triacylglycerols synthesis without affecting hepatic fatty acids content. RPD, with or without leucine addition, upregulated the lipogenic gene CEBPA but downregulated the fat oxidation gene LPIN1. Arginine supplementation was responsible for a modulated effect on plasma lipids, which is dependent on dietary protein level. It consistently increased lipaemia in NPD, while reducing the correspondent metabolites in RPD. In contrast, arginine had no major impact, neither on hepatic fatty acids content nor on fatty acid composition. Likewise, leucine supplementation of RPD, regardless the presence of arginine, promoted no changes on total fatty acids in

  1. The Proteins from Sika deer antler as potential modulators on cisplatin-induced cytotoxicity in human embryonic kidney 293 cells.

    Science.gov (United States)

    Yang, Huihai; Li, Wei; Wang, Lulu; He, Xiaofeng; Sun, Hang; Zhang, Jing

    2017-07-31

    Our study aimed to investigate the protective role of SDAPR on cisplatin-induced cytotoxicity and its' possible mechanism in HEK293 cells. Cell viability was measured by MTT assay. Oxidative stress (SOD, GSH, LDH and MDA), inflammatory factors (TNF-α and IL-6) and apoptosis-related proteins (caspase-3, Bax, Bcl-2) expression were measured. The apoptotic cells were observed by TUNEL staining. Our study results indicated that non-cytotoxic levels of SDAPR significantly increased viability rate (LD 50 value of cisplatin is 20 μM), which improved antioxidant defence, attenuated apoptosis by decreasing expression levels of cleaved-caspase-3 and Bax, increasing Bcl-2 expression and inhibiting apoptotic positive cells in HEK 293 cells. In addition, SDAPR treatment markedly inhibited the levels of TNF-α and IL-6. In conclusion, Sika deer antler protein, a potential modulator, could alleviate cisplatin-induced cytotoxicity in HEK 293 cells.

  2. Klinefelter syndrome comorbidities linked to increased X chromosome gene dosage and altered protein interactome activity

    DEFF Research Database (Denmark)

    Belling, Kirstine González-Izarzugaza; Russo, Francesco; Jensen, Anders Boeck

    2017-01-01

    Klinefelter syndrome (KS) (47,XXY) is the most common male sex chromosome aneuploidy. Diagnosis and clinical supervision remain a challenge due to varying phenotypic presentation and insufficient characterization of the syndrome. Here we combine health data-driven epidemiology and molecular level...

  3. SerpinB2 (PAI-2 Modulates Proteostasis via Binding Misfolded Proteins and Promotion of Cytoprotective Inclusion Formation.

    Directory of Open Access Journals (Sweden)

    Jodi A Lee

    Full Text Available SerpinB2 (PAI-2, a member of the clade B family of serine protease inhibitors, is one of the most upregulated proteins following cellular stress. Originally described as an inhibitor of urokinase plasminogen activator, its predominant cytoplasmic localisation suggests an intracellular function. SerpinB2 has been reported to display cytoprotective properties in neurons and to interact with intracellular proteins including components of the ubiquitin-proteasome system (UPS. In the current study we explored the potential role of SerpinB2 as a modulator of proteotoxic stress. Initially, we transiently transfected wild-type SerpinB2 and SerpinB2-/- murine embryonic fibroblasts (MEFs with Huntingtin exon1-polyglutamine (fused C-terminally to mCherry. Inclusion body formation as result of Huntingtin aggregation was evident in the SerpinB2 expressing cells but significantly impaired in the SerpinB2-/- cells, the latter concomitant with loss in cell viability. Importantly, recovery of the wild-type phenotype and cell viability was rescued by retroviral transduction of SerpinB2 expression. SerpinB2 modestly attenuated Huntingtin and amyloid beta fibril formation in vitro and was able to bind preferentially to misfolded proteins. Given the modest chaperone-like activity of SerpinB2 we tested the ability of SerpinB2 to modulate UPS and autophagy activity using a GFP reporter system and autophagy reporter, respectively. Activity of the UPS was reduced and autophagy was dysregulated in SerpinB2-/- compared to wild-type MEFs. Moreover, we observed a non-covalent interaction between ubiquitin and SerpinB2 in cells using GFP-pulldown assays and bimolecular fluorescence complementation. We conclude that SerpinB2 plays an important role in proteostasis as its loss leads to a proteotoxic phenotype associated with an inability to compartmentalize aggregating proteins and a reduced capacity of the UPS.

  4. Cardioprotective effects of baicalein on heart failure via modulation of Ca(2+) handling proteins in vivo and in vitro.

    Science.gov (United States)

    Zhao, Fali; Fu, Lu; Yang, Wei; Dong, Yuhui; Yang, Jing; Sun, Shoubin; Hou, Yuling

    2016-01-15

    Baicalein is a widely used Chinese herbal medicine extracted from Labiatae plants Scutellaria baicalensis Georgi's dry root, which has multiple pharmacological activities. However, the precise mechanism of baicalein against myocardial remodeling remains poorly understood. The aim of our study was to investigate the underlying mechanism of baicalein treatment in rats model of heart failure (HF) and rat myocardial cells (H9C2). HF model was established by abdominal aorta constriction in rats and incubation with 50μM isoproterenol for 48h in H9C2 cells. Various molecular biological experiments were performed to assess the effects of baicalein on cardiac function, myocardial remodeling, apoptosis and Ca(2+) handling proteins. In the present study, first we found that baicalein alleviated HF in vivo. Additionally, treatment with baicalein inhibited the myocardial fibrosis, restrained the expression and activity of MMP2 and MMP9, and suppressed apoptosis in heart tissue. Moreover, baicalein could inhibit the cardiac myocyte hypertrophy and apoptosis induced by isoproterenol in vitro. Finally we found that baicalein could modulate the expressions and activities of Ca(2+) handling proteins, including downregulation of phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and expression of Na(+)/Ca(2+)-exchangers (NCX1), upregulation of sarcoplasmic reticulum Ca(2+) ATPase 2 (SERCA2) and ryanodine receptor 2 (RYR2). Baicalein also restrained the decreased SERCA activity induced by aortic banding. Our studies suggested that baicalein alleviated myocardial remodeling and improved cardiac function via modulation of Ca(2+) handling proteins, which may be a potential phytochemical flavonoid for therapeutics of HF. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. SerpinB2 (PAI-2) Modulates Proteostasis via Binding Misfolded Proteins and Promotion of Cytoprotective Inclusion Formation

    Science.gov (United States)

    Farrawell, Natalie; Shearer, Robert F.; Constantinescu, Patrick; Hatters, Danny M.; Schroder, Wayne A.; Suhrbier, Andreas; Wilson, Mark R.; Saunders, Darren N.; Ranson, Marie

    2015-01-01

    SerpinB2 (PAI-2), a member of the clade B family of serine protease inhibitors, is one of the most upregulated proteins following cellular stress. Originally described as an inhibitor of urokinase plasminogen activator, its predominant cytoplasmic localisation suggests an intracellular function. SerpinB2 has been reported to display cytoprotective properties in neurons and to interact with intracellular proteins including components of the ubiquitin-proteasome system (UPS). In the current study we explored the potential role of SerpinB2 as a modulator of proteotoxic stress. Initially, we transiently transfected wild-type SerpinB2 and SerpinB2-/- murine embryonic fibroblasts (MEFs) with Huntingtin exon1-polyglutamine (fused C-terminally to mCherry). Inclusion body formation as result of Huntingtin aggregation was evident in the SerpinB2 expressing cells but significantly impaired in the SerpinB2-/- cells, the latter concomitant with loss in cell viability. Importantly, recovery of the wild-type phenotype and cell viability was rescued by retroviral transduction of SerpinB2 expression. SerpinB2 modestly attenuated Huntingtin and amyloid beta fibril formation in vitro and was able to bind preferentially to misfolded proteins. Given the modest chaperone-like activity of SerpinB2 we tested the ability of SerpinB2 to modulate UPS and autophagy activity using a GFP reporter system and autophagy reporter, respectively. Activity of the UPS was reduced and autophagy was dysregulated in SerpinB2-/- compared to wild-type MEFs. Moreover, we observed a non-covalent interaction between ubiquitin and SerpinB2 in cells using GFP-pulldown assays and bimolecular fluorescence complementation. We conclude that SerpinB2 plays an important role in proteostasis as its loss leads to a proteotoxic phenotype associated with an inability to compartmentalize aggregating proteins and a reduced capacity of the UPS. PMID:26083412

  6. The reconstruction of condition-specific transcriptional modules provides new insights in the evolution of yeast AP-1 proteins.

    Directory of Open Access Journals (Sweden)

    Christel Goudot

    Full Text Available AP-1 proteins are transcription factors (TFs that belong to the basic leucine zipper family, one of the largest families of TFs in eukaryotic cells. Despite high homology between their DNA binding domains, these proteins are able to recognize diverse DNA motifs. In yeasts, these motifs are referred as YRE (Yap Response Element and are either seven (YRE-Overlap or eight (YRE-Adjacent base pair long. It has been proposed that the AP-1 DNA binding motif preference relies on a single change in the amino acid sequence of the yeast AP-1 TFs (an arginine in the YRE-O binding factors being replaced by a lysine in the YRE-A binding Yaps. We developed a computational approach to infer condition-specific transcriptional modules associated to the orthologous AP-1 protein Yap1p, Cgap1p and Cap1p, in three yeast species: the model yeast Saccharomyces cerevisiae and two pathogenic species Candida glabrata and Candida albicans. Exploitation of these modules in terms of predictions of the protein/DNA regulatory interactions changed our vision of AP-1 protein evolution. Cis-regulatory motif analyses revealed the presence of a conserved adenine in 5' position of the canonical YRE sites. While Yap1p, Cgap1p and Cap1p shared a remarkably low number of target genes, an impressive conservation was observed in the YRE sequences identified by Yap1p and Cap1p. In Candida glabrata, we found that Cgap1p, unlike Yap1p and Cap1p, recognizes YRE-O and YRE-A motifs. These findings were supported by structural data available for the transcription factor Pap1p (Schizosaccharomyces pombe. Thus, whereas arginine and lysine substitutions in Cgap1p and Yap1p proteins were reported as responsible for a specific YRE-O or YRE-A preference, our analyses rather suggest that the ancestral yeast AP-1 protein could recognize both YRE-O and YRE-A motifs and that the arginine/lysine exchange is not the only determinant of the specialization of modern Yaps for one motif or another.

  7. Ondansetron in acute food protein-induced enterocolitis syndrome, a retrospective case-control study.

    Science.gov (United States)

    Miceli Sopo, S; Bersani, G; Monaco, S; Cerchiara, G; Lee, E; Campbell, D; Mehr, S

    2017-04-01

    Therapy for moderate to severe acute food protein-induced enterocolitis syndrome (FPIES) typically consists of intravenous fluids and corticosteroids (traditional therapy). Ondansetron has been suggested as an adjunctive treatment. We aimed to evaluate the efficacy of the parenteral (intravenous or intramuscular) ondansetron vs traditional therapy to resolve the symptoms of acute FPIES. Cases of FPIES who had a positive oral food challenge (OFC) were retrospectively examined at two major hospitals over a two-year period (Rome, Italy; and Sydney, Australia). The efficacy of therapy, based on the percentage of cases who stopped vomiting, was compared in cases who received parenteral ondansetron and in cases who received traditional therapy or no pharmacological therapy. A total of 66 patients were included: 37 had parenteral ondansetron, 14 were treated with traditional therapy, and 15 did not receive any pharmacological therapy. Nineteen percentage of children treated with ondansetron continued vomiting after the administration of the therapy vs 93% of children who received traditional therapy (P < 0.05, relative risk = 0.2). Children who received ondansetron or no therapy were less likely to require an admission overnight compared with those who received traditional therapy (P < 0.05). Parenteral ondansetron is significantly more effective than traditional therapy in resolving acute symptoms of FPIES. The relative risk = 0.2 greatly reduces the bias linked to the lack of randomization. These findings suggest an effective treatment for vomiting in positive FPIES OFCs and allow for more confidence in performing OFCs. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. C-reactive protein in patients with Guillain Barré syndrome

    Directory of Open Access Journals (Sweden)

    Chetana Vaishnavi

    2014-01-01

    Full Text Available Context: C-reactive protein (CRP is an acute phase reactant, widely used as a biomarker for various infectious and inflammatory conditions. Guillain-Barrι syndrome (GBS is an acute, autoimmune, polyradiculoneuropathy, triggered by infectious agents such as Campylobacter jejuni. GBS is generally precipitated 1-3 weeks following C. jejuni infection which suggests a humoral immunopathogenic mechanism. Aims: Basal CRP levels were estimated in sera of patients with GBS and compared with adequate controls. Settings & Design: The study population was divided into 4 groups: (i GBS group included 45 newly diagnosed GBS patients; (ii Neurological control (NC group comprised of 59 patients with non-paralytic neurological symptoms/disorders; (iii Non-neurological controls (NNC comprised of 43 patients having no neurological symptoms and (iv Healthy controls (HC comprised of 101 healthy subjects. Materials and Methods: CRP was evaluated using slide latex agglutination test (LAT and enzyme linked immunosorbent assay (ELISA. Statistical Analysis: Statistical analysis was done by the Chi-square test. Results: CRP by LAT was positive in 24.4% GBS group, 34% NC group and 44% NNC group. The range of titer in CRP positive samples in the three patient groups (GBS, NC, NNC was at concentration of 0.6 mg/dl to 19.2 mg/dl. Similar results were also obtained by ELISA in the patient groups. None of the HC subjects was positive for detectable levels of CRP. High basal level of CRP was detected in patients with GBS. Conclusion: Autoimmune conditions like GBS can stimulate the production of a high level of inflammation resulting in an increase in the CRP production.

  9. Does C-reactive Protein Add Prognostic Value to GRACE Score in Acute Coronary Syndromes?

    International Nuclear Information System (INIS)

    Correia, Luis Cláudio Lemos; Vasconcelos, Isis; Garcia, Guilherme; Kalil, Felipe; Ferreira, Felipe; Silva, André; Oliveira, Ruan; Carvalhal, Manuela; Freitas, Caio; Noya-Rabelo, Márcia Maria

    2014-01-01

    The incremental prognostic value of plasma levels of C-reactive protein (CRP) in relation to GRACE score has not been established in patients with acute coronary syndrome (ACS) with non-ST segment elevation. To test the hypothesis that CRP measurements at admission increases the prognostic value of GRACE score in patients with ACS. A total of 290 subjects, consecutively admitted for ACS, with plasma material obtained upon admission CRP measurement using a high-sensitivity method (nephelometry) were studied. Cardiovascular outcomes during hospitalization were defined by the combination of death, nonfatal myocardial infarction or nonfatal refractory angina. The incidence of cardiovascular events during hospitalization was 15% (18 deaths, 11 myocardial infarctions, 13 angina episodes) with CRP showing C-statistics of 0.60 (95% CI = 0.51-0.70, p = 0.034) in predicting these outcomes. After adjustment for the GRACE score, elevated CRP (defined as the best cutoff point) tended to be associated with hospital events (OR = 1.89, 95% CI = 0.92 to 3.88, p = 0.08). However, the addition of the variable elevated CRP in the GRACE model did not result in significant increase in C-statistics, which ranged from 0.705 to 0.718 (p = 0.46). Similarly, there was no significant reclassification of risk with the addition of CRP in the predictor model (net reclassification = 5.7 %, p = 0.15). Although CRP is associated with hospital outcomes, this inflammatory marker does not increase the prognostic value of the GRACE score

  10. Does C-reactive Protein Add Prognostic Value to GRACE Score in Acute Coronary Syndromes?

    Energy Technology Data Exchange (ETDEWEB)

    Correia, Luis Cláudio Lemos, E-mail: lccorreia@terra.com.br; Vasconcelos, Isis; Garcia, Guilherme; Kalil, Felipe; Ferreira, Felipe; Silva, André; Oliveira, Ruan; Carvalhal, Manuela; Freitas, Caio; Noya-Rabelo, Márcia Maria [Escola Bahiana de Medicina e Saúde Pública, Salvador, BA (Brazil); Hospital São Rafael, Salvador, BA (Brazil)

    2014-05-15

    The incremental prognostic value of plasma levels of C-reactive protein (CRP) in relation to GRACE score has not been established in patients with acute coronary syndrome (ACS) with non-ST segment elevation. To test the hypothesis that CRP measurements at admission increases the prognostic value of GRACE score in patients with ACS. A total of 290 subjects, consecutively admitted for ACS, with plasma material obtained upon admission CRP measurement using a high-sensitivity method (nephelometry) were studied. Cardiovascular outcomes during hospitalization were defined by the combination of death, nonfatal myocardial infarction or nonfatal refractory angina. The incidence of cardiovascular events during hospitalization was 15% (18 deaths, 11 myocardial infarctions, 13 angina episodes) with CRP showing C-statistics of 0.60 (95% CI = 0.51-0.70, p = 0.034) in predicting these outcomes. After adjustment for the GRACE score, elevated CRP (defined as the best cutoff point) tended to be associated with hospital events (OR = 1.89, 95% CI = 0.92 to 3.88, p = 0.08). However, the addition of the variable elevated CRP in the GRACE model did not result in significant increase in C-statistics, which ranged from 0.705 to 0.718 (p = 0.46). Similarly, there was no significant reclassification of risk with the addition of CRP in the predictor model (net reclassification = 5.7 %, p = 0.15). Although CRP is associated with hospital outcomes, this inflammatory marker does not increase the prognostic value of the GRACE score.

  11. Metabolic syndrome and elevated C-reactive protein levels in elderly patients with newly diagnosed depression.

    Science.gov (United States)

    Park, Soyeon; Joo, Yeon Ho; McIntyre, Roger S; Kim, Byungsu

    2014-01-01

    Depression and metabolic syndrome (MeS) are prevalent in elderly people and are associated with adverse outcomes, especially cardiovascular disease. Increased C-reactive protein (CRP) levels are a risk factor for depression and chronic medical disorders, such as cardiovascular disease and MeS. The aim of this study was to evaluate the risk of MeS and CRP levels in elderly (>60y) patients with newly-diagnosed major depressive disorder. We enrolled 30 subjects with newly diagnosed depression and 30 age- and sex-matched controls who presented for a health examination at Asan Medical Center, Seoul, Korea. Sociodemographic, MeS components, and CRP were measured before starting treatment with antidepressants. There were no significant differences in sociodemographic characteristics or lifestyle factors between depressive and healthy control patients. The newly-diagnosed depression group showed a significantly increased risk of MeS (odds ratio = 4.75, 95% CI: 1.58-14.25) compared with the control group. Of the 5 MeS components examined, only waist circumference was significantly different between the 2 groups (odds ratio = 4.33, 95% CI: 1.20-15.61). Elevated CRP levels were significantly associated with an increased risk for depression (odds ratio = 4.57, 95% 1.45-14.39). The risks of MeS and elevated CRP levels are higher in elderly patients with depression than in normal subjects. Physicians need to be alert to these cardiovascular risk factors when diagnosing and prescribing antidepressants for depression in the elderly. Clinical investigators are encouraged to assess markers of inflammation and review detailed information on risk factors such as waist circumference for MeS in patients with depression. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  12. Serum brain natriuretic peptide and C-reactive protein levels in adolescent with polycystic ovary syndrome.

    Science.gov (United States)

    Deveer, Rüya; Engin-Üstün, Yaprak; Uysal, Sema; Su, Filiz Akın; Sarıaslan, Seval; Gülerman, Cavidan; Mollamahmutoğlu, Leyla

    2012-08-01

    Our primary aim was to investigate whether N-terminal pro-brain natriuretic peptide (NT-proBNP) increases in adolescent with polycystic ovary syndrome (PCOS) compared with healthy controls and secondary aim was to determine whether metabolic and hormonal differences exist between groups. In this cross-sectional study, 25 adolescent patients with PCOS and 25 normal ovulatory control not suffering from PCOS were involved in the study. Fasting serum NT-proBNP, C-reactive protein (CRP), homocystein, insulin levels and biochemical and hormonal parameters were measured. Serum NT-proBNP was not significantly different in PCOS subjects (0.62 ± 0.80 vs 1.12 ± 1.51 ng/mL, p = 0.154). The mean serum fasting insulin levels (22.64 ± 10.51 vs 13.32 ± 3.97 mIU/mL, p = 0.001) and Homeostasis Model Assessment Insulin-Resistance Index (HOMA-IR) levels (5.16 ± 1.81 vs 2.97 ± 0.89, p = 0.001) were significantly high in the study group. The median serum CRP levels were not significantly different between groups (1 [1-12] vs 1 [1-19] g/dL, p = 0.286). The present study demonstrated that the levels of BNP, CRP and homocystein were not different in PCOS subjects. Serum insulin levels and HOMA-IR were significantly higher in PCOS subjects. Possible serum markers for PCOS-related metabolic abnormalities and cardiovascular events, may not present in the adolescent years.

  13. Metabolic syndrome and C-reactive protein in patients with depressive disorder on antidepressive medication

    Directory of Open Access Journals (Sweden)

    Stanojević Albina

    2013-01-01

    Full Text Available Introduction. Recurrent depression is a psychiatric disorder of which etiology and pathogenesis might be related to immune response. Metabolic Syndrome (MetS and its components are also strongly associated with elevated inflammatory indicators, as so as the body mass index (BMI and total cholesterol levels. Objective. Objective of this study was to investigate if there was any difference in C-reactive protein (CRP levels in patients with recurrent depressive disorder, treated with antidepressants, compared to a healthy control group of subjects and if there was an association between increased CRP levels and the presence of MetS in these two groups. Methods. Sixty subjects entered the study; of these 35 patients with the diagnosis of recurrent depressive disorder, while the healthy control group included 25 subjects. MetS was defined according to the NCEP ATP III criteria. The cut-off point for CRP was set at >5 mg /L. Results. There was no statistically significant difference in the prevalence of MetS and CRP values between the studied groups. Waist circumference and total cholesterol levels were significantly higher in the experimental group. Patients that fulfilled the criteria for MetS showed significantly higher values of central obesity and arterial hypertension in the experimental group as well. The elevated CRP levels were associated with increased frequency of MetS in depressed patients. Conclusion. Both CRP levels and metabolic risk profile screening, according to the international criteria, may be beneficial in order to obtain better assessment for depressive long term medicated patients.

  14. Surfactant protein B gene polymorphism in preterm babies with respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    P.P.R. Lyra

    2011-01-01

    Full Text Available The etiology of respiratory distress syndrome (RDS is multifactorial and multigenic. Studies have suggested that polymorphisms and mutations in the surfactant protein B (SP-B gene are associated with the pathogenesis of RDS. The objectives of this study were to determine and compare the frequencies of SP-B gene polymorphisms in preterm babies with and without RDS. We studied 151 neonates: 79 preterm babies without RDS and 72 preterm newborns with RDS. The following four SP-B gene polymorphisms were analyzed: A/C at -18, C/T at 1580, A/G at 9306, and G/C at nucleotide 8714. The polymorphisms were detected by PCR amplification of genomic DNA and genotyping. The genotypes were determined using PCR-based converted restriction fragment length polymorphisms. The control group consisted of 42 (53% girls and 37 (47% boys. Weight ranged from 1170 to 3260 g and mean gestational age (GA was 33.9 weeks (range: 29 to 35 weeks and 6 days. The RDS group consisted of 31 (43% girls and 41 (57% boys. Weight ranged from 614 to 2410 g and mean GA was 32 weeks (range: 26 to 35 weeks. The logistic regression model showed that GA was the variable that most contributed to the occurrence of RDS. The AG genotype of the A/G polymorphism at position 9306 of the SP-B gene was a protective factor in this population (OR = 0.1681; 95%CI = 0.0426-0.6629. We did not detect differences in the frequencies of the other polymorphisms between the two groups of newborns.

  15. Modulating protein adsorption onto hydroxyapatite particles using different amino acid treatments.

    Science.gov (United States)

    Lee, Wing-Hin; Loo, Ching-Yee; Van, Kim Linh; Zavgorodniy, Alexander V; Rohanizadeh, Ramin

    2012-05-07

    Hydroxyapatite (HA) is a material of choice for bone grafts owing to its chemical and structural similarities to the mineral phase of hard tissues. The combination of osteogenic proteins with HA materials that carry and deliver the proteins to the bone-defective areas will accelerate bone regeneration. The study investigated the treatment of HA particles with different amino acids such as serine (Ser), asparagine (Asn), aspartic acid (Asp) and arginine (Arg) to enhance the adsorption ability of HA carrier for delivering therapeutic proteins to the body. The crystallinity of HA reduced when amino acids were added during HA preparation. Depending on the types of amino acid, the specific surface area of the amino acid-functionalized HA particles varied from 105 to 149 m(2) g(-1). Bovine serum albumin (BSA) and lysozyme were used as model proteins for adsorption study. The protein adsorption onto the surface of amino acid-functionalized HA depended on the polarities of HA particles, whereby, compared with lysozyme, BSA demonstrated higher affinity towards positively charged Arg-HA. Alternatively, the binding affinity of lysozyme onto the negatively charged Asp-HA was higher when compared with BSA. The BSA and lysozyme adsorptions onto the amino acid-functionalized HA fitted better into the Freundlich than Langmuir model. The amino acid-functionalized HA particles that had higher protein adsorption demonstrated a lower protein-release rate.

  16. Inhibition of retrograde transport modulates misfolded protein accumulation and clearance in motoneuron diseases.

    Science.gov (United States)

    Cristofani, Riccardo; Crippa, Valeria; Rusmini, Paola; Cicardi, Maria Elena; Meroni, Marco; Licata, Nausicaa V; Sala, Gessica; Giorgetti, Elisa; Grunseich, Christopher; Galbiati, Mariarita; Piccolella, Margherita; Messi, Elio; Ferrarese, Carlo; Carra, Serena; Poletti, Angelo

    2017-08-03

    Motoneuron diseases, like spinal bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS), are associated with proteins that because of gene mutation or peculiar structures, acquire aberrant (misfolded) conformations toxic to cells. To prevent misfolded protein toxicity, cells activate a protein quality control (PQC) system composed of chaperones and degradative pathways (proteasome and autophagy). Inefficient activation of the PQC system results in misfolded protein accumulation that ultimately leads to neuronal cell death, while efficient macroautophagy/autophagy-mediated degradation of aggregating proteins is beneficial. The latter relies on an active retrograde transport, mediated by dynein and specific chaperones, such as the HSPB8-BAG3-HSPA8 complex. Here, using cellular models expressing aggregate-prone proteins involved in SBMA and ALS, we demonstrate that inhibition of dynein-mediated retrograde transport, which impairs the targeting to autophagy of misfolded species, does not increase their aggregation. Rather, dynein inhibition correlates with a reduced accumulation and an increased clearance of mutant ARpolyQ, SOD1, truncated TARDBP/TDP-43 and expanded polyGP C9ORF72 products. The enhanced misfolded protein clearance is mediated by the proteasome, rather than by autophagy and correlates with the upregulation of the HSPA8 cochaperone BAG1. In line, overexpression of BAG1 increases the proteasome-mediated clearance of these misfolded proteins. Our data suggest that when the misfolded proteins cannot be efficiently transported toward the perinuclear region of the cells, where they are either degraded by autophagy or stored into the aggresome, the cells activate a compensatory mechanism that relies on the induction of BAG1 to target the HSPA8-bound cargo to the proteasome in a dynein-independent manner.

  17. A haemolytic syndrome associated with the complete absence of red cell membrane protein 4.2 in two Tunisian siblings.

    Science.gov (United States)

    Ghanem, A; Pothier, B; Marechal, J; Ducluzeau, M T; Morle, L; Alloisio, N; Feo, C; Ben Abdeladhim, A; Fattoum, S; Delaunay, J

    1990-07-01

    We report on the complete absence of protein 4.2 in two Tunisian siblings. The propositus presented with a haemolytic anaemia that evolved in an intermittent fashion until she was cured by splenectomy. Her red cells had a normal morphology, as well as normal deformability upon osmotic gradient ektacytometry. SDS-polyacrylamide gel electrophoresis failed to reveal any protein 4.2. Using anti-protein 4.2 polyclonal antibodies. Western blots were also unable to detect protein 4.2. Preparation of inside out vesicles resulted in no detectable loss of ankyrin. The propositus's sister presented with a haemolytic anaemia but had not undergone splenectomy; she showed the same biochemical features. The two cases presented of missing protein 4.2 are the first ones to be described outside the Japanese population. Considered as homozygotes for some defect that must alter the protein 4.2 gene itself, they exemplify a unique syndrome pertaining neither to elliptocytosis nor to spherocytosis, at least not closely. The parents, who are first cousins and whom we regarded as heterozygotes, were clinically and morphologically normal; they had a normal content of protein 4.2. Therefore, the 4.2 (-) haemolytic anaemia appears as entirely recessive.

  18. Syndrome differentiation in traditional Chinese medicine and E-cadherin/ICAM-1 gene protein expression in gastric carcinoma.

    Science.gov (United States)

    Sun, Da-Zhi; Xu, Ling; Wei, Pin-Kang; Liu, Long; He, Jin

    2007-08-28

    To explore the syndrome differentiation in traditional Chinese medicine (TCM) and gene protein expression in gastric carcinoma. Preoperative data of gastric cancer cases were collected from the General Surgery Department and classified according to the criteria for syndrome differentiation in TCM. E-cadherin (E-cad) and ICAM-1 gene protein expressions were detected in postoperative specimens from these cases by the immunohistochemical EnVision two-step method. The E-cad positive expression rate was 90% in 100 cases of gastric carcinoma. The difference in E-cad expression was significant between the different syndrome differentiation types in TCM (P cad expression between the stagnation of phlegm-damp type and the deficiency in both qi and blood and the deficiency-cold of stomach and spleen types, where E-cad expression was high. There was no significant difference between the internal obstruction of stagnant toxin type and the in-coordination between liver and stomach type, where E-cad expression was relatively low. The ICAM-1 positive expression rate was 58%, and there was no statistically significant difference between the two groups (c2 = 8.999, P > 0.05). E-cad expression is relatively low in the internal obstruction of stagnant toxin type and the in-coordination between liver and stomach type, where tumor development and metastasis may be associated with low E-cad expression, or with low homogeneous adhesiveness between tumor cells.

  19. Module structure of interphotoreceptor retinoid-binding protein (IRBP may provide bases for its complex role in the visual cycle – structure/function study of Xenopus IRBP

    Directory of Open Access Journals (Sweden)

    Ghosh Debashis

    2007-08-01

    Full Text Available Abstract Background Interphotoreceptor retinoid-binding protein's (IRBP remarkable module structure may be critical to its role in mediating the transport of all-trans and 11-cis retinol, and 11-cis retinal between rods, cones, RPE and Müller cells during the visual cycle. We isolated cDNAs for Xenopus IRBP, and expressed and purified its individual modules, module combinations, and the full-length polypeptide. Binding of all-trans retinol, 11-cis retinal and 9-(9-anthroyloxy stearic acid were characterized by fluorescence spectroscopy monitoring ligand-fluorescence enhancement, quenching of endogenous protein fluorescence, and energy transfer. Finally, the X-ray crystal structure of module-2 was used to predict the location of the ligand-binding sites, and compare their structures among modules using homology modeling. Results The full-length Xenopus IRBP cDNA codes for a polypeptide of 1,197 amino acid residues beginning with a signal peptide followed by four homologous modules each ~300 amino acid residues in length. Modules 1 and 3 are more closely related to each other than either is to modules 2 and 4. Modules 1 and 4 are most similar to the N- and C-terminal modules of the two module IRBP of teleosts. Our data are consistent with the model that vertebrate IRBPs arose through two genetic duplication events, but that the middle two modules were lost during the evolution of the ray finned fish. The sequence of the expressed full-length IRBP was confirmed by liquid chromatography-tandem mass spectrometry. The recombinant full-length Xenopus IRBP bound all-trans retinol and 11-cis retinaldehyde at 3 to 4 sites with Kd's of 0.2 to 0.3 μM, and was active in protecting all-trans retinol from degradation. Module 2 showed selectivity for all-trans retinol over 11-cis retinaldehyde. The binding data are correlated to the results of docking of all-trans-retinol to the crystal structure of Xenopus module 2 suggesting two ligand-binding sites

  20. Enterococcus faecium NCIMB 10415 Modulates Epithelial Integrity, Heat Shock Protein, and Proinflammatory Cytokine Response in Intestinal Cells

    Directory of Open Access Journals (Sweden)

    Shanti Klingspor

    2015-01-01

    Full Text Available Probiotics have shown positive effects on gastrointestinal diseases; they have barrier-modulating effects and change the inflammatory response towards pathogens in studies in vitro. The aim of this investigation has been to examine the response of intestinal epithelial cells to Enterococcus faecium NCIMB 10415 (E. faecium, a probiotic positively affecting diarrhea incidence in piglets, and two pathogenic Escherichia coli (E. coli strains, with specific focus on the probiotic modulation of the response to the pathogenic challenge. Porcine (IPEC-J2 and human (Caco-2 intestinal cells were incubated without bacteria (control, with E. faecium, with enteropathogenic (EPEC or enterotoxigenic E. coli (ETEC each alone or in combination with E. faecium. The ETEC strain decreased transepithelial resistance (TER and increased IL-8 mRNA and protein expression in both cell lines compared with control cells, an effect that could be prevented by pre- and coincubation with E. faecium. Similar effects were observed for the increased expression of heat shock protein 70 in Caco-2 cells. When the cells were challenged by the EPEC strain, no such pattern of changes could be observed. The reduced decrease in TER and the reduction of the proinflammatory and stress response of enterocytes following pathogenic challenge indicate the protective effect of the probiotic.

  1. The association of metabotropic glutamate receptor type 5 with the neuronal Ca2+-binding protein 2 modulates receptor function.

    Science.gov (United States)

    Canela, Laia; Fernández-Dueñas, Víctor; Albergaria, Catarina; Watanabe, Masahiko; Lluís, Carme; Mallol, Josefa; Canela, Enric I; Franco, Rafael; Luján, Rafael; Ciruela, Francisco

    2009-10-01

    Metabotropic glutamate (mGlu) receptors mediate in part the CNS effects of glutamate. These receptors interact with a large array of intracellular proteins in which the final role is to regulate receptor function. Here, using co-immunoprecipitation and pull-down experiments we showed a close and specific interaction between mGlu(5) receptor and NECAB2 in both transfected human embryonic kidney cells and rat hippocampus. Interestingly, in pull-down experiments increasing concentrations of calcium drastically reduced the ability of these two proteins to interact, suggesting that NECAB2 binds to mGlu(5) receptor in a calcium-regulated manner. Immunoelectron microscopy detection of NECAB2 and mGlu(5) receptor in the rat hippocampal formation indicated that both proteins are codistributed in the same subcellular compartment of pyramidal cells. In addition, the NECAB2/mGlu(5) receptor interaction regulated mGlu(5b)-mediated activation of both inositol phosphate accumulation and the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway. Overall, these findings indicate that NECAB2 by its physical interaction with mGlu(5b) receptor modulates receptor function.

  2. Structural Basis for Prereceptor Modulation of Plant Hormones by GH3 Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Westfall, Corey S.; Zubieta, Chloe; Herrmann, Jonathan; Kapp, Ulrike; Nanao, Max H.; Jez, Joseph M. (WU); (EMBL); (ESRF)

    2013-04-08

    Acyl acid amido synthetases of the GH3 family act as critical prereceptor modulators of plant hormone action; however, the molecular basis for their hormone selectivity is unclear. Here, we report the crystal structures of benzoate-specific Arabidopsis thaliana AtGH3.12/PBS3 and jasmonic acid-specific AtGH3.11/JAR1. These structures, combined with biochemical analysis, define features for the conjugation of amino acids to diverse acyl acid substrates and highlight the importance of conformational changes in the carboxyl-terminal domain for catalysis. We also identify residues forming the acyl acid binding site across the GH3 family and residues critical for amino acid recognition. Our results demonstrate how a highly adaptable three-dimensional scaffold is used for the evolution of promiscuous activity across an enzyme family for modulation of plant signaling molecules.

  3. Modulation of the Unfolded Protein Response by the Human Hepatitis B Virus

    Directory of Open Access Journals (Sweden)

    Norica eBranza-Nichita

    2014-08-01

    Full Text Available During productive viral infection the host cell is confronted with synthesis of a vast amount of viral proteins which must be folded, quality controlled, assembled and secreted, perturbing the normal function of the endoplasmic reticulum (ER. To counteract the ER stress, cells activate specific signalling pathways, designated as the unfolded proteins response (UPR, which essentially increase their folding capacity, arrest protein translation and degrade the excess of misfolded proteins. This cellular defence mechanism may, in turn, affect significantly the virus life-cycle. This review highlights the current understanding of the mechanisms of the ER stress activation by Human Hepatitis B virus (HBV, a deadly pathogen affecting more than 350 million people worldwide. Further discussion addresses the latest discoveries regarding the adaptive strategies developed by HBV to manipulate the UPR for its own benefits, the controversies in the field and future perspectives.

  4. Structural Modulation of Phosducin by Phosphorylation and 14-3-3 Protein Binding

    Czech Academy of Sciences Publication Activity Database

    Řežábková, L.; Kacířová, M.; Šulc, Miroslav; Herman, P.; Večeř, J.; Štěpánek, M.; Obšilová, Veronika; Obšil, T.

    2012-01-01

    Roč. 103, č. 9 (2012), s. 1960-1969 ISSN 0006-3495 Institutional support: RVO:61388971 ; RVO:67985823 Keywords : phosducin * 14-3-3 protein * fluorescence Subject RIV: CE - Biochemistry Impact factor: 3.668, year: 2012

  5. Four infants presenting with severe vomiting in solid food protein-induced enterocolitis syndrome: a case series

    Directory of Open Access Journals (Sweden)

    Bansal Amolak S

    2012-06-01

    Full Text Available Abstract Introduction Several different foods have been implicated in inducing the delayed and very significant vomiting and sometimes diarrhea that occurs in food protein-induced enterocolitis syndrome. While immunoglobulin E is not involved, the mechanism(s that result in the food-induced gastrointestinal symptoms are unclear, although T cell activation has been considered. We report four cases of food protein-induced enterocolitis syndrome caused by different solid foods and without concomitant immunoglobulin E sensitization to milk and soya. Clinical and laboratory evidence of type I immunoglobulin E mediated food reactivity and food-induced T cell activation was absent in each case. Case presentations Case 1 concerned a 20-month-old South Asian boy who had experienced four episodes of severe vomiting with flaccidity since four months of age and two hours after consuming rice. Case 2 involved a nine-month-old Caucasian boy who had suffered three episodes of severe vomiting with flaccidity since six months of age and three hours after consuming wheat. The child in Case 3 was a 16-month-old Caucasian boy who had suffered three episodes of severe vomiting with flaccidity since nine months of age and two hours after consuming cod. Case 4 involved a 15-month-old South Asian boy who had suffered three episodes of severe vomiting since eight months of age and two hours after consuming chicken. Conclusion In children with recurrent marked delayed vomiting after the ingestion of specific foods and in whom bronchospasm, skin rash and angioedema are absent, food protein-induced enterocolitis syndrome should be considered. Skin prick testing and specific immunoglobulin E antibodies are negative and the mechanism of the vomiting is unclear. We speculate whether food protein-induced oligoclonal T cell activation may be present. This has similarities to various animal models and improvement may involve deletion of these T cells.

  6. Histone Code Modulation by Oncogenic PWWP-Domain Protein in Breast Cancers

    Science.gov (United States)

    2014-08-01

    transcriptional machinery [1, 2]. Methylation of lysine and arginine histone side chains and core domains serves to modulate the epigene- tic...Transl Res. 4:247-56. 2012 4. Liu L, Kimball S, Liu H, Holowatyj A, and Yang Z-Q. Genetic alterations of histone lysine methyltransferases and their...Therapeutic Potential. Current Cancer Therapy Reviews. 9:78-85, 2013 6. Labbé RM, Holowatyj A, Yang Z-Q. Histone lysine demethylase (KDM) subfamily 4

  7. Dynamic Lipid-dependent Modulation of Protein Topology by Post-translational Phosphorylation.

    Science.gov (United States)

    Vitrac, Heidi; MacLean, David M; Karlstaedt, Anja; Taegtmeyer, Heinrich; Jayaraman, Vasanthi; Bogdanov, Mikhail; Dowhan, William

    2017-02-03

    Membrane protein topology and folding are governed by structural principles and topogenic signals that are recognized and decoded by the protein insertion and translocation machineries at the time of initial membrane insertion and folding. We previously demonstrated that the lipid environment is also a determinant of initial protein topology, which is dynamically responsive to post-assembly changes in membrane lipid composition. However, the effect on protein topology of post-assembly phosphorylation of amino acids localized within initially cytoplasmically oriented extramembrane domains has never been investigated. Here, we show in a controlled in vitro system that phosphorylation of a membrane protein can trigger a change in topological arrangement. The rate of change occurred on a scale of seconds, comparable with the rates observed upon changes in the protein lipid environment. The rate and extent of topological rearrangement were dependent on the charges of extramembrane domains and the lipid bilayer surface. Using model membranes mimicking the lipid compositions of eukaryotic organelles, we determined that anionic lipids, cholesterol, sphingomyelin, and membrane fluidity play critical roles in these processes. Our results demonstrate how post-translational modifications may influence membrane protein topology in a lipid-dependent manner, both along the organelle trafficking pathway and at their final destination. The results provide further evidence that membrane protein topology is dynamic, integrating for the first time the effect of changes in lipid composition and regulators of cellular processes. The discovery of a new topology regulatory mechanism opens additional avenues for understanding unexplored structure-function relationships and the development of optimized topology prediction tools. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    Science.gov (United States)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  9. Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function

    Directory of Open Access Journals (Sweden)

    Frances Jane Sharom

    2014-03-01

    Full Text Available Multidrug resistance in cancer is linked to expression of the P-glycoprotein multidrug transporter (Pgp, ABCB1, which exports many structurally diverse compounds from cells. Substrates first partition into the bilayer and then interact with a large flexible binding pocket within the transporter’s transmembrane regions. Pgp has been described as a hydrophobic vacuum cleaner or an outwardly-directed drug/lipid flippase. Recent X-ray crystal structures have shed some light on the nature of the drug-binding pocket and suggested routes by which substrates can enter it from the membrane. Detergents have profound effects on Pgp function, and several appear to be substrates. Biochemical and biophysical studies in vitro, some using purified reconstituted protein, have explored the effects of the membrane environment. They have demonstrated that Pgp is involved in a complex relationship with its lipid environment, which modulates the behaviour of its substrates, as well as various functions of the protein, including ATP hydrolysis, drug binding and drug transport. Membrane lipid composition and fluidity, phospholipid headgroup and acyl chain length all influence Pgp function. Recent studies focusing on thermodynamics and kinetics have revealed some important principles governing Pgp-lipid and substrate-lipid interactions, and how these affect drug binding and transport. In some cells, Pgp is associated with cholesterol-rich microdomains which may modulate its functions. The relationship between Pgp and cholesterol remains an open question; however it clearly affects several aspects of its function in addition to substrate-membrane partitioning. The action of Pgp modulators appears to depend on their membrane permeability, and membrane fluidizers and surfactants reverse drug resistance, likely via an indirect mechanism. A detailed understanding of how the membrane affects Pgp substrates and Pgp’s catalytic cycle may lead to new strategies to combat

  10. A novel role for RAD54: this host protein modulates geminiviral DNA replication.

    Science.gov (United States)

    Kaliappan, Kosalai; Choudhury, Nirupam Roy; Suyal, Geetika; Mukherjee, Sunil Kumar

    2012-03-01

    Geminiviruses primarily encode only few factors, such as replication initiator protein (Rep), and need various host cellular machineries for rolling-circle replication (RCR) and/or recombination-dependent replication (RDR). We have identified a host factor, RAD54, in a screen for Rep-interacting partners and observed its role in DNA replication of the geminivirus mungbean yellow mosaic India virus (MYMIV). We identified the interacting domains ScRAD54 and MYMIV-Rep and observed that ScRAD54 enhanced MYMIV-Rep nicking, ATPase, and helicase activities. An in vitro replication assay demonstrated that the geminiviral DNA replication reaction depends on the viral Rep protein, viral origin of replication sequences, and host cell-cycle proteins. Rad54-deficient yeast nuclear extract did not support in vitro viral DNA replication, while exogenous addition of the purified ScRAD54 protein enhanced replication. The role of RAD54 in in planta replication was confirmed by the transient replication assay; i.e., agroinoculation studies. RAD54 is a well-known recombination/repair protein that uses its DNA-dependent ATPase activity in conjunction with several other host factors. However, this study demonstrates for the first time that the eukaryotic rolling-circle replicon depends on the RAD54 protein.

  11. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity

    Directory of Open Access Journals (Sweden)

    Lee YK

    2014-12-01

    Full Text Available Yeon Kyung Lee,1,* Eun-Ju Choi,2,* Thomas J Webster,3 Sang-Hyun Kim,4 Dongwoo Khang1 1Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea; 2Division of Sport Science, College of Science and Technology, Konkuk University, Chungju, South Korea; 3Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA; 4Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea *These authors contributed equally to this work Abstract: Although the cytotoxicity of nanoparticles (NPs is greatly influenced by their interactions with blood proteins, toxic effects resulting from blood interactions are often ignored in the development and use of nanostructured biomaterials for in vivo applications. Protein coronas created during the initial reaction with NPs can determine the subsequent immunological cascade, and protein coronas formed on NPs can either stimulate or mitigate the immune response. Along these lines, the understanding of NP-protein corona formation in terms of physiochemical surface properties of the NPs and NP interactions with the immune system components in blood is an essential step for evaluating NP toxicity for in vivo therapeutics. This article reviews the most recent developments in NP-based protein coronas through the modification of NP surface properties and discusses the associated immune responses. Keywords: nanostructured biomaterials, blood response, cytotoxicity, immunotoxicity, protein corona

  12. Red pitaya juice supplementation ameliorates energy balance homeostasis by modulating obesity-related genes in high-carbohydrate, high-fat diet-induced metabolic syndrome rats.

    Science.gov (United States)

    Ramli, Nurul Shazini; Ismail, Patimah; Rahmat, Asmah

    2016-07-26

    Red pitaya (Hylocereus polyrhizus) or known as buah naga merah in Malay belongs to the cactus family, Cactaceae. Red pitaya has been shown to give protection against liver damage and may reduce the stiffness of the heart. Besides, the beneficial effects of red pitaya against obesity have been reported; however, the mechanism of this protection is not clear. Therefore, in the present study, we have investigated the red pitaya-targeted genes in obesity using high-carbohydrate, high-fat diet-induced metabolic syndrome rat model. A total of four groups were tested: corn-starch (CS), corn-starch + red pitaya juice (CRP), high-carbohydrate, high-fat (HCHF) and high-carbohydrate, high-fat + red pitaya juice (HRP). The intervention with 5 % red pitaya juice was continued for 8 weeks after 8 weeks initiation of the diet. Retroperitoneal, epididymal and omental fat pads were collected and weighed. Plasma concentration of IL-6 and TNF-α were measured using commercial kits. Gene expression analysis was conducted using RNA extracted from liver samples. A total of eighty-four genes related to obesity were analyzed using PCR array. The rats fed HCHF-diet for 16 weeks increased body weight, developed excess abdominal fat deposition and down-regulated the expression level of IL-1α, IL-1r1, and Cntfr as compared to the control group. Supplementation of red pitaya juice for 8 weeks increased omental and epididymal fat but no change in retroperitoneal fat was observed. Red pitaya juice reversed the changes in energy balance homeostasis in liver tissues by regulation of the expression levels of Pomc and Insr. The increased protein expression levels of IL-6 and TNF-α in HCHF group and red pitaya treated rats confirmed the results of gene expression. Collectively, this study revealed the usefulness of this diet-induced rat model and the beneficial effects of red pitaya on energy balance homeostasis by modulating the anorectic, orexigenic and energy expenditure related

  13. Altering the N-terminal arms of the polymerase manager protein UmuD modulates protein interactions.

    Directory of Open Access Journals (Sweden)

    David A Murison

    Full Text Available Escherichia coli cells that are exposed to DNA damaging agents invoke the SOS response that involves expression of the umuD gene products, along with more than 50 other genes. Full-length UmuD is expressed as a 139-amino-acid protein, which eventually cleaves its N-terminal 24 amino acids to form UmuD'. The N-terminal arms of UmuD are dynamic and contain recognition sites for multiple partner proteins. Cleavage of UmuD to UmuD' dramatically affects the function of the protein and activates UmuC for translesion synthesis (TLS by forming DNA Polymerase V. To probe the roles of the N-terminal arms in the cellular functions of the umuD gene products, we constructed additional N-terminal truncated versions of UmuD: UmuD 8 (UmuD Δ1-7 and UmuD 18 (UmuD Δ1-17. We found that the loss of just the N-terminal seven (7 amino acids of UmuD results in changes in conformation of the N-terminal arms, as determined by electron paramagnetic resonance spectroscopy with site-directed spin labeling. UmuD 8 is cleaved as efficiently as full-length UmuD in vitro and in vivo, but expression of a plasmid-borne non-cleavable variant of UmuD 8 causes hypersensitivity to UV irradiation, which we determined is the result of a copy-number effect. UmuD 18 does not cleave to form UmuD', but confers resistance to UV radiation. Moreover, removal of the N-terminal seven residues of UmuD maintained its interactions with the alpha polymerase subunit of DNA polymerase III as well as its ability to disrupt interactions between alpha and the beta processivity clamp, whereas deletion of the N-terminal 17 residues resulted in decreases in binding to alpha and in the ability to disrupt the alpha-beta interaction. We find that UmuD 8 mimics full-length UmuD in many respects, whereas UmuD 18 lacks a number of functions characteristic of UmuD.

  14. In vitro screening on amyloid precursor protein modulation of plants used in Ayurvedic and traditional Chinese medicine for memory improvement.

    Science.gov (United States)

    Liu, Liang-Feng; Durairajan, Siva Sundara Kumar; Lu, Jia-Hong; Koo, Irene; Li, Min

    2012-06-01

    The 15 herbs for the screening have been traditionally used in Ayurvedic medicine or in Traditional Chinese medicine (TCM) for the treatment of cognitive disorders clinically. Fifteen plant species were investigated for the inhibition of amyloid peptide (Aβ) production and modulation of amyloid precursor protein (APP) processing. The selected plants were extracted successively with 70% ethyl alcohol and absolute alcohol concentrated with rotary evaporation then lyophilized. Using a mouse neuroblastoma cells expressing Swedish APP (N2a-SweAPP), MTT assay was performed to determine the toxicity concentration of each herbal extract. In order to evaluate the activity of ethanol extracts on Aβ inhibition, the N2a-SweAPP cells were treated with a high and low dosage of different extracts for 24h, Aβs levels in the supernatant of conditioned media were assessed by ELISA. The most active extracts were then subjected to test the effect on APP modulation in N2a-SweAPP cells by determining their effect on sAPPα and sAPPβ through western blot analysis. Among the screened herbal extracts, only Polygonum multiflorum Thunb. (root) and Convolvulus pluricaulis Choisy. (leaves) showed profound inhibition of Aβ production. MTT assay demonstrated that the anti-Aβ effect of these extracts was not a sequential consequence of their cytotoxicity. The extract of Polygonum multiflorum Thunb. (root) could reduce Aβ production only through APP modulation, which was exhibited together with the up-regulation of sAPPα and down-regulation of sAPPβ. The results show that extract of Polygonum multiflorum Thunb. (root) can lower Aβ generation by modulating APP processing in the N2a-SwedAPP cell line. These results corroborate the traditional use of Polygonum multiflorum Thunb. (root) for the treatment of cognitive disorders including Alzheimer's disease (AD). Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. L-leucine dietary supplementation modulates muscle protein degradation and increases pro-inflammatory cytokines in tumour-bearing rats.

    Science.gov (United States)

    Cruz, Bread; Oliveira, André; Gomes-Marcondes, Maria Cristina Cintra

    2017-08-01

    Cancer cachexia is characterised by involuntary weight loss associated with systemic inflammation and metabolic changes. Studies aimed at maintaining lean body mass in cachectic tumour-bearing hosts have made important contributions reducing the number of deaths and improving the quality of life. In recent years, leucine has demonstrated effective action in maintaining lean body mass by decreasing muscle protein degradation. Currently, there is a growing need to understand how leucine stimulates protein synthesis and acts protectively in a cachectic organism. Thus, this study aimed to assess the effects of a leucine-rich diet on protein degradation signalling in muscle over the course of tumour growth. Animals were distributed into four experimental groups, which did or did not receive 2×10 6 viable Walker-tumour cells. Some were fed a leucine-rich diet, and the groups were subsequently sacrificed at three different time points of tumour evolution (7th, 14th, and 21st days). Protein degradation signals, as indicated by ubiquitin-proteasome subunits (11S, 19S, and 20S) and pro- and anti-inflammatory cytokines, were analysed in all experimental groups. In tumour-bearing animals without nutritional supplementation (W7, W14, and W21 groups), we observed that the tumour growth promoted a concurrent decrease in muscle protein, a sharp increase in pro-inflammatory cytokines (TNFα, IL-6, and IFNγ), and a progressive increase in proteasome subunits (19S and 20S). Thus, the leucine-supplemented tumour-bearing groups showed improvements in muscle mass and protein content, and in this specific situation, the leucine-rich diet led to an increase on the day in cytokine profile and proteasome subunits mainly on the 14th day, which subsequently had a modulating effect on tumour growth on the 21st day. These results indicate that the presence of leucine in the diet may modulate important aspects of the proteasomal pathway in cancer cachexia and may prevent muscle wasting due to

  16. Towards the Structure Determination of a Modulated Protein Crystal: The Semicrystalline State of Profilin:Actin

    Science.gov (United States)

    Borgstahl, G.; Lovelace, J.; Snell, E. H.; Bellamy, H.

    2003-01-01

    One of the remaining challenges to structural biology is the solution of modulated structures. While small molecule crystallographers have championed this type of structure, to date, no modulated macromolecular structures have been determined. Modulation of the molecular structures within the crystal can produce satellite reflections or a superlattice of reflections in reciprocal space. We have developed the data collection methods and strategies that are needed to collect and analyze these data. If the macromolecule's crystal lattice is composed of physiologically relevant packing contacts, structural changes induced under physiological conditions can cause distortion relevant to the function and biophysical processes of the molecule making up the crystal. By careful measurement of the distortion, and the corresponding three-dimensional structure of the distorted molecule, we will visualize the motion and mechanism of the biological macromolecule(s). We have measured the modulated diffraction pattern produced by the semicrystalline state of profilin:actin crystals using highly parallel and highly monochromatic synchrotron radiation coupled with fine phi slicing (0.001-0.010 degrees) for structure determination. These crystals present these crystals present a unique opportunity to address an important question in structural biology. The modulation is believed to be due to the formation of actin helical filaments from the actin beta ribbon upon the pH-induced dissociation of profilin. To date, the filamentous state of actin has resisted crystallization and no detailed structures are available. The semicrystalline state profilin:actin crystals provides a unique opportunity to understand the many conformational states of actin. This knowledge is essential for understanding the dynamics underlying shape changes and motility of eukaryotic cells. Many essential processes, such as cytokinesis, phagocytosis, and cellular migration depend upon the capacity of the actin

  17. Hepatitis C Virus Core Protein Modulates Endoglin (CD105) Signaling Pathway for Liver Pathogenesis.

    Science.gov (United States)

    Kwon, Young-Chan; Sasaki, Reina; Meyer, Keith; Ray, Ranjit

    2017-11-01

    Endoglin is part of the TGF-β receptor complex and has a crucial role in fibrogenesis and angiogenesis. It is also an important protein for tumor growth, survival, and cancer cell metastasis. In a previous study, we have shown that hepatitis C virus (HCV) infection induces epithelial-mesenchymal transition (EMT) state and cancer stem-like cell (CSC) properties in human hepatocytes. Our array data suggested that endoglin (CD105) mRNA is significantly upregulated in HCV-associated CSCs. In this study, we have observed increased endoglin expression on the cell surface of an HCV core-expressing hepatocellular carcinoma (HepG2) cell line or immortalized human hepatocytes (IHH) and activation of its downstream signaling molecules. The status of phospho-SMAD1/5 and the expression of inhibitor of DNA binding protein 1 (ID1) were upregulated in HCV-infected cells or viral core gene-transfected cells. Additionally, we observed upregulation of endoglin/ID1 mRNA expression in chronic HCV patient liver biopsy samples. CSC generation by HCV core protein was dependent on the endoglin signaling pathway using activin receptor-like kinase 1 (ALK1) Fc blocking peptide and endoglin small interfering RNA (siRNA). Further, follow-up from in vitro analysis suggested that the antiapoptosis Bcl2 protein, proliferation-related cyclin D1 protein, and CSC-associated Hes1, Notch1, Nanog, and Sox2 proteins are enhanced during infection or ectopic expression of HCV core protein. IMPORTANCE Endoglin plays a crucial role in fibrogenesis and angiogenesis and is an important protein for tumor growth, survival, and cancer cell metastasis. Endoglin enhances ALK1-SMAD1/5 signaling in different cell types, leading to increased proliferation and migration responses. We have observed endoglin expression on the HCV core-expressing cell surface of human hepatocyte origin and activation of phospho-SMAD1/5 and ID1 downstream signaling molecules. ID1 protein plays a role in CSC properties, and we found that

  18. Structural basis and target-specific modulation of ADP sensing by the Synechococcus elongatus PII signaling protein.

    Science.gov (United States)

    Zeth, Kornelius; Fokina, Oleksandra; Forchhammer, Karl

    2014-03-28

    PII signaling proteins comprise one of the most versatile signaling devices in nature and have a highly conserved structure. In cyanobacteria, PipX and N-acetyl-L-glutamate kinase are receptors of PII signaling, and these interactions are modulated by ADP, ATP, and 2-oxoglutarate. These effector molecules bind interdependently to three anti-cooperative binding sites on the trimeric PII protein and thereby affect its structure. Here we used the PII protein from Synechococcus elongatus PCC 7942 to reveal the structural basis of anti-cooperative ADP binding. Furthermore, we clarified the mutual influence of PII-receptor interaction and sensing of the ATP/ADP ratio. The crystal structures of two forms of trimeric PII, one with one ADP bound and the other with all three ADP-binding sites occupied, revealed significant differences in the ADP binding mode: at one site (S1) ADP is tightly bound through side-chain and main-chain interactions, whereas at the other two sites (S2 and S3) the ADP molecules are only bound by main-chain interactions. In the presence of the PII-receptor PipX, the affinity of ADP to the first binding site S1 strongly increases, whereas the affinity for ATP decreases due to PipX favoring the S1 conformation of PII-ADP. In consequence, the PII-PipX interaction is highly sensitive to subtle fluctuations in the ATP/ADP ratio. By contrast, the PII-N-acetyl-L-glutamate kinase interaction, which is negatively affected by ADP, is insensitive to these fluctuations. Modulation of the metabolite-sensing properties of PII by its receptors allows PII to differentially perceive signals in a target-specific manner and to perform multitasking signal transduction.

  19. Rat vas deferens SERCA2 is modulated by Ca{sup 2+}/calmodulin protein kinase II-mediated phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.B.R.; Muzi-Filho, H. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Valverde, R.H.F. [Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Quintas, L.E.M. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Noel, F. [Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Einicker-Lamas, M. [Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ (Brazil); Cunha, V.M.N. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)