WorldWideScience

Sample records for syndrome i304n mutation

  1. A mouse model of the human Fragile X syndrome I304N mutation.

    Directory of Open Access Journals (Sweden)

    Julie B Zang

    2009-12-01

    Full Text Available The mental retardation, autistic features, and behavioral abnormalities characteristic of the Fragile X mental retardation syndrome result from the loss of function of the RNA-binding protein FMRP. The disease is usually caused by a triplet repeat expansion in the 5'UTR of the FMR1 gene. This leads to loss of function through transcriptional gene silencing, pointing to a key function for FMRP, but precluding genetic identification of critical activities within the protein. Moreover, antisense transcripts (FMR4, ASFMR1 in the same locus have been reported to be silenced by the repeat expansion. Missense mutations offer one means of confirming a central role for FMRP in the disease, but to date, only a single such patient has been described. This patient harbors an isoleucine to asparagine mutation (I304N in the second FMRP KH-type RNA-binding domain, however, this single case report was complicated because the patient harbored a superimposed familial liver disease. To address these issues, we have generated a new Fragile X Syndrome mouse model in which the endogenous Fmr1 gene harbors the I304N mutation. These mice phenocopy the symptoms of Fragile X Syndrome in the existing Fmr1-null mouse, as assessed by testicular size, behavioral phenotyping, and electrophysiological assays of synaptic plasticity. I304N FMRP retains some functions, but has specifically lost RNA binding and polyribosome association; moreover, levels of the mutant protein are markedly reduced in the brain specifically at a time when synapses are forming postnatally. These data suggest that loss of FMRP function, particularly in KH2-mediated RNA binding and in synaptic plasticity, play critical roles in pathogenesis of the Fragile X Syndrome and establish a new model for studying the disorder.

  2. Germinal mosaicism of PAX3 mutation caused Waardenburg syndrome type I.

    Science.gov (United States)

    Chen, Kaitian; Zhan, Yuan; Wu, Xuan; Zong, Ling; Jiang, Hongyan

    2018-01-01

    Waardenburg syndrome mutations are most often recurrent or de novo. The rate of familial recurrence is low and families with several affected children are extremely rare. In this study, we aimed to clarify the underlying hereditary cause of Waardenburg syndrome type I in two siblings in a Chinese family, with a mother affected by prelingual mild hearing loss and a father who was negative for clinical symptoms of Waardenburg syndrome and had a normal hearing threshold. Complete characteristic features of the family members were recorded and genetic sequencing and parent-child relationship analyses were performed. The two probands were found to share double mutations in the PAX3/GJB2 genes that caused concurrent hearing loss in Waardenburg syndrome type I. Their mother carried the GJB2 c.109G > A homozygous mutation; however, neither the novel PAX3 c.592delG mutation, nor the Waardenburg syndrome phenotype, was observed in either parent. These previously unreported digenic mutations in PAX3/GJB2 resulted in deafness associated with Waardenburg syndrome type I in this family. To our knowledge, this is the first report describing germinal mosaicism in Waardenburg syndrome. This concept is important because it complicates genetic counseling of this family regarding the risk of recurrence of the mutations in subsequent pregnancies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Noonan syndrome gain-of-function mutations in NRAS cause zebrafish gastrulation defects

    Directory of Open Access Journals (Sweden)

    Vincent Runtuwene

    2011-05-01

    Noonan syndrome is a relatively common developmental disorder that is characterized by reduced growth, wide-set eyes and congenital heart defects. Noonan syndrome is associated with dysregulation of the Ras–mitogen-activated-protein-kinase (MAPK signaling pathway. Recently, two mutations in NRAS were reported to be associated with Noonan syndrome, T50I and G60E. Here, we report a mutation in NRAS, resulting in an I24N amino acid substitution, that we identified in an individual bearing typical Noonan syndrome features. The I24N mutation activates N-Ras, resulting in enhanced downstream signaling. Expression of N-Ras-I24N, N-Ras-G60E or the strongly activating mutant N-Ras-G12V, which we included as a positive control, results in developmental defects in zebrafish embryos, demonstrating that these activating N-Ras mutants are sufficient to induce developmental disorders. The defects in zebrafish embryos are reminiscent of symptoms in individuals with Noonan syndrome and phenocopy the defects that other Noonan-syndrome-associated genes induce in zebrafish embryos. MEK inhibition completely rescued the activated N-Ras-induced phenotypes, demonstrating that these defects are mediated exclusively by Ras-MAPK signaling. In conclusion, mutations in NRAS from individuals with Noonan syndrome activated N-Ras signaling and induced developmental defects in zebrafish embryos, indicating that activating mutations in NRAS cause Noonan syndrome.

  4. Noonan syndrome gain-of-function mutations in NRAS cause zebrafish gastrulation defects

    Science.gov (United States)

    Runtuwene, Vincent; van Eekelen, Mark; Overvoorde, John; Rehmann, Holger; Yntema, Helger G.; Nillesen, Willy M.; van Haeringen, Arie; van der Burgt, Ineke; Burgering, Boudewijn; den Hertog, Jeroen

    2011-01-01

    SUMMARY Noonan syndrome is a relatively common developmental disorder that is characterized by reduced growth, wide-set eyes and congenital heart defects. Noonan syndrome is associated with dysregulation of the Ras–mitogen-activated-protein-kinase (MAPK) signaling pathway. Recently, two mutations in NRAS were reported to be associated with Noonan syndrome, T50I and G60E. Here, we report a mutation in NRAS, resulting in an I24N amino acid substitution, that we identified in an individual bearing typical Noonan syndrome features. The I24N mutation activates N-Ras, resulting in enhanced downstream signaling. Expression of N-Ras-I24N, N-Ras-G60E or the strongly activating mutant N-Ras-G12V, which we included as a positive control, results in developmental defects in zebrafish embryos, demonstrating that these activating N-Ras mutants are sufficient to induce developmental disorders. The defects in zebrafish embryos are reminiscent of symptoms in individuals with Noonan syndrome and phenocopy the defects that other Noonan-syndrome-associated genes induce in zebrafish embryos. MEK inhibition completely rescued the activated N-Ras-induced phenotypes, demonstrating that these defects are mediated exclusively by Ras-MAPK signaling. In conclusion, mutations in NRAS from individuals with Noonan syndrome activated N-Ras signaling and induced developmental defects in zebrafish embryos, indicating that activating mutations in NRAS cause Noonan syndrome. PMID:21263000

  5. Mutation Spectrum and Phenotypic Features in Noonan Syndrome with PTPN11 Mutations: Definition of Two Novel Mutations.

    Science.gov (United States)

    Atik, Tahir; Aykut, Ayca; Hazan, Filiz; Onay, Huseyin; Goksen, Damla; Darcan, Sukran; Tukun, Ajlan; Ozkinay, Ferda

    2016-06-01

    To evaluate the spectrum of PTPN11 gene mutations in Noonan syndrome patients and to study the genotype-phenotype associations. In this study, twenty Noonan syndrome patients with PTPN11 mutations were included. The patients underwent a detailed clinical and physical evaluation. To identify inherited cases, parents of all mutation positive patients were analyzed. Thirteen different PTPN11 mutations, two of them being novel, were detected in the study group. These mutations included eleven missense mutations: p.G60A, p.D61N, p.Y62D, p.Y63C, p.E69Q, p.Q79R, p.Y279C,p.N308D, p.N308S, p.M504V, p.Q510R and two novel missense mutations: p.I56V and p.I282M. The frequency of cardiac abnormalities and short stature were found to be 80 % and 80 %, respectively. Mental retardation was not observed in patients having exon 8 mutations. No significant correlations were detected between other phenotypic features and genotypes. By identifying genotype-phenotype correlations, this study provides information on phenotypes observed in NS patients with different PTPN11 mutations.

  6. Mutation screening of the PCDH15 gene in Spanish patients with Usher syndrome type I.

    Science.gov (United States)

    Jaijo, Teresa; Oshima, Aki; Aller, Elena; Carney, Carol; Usami, Shin-ichi; Millán, José M; Kimberling, William J

    2012-01-01

    PCDH15 codes for protocadherin-15, a cell-cell adhesion protein essential in the morphogenesis and cohesion of stereocilia bundles and in the function or preservation of photoreceptor cells. Mutations in the PCDH15 gene are responsible for Usher syndrome type I (USH1F) and non-syndromic hearing loss (DFNB23). The purpose of this work was to perform PCDH15 mutation screening to identify the genetic cause of the disease in a cohort of Spanish patients with Usher syndrome type I and establish phenotype-genotype correlation. Mutation analysis of PCDH15 included additional exons recently identified and was performed by direct sequencing. The screening was performed in 19 probands with USH already screened for mutations in the most prevalent USH1 genes, myosin VIIA (MYO7A) and cadherin-23 (CDH23), and for copy number variants in PCDH15. Seven different point mutations, five novel, were detected. Including the large PCDH15 rearrangements previously reported in our cohort of patients, a total of seven of 19 patients (36.8%) were carriers of at least one pathogenic allele. Thirteen out of the 38 screened alleles carried pathogenic PCDH15 variants (34.2%). Five out of the seven point mutations reported in the present study are novel, supporting the idea that most PCDH15 mutations are private. Furthermore, no mutational hotspots have been identified. In most patients, detected mutations led to a truncated protein, reinforcing the hypothesis that severe mutations cause the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.

  7. Mutation Profile of the CDH23 Gene in 56 Probands with Usher Syndrome Type I

    Science.gov (United States)

    Oshima, A.; Jaijo, T.; Aller, E.; Millan, J.M.; Carney, C.; Usami, S.; Moller, C.; Kimberling, W.J.

    2008-01-01

    Mutations in the human gene encoding cadherin 23 (CDH23) cause Usher syndrome type 1D (USH1D) and nonsyndromic hearing loss. Individuals with Usher syndrome type I have profound congenital deafness, vestibular areflexia and usually begin to exhibit signs of RP in early adolescence. In the present study, we carried out the mutation analysis in all 69 exons of the CDH23 gene in 56 Usher type 1 probands already screened for mutations in MYO7A. A total of 18 of 56 subjects (32.1%) were observed to have one or two CDH23 variants that are presumed to be pathologic. Twenty one different pathologic genome variants were observed of which 15 were novel. Out of a total of 112 alleles, 31 (27.7%) were considered pathologic. Based on our results it is estimated that about 20% of patients with Usher syndrome type I have CDH23 mutations. PMID:18429043

  8. Familial Mediterranean fever, Inflammation and Nephrotic Syndrome: Fibrillary Glomerulopathy and the M680I Missense Mutation

    Directory of Open Access Journals (Sweden)

    Semerdjian Ronald J

    2003-08-01

    Full Text Available Abstract Background Familial Mediterranean fever (FMF is an autosomal recessive disease characterized by inflammatory serositis (fever, peritonitis, synovitis and pleuritis. The gene locus responsible for FMF was identified in 1992 and localized to the short arm of chromosome 16. In 1997, a specific FMF gene locus, MEFV, was discovered to encode for a protein, pyrin that mediates inflammation. To date, more than forty missense mutations are known to exist. The diversity of mutations identified has provided insight into the variability of clinical presentation and disease progression. Case Report We report an individual heterozygous for the M680I gene mutation with a clinical diagnosis of FMF using the Tel-Hashomer criteria. Subsequently, the patient developed nephrotic syndrome with biopsy-confirmed fibrillary glomerulonephritis (FGN. Further diagnostic studies were unremarkable with clinical workup negative for amyloidosis or other secondary causes of nephrotic syndrome. Discussion Individuals with FMF are at greater risk for developing nephrotic syndrome. The most serious etiology is amyloidosis (AA variant with renal involvement, ultimately progressing to end-stage renal disease. Other known renal diseases in the FMF population include IgA nephropathy, IgM nephropathy, Henoch-Schönlein purpura as well as polyarteritis nodosa. Conclusion To our knowledge, this is the first association between FMF and the M680I mutation later complicated by nephrotic syndrome and fibrillary glomerulonephritis.

  9. Long-term follow-up of patients with Bartter syndrome type I and II.

    Science.gov (United States)

    Puricelli, Elena; Bettinelli, Alberto; Borsa, Nicolò; Sironi, Francesca; Mattiello, Camilla; Tammaro, Fabiana; Tedeschi, Silvana; Bianchetti, Mario G

    2010-09-01

    Little information is available on a long-term follow-up in Bartter syndrome type I and II. Clinical presentation, treatment and long-term follow-up (5.0-21, median 11 years) were evaluated in 15 Italian patients with homozygous (n = 7) or compound heterozygous (n = 8) mutations in the SLC12A1 (n = 10) or KCNJ1 (n = 5) genes. Thirteen new mutations were identified. The 15 children were born pre-term with a normal for gestational age body weight. Medical treatment at the last follow-up control included supplementation with potassium in 13, non-steroidal anti-inflammatory agents in 12 and gastroprotective drugs in five patients. At last follow-up, body weight and height were within normal ranges in the patients. Glomerular filtration rate was Bartter syndrome had a lower renin ratio (P Bartter syndrome. Patients with Bartter syndrome type I and II tend to present a satisfactory prognosis after a median follow-up of more than 10 years. Gallstones might represent a new complication of antenatal Bartter syndrome.

  10. Mismatch repair gene mutation spectrum in the Swedish Lynch syndrome population

    DEFF Research Database (Denmark)

    Lagerstedt-Robinson, Kristina; Rohlin, Anna; Aravidis, Christos

    2016-01-01

    Lynch syndrome caused by constitutional mismatch‑repair defects is one of the most common hereditary cancer syndromes with a high risk for colorectal, endometrial, ovarian and urothelial cancer. Lynch syndrome is caused by mutations in the mismatch repair (MMR) genes i.e., MLH1, MSH2, MSH6 and PMS2...... Lynch syndrome families. These mutations affected MLH1 in 40%, MSH2 in 36%, MSH6 in 18% and PMS2 in 6% of the families. A large variety of mutations were identified with splice site mutations being the most common mutation type in MLH1 and frameshift mutations predominating in MSH2 and MSH6. Large...... deletions of one or several exons accounted for 21% of the mutations in MLH1 and MSH2 and 22% in PMS2, but were rare (4%) in MSH6. In 66% of the Lynch syndrome families the variants identified were private and the effect from founder mutations was limited and predominantly related to a Finnish founder...

  11. Non-syndromic hearing loss caused by the dominant cis mutation R75Q with the recessive mutation V37I of the GJB2 (Connexin 26) gene.

    Science.gov (United States)

    Kim, Juwon; Jung, Jinsei; Lee, Min Goo; Choi, Jae Young; Lee, Kyung-A

    2015-06-19

    GJB2 alleles containing two cis mutations have been rarely found in non-syndromic hearing loss. Herein, we present a Korean patient with non-syndromic hearing loss caused by the R75Q cis mutation with V37I, which arose de novo in the father and was inherited by the patient. Biochemical coupling and hemichannel permeability assays were performed after molecular cloning and transfection of HEK293T cells. Student's t-tests or analysis of variance followed by Tukey's multiple comparison test was used as statistical analysis. Biochemical coupling was significantly reduced in connexin 26 (Cx26)-R75Q- and Cx26-V37I-transfected cells, with greater extent in Cx26-R75Q and Cx26-R75Q+V37I cells. Interestingly, our patient and his father with the mutations had more residual hearing compared with patients with the dominant mutation alone. Although the difference in hemichannel activity between R75Q alone and R75Q in combination with V37I failed to reach significance, it is of note that there is a possibility that V37I located upstream of R75Q might have the ability to ameliorate R75Q expression. Our study emphasizes the importance of cis mutations with R75Q, as the gene effect of R75Q can be modulated depending on the type of additional mutation.

  12. A novel mutation in PAX3 associated with Waardenburg syndrome type I in a Chinese family.

    Science.gov (United States)

    Xiao, Yun; Luo, Jianfen; Zhang, Fengguo; Li, Jianfeng; Han, Yuechen; Zhang, Daogong; Wang, Mingming; Ma, Yalin; Xu, Lei; Bai, Xiaohui; Wang, Haibo

    2016-01-01

    The novel compound heterozygous mutation in PAX3 was the key genetic reason for WS1 in this family, which was useful to the molecular diagnosis of WS1. Screening the pathogenic mutations in a four generation Chinese family with Waardenburg syndrome type I (WS1). WS1 was diagnosed in a 4-year-old boy according to the Waardenburg syndrome Consortium criteria. The detailed family history revealed four affected members in the family. Routine clinical, audiological examination, and ophthalmologic evaluation were performed on four affected and 10 healthy members in this family. The genetic analysis was conducted, including the targeted next-generation sequencing of 127 known deafness genes combined with Sanger sequencing, TA clone and bioinformatic analysis. A novel compound heterozygous mutation c.[169_170insC;172_174delAAG] (p.His57ProfsX55) was identified in PAX3, which was co-segregated with WS1 in the Chinese family. This mutation was absent in the unaffected family members and 200 ethnicity-matched controls. The phylogenetic analysis and three-dimensional (3D) modeling of Pax3 protein further confirmed that the novel compound heterozygous mutation was pathogenic.

  13. Co-overexpression of bacterial GroESL chaperonins partly overcomes non-productive folding and tetramer assembly of E. coli-expressed human medium-chain acyl-CoA dehydrogenase (MCAD) carrying the prevalent disease-causing K304E mutation

    DEFF Research Database (Denmark)

    Bross, P; Andresen, B S; Winter, V

    1993-01-01

    underlying MCAD deficiency caused by the prevalent K304E mutation. Depending on which of the three amino acids--lysine (wild-type), glutamic acid (K304E) or glutamine (K304Q) are present at position 304 of the mature polypeptide, three different patterns were observed in our assay system: (i) solubility...... in Western blotting. In a first attempt to estimate the specific activity, we show that tetrameric K304E and K304Q mutant MCAD display a specific activity in the range of the wild-type enzyme. Taken together, our results strongly suggest, that the K304E mutation primarily impairs the rate of folding...... with negative charge at position 304 (glutamic acid) but not with a neutral charge (glutamine) negatively affects conversion to active tetramers. A possible explanation for this latter effect--charge repulsion upon subunit docking--is discussed....

  14. A frame-shift mutation of PMS2 is a widespread cause of Lynch syndrome

    DEFF Research Database (Denmark)

    Clendenning, Mark; Senter, Leigha; Hampel, Heather

    2008-01-01

    BACKGROUND: When compared to the other mismatch repair genes involved in Lynch syndrome, the identification of mutations within PMS2 has been limited (Lynch syndrome cases...... on immunohistochemical analysis. RESULTS: We have identified a frequently occurring frame-shift mutation (c.736_741del6ins11) in 12 ostensibly unrelated Lynch syndrome patients (20% of patients we have identified with a deleterious mutation in PMS2, n=61). These individuals all display the rare allele (population...... and Swedish ancestry. We estimate that there are >10,000 carriers of this mutation in the United States alone. The identification of both the mutation and the common haplotype in one Swedish control sample (n = 225), along with evidence that Lynch syndrome associated cancers are rarer than expected...

  15. Mutation of Mitochondrial DNA G13513A Presenting with Leigh Syndrome, Wolff-Parkinson-White Syndrome and Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Shi-Bing Wang

    2008-08-01

    Full Text Available Mutation of mitochondrial DNA (mtDNA G13513A, encoding the ND5 subunit of respiratory chain complex I, can cause mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS and Leigh syndrome. Wolff-Parkinson-White (WPW syndrome and optic atrophy were reported in a high proportion of patients with this mutation. We report an 18-month-old girl, with an 11-month history of psychomotor regression who was diagnosed with WPW syndrome and hypertrophic cardiomyopathy, in association with Leigh syndrome. Supplementation with coenzyme Q10, thiamine and carnitine prevented further regression in gross motor function but the patient's heart function deteriorated and dilated cardiomyopathy developed 11 months later. She was found to have a mutation of mtDNA G13513A. We suggest that mtDNA G13513A mutation is an important factor in patients with Leigh syndrome associated with WPW syndrome and/or optic atrophy, and serial heart function monitoring by echocardiography is recommended in this group of patients.

  16. Mutational Analysis of PTPN11 Gene in Taiwanese Children with Noonan Syndrome

    Directory of Open Access Journals (Sweden)

    Chia-Sui Hung

    2007-01-01

    Full Text Available Noonan syndrome (NS is an autosomal dominant disorder presenting with characteristic facies, short stature, skeletal anomalies, and congenital heart defects. Mutations in protein-tyrosine phosphatase, nonreceptor-type 11 (PTPN11, encoding SHP-2, account for 33-50% of NS. This study screened for mutations in the PTPN11 gene in 34 Taiwanese patients with NS. Mutation analysis of the 15 coding exons and exon/intron boundaries was performed by polymerase chain reaction and direct sequencing of the PTPN11 gene. We identified 10 different missense mutations in 13 (38% patients, including a novel missense mutation (855T > G, F285L. These mutations were clustered in exon 3 (n = 6 encoding the N-SH2 domain, exon 4 (n = 2 encoding the C-SH2 domain, and in exons 8 (n = 2 and 13 (n = 3 encoding the PTP domain. In conclusion, this study provides further support that PTPN11 mutations are responsible for Noonan syndrome in Taiwanese patients. [J Formos Med Assoc 2007;106(2:169-172

  17. Trichorhinophalangeal Syndrome Type I: A Patient with Two Novel and Different Mutations in the TRPS1 Gene

    Directory of Open Access Journals (Sweden)

    Catarina Dias

    2013-01-01

    Full Text Available Background. Trichorhinophalangeal syndrome (TRPS is an autosomal dominant skeletal dysplasia caused by defects involving the TRPS1 gene. Three types (TRPSs I, II, and III have been described, exhibiting the common triad of hair, craniofacial, and skeletal abnormalities. TRPS II includes the additional characteristics of mental retardation and multiple exostoses. Case Report. We describe a sporadic case of TRPS type I in a child with two novel nonsense pathogenic mutations in the TRPS1 gene, both in heterozygosity—c.1198C>T (p. Gln400X and c.2086C>T (p.Arg696X. None of these mutations were found in her parents. Clinical presentation included typical hair and facial features, as well as slight skeletal abnormalities. Discussion. There is a wide variability in clinical expression of TRPS I. Manifestations of the disease can be subtle, yet skeletal anomalies imply that TRPS I is more than an esthetic problem. Clinical and genetic diagnosis allows adequate followup and timely therapeutic procedures. When a single mutation was sufficient for the onset of the disease, our patient presented two different ones.

  18. Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome

    DEFF Research Database (Denmark)

    Delpón, Eva; Cordeiro, Jonathan M; Núñez, Lucía

    2008-01-01

    INTRODUCTION: The Brugada Syndrome (BrS), an inherited syndrome associated with a high incidence of sudden cardiac arrest, has been linked to mutations in four different genes leading to a loss of function in sodium and calcium channel activity. Although the transient outward current (I......(to)) is thought to play a prominent role in the expression of the syndrome, mutations in I(to)-related genes have not been identified as yet. METHODS AND RESULTS: One hundred and five probands with BrS were screened for ion channel gene mutations using single strand conformation polymorphism (SSCP...

  19. Prevalence of Novel MAGED2 Mutations in Antenatal Bartter Syndrome.

    Science.gov (United States)

    Legrand, Anne; Treard, Cyrielle; Roncelin, Isabelle; Dreux, Sophie; Bertholet-Thomas, Aurélia; Broux, Françoise; Bruno, Daniele; Decramer, Stéphane; Deschenes, Georges; Djeddi, Djamal; Guigonis, Vincent; Jay, Nadine; Khalifeh, Tackwa; Llanas, Brigitte; Morin, Denis; Morin, Gilles; Nobili, François; Pietrement, Christine; Ryckewaert, Amélie; Salomon, Rémi; Vrillon, Isabelle; Blanchard, Anne; Vargas-Poussou, Rosa

    2018-02-07

    Mutations in the MAGED2 gene, located on the X chromosome, have been recently detected in males with a transient form of antenatal Bartter syndrome or with idiopathic polyhydramnios. The aim of this study is to analyze the proportion of the population with mutations in this gene in a French cohort of patients with antenatal Bartter syndrome. The French cohort of patients with antenatal Bartter syndrome encompasses 171 families. Mutations in genes responsible for types 1-4 have been detected in 75% of cases. In patients without identified genetic cause ( n =42), transient antenatal Bartter syndrome was reported in 12 cases. We analyzed the MAGED2 gene in the entire cohort of negative cases by Sanger sequencing and retrospectively collected clinical data regarding pregnancy as well as the postnatal outcome for positive cases. We detected mutations in MAGED2 in 17 patients, including the 12 with transient antenatal Bartter syndrome, from 16 families. Fifteen different mutations were detected (one whole deletion, three frameshift, three splicing, three nonsense, two inframe deletions, and three missense); 13 of these mutations had not been previously described. Interestingly, two patients are females; in one of these patients our data are consistent with selective inactivation of chromosome X explaining the severity. The phenotypic presentation in our patients was variable and less severe than that of the originally described cases. MAGED2 mutations explained 9% of cases of antenatal Bartter syndrome in a French cohort, and accounted for 38% of patients without other characterized mutations and for 44% of male probands of negative cases. Our study confirmed previously published data and showed that females can be affected. As a result, this gene must be included in the screening of the most severe clinical form of Bartter syndrome. Copyright © 2018 by the American Society of Nephrology.

  20. In vivo and in vitro functional characterization of Andersen's syndrome mutations.

    Science.gov (United States)

    Bendahhou, Saïd; Fournier, Emmanuel; Sternberg, Damien; Bassez, Guillaume; Furby, Alain; Sereni, Carole; Donaldson, Matthew R; Larroque, Marie-Madeleine; Fontaine, Bertrand; Barhanin, Jacques

    2005-06-15

    The inward rectifier K(+) channel Kir2.1 carries all Andersen's syndrome mutations identified to date. Patients exhibit symptoms of periodic paralysis, cardiac dysrhythmia and multiple dysmorphic features. Here, we report the clinical manifestations found in three families with Andersen's syndrome. Molecular genetics analysis identified two novel missense mutations in the KCNJ2 gene leading to amino acid changes C154F and T309I of the Kir2.1 open reading frame. Patch clamp experiments showed that the two mutations produced a loss of channel function. When co-expressed with Kir2.1 wild-type (WT) channels, both mutations exerted a dominant-negative effect leading to a loss of the inward rectifying K(+) current. Confocal microscopy imaging in HEK293 cells is consistent with a co-assembly of the EGFP-fused mutant proteins with WT channels and proper traffick to the plasma membrane to produce silent channels alone or as hetero-tetramers with WT. Functional expression in C2C12 muscle cell line of newly as well as previously reported Andersen's syndrome mutations confirmed that these mutations act through a dominant-negative effect by altering channel gating or trafficking. Finally, in vivo electromyographic evaluation showed a decrease in muscle excitability in Andersen's syndrome patients. We hypothesize that Andersen's syndrome-associated mutations and hypokalaemic periodic paralysis-associated calcium channel mutations may lead to muscle membrane hypoexcitability via a common mechanism.

  1. High rate of mutation K103N causing resistance to nevirapine in Indian children with acquired immunodeficiency syndrome

    Directory of Open Access Journals (Sweden)

    Sehgal S

    2008-01-01

    Full Text Available In north India the number of paediatric cases with acquired immunodeficiency syndrome (AIDS is on the rise. Most drug combinations used for treatment of AIDS incorporate nevirapine, resistance to which develops very fast if given singly or because of unplanned interruptions. This paper investigates presence of mutations at codon 103 and codon 215 of the HIV pol gene causing resistance to nevirapine and zidovudine (AZT respectively in 25 children with AIDS. Mutations T215Y and K103N were detected by a nested cum amplification refractory mutation system polymerase chain reaction (ARMS PCR and the results were confirmed by direct sequencing in five randomly selected cases. Nineteen patients had received nevirapine containing regimen and six were drug naive. Mutation K103N was observed in 56% (14/25 of the children while mutation T215Y was found in none. Two of the six drug naοve children also showed K103N mutation. Thus, Indian children drug naοve or treated with nevirapine containing regimens show a high rate of mutation conferring resistance to nevirapine which calls for a judicious use of nevirapine both in antenatal and postnatal setting.

  2. Novel growth hormone receptor mutation in a Chinese patient with Laron syndrome.

    Science.gov (United States)

    Hui, Hamilton N T; Metherell, Louise A; Ng, K L; Savage, Martin O; Camacho-Hübner, Cecilia; Clark, Adrian J L

    2005-02-01

    Laron syndrome, growth hormone (GH) insensitivity syndrome, caused by a mutation of the GH receptor (GHR) gene, is extremely rare in the Chinese population. We report a Chinese girl diagnosed with Laron syndrome at age 1.9 years with height -4.9 SDS, basal GH 344 mIU/ml, IGF-I <12 ng/ml, IGFBP-3 <0.2 mg/ml, and undetectable GHBP. A novel mutation of the GHR, not previously described, was identified at the donor splice site of intron 6.

  3. Identification of SCN1A and PCDH19 mutations in Chinese children with Dravet syndrome.

    Directory of Open Access Journals (Sweden)

    Anna Ka-Yee Kwong

    Full Text Available BACKGROUND: Dravet syndrome is a severe form of epilepsy. Majority of patients have a mutation in SCN1A gene, which encodes a voltage-gated sodium channel. A recent study has demonstrated that 16% of SCN1A-negative patients have a mutation in PCDH19, the gene encoding protocadherin-19. Mutations in other genes account for only a very small proportion of families. TSPYL4 is a novel candidate gene within the locus 6q16.3-q22.31 identified by linkage study. OBJECTIVE: The present study examined the mutations in epileptic Chinese children with emphasis on Dravet syndrome. METHODS: A hundred children with severe epilepsy were divided into Dravet syndrome and non-Dravet syndrome groups and screened for SCN1A mutations by direct sequencing. SCN1A-negative Dravet syndrome patients and patients with phenotypes resembling Dravet syndrome were checked for PCDH19 and TSPYL4 mutations. RESULTS: Eighteen patients (9 males, 9 females were diagnosed to have Dravet syndrome. Among them, 83% (15/18 had SCN1A mutations including truncating (7, splice site (2 and missense mutations (6. The truncating/splice site mutations were associated with moderate to severe degree of intellectual disability (p<0.05. During the progression of disease, 73% (11/15 had features fitting into the diagnostic criteria of autism spectrum disorder and 53% (8/15 had history of vaccination-induced seizures. A novel PCDH19 p.D377N mutation was identified in one SCN1A-negative female patient with Dravet syndrome and a known PCDH19 p.N340S mutation in a female non-Dravet syndrome patient. The former also inherited a TSPYL4 p.G60R variant. CONCLUSION: A high percentage of SCN1A mutations was identified in our Chinese cohort of Dravet syndrome patients but none in the rest of patients. We demonstrated that truncating/splice site mutations were linked to moderate to severe intellectual disability in these patients. A de novo PCDH19 missense mutation together with an inherited TSPYL4 missense

  4. De novo loss-of-function mutations in <i>CHD2i> cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome

    DEFF Research Database (Denmark)

    Suls, Arvid; Jaehn, Johanna A; Kecskés, Angela

    2013-01-01

    Dravet syndrome is a severe epilepsy syndrome characterized by infantile onset of therapy-resistant, fever-sensitive seizures followed by cognitive decline. Mutations in SCN1A explain about 75% of cases with Dravet syndrome; 90% of these mutations arise de novo. We studied a cohort of nine Dravet...

  5. A frame-shift mutation of PMS2 is a widespread cause of Lynch syndrome.

    Science.gov (United States)

    Clendenning, M; Senter, L; Hampel, H; Robinson, K Lagerstedt; Sun, S; Buchanan, D; Walsh, M D; Nilbert, M; Green, J; Potter, J; Lindblom, A; de la Chapelle, A

    2008-06-01

    When compared to the other mismatch repair genes involved in Lynch syndrome, the identification of mutations within PMS2 has been limited (PMS2. This disparity is primarily due to complications in the study of this gene caused by interference from pseudogene sequences. Using a recently developed method for detecting PMS2 specific mutations, we have screened 99 patients who are likely candidates for PMS2 mutations based on immunohistochemical analysis. We have identified a frequently occurring frame-shift mutation (c.736_741del6ins11) in 12 ostensibly unrelated Lynch syndrome patients (20% of patients we have identified with a deleterious mutation in PMS2, n = 61). These individuals all display the rare allele (population frequency 10 000 carriers of this mutation in the USA alone. The identification of both the mutation and the common haplotype in one Swedish control sample (n = 225), along with evidence that Lynch syndrome associated cancers are rarer than expected in the probands' families, would suggest that this is a prevalent mutation with reduced penetrance.

  6. Complement Mutations in Diacylglycerol Kinase-ε–Associated Atypical Hemolytic Uremic Syndrome

    Science.gov (United States)

    Sánchez Chinchilla, Daniel; Pinto, Sheila; Hoppe, Bernd; Adragna, Marta; Lopez, Laura; Justa Roldan, Maria Luisa; Peña, Antonia; Lopez Trascasa, Margarita; Sánchez-Corral, Pilar; Rodríguez de Córdoba, Santiago

    2014-01-01

    Background and objectives Atypical hemolytic uremic syndrome is characterized by vascular endothelial damage caused by complement dysregulation. Consistently, complement inhibition therapies are highly effective in most patients with atypical hemolytic uremic syndrome. Recently, it was shown that a significant percentage of patients with early-onset atypical hemolytic uremic syndrome carry mutations in diacylglycerol kinase-ε, an intracellular protein with no obvious role in complement. These data support an alternative, complement-independent mechanism leading to thrombotic microangiopathy that has implications for treatment of early-onset atypical hemolytic uremic syndrome. To get additional insights into this new form of atypical hemolytic uremic syndrome, the diacylglycerol kinase-ε gene in a cohort with atypical hemolytic uremic syndrome was analyzed. Design, setting, participants, & measurements Eighty-three patients with early-onset atypical hemolytic uremic syndrome (<2 years) enrolled in the Spanish atypical hemolytic uremic syndrome registry between 1999 and 2013 were screened for mutations in diacylglycerol kinase-ε. These patients were also fully characterized for mutations in the genes encoding factor H, membrane cofactor protein, factor I, C3, factor B, and thrombomodulin CFHRs copy number variations and rearrangements, and antifactor H antibodies. Results Four patients carried mutations in diacylglycerol kinase-ε, one p.H536Qfs*16 homozygote and three compound heterozygotes (p.W322*/p.P498R, two patients; p.Q248H/p.G484Gfs*10, one patient). Three patients also carried heterozygous mutations in thrombomodulin or C3. Extensive plasma infusions controlled atypical hemolytic uremic syndrome recurrences and prevented renal failure in the two patients with diacylglycerol kinase-ε and thrombomodulin mutations. A positive response to plasma infusions and complement inhibition treatment was also observed in the patient with concurrent diacylglycerol

  7. Complement mutations in diacylglycerol kinase-ε-associated atypical hemolytic uremic syndrome.

    Science.gov (United States)

    Sánchez Chinchilla, Daniel; Pinto, Sheila; Hoppe, Bernd; Adragna, Marta; Lopez, Laura; Justa Roldan, Maria Luisa; Peña, Antonia; Lopez Trascasa, Margarita; Sánchez-Corral, Pilar; Rodríguez de Córdoba, Santiago

    2014-09-05

    Atypical hemolytic uremic syndrome is characterized by vascular endothelial damage caused by complement dysregulation. Consistently, complement inhibition therapies are highly effective in most patients with atypical hemolytic uremic syndrome. Recently, it was shown that a significant percentage of patients with early-onset atypical hemolytic uremic syndrome carry mutations in diacylglycerol kinase-ε, an intracellular protein with no obvious role in complement. These data support an alternative, complement-independent mechanism leading to thrombotic microangiopathy that has implications for treatment of early-onset atypical hemolytic uremic syndrome. To get additional insights into this new form of atypical hemolytic uremic syndrome, the diacylglycerol kinase-ε gene in a cohort with atypical hemolytic uremic syndrome was analyzed. Eighty-three patients with early-onset atypical hemolytic uremic syndrome (<2 years) enrolled in the Spanish atypical hemolytic uremic syndrome registry between 1999 and 2013 were screened for mutations in diacylglycerol kinase-ε. These patients were also fully characterized for mutations in the genes encoding factor H, membrane cofactor protein, factor I, C3, factor B, and thrombomodulin CFHRs copy number variations and rearrangements, and antifactor H antibodies. Four patients carried mutations in diacylglycerol kinase-ε, one p.H536Qfs*16 homozygote and three compound heterozygotes (p.W322*/p.P498R, two patients; p.Q248H/p.G484Gfs*10, one patient). Three patients also carried heterozygous mutations in thrombomodulin or C3. Extensive plasma infusions controlled atypical hemolytic uremic syndrome recurrences and prevented renal failure in the two patients with diacylglycerol kinase-ε and thrombomodulin mutations. A positive response to plasma infusions and complement inhibition treatment was also observed in the patient with concurrent diacylglycerol kinase-ε and C3 mutations. Data suggest that complement dysregulation influences

  8. The clinical phenotype of Lynch syndrome due to germline PMS2 mutations

    Science.gov (United States)

    Senter, Leigha; Clendenning, Mark; Sotamaa, Kaisa; Hampel, Heather; Green, Jane; Potter, John D.; Lindblom, Annika; Lagerstedt, Kristina; Thibodeau, Stephen N.; Lindor, Noralane M.; Young, Joanne; Winship, Ingrid; Dowty, James G.; White, Darren M.; Hopper, John L.; Baglietto, Laura; Jenkins, Mark A.; de la Chapelle, Albert

    2009-01-01

    Background and Aims Although the clinical phenotype of Lynch syndrome (also known as Hereditary Nonpolyposis Colorectal Cancer) has been well described, little is known about disease in PMS2 mutation carriers. Now that mutation detection methods can discern mutations in PMS2 from mutations in its pseudogenes, more mutation carriers have been identified. Information about the clinical significance of PMS2 mutations is crucial for appropriate counseling. Here, we report the clinical characteristics of a large series of PMS2 mutation carriers. Methods We performed PMS2 mutation analysis using long range PCR and MLPA for 99 probands diagnosed with Lynch syndrome-associated tumors showing isolated loss of PMS2 by immunohistochemistry. Penetrance was calculated using a modified segregation analysis adjusting for ascertainment. Results Germline PMS2 mutations were detected in 62% of probands (n = 55 monoallelic; 6 biallelic). Among families with monoallelic PMS2 mutations, 65.5% met revised Bethesda guidelines. Compared with the general population, in mutation carriers, the incidence of colorectal cancer was 5.2 fold higher and the incidence of endometrial cancer was 7.5 fold higher. In North America, this translates to a cumulative cancer risk to age 70 of 15–20% for colorectal cancer, 15% for endometrial cancer, and 25–32% for any Lynch syndrome-associated cancer. No elevated risk for non-Lynch syndrome-associated cancers was observed. Conclusions PMS2 mutations contribute significantly to Lynch syndrome but the penetrance for monoallelic mutation carriers appears to be lower than that for the other mismatch repair genes. Modified counseling and cancer surveillance guidelines for PMS2 mutation carriers are proposed. PMID:18602922

  9. A patient with Werner syndrome and adiponectin gene mutation.

    Science.gov (United States)

    Hashimoto, Naotake; Hatanaka, Sachiko; Yokote, Koutaro; Kurosawa, Hiroko; Yoshida, Tomohiko; Iwai, Rie; Takahashi, Hidenori; Yoshida, Katsuya; Horie, Atsuya; Sakurai, Kenichi; Yagui, Kazuo; Saito, Yasushi; Yoshida, Shouji

    2007-01-01

    Werner syndrome is a premature aging disease characterized by genomic instability and increased cancer risk. Here, we report a 45-year-old diabetic man as the first Werner syndrome patient found to have an adiponectin gene mutation. Showing graying and loss of hair, skin atrophy, and juvenile cataract, he was diagnosed with Werner syndrome type 4 by molecular analysis. His serum adiponectin concentration was low. In the globular domain of the adiponectin gene, I164T in exon 3 was detected. When we examined effects of pioglitazone (15 mg/day) on serum adiponectin multimer and monomer concentrations using selective assays, the patient's relative percentage increased in adiponectin concentration was almost same as that in the 18 diabetic patients without an adiponectin mutation, but the absolute adiponectin concentration was half of those seen in diabetic patients treated with the same pioglitazone dose who had no adiponectin mutation. The response suggested that pioglitazone treatment might help to prevent future Werner syndrome-related acceleration of atherosclerosis. Present and further clinical relevant to atherosclerosis in this patient should be imformative concerning the pathogenesis and treatment of atherosclerosis in the presence of hypoadiponectinemia and insulin resistance.

  10. Novel SCARB2 mutation in action myoclonus-renal failure syndrome and evaluation of SCARB2 mutations in isolated AMRF features

    Directory of Open Access Journals (Sweden)

    Hopfner Franziska

    2011-10-01

    Full Text Available Abstract Background Action myoclonus-renal failure syndrome is a hereditary form of progressive myoclonus epilepsy associated with renal failure. It is considered to be an autosomal-recessive disease related to loss-of-function mutations in SCARB2. We studied a German AMRF family, additionally showing signs of demyelinating polyneuropathy and dilated cardiomyopathy. To test the hypothesis whether isolated appearance of individual AMRF syndrome features could be related to heterozygote SCARB2 mutations, we screened for SCARB2 mutations in unrelated patients showing isolated AMRF features. Methods In the AMRF family all exons of SCARB2 were analyzed by Sanger sequencing. The mutation screening of unrelated patients with isolated AMRF features affected by either epilepsy (n = 103, progressive myoclonus epilepsy or generalized epilepsy, demyelinating polyneuropathy (n = 103, renal failure (n = 192 or dilated cardiomyopathy (n = 85 was performed as high resolution melting curve analysis of the SCARB2 exons. Results A novel homozygous 1 bp deletion (c.111delC in SCARB2 was found by sequencing three affected homozygous siblings of the affected family. A heterozygous sister showed generalized seizures and reduction of nerve conduction velocity in her legs. No mutations were found in the epilepsy, renal failure or dilated cardiomyopathy samples. In the polyneuropathy sample two individuals with demyelinating disease were found to be carriers of a SCARB2 frameshift mutation (c.666delCCTTA. Conclusions Our findings indicate that demyelinating polyneuropathy and dilated cardiomyopathy are part of the action myoclonus-renal failure syndrome. Moreover, they raise the possibility that in rare cases heterozygous SCARB2 mutations may be associated with PNP features.

  11. Ala397Asp mutation of myosin VIIA gene segregating in a Spanish family with type-Ib Usher syndrome.

    Science.gov (United States)

    Espinós, C; Millán, J M; Sánchez, F; Beneyto, M; Nájera, C

    1998-06-01

    In the current study, 12 Spanish families affected by type-I Usher syndrome, that was previously linked to chromosome 11q, were screened for the presence of mutations in the N-terminal coding portion of the motor domain of the myosin VIIA gene by single-strand conformation polymorphism analysis of the first 14 exons. A mutation (Ala397Asp) segregating with the disease was identified, and several polymorphisms were also detected. It is presumed that the other USHIB mutations in these families could be located in the unscreened regions of the gene.

  12. A frame-shift mutation of PMS2 is a widespread cause of Lynch syndrome

    DEFF Research Database (Denmark)

    Clendenning, Mark; Senter, Leigha; Hampel, Heather

    2008-01-01

    BACKGROUND: When compared to the other mismatch repair genes involved in Lynch syndrome, the identification of mutations within PMS2 has been limited (Lynch syndrome cases...... on immunohistochemical analysis. RESULTS: We have identified a frequently occurring frame-shift mutation (c.736_741del6ins11) in 12 ostensibly unrelated Lynch syndrome patients (20% of patients we have identified with a deleterious mutation in PMS2, n=61). These individuals all display the rare allele (population...... are caused by PMS2. This disparity is primarily due to complications in the study of this gene caused by interference from pseudogene sequences. METHODS: Using a recently developed method for detecting PMS2 specific mutations, we have screened 99 patients who are likely candidates for PMS2 mutations based...

  13. A splice-site mutation affecting the paired box of PAX3 in a three generation family with Waardenburg syndrome type I (WS1).

    Science.gov (United States)

    Attaie, A; Kim, E; Wilcox, E R; Lalwani, A K

    1997-06-01

    Waardenburg syndrome, an autosomal dominant disorder characterized by sensorineural hearing loss, pigmentary disturbances and other developmental defects, is the most frequent form of congenital deafness in humans. Mutations in the PAX3 gene, a transcription factor expressed during embryonic development, is associated with WS types I and III. Here we report the identification of a novel acceptor splice site mutation (86-2 A-->G) in the paired domain of the human PAX3 gene causing WS type I in a three generation family.

  14. Hyper-immunoglobulin D syndrome with novel mutations in an afebrile infant.

    Science.gov (United States)

    Cadmus, Simi D; Green, Reid; Carrasco, Ruy; Levy, Moise L; Diaz, Lucia Z

    2018-03-30

    Hyper-immunoglobulin D syndrome is a rare autosomal-recessive autoinflammatory syndrome in which a mevalonate kinase deficiency results due to mutations of the mevalonate kinase gene. We report a case of an Asian male infant who was found to have hyper-immunoglobulin D syndrome in the absence of fever. His skin manifestations included cephalic pustulosis as well recurrent transient and fixed pink plaques and nodules on the face and extremities. Subsequent examination revealed hyper-immunoglobulin D syndrome with two novel allelic mutations in the mevalonate kinase gene: c.895G > A (p.D299N) and c.1168C > T (p.Q390). It is important for dermatologists to recognize the varied cutaneous presentations of hyper-immunoglobulin D syndrome because rapid diagnosis and treatment can significantly affect outcomes. © 2018 Wiley Periodicals, Inc.

  15. Evidence of genetic heterogeneity in Alberta Hutterites with Usher syndrome type I.

    Science.gov (United States)

    Zhou, Qi; Lenger, Chaeli; Smith, Richard; Kimberling, William J; Ye, Ming; Lehmann, Ordan; MacDonald, Ian

    2012-01-01

    To identify the genetic defect in a Hutterite population from northern Alberta with Usher syndrome type I. Complete ophthalmic examinations were conducted on two boys and two girls from two related Hutterite families diagnosed with Usher syndrome type I. DNA from patients and their parents was first evaluated for a mutation in exon 10 of the protocadherin-related 15 (PCDH15) gene (c.1471delG), previously reported in southern Alberta Hutterite patients with Usher syndrome (USH1F). Single nucleotide polymorphic linkage analysis was then used to confirm another locus, and DNA was analyzed with the Usher Chip v4.0 platform. Severe hearing impairment, unintelligible speech, and retinitis pigmentosa with varying degrees of visual acuity and visual field loss established a clinical diagnosis of Usher syndrome type I. The patients did not carry the exon 10 mutation in the PCDH15 gene; however, with microarray analysis, a previously reported mutation (c.52C>T; p.Q18X) in the myosin VIIA (MYO7A) gene was found in the homozygous state in the affected siblings. The finding of a MYO7A mutation in two related Hutterite families from northern Alberta provides evidence of genetic heterogeneity in Hutterites affected by Usher syndrome type I.

  16. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations.

    Science.gov (United States)

    Senter, Leigha; Clendenning, Mark; Sotamaa, Kaisa; Hampel, Heather; Green, Jane; Potter, John D; Lindblom, Annika; Lagerstedt, Kristina; Thibodeau, Stephen N; Lindor, Noralane M; Young, Joanne; Winship, Ingrid; Dowty, James G; White, Darren M; Hopper, John L; Baglietto, Laura; Jenkins, Mark A; de la Chapelle, Albert

    2008-08-01

    Although the clinical phenotype of Lynch syndrome (also known as hereditary nonpolyposis colorectal cancer) has been well described, little is known about disease in PMS2 mutation carriers. Now that mutation detection methods can discern mutations in PMS2 from mutations in its pseudogenes, more mutation carriers have been identified. Information about the clinical significance of PMS2 mutations is crucial for appropriate counseling. Here, we report the clinical characteristics of a large series of PMS2 mutation carriers. We performed PMS2 mutation analysis using long-range polymerase chain reaction and multiplex ligation-dependent probe amplification for 99 probands diagnosed with Lynch syndrome-associated tumors showing isolated loss of PMS2 by immunohistochemistry. Penetrance was calculated using a modified segregation analysis adjusting for ascertainment. Germ-line PMS2 mutations were detected in 62% of probands (n = 55 monoallelic; 6 biallelic). Among families with monoallelic PMS2 mutations, 65.5% met revised Bethesda guidelines. Compared with the general population, in mutation carriers, the incidence of colorectal cancer was 5.2-fold higher, and the incidence of endometrial cancer was 7.5-fold higher. In North America, this translates to a cumulative cancer risk to age 70 years of 15%-20% for colorectal cancer, 15% for endometrial cancer, and 25%-32% for any Lynch syndrome-associated cancer. No elevated risk for non-Lynch syndrome-associated cancers was observed. PMS2 mutations contribute significantly to Lynch syndrome, but the penetrance for monoallelic mutation carriers appears to be lower than that for the other mismatch repair genes. Modified counseling and cancer surveillance guidelines for PMS2 mutation carriers are proposed.

  17. IRF6 mutation screening in non-syndromic orofacial clefting

    DEFF Research Database (Denmark)

    Leslie, Elizabeth J; Koboldt, Daniel C; Kang, C. J.

    2016-01-01

    -syndromic OFCs. About 70% of causal VWS mutations occur in IRF6, a gene that is also associated with non-syndromic OFCs. Screening for IRF6 mutations in apparently non-syndromic cases has been performed in several modestly sized cohorts with mixed results. In this study, we screened 1521 trios with presumed non......-syndromic OFCs to determine the frequency of causal IRF6 mutations. We identified seven likely causal IRF6 mutations, although a posteriori review identified two misdiagnosed VWS families based on the presence of lip pits. We found no evidence for association between rare IRF6 polymorphisms and non......-syndromic OFCs. We combined our results with other similar studies (totaling 2472 families) and conclude that causal IRF6 mutations are found in 0.24–0.44% of apparently non-syndromic OFC families. We suggest that clinical mutation screening for IRF6 be considered for certain family patterns such as families...

  18. Novel mutations in the USH1C gene in Usher syndrome patients.

    Science.gov (United States)

    Aparisi, María José; García-García, Gema; Jaijo, Teresa; Rodrigo, Regina; Graziano, Claudio; Seri, Marco; Simsek, Tulay; Simsek, Enver; Bernal, Sara; Baiget, Montserrat; Pérez-Garrigues, Herminio; Aller, Elena; Millán, José María

    2010-12-31

    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by severe-profound sensorineural hearing loss, retinitis pigmentosa, and vestibular areflexia. To date, five USH1 genes have been identified. One of these genes is Usher syndrome 1C (USH1C), which encodes a protein, harmonin, containing PDZ domains. The aim of the present work was the mutation screening of the USH1C gene in a cohort of 33 Usher syndrome patients, to identify the genetic cause of the disease and to determine the relative involvement of this gene in USH1 pathogenesis in the Spanish population. Thirty-three patients were screened for mutations in the USH1C gene by direct sequencing. Some had already been screened for mutations in the other known USH1 genes (myosin VIIA [MYO7A], cadherin-related 23 [CDH23], protocadherin-related 15 [PCDH15], and Usher syndrome 1G [USH1G]), but no mutation was found. Two novel mutations were found in the USH1C gene: a non-sense mutation (p.C224X) and a frame-shift mutation (p.D124TfsX7). These mutations were found in a homozygous state in two unrelated USH1 patients. In the present study, we detected two novel pathogenic mutations in the USH1C gene. Our results suggest that mutations in USH1C are responsible for 1.5% of USH1 disease in patients of Spanish origin (considering the total cohort of 65 Spanish USH1 patients since 2005), indicating that USH1C is a rare form of USH in this population.

  19. SKIV2L Mutations Cause Syndromic Diarrhea, or Trichohepatoenteric Syndrome

    Science.gov (United States)

    Fabre, Alexandre; Charroux, Bernard; Martinez-Vinson, Christine; Roquelaure, Bertrand; Odul, Egritas; Sayar, Ersin; Smith, Hilary; Colomb, Virginie; Andre, Nicolas; Hugot, Jean-Pierre; Goulet, Olivier; Lacoste, Caroline; Sarles, Jacques; Royet, Julien; Levy, Nicolas; Badens, Catherine

    2012-01-01

    Syndromic diarrhea (or trichohepatoenteric syndrome) is a rare congenital bowel disorder characterized by intractable diarrhea and woolly hair, and it has recently been associated with mutations in TTC37. Although databases report TTC37 as being the human ortholog of Ski3p, one of the yeast Ski-complex cofactors, this lead was not investigated in initial studies. The Ski complex is a multiprotein complex required for exosome-mediated RNA surveillance, including the regulation of normal mRNA and the decay of nonfunctional mRNA. Considering the fact that TTC37 is homologous to Ski3p, we explored a gene encoding another Ski-complex cofactor, SKIV2L, in six individuals presenting with typical syndromic diarrhea without variation in TTC37. We identified mutations in all six individuals. Our results show that mutations in genes encoding cofactors of the human Ski complex cause syndromic diarrhea, establishing a link between defects of the human exosome complex and a Mendelian disease. PMID:22444670

  20. Nonsense mutations in the PAX3 gene cause Waardenburg syndrome type I in two Chinese patients.

    Science.gov (United States)

    Yang, Shu-Zhi; Cao, Ju-Yang; Zhang, Rui-Ning; Liu, Li-Xian; Liu, Xin; Zhang, Xin; Kang, Dong-Yang; Li, Mei; Han, Dong-Yi; Yuan, Hui-Jun; Yang, Wei-Yan

    2007-01-05

    Waardenburg syndrome type I (WS1) is an autosomal dominant disorder characterized by sensorineural hearing loss, pigmental abnormalities of the eye, hair and skin, and dystopia canthorum. The gene mainly responsible for WS1 is PAX3 which is involved in melanocytic development and survival. Mutations of PAX3 have been reported in familiar or sporadic patients with WS1 in several populations of the world except Chinese. In order to explore the genetic background of Chinese WS1 patients, a mutation screening of PAX3 gene was carried out in four WS1 pedigrees. A questionnaire survey and comprehensive clinical examination were conducted in four Chinese pedigrees of WS1. Genomic DNA from each patient and their family members was extracted and exons of PAX3 were amplified by PCR. PCR fragments were ethanol-purified and sequenced in both directions on an ABI_Prism 3100 DNA sequencer with the BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sequences were obtained and aligned to the wild type sequence of PAX3 with the GeneTool program. Two nonsense PAX3 mutations have been found in the study population. One is heterozygous for a novel nonsense mutation S209X. The other is heterozygous for a previously reported mutation in European population R223X. Both mutations create stop codons leading to truncation of the PAX3 protein. This is the first demonstration of PAX3 mutations in Chinese WS1 patients and one of the few examples of an identical mutation of PAX3 occurred in different populations.

  1. CDH23 mutation and phenotype heterogeneity: a profile of 107 diverse families with Usher syndrome and nonsyndromic deafness.

    Science.gov (United States)

    Astuto, L M; Bork, J M; Weston, M D; Askew, J W; Fields, R R; Orten, D J; Ohliger, S J; Riazuddin, S; Morell, R J; Khan, S; Riazuddin, S; Kremer, H; van Hauwe, P; Moller, C G; Cremers, C W R J; Ayuso, C; Heckenlively, J R; Rohrschneider, K; Spandau, U; Greenberg, J; Ramesar, R; Reardon, W; Bitoun, P; Millan, J; Legge, R; Friedman, T B; Kimberling, W J

    2002-08-01

    Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deafness. Specific CDH23 mutational defects have been identified that differentiate these two phenotypes. Only missense mutations of CDH23 have been observed in families with nonsyndromic deafness, whereas nonsense, frameshift, splice-site, and missense mutations have been identified in families with Usher syndrome. In the present study, a panel of 69 probands with Usher syndrome and 38 probands with recessive nonsyndromic deafness were screened for the presence of mutations in the entire coding region of CDH23, by heteroduplex, single-strand conformation polymorphism, and direct sequence analyses. A total of 36 different CDH23 mutations were detected in 45 families; 33 of these mutations were novel, including 18 missense, 3 nonsense, 5 splicing defects, 5 microdeletions, and 2 insertions. A total of seven mutations were common to more than one family. Numerous exonic and intronic polymorphisms also were detected. Results of ophthalmologic examinations of the patients with nonsyndromic deafness have found asymptomatic RP-like manifestations, indicating that missense mutations may have a subtle effect in the retina. Furthermore, patients with mutations in CDH23 display a wide range of hearing loss and RP phenotypes, differing in severity, age at onset, type, and the presence or absence of vestibular areflexia.

  2. CDH23 Mutation and Phenotype Heterogeneity: A Profile of 107 Diverse Families with Usher Syndrome and Nonsyndromic Deafness

    Science.gov (United States)

    Astuto, L. M.; Bork, J. M.; Weston, M. D.; Askew, J. W.; Fields, R. R.; Orten, D. J.; Ohliger, S. J.; Riazuddin, S.; Morell, R. J.; Khan, S.; Riazuddin, S.; Kremer, H.; van Hauwe, P.; Moller, C. G.; Cremers, C. W. R. J.; Ayuso, C.; Heckenlively, J. R.; Rohrschneider, K.; Spandau, U.; Greenberg, J.; Ramesar, R.; Reardon, W.; Bitoun, P.; Millan, J.; Legge, R.; Friedman, T. B.; Kimberling, W. J.

    2002-01-01

    Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deafness. Specific CDH23 mutational defects have been identified that differentiate these two phenotypes. Only missense mutations of CDH23 have been observed in families with nonsyndromic deafness, whereas nonsense, frameshift, splice-site, and missense mutations have been identified in families with Usher syndrome. In the present study, a panel of 69 probands with Usher syndrome and 38 probands with recessive nonsyndromic deafness were screened for the presence of mutations in the entire coding region of CDH23, by heteroduplex, single-strand conformation polymorphism, and direct sequence analyses. A total of 36 different CDH23 mutations were detected in 45 families; 33 of these mutations were novel, including 18 missense, 3 nonsense, 5 splicing defects, 5 microdeletions, and 2 insertions. A total of seven mutations were common to more than one family. Numerous exonic and intronic polymorphisms also were detected. Results of ophthalmologic examinations of the patients with nonsyndromic deafness have found asymptomatic RP–like manifestations, indicating that missense mutations may have a subtle effect in the retina. Furthermore, patients with mutations in CDH23 display a wide range of hearing loss and RP phenotypes, differing in severity, age at onset, type, and the presence or absence of vestibular areflexia. PMID:12075507

  3. Identification of HNF4A Mutation p.T130I and HNF1A Mutations p.I27L and p.S487N in a Han Chinese Family with Early-Onset Maternally Inherited Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2016-01-01

    Full Text Available Maturity-onset diabetes of the young (MODY is characterized by the onset of diabetes before the age of 25 years, positive family history, high genetic predisposition, monogenic mutations, and an autosomal dominant mode of inheritance. Here, we aimed to investigate the mutations and to characterize the phenotypes of a Han Chinese family with early-onset maternally inherited type 2 diabetes. Detailed clinical assessments and genetic screening for mutations in the HNF4α, GCK, HNF-1α, IPF-1, HNF1β, and NEUROD1 genes were carried out in this family. One HNF4A mutation (p.T130I and two HNF1A polymorphisms (p.I27L and p.S487N were identified. Mutation p.T130I was associated with both early-onset and late-onset diabetes and caused downregulated HNF4A expression, whereas HNF1A polymorphisms p.I27L and p.S487N were associated with the age of diagnosis of diabetes. We demonstrated that mutation p.T130I in HNF4A was pathogenic as were the predicted polymorphisms p.I27L and p.S487N in HNF1A by genetic and functional analysis. Our results show that mutations in HNF4A and HNF1A genes might account for this early-onset inherited type 2 diabetes.

  4. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome.

    Science.gov (United States)

    Aoki, Yoko; Niihori, Tetsuya; Banjo, Toshihiro; Okamoto, Nobuhiko; Mizuno, Seiji; Kurosawa, Kenji; Ogata, Tsutomu; Takada, Fumio; Yano, Michihiro; Ando, Toru; Hoshika, Tadataka; Barnett, Christopher; Ohashi, Hirofumi; Kawame, Hiroshi; Hasegawa, Tomonobu; Okutani, Takahiro; Nagashima, Tatsuo; Hasegawa, Satoshi; Funayama, Ryo; Nagashima, Takeshi; Nakayama, Keiko; Inoue, Shin-Ichi; Watanabe, Yusuke; Ogura, Toshihiko; Matsubara, Yoichi

    2013-07-11

    RAS GTPases mediate a wide variety of cellular functions, including cell proliferation, survival, and differentiation. Recent studies have revealed that germline mutations and mosaicism for classical RAS mutations, including those in HRAS, KRAS, and NRAS, cause a wide spectrum of genetic disorders. These include Noonan syndrome and related disorders (RAS/mitogen-activated protein kinase [RAS/MAPK] pathway syndromes, or RASopathies), nevus sebaceous, and Schimmelpenning syndrome. In the present study, we identified a total of nine missense, nonsynonymous mutations in RIT1, encoding a member of the RAS subfamily, in 17 of 180 individuals (9%) with Noonan syndrome or a related condition but with no detectable mutations in known Noonan-related genes. Clinical manifestations in the RIT1-mutation-positive individuals are consistent with those of Noonan syndrome, which is characterized by distinctive facial features, short stature, and congenital heart defects. Seventy percent of mutation-positive individuals presented with hypertrophic cardiomyopathy; this frequency is high relative to the overall 20% incidence in individuals with Noonan syndrome. Luciferase assays in NIH 3T3 cells showed that five RIT1 alterations identified in children with Noonan syndrome enhanced ELK1 transactivation. The introduction of mRNAs of mutant RIT1 into 1-cell-stage zebrafish embryos was found to result in a significant increase of embryos with craniofacial abnormalities, incomplete looping, a hypoplastic chamber in the heart, and an elongated yolk sac. These results demonstrate that gain-of-function mutations in RIT1 cause Noonan syndrome and show a similar biological effect to mutations in other RASopathy-related genes. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients

    Science.gov (United States)

    Sun, Yishan; Paşca, Sergiu P; Portmann, Thomas; Goold, Carleton; Worringer, Kathleen A; Guan, Wendy; Chan, Karen C; Gai, Hui; Vogt, Daniel; Chen, Ying-Jiun J; Mao, Rong; Chan, Karrie; Rubenstein, John LR; Madison, Daniel V; Hallmayer, Joachim; Froehlich-Santino, Wendy M; Bernstein, Jonathan A; Dolmetsch, Ricardo E

    2016-01-01

    Dravet Syndrome is an intractable form of childhood epilepsy associated with deleterious mutations in SCN1A, the gene encoding neuronal sodium channel Nav1.1. Earlier studies using human induced pluripotent stem cells (iPSCs) have produced mixed results regarding the importance of Nav1.1 in human inhibitory versus excitatory neurons. We studied a Nav1.1 mutation (p.S1328P) identified in a pair of twins with Dravet Syndrome and generated iPSC-derived neurons from these patients. Characterization of the mutant channel revealed a decrease in current amplitude and hypersensitivity to steady-state inactivation. We then differentiated Dravet-Syndrome and control iPSCs into telencephalic excitatory neurons or medial ganglionic eminence (MGE)-like inhibitory neurons. Dravet inhibitory neurons showed deficits in sodium currents and action potential firing, which were rescued by a Nav1.1 transgene, whereas Dravet excitatory neurons were normal. Our study identifies biophysical impairments underlying a deleterious Nav1.1 mutation and supports the hypothesis that Dravet Syndrome arises from defective inhibitory neurons. DOI: http://dx.doi.org/10.7554/eLife.13073.001 PMID:27458797

  6. SEMA3A, a gene involved in axonal pathfinding, is mutated in patients with Kallmann syndrome.

    Science.gov (United States)

    Hanchate, Naresh Kumar; Giacobini, Paolo; Lhuillier, Pierre; Parkash, Jyoti; Espy, Cécile; Fouveaut, Corinne; Leroy, Chrystel; Baron, Stéphanie; Campagne, Céline; Vanacker, Charlotte; Collier, Francis; Cruaud, Corinne; Meyer, Vincent; García-Piñero, Alfons; Dewailly, Didier; Cortet-Rudelli, Christine; Gersak, Ksenija; Metz, Chantal; Chabrier, Gérard; Pugeat, Michel; Young, Jacques; Hardelin, Jean-Pierre; Prevot, Vincent; Dodé, Catherine

    2012-08-01

    Kallmann syndrome (KS) associates congenital hypogonadism due to gonadotropin-releasing hormone (GnRH) deficiency and anosmia. The genetics of KS involves various modes of transmission, including oligogenic inheritance. Here, we report that Nrp1(sema/sema) mutant mice that lack a functional semaphorin-binding domain in neuropilin-1, an obligatory coreceptor of semaphorin-3A, have a KS-like phenotype. Pathohistological analysis of these mice indeed showed abnormal development of the peripheral olfactory system and defective embryonic migration of the neuroendocrine GnRH cells to the basal forebrain, which results in increased mortality of newborn mice and reduced fertility in adults. We thus screened 386 KS patients for the presence of mutations in SEMA3A (by Sanger sequencing of all 17 coding exons and flanking splice sites) and identified nonsynonymous mutations in 24 patients, specifically, a frameshifting small deletion (D538fsX31) and seven different missense mutations (R66W, N153S, I400V, V435I, T688A, R730Q, R733H). All the mutations were found in heterozygous state. Seven mutations resulted in impaired secretion of semaphorin-3A by transfected COS-7 cells (D538fsX31, R66W, V435I) or reduced signaling activity of the secreted protein in the GN11 cell line derived from embryonic GnRH cells (N153S, I400V, T688A, R733H), which strongly suggests that these mutations have a pathogenic effect. Notably, mutations in other KS genes had already been identified, in heterozygous state, in five of these patients. Our findings indicate that semaphorin-3A signaling insufficiency contributes to the pathogenesis of KS and further substantiate the oligogenic pattern of inheritance in this developmental disorder.

  7. SEMA3A, a gene involved in axonal pathfinding, is mutated in patients with Kallmann syndrome.

    Directory of Open Access Journals (Sweden)

    Naresh Kumar Hanchate

    2012-08-01

    Full Text Available Kallmann syndrome (KS associates congenital hypogonadism due to gonadotropin-releasing hormone (GnRH deficiency and anosmia. The genetics of KS involves various modes of transmission, including oligogenic inheritance. Here, we report that Nrp1(sema/sema mutant mice that lack a functional semaphorin-binding domain in neuropilin-1, an obligatory coreceptor of semaphorin-3A, have a KS-like phenotype. Pathohistological analysis of these mice indeed showed abnormal development of the peripheral olfactory system and defective embryonic migration of the neuroendocrine GnRH cells to the basal forebrain, which results in increased mortality of newborn mice and reduced fertility in adults. We thus screened 386 KS patients for the presence of mutations in SEMA3A (by Sanger sequencing of all 17 coding exons and flanking splice sites and identified nonsynonymous mutations in 24 patients, specifically, a frameshifting small deletion (D538fsX31 and seven different missense mutations (R66W, N153S, I400V, V435I, T688A, R730Q, R733H. All the mutations were found in heterozygous state. Seven mutations resulted in impaired secretion of semaphorin-3A by transfected COS-7 cells (D538fsX31, R66W, V435I or reduced signaling activity of the secreted protein in the GN11 cell line derived from embryonic GnRH cells (N153S, I400V, T688A, R733H, which strongly suggests that these mutations have a pathogenic effect. Notably, mutations in other KS genes had already been identified, in heterozygous state, in five of these patients. Our findings indicate that semaphorin-3A signaling insufficiency contributes to the pathogenesis of KS and further substantiate the oligogenic pattern of inheritance in this developmental disorder.

  8. Long QT interval in Turner syndrome--a high prevalence of LQTS gene mutations.

    Science.gov (United States)

    Trolle, Christian; Mortensen, Kristian H; Pedersen, Lisbeth N; Berglund, Agnethe; Jensen, Henrik K; Andersen, Niels H; Gravholt, Claus H

    2013-01-01

    QT-interval prolongation of unknown aetiology is common in Turner syndrome. This study set out to explore the presence of known long QT mutations in Turner syndrome and to examine the corrected QT-interval (QTc) over time and relate the findings to the Turner syndrome phenotype. Adult women with Turner syndrome (n = 88) were examined thrice and 68 age-matched healthy controls were examined once. QTc was measured by one blinded reader (intra-reader variability: 0.7%), and adjusted for influence of heart rate by Bazett's (bQTc) and Hodges's formula (hQTc). The prevalence of mutations in genes related to Long QT syndrome was determined in women with Turner syndrome and a QTc >432.0 milliseconds (ms). Echocardiographic assessment of aortic valve morphology, 24-hour blood pressures and blood samples were done. The mean hQTc in women with Turner syndrome (414.0 ± 25.5 ms) compared to controls (390.4 ± 17.8 ms) was prolonged (pTurner syndrome karyotypes (418.2 ± 24.8 vs. 407.6 ± 25.5 ms; p = 0.055). In women with Turner syndrome and a bQTc >432 ms, 7 had mutations in major Long QT syndrome genes (SCN5A and KCNH2) and one in a minor Long QT syndrome gene (KCNE2). There is a high prevalence of mutations in the major LQTS genes in women with TS and prolonged QTc. It remains to be settled, whether these findings are related to the unexplained excess mortality in Turner women. NCT00624949. https://register.clinicaltrials.gov/prs/app/action/SelectProtocol/sid/S0001FLI/selectaction/View/ts/3/uid/U000099E.

  9. Long QT interval in Turner syndrome--a high prevalence of LQTS gene mutations.

    Directory of Open Access Journals (Sweden)

    Christian Trolle

    Full Text Available QT-interval prolongation of unknown aetiology is common in Turner syndrome. This study set out to explore the presence of known long QT mutations in Turner syndrome and to examine the corrected QT-interval (QTc over time and relate the findings to the Turner syndrome phenotype.Adult women with Turner syndrome (n = 88 were examined thrice and 68 age-matched healthy controls were examined once. QTc was measured by one blinded reader (intra-reader variability: 0.7%, and adjusted for influence of heart rate by Bazett's (bQTc and Hodges's formula (hQTc. The prevalence of mutations in genes related to Long QT syndrome was determined in women with Turner syndrome and a QTc >432.0 milliseconds (ms. Echocardiographic assessment of aortic valve morphology, 24-hour blood pressures and blood samples were done.The mean hQTc in women with Turner syndrome (414.0 ± 25.5 ms compared to controls (390.4 ± 17.8 ms was prolonged (p432 ms, 7 had mutations in major Long QT syndrome genes (SCN5A and KCNH2 and one in a minor Long QT syndrome gene (KCNE2.There is a high prevalence of mutations in the major LQTS genes in women with TS and prolonged QTc. It remains to be settled, whether these findings are related to the unexplained excess mortality in Turner women.NCT00624949. https://register.clinicaltrials.gov/prs/app/action/SelectProtocol/sid/S0001FLI/selectaction/View/ts/3/uid/U000099E.

  10. Confirmation that RIPK4 mutations cause not only Bartsocas-Papas syndrome but also CHAND syndrome.

    Science.gov (United States)

    Busa, Tiffany; Jeraiby, Mohammed; Clémenson, Alix; Manouvrier, Sylvie; Granados, Viviana; Philip, Nicole; Touraine, Renaud

    2017-11-01

    CHAND syndrome is an autosomal recessive disorder characterized by curly hair, ankyloblepharon, and nail dysplasia. Only few patients were reported to date. A homozygous RIPK4 mutation was recently identified by homozygosity mapping and whole exome sequencing in three patients from an expanded consanguineous kindred with a clinical diagnosis of CHAND syndrome. RIPK4 was previously known to be implicated in Bartsocas-Papas syndrome, the autosomal recessive form of popliteal pterygium syndrome. We report here two cases of RIPK4 homozygous mutations in a fetus with severe Bartsocas-Papas syndrome and a patient with CHAND syndrome. The patient with CHAND syndrome harbored the same mutation as the one identified in the family previously reported. We thus confirm the implication of RIPK4 gene in CHAND syndrome in addition to Bartsocas-Papas syndrome and discuss genotype/phenotype correlations. © 2017 Wiley Periodicals, Inc.

  11. Familial cardiofaciocutaneous syndrome in a father and a son with a novel MEK2 mutation.

    Science.gov (United States)

    Karaer, Kadri; Lissewski, Christina; Zenker, Martin

    2015-02-01

    Cardiofaciocutaneous (CFC) syndrome is a rare genetic disorder belonging to the group of RASopathies. It is typically characterized by congenital heart defects, short stature, dysmorphic craniofacial features, intellectual disability, failure to thrive, and ectodermal abnormalities such as hyperkeratosis and sparse, brittle, curly hair. CFC syndrome is caused by dominant mutations in one of the four genes BRAF, MEK1, MEK2, and KRAS. Only three familial cases of CFC syndrome have been reported to date, whereas the vast majorities are sporadic cases due to de novo mutations. We report on a fourth familial case with transmission of CFC syndrome from father to son due to a novel heterozygous sequence change c.376A>G (p.N126D) in exon 3 of MEK2 gene. This observation further documents the possibility of vertical transmission of CFC syndrome, which appears to be associated with rare mutations and relatively mild intellectual disability in affected individual. The hypomorphic effect of specific mutations particularly regarding neurocognitive issues may be related to the variable fertility of affected individuals. © 2014 Wiley Periodicals, Inc.

  12. Novel somatic mutations in the catalytic subunit of the protein kinase A as a cause of adrenal Cushing's syndrome: a European multicentric study.

    Science.gov (United States)

    Di Dalmazi, Guido; Kisker, Caroline; Calebiro, Davide; Mannelli, Massimo; Canu, Letizia; Arnaldi, Giorgio; Quinkler, Marcus; Rayes, Nada; Tabarin, Antoine; Laure Jullié, Marie; Mantero, Franco; Rubin, Beatrice; Waldmann, Jens; Bartsch, Detlef K; Pasquali, Renato; Lohse, Martin; Allolio, Bruno; Fassnacht, Martin; Beuschlein, Felix; Reincke, Martin

    2014-10-01

    Somatic mutations in PRKACA gene, encoding the catalytic subunit of protein kinase A (PKA), have been recently found in a high proportion of sporadic adenomas associated with Cushing's syndrome. The aim was to analyze the PRKACA mutation in a large cohort of patients with adrenocortical masses. Samples from nine European centers were included (Germany, n = 4; Italy, n = 4; France, n = 1). Samples were drawn from 149 patients with nonsecreting adenomas (n = 32 + 2 peritumoral), subclinical hypercortisolism (n = 36), Cushing's syndrome (n = 64 + 2 peritumoral), androgen-producing tumors (n = 4), adrenocortical carcinomas (n = 5 + 2 peritumoral), and primary bilateral macronodular adrenal hyperplasias (n = 8). Blood samples were available from patients with nonsecreting adenomas (n = 15), subclinical hypercortisolism (n = 10), and Cushing's syndrome (n = 35). Clinical and hormonal data were collected. DNA amplification by PCR of exons 6 and 7 of the PRKACA gene and direct sequencing were performed. PRKACA heterozygous mutations were found in 22/64 samples of Cushing's syndrome patients (34%). No mutations were found in peritumoral tissue and blood samples or in other tumors examined. The c.617A>C (p.Leu206Arg) occurred in 18/22 patients. Furthermore, two novel mutations were identified: c.600_601insGTG/p.Cys200_Gly201insVal in three patients and c.639C>G+c.638_640insATTATCCTGAGG/p.Ser213Arg+p.Leu212_Lys214insIle-Ile-Leu-Arg) in one. All the mutations involved a region implicated in interaction between PKA regulatory and catalytic subunits. Patients with somatic PRKACA mutations showed higher levels of cortisol after dexamethasone test and a smaller adenoma size, compared with nonmutated subjects. These data confirm and extend previous observations that somatic PRKACA mutations are specific for adrenocortical adenomas causing Cushing's syndrome.

  13. Screening of the USH1G gene among Spanish patients with Usher syndrome. Lack of mutations and evidence of a minor role in the pathogenesis of the syndrome.

    Science.gov (United States)

    Aller, Elena; Jaijo, Teresa; Beneyto, Magdalena; Nájera, Carmen; Morera, Constantino; Pérez-Garrigues, Herminio; Ayuso, Carmen; Millán, Jose

    2007-09-01

    The Usher syndrome (USH) is an autosomal recessive hereditary disorder characterized by the association of sensorineural hearing loss, retinitis pigmentosa (RP) and, in some cases, vestibular dysfunction. The USH1G gene, encoding SANS, has been found to cause both Usher syndrome type I and atypical Usher syndrome. 109 Spanish unrelated patients suffering from Usher syndrome type I, type II, type III and unclassified Usher syndrome were screened for mutations in this gene, but only eight different changes without a clear pathogenic effect have been detected. Based on these results as well as previous studies in other populations where mutational analysis of this gene has been carried out, one can conclude that USH1G has a minor involvement in Usher syndrome pathogenesis.

  14. Constitutional SAMD9L mutations cause familial myelodysplastic syndrome and transient monosomy 7.

    Science.gov (United States)

    Pastor, Victor B; Sahoo, Sushree S; Boklan, Jessica; Schwabe, Georg C; Saribeyoglu, Ebru; Strahm, Brigitte; Lebrecht, Dirk; Voss, Matthias; Bryceson, Yenan T; Erlacher, Miriam; Ehninger, Gerhard; Niewisch, Marena; Schlegelberger, Brigitte; Baumann, Irith; Achermann, John C; Shimamura, Akiko; Hochrein, Jochen; Tedgård, Ulf; Nilsson, Lars; Hasle, Henrik; Boerries, Melanie; Busch, Hauke; Niemeyer, Charlotte M; Wlodarski, Marcin W

    2018-03-01

    Familial myelodysplastic syndromes arise from haploinsufficiency of genes involved in hematopoiesis and are primarily associated with early-onset disease. Here we describe a familial syndrome in seven patients from four unrelated pedigrees presenting with myelodysplastic syndrome and loss of chromosome 7/7q. Their median age at diagnosis was 2.1 years (range, 1-42). All patients presented with thrombocytopenia with or without additional cytopenias and a hypocellular marrow without an increase of blasts. Genomic studies identified constitutional mutations (p.H880Q, p.R986H, p.R986C and p.V1512M) in the SAMD9L gene on 7q21, with decreased allele frequency in hematopoiesis. The non-random loss of mutated SAMD9L alleles was attained via monosomy 7, deletion 7q, UPD7q, or acquired truncating SAMD9L variants p.R1188X and p.S1317RfsX21. Incomplete penetrance was noted in 30% (3/10) of mutation carriers. Long-term observation revealed divergent outcomes with either progression to leukemia and/or accumulation of driver mutations (n=2), persistent monosomy 7 (n=4), and transient monosomy 7 followed by spontaneous recovery with SAMD9L -wildtype UPD7q (n=2). Dysmorphic features or neurological symptoms were absent in our patients, pointing to the notion that myelodysplasia with monosomy 7 can be a sole manifestation of SAMD9L disease. Collectively, our results define a new subtype of familial myelodysplastic syndrome and provide an explanation for the phenomenon of transient monosomy 7. Registered at: www.clinicaltrials.gov; #NCT00047268 . Copyright© 2018 Ferrata Storti Foundation.

  15. Clinical aspects of Usher syndrome and the USH2A gene in a cohort of 433 patients.

    Science.gov (United States)

    Blanco-Kelly, Fiona; Jaijo, Teresa; Aller, Elena; Avila-Fernandez, Almudena; López-Molina, María Isabel; Giménez, Ascensión; García-Sandoval, Blanca; Millán, José M; Ayuso, Carmen

    2015-02-01

    A new statistical approach is needed to describe the clinical differences between type I and type II Usher syndrome and between the 2 most frequent mutations in the USH2A gene. To describe the primary phenotypic characteristics and differences between type I and type II Usher syndrome and to establish a phenotype-genotype correlation for the 2 most frequent mutations in the USH2A gene. Cross-sectional study at a genetics department, in which clinical evaluations were performed for 433 patients (297 unrelated families) who were classified as having type I, II, III, atypical, or unclassified Usher syndrome according to their clinical history, pedigree data, results from ophthalmological studies, and audiological, neurophysiological, and vestibular test results. Molecular studies were performed for 304 patients (256 unrelated families). The Mann-Whitney U test or the χ2 test was used for calculating the differences between mean values for the analyzed parameters. Age at diagnosis; age at onset of night blindness, visual field loss, visual acuity loss, and cataracts; and severity and age at diagnosis of hearing loss. The comparison between patients with type I Usher syndrome and those with type II Usher syndrome revealed P Usher syndrome and between the 2 most frequent mutations in the USH2A gene. Detailed genotype-phenotype correlations, as presented in our study, allow for a better correlation of clinical signs with a known genotype and can improve the clinical management, genetic counseling, and risk assessment of patients with Usher syndrome because an estimated prognosis of their disease can be made.

  16. A novel missense mutation (G43S) in the switch I region of Rab27A causing Griscelli syndrome

    DEFF Research Database (Denmark)

    Westbroek, W.; Tuchman, M.; Tinloy, B.

    2008-01-01

    The autosomal recessive Griscelli syndrome type II (GSII) is caused by mutations in the RAB27A gene. Typical clinical features include immunological impairment, silver-gray scalp hair, eyelashes and eyebrows and hypomelanosis of the skin. Rabs help determine the specificity of membrane trafficking......-immunoprecipitation studies showed that Rab27A(G43S) fails to interact with its effector Melanophilin, indicating that the switch I region functions in the recruitment of Rab effector proteins Udgivelsesdato: 2008/6...

  17. Clinical features and growth hormone receptor gene mutations of patients with Laron syndrome from a Chinese family.

    Science.gov (United States)

    Ying, Yan-Qin; Wei, Hong; Cao, Li-Zhi; Lu, Juan-Juan; Luo, Xiao-Ping

    2007-08-01

    Laron syndrome is an autosomal recessive disorder caused by defects of growth hormone receptor (GHR) gene. It is characterized by severe postnatal growth retardation and characteristic facial features as well as high circulating levels of growth hormone (GH) and low levels of insulin-like growth factor I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3). This report described the clinical features and GHR gene mutations in 2 siblings with Laron syndrome in a Chinese family. Their heights and weights were in the normal range at birth, but the growth was retarded after birth. When they presented to the clinic, the heights of the boy (8 years old) and his sister (11 years old) were 80.0 cm (-8.2 SDS) and 96.6 cm (-6.8 SDS) respectively. They had typical appearance features of Laron syndrome such as short stature and obesity, with protruding forehead, saddle nose, large eyes, sparse and thin silky hair and high-pitched voice. They had higher basal serum GH levels and lower serum levels of IGF-I, IGFBP-3 and growth hormone binding protein (GHBP) than normal controls. The peak serum GH level after colonidine and insulin stimulations in the boy was over 350 ng/mL. After one-year rhGH treatment, the boy's height increased from 80.0 cm to 83.3 cm. The gene mutation analysis revealed that two patients had same homozygous mutation of S65H (TCA -->CCA) in exon 4, which is a novel gene mutation. It was concluded that a definite diagnosis of Laron syndrome can be made based on characteristic appearance features and serum levels of GH, IGF-I, IGFBP-3 and GHBP. The S65H mutation might be the cause of Laron syndrome in the two patients.

  18. AR mutations in 28 patients with androgen insensitivity syndrome (Prader grade 0-3).

    Science.gov (United States)

    Wang, Yi; Gong, Chunxiu; Wang, Xiou; Qin, Miao

    2017-07-01

    We investigated the androgen receptor (AR) gene mutation profiles of Chinese patients exhibiting severe androgen insensitivity syndrome (AIS) phenotypes. The present study enrolled 28 patients with genetically diagnosed AIS, who presented with severe phenotypes (Prader grade 0-3). Patients and some family members were screened via amplification and sequencing of their AR exons 1-8, including the corresponding intronic flanking regions. Luteinizing (LH), follicle-stimulating (FSH), and testosterone (T) hormone levels were found to be slightly, but not significantly, higher in patients with complete androgen insensitivity syndrome (CAIS) than in patients with partial androgen insensitivity syndrome (PAIS) (P>0.05). We identified 24 different AR mutations, including 12 that were novel. Ten patients (cases 2, 3, 10, 28, 11, 12, 19, 20, 24, and 25) were found to carry five recurrent mutations (p.Y572S, p.P914S, p.S176R, p.Y782N, and p.R841H); of these, p.Y572S, p.S176R, and p.Y782N were novel. Among the mutations identified in patients with CAIS, six (66.7%) were characterized as single-nucleotide missense mutations, and six (66.7%) were found to be located in the AR ligand-binding domain (LBD). Among the mutations identified in patients with PAIS, 15 (93.8%) were found to be missense, and 11 (68.8%) were found to be located in the LBD. Patients 10 and 28 were determined to harbor the same missense mutation (p.P914S), but were diagnosed with CAIS and PAIS, respectively. Sex hormone levels were slightly, but not significantly, elevated in patients with CAIS compared to those with PAIS. Missense mutations spanning AR exons 1-8 were the predominant form of identified mutations, and these were mostly located in the AR LBD. Approximately 50% of the identified mutations were novel, and have enriched the AR gene-mutation database. Patients harboring identical mutations were in some instances found to exhibit divergent phenotypes.

  19. Germline KRAS mutations cause Noonan syndrome.

    NARCIS (Netherlands)

    Schubbert, S.; Zenker, M.; Rowe, S.L.; Boll, S.; Klein, C.; Bollag, G.; Burgt, I. van der; Musante, L.; Kalscheuer, V.M.M.; Wehner, L.E.; Nguyen, H.; West, B.; Zhang, K.Y.; Sistermans, E.A.; Rauch, A.; Niemeyer, C.M.; Shannon, K.; Kratz, C.P.

    2006-01-01

    Noonan syndrome (MIM 163950) is characterized by short stature, facial dysmorphism and cardiac defects. Heterozygous mutations in PTPN11, which encodes SHP-2, cause approximately 50% of cases of Noonan syndrome. The SHP-2 phosphatase relays signals from activated receptor complexes to downstream

  20. The C-terminal extension of human RTEL1, mutated in Hoyeraal-Hreidarsson syndrome, contains harmonin-N-like domains.

    Science.gov (United States)

    Faure, Guilhem; Revy, Patrick; Schertzer, Michael; Londono-Vallejo, Arturo; Callebaut, Isabelle

    2014-06-01

    Several studies have recently shown that germline mutations in RTEL1, an essential DNA helicase involved in telomere regulation and DNA repair, cause Hoyeraal-Hreidarsson syndrome (HHS), a severe form of dyskeratosis congenita. Using original new softwares, facilitating the delineation of the different domains of the protein and the identification of remote relationships for orphan domains, we outline here that the C-terminal extension of RTEL1, downstream of its catalytic domain and including several HHS-associated mutations, contains a yet unidentified tandem of harmonin-N-like domains, which may serve as a hub for partner interaction. This finding highlights the potential critical role of this region for the function of RTEL1 and gives insights into the impact that the identified mutations would have on the structure and function of these domains. © 2013 Wiley Periodicals, Inc.

  1. Loeys-Dietz syndrome type I and type II: clinical findings and novel mutations in two Italian patients

    Directory of Open Access Journals (Sweden)

    Calzavara-Pinton Pier

    2009-11-01

    Full Text Available Abstract Background Loeys-Dietz syndrome (LDS is a rare autosomal dominant disorder showing the involvement of cutaneous, cardiovascular, craniofacial, and skeletal systems. In particular, LDS patients show arterial tortuosity with widespread vascular aneurysm and dissection, and have a high risk of aortic dissection or rupture at an early age and at aortic diameters that ordinarily are not predictive of these events. Recently, LDS has been subdivided in LDS type I (LDSI and type II (LDSII on the basis of the presence or the absence of cranio-facial involvement, respectively. Furthermore, LDSII patients display at least two of the major signs of vascular Ehlers-Danlos syndrome. LDS is caused by mutations in the transforming growth factor (TGF beta-receptor I (TGFBR1 and II (TGFBR2 genes. The aim of this study was the clinical and molecular characterization of two LDS patients. Methods The exons and intronic flanking regions of TGFBR1 and TGFBR2 genes were amplified and sequence analysis was performed. Results Patient 1 was a boy showing dysmorphic signs, blue sclerae, high-arched palate, bifid uvula; skeletal system involvement, joint hypermobility, velvety and translucent skin, aortic root dilatation, tortuosity and elongation of the carotid arteries. These signs are consistent with an LDSI phenotype. The sequencing analysis disclosed the novel TGFBR1 p.Asp351Gly de novo mutation falling in the kinase domain of the receptor. Patient 2 was an adult woman showing ascending aorta aneurysm, with vascular complications following surgery intervention. Velvety and translucent skin, venous varicosities and wrist dislocation were present. These signs are consistent with an LDSII phenotype. In this patient and in her daughter, TGFBR2 genotyping disclosed in the kinase domain of the protein the novel p.Ile510Ser missense mutation. Conclusion We report two novel mutations in the TGFBR1 and TGFBR2 genes in two patients affected with LDS and showing marked

  2. Diverse growth hormone receptor gene mutations in Laron syndrome.

    Science.gov (United States)

    Berg, M A; Argente, J; Chernausek, S; Gracia, R; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo, S P; Francke, U

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. Images Figure 1 Figure 2 PMID:8488849

  3. De novo mutations in ARID1B associated with both syndromic and non-syndromic short stature.

    Science.gov (United States)

    Yu, Yongguo; Yao, RuEn; Wang, Lili; Fan, Yanjie; Huang, Xiaodong; Hirschhorn, Joel; Dauber, Andrew; Shen, Yiping

    2015-09-16

    Human height is a complex trait with a strong genetic basis. Recently, a significant association between rare copy number variations (CNVs) and short stature has been identified, and candidate genes in these rare CNVs are being explored. This study aims to evaluate the association between mutations in ARID1B gene and short stature, both the syndromic and non-syndromic form. Based on a case-control study of whole genome chromosome microarray analysis (CMA), three overlapping CNVs were identified in patients with developmental disorders who exhibited short stature. ARID1B, a causal gene for Coffin Siris syndrome, is the only gene encompassed by all three CNVs. A following retrospective genotype-phenotype analysis based on a literature review confirmed that short stature is a frequent feature in those Coffin-Siris syndrome patients with ARID1B mutations. Mutation screening of ARID1B coding regions was further conducted in a cohort of 48 non-syndromic short stature patients,andfour novel missense variants including two de novo mutations were found. These results suggest that haploinsufficient mutations of ARID1B are associated with syndromic short stature including Coffin-Siris syndrome and intellectual disability, while rare missense variants in ARID1B are associated with non-syndromic short stature. This study supports the notion that mutations in genes related to syndromic short stature may exert milder effect and contribute to short stature in the general population.

  4. A novel mutation in the PAX3 gene causes Waardenburg syndrome type I in an Iranian family.

    Science.gov (United States)

    Jalilian, Nazanin; Tabatabaiefar, Mohammad Amin; Farhadi, Mohammad; Bahrami, Tayyeb; Noori-Daloii, Mohammad Reza

    2015-10-01

    Sensorineural hearing impairment (HI) is one of the most frequent congenital defects, with a prevalence of 1 in 500 among neonates. Although there are over 400 syndromes involving HI, most cases of HI are nonsyndromic (70%), 20% of which follow autosomal dominant mode of inheritance. Waardenburg syndrome (WS) ranks first among autosomal dominant syndromic forms of HI. WS is characterized by sensorineural hearing impairment, pigmentation abnormalities of hair and skin and hypoplastic blue eyes or heterochromia iridis. WS is subdivided into four major types, WS1-WS4. WS1 is diagnosed by the presence of dystopia canthorum and PAX3 is the only gene involved. This study aims to determine the pathogenic mutation in a large Iranian pedigree affected with WS1 in order to further confirm the clinical diagnosis. In the present study, a family segregating HI was ascertained in a genetic counseling center. Upon clinical inspection, white forelock, dystopia canthorum, broad high nasal root and synophrys, characteristic of WS1 were evident. In order to clarify the genetic etiology and confirm the clinical data, primers were designed to amplify exons and exon-intron boundaries of the responsible gene, PAX3 with 10 exons, followed by the Sanger DNA sequencing method. Genetic analysis of PAX3 revealed a novel mutation in PAX3 (c.1024_1040 del AGCACGATTCCTTCCAA). Our data provide genotype-phenotype correlation for the mutation in PAX3 and WS1 in the studied family, with implications for genetic counseling, which necessitates detailed clinical inspection of HI patients to distinguish syndromic HI from the more common non-syndromic cases. Our results reveal the value of phenotype-directed genetic analysis and could further expand the spectrum of PAX3 mutations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Unique cerebrovascular anomalies in Noonan syndrome with RAF1 mutation.

    Science.gov (United States)

    Zarate, Yuri A; Lichty, Angie W; Champion, Kristen J; Clarkson, L Kate; Holden, Kenton R; Matheus, M Gisele

    2014-08-01

    Noonan syndrome is a common autosomal dominant neurodevelopmental disorder caused by gain-of-function germline mutations affecting components of the Ras-MAPK pathway. The authors present the case of a 6-year-old male with Noonan syndrome, Chiari malformation type I, shunted benign external hydrocephalus in infancy, and unique cerebrovascular changes. A de novo heterozygous change in the RAF1 gene was identified. The patient underwent brain magnetic resonance imaging, computed tomography angiography, and magnetic resonance angiography to further clarify the nature of his abnormal brain vasculature. The authors compared his findings to the few cases of Noonan syndrome reported with cerebrovascular pathology. © The Author(s) 2013.

  6. Muckle-Wells syndrome in an Indian family associated with NLRP3 mutation

    Directory of Open Access Journals (Sweden)

    M C Abdulla

    2015-01-01

    Full Text Available Muckle - Wells syndrome (MWS is a rare autosomal dominant disease that belongs to a group of hereditary periodic fever syndromes. It is part of the wider spectrum of the cryopyrin-associated periodic syndrome (CAPS which has only rarely been described in non-Caucasian individuals. It is characterized by recurrent self-limiting episodes of fever, urticaria, arthralgia, myalgia and conjunctivitis from childhood. Progressive sensorineural hearing loss and amyloidosis are two late complications. MWS is caused by gain of function mutations in the NLRP3 gene, which encodes cryopyrin, a protein involved in regulating the production of proinflammatory cytokines. We report two patients with MWS in an Indian family associated with the p.D303N mutation in the NLRP3 gene. These findings promote awareness of these hereditary periodic fever syndromes as a cause for recurrent fevers from childhood in the Indian population.

  7. Cancer spectrum in DNA mismatch repair gene mutation carriers: results from a hospital based Lynch syndrome registry.

    Science.gov (United States)

    Pande, Mala; Wei, Chongjuan; Chen, Jinyun; Amos, Christopher I; Lynch, Patrick M; Lu, Karen H; Lucio, Laura A; Boyd-Rogers, Stephanie G; Bannon, Sarah A; Mork, Maureen E; Frazier, Marsha L

    2012-09-01

    The spectrum of cancers seen in a hospital based Lynch syndrome registry of mismatch repair gene mutation carriers was examined to determine the distribution of cancers and examine excess cancer risk. Overall there were 504 cancers recorded in 368 mutation carriers from 176 families. These included 236 (46.8 %) colorectal and 268 (53.2 %) extracolonic cancers. MLH1 mutation carriers had a higher frequency of colorectal cancers whereas MSH2, MSH6 and PMS2 mutation carriers had more extracolonic cancers although these differences were not statistically significant. Men had fewer extracolonic cancers than colorectal (45.3 vs. 54.7 %), whereas women had more extracolonic than colorectal cancers (59.0 vs. 41.0 %). The mean age at diagnosis overall for extracolonic cancers was older than for colorectal, 49.1 versus 44.8 years (P ≤ 0.001). As expected, the index cancer was colorectal in 58.1 % of patients and among the extracolonic index cancers, endometrial was the most common (13.8 %). A significant number of non-Lynch syndrome index cancers were recorded including breast (n = 5) prostate (n = 3), thyroid (n = 3), cervix (n = 3), melanoma (n = 3), and 1 case each of thymoma, sinus cavity, and adenocarcinoma of the lung. However, standardized incidence ratios calculated to assess excess cancer risk showed that only those cancers known to be associated with Lynch syndrome were significant in our sample. We found that Lynch syndrome patients can often present with cancers that are not considered part of Lynch syndrome. This has clinical relevance both for diagnosis of Lynch syndrome and surveillance for cancers of different sites during follow-up of these patients.

  8. Physiological Expression of AMPKγ2RG Mutation Causes Wolff-Parkinson-White Syndrome and Induces Kidney Injury in Mice.

    Science.gov (United States)

    Yang, Xiaodong; Mudgett, John; Bou-About, Ghina; Champy, Marie-France; Jacobs, Hugues; Monassier, Laurent; Pavlovic, Guillaume; Sorg, Tania; Herault, Yann; Petit-Demoulière, Benoit; Lu, Ku; Feng, Wen; Wang, Hongwu; Ma, Li-Jun; Askew, Roger; Erion, Mark D; Kelley, David E; Myers, Robert W; Li, Cai; Guan, Hong-Ping

    2016-11-04

    Mutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2 NI ) and R531G (AMPKγ2 RG ), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2 NI or AMPKγ2 RG leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype. To investigate whether physiological levels of AMPKγ2 NI or AMPKγ2 RG mutation cause WPW syndrome and metabolic changes in other organs, we generated two knock-in mouse lines on the C57BL/6N background harboring mutations of human AMPKγ2 NI and AMPKγ2 RG , respectively. Similar to the reported phenotypes of mice overexpressing AMPKγ2 NI or AMPKγ2 RG in the heart, both lines developed WPW syndrome and cardiac hypertrophy; however, these effects were independent of cardiac glycogen accumulation. Compared with AMPKγ2 WT mice, AMPKγ2 NI and AMPKγ2 RG mice exhibited reduced body weight, fat mass, and liver steatosis when fed with a high fat diet (HFD). Surprisingly, AMPKγ2 RG but not AMPKγ2 NI mice fed with an HFD exhibited severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function. These results demonstrate that expression of AMPKγ2 NI and AMPKγ2 RG mutations at physiological levels can induce beneficial metabolic effects but that this is accompanied by WPW syndrome. Our data also reveal an unexpected effect of AMPKγ2 RG in the kidney, linking lifelong constitutive activation of AMPK to a potential risk for kidney dysfunction in the context of an HFD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Physiological Expression of AMPKγ2RG Mutation Causes Wolff-Parkinson-White Syndrome and Induces Kidney Injury in Mice*

    Science.gov (United States)

    Yang, Xiaodong; Mudgett, John; Bou-About, Ghina; Champy, Marie-France; Jacobs, Hugues; Monassier, Laurent; Pavlovic, Guillaume; Sorg, Tania; Herault, Yann; Petit-Demoulière, Benoit; Lu, Ku; Feng, Wen; Wang, Hongwu; Ma, Li-Jun; Askew, Roger; Erion, Mark D.; Kelley, David E.; Myers, Robert W.; Li, Cai

    2016-01-01

    Mutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2NI) and R531G (AMPKγ2RG), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2NI or AMPKγ2RG leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype. To investigate whether physiological levels of AMPKγ2NI or AMPKγ2RG mutation cause WPW syndrome and metabolic changes in other organs, we generated two knock-in mouse lines on the C57BL/6N background harboring mutations of human AMPKγ2NI and AMPKγ2RG, respectively. Similar to the reported phenotypes of mice overexpressing AMPKγ2NI or AMPKγ2RG in the heart, both lines developed WPW syndrome and cardiac hypertrophy; however, these effects were independent of cardiac glycogen accumulation. Compared with AMPKγ2WT mice, AMPKγ2NI and AMPKγ2RG mice exhibited reduced body weight, fat mass, and liver steatosis when fed with a high fat diet (HFD). Surprisingly, AMPKγ2RG but not AMPKγ2NI mice fed with an HFD exhibited severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function. These results demonstrate that expression of AMPKγ2NI and AMPKγ2RG mutations at physiological levels can induce beneficial metabolic effects but that this is accompanied by WPW syndrome. Our data also reveal an unexpected effect of AMPKγ2RG in the kidney, linking lifelong constitutive activation of AMPK to a potential risk for kidney dysfunction in the context of an HFD. PMID:27621313

  10. Acadian variant of Fanconi syndrome is caused by mitochondrial respiratory chain complex I deficiency due to a non-coding mutation in complex I assembly factor NDUFAF6

    Czech Academy of Sciences Publication Activity Database

    Hartmannová, H.; Piherová, L.; Tauchmannová, Kateřina; Kidd, K.; Acott, P. D.; Crocker, J. F. S.; Oussedik, Y.; Mallet, M.; Hodaňová, K.; Stránecký, V.; Přistoupilová, A.; Barešová, V.; Jedličková, I.; Živná, M.; Sovová, J.; Hůlková, H.; Robins, V.; Vrbacký, Marek; Pecina, Petr; Kaplanová, Vilma; Houštěk, Josef; Mráček, Tomáš; Thibeault, Y.; Bleyer, A. J.; Kmoch, S.

    2016-01-01

    Roč. 25, č. 18 (2016), s. 4062-4079 ISSN 0964-6906 R&D Projects: GA ČR(CZ) GB14-36804G; GA MŠk(CZ) LL1204 Institutional support: RVO:67985823 Keywords : Acadian variant of Fanconi syndrome * mitochondrial complex I deficiency * NDUFAF6 * C8ORF38 * non-coding mutation * alternative splicing variant * protein isoforms Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.340, year: 2016

  11. EDNRB mutations cause Waardenburg syndrome type II in the heterozygous state.

    Science.gov (United States)

    Issa, Sarah; Bondurand, Nadege; Faubert, Emmanuelle; Poisson, Sylvain; Lecerf, Laure; Nitschke, Patrick; Deggouj, Naima; Loundon, Natalie; Jonard, Laurence; David, Albert; Sznajer, Yves; Blanchet, Patricia; Marlin, Sandrine; Pingault, Veronique

    2017-05-01

    Waardenburg syndrome (WS) is a genetic disorder characterized by sensorineural hearing loss and pigmentation anomalies. The clinical definition of four WS types is based on additional features due to defects in structures mostly arising from the neural crest, with type I and type II being the most frequent. While type I is tightly associated to PAX3 mutations, WS type II (WS2) remains partly enigmatic with mutations in known genes (MITF, SOX10) accounting for only 30% of the cases. We performed exome sequencing in a WS2 index case and identified a heterozygous missense variation in EDNRB. Interestingly, homozygous (and very rare heterozygous) EDNRB mutations are already described in type IV WS (i.e., in association with Hirschsprung disease [HD]) and heterozygous mutations in isolated HD. Screening of a WS2 cohort led to the identification of an overall of six heterozygous EDNRB variations. Clinical phenotypes, pedigrees and molecular segregation investigations unraveled a dominant mode of inheritance with incomplete penetrance. In parallel, cellular and functional studies showed that each of the mutations impairs the subcellular localization of the receptor or induces a defective downstream signaling pathway. Based on our results, we now estimate EDNRB mutations to be responsible for 5%-6% of WS2. © 2017 Wiley Periodicals, Inc.

  12. Genetics Home Reference: Griscelli syndrome

    Science.gov (United States)

    ... Tezcan I, Ersoy F, Houdusse A, Fischer A, de Saint Basile G. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect ( ... N, Bianchi D, Fischer A, Le Deist F, de Saint Basile G. Mutations in RAB27A ... syndrome associated with haemophagocytic syndrome. Nat Genet. 2000 Jun; ...

  13. Biophysical characterization of the short QT mutation hERG-N588K reveals a mixed gain-and loss-of-function

    DEFF Research Database (Denmark)

    Grunnet, M.; Diness, T.G.; Hansen, R.S.

    2008-01-01

    The short QT syndrome is a newly discovered pro-arrhythmic condition, which may cause ventricular fibrillation and sudden death. Short QT can originate from the apparent gain-of-function mutation N588K in the hERG potassium channel that conducts repolarising I(Kr) current. The present study...

  14. CDH23 Mutation and Phenotype Heterogeneity: A Profile of 107 Diverse Families with Usher Syndrome and Nonsyndromic Deafness

    OpenAIRE

    Astuto, L. M.; Bork, J. M.; Weston, M. D.; Askew, J. W.; Fields, R. R.; Orten, D. J.; Ohliger, S. J.; Riazuddin, S.; Morell, R. J.; Khan, S.; Riazuddin, S.; Kremer, H.; van Hauwe, P.; Moller, C. G.; Cremers, C. W. R. J.

    2002-01-01

    Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deaf...

  15. Expanding the phenotypic and mutational spectrum in microcephalic osteodysplastic primordial dwarfism type I.

    Science.gov (United States)

    Abdel-Salam, Ghada M H; Abdel-Hamid, Mohamed S; Issa, Mahmoud; Magdy, Ahmed; El-Kotoury, Ahmed; Amr, Khalda

    2012-06-01

    Mutations in the RNU4ATAC gene cause microcephalic osteodysplastic primordial dwarfism type I. It encodes U4atac, a small nuclear RNA that is a component of the minor spliceosome. Six distinct mutations in 30 patients diagnosed as microcephalic osteodysplastic primordial dwarfism type I have been described. We report on three additional patients from two unrelated families presenting with a milder phenotype of microcephalic osteodysplastic primordial dwarfism type I and metopic synostosis. Patient 1 had two novel heterozygous mutations in the 3' prime stem-loop, g.66G > C and g.124G > A while Patients 2 and 3 had a homozygous mutation g.55G > A in the 5' prime stem-loop. Although they manifested the known spectrum of clinical features of microcephalic osteodysplastic primordial dwarfism type I, they lacked evidence of severe developmental delay and neurological symptoms. These findings expand the mutational and phenotypic spectrum of this syndrome. Copyright © 2012 Wiley Periodicals, Inc.

  16. The mutational spectrum of Lynch syndrome in cyprus.

    Directory of Open Access Journals (Sweden)

    Maria A Loizidou

    Full Text Available Lynch syndrome is the most common form of hereditary colorectal cancer and is caused by germline mutations in the mismatch repair (MMR genes MLH1, MSH2, MSH6 and PMS2. Mutation carriers have an increased lifetime risk of developing colorectal cancer as well as other extracolonic tumours. The aim of the current study was to evaluate the frequency and distribution of mutations in the MLH1, MSH2 and MSH6 genes within a cohort of Cypriot families that fulfilled the revised Bethesda guidelines. The study cohort included 77 patients who fulfilled at least one of the revised Bethesda guidelines. Mutational analysis revealed the presence of 4 pathogenic mutations, 3 in the MLH1 gene and 1 in the MSH2 gene, in 5 unrelated individuals. It is noted that out of the 4 pathogenic mutations detected, one is novel (c.1610delG in exon 14 of the MLH1 and has been detected for the first time in the Cypriot population. Overall, the pathogenic mutation detection rate in our patient cohort was 7%. This percentage is relatively low but could be explained by the fact that the sole criterion for genetic screening was compliance to the revised Bethesda guidelines. Larger numbers of Lynch syndrome families and screening of the two additional predisposition genes, PMS2 and EPCAM, are needed in order to decipher the full spectrum of mutations associated with Lynch syndrome predisposition in Cyprus.

  17. Generation of induced pluripotent stem cells (iPSCs from a Bernard–Soulier syndrome patient carrying a W71R mutation in the GPIX gene

    Directory of Open Access Journals (Sweden)

    Lourdes Lopez-Onieva

    2016-05-01

    Full Text Available We generated an induced pluripotent stem cell (iPSC line from a Bernard–Soulier Syndrome (BSS patient carrying the mutation p.Trp71Arg in the GPIX locus (BSS1-PBMC-iPS4F4. Peripheral blood mononuclear cells (PBMCs were reprogrammed using heat sensitive non-integrative Sendai viruses containing the reprogramming factors Oct3/4, SOX2, KLF4 and c-MYC. Successful silencing of the exogenous reprogramming factors was checked by RT-PCR. Characterization of BSS1-PBMC-iPS4F4 included mutation analysis of GPIX locus, Short Tandem Repeats (STR profiling, alkaline phosphatase enzymatic activity, analysis of conventional pluripotency-associated factors at mRNA and protein level and in vivo differentiation studies. BSS1-PBMC-iPS4F4 will provide a powerful tool to study BSS.

  18. Genetic Heterogeneity of Usher Syndrome: Analysis of 151 Families with Usher Type I

    OpenAIRE

    Astuto, Lisa M.; Weston, Michael D.; Carney, Carol A.; Hoover, Denise M.; Cremers, Cor W.R.J.; Wagenaar, Mariette; Moller, Claes; Smith, Richard J.H.; Pieke-Dahl, Sandra; Greenberg, Jacquie; Ramesar, Raj; Jacobson, Samuel G.; Ayuso, Carmen; Heckenlively, John R.; Tamayo, Marta

    2000-01-01

    Usher syndrome type I is an autosomal recessive disorder marked by hearing loss, vestibular areflexia, and retinitis pigmentosa. Six Usher I genetic subtypes at loci USH1A–USH1F have been reported. The MYO7A gene is responsible for USH1B, the most common subtype. In our analysis, 151 families with Usher I were screened by linkage and mutation analysis. MYO7A mutations were identified in 64 families with Usher I. Of the remaining 87 families, who were negative for MYO7A mutations, 54 were info...

  19. Clinical and mutational spectrum of hypoparathyroidism, deafness and renal dysplasia syndrome.

    Science.gov (United States)

    Belge, Hendrica; Dahan, Karin; Cambier, Jean-François; Benoit, Valérie; Morelle, Johann; Bloch, Julie; Vanhille, Philippe; Pirson, Yves; Demoulin, Nathalie

    2017-05-01

    Hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome is a rare autosomal dominant disorder, secondary to mutations in the GATA-3 gene. Due to its wide range of penetrance and expressivity, the disease may not always be recognized. We herein describe clinical and genetic features of patients with HDR syndrome, highlighting diagnostic clues. Medical records of eight patients from five unrelated families exhibiting GATA-3 mutations were reviewed retrospectively, in conjunction with all previously reported cases. HDR syndrome was diagnosed in eight patients between the ages of 18 and 60 years. Sensorineural deafness was consistently diagnosed, ranging from clinical hearing loss since infancy in seven patients to deafness detected only by audiometry in adulthood in one single patient. Hypoparathyroidism was present in six patients (with hypocalcaemia and inaugural seizures in two out of six). Renal abnormalities observed in six patients were diverse and of dysplastic nature. Three patients displayed nephrotic-range proteinuria and reached end-stage renal disease (ESRD) between the ages of 19 and 61 years, whilst lesions of focal and segmental glomerulosclerosis were histologically demonstrated in one of them. Interestingly, phenotype severity differed significantly between a mother and son within one family. Five new mutations of GATA-3 were identified, including three missense mutations affecting zinc finger motifs [NM_001002295.1: c.856A>G (p.N286D) and c.1017C>G (p.C339W)] or the conserved linker region [c.896G>A (p.R299G)], and two splicing mutations (c.924+4_924+19del and c.1051-2A>G). Review of 115 previously reported cases of GATA-3 mutations showed hypoparathyroidism and deafness in 95% of patients, and renal abnormalities in only 60%. Overall, 10% of patients had reached ESRD. We herein expand the clinical and mutational spectrum of HDR syndrome, illustrating considerable inter- and intrafamilial phenotypic variability. Diagnosis of HDR should be

  20. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome

    Directory of Open Access Journals (Sweden)

    Maryam Taghdiri

    2017-08-01

    Full Text Available Cockayne syndrome (CS is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C in our patient. Another gene (ERCC6, which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.

  1. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome.

    Science.gov (United States)

    Taghdiri, Maryam; Dastsooz, Hassan; Fardaei, Majid; Mohammadi, Sanaz; Farazi Fard, Mohammad Ali; Faghihi, Mohammad Ali

    2017-01-01

    Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene ( ERCC6 ), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.

  2. X-linked Charcot-Marie-Tooth disease, Arts syndrome, and prelingual non-syndromic deafness form a disease continuum: evidence from a family with a novel PRPS1 mutation

    NARCIS (Netherlands)

    Synofzik, Matthis; Müller Vom Hagen, Jennifer; Haack, Tobias B.; Wilhelm, Christian; Lindig, Tobias; Beck-Wödl, Stefanie; Nabuurs, Sander B.; van Kuilenburg, André B. P.; de Brouwer, Arjan P. M.; Schöls, Ludger

    2014-01-01

    X-linked Charcot-Marie-Tooth disease type 5 (CMTX5), Arts syndrome, and non-syndromic sensorineural deafness (DFN2) are allelic syndromes, caused by reduced activity of phosphoribosylpyrophosphate synthetase 1 (PRS-I) due to loss-of-function mutations in PRPS1. As only few families have been

  3. Analysis of patients with atypical hemolytic uremic syndrome treated at the Mie University Hospital: concentration of C3 p.I1157T mutation.

    Science.gov (United States)

    Matsumoto, Takeshi; Fan, Xinping; Ishikawa, Eiji; Ito, Masaaki; Amano, Keishirou; Toyoda, Hidemi; Komada, Yoshihiro; Ohishi, Kohshi; Katayama, Naoyuki; Yoshida, Yoko; Matsumoto, Masanori; Fujimura, Yoshihiro; Ikejiri, Makoto; Wada, Hideo; Miyata, Toshiyuki

    2014-11-01

    Atypical hemolytic uremic syndrome (aHUS) is caused by abnormalities of the complement system and has a significantly poor prognosis. The clinical phenotypes of 12 patients in nine families with aHUS with familial or recurrent onset and ADAMTS13 activity of ≥20 % treated at the Mie University Hospital were examined. In seven of the patients, the first episode of aHUS occurred during childhood and ten patients experienced a relapse. All patients had renal dysfunction and three had been treated with hemodialysis. Seven patients experienced probable triggering events including common cold, influenza, bacterial infection and/or vaccination for influenza. All patients had entered remission, and renal function was improved in 11 patients. DNA sequencing of six candidate genes, identified a C3 p.I1157T missense mutation in all eight patients in six families examined and this mutation was causative for aHUS. A causative mutation THBD p.D486Y was also identified in an aHUS patient. Four missense mutations, CFH p.V837I, p.Y1058H, p.V1060L and THBD p.R403K may predispose to aHUS manifestation; the remaining seven missense mutations were likely neutral. In conclusion, the clinical phenotypes of aHUS are various, and there are often trigger factors. The C3 p.I1157T mutation was identified as the causative mutation for aHUS in all patients examined, and may be geographically concentrated in or around the Mie prefecture in central Japan.

  4. Mutation analysis of the cathepsin C gene in Indian families with Papillon-Lefèvre syndrome

    Directory of Open Access Journals (Sweden)

    Srivastava Satish

    2003-07-01

    Full Text Available Abstract Background PLS is a rare autosomal recessive disorder characterized by early onset periodontopathia and palmar plantar keratosis. PLS is caused by mutations in the cathepsin C (CTSC gene. Dipeptidyl-peptidase I encoded by the CTSC gene removes dipeptides from the amino-terminus of protein substrates and mainly plays an immune and inflammatory role. Several mutations have been reported in this gene in patients from several ethnic groups. We report here mutation analysis of the CTSC gene in three Indian families with PLS. Methods Peripheral blood samples were obtained from individuals belonging to three Indian families with PLS for genomic DNA isolation. Exon-specific intronic primers were used to amplify DNA samples from individuals. PCR products were subsequently sequenced to detect mutations. PCR-SCCP and ASOH analyses were used to determine if mutations were present in normal control individuals. Results All patients from three families had a classic PLS phenotype, which included palmoplantar keratosis and early-onset severe periodontitis. Sequence analysis of the CTSC gene showed three novel nonsense mutations (viz., p.Q49X, p.Q69X and p.Y304X in homozygous state in affected individuals from these Indian families. Conclusions This study reported three novel nonsense mutations in three Indian families. These novel nonsense mutations are predicted to produce truncated dipeptidyl-peptidase I causing PLS phenotype in these families. A review of the literature along with three novel mutations reported here showed that the total number of mutations in the CTSC gene described to date is 41 with 17 mutations being located in exon 7.

  5. Mutations in the G6PC3 gene cause Dursun syndrome.

    Science.gov (United States)

    Banka, Siddharth; Newman, William G; Ozgül, R Koksal; Dursun, Ali

    2010-10-01

    Dursun syndrome is a triad of familial primary pulmonary hypertension, leucopenia, and atrial septal defect. Here we demonstrate that mutations in G6PC3 cause Dursun syndrome. Mutations in G6PC3 are known to also cause severe congenital neutropenia type 4. Identification of the genetic basis of Dursun syndrome expands the pre-existing knowledge about the phenotypic effects of mutations in G6PC3. We propose that Dursun syndrome should now be considered as a subset of severe congenital neutropenia type 4 with pulmonary hypertension as an important clinical feature. Copyright © 2010 Wiley-Liss, Inc.

  6. Novel mutations and their genotype-phenotype correlations in patients with Noonan syndrome, using next-generation sequencing.

    Science.gov (United States)

    Tafazoli, Alireza; Eshraghi, Peyman; Pantaleoni, Francesca; Vakili, Rahim; Moghaddassian, Morteza; Ghahraman, Martha; Muto, Valentina; Paolacci, Stefano; Golyan, Fatemeh Fardi; Abbaszadegan, Mohammad Reza

    2018-03-01

    Noonan Syndrome (NS) is an autosomal dominant disorder with many variable and heterogeneous conditions. The genetic basis for 20-30% of cases is still unknown. This study evaluates Iranian Noonan patients both clinically and genetically for the first time. Mutational analysis of PTPN11 gene was performed in 15 Iranian patients, using PCR and Sanger sequencing at phase one. Then, as phase two, Next Generation Sequencing (NGS) in the form of targeted resequencing was utilized for analysis of exons from other related genes. Homology modelling for the novel founded mutations was performed as well. The genotype, phenotype correlation was done according to the molecular findings and clinical features. Previously reported mutation (p.N308D) in some patients and a novel mutation (p.D155N) in one of the patients were identified in phase one. After applying NGS methods, known and new variants were found in four patients in other genes, including: CBL (p. V904I), KRAS (p. L53W), SOS1 (p. I1302V), and SOS1 (p. R552G). Structural studies of two deduced novel mutations in related genes revealed deficiencies in the mutated proteins. Following genotype, phenotype correlation, a new pattern of the presence of intellectual disability in two patients was registered. NS shows strong variable expressivity along the high genetic heterogeneity especially in distinct populations and ethnic groups. Also possibly unknown other causative genes may be exist. Obviously, more comprehensive and new technologies like NGS methods are the best choice for detection of molecular defects in patients for genotype, phenotype correlation and disease management. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  7. JP-HHT phenotype in Danish patients with <i>SMAD4i> mutations

    DEFF Research Database (Denmark)

    Jelsig, A M; Tørring, P M; Kjeldsen, A D

    2016-01-01

    Patients with germline mutations in SMAD4 can present symptoms of both juvenile polyposis syndrome (JPS) and hereditary hemorrhagic telangiectasia (HHT): the JP-HHT syndrome. The complete phenotypic picture of this syndrome is only just emerging. We describe the clinical characteristics of 14......, aortopathy and family history were noted. We detected 14 patients with SMAD4 mutations. All patients had polyps removed and 11 of 14 fulfilled the diagnostic criteria for JPS. Eight patients were screened for HHT-symptoms and seven of these fulfilled the Curaçao criteria. One patient had aortic root dilation...

  8. CtIP Mutations Cause Seckel and Jawad Syndromes.

    Directory of Open Access Journals (Sweden)

    Per Qvist

    2011-10-01

    Full Text Available Seckel syndrome is a recessively inherited dwarfism disorder characterized by microcephaly and a unique head profile. Genetically, it constitutes a heterogeneous condition, with several loci mapped (SCKL1-5 but only three disease genes identified: the ATR, CENPJ, and CEP152 genes that control cellular responses to DNA damage. We previously mapped a Seckel syndrome locus to chromosome 18p11.31-q11.2 (SCKL2. Here, we report two mutations in the CtIP (RBBP8 gene within this locus that result in expression of C-terminally truncated forms of CtIP. We propose that these mutations are the molecular cause of the disease observed in the previously described SCKL2 family and in an additional unrelated family diagnosed with a similar form of congenital microcephaly termed Jawad syndrome. While an exonic frameshift mutation was found in the Jawad family, the SCKL2 family carries a splicing mutation that yields a dominant-negative form of CtIP. Further characterization of cell lines derived from the SCKL2 family revealed defective DNA damage induced formation of single-stranded DNA, a critical co-factor for ATR activation. Accordingly, SCKL2 cells present a lowered apoptopic threshold and hypersensitivity to DNA damage. Notably, over-expression of a comparable truncated CtIP variant in non-Seckel cells recapitulates SCKL2 cellular phenotypes in a dose-dependent manner. This work thus identifies CtIP as a disease gene for Seckel and Jawad syndromes and defines a new type of genetic disease mechanism in which a dominant negative mutation yields a recessively inherited disorder.

  9. Brugada syndrome with a novel missense mutation in SCN5A gene: A case report from Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Zahidus Sayeed

    2014-01-01

    Full Text Available Brugada syndrome is an inherited cardiac arrhythmia that follows autosomal dominant transmission and can cause sudden death. We report a case of Brugada syndrome in a 55-year-old male patient presented with recurrent palpitation, atypical chest pain and presyncope. ECG changes were consistent with type 1 Brugada. Gene analysis revealed a novel missense mutation in SCN5A gene with a genetic variation of D785N and a nucleotide change at 2353G-A. One of his children also had the same mutation. To our knowledge this is the first genetically proved case of Brugada syndrome in Bangladesh.

  10. Expanding the mutation and clinical spectrum of Roberts syndrome.

    Science.gov (United States)

    Afifi, Hanan H; Abdel-Salam, Ghada M H; Eid, Maha M; Tosson, Angie M S; Shousha, Wafaa Gh; Abdel Azeem, Amira A; Farag, Mona K; Mehrez, Mennat I; Gaber, Khaled R

    2016-07-01

    Roberts syndrome and SC phocomelia syndrome are rare autosomal recessive genetic disorders representing the extremes of the spectrum of severity of the same condition, caused by mutations in ESCO2 gene. We report three new patients with Roberts syndrome from three unrelated consanguineous Egyptian families. All patients presented with growth retardation, mesomelic shortening of the limbs more in the upper than in the lower limbs and microcephaly. Patients were subjected to clinical, cytogenetic and radiologic examinations. Cytogenetic analysis showed the characteristic premature separation of centromeres and puffing of heterochromatic regions. Further, sequencing of the ESCO2 gene identified a novel mutation c.244_245dupCT (p.T83Pfs*20) in one family besides two previously reported mutations c.760_761insA (p.T254Nfs*27) and c.764_765delTT (p.F255Cfs*25). All mutations were in homozygous state, in exon 3. The severity of the mesomelic shortening of the limbs and craniofacial anomalies showed variability among patients. Interestingly, patient 1 had abnormal skin hypopigmentation. Serial fetal ultrasound examinations and measurements of long bones diagnosed two affected fetuses in two of the studied families. A literature review and case comparison was performed. In conclusion, we report a novel ESCO2 mutation and expand the clinical spectrum of Roberts syndrome. © 2015 Japanese Teratology Society.

  11. Mitchell-Riley Syndrome: A Novel Mutation in RFX6 Gene

    Directory of Open Access Journals (Sweden)

    Marta Zegre Amorim

    2015-01-01

    Full Text Available A novel RFX6 homozygous missense mutation was identified in an infant with Mitchell-Riley syndrome. The most common features of Mitchell-Riley syndrome were present, including severe neonatal diabetes associated with annular pancreas, intestinal malrotation, gallbladder agenesis, cholestatic disease, chronic diarrhea, and severe intrauterine growth restriction. Perijejunal tissue similar to pancreatic tissue was found in the submucosa, a finding that has not been previously reported in this syndrome. This case associating RFX6 mutation with structural and functional pancreatic abnormalities reinforces the RFX6 gene role in pancreas development and β-cell function, adding information to the existent mutation databases.

  12. Genetic mutations in Gorlin-Goltz syndrome

    OpenAIRE

    Daneswari, Muthumula; Reddy, Mutjumula Swamy Ranga

    2013-01-01

    Gorlin-Goltz syndrome is a rare multisystemic disease inherited in a dominant autosomal at a high level of penetrance and variable expressiveness. It is mainly characterized by basal cell carcinoma, odontogenic keratocyst and skeletal anomalies. Diagnosis is based upon established major and minor clinical and radiographic criteria and gene mutation analysis. This article presents a case of Gorlin-Goltz syndrome, its genetic predisposition, diagnosis and management.

  13. Genetic mutations in Gorlin-Goltz syndrome.

    Science.gov (United States)

    Daneswari, Muthumula; Reddy, Mutjumula Swamy Ranga

    2013-07-01

    Gorlin-Goltz syndrome is a rare multisystemic disease inherited in a dominant autosomal at a high level of penetrance and variable expressiveness. It is mainly characterized by basal cell carcinoma, odontogenic keratocyst and skeletal anomalies. Diagnosis is based upon established major and minor clinical and radiographic criteria and gene mutation analysis. This article presents a case of Gorlin-Goltz syndrome, its genetic predisposition, diagnosis and management.

  14. Numerous BAF complex genes are mutated in Coffin-Siris syndrome.

    Science.gov (United States)

    Miyake, Noriko; Tsurusaki, Yoshinori; Matsumoto, Naomichi

    2014-09-01

    Coffin-Siris syndrome (CSS; OMIM#135900) is a rare congenital anomaly syndrome characterized by intellectual disability, coarse face, hypertrichosis, and absence/hypoplasia of the fifth digits' nails. As the majority of patients are sporadic, an autosomal dominant inheritance model has been postulated. Recently, whole exome sequencing (WES) emerged as a comprehensive analytical method for rare variants. We applied WES on five CSS patients and found two de novo mutations in SMARCB1. SMARCB1 was completely sequenced in 23 CSS patients and the mutations were found in two more patients. As SMARCB1 encodes a subunit of the BAF complex functioning as a chromatin remodeling factor, mutations in 15 other subunit genes may cause CSS and thus were analyzed in 23 CSS patients. We identified heterozygous mutations in either of six genes (SMARCA4, SMARCB1, SMARCA2, SMARCE1, ARID1A, and ARID1B) in 20 out of 23 CSS patients. The patient with a SMARCA2 mutation was re-evaluated and identified as having Nicolaides-Baraitser syndrome (OMIM#601358), which is similar to but different from CSS. Additionally, 49 more CSS patients were analyzed as a second cohort. Together with the first cohort, 37 out of 71 (22 plus 49) patients were found to have a mutation in either one of five BAF complex genes. Furthermore, two CSS patients were reported to have a PHF6 abnormality, which can also cause Borjeson-Forssman-Lehmann syndrome (OMIM#301900), an X-linked intellectual disability syndrome with epilepsy and endocrine abnormalities. The current list of mutated genes in CSS is far from being complete and analysis of more patients is required. © 2014 Wiley Periodicals, Inc.

  15. Whole-exome sequencing revealed two novel mutations in Usher syndrome.

    Science.gov (United States)

    Koparir, Asuman; Karatas, Omer Faruk; Atayoglu, Ali Timucin; Yuksel, Bayram; Sagiroglu, Mahmut Samil; Seven, Mehmet; Ulucan, Hakan; Yuksel, Adnan; Ozen, Mustafa

    2015-06-01

    Usher syndrome is a clinically and genetically heterogeneous autosomal recessive inherited disorder accompanied by hearing loss and retinitis pigmentosa (RP). Since the associated genes are various and quite large, we utilized whole-exome sequencing (WES) as a diagnostic tool to identify the molecular basis of Usher syndrome. DNA from a 12-year-old male diagnosed with Usher syndrome was analyzed by WES. Mutations detected were confirmed by Sanger sequencing. The pathogenicity of these mutations was determined by in silico analysis. A maternally inherited deleterious frameshift mutation, c.14439_14454del in exon 66 and a paternally inherited non-sense c.10830G>A stop-gain SNV in exon 55 of USH2A were found as two novel compound heterozygous mutations. Both of these mutations disrupt the C terminal of USH2A protein. As a result, WES revealed two novel compound heterozygous mutations in a Turkish USH2A patient. This approach gave us an opportunity to have an appropriate diagnosis and provide genetic counseling to the family within a reasonable time. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Differential effects of FGFR2 mutations on syndactyly and cleft palate in Apert syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Slaney, S.F.; Oldridge, M.; Wilkie, A.O.M. [Univ. of Oxford (United Kingdom)] [and others

    1996-05-01

    Apert syndrome is a distinctive human malformation characterized by craniosynostosis and severe syndactyly of the hands and feet. It is caused by specific missense substitutions involving adjacent amino acids (Ser252Trp or Pro253Arg) in the linker between the second and third extracellular immunoglobulin domains of fibroblast growth factor receptor 2 (FGFR2). We have developed a simple PCR assay for these mutations in genomic DNA, based on the creation of novel SfiI and BstUI restriction sites. Analysis of DNA from 70 unrelated patients with Apert syndrome showed that 45 had the Ser252Trp mutation and 25 had the Pro253Arg mutation. Phenotypic differences between these two groups of patients were investigated. Significant differences were found for severity of syndactyly and presence of cleft palate. The syndactyly was more severe with the Pro253Arg mutation, for both the hands and the feet. In contrast, cleft palate was significantly more common in the Ser252Trp patients. No convincing differences were found in the prevalence of other malformations associated with Apert syndrome. We conclude that, although the phenotype attributable to the two mutations is very similar, there are subtle differences. The opposite trends for severity of syndactyly and cleft palate in relation to the two mutations may relate to the varying patterns of temporal and tissue-specific expression of different fibroblast growth factors, the ligands for FGFR2. 54 refs., 5 figs., 3 tabs.

  17. Extended mutation spectrum of Usher syndrome in Finland.

    Science.gov (United States)

    Västinsalo, Hanna; Jalkanen, Reetta; Bergmann, Carsten; Neuhaus, Christine; Kleemola, Leenamaija; Jauhola, Liisa; Bolz, Hanno Jörn; Sankila, Eeva-Marja

    2013-06-01

    The Finnish distribution of clinical Usher syndrome (USH) types is 40% USH3, 34% USH1 and 12% USH2. All patients with USH3 carry the founder mutation in clarin 1 (CLRN1), whereas we recently reported three novel myosin VIIA (MYO7A) mutations in two unrelated patients with USH1. This study was carried out to further investigate the USH mutation spectrum in Finnish patients. We analysed samples from nine unrelated USH patients/families without known mutations and two USH3 families with atypically severe phenotype. The Asper Ophthalmics USH mutation chip was used to screen for known mutations and to evaluate the chip in molecular diagnostics of Finnish patients. The chip revealed a heterozygous usherin (USH2A) mutation, p.N346H, in one patient. Sequencing of MYO7A and/or USH2A in three index patients revealed two novel heterozygous mutations, p.R873W in MYO7A and c.14343+2T>C in USH2A. We did not identify definite pathogenic second mutations in the patients, but identified several probably nonpathogenic variations that may modify the disease phenotype. Possible digenism could not be excluded in two families segregating genomic variations in both MYO7A and USH2A, and two families with CLRN1 and USH2A. We conclude that there is considerable genetic heterogeneity of USH1 and USH2 in Finland, making molecular diagnostics and genetic counselling of patients and families challenging. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  18. A novel COL11A1 missense mutation in siblings with non-ocular Stickler syndrome.

    Science.gov (United States)

    Kohmoto, Tomohiro; Tsuji, Atsumi; Morita, Kei-Ichi; Naruto, Takuya; Masuda, Kiyoshi; Kashimada, Kenichi; Enomoto, Keisuke; Morio, Tomohiro; Harada, Hiroyuki; Imoto, Issei

    2016-01-01

    Stickler syndrome (STL) is an autosomal, dominantly inherited, clinically variable and genetically heterogeneous connective tissue disorder characterized by ocular, auditory, orofacial and skeletal abnormalities. We conducted targeted resequencing using a next-generation sequencer for molecular diagnosis of a 2-year-old girl who was clinically suspected of having STL with Pierre Robin sequence. We detected a novel heterozygous missense mutation, NM_001854.3:n.4838G>A [NM_001854.3 (COL11A1_v001):c.4520G>A], in COL11A1, resulting in a Gly to Asp substitution at position 1507 [NM_001854.3(COL11A1_i001)] within one of the collagen-like domains of the triple helical region. The same mutation was detected in her 4-year-old brother with cleft palate and high-frequency sensorineural hearing loss.

  19. SIL1 mutations and clinical spectrum in patients with Marinesco-Sjogren syndrome.

    Science.gov (United States)

    Krieger, Michael; Roos, Andreas; Stendel, Claudia; Claeys, Kristl G; Sonmez, Fatma Mujgan; Baudis, Michael; Bauer, Peter; Bornemann, Antje; de Goede, Christian; Dufke, Andreas; Finkel, Richard S; Goebel, Hans H; Häussler, Martin; Kingston, Helen; Kirschner, Janbernd; Medne, Livija; Muschke, Petra; Rivier, François; Rudnik-Schöneborn, Sabine; Spengler, Sabrina; Inzana, Francesca; Stanzial, Franco; Benedicenti, Francesco; Synofzik, Matthis; Lia Taratuto, Ana; Pirra, Laura; Tay, Stacey Kiat-Hong; Topaloglu, Haluk; Uyanik, Gökhan; Wand, Dorothea; Williams, Denise; Zerres, Klaus; Weis, Joachim; Senderek, Jan

    2013-12-01

    Marinesco-Sjögren syndrome is a rare autosomal recessive multisystem disorder featuring cerebellar ataxia, early-onset cataracts, chronic myopathy, variable intellectual disability and delayed motor development. More recently, mutations in the SIL1 gene, which encodes an endoplasmic reticulum resident co-chaperone, were identified as the main cause of Marinesco-Sjögren syndrome. Here we describe the results of SIL1 mutation analysis in 62 patients presenting with early-onset ataxia, cataracts and myopathy or combinations of at least two of these. We obtained a mutation detection rate of 60% (15/25) among patients with the characteristic Marinesco-Sjögren syndrome triad (ataxia, cataracts, myopathy) whereas the detection rate in the group of patients with more variable phenotypic presentation was below 3% (1/37). We report 16 unrelated families with a total of 19 different SIL1 mutations. Among these mutations are 15 previously unreported changes, including single- and multi-exon deletions. Based on data from our screening cohort and data compiled from the literature we found that SIL1 mutations are invariably associated with the combination of a cerebellar syndrome and chronic myopathy. Cataracts were observed in all patients beyond the age of 7 years, but might be missing in infants. Six patients with SIL1 mutations had no intellectual disability, extending the known wide range of cognitive capabilities in Marinesco-Sjögren syndrome to include normal intelligence. Modestly constant features were somatic growth retardation, skeletal abnormalities and pyramidal tract signs. Examination of mutant SIL1 expression in cultured patient lymphoblasts suggested that SIL1 mutations result in severely reduced SIL1 protein levels irrespective of the type and position of mutations. Our data broaden the SIL1 mutation spectrum and confirm that SIL1 is the major Marinesco-Sjögren syndrome gene. SIL1 patients usually present with the characteristic triad but cataracts might be

  20. RNF43 is mutated less frequently in Lynch Syndrome compared with sporadic microsatellite unstable colorectal cancers.

    Science.gov (United States)

    Fennell, Lochlan J; Clendenning, Mark; McKeone, Diane M; Jamieson, Saara H; Balachandran, Samanthy; Borowsky, Jennifer; Liu, John; Kawamata, Futoshi; Bond, Catherine E; Rosty, Christophe; Burge, Matthew E; Buchanan, Daniel D; Leggett, Barbara A; Whitehall, Vicki L J

    2018-01-01

    The WNT signaling pathway is commonly altered during colorectal cancer development. The E3 ubiquitin ligase, RNF43, negatively regulates the WNT signal through increased ubiquitination and subsequent degradation of the Frizzled receptor. RNF43 has recently been reported to harbor frequent truncating frameshift mutations in sporadic microsatellite unstable (MSI) colorectal cancers. This study assesses the relative frequency of RNF43 mutations in hereditary colorectal cancers arising in the setting of Lynch syndrome. The entire coding region of RNF43 was Sanger sequenced in 24 colorectal cancers from 23 patients who either (i) carried a germline mutation in one of the DNA mismatch repair genes (MLH1, MSH6, MSH2, PMS2), or (ii) showed immunohistochemical loss of expression of one or more of the DNA mismatch repair proteins, was BRAF wild type at V600E, were under 60 years of age at diagnosis, and demonstrated no promoter region methylation for MLH1 in tumor DNA. A validation cohort of 44 colorectal cancers from mismatch repair germline mutation carriers from the Australasian Colorectal Cancer Family Registry (ACCFR) were sequenced for the most common truncating mutation hotspots (X117 and X659). RNF43 mutations were found in 9 of 24 (37.5%) Lynch syndrome colorectal cancers. The majority of mutations were frameshift deletions in the G659 G7 repeat tract (29%); 2 cancers (2/24, 8%) from the one patient harbored frameshift mutations at codon R117 (C6 repeat tract) within exon 3. In the ACCFR validation cohort, RNF43 hotspot mutations were identified in 19/44 (43.2%) of samples, which was not significantly different to the initial series. The proportion of mutant RNF43 in Lynch syndrome related colorectal cancers is significantly lower than the previously reported mutation rate found in sporadic MSI colorectal cancers. These findings identify further genetic differences between sporadic and hereditary colorectal cancers. This may be because Lynch Syndrome cancers

  1. Next-generation sequencing reveals the mutational landscape of clinically diagnosed Usher syndrome: copy number variations, phenocopies, a predominant target for translational read-through, and PEX26 mutated in Heimler syndrome.

    Science.gov (United States)

    Neuhaus, Christine; Eisenberger, Tobias; Decker, Christian; Nagl, Sandra; Blank, Cornelia; Pfister, Markus; Kennerknecht, Ingo; Müller-Hofstede, Cornelie; Charbel Issa, Peter; Heller, Raoul; Beck, Bodo; Rüther, Klaus; Mitter, Diana; Rohrschneider, Klaus; Steinhauer, Ute; Korbmacher, Heike M; Huhle, Dagmar; Elsayed, Solaf M; Taha, Hesham M; Baig, Shahid M; Stöhr, Heidi; Preising, Markus; Markus, Susanne; Moeller, Fabian; Lorenz, Birgit; Nagel-Wolfrum, Kerstin; Khan, Arif O; Bolz, Hanno J

    2017-09-01

    Combined retinal degeneration and sensorineural hearing impairment is mostly due to autosomal recessive Usher syndrome (USH1: congenital deafness, early retinitis pigmentosa (RP); USH2: progressive hearing impairment, RP). Sanger sequencing and NGS of 112 genes (Usher syndrome, nonsyndromic deafness, overlapping conditions), MLPA, and array-CGH were conducted in 138 patients clinically diagnosed with Usher syndrome. A molecular diagnosis was achieved in 97% of both USH1 and USH2 patients, with biallelic mutations in 97% (USH1) and 90% (USH2), respectively. Quantitative readout reliably detected CNVs (confirmed by MLPA or array-CGH), qualifying targeted NGS as one tool for detecting point mutations and CNVs. CNVs accounted for 10% of identified USH2A alleles, often in trans to seemingly monoallelic point mutations. We demonstrate PTC124-induced read-through of the common p.Trp3955* nonsense mutation (13% of detected USH2A alleles), a potential therapy target. Usher gene mutations were found in most patients with atypical Usher syndrome, but the diagnosis was adjusted in case of double homozygosity for mutations in OTOA and NR2E3 , genes implicated in isolated deafness and RP. Two patients with additional enamel dysplasia had biallelic PEX26 mutations, for the first time linking this gene to Heimler syndrome. Targeted NGS not restricted to Usher genes proved beneficial in uncovering conditions mimicking Usher syndrome.

  2. [Mutation analysis of seven patients with Waardenburg syndrome].

    Science.gov (United States)

    Hao, Ziqi; Zhou, Yongan; Li, Pengli; Zhang, Quanbin; Li, Jiao; Wang, Pengfei; Li, Xiangshao; Feng, Yong

    2016-06-01

    To perform genetic analysis for 7 patients with Waardenburg syndrome. Potential mutation of MITF, PAX3, SOX10 and SNAI2 genes was screened by polymerase chain reaction and direct sequencing. Functions of non-synonymous polymorphisms were predicted with PolyPhen2 software. Seven mutations, including c.649-651delAGA (p.R217del), c.72delG (p.G24fs), c.185T>C (p.M62T), c.118C>T (p.Q40X), c.422T>C (p.L141P), c.640C>T (p.R214X) and c.28G>T(p.G43V), were detected in the patients. Among these, four mutations of the PAX3 gene (c.72delG, c.185T>C, c.118C>T and c.128G>T) and one SOX10 gene mutation (c.422T>C) were not reported previously. Three non-synonymous SNPs (c.185T>C, c.128G>T and c.422T>C) were predicted as harmful. Genetic mutations have been detected in all patients with Waardenburg syndrome.

  3. Nephropathic Cystinosis Mimicking Bartter Syndrome: a Novel Mutation.

    Science.gov (United States)

    Bastug, Funda; Nalcacioglu, Hulya; Ozaltin, Fatih; Korkmaz, Emine; Yel, Sibel

    2018-01-01

    Cystinosis is a rare autosomal recessive disorder resulting from defective lysosomal transport of cystine due to mutations in the cystinosin lysosomal cystine transporter (CTNS) gene. The clinical phenotype of nephropathic cystinosis is characterized by renal tubular Fanconi syndrome and development of end-stage renal disease during the first decade. Although metabolic acidosis is the classically prominent finding of the disease, a few cases may present with hypokalemic metabolic alkalosis mimicking Bartter syndrome. Bartter-like presentation may lead to delay in diagnosis and initiation of specific treatment for cystinosis. We report a case of a 6-year-old girl initially presenting with the features of Bartter syndrome that was diagnosed 2 years later with nephropathic cystinosis and a novel CTNS mutation.

  4. Mucopolysaccharidosis type I: molecular characteristics of two novel alpha-L-iduronidase mutations in Tunisian patients

    Directory of Open Access Journals (Sweden)

    Chahed Henda

    2011-06-01

    Full Text Available Abstract Background Mucopolysaccharidosis type I (MPS I is an autosomal storage disease resulting from defective activity of the enzyme α-L-iduronidase (IDUA. This glycosidase is involved in the degradation of heparan sulfate and dermatan sulfate. MPS I has severe and milder phenotypic subtypes. Aim of study: This study was carried out on six newly collected MPS I patients recruited from many regions of Tunisia. Patients and methods: Mutational analysis of the IDUA gene in unrelated MPS I families was performed by sequencing the exons and intron-exon junctions of IDUA gene. Results Two novel IDUA mutations, p.L530fs (1587_1588 insGC in exon 11 and p.F177S in exon 5 and two previously reported mutations p.P533R and p.Y581X were detected. The patient in family 1 who has the Hurler phenotype was homozygous for the previously described nonsense mutation p.Y581X. The patient in family 2 who also has the Hurler phenotype was homozygous for the novel missense mutation p.F177S. The three patients in families 3, 5 and 6 were homozygous for the p.P533R mutation. The patient in family 4 was homozygous for the novel small insertion 1587_1588 insGC. In addition, eighteen known and one unknown IDUA polymorphisms were identified. Conclusion The identification of these mutations should facilitate prenatal diagnosis and counseling for MPS I in Tunisia. Background Mucopolysaccharidosis type I (MPS I is an autosomal recessive lysosomal storage disorder caused by the deficient activity of the enzyme of α-L-iduronidase (IDUA, EC 3.2.1.76. This glycosidase is involved in the degradation of heparan sulfate and dermatan sulfate. The clinical phenotype of MPS I ranges from the very severe in Hurler syndrome (MPS IH to the relatively benign in Scheie syndrome (MPS IS, with an intermediate phenotype designated Hurler/Scheie (MPS IH/S 1. Isolation of complementary and genomic DNAs encoding human α -L- iduronidase 23 have enable the identification of mutations underlying

  5. Wiskott-Aldrich Syndrome. A Report of a New Mutation

    Directory of Open Access Journals (Sweden)

    Nelva Lizbeth Guillén-Rocha

    2014-06-01

    Full Text Available Wiskott-Aldrich syndrome was rst reported clinically in 1937, and in 1954 the classic triad was identified: eccema, recurrent infections and thrombocytopenia with an X-linked transmission. Its incidence is estimated at 1 to 10 in one million live births per year. Wiskott Aldrich syndrome is caused by mutations in a gene in the short arm of chromosome X that encodes the Wiskott-Aldrich syndrome protein (WASp, which identi cation and sequencing was rst performed in 1994, and since then about 300 mutations have been reported. This paper describes the case of a boy with Wiskott-Aldrich syndrome, with clinical and genetic diagnosis, with a considerable diagnostic delay attributable to an atypical presentation misdiagnosed as immune thrombocytopenia.

  6. Double heterozygous mutations of MITF and PAX3 result in Waardenburg syndrome with increased penetrance in pigmentary defects.

    Science.gov (United States)

    Yang, T; Li, X; Huang, Q; Li, L; Chai, Y; Sun, L; Wang, X; Zhu, Y; Wang, Z; Huang, Z; Li, Y; Wu, H

    2013-01-01

    Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentary defects of the hair, skin, and iris. Heterozygous mutations of MITF and its transactivator gene PAX3 are associated with Waardenburg syndrome type II (WS2) and type I (WS1), respectively. Most patients with MITF or PAX3 mutations, however, show variable penetrance of WS-associated phenotypes even within families segregating the same mutation, possibly mediated by genetic background or specific modifiers. In this study, we reported a rare Waardenburg syndrome simplex family in which a pair of WS parents gave birth to a child with double heterozygous mutations of MITF and PAX3. Compared to his parents who carried a single mutation in either MITF or PAX3, this child showed increased penetrance of pigmentary defects including white forelock, white eyebrows and eyelashes, and patchy facial depigmentation. This observation suggested that the expression level of MITF is closely correlated to the penetrance of WS, and variants in transcription regulator genes of MITF may modify the relevant clinical phenotypes. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  7. Mutation screening of USH3 gene (clarin-1) in Spanish patients with Usher syndrome: low prevalence and phenotypic variability.

    Science.gov (United States)

    Aller, E; Jaijo, T; Oltra, S; Alió, J; Galán, F; Nájera, C; Beneyto, M; Millán, J M

    2004-12-01

    Usher syndrome type III is an autosomal recessive disorder clinically characterized by the association of retinitis pigmentosa (RP), variable presence of vestibular dysfunction and progressive hearing loss, being the progression of the hearing impairment the critical parameter classically used to distinguish this form from Usher syndrome type I and Usher syndrome type II. Usher syndrome type III clinical subtype is the rarest form of Usher syndrome in Spain, accounting only for 6% of all Usher syndrome Spanish cases. The gene responsible for Usher syndrome type III is named clarin-1 and it is thought to be involved in hair cell and photoreceptor cell synapses. Here, we report a screening for mutations in clarin-1 gene among our series of Usher syndrome Spanish patients. Clarin-1 has been found to be responsible for the disease in only two families: the first one is a previously reported family homozygous for Y63X mutation and the second one, described here, is homozygous for C40G. This accounts for 1.7% of Usher syndrome Spanish families. It is noticeable that, whereas C40G family is clinically compatible with Usher syndrome type III due to the progression of the hearing loss, Y63X family could be diagnosed as Usher syndrome type I because the hearing impairment is profound and stable. Thus, we consider that the progression of hearing loss is not the definitive key parameter to distinguish Usher syndrome type III from Usher syndrome type I and Usher syndrome type II.

  8. Novel mutations in cyclin-dependent kinase-like 5 (CDKL5) gene in Indian cases of Rett syndrome.

    Science.gov (United States)

    Das, Dhanjit Kumar; Mehta, Bhakti; Menon, Shyla R; Raha, Sarbani; Udani, Vrajesh

    2013-03-01

    Rett syndrome is a severe neurodevelopmental disorder, almost exclusively affecting females and characterized by a wide spectrum of clinical manifestations. Both the classic and atypical forms of Rett syndrome are primarily due to mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with atypical Rett syndrome, X-linked infantile spasms sharing common features of generally early-onset seizures and mental retardation. CDKL5 is known as serine/threonine protein kinase 9 (STK9) and is mapped to the Xp22 region. It has a conserved serine/threonine kinase domain within its amino terminus and a large C-terminal region. Disease-causing mutations are distributed in both the amino terminal domain and in the large C-terminal domain. We have screened the CDKL5 gene in 44 patients with atypical Rett syndrome who had tested negative for MECP2 gene mutations and have identified 6 sequence variants, out of which three were novel and three known mutations. Two of these novel mutations p.V966I and p.A1011V were missense and p.H589H a silent mutation. Other known mutations identified were p.V999M, p.Q791P and p.T734A. Sequence homology for all the mutations revealed that the two mutations (p.Q791P and p.T734A) were conserved across species. This indicated the importance of these residues in structure and function of the protein. The damaging effects of these mutations were analysed in silico using PolyPhen-2 online software. The PolyPhen-2 scores of p.Q791P and p.T734A were 0.998 and 0.48, revealing that these mutations could be deleterious and might have potential functional effect. All other mutations had a low score suggesting that they might not alter the activity of CDKL5. We have also analysed the position of the mutations in the CDKL5 protein and found that all the mutations were present in the C-terminal domain of the protein. The C-terminal domain is required for

  9. A novel mutation in MED12 causes FG syndrome (Opitz-Kaveggia syndrome)

    NARCIS (Netherlands)

    Rump, P.; Niessen, R. C.; Verbruggen, K. T.; Brouwer, O. F.; de Raad, M.; Hordijk, R.

    Opitz-Kaveggia syndrome is a rare X-linked multiple congenital anomalies and intellectual disability disorder caused by the recurrent p.R961W mutation in the MED12 gene. Twenty-three affected males from 10 families with this mutation in the MED12 gene have been described so far. Here we report on a

  10. Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy.

    Science.gov (United States)

    Nicole, Sophie; Chaouch, Amina; Torbergsen, Torberg; Bauché, Stéphanie; de Bruyckere, Elodie; Fontenille, Marie-Joséphine; Horn, Morten A; van Ghelue, Marijke; Løseth, Sissel; Issop, Yasmin; Cox, Daniel; Müller, Juliane S; Evangelista, Teresinha; Stålberg, Erik; Ioos, Christine; Barois, Annie; Brochier, Guy; Sternberg, Damien; Fournier, Emmanuel; Hantaï, Daniel; Abicht, Angela; Dusl, Marina; Laval, Steven H; Griffin, Helen; Eymard, Bruno; Lochmüller, Hanns

    2014-09-01

    Congenital myasthenic syndromes are a clinically and genetically heterogeneous group of rare diseases resulting from impaired neuromuscular transmission. Their clinical hallmark is fatigable muscle weakness associated with a decremental muscle response to repetitive nerve stimulation and frequently related to postsynaptic defects. Distal myopathies form another clinically and genetically heterogeneous group of primary muscle disorders where weakness and atrophy are restricted to distal muscles, at least initially. In both congenital myasthenic syndromes and distal myopathies, a significant number of patients remain genetically undiagnosed. Here, we report five patients from three unrelated families with a strikingly homogenous clinical entity combining congenital myasthenia with distal muscle weakness and atrophy reminiscent of a distal myopathy. MRI and neurophysiological studies were compatible with mild myopathy restricted to distal limb muscles, but decrement (up to 72%) in response to 3 Hz repetitive nerve stimulation pointed towards a neuromuscular transmission defect. Post-exercise increment (up to 285%) was observed in the distal limb muscles in all cases suggesting presynaptic congenital myasthenic syndrome. Immunofluorescence and ultrastructural analyses of muscle end-plate regions showed synaptic remodelling with denervation-reinnervation events. We performed whole-exome sequencing in two kinships and Sanger sequencing in one isolated case and identified five new recessive mutations in the gene encoding agrin. This synaptic proteoglycan with critical function at the neuromuscular junction was previously found mutated in more typical forms of congenital myasthenic syndrome. In our patients, we found two missense mutations residing in the N-terminal agrin domain, which reduced acetylcholine receptors clustering activity of agrin in vitro. Our findings expand the spectrum of congenital myasthenic syndromes due to agrin mutations and show an unexpected

  11. Dominant de novo DSP mutations cause erythrokeratodermia-cardiomyopathy syndrome.

    Science.gov (United States)

    Boyden, Lynn M; Kam, Chen Y; Hernández-Martín, Angela; Zhou, Jing; Craiglow, Brittany G; Sidbury, Robert; Mathes, Erin F; Maguiness, Sheilagh M; Crumrine, Debra A; Williams, Mary L; Hu, Ronghua; Lifton, Richard P; Elias, Peter M; Green, Kathleen J; Choate, Keith A

    2016-01-15

    Disorders of keratinization (DOK) show marked genotypic and phenotypic heterogeneity. In most cases, disease is primarily cutaneous, and further clinical evaluation is therefore rarely pursued. We have identified subjects with a novel DOK featuring erythrokeratodermia and initially-asymptomatic, progressive, potentially fatal cardiomyopathy, a finding not previously associated with erythrokeratodermia. We show that de novo missense mutations clustered tightly within a single spectrin repeat of DSP cause this novel cardio-cutaneous disorder, which we term erythrokeratodermia-cardiomyopathy (EKC) syndrome. We demonstrate that DSP mutations in our EKC syndrome subjects affect localization of desmosomal proteins and connexin 43 in the skin, and result in desmosome aggregation, widening of intercellular spaces, and lipid secretory defects. DSP encodes desmoplakin, a primary component of desmosomes, intercellular adhesion junctions most abundant in the epidermis and heart. Though mutations in DSP are known to cause other disorders, our cohort features the unique clinical finding of severe whole-body erythrokeratodermia, with distinct effects on localization of desmosomal proteins and connexin 43. These findings add a severe, previously undescribed syndrome featuring erythrokeratodermia and cardiomyopathy to the spectrum of disease caused by mutation in DSP, and identify a specific region of the protein critical to the pathobiology of EKC syndrome and to DSP function in the heart and skin. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Identification of a novel WFS1 homozygous nonsense mutation in Jordanian children with Wolfram syndrome.

    Science.gov (United States)

    Bodoor, Khaldon; Batiha, Osama; Abu-Awad, Ayman; Al-Sarihin, Khaldon; Ziad, Haya; Jarun, Yousef; Abu-Sheikha, Aya; Abu Jalboush, Sara; Alibrahim, Khoulod S

    2016-09-01

    Wolfram syndrome (WS) is a rare autosomal recessive neurodegenerative disorder characterized by the presentation of early onset type I diabetes mellitus and optic atrophy with later onset diabetes insipidus and deafness. WFS1 gene was identified on chromosome 4p16.1 as the gene responsible for WS disease given that most of the WS patients were found to carry mutations in this gene. This study was carried out to investigate the molecular spectrum of WFS1 gene in Jordanian families. Molecular and clinical characterization was performed on five WS patients from two unrelated Jordanian families. Our data indicated that WS patients of the first family harbored two deletion mutations (V415del and F247fs) located in exon 8 and exon 7 respectively, with a compound heterozygous pattern of inheritance; while in the second family, we identified a novel nonsense mutation (W185X) located in exon 5 in the N-terminal cytoplasmic domain with a homozygous pattern of inheritance. This mutation can be considered as loss of function mutation since the resulting truncated protein lost both the transmembrane domain and the C-terminal domain. Additionally, the W185X mutation lies within the CaM binding domain in wolframin protein which is thought to have a role in the regulation of wolframin function in response to calcium levels.

  13. Same MSH2 Gene Mutation But Variable Phenotypes in 2 Families With Lynch Syndrome: Two Case Reports and Review of Genotype-Phenotype Correlation.

    Science.gov (United States)

    Liccardo, Raffaella; De Rosa, Marina; Duraturo, Francesca

    2018-01-01

    Lynch syndrome is an autosomal dominant syndrome that can be subdivided into Lynch syndrome I, or site-specific colonic cancer, and Lynch syndrome II, or extracolonic cancers, particularly carcinomas of the stomach, endometrium, biliary and pancreatic systems, and urinary tract. Lynch syndrome is associated with point mutations and large rearrangements in DNA MisMatch Repair ( MMR ) genes. This syndrome shows a variable phenotypic expression in people who carry pathogenetic mutations. So far, a correlation in genotype-phenotype has not been definitely established. In this study, we describe 2 Lynch syndrome cases presenting with the same genotype but different phenotypes and discuss possible reasons for this.

  14. A Turkish family with Sjögren-Larsson syndrome caused by a novel ALDH3A2 mutation

    Directory of Open Access Journals (Sweden)

    Faruk Incecik

    2013-01-01

    Full Text Available Sjögren-Larsson syndrome (SLS is an inherited neurocutaneous disorder caused by mutations in the aldehyde dehydrogenase family 3 member A2 (ALDH3A2 gene that encodes fatty aldehyde dehydrogenase. Affected patients display ichthyosis, mental retardation, and spastic diplegia. More than 70 mutations in ALDH3A2 have been discovered in SLS patients. We diagnosed two brothers age of 12 and 20 years with characteristic features of this rare syndrome. Magnetic resonance imaging showed demyelinating disease in both of them. We described a novel homozygous, c. 835 T > A (p.Y279N mutation in exon 6 in two patients.

  15. Identification of novel FBN1 and TGFBR2 mutations in 65 probands with Marfan syndrome or Marfan-like phenotypes.

    Science.gov (United States)

    Chung, Brian Hon-Yin; Lam, Stephen Tak-Sum; Tong, Tony Ming-For; Li, Susanna Yuk-Han; Lun, Kin-Shing; Chan, Daniel Hon-Chuen; Fok, Susanna Fung-Shan; Or, June Siu-Fong; Smith, David Keith; Yang, Wanling; Lau, Yu-Lung

    2009-07-01

    Marfan syndrome is an autosomal dominant connective tissue disorder, and mutations in the FBN1 and TGFBR2 genes have been identified in probands with MFS and related phenotypes. Using DHPLC and sequencing, we studied the mutation spectrum in 65 probands with Marfan syndrome and related phenotypes. A total of 24 mutations in FBN1 were identified, of which 19 (nine missense, six frameshift, two nonsense and two affecting splice junctions) were novel. In the remaining 41 probands, six were identified to have novel TGFBR2 mutations (one frameshift and five missense mutations). All novel mutations found in this study were confirmed to be absent in 50 unrelated normal individuals of the same ethnic background. In probands who fulfilled the Ghent criteria (n = 16), mutations in FBN1 were found in 81% of cases. None of those with TGFBR2 mutations fulfilled the Ghent criteria. Novel missense mutations of unknown significance were classified according to the latest ACMG guidelines and their likelihood to be causative was evaluated.

  16. Identification of a novel mutation in the paired domain of PAX3 in an Iranian family with waardenburg syndrome type I.

    Science.gov (United States)

    Sotirova, V N; Rezaie, T M; Khoshsorour, M M; Sarfarazi, M

    2000-03-01

    Waardenburg syndrome Type I (WS1) is an autosomal dominant disorder that has previously been associated with mutations in the PAX3 gene on the 2q35 region. In this study, we used an Iranian WS1 family with seven affected individuals in three generations. The phenotypic characteristics of the family include sensorineural deafness, dystopia canthorum, hypopigmented skin patches of the upper limbs, congenital white forelock, confluent white eyebrows, nonpigmented iris, poliosis, and hypopigmentation of the retina. Herein, we report a previously unidentified single-base substitution in exon II (C-->T at position 218) that results in a change of serine to leucine (S73L) in this family. This change was not observed in 100 chromosomes of healthy unrelated individuals. This mutation is within the PAX3 paired domain region, a structure that is highly conserved and implicated in DNA binding. This is the first identification of a PAX3 mutation for this phenotype in the Iranian population. This also provides additional confirmation for the involvement of this gene in the etiology of WS1.

  17. Novel mutations in MYO7A and USH2A in Usher syndrome.

    Science.gov (United States)

    Maubaret, Cécilia; Griffoin, Jean-Michel; Arnaud, Bernard; Hamel, Christian

    2005-03-01

    Usher syndrome is an autosomal recessive disease associating retinitis pigmentosa and neurosensory deafness. Three clinical types (USH1, USH2, USH3) and 11 mutated genes or loci have been described. Mutations in MYO7A and USH2A are responsible for about 40% and 60% of Usher syndromes type 1 and 2, respectively. These genes were screened in a series of patients suffering from Usher syndrome. We performed SSCP screening of MYO7A in 12 unrelated patients suffering from Usher syndrome type 1 (USH1) and USH2A in 28 unrelated patients affected by Usher syndrome type 2 (USH2). Six mutations in MYO7A were found in five patients, including two novel mutations c.397C > G (His133Asp) and 1244-2A > G (Glu459Stop), accounting for 42% of our USH1 patients. Twelve mutations in USH2A were found in 11 patients, including four new mutations c.850delGA, c.1841-2A > G, c.3129insT, and c.3920C > G (Ser1307Stop), accounting for 39% of our USH2 patients

  18. GluD1 is a common altered player in neuronal differentiation from both MECP2-mutated and CDKL5-mutated iPS cells.

    Science.gov (United States)

    Livide, Gabriella; Patriarchi, Tommaso; Amenduni, Mariangela; Amabile, Sonia; Yasui, Dag; Calcagno, Eleonora; Lo Rizzo, Caterina; De Falco, Giulia; Ulivieri, Cristina; Ariani, Francesca; Mari, Francesca; Mencarelli, Maria Antonietta; Hell, Johannes Wilhelm; Renieri, Alessandra; Meloni, Ilaria

    2015-02-01

    Rett syndrome is a monogenic disease due to de novo mutations in either MECP2 or CDKL5 genes. In spite of their involvement in the same disease, a functional interaction between the two genes has not been proven. MeCP2 is a transcriptional regulator; CDKL5 encodes for a kinase protein that might be involved in the regulation of gene expression. Therefore, we hypothesized that mutations affecting the two genes may lead to similar phenotypes by dysregulating the expression of common genes. To test this hypothesis we used induced pluripotent stem (iPS) cells derived from fibroblasts of one Rett patient with a MECP2 mutation (p.Arg306Cys) and two patients with mutations in CDKL5 (p.Gln347Ter and p.Thr288Ile). Expression profiling was performed in CDKL5-mutated cells and genes of interest were confirmed by real-time RT-PCR in both CDKL5- and MECP2-mutated cells. The only major change in gene expression common to MECP2- and CDKL5-mutated cells was for GRID1, encoding for glutamate D1 receptor (GluD1), a member of the δ-family of ionotropic glutamate receptors. GluD1 does not form AMPA or NMDA glutamate receptors. It acts like an adhesion molecule by linking the postsynaptic and presynaptic compartments, preferentially inducing the inhibitory presynaptic differentiation of cortical neurons. Our results demonstrate that GRID1 expression is downregulated in both MECP2- and CDKL5-mutated iPS cells and upregulated in neuronal precursors and mature neurons. These data provide novel insights into disease pathophysiology and identify possible new targets for therapeutic treatment of Rett syndrome.

  19. De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome

    DEFF Research Database (Denmark)

    Hoischen, Alexander; van Bon, Bregje W M; Rodríguez-Santiago, Benjamín

    2011-01-01

    Bohring-Opitz syndrome is characterized by severe intellectual disability, distinctive facial features and multiple congenital malformations. We sequenced the exomes of three individuals with Bohring-Opitz syndrome and in each identified heterozygous de novo nonsense mutations in ASXL1, which...... is required for maintenance of both activation and silencing of Hox genes. In total, 7 out of 13 subjects with a Bohring-Opitz phenotype had de novo ASXL1 mutations, suggesting that the syndrome is genetically heterogeneous....

  20. Seizures in Fragile X Syndrome: Characteristics and Comorbid Diagnoses

    Science.gov (United States)

    Berry-Kravis, Elizabeth; Raspa, Melissa; Loggin-Hester, Lisa; Bishop, Ellen; Holiday, David; Bailey, Donald B., Jr.

    2010-01-01

    A national survey of caregivers of individuals with fragile X syndrome addressed characteristics of epilepsy and co-occurring conditions. Of the 1,394 individuals (1,090 males and 304 females) with the full mutation, 14% of males and 6% of females reported seizures. Seizures were more often partial, began between ages 4 and 10 years, and were…

  1. LRIG2 mutations cause urofacial syndrome.

    Science.gov (United States)

    Stuart, Helen M; Roberts, Neil A; Burgu, Berk; Daly, Sarah B; Urquhart, Jill E; Bhaskar, Sanjeev; Dickerson, Jonathan E; Mermerkaya, Murat; Silay, Mesrur Selcuk; Lewis, Malcolm A; Olondriz, M Beatriz Orive; Gener, Blanca; Beetz, Christian; Varga, Rita E; Gülpınar, Omer; Süer, Evren; Soygür, Tarkan; Ozçakar, Zeynep B; Yalçınkaya, Fatoş; Kavaz, Aslı; Bulum, Burcu; Gücük, Adnan; Yue, Wyatt W; Erdogan, Firat; Berry, Andrew; Hanley, Neil A; McKenzie, Edward A; Hilton, Emma N; Woolf, Adrian S; Newman, William G

    2013-02-07

    Urofacial syndrome (UFS) (or Ochoa syndrome) is an autosomal-recessive disease characterized by congenital urinary bladder dysfunction, associated with a significant risk of kidney failure, and an abnormal facial expression upon smiling, laughing, and crying. We report that a subset of UFS-affected individuals have biallelic mutations in LRIG2, encoding leucine-rich repeats and immunoglobulin-like domains 2, a protein implicated in neural cell signaling and tumorigenesis. Importantly, we have demonstrated that rare variants in LRIG2 might be relevant to nonsyndromic bladder disease. We have previously shown that UFS is also caused by mutations in HPSE2, encoding heparanase-2. LRIG2 and heparanase-2 were immunodetected in nerve fascicles growing between muscle bundles within the human fetal bladder, directly implicating both molecules in neural development in the lower urinary tract. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. A new nonsense mutation in the NF1 gene with neurofibromatosis-Noonan syndrome phenotype.

    Science.gov (United States)

    Yimenicioğlu, Sevgi; Yakut, Ayten; Karaer, Kadri; Zenker, Martin; Ekici, Arzu; Carman, Kürşat Bora

    2012-12-01

    Neurofibromatosis-Noonan syndrome is a rare autosomal dominant disorder which combines neurofibromatosis type 1 (NF1) features with Noonan syndrome. NF1 gene mutations are reported in the majority of these patients. Sequence analysis of the established genes for Noonan syndrome revealed no mutation; a heterozygous NF1 point mutation c.7549C>T in exon 51, creating a premature stop codon (p.R2517X), had been demonstrated. Neurofibromatosis-Noonan syndrome recently has been considered a subtype of NF1 and caused by different NF1 mutations. We report the case of a 14-year-old boy with neurofibromatosis type 1 with Noonan-like features, who complained of headache with triventricular hydrocephaly and a heterozygous NF1 point mutation c.7549C>T in exon 51.

  3. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    Science.gov (United States)

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  4. Spectrum of MECP2 gene mutations in a cohort of Indian patients with Rett syndrome: report of two novel mutations.

    Science.gov (United States)

    Das, Dhanjit Kumar; Raha, Sarbani; Sanghavi, Daksha; Maitra, Anurupa; Udani, Vrajesh

    2013-02-15

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females and characterized by developmental regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. Rett syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 270 individual nucleotide changes which cause pathogenic mutations have been reported. However, eight most commonly occurring missense and nonsense mutations account for almost 70% of all patients. We screened 90 individuals with Rett syndrome phenotype. A total of 19 different MECP2 mutations and polymorphisms were identified in 27 patients. Of the 19 mutations, we identified 7 (37%) frameshift, 6 (31%) nonsense, 14 (74%) missense mutations and one duplication (5%). The most frequent pathogenic changes were: missense p.T158M (11%), p.R133C (7.4%), and p.R306C (7.4%) and nonsense p.R168X (11%), p.R255X (7.4%) mutations. We have identified two novel mutations namely p.385-388delPLPP present in atypical patients and p.Glu290AlafsX38 present in a classical patient of Rett syndrome. Sequence homology for p.385-388delPLPP mutation revealed that these 4 amino acids were conserved across mammalian species. This indicated the importance of these 4 amino acids in structure and function of the protein. A novel variant p.T479T has also been identified in a patient with atypical Rett syndrome. A total of 62 (69%) patients remained without molecular genetics diagnosis that necessitates further search for mutations in other genes like CDKL5 and FOXG1 that are known to cause Rett phenotype. The majority of mutations are detected in exon 4 and only one mutation was present in exon 3. Therefore, our study suggests the need for screening exon 4 of MECP2 as first line of diagnosis in these patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Succinate-CoA ligase deficiency due to mutations in <i>SUCLA2i> and <i>SUCLG1i>

    DEFF Research Database (Denmark)

    Carrozzo, Rosalba; Verrigni, Daniela; Rasmussen, Magnhild

    2016-01-01

    BACKGROUND: The encephalomyopathic mtDNA depletion syndrome with methylmalonic aciduria is associated with deficiency of succinate-CoA ligase, caused by mutations in SUCLA2 or SUCLG1. We report here 25 new patients with succinate-CoA ligase deficiency, and review the clinical and molecular findings...... deficiency of complexes I and IV, but normal histological and biochemical findings in muscle did not preclude a diagnosis of succinate-CoA ligase deficiency. In five patients, the urinary excretion of methylmalonic acid was only marginally elevated, whereas elevated plasma methylmalonic acid was consistently...

  6. Short-rib polydactyly and Jeune syndromes are caused by mutations in WDR60.

    Science.gov (United States)

    McInerney-Leo, Aideen M; Schmidts, Miriam; Cortés, Claudio R; Leo, Paul J; Gener, Blanca; Courtney, Andrew D; Gardiner, Brooke; Harris, Jessica A; Lu, Yeping; Marshall, Mhairi; Scambler, Peter J; Beales, Philip L; Brown, Matthew A; Zankl, Andreas; Mitchison, Hannah M; Duncan, Emma L; Wicking, Carol

    2013-09-05

    Short-rib polydactyly syndromes (SRPS I-V) are a group of lethal congenital disorders characterized by shortening of the ribs and long bones, polydactyly, and a range of extraskeletal phenotypes. A number of other disorders in this grouping, including Jeune and Ellis-van Creveld syndromes, have an overlapping but generally milder phenotype. Collectively, these short-rib dysplasias (with or without polydactyly) share a common underlying defect in primary cilium function and form a subset of the ciliopathy disease spectrum. By using whole-exome capture and massive parallel sequencing of DNA from an affected Australian individual with SRPS type III, we detected two novel heterozygous mutations in WDR60, a relatively uncharacterized gene. These mutations segregated appropriately in the unaffected parents and another affected family member, confirming compound heterozygosity, and both were predicted to have a damaging effect on the protein. Analysis of an additional 54 skeletal ciliopathy exomes identified compound heterozygous mutations in WDR60 in a Spanish individual with Jeune syndrome of relatively mild presentation. Of note, these two families share one novel WDR60 missense mutation, although haplotype analysis suggested no shared ancestry. We further show that WDR60 localizes at the base of the primary cilium in wild-type human chondrocytes, and analysis of fibroblasts from affected individuals revealed a defect in ciliogenesis and aberrant accumulation of the GLI2 transcription factor at the centrosome or basal body in the absence of an obvious axoneme. These findings show that WDR60 mutations can cause skeletal ciliopathies and suggest a role for WDR60 in ciliogenesis. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. Dominant missense mutations in ABCC9 cause Cantu syndrome

    NARCIS (Netherlands)

    Harakalova, M.; van Harssel, J.J.; Terhal, P.A.; van Lieshout, S.; Duran, K.; Renkens, I.; Amor, D.J.; Wilson, L.C.; Kirk, E.P.; Turner, C.L.; Shears, D.; Garcia-Minaur, S.; Lees, M.M.; Ross, A.; Venselaar, H.; Vriend, G.; Takanari, H.; Rook, M.B.; van der Heyden, M.A.; Asselbergs, F.W.; Breur, H.M.; Swinkels, M.E.; Scurr, I.J.; Smithson, S.F.; Knoers, N.V.; van der Smagt, J.J.; Nijman, I.J.; Kloosterman, W.P.; van Haelst, M.M.; van Haaften, G.; Cuppen, E.

    2012-01-01

    Cantu syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the

  8. Dominant missense mutations in ABCC9 cause Cantu syndrome.

    NARCIS (Netherlands)

    Harakalova, M.; Harssel, J.J. van; Terhal, P.A.; Lieshout, S. van; Duran, K.; Renkens, I.; Amor, D.J.; Wilson, L.C.; Kirk, E.P.; Turner, C.L.; Shears, D.; Garcia-Minaur, S.; Lees, M.M.; Ross, A.; Venselaar, H.; Vriend, G.; Takanari, H.; Rook, M.B.; Heyden, M.A. van der; Asselbergs, F.W.; Breur, H.M.; Swinkels, M.E.; Scurr, I.J.; Smithson, S.F.; Knoers, N.V.A.M.; Smagt, J.J. van der; Nijman, IJ; Kloosterman, W.P.; Haelst, M.M. van; Haaften, G. van; Cuppen, E.

    2012-01-01

    Cantu syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the

  9. ABCD syndrome is caused by a homozygous mutation in the EDNRB gene.

    Science.gov (United States)

    Verheij, Joke B G M; Kunze, Jürgen; Osinga, Jan; van Essen, Anthonie J; Hofstra, Robert M W

    2002-03-15

    ABCD syndrome is an autosomal recessive syndrome characterized by albinism, black lock, cell migration disorder of the neurocytes of the gut (Hirschsprung disease [HSCR]), and deafness. This phenotype clearly overlaps with the features of the Shah-Waardenburg syndrome, comprising sensorineural deafness; hypopigmentation of skin, hair, and irides; and HSCR. Therefore, we screened DNA of the index patient of the ABCD syndrome family for mutations in the endothelin B receptor (EDNRB) gene, a gene known to be involved in Shah-Waardenburg syndrome. A homozygous nonsense mutation in exon 3 (R201X) of the EDNRB gene was found. We therefore suggest that ABCD syndrome is not a separate entity, but an expression of Shah-Waardenburg syndrome.

  10. Waardenburg Syndrome: description of two novel mutations in the PAX3 gene, one of which incompletely penetrant

    Directory of Open Access Journals (Sweden)

    Eliete Pardono

    2006-01-01

    Full Text Available We describe two different novel mutations in the PAX3 gene, detected in two families with cases of Waardenburg syndrome type I (WSI. The missense mutation detected in one family involved a single substitution in exon 2 (c.142 G > T and was present both in the affected individual and in his clinically normal father. The mutation found in the second family consisted of a deletion of 13 bases, c.764-776del(TTACCCTGACATT, in exon 5.

  11. A mutation in KIF7 is responsible for the autosomal recessive syndrome of macrocephaly, multiple epiphyseal dysplasia and distinctive facial appearance

    Directory of Open Access Journals (Sweden)

    Ali Bassam R

    2012-05-01

    Full Text Available Abstract Background We previously reported the existence of a unique autosomal recessive syndrome consisting of macrocephaly, multiple epiphyseal dysplasia and distinctive facial appearance mapping to chromosome 15q26. Methods In this manuscript, we have used whole exome sequencing on two affected members of a consanguineous family with this condition and carried out detailed bioinformatics analysis to elucidate the causative mutation. Results Our analysis resulted in the identification of a homozygous p.N1060S missense mutation in a highly conserved residue in KIF7, a regulator of Hedgehog signaling that has been recently found to be causing Joubert syndrome, fetal hydrolethalus and acrocallosal syndromes. The phenotype in our patients partially overlaps with the phenotypes associated with those syndromes but they also exhibit some distinctive features including multiple epiphyseal dysplasia. Conclusions We report the first missense homozygous disease-causing mutation in KIF7 and expand the clinical spectrum associated with mutations in this gene to include multiple epiphyseal dysplasia. The missense nature of the mutation might account for the unique presentation in our patients.

  12. MLL2 mutation detection in 86 patients with Kabuki syndrome: a genotype-phenotype study.

    Science.gov (United States)

    Makrythanasis, P; van Bon, B W; Steehouwer, M; Rodríguez-Santiago, B; Simpson, M; Dias, P; Anderlid, B M; Arts, P; Bhat, M; Augello, B; Biamino, E; Bongers, E M H F; Del Campo, M; Cordeiro, I; Cueto-González, A M; Cuscó, I; Deshpande, C; Frysira, E; Izatt, L; Flores, R; Galán, E; Gener, B; Gilissen, C; Granneman, S M; Hoyer, J; Yntema, H G; Kets, C M; Koolen, D A; Marcelis, C l; Medeira, A; Micale, L; Mohammed, S; de Munnik, S A; Nordgren, A; Psoni, S; Reardon, W; Revencu, N; Roscioli, T; Ruiterkamp-Versteeg, M; Santos, H G; Schoumans, J; Schuurs-Hoeijmakers, J H M; Silengo, M C; Toledo, L; Vendrell, T; van der Burgt, I; van Lier, B; Zweier, C; Reymond, A; Trembath, R C; Perez-Jurado, L; Dupont, J; de Vries, B B A; Brunner, H G; Veltman, J A; Merla, G; Antonarakis, S E; Hoischen, A

    2013-12-01

    Recently, pathogenic variants in the MLL2 gene were identified as the most common cause of Kabuki (Niikawa-Kuroki) syndrome (MIM#147920). To further elucidate the genotype-phenotype correlation, we studied a large cohort of 86 clinically defined patients with Kabuki syndrome (KS) for mutations in MLL2. All patients were assessed using a standardized phenotype list and all were scored using a newly developed clinical score list for KS (MLL2-Kabuki score 0-10). Sequencing of the full coding region and intron-exon boundaries of MLL2 identified a total of 45 likely pathogenic mutations (52%): 31 nonsense, 10 missense and four splice-site mutations, 34 of which were novel. In five additional patients, novel, i.e. non-dbSNP132 variants of clinically unknown relevance, were identified. Patients with likely pathogenic nonsense or missense MLL2 mutations were usually more severely affected (median 'MLL2-Kabuki score' of 6) as compared to the patients without MLL2 mutations (median 'MLL2-Kabuki score' of 5), a significant difference (p < 0.0014). Several typical facial features such as large dysplastic ears, arched eyebrows with sparse lateral third, blue sclerae, a flat nasal tip with a broad nasal root, and a thin upper and a full lower lip were observed more often in mutation positive patients. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Ubiquitin ligases of the N-end rule pathway: assessment of mutations in UBR1 that cause the Johanson-Blizzard syndrome.

    Directory of Open Access Journals (Sweden)

    Cheol-Sang Hwang

    Full Text Available Johanson-Blizzard syndrome (JBS; OMIM 243800 is an autosomal recessive disorder that includes congenital exocrine pancreatic insufficiency, facial dysmorphism with the characteristic nasal wing hypoplasia, multiple malformations, and frequent mental retardation. Our previous work has shown that JBS is caused by mutations in human UBR1, which encodes one of the E3 ubiquitin ligases of the N-end rule pathway. The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. One class of degradation signals (degrons recognized by UBR1 are destabilizing N-terminal residues of protein substrates.Most JBS-causing alterations of UBR1 are nonsense, frameshift or splice-site mutations that abolish UBR1 activity. We report here missense mutations of human UBR1 in patients with milder variants of JBS. These single-residue changes, including a previously reported missense mutation, involve positions in the RING-H2 and UBR domains of UBR1 that are conserved among eukaryotes. Taking advantage of this conservation, we constructed alleles of the yeast Saccharomyces cerevisiae UBR1 that were counterparts of missense JBS-UBR1 alleles. Among these yeast Ubr1 mutants, one of them (H160R was inactive in yeast-based activity assays, the other one (Q1224E had a detectable but weak activity, and the third one (V146L exhibited a decreased but significant activity, in agreement with manifestations of JBS in the corresponding JBS patients.These results, made possible by modeling defects of a human ubiquitin ligase in its yeast counterpart, verified and confirmed the relevance of specific missense UBR1 alleles to JBS, and suggested that a residual activity of a missense allele is causally associated with milder variants of JBS.

  14. UMD-USHbases: a comprehensive set of databases to record and analyse pathogenic mutations and unclassified variants in seven Usher syndrome causing genes.

    Science.gov (United States)

    Baux, David; Faugère, Valérie; Larrieu, Lise; Le Guédard-Méreuze, Sandie; Hamroun, Dalil; Béroud, Christophe; Malcolm, Sue; Claustres, Mireille; Roux, Anne-Françoise

    2008-08-01

    Using the Universal Mutation Database (UMD) software, we have constructed "UMD-USHbases", a set of relational databases of nucleotide variations for seven genes involved in Usher syndrome (MYO7A, CDH23, PCDH15, USH1C, USH1G, USH3A and USH2A). Mutations in the Usher syndrome type I causing genes are also recorded in non-syndromic hearing loss cases and mutations in USH2A in non-syndromic retinitis pigmentosa. Usher syndrome provides a particular challenge for molecular diagnostics because of the clinical and molecular heterogeneity. As many mutations are missense changes, and all the genes also contain apparently non-pathogenic polymorphisms, well-curated databases are crucial for accurate interpretation of pathogenicity. Tools are provided to assess the pathogenicity of mutations, including conservation of amino acids and analysis of splice-sites. Reference amino acid alignments are provided. Apparently non-pathogenic variants in patients with Usher syndrome, at both the nucleotide and amino acid level, are included. The UMD-USHbases currently contain more than 2,830 entries including disease causing mutations, unclassified variants or non-pathogenic polymorphisms identified in over 938 patients. In addition to data collected from 89 publications, 15 novel mutations identified in our laboratory are recorded in MYO7A (6), CDH23 (8), or PCDH15 (1) genes. Information is given on the relative involvement of the seven genes, the number and distribution of variants in each gene. UMD-USHbases give access to a software package that provides specific routines and optimized multicriteria research and sorting tools. These databases should assist clinicians and geneticists seeking information about mutations responsible for Usher syndrome.

  15. Mutations in CDK5RAP2 cause Seckel syndrome.

    Science.gov (United States)

    Yigit, Gökhan; Brown, Karen E; Kayserili, Hülya; Pohl, Esther; Caliebe, Almuth; Zahnleiter, Diana; Rosser, Elisabeth; Bögershausen, Nina; Uyguner, Zehra Oya; Altunoglu, Umut; Nürnberg, Gudrun; Nürnberg, Peter; Rauch, Anita; Li, Yun; Thiel, Christian Thomas; Wollnik, Bernd

    2015-09-01

    Seckel syndrome is a heterogeneous, autosomal recessive disorder marked by prenatal proportionate short stature, severe microcephaly, intellectual disability, and characteristic facial features. Here, we describe the novel homozygous splice-site mutations c.383+1G>C and c.4005-9A>G in CDK5RAP2 in two consanguineous families with Seckel syndrome. CDK5RAP2 (CEP215) encodes a centrosomal protein which is known to be essential for centrosomal cohesion and proper spindle formation and has been shown to be causally involved in autosomal recessive primary microcephaly. We establish CDK5RAP2 as a disease-causing gene for Seckel syndrome and show that loss of functional CDK5RAP2 leads to severe defects in mitosis and spindle organization, resulting in cells with abnormal nuclei and centrosomal pattern, which underlines the important role of centrosomal and mitotic proteins in the pathogenesis of the disease. Additionally, we present an intriguing case of possible digenic inheritance in Seckel syndrome: A severely affected child of nonconsanguineous German parents was found to carry heterozygous mutations in CDK5RAP2 and CEP152. This finding points toward a potential additive genetic effect of mutations in CDK5RAP2 and CEP152.

  16. Mutations in CDK5RAP2 cause Seckel syndrome

    Science.gov (United States)

    Yigit, Gökhan; Brown, Karen E; Kayserili, Hülya; Pohl, Esther; Caliebe, Almuth; Zahnleiter, Diana; Rosser, Elisabeth; Bögershausen, Nina; Uyguner, Zehra Oya; Altunoglu, Umut; Nürnberg, Gudrun; Nürnberg, Peter; Rauch, Anita; Li, Yun; Thiel, Christian Thomas; Wollnik, Bernd

    2015-01-01

    Seckel syndrome is a heterogeneous, autosomal recessive disorder marked by prenatal proportionate short stature, severe microcephaly, intellectual disability, and characteristic facial features. Here, we describe the novel homozygous splice-site mutations c.383+1G>C and c.4005-9A>G in CDK5RAP2 in two consanguineous families with Seckel syndrome. CDK5RAP2 (CEP215) encodes a centrosomal protein which is known to be essential for centrosomal cohesion and proper spindle formation and has been shown to be causally involved in autosomal recessive primary microcephaly. We establish CDK5RAP2 as a disease-causing gene for Seckel syndrome and show that loss of functional CDK5RAP2 leads to severe defects in mitosis and spindle organization, resulting in cells with abnormal nuclei and centrosomal pattern, which underlines the important role of centrosomal and mitotic proteins in the pathogenesis of the disease. Additionally, we present an intriguing case of possible digenic inheritance in Seckel syndrome: A severely affected child of nonconsanguineous German parents was found to carry heterozygous mutations in CDK5RAP2 and CEP152. This finding points toward a potential additive genetic effect of mutations in CDK5RAP2 and CEP152. PMID:26436113

  17. A nonsense mutation in FMR1 causing fragile X syndrome

    DEFF Research Database (Denmark)

    Grønskov, Karen; Brøndum-Nielsen, Karen; Dedic, Alma

    2011-01-01

    Fragile X syndrome is a common cause of inherited intellectual disability. It is caused by lack of the FMR1 gene product FMRP. The most frequent cause is the expansion of a CGG repeat located in the 5'UTR of FMR1. Alleles with 200 or more repeats become hypermethylated and transcriptionally silent....... Only few patients with intragenic point mutations in FMR1 have been reported and, currently, routine analysis of patients referred for fragile X syndrome includes solely analysis for repeat expansion and methylation status. We identified a substitution in exon 2 of FMR1, c.80C>A, causing a nonsense...... mutation p.Ser27X, in a patient with classical clinical symptoms of fragile X syndrome. The mother who carried the mutation in heterozygous form presented with mild intellectual impairment. We conclude that further studies including western blot and DNA sequence analysis of the FMR1 gene should...

  18. Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I).

    OpenAIRE

    Hoth, C F; Milunsky, A; Lipsky, N; Sheffer, R; Clarren, S K; Baldwin, C T

    1993-01-01

    Waardenburg syndrome type I (WS-I) is an autosomal dominant disorder characterized by sensorineural hearing loss, dystopia canthorum, pigmentary disturbances, and other developmental defects. Klein-Waardenburg syndrome (WS-III) is a disorder with many of the same characteristics as WS-I and includes musculoskeletal abnormalities. We have recently reported the identification and characterization of one of the first gene defects, in the human PAX3 gene, which causes WS-I. PAX3 is a DNA-binding ...

  19. Congenital short bowel syndrome as the presenting symptom in male patients with FLNA mutations

    NARCIS (Netherlands)

    van der Werf, Christine S.; Sribudiani, Yunia; Verheij, Joke B. G. M.; Carroll, Matthew; O'Loughlin, Edward; Chen, Chien-Huan; Brooks, Alice S.; Liszewski, M. Kathryn; Atkinson, John P.; Hofstra, Robert M. W.

    Purpose: Autosomal recessive congenital short bowel syndrome is caused by mutations in CLMP. No mutations were found in the affected males of a family with presumed X-linked congenital short bowel syndrome or in an isolated male patient. Our aim was to identify the disease-causing mutation in these

  20. MSH6 and PMS2 mutation positive Australian Lynch syndrome families: novel mutations, cancer risk and age of diagnosis of colorectal cancer.

    Science.gov (United States)

    Talseth-Palmer, Bente A; McPhillips, Mary; Groombridge, Claire; Spigelman, Allan; Scott, Rodney J

    2010-05-21

    Approximately 10% of Lynch syndrome families have a mutation in MSH6 and fewer families have a mutation in PMS2. It is assumed that the cancer incidence is the same in families with mutations in MSH6 as in families with mutations in MLH1/MSH2 but that the disease tends to occur later in life, little is known about families with PMS2 mutations. This study reports on our findings on mutation type, cancer risk and age of diagnosis in MSH6 and PMS2 families. A total of 78 participants (from 29 families) with a mutation in MSH6 and 7 participants (from 6 families) with a mutation in PMS2 were included in the current study. A database of de-identified patient information was analysed to extract all relevant information such as mutation type, cancer incidence, age of diagnosis and cancer type in this Lynch syndrome cohort. Cumulative lifetime risk was calculated utilising Kaplan-Meier survival analysis. MSH6 and PMS2 mutations represent 10.3% and 1.9%, respectively, of the pathogenic mutations in our Australian Lynch syndrome families. We identified 26 different MSH6 and 4 different PMS2 mutations in the 35 families studied. We report 15 novel MSH6 and 1 novel PMS2 mutations. The estimated cumulative risk of CRC at age 70 years was 61% (similar in males and females) and 65% for endometrial cancer in MSH6 mutation carriers. The risk of developing CRC is different between males and females at age 50 years, which is 34% for males and 21% for females. Novel MSH6 and PMS2 mutations are being reported and submitted to the current databases for identified Lynch syndrome mutations. Our data provides additional information to add to the genotype-phenotype spectrum for both MSH6 and PMS2 mutations.

  1. Juvenile Leigh syndrome, optic atrophy, ataxia, dystonia, and epilepsy due to T14487C mutation in the mtDNA-ND6 gene: a mitochondrial syndrome presenting from birth to adolescence.

    Science.gov (United States)

    Leshinsky-Silver, Esther; Shuvalov, Ruslan; Inbar, Shani; Cohen, Sarit; Lev, Dorit; Lerman-Sagie, Tally

    2011-04-01

    An increasing number of reports describe mutations in mitochondrial DNA coding regions, especially in mitochondrial DNA- encoded nicotinamide adenine dinucleotide dehydrogenase subunit genes of the respiratory chain complex I, as causing early-onset Leigh syndrome. The authors report the molecular findings in a 24-year-old patient with juvenile-onset Leigh syndrome presenting with optic atrophy, ataxia dystonia, and epilepsy. A brain magnetic resonance imaging revealed bilateral basal ganglia and thalamic hypointensities, and a magnetic resonance spectroscopy revealed an increased lactate peak. The authors identified a T14487C change causing M63V substitution in the mitochondrial ND6 gene. The mutation was heteroplasmic in muscle and blood samples, with different mutation loads, and was absent in the patient's mother's urine and blood samples. They suggest that the T14487C mtDNA mutation should be analyzed in Leigh syndrome, presenting with optic atrophy, ataxia, dystonia, and epilepsy, regardless of age.

  2. A novel ICK mutation causes ciliary disruption and lethal endocrine-cerebro-osteodysplasia syndrome.

    Science.gov (United States)

    Oud, Machteld M; Bonnard, Carine; Mans, Dorus A; Altunoglu, Umut; Tohari, Sumanty; Ng, Alvin Yu Jin; Eskin, Ascia; Lee, Hane; Rupar, C Anthony; de Wagenaar, Nathalie P; Wu, Ka Man; Lahiry, Piya; Pazour, Gregory J; Nelson, Stanley F; Hegele, Robert A; Roepman, Ronald; Kayserili, Hülya; Venkatesh, Byrappa; Siu, Victoria M; Reversade, Bruno; Arts, Heleen H

    2016-01-01

    Endocrine-cerebro-osteodysplasia (ECO) syndrome [MIM:612651] caused by a recessive mutation (p.R272Q) in Intestinal cell kinase (ICK) shows significant clinical overlap with ciliary disorders. Similarities are strongest between ECO syndrome, the Majewski and Mohr-Majewski short-rib thoracic dysplasia (SRTD) with polydactyly syndromes, and hydrolethalus syndrome. In this study, we present a novel homozygous ICK mutation in a fetus with ECO syndrome and compare the effect of this mutation with the previously reported ICK variant on ciliogenesis and cilium morphology. Through homozygosity mapping and whole-exome sequencing, we identified a second variant (c.358G > T; p.G120C) in ICK in a Turkish fetus presenting with ECO syndrome. In vitro studies of wild-type and mutant mRFP-ICK (p.G120C and p.R272Q) revealed that, in contrast to the wild-type protein that localizes along the ciliary axoneme and/or is present in the ciliary base, mutant proteins rather enrich in the ciliary tip. In addition, immunocytochemistry revealed a decreased number of cilia in ICK p.R272Q-affected cells. Through identification of a novel ICK mutation, we confirm that disruption of ICK causes ECO syndrome, which clinically overlaps with the spectrum of ciliopathies. Expression of ICK-mutated proteins result in an abnormal ciliary localization compared to wild-type protein. Primary fibroblasts derived from an individual with ECO syndrome display ciliogenesis defects. In aggregate, our findings are consistent with recent reports that show that ICK regulates ciliary biology in vitro and in mice, confirming that ECO syndrome is a severe ciliopathy.

  3. Allele frequencies of hemojuvelin gene (HJV I222N and G320V missense mutations in white and African American subjects from the general Alabama population

    Directory of Open Access Journals (Sweden)

    Bohannon Sean B

    2004-12-01

    Full Text Available Abstract Background Homozygosity or compound heterozygosity for coding region mutations of the hemojuvelin gene (HJV in whites is a cause of early age-of-onset iron overload (juvenile hemochromatosis, and of hemochromatosis phenotypes in some young or middle-aged adults. HJV coding region mutations have also been identified recently in African American primary iron overload and control subjects. Primary iron overload unexplained by typical hemochromatosis-associated HFE genotypes is common in white and black adults in Alabama, and HJV I222N and G320V were detected in a white Alabama juvenile hemochromatosis index patient. Thus, we estimated the frequency of the HJV missense mutations I222N and G320V in adult whites and African Americans from Alabama general population convenience samples. Methods We evaluated the genomic DNA of 241 Alabama white and 124 African American adults who reported no history of hemochromatosis or iron overload to detect HJV missense mutations I222N and G320V using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP technique. Analysis for HJV I222N was performed in 240 whites and 124 African Americans. Analysis for HJV G320V was performed in 241 whites and 118 African Americans. Results One of 240 white control subjects was heterozygous for HJV I222N; she was also heterozygous for HFE C282Y, but had normal serum iron measures and bone marrow iron stores. HJV I222N was not detected in 124 African American subjects. HJV G320V was not detected in 241 white or 118 African American subjects. Conclusions HJV I222N and G320V are probably uncommon causes or modifiers of primary iron overload in adult whites and African Americans in Alabama. Double heterozygosity for HJV I222N and HFE C282Y may not promote increased iron absorption.

  4. Sequential acquisition of mutations in myelodysplastic syndromes.

    Science.gov (United States)

    Makishima, Hideki

    2017-01-01

    Recent progress in next-generation sequencing technologies allows us to discover frequent mutations throughout the coding regions of myelodysplastic syndromes (MDS), potentially providing us with virtually a complete spectrum of driver mutations in this disease. As shown by many study groups these days, such driver mutations are acquired in a gene-specific fashion. For instance, DDX41 mutations are observed in germline cells long before MDS presentation. In blood samples from healthy elderly individuals, somatic DNMT3A and TET2 mutations are detected as age-related clonal hematopoiesis and are believed to be a risk factor for hematological neoplasms. In MDS, mutations of genes such as NRAS and FLT3, designated as Type-1 genes, may be significantly associated with leukemic evolution. Another type (Type-2) of genes, including RUNX1 and GATA2, are related to progression from low-risk to high-risk MDS. Overall, various driver mutations are sequentially acquired in MDS, at a specific time, in either germline cells, normal hematopoietic cells, or clonal MDS cells.

  5. Apert Syndrome With FGFR2 758 C > G Mutation: A Chinese Case Report

    Directory of Open Access Journals (Sweden)

    Yahong Li

    2018-05-01

    Full Text Available Background: Apert syndrome is considered as one of the most common craniosynostosis syndromes with a prevalence of 1 in 65,000 individuals, and has a close relationship with point mutations in FGFR2 gene.Case report: Here, we described a Apert syndrome case, who was referred to genetic consultation in our hospital with the symptom of craniosynostosis and syndactyly of the hands and feet. Craniosynostosis, midfacial retrusion, steep wide forehead, larger head circumference, marked depression of the nasal bridge, short and wide nose and proptosis could be found obviously, apart from these, ears were mildly low compared with normal children and there was no cleft lip and palate. Mutation was identified by sanger sequencing and a mutation in the exon 7 of FGFR2 gene was detected: p.Pro253Arg (P253R 758 C > G, which was not found in his parents.Conclusion: The baby had Apert syndrome caused by 758 C > G mutation in the exon 7 of FGFR2 gene, considering no this mutation in his parents, it was spontaneous.

  6. Novel causative mutations in patients with Nance-Horan syndrome and altered localization of the mutant NHS-A protein isoform.

    Science.gov (United States)

    Sharma, Shiwani; Burdon, Kathryn P; Dave, Alpana; Jamieson, Robyn V; Yaron, Yuval; Billson, Frank; Van Maldergem, Lionel; Lorenz, Birgit; Gécz, Jozef; Craig, Jamie E

    2008-01-01

    Nance-Horan syndrome is typically characterized by severe bilateral congenital cataracts and dental abnormalities. Truncating mutations in the Nance-Horan syndrome (NHS) gene cause this X-linked genetic disorder. NHS encodes two isoforms, NHS-A and NHS-1A. The ocular lens expresses NHS-A, the epithelial and neuronal cell specific isoform. The NHS-A protein localizes in the lens epithelium at the cellular periphery. The data to date suggest a role for this isoform at cell-cell junctions in epithelial cells. This study aimed to identify the causative mutations in new patients diagnosed with Nance-Horan syndrome and to investigate the effect of mutations on subcellular localization of the NHS-A protein. All coding exons of NHS were screened for mutations by polymerase chain reaction (PCR) and sequencing. PCR-based mutagenesis was performed to introduce three independent mutations in the NHS-A cDNA. Expression and localization of the mutant proteins was determined in mammalian epithelial cells. Truncating mutations were found in 6 out of 10 unrelated patients from four countries. Each of four patients carried a novel mutation (R248X, P264fs, K1198fs, and I1302fs), and each of the two other patients carried two previously reported mutations (R373X and R879X). No mutation was found in the gene in four patients. Two disease-causing mutations (R134fs and R901X) and an artificial mutation (T1357fs) resulted in premature truncation of the NHS-A protein. All three mutant proteins failed to localize to the cellular periphery in epithelial cells and instead were found in the cytoplasm. This study brings the total number of mutations identified in NHS to 18. The mislocalization of the mutant NHS-A protein, revealed by mutation analysis, is expected to adversely affect cell-cell junctions in epithelial cells such as the lens epithelium, which may explain cataractogenesis in Nance-Horan syndrome patients. Mutation analysis also shed light on the significance of NHS-A regions for

  7. A novel mutation in the NOD2 gene associated with Blau syndrome: a Norwegian family with four affected members

    DEFF Research Database (Denmark)

    Milman, N; Ursin, K; Rødevand, E

    2009-01-01

    BACKGROUND: Blau syndrome is a chronic granulomatous disease with an autosomal dominant trait characterized by the triad granulomatous dermatitis, arthritis, and uveitis. It is caused by mutations in the NOD2 gene, also termed the CARD15 gene. OBJECTIVE: To report a novel mutation in the NOD2 gen...... with an autosomal dominant heritage. Most likely the mutation has arisen de novo in the proband. Genetic counselling and antenatal diagnostics should be available to the involved families....... associated with Blau syndrome. METHODS AND RESULTS: The proband was a 68-year-old ethnic Norwegian male who had uveitis and arthritis since 10 years of age followed by lifelong recurrent arthritis and chronic eye involvement. Genetic analysis showed a heterozygous c.1814 C>A, T605N mutation in NOD2 that has...

  8. Wiedemann-Steiner Syndrome With 2 Novel KMT2A Mutations.

    Science.gov (United States)

    Min Ko, Jung; Cho, Jae So; Yoo, Yongjin; Seo, Jieun; Choi, Murim; Chae, Jong-Hee; Lee, Hye-Ran; Cho, Tae-Joon

    2017-02-01

    Wiedemann-Steiner syndrome is a rare genetic disorder characterized by short stature, hairy elbows, facial dysmorphism, and developmental delay. It can also be accompanied by musculoskeletal anomalies such as muscular hypotonia and small hands and feet. Mutations in the KMT2A gene have only recently been identified as the cause of Wiedemann-Steiner syndrome; therefore, only 16 patients from 15 families have been described, and new phenotypic features continue to be added. In this report, we describe 2 newly identified patients with Wiedemann-Steiner syndrome who presented with variable severity. One girl exhibited developmental dysplasia of the hip and fibromatosis colli accompanied by other clinical features, including facial dysmorphism, hypertrichosis, patent ductus arteriosus, growth retardation, and borderline intellectual disability. The other patient, a boy, showed severe developmental retardation with automatic self-mutilation, facial dysmorphism, and hypertrichosis at a later age. Exome sequencing analysis of these patients and their parents revealed a de novo nonsense mutation, p.Gln1978*, of KMT2A in the former, and a missense mutation, p.Gly1168Asp, in the latter, which molecularly confirmed the diagnosis of Wiedemann-Steiner syndrome.

  9. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome.

    Science.gov (United States)

    Laron, Zvi; Kauli, Rivka; Lapkina, Lena; Werner, Haim

    Laron syndrome (LS) is a unique model of congenital IGF-I deficiency. It is characterized by dwarfism and obesity, and is caused by deletion or mutations of the growth hormone receptor (GH-R) gene. It is hypothesized that LS is an old disease originating in Indonesia and that the mutated gene spread to South Asia, the Middle East, the Mediterranean region and South America. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Conductivity and Structure of Superionic Composite (AgI0.6(NaPO30.4

    Directory of Open Access Journals (Sweden)

    E. Kartini

    2005-01-01

    Full Text Available Superionic conductors are of considerable interest from both application and fundamental points of view. Superionic solid electrolytes can be used for batteries, fuel cells and sensors. We have used melt quenching to make a new superionic composite (AgI0.6(NaPO30.4 which exhibits an ionic conductivity of about 2 x 10-4 S/cm at ambient temperature. The conductivity of crystalline AgI and NaPO3 glass are lower of orders of magnitude. (AgI0.6(NaPO30.4 is a composite material containing both crystalline and glass phases. The paper presents the conductivity as a function of temperature measured by impedance spectroscopy and the crystal structure performed by a high resolution powder diffractometer, VEGA at the Neutron Science Laboratory (KENS, KEK, Japan.

  11. IGF-I generation test in prepubertal children with Noonan syndrome due to mutations in the PTPN11 gene.

    Science.gov (United States)

    Bertelloni, Silvano; Baroncelli, Giampiero I; Dati, Eleonora; Ghione, Silvia; Baldinotti, Fulvia; Toschi, Benedetta; Simi, Paolo

    2013-01-01

    Short stature represents one of the main features of children with Noonan syndrome. The reason for impaired growth remains largely unknown. To assess GH and IGF1 secretion in children with Noonan syndrome. 12 prepubertal children with Noonan syndrome due to mutations in the PTPN11 gene [7 males, 6 females; median age, years: 8.6 (range 5.1-13.4)] were studied; 12 prepubertal children with short stature (SS) [7 males, 5 females; median age, years: 8.1 (range 4.8-13.1)] served as the control group. GH secretion after arginine stimulation test; IGF1 generation test by measurement of IGF1 levels before and after recombinant GH (rGH) administration (0.05 mg/kg/day for 4 days). Baseline and stimulated peak values of GH were not significantly different between the two groups. At +120 minutes, GH levels remained significantly higher (p = 0.0121) in comparison with baseline values in children with Noonan syndrome. Baseline IGFI levels in patients and in SS controls were not significantly different, in contrast to values after the rGH generation test [205 ng/mL (interquartiles 138.2-252.5 ng/mL) and 284.5 ng/mL (interquartiles 172-476 ng/mL), respectively; p = 0.0248]. IGF1 values were significantly related to height (baseline: r = 773, p = 0.0320; peak: r = 0.591, p = 0.0428) in children with Noonan syndrome. Blunted increase of IGF1 after the rGH generation test was present in children with Noonan syndrome due to mutations in the PTPN11 gene in comparison with SS children. This finding may be due to partial GH resistance in the former likely related to altered Ras-MAPK signaling pathway.

  12. Infantile Pain Episodes Associated with Novel Nav1.9 Mutations in Familial Episodic Pain Syndrome in Japanese Families.

    Science.gov (United States)

    Okuda, Hiroko; Noguchi, Atsuko; Kobayashi, Hatasu; Kondo, Daiki; Harada, Kouji H; Youssefian, Shohab; Shioi, Hirotomo; Kabata, Risako; Domon, Yuki; Kubota, Kazufumi; Kitano, Yutaka; Takayama, Yasunori; Hitomi, Toshiaki; Ohno, Kousaku; Saito, Yoshiaki; Asano, Takeshi; Tominaga, Makoto; Takahashi, Tsutomu; Koizumi, Akio

    2016-01-01

    Painful peripheral neuropathy has been correlated with various voltage-gated sodium channel mutations in sensory neurons. Recently Nav1.9, a voltage-gated sodium channel subtype, has been established as a genetic influence for certain peripheral pain syndromes. In this study, we performed a genetic study in six unrelated multigenerational Japanese families with episodic pain syndrome. Affected participants (n = 23) were characterized by infantile recurrent pain episodes with spontaneous mitigation around adolescence. This unique phenotype was inherited in an autosomal-dominant mode. Linkage analysis was performed for two families with 12 affected and nine unaffected members, and a single locus was identified on 3p22 (LOD score 4.32). Exome analysis (n = 14) was performed for affected and unaffected members in these two families and an additional family. Two missense variants were identified: R222H and R222S in SCN11A. Next, we generated a knock-in mouse model harboring one of the mutations (R222S). Behavioral tests (Hargreaves test and cold plate test) using R222S and wild-type C57BL/6 (WT) mice, young (8-9 weeks old; n = 10-12 for each group) and mature (36-38 weeks old; n = 5-6 for each group), showed that R222S mice were significantly (p pain. The mouse model developed here will be useful for drug screening for familial episodic pain syndrome associated with SCN11A mutations.

  13. Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing.

    Science.gov (United States)

    Lalonde, Emilie; Albrecht, Steffen; Ha, Kevin C H; Jacob, Karine; Bolduc, Nathalie; Polychronakos, Constantin; Dechelotte, Pierre; Majewski, Jacek; Jabado, Nada

    2010-08-01

    Protein coding genes constitute approximately 1% of the human genome but harbor 85% of the mutations with large effects on disease-related traits. Therefore, efficient strategies for selectively sequencing complete coding regions (i.e., "whole exome") have the potential to contribute our understanding of human diseases. We used a method for whole-exome sequencing coupling Agilent whole-exome capture to the Illumina DNA-sequencing platform, and investigated two unrelated fetuses from nonconsanguineous families with Fowler Syndrome (FS), a stereotyped phenotype lethal disease. We report novel germline mutations in feline leukemia virus subgroup C cellular-receptor-family member 2, FLVCR2, which has recently been shown to cause FS. Using this technology, we identified three types of genetic abnormalities: point-mutations, insertions-deletions, and intronic splice-site changes (first pathogenic report using this technology), in the fetuses who both were compound heterozygotes for the disease. Although revealing a high level of allelic heterogeneity and mutational spectrum in FS, this study further illustrates the successful application of whole-exome sequencing to uncover genetic defects in rare Mendelian disorders. Of importance, we show that we can identify genes underlying rare, monogenic and recessive diseases using a limited number of patients (n=2), in the absence of shared genetic heritage and in the presence of allelic heterogeneity.

  14. Wolfram syndrome in the Polish population: novel mutations and genotype-phenotype correlation.

    Science.gov (United States)

    Zmyslowska, A; Borowiec, M; Antosik, K; Szalecki, M; Stefanski, A; Iwaniszewska, B; Jedrzejczyk, M; Pietrzak, I; Mlynarski, W

    2011-11-01

    Wolfram syndrome is a rare form of diabetes mellitus associated with optic atrophy and disorders of different organs (e.g. diabetes insipidus, hearing loss, ataxia, anaemia and many others). This syndrome is caused by recessive mutations in the wolframin gene (WFS1) localized on chromosome 4p16·1. The aim of this study was to identify the causative mutations in WFS1 in a group of Polish patients with suspected Wolfram syndrome. Nine patients with clinical symptoms consistent with Wolfram syndrome (at least diabetes mellitus and optic atrophy) and 22 first-degree relatives were examined. The molecular analysis was carried out by direct sequencing of the exons, the exon-intron junctions, and the 5' and 3' untranslated regions of WFS1. Nine different mutations in WFS1 (five of them novel) were identified in the nine patients. Six patients were homozygous for the following mutations: V412fs, S443R, W539X, V659fs. They developed diabetes at a mean age of 5·2 years. Three patients were compound-heterozygous for the following mutations: S167fs, Q392X, Y513fs, W648X, V779G. They developed diabetes at a mean age of 6·5 years. Mean age of diagnosis of diabetes among the Polish patients was typical for Wolfram syndrome; however, compound-heterozygous patients were slightly older at diabetes onset. © 2011 Blackwell Publishing Ltd.

  15. Wnt signaling pathway involvement in genotypic and phenotypic variations in Waardenburg syndrome type 2 with MITF mutations.

    Science.gov (United States)

    Wang, Xue-Ping; Liu, Ya-Lan; Mei, Ling-Yun; He, Chu-Feng; Niu, Zhi-Jie; Sun, Jie; Zhao, Yu-Lin; Feng, Yong; Zhang, Hua

    2018-05-01

    Mutation in the gene encoding microphthalmia-associated transcription factor (MITF) lead to Waardenburg syndrome 2 (WS2), an autosomal dominantly inherited syndrome with auditory-pigmentary abnormalities, which is clinically and genetically heterogeneous. Haploinsufficiency may be the underlying mechanism for WS2. However, the mechanisms explaining the genotypic and phenotypic variations in WS2 caused by MITF mutations are unclear. A previous study revealed that MITF interacts with LEF-1, an important factor in the Wnt signaling pathway, to regulate its own transcription through LEF-1-binding sites on the MITF promoter. In this study, four different WS2-associated MITF mutations (p.R217I, p.R217G, p.R255X, p.R217del) that are associated with highly variable clinical features were chosen. According to the results, LEF-1 can activate the expression of MITF on its own, but MITF proteins inhibited the activation. This inhibition weakens when the dosage of MITF is reduced. Except for p.R217I, p.R255X, p.R217G, and p.R217del lose the ability to activate TYR completely and do not inhibit the LEF-1-mediated activation of the MITF-M promoter, and the haploinsufficiency created by mutant MITF can be overcome; correspondingly, the mutants' associated phenotypes are less severe than that of p.R217I. The dominant negative of p.R217del made it have a second-most severe phenotype. This study's data imply that MITF has a negative feedback loop of regulation to stabilize MITF gene dosage that involves the Wnt signaling pathway and that the interaction of MITF mutants with this pathway drives the genotypic and phenotypic differences observed in Waardenburg syndrome type 2 associated with MITF mutations.

  16. Identification of Missense Mutation (I12T in the BSND Gene and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Hina Iqbal

    2011-01-01

    Full Text Available Nonsyndromic hearing loss is a paradigm of genetic heterogeneity with 85 loci and 39 nuclear disease genes reported so far. Mutations of BSND have been shown to cause Bartter syndrome type IV, characterized by significant renal abnormalities and deafness and nonsyndromic nearing loss. We studied a Pakistani consanguineous family. Clinical examinations of affected individuals did not reveal the presence of any associated signs, which are hallmarks of the Bartter syndrome type IV. Linkage analysis identified an area of 18.36 Mb shared by all affected individuals between markers D1S2706 and D1S1596. A maximum two-point LOD score of 2.55 with markers D1S2700 and multipoint LOD score of 3.42 with marker D1S1661 were obtained. BSND mutation, that is, p.I12T, cosegregated in all extant members of our pedigree. BSND mutations can cause nonsyndromic hearing loss, and it is a second report for this mutation. The respected protein, that is, BSND, was first modeled, and then, the identified mutation was further analyzed by using different bioinformatics tools; finally, this protein and its mutant was docked with CLCNKB and REN, interactions of BSND, respectively.

  17. [Gene mutation and clinical phenotype analysis of patients with Noonan syndrome and hypertrophic cardiomyopathy].

    Science.gov (United States)

    Liu, X H; Ding, W W; Han, L; Liu, X R; Xiao, Y Y; Yang, J; Mo, Y

    2017-10-02

    Objective: To analyze the gene mutations and clinical features of patients with Noonan syndrome and hypertrophic cardiomyopathy. Method: Determined the mutation domain in five cases diagnosed with Noonan syndrome and hypertrophic cardiomyopathy and identified the relationship between the mutant domain and hypertrophic cardiomyopathy by searching relevant articles in pubmed database. Result: Three mutant genes (PTPN11 gene in chromosome 12, RIT1 gene in chromosome 1 and RAF1 gene in chromosome 3) in five cases all had been reported to be related to hypertrophic cardiomyopathy. The reported hypertrophic cardiomyopathy relevant genes MYPN, MYH6 and MYBP3 had also been found in case 1 and 2. Patients with same gene mutation had different clinical manifestations. Both case 4 and 5 had RAF1 mutation (c.770C>T). However, case 4 had special face, low IQ, mild pulmonary artery stenosis, and only mild ventricular hypertrophy. Conclusion: Noonan syndrome is a genetic heterogeneity disease. Our study identified specific gene mutations that could result in Noonan syndrome with hypertrophic cardiomyopathy through molecular biology methods. The results emphasize the importance of gene detection in the management of Noonan syndrome.

  18. MSH6 and PMS2 mutation positive Australian Lynch syndrome families: novel mutations, cancer risk and age of diagnosis of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Talseth-Palmer Bente A

    2010-05-01

    Full Text Available Abstract Background Approximately 10% of Lynch syndrome families have a mutation in MSH6 and fewer families have a mutation in PMS2. It is assumed that the cancer incidence is the same in families with mutations in MSH6 as in families with mutations in MLH1/MSH2 but that the disease tends to occur later in life, little is known about families with PMS2 mutations. This study reports on our findings on mutation type, cancer risk and age of diagnosis in MSH6 and PMS2 families. Methods A total of 78 participants (from 29 families with a mutation in MSH6 and 7 participants (from 6 families with a mutation in PMS2 were included in the current study. A database of de-identified patient information was analysed to extract all relevant information such as mutation type, cancer incidence, age of diagnosis and cancer type in this Lynch syndrome cohort. Cumulative lifetime risk was calculated utilising Kaplan-Meier survival analysis. Results MSH6 and PMS2 mutations represent 10.3% and 1.9%, respectively, of the pathogenic mutations in our Australian Lynch syndrome families. We identified 26 different MSH6 and 4 different PMS2 mutations in the 35 families studied. We report 15 novel MSH6 and 1 novel PMS2 mutations. The estimated cumulative risk of CRC at age 70 years was 61% (similar in males and females and 65% for endometrial cancer in MSH6 mutation carriers. The risk of developing CRC is different between males and females at age 50 years, which is 34% for males and 21% for females. Conclusion Novel MSH6 and PMS2 mutations are being reported and submitted to the current databases for identified Lynch syndrome mutations. Our data provides additional information to add to the genotype-phenotype spectrum for both MSH6 and PMS2 mutations.

  19. [Mutational frequencies in usherin(USH2A gene) in 26 Colombian individuals with Usher syndrome type II].

    Science.gov (United States)

    López, Greizy; Gelvez, Nancy Yaneth; Tamayo, Martalucía

    2011-03-01

    Usher syndrome is a disorder characterized by progressive retinitis pigmentosa, prelingual sensory hearing loss and vestibular dysfunction. It is the most frequent cause of deaf-blindness in humans. Three clinical types and twelve genetic subtypes have been characterized. Type II is the most common, and among these cases, nearly 80% have mutations in the USH2A gene. The aim of the study was to establish the mutational frequencies for the short isoform of USH2A gene in Usher syndrome type II. Twenty-six Colombian individuals with Usher syndrome type II were included. SSCP analysis for 20 exons of the short isoform was performed and abnormal patterns were sequenced. Sequencing of exon 13 of the USH2A gene was performed for all the individuals because the most frequent mutation is located in this exon. The most frequent mutation was c.2299delG, identified in the 27% (n=8) of the sample. The second mutation, p.R334W, showed a frequency of 15%. A new variant identified in the 5’UTR region, g.129G>T, was present in 1 individual (4%). Four polymorphisms were identified; one of them is a new deletion in exon 20, first reported in this study. Mutations in the usherin short isoform were identified in 38% of a sample of 26 USH2 cases. Molecular diagnosis was established in 7 of the 26.

  20. STAT3 mutations correlated with hyper-IgE syndrome lead to ...

    Indian Academy of Sciences (India)

    Of all the causes identified for the disease hyper-immunoglobulinemia E syndrome (HIES), a homozygous mutation in tyrosine kinase2 (TYK2) and heterozygous mutations in STAT3 are implicated the defects in Jak/STAT signalling pathway in the pathogenesis of HIES. Mutations of STAT3 have been frequently clinically ...

  1. Digenic mutations involving both the BSND and GJB2 genes detected in Bartter syndrome type IV.

    Science.gov (United States)

    Wang, Hong-Han; Feng, Yong; Li, Hai-Bo; Wu, Hong; Mei, Ling-Yun; Wang, Xing-Wei; Jiang, Lu; He, Chu-Feng

    2017-01-01

    Bartter syndrome type IV, characterized by salt-losing nephropathies and sensorineural deafness, is caused by mutations of BSND or simultaneous mutations of both CLCNKA and CLCNKB. GJB2 is the primary causative gene for non-syndromic sensorineural deafness and associated with several syndromic sensorineural deafness. Owing to the rarity of Bartter syndrome, only a few mutations have been reported in the abovementioned causative genes. To investigate the underlying mutations in a Chinese patient with Bartter syndrome type IV, genetic analysis of BSND, CLCNKA, CLCNKB and GJB2 were performed by polymerase chain reaction and direct sequencing. Finally, double homozygous mutations c.22C > T (p.Arg8Trp) and c.127G > A (Val43Ile) were detected in exon 1 of BSND. Intriguingly, compound heterozygous mutations c.235delC (p.Leu79CysfsX3) and c.109G > A (p.Val37Ile) were also revealed in exon 2 of GJB2 in the same patient. No pathogenic mutations were found in CLCNKA and CLCNKB. Our results indicated that the homozygous mutation c.22C > T was the key genetic reason for the proband, and a digenic effect of BSND and GJB2 might contributed to sensorineural deafness. To our knowledge, it was the first report showing that the GJB2 gene mutations were detected in Bartter syndrome. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. GATA3 mutation in a family with hypoparathyroidism, deafness and renal dysplasia syndrome.

    Science.gov (United States)

    Zhu, Zi-Yang; Zhou, Qiao-Li; Ni, Shi-Ning; Gu, Wei

    2014-08-01

    The hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome is an autosomal dominant disorder primarily caused by GATA3 gene mutation. We report here a case that both of a Chinese boy and his father had HDR syndrome which caused by a novel mutation of GATA3. Polymerase chain reaction and DNA sequencing was performed to detect the exons of the GATA3 gene for mutation analysis. Sequence analysis of GATA3 revealed a heterozygous nonsense mutation in this family: a mutation of GATA3 at exon 2 (c.515C >A) that resulted in a premature stop at codon 172 (p.S172X) with a loss of two zinc finger domains. We identified a novel nonsense mutation which will expand the spectrum of HDR-associated GATA3 mutations.

  3. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.

    Science.gov (United States)

    Zeyer, Karina A; Reinhardt, Dieter P

    2015-01-01

    Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB) domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular and organismal levels. Representative point mutations associated with Marfan syndrome in affected individuals have been introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a structural and functional level. Mutations which impair folding of cbEGF domains can affect protein trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome. Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights into the pathogenic molecular mechanisms exerted by mutated fibrillin-1. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Expanded Mutational Spectrum in Cohen Syndrome, Tissue Expression, and Transcript Variants of COH1

    NARCIS (Netherlands)

    Seifert, Wenke; Holder-Espinasse, Muriel; Kuehnisch, Jirko; Kahrizi, Kimia; Tzschach, Andreas; Garshasbi, Masoud; Najmabadi, Hossein; Kuss, Andreas Walter; Kress, Wolfram; Laureys, Genevieve; Loeys, Bart; Brilstra, Eva; Mancini, Grazia M. S.; Dollfus, Helene; Dahan, Karin; Apse, Kira; Hennies, Hans Christian; Horn, Denise

    Cohen syndrome is characterised by mental retardation, postnatal microcephaly, facial dysmorphism, pigmentary retinopathy, myopia, and intermittent neutropenia. Mutations in COH1 (VPS13B) have been found in patients with Cohen syndrome from diverse ethnic origins. We have carried out mutation

  5. c.376G>A mutation in WFS1 gene causes Wolfram syndrome without deafness.

    Science.gov (United States)

    Safarpour Lima, Behnam; Ghaedi, Hamid; Daftarian, Narsis; Ahmadieh, Hamid; Jamshidi, Javad; Khorrami, Mehdi; Noroozi, Rezvan; Sohrabifar, Nasim; Assarzadegan, Farhad; Hesami, Omid; Taghavi, Shaghayegh; Ahmadifard, Azadeh; Atakhorrami, Minoo; Rahimi-Aliabadi, Simin; Shahmohammadibeni, Neda; Alehabib, Elham; Andarva, Monavvar; Darvish, Hossein; Emamalizadeh, Babak

    2016-02-01

    Wolfram syndrome is one of the rare autosomal recessive, progressive, neurodegenerative disorders, characterized by diabetes mellitus and optic atrophy. Several other features are observed in patients including deafness, ataxia, and peripheral neuropathy. A gene called WFS1 is identified on chromosome 4p, responsible for Wolfram syndrome. We investigated a family consisted of parents and 8 children, which 5 of them have been diagnosed for Wolfram syndrome. WFS1 gene in all family members was sequenced for causative mutations. A mutation (c.376G>A, p.A126T) was found in all affected members in homozygous state and in both parents in heterozygous state. The bioinformatics analysis showed the deleterious effects of this nucleotide change on the structure and function of the protein product. As all of the patients in the family showed the homozygote mutation, and parents were both heterozygote, this mutation is probably the cause of the disease. We identified this mutation in homozygous state for the first time as Wolfram syndrome causation. We also showed that this mutation probably doesn't cause deafness in affected individuals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. First implication of STRA6 mutations in isolated anophthalmia, microphthalmia, and coloboma: a new dimension to the STRA6 phenotype.

    Science.gov (United States)

    Casey, Jillian; Kawaguchi, Riki; Morrissey, Maria; Sun, Hui; McGettigan, Paul; Nielsen, Jens E; Conroy, Judith; Regan, Regina; Kenny, Elaine; Cormican, Paul; Morris, Derek W; Tormey, Peter; Chróinín, Muireann Ní; Kennedy, Breandan N; Lynch, SallyAnn; Green, Andrew; Ennis, Sean

    2011-12-01

    Microphthalmia, anophthalmia, and coloboma (MAC) are structural congenital eye malformations that cause a significant proportion of childhood visual impairments. Several disease genes have been identified but do not account for all MAC cases, suggesting that additional risk loci exist. We used single nucleotide polymorphism (SNP) homozygosity mapping (HM) and targeted next-generation sequencing to identify the causative mutation for autosomal recessive isolated colobomatous microanophthalmia (MCOPCB) in a consanguineous Irish Traveller family. We identified a double-nucleotide polymorphism (g.1157G>A and g.1156G>A; p.G304K) in STRA6 that was homozygous in all of the MCOPCB patients. The STRA6 p.G304K mutation was subsequently detected in additional MCOPCB patients, including one individual with Matthew-Wood syndrome (MWS; MCOPS9). STRA6 encodes a transmembrane receptor involved in vitamin A uptake, a process essential to eye development and growth. We have shown that the G304K mutant STRA6 protein is mislocalized and has severely reduced vitamin A uptake activity. Furthermore, we reproduced the MCOPCB phenotype in a zebrafish disease model by inhibiting retinoic acid (RA) synthesis, suggesting that diminished RA levels account for the eye malformations in STRA6 p.G304K patients. The current study demonstrates that STRA6 mutations can cause isolated eye malformations in addition to the congenital anomalies observed in MWS. © 2011 Wiley Periodicals, Inc.

  7. Mutations in ROGDI Cause Kohlschutter-Tonz Syndrome

    NARCIS (Netherlands)

    Schossig, A.; Wolf, N.I.; Fischer, C.; Fischer, M.; Stocker, G.; Pabinger, S.; Dander, A.; Steiner, B.; Tonz, O.; Kotzot, D.; Haberlandt, E.; Amberger, A.; Burwinkel, B.; Wimmer, K.; Fauth, C.; Grond-Ginsbach, C.; Koch, M.J.; Deichmann, A.; von Kalle, C.; Bartram, C.R.; Kohlschutter, A.; Trajanoski, Z.; Zschocke, J.

    2012-01-01

    Kohlschütter-Tönz syndrome (KTS) is an autosomal-recessive disease characterized by the combination of epilepsy, psychomotor regression, and amelogenesis imperfecta. The molecular basis has not yet been elucidated. Here, we report that KTS is caused by mutations in ROGDI. Using a combination of

  8. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome

    NARCIS (Netherlands)

    Niihori, Tetsuya; Aoki, Yoko; Narumi, Yoko; Neri, Giovanni; Cavé, Hélène; Verloes, Alain; Okamoto, Nobuhiko; Hennekam, Raoul C. M.; Gillessen-Kaesbach, Gabriele; Wieczorek, Dagmar; Kavamura, Maria Ines; Kurosawa, Kenji; Ohashi, Hirofumi; Wilson, Louise; Heron, Delphine; Bonneau, Dominique; Corona, Giuseppina; Kaname, Tadashi; Naritomi, Kenji; Baumann, Clarisse; Matsumoto, Naomichi; Kato, Kumi; Kure, Shigeo; Matsubara, Yoichi

    2006-01-01

    Cardio-facio-cutaneous (CFC) syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. It phenotypically overlaps with Noonan and Costello syndrome, which are caused by mutations in PTPN11 and HRAS, respectively. In 43 individuals with CFC, we identified two

  9. Usher syndrome in Denmark: mutation spectrum and some clinical observations.

    Science.gov (United States)

    Dad, Shzeena; Rendtorff, Nanna Dahl; Tranebjærg, Lisbeth; Grønskov, Karen; Karstensen, Helena Gásdal; Brox, Vigdis; Nilssen, Øivind; Roux, Anne-Françoise; Rosenberg, Thomas; Jensen, Hanne; Møller, Lisbeth Birk

    2016-09-01

    Usher syndrome (USH) is a genetically heterogeneous deafness-blindness syndrome, divided into three clinical subtypes: USH1, USH2 and USH3. Mutations in 21 out of 26 investigated Danish unrelated individuals with USH were identified, using a combination of molecular diagnostic methods. Before Next Generation Sequencing (NGS) became available mutations in nine individuals (1 USH1, 7 USH2, 1 USH3) were identified by Sanger sequencing of USH1C , USH2A or CLRN1 or by Arrayed Primer EXtension (APEX) method. Mutations in 12 individuals (7 USH1, 5 USH2) were found by targeted NGS of ten known USH genes. Five novel pathogenic variants were identified. We combined our data with previously published, and obtained an overview of the USH mutation spectrum in Denmark, including 100 unrelated individuals; 32 with USH1, 67 with USH2, and 1 with USH3. Macular edema was observed in 44 of 117 individuals. Olfactory function was tested in 12 individuals and found to be within normal range in all. Mutations that lead to USH1 were predominantly identified in MYO7A (75%), whereas all mutations in USH2 cases were identified in USH2A . The MYO7A mutation c.93C>A, p.(Cys31*) accounted for 33% of all USH1 mutations and the USH2A c.2299delG, p.(Glu767Serfs*21) variant accounted for 45% of all USH2 mutations in the Danish cohort.

  10. Splicing Analysis of Exonic OCRL Mutations Causing Lowe Syndrome or Dent-2 Disease

    Directory of Open Access Journals (Sweden)

    Lorena Suarez-Artiles

    2018-01-01

    Full Text Available Mutations in the OCRL gene are associated with both Lowe syndrome and Dent-2 disease. Patients with Lowe syndrome present congenital cataracts, mental disabilities and a renal proximal tubulopathy, whereas patients with Dent-2 disease exhibit similar proximal tubule dysfunction but only mild, or no additional clinical defects. It is not yet understood why some OCRL mutations cause the phenotype of Lowe syndrome, while others develop the milder phenotype of Dent-2 disease. Our goal was to gain new insights into the consequences of OCRL exonic mutations on pre-mRNA splicing. Using predictive bioinformatics tools, we selected thirteen missense mutations and one synonymous mutation based on their potential effects on splicing regulatory elements or splice sites. These mutations were analyzed in a minigene splicing assay. Results of the RNA analysis showed that three presumed missense mutations caused alterations in pre-mRNA splicing. Mutation c.741G>T; p.(Trp247Cys generated splicing silencer sequences and disrupted splicing enhancer motifs that resulted in skipping of exon 9, while mutations c.2581G>A; p.(Ala861Thr and c.2581G>C; p.(Ala861Pro abolished a 5′ splice site leading to skipping of exon 23. Mutation c.741G>T represents the first OCRL exonic variant outside the conserved splice site dinucleotides that results in alteration of pre-mRNA splicing. Our results highlight the importance of evaluating the effects of OCRL exonic mutations at the mRNA level.

  11. Clinical presentation of Griscelli syndrome type 2 and spectrum of RAB27A mutations

    DEFF Research Database (Denmark)

    Meeths, Marie; Bryceson, Yenan T; Rudd, Eva

    2010-01-01

    Griscelli syndrome type 2 (GS2) is an autosomal-recessive immunodeficiency caused by mutations in RAB27A, clinically characterized by partial albinism and haemophagocytic lymphohistocytosis (HLH). We evaluated the frequency of RAB27A mutations in 21 unrelated patients with haemophagocytic syndromes...

  12. [Type 1 polyglandular autoimmune syndrome associated with C322fsx372 mutation].

    Science.gov (United States)

    Roncalés-Samanes, P; de Arriba Muñoz, A; Lou Francés, G M; Ferrer Lozano, M; Justa Roldán, M L; Labarta Aizpun, J I

    2015-01-01

    Polyglandular autoimmune syndromes are rare diseases based on autoimmune mechanisms in which endocrine and non-endocrine disorders coexist. In type 1 the characteristic manifestations are chronic mucocutaneous candidiasis, hypoparathyroidism and adrenal insufficiency. A case is presented of a patient with typical clinical sequence, along with other changes, and in whom a mutation in homozygosis, C322fsX372, was detected after performing a molecular analysis of autoimmunity regulator gene (AIRE). Inheritance is autosomal recessive, associated with mutations in the AIRE gene, which encodes a protein involved in autoimmunity and immunodeficiency. For diagnosis, At least two of the three major clinical manifestations are required for a diagnosis. However, only one of them is necessary in the study of relatives of affected patients. These syndromes must be diagnosed early, given their high morbidity and mortality. Every manifestation needs to be treated, in order to maintain the quality of life. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  13. Three novel and two known androgen receptor gene mutations ...

    Indian Academy of Sciences (India)

    gene mutations associated with androgen insensitivity syndrome in sex-reversed XY female patients. J. Genet. ... signal and a C-terminal. Keywords. androgen insensitivity syndrome; androgen receptor; truncation mutation; N-terminal domain; XY sex reversal. .... and an increased risk of gonadal tumour. Mutations in SRY.

  14. Sex-related hearing impairment in Wolfram syndrome patients identified by inactivating WFS1 mutations

    NARCIS (Netherlands)

    Pennings, RJE; Huygen, PLM; van den Ouweland, JMW; Cryns, K; Dikkeschei, LD; Van Camp, G; Cremers, CWRJ

    2004-01-01

    This study examined the audiovestibular profile of 11 Wolfram syndrome patients (4 males, 7 females) from 7 families, with identified WFS1 mutations, and the audiometric profile of 17 related heterozygous carriers of WFS1 mutations. Patients with Wolfram syndrome showed a downsloping audiogram and

  15. Sex-related hearing impairment in Wolfram syndrome patients identified by inactivating WFS1 mutations.

    NARCIS (Netherlands)

    Pennings, R.J.E.; Huygen, P.L.M.; Ouweland, J.M.W. van den; Cryns, K.; Dikkeschei, L.D.; Camp, G. van; Cremers, C.W.R.J.

    2004-01-01

    This study examined the audiovestibular profile of 11 Wolfram syndrome patients (4 males, 7 females) from 7 families, with identified WFS1 mutations, and the audiometric profile of 17 related heterozygous carriers of WFS1 mutations. Patients with Wolfram syndrome showed a downsloping audiogram and

  16. A New COL3A1 Mutation in Ehlers-Danlos Syndrome Vascular Type With Different Phenotypes in the Same Family.

    Science.gov (United States)

    Cortini, Francesca; Marinelli, Barbara; Romi, Silvia; Seresini, Agostino; Pesatori, Angela Cecilia; Seia, Manuela; Montano, Nicola; Bassotti, Alessandra

    2017-04-01

    Vascular Ehlers-Danlos syndrome (vEDS) is a rare and severe connective tissue disorder caused by mutations in the collagen type III alpha I chain ( COL3A1) gene. We describe a pathogenetic heterozygous COL3A1 mutation c.3140 G>A, p. Gly1047Asp, identified using next-generation sequencing, in a 40-year-old Italian female. The genetic test performed on her relatives, which present different clinical phenotypes, confirmed that they carry the same mutation in heterozygous state. This finding confirms that mutations causing vEDS have an incomplete penetrance.

  17. Three cases with L1 syndrome and two novel mutations in the L1CAM gene.

    Science.gov (United States)

    Marín, Rosario; Ley-Martos, Miriam; Gutiérrez, Gema; Rodríguez-Sánchez, Felicidad; Arroyo, Diego; Mora-López, Francisco

    2015-11-01

    Mutations in the L1CAM gene have been identified in the following various X-linked neurological disorders: congenital hydrocephalus; mental retardation, aphasia, shuffling gait, and adducted thumbs (MASA) syndrome; spastic paraplegia; and agenesis of the corpus callosum. These conditions are currently considered different phenotypes of a single entity known as L1 syndrome. We present three families with L1 syndrome. Sequencing of the L1CAM gene allowed the identification of the following mutations involved: a known splicing mutation (c.3531-12G>A) and two novel ones: a missense mutation (c.1754A>C; p.Asp585Ala) and a nonsense mutation (c.3478C>T; p.Gln1160Stop). The number of affected males and carrier females identified in a relatively small population suggests that L1 syndrome may be under-diagnosed. L1 syndrome should be considered in the differential diagnosis of intellectual disability or mental retardation in children, especially when other signs such as hydrocephalus or adducted thumbs are present.

  18. A novel NHS mutation causes Nance-Horan Syndrome in a Chinese family.

    Science.gov (United States)

    Tian, Qi; Li, Yunping; Kousar, Rizwana; Guo, Hui; Peng, Fenglan; Zheng, Yu; Yang, Xiaohua; Long, Zhigao; Tian, Runyi; Xia, Kun; Lin, Haiying; Pan, Qian

    2017-01-07

    Nance-Horan Syndrome (NHS) (OMIM: 302350) is a rare X-linked developmental disorder characterized by bilateral congenital cataracts, with occasional dental anomalies, characteristic dysmorphic features, brachymetacarpia and mental retardation. Carrier females exhibit similar manifestations that are less severe than in affected males. Here, we report a four-generation Chinese family with multiple affected individuals presenting Nance-Horan Syndrome. Whole-exome sequencing combined with RT-PCR and Sanger sequencing was used to search for a genetic cause underlying the disease phenotype. Whole-exome sequencing identified in all affected individuals of the family a novel donor splicing site mutation (NM_198270: c.1045 + 2T > A) in intron 4 of the gene NHS, which maps to chromosome Xp22.13. The identified mutation results in an RNA processing defect causing a 416-nucleotide addition to exon 4 of the mRNA transcript, likely producing a truncated NHS protein. The donor splicing site mutation NM_198270: c.1045 + 2T > A of the NHS gene is the causative mutation in this Nance-Horan Syndrome family. This research broadens the spectrum of NHS gene mutations, contributing to our understanding of the molecular genetics of NHS.

  19. Hereditary mixed polyposis syndrome due to a BMPR1A mutation.

    LENUS (Irish Health Repository)

    O'Riordan, J M

    2010-06-01

    The conditions Juvenile Polyposis Syndrome (JPS) and Hereditary Mixed Polyposis Syndrome (HMPS) are associated with an increased risk of colorectal carcinoma. The genetic mechanisms which explain these conditions have until recently been poorly understood. Recent interest has focused on the transforming growth factor (TGF)-beta signalling pathway and, in particular, on mutations in the SMAD4 gene. However, not all cases of JPS and HMPS have mutations in SMAD4 and focus has now shifted to other components of the TGF-beta pathway to clarify the genetic mechanisms involved in these conditions. In this report, we describe the significance of a bone morphogenetic protein receptor type 1A gene mutation in an Irish family.

  20. Cancer risks and immunohistochemical profiles linked to the Danish MLH1 Lynch syndrome founder mutation

    DEFF Research Database (Denmark)

    Therkildsen, Christina; Isinger-Ekstrand, Anna; Ladelund, Steen

    2012-01-01

    Founder mutations with a large impact in distinct populations have been described in Lynch syndrome. In Denmark, the MLH1 c.1667+2_1667_+8TAAATCAdelinsATTT mutation accounts for 25 % of the MLH1 mutant families. We used the national Danish hereditary nonpolyposis colorectal cancer register...... to estimate the cumulative lifetime risks for Lynch syndrome-associated cancer in 16 founder mutation families with comparison to 47 other MLH1 mutant families. The founder mutation conferred comparable risks for colorectal cancer (relative risks, RR, of 0.99 for males and 0.79 for females) and lower risks...... in 68 % with extensive inter-tumor variability despite the same underlying germline mutation. In conclusion, the Danish MLH1 founder mutation that accounts for a significant proportion of Lynch syndrome and is associated with a lower risk for extracolonic cancers....

  1. Mutation spectrum of Chinese patients with Bartter syndrome.

    Science.gov (United States)

    Han, Yue; Lin, Yi; Sun, Qing; Wang, Shujuan; Gao, Yanxia; Shao, Leping

    2017-11-24

    Bartter syndrome (BS) has been rarely reported in Chinese population except for a few case reports. This investigation was aimed to analyze the mutations of the causal genes in sixteen Chinese patients with BS, and review their followup and treatment. Identify mutations by the next generation sequencing and the multiplex ligation-dependent probe amplification (MLPA). Clinical characteristics and biochemical findings at the first presentation as well as follow-up were reviewed. 15 different CLCNKB gene mutations were identified in fourteen patients with BS, including 11 novel ones. A novel missense mutation and a novel small deletion were found from SLC12A1 gene. A novel gross deletion was found in CLCNKA gene. A recurrent missense mutation was identified from BSND gene. We found that the whole gene deletion mutation of CLCNKB gene was the most frequent mutation (32%), and the rate of gross deletion was up to 50 percent in this group of Chinese patients. The present study has found 19 mutations, including 14 novel ones, which would enrich the human gene mutation database (HGMD) and provide valuable references to the genetic counseling and diagnosis of the Chinese population.

  2. Observational cohort study of ventricular arrhythmia in adults with Marfan syndrome caused by FBN1 mutations.

    Directory of Open Access Journals (Sweden)

    Ali Aydin

    Full Text Available Marfan syndrome is associated with ventricular arrhythmia but risk factors including FBN1 mutation characteristics require elucidation.We performed an observational cohort study of 80 consecutive adults (30 men, 50 women aged 42±15 years with Marfan syndrome caused by FBN1 mutations. We assessed ventricular arrhythmia on baseline ambulatory electrocardiography as >10 premature ventricular complexes per hour (>10 PVC/h, as ventricular couplets (Couplet, or as non-sustained ventricular tachycardia (nsVT, and during 31±18 months of follow-up as ventricular tachycardia (VT events (VTE such as sudden cardiac death (SCD, and sustained ventricular tachycardia (sVT. We identified >10 PVC/h in 28 (35%, Couplet/nsVT in 32 (40%, and VTE in 6 patients (8%, including 3 with SCD (4%. PVC>10/h, Couplet/nsVT, and VTE exhibited increased N-terminal pro-brain natriuretic peptide serum levels(P10/h and Couplet/nsVT also related to increased indexed end-systolic LV diameters (P = .024 and P = .020, to moderate mitral valve regurgitation (P = .018 and P = .003, and to prolonged QTc intervals (P = .001 and P = .006, respectively. Moreover, VTE related to mutations in exons 24-32 (P = .021. Kaplan-Meier analysis corroborated an association of VTE with increased NT-proBNP (P<.001 and with mutations in exons 24-32 (P<.001.Marfan syndrome with causative FBN1 mutations is associated with an increased risk for arrhythmia, and affected persons may require life-long monitoring. Ventricular arrhythmia on electrocardiography, signs of myocardial dysfunction and mutations in exons 24-32 may be risk factors of VTE.

  3. Yunis-Varón syndrome caused by biallelic VAC14 mutations

    NARCIS (Netherlands)

    Lines, Matthew A.; Ito, Yoko; Kernohan, Kristin D.; Mears, Wendy; Hurteau-Miller, Julie; Venkateswaran, Sunita; Ward, Leanne; Khatchadourian, Karine; McClintock, Jeff; Bhola, Priya; Campeau, Philippe M.; Boycott, Kym M.; Michaud, Jean; van Kuilenburg, André Bp; Ferdinandusse, Sacha; Dyment, David A.

    2017-01-01

    Yunis-Varón syndrome (YVS) is an autosomal recessive disorder comprising skeletal anomalies, dysmorphism, global developmental delay and intracytoplasmic vacuolation in brain and other tissues. All hitherto-reported pathogenic variants affect FIG4, a lipid phosphatase involved in

  4. Targeted exon sequencing in Usher syndrome type I.

    Science.gov (United States)

    Bujakowska, Kinga M; Consugar, Mark; Place, Emily; Harper, Shyana; Lena, Jaclyn; Taub, Daniel G; White, Joseph; Navarro-Gomez, Daniel; Weigel DiFranco, Carol; Farkas, Michael H; Gai, Xiaowu; Berson, Eliot L; Pierce, Eric A

    2014-12-02

    Patients with Usher syndrome type I (USH1) have retinitis pigmentosa, profound congenital hearing loss, and vestibular ataxia. This syndrome is currently thought to be associated with at least six genes, which are encoded by over 180 exons. Here, we present the use of state-of-the-art techniques in the molecular diagnosis of a cohort of 47 USH1 probands. The cohort was studied with selective exon capture and next-generation sequencing of currently known inherited retinal degeneration genes, comparative genomic hybridization, and Sanger sequencing of new USH1 exons identified by human retinal transcriptome analysis. With this approach, we were able to genetically solve 14 of the 47 probands by confirming the biallelic inheritance of mutations. We detected two likely pathogenic variants in an additional 19 patients, for whom family members were not available for cosegregation analysis to confirm biallelic inheritance. Ten patients, in addition to primary disease-causing mutations, carried rare likely pathogenic USH1 alleles or variants in other genes associated with deaf-blindness, which may influence disease phenotype. Twenty-one of the identified mutations were novel among the 33 definite or likely solved patients. Here, we also present a clinical description of the studied cohort at their initial visits. We found a remarkable genetic heterogeneity in the studied USH1 cohort with multiplicity of mutations, of which many were novel. No obvious influence of genotype on phenotype was found, possibly due to small sample sizes of the genotypes under study. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  5. 41 CFR 304-3.3 - May my agency or I accept payment for travel expenses to a meeting from a non-Federal source?

    Science.gov (United States)

    2010-07-01

    ... RESPONSIBILITY General § 304-3.3 May my agency or I accept payment for travel expenses to a meeting from a non... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false May my agency or I accept payment for travel expenses to a meeting from a non-Federal source? 304-3.3 Section 304-3.3 Public...

  6. Molecular genetics of the Usher syndrome in Lebanon: identification of 11 novel protein truncating mutations by whole exome sequencing.

    Science.gov (United States)

    Reddy, Ramesh; Fahiminiya, Somayyeh; El Zir, Elie; Mansour, Ahmad; Megarbane, Andre; Majewski, Jacek; Slim, Rima

    2014-01-01

    Usher syndrome (USH) is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II. Whole exome sequencing followed by expanded familial validation by Sanger sequencing. We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98. Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes.

  7. Molecular genetics of the Usher syndrome in Lebanon: identification of 11 novel protein truncating mutations by whole exome sequencing.

    Directory of Open Access Journals (Sweden)

    Ramesh Reddy

    Full Text Available Usher syndrome (USH is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II.Whole exome sequencing followed by expanded familial validation by Sanger sequencing.We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98.Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes.

  8. Molecular Genetics of the Usher Syndrome in Lebanon: Identification of 11 Novel Protein Truncating Mutations by Whole Exome Sequencing

    Science.gov (United States)

    Reddy, Ramesh; Fahiminiya, Somayyeh; El Zir, Elie; Mansour, Ahmad; Megarbane, Andre; Majewski, Jacek; Slim, Rima

    2014-01-01

    Background Usher syndrome (USH) is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II. Methods Whole exome sequencing followed by expanded familial validation by Sanger sequencing. Results We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98. Conclusion Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes. PMID:25211151

  9. HIV type-1 genotypic resistance profiles in vertically infected patients from Argentina reveal an association between K103N+L100I and L74V mutations.

    Science.gov (United States)

    Aulicino, Paula C; Rocco, Carlos A; Mecikovsky, Debora; Bologna, Rosa; Mangano, Andrea; Sen, Luisa

    2010-01-01

    Patterns and pathways of HIV type-1 (HIV-1) antiretroviral (ARV) drug resistance-associated mutations in clinical isolates are conditioned by ARV history and factors such as viral subtype and fitness. Our aim was to analyse the frequency and association of ARV drug resistance mutations in a group of long-term vertically infected patients from Argentina. Plasma samples from 71 patients (38 children and 33 adolescents) were collected for genotypic HIV-1 ARV resistance testing during the period between February 2006 and October 2008. Statistically significant pairwise associations between ARV resistance mutations in pol, as well as associations between mutations and drug exposure, were identified using Fisher's exact tests with Bonferroni and false discovery rate corrections. Phylogenetic analyses were performed for subtype assignment. In protease (PR), resistance-associated mutations M46I/L, I54M/L/V/A/S and V82A/F/T/S/M/I were associated with each other and with minor mutations at codons 10, 24 and 71. Mutations V82A/F/T/S/M/I were primarily selected by the administration of ritonavir (RTV) in an historical ARV regimen. In reverse transcriptase, thymidine analogue mutation (TAM)1 profile was more common than TAM2. The non-nucleoside K103N+L100I mutations were observed at high frequency (15.5%) and were significantly associated with the nucleoside mutation L74V in BF recombinants. Associations of mutations at PR sites reflect the frequent use of RTV at an early time in this group of patients and convergent resistance mechanisms driven by the high exposure to protease inhibitors, as well as local HIV-1 diversity. The results provide clinical evidence of a molecular interaction between K103N+L100I and L74V mutations at the reverse transcriptase gene in vivo, limiting the future use of second-generation non-nucleoside reverse transcriptase inhibitors such as etravirine.

  10. A family of oculofaciocardiodental syndrome (OFCD) with a novel BCOR mutation and genomic rearrangements involving NHS.

    Science.gov (United States)

    Kondo, Yukiko; Saitsu, Hirotomo; Miyamoto, Toshinobu; Nishiyama, Kiyomi; Tsurusaki, Yoshinori; Doi, Hiroshi; Miyake, Noriko; Ryoo, Na-Kyung; Kim, Jeong Hun; Yu, Young Suk; Matsumoto, Naomichi

    2012-03-01

    Oculofaciocardiodental syndrome (OFCD) is an X-linked dominant disorder associated with male lethality, presenting with congenital cataract, dysmorphic face, dental abnormalities and septal heart defects. Mutations in BCOR (encoding BCL-6-interacting corepressor) cause OFCD. Here, we report on a Korean family with common features of OFCD including bilateral 2nd-3rd toe syndactyly and septal heart defects in three affected females (mother and two daughters). Through the mutation screening and copy number analysis using genomic microarray, we identified a novel heterozygous mutation, c.888delG, in the BCOR gene and two interstitial microduplications at Xp22.2-22.13 and Xp21.3 in all the three affected females. The BCOR mutation may lead to a premature stop codon (p.N297IfsX80). The duplication at Xp22.2-22.13 involved the NHS gene causative for Nance-Horan syndrome, which is an X-linked disorder showing similar clinical features with OFCD in affected males, and in carrier females with milder presentation. Considering the presence of bilateral 2nd-3rd toe syndactyly and septal heart defects, which is unique to OFCD, the mutation in BCOR is likely to be the major determinant for the phenotypes in this family.

  11. Lynch Syndrome Caused by Germline PMS2 Mutations

    DEFF Research Database (Denmark)

    Ten Broeke, Sanne W; Brohet, Richard M; Tops, Carli M

    2015-01-01

    PURPOSE: The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. METHODS: Data were collected from 98...... PMS2 families ascertained from family cancer clinics that included a total of 2,548 family members and 377 proven mutation carriers. To adjust for potential ascertainment bias, a modified segregation analysis model was used to calculate colorectal cancer (CRC) and endometrial cancer (EC) risks....... Standardized incidence ratios (SIRs) were calculated to estimate risks for other Lynch syndrome-associated cancers. RESULTS: The cumulative risk (CR) of CRC for male mutation carriers by age 70 years was 19%. The CR among female carriers was 11% for CRC and 12% for EC. The mean age of CRC development was 52...

  12. Variable expressivity of FGF3 mutations associated with deafness and LAMM syndrome

    Directory of Open Access Journals (Sweden)

    Griffith Andrew J

    2011-02-01

    Full Text Available Abstract Background Recessive mutations of fibroblast growth factor 3 (FGF3 can cause LAMM syndrome (OMIM 610706, characterized by fully penetrant complete labyrinthine aplasia, microtia and microdontia. Methods We performed a prospective molecular genetic and clinical study of families segregating hearing loss linked to FGF3 mutations. Ten affected individuals from three large Pakistani families segregating FGF3 mutations were imaged with CT, MRI, or both to detect inner ear abnormalities. We also modeled the three dimensional structure of FGF3 to better understand the structural consequences of the three missense mutations. Results Two families segregated reported mutations (p.R104X and p.R95W and one family segregated a novel mutation (p.R132GfsX26 of FGF3. All individuals homozygous for p.R104X or p.R132GfsX26 had fully penetrant features of LAMM syndrome. However, recessive p.R95W mutations were associated with nearly normal looking auricles and variable inner ear structural phenotypes, similar to that reported for a Somali family also segregating p.R95W. This suggests that the mild phenotype is not entirely due to genetic background. Molecular modeling result suggests a less drastic effect of p.R95W on FGF3 function compared with known missense mutations detected in fully penetrant LAMM syndrome. Since we detected significant intrafamilial variability of the inner ear structural phenotype in the family segregating p.R95W, we also sequenced FGF10 as a likely candidate for a modifier. However, we did not find any sequence variation, pointing out that a larger sample size will be needed to map and identify a modifier. We also observed a mild to moderate bilateral conductive hearing loss in three carriers of p.R95W, suggesting either a semi-dominant effect of this mutant allele of FGF3, otitis media, or a consequence of genetic background in these three family members. Conclusions We noted a less prominent dental and external ear phenotype in

  13. Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency Syndrome

    NARCIS (Netherlands)

    Klift, H.M. van der; Mensenkamp, A.R.; Drost, M.; Bik, E.C.; Vos, Y.J.; Gille, H.J.; Redeker, B.E.; Tiersma, Y.; Zonneveld, J.B.; Garcia, E.G.; Letteboer, T.G.; Olderode-Berends, M.J.; Hest, L.P. van; Os, T.A. van; Verhoef, S.; Wagner, A.; Asperen, C.J. van; Broeke, S.W. ten; Hes, F.J.; Wind, N. de; Nielsen, M.; Devilee, P.; Ligtenberg, M.J.L.; Wijnen, J.T.; Tops, C.M.

    2016-01-01

    Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are

  14. Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency Syndrome

    NARCIS (Netherlands)

    van der Klift, Heleen M.; Mensenkamp, Arjen R.; Drost, Mark; Bik, Elsa C.; Vos, Yvonne J.; Gille, Hans J. J. P.; Redeker, Bert E. J. W.; Tiersma, Yvonne; Zonneveld, Jose B. M.; Garcia, Encarna Gomez; Letteboer, Tom G. W.; Olderode-Berends, Maran J. W.; van Hest, Liselotte P.; van Os, Theo A.; Verhoef, Senno; Wagner, Anja; van Asperen, Christi J.; ten Broeke, Sanne W.; Hes, Frederik J.; de Wind, Niels; Nielsen, Maartje; Devilee, Peter; Ligtenberg, Marjolijn J. L.; Wijnen, Juul T.; Tops, Carli M. J.

    Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are

  15. Genome-first approach diagnosed Cabezas syndrome via novel CUL4B mutation detection.

    Science.gov (United States)

    Okamoto, Nobuhiko; Watanabe, Miki; Naruto, Takuya; Matsuda, Keiko; Kohmoto, Tomohiro; Saito, Masako; Masuda, Kiyoshi; Imoto, Issei

    2017-01-01

    Cabezas syndrome is a syndromic form of X-linked intellectual disability primarily characterized by a short stature, hypogonadism and abnormal gait, with other variable features resulting from mutations in the CUL4B gene. Here, we report a clinically undiagnosed 5-year-old male with severe intellectual disability. A genome-first approach using targeted exome sequencing identified a novel nonsense mutation [NM_003588.3:c.2698G>T, p.(Glu900*)] in the last coding exon of CUL4B , thus diagnosing this patient with Cabezas syndrome.

  16. De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome

    NARCIS (Netherlands)

    Hoischen, Alexander; van Bon, Bregje W. M.; Rodríguez-Santiago, Benjamín; Gilissen, Christian; Vissers, Lisenka E. L. M.; de Vries, Petra; Janssen, Irene; van Lier, Bart; Hastings, Rob; Smithson, Sarah F.; Newbury-Ecob, Ruth; Kjaergaard, Susanne; Goodship, Judith; McGowan, Ruth; Bartholdi, Deborah; Rauch, Anita; Peippo, Maarit; Cobben, Jan M.; Wieczorek, Dagmar; Gillessen-Kaesbach, Gabriele; Veltman, Joris A.; Brunner, Han G.; de Vries, Bert B. B. A.

    2011-01-01

    Bohring-Opitz syndrome is characterized by severe intellectual disability, distinctive facial features and multiple congenital malformations. We sequenced the exomes of three individuals with Bohring-Opitz syndrome and in each identified heterozygous de novo nonsense mutations in ASXL1, which is

  17. Identification of a Variety of Mutations in Cancer Predisposition Genes in Patients With Suspected Lynch Syndrome.

    Science.gov (United States)

    Yurgelun, Matthew B; Allen, Brian; Kaldate, Rajesh R; Bowles, Karla R; Judkins, Thaddeus; Kaushik, Praveen; Roa, Benjamin B; Wenstrup, Richard J; Hartman, Anne-Renee; Syngal, Sapna

    2015-09-01

    Multigene panels are commercially available tools for hereditary cancer risk assessment that allow for next-generation sequencing of numerous genes in parallel. However, it is not clear if these panels offer advantages over traditional genetic testing. We investigated the number of cancer predisposition gene mutations identified by parallel sequencing in individuals with suspected Lynch syndrome. We performed germline analysis with a 25-gene, next-generation sequencing panel using DNA from 1260 individuals who underwent clinical genetic testing for Lynch syndrome from 2012 through 2013. All patients had a history of Lynch syndrome-associated cancer and/or polyps. We classified all identified germline alterations for pathogenicity and calculated the frequencies of pathogenic mutations and variants of uncertain clinical significance (VUS). We also analyzed data on patients' personal and family history of cancer, including fulfillment of clinical guidelines for genetic testing. Of the 1260 patients, 1112 met National Comprehensive Cancer Network (NCCN) criteria for Lynch syndrome testing (88%; 95% confidence interval [CI], 86%-90%). Multigene panel testing identified 114 probands with Lynch syndrome mutations (9.0%; 95% CI, 7.6%-10.8%) and 71 with mutations in other cancer predisposition genes (5.6%; 95% CI, 4.4%-7.1%). Fifteen individuals had mutations in BRCA1 or BRCA2; 93% of these met the NCCN criteria for Lynch syndrome testing and 33% met NCCN criteria for BRCA1 and BRCA2 analysis (P = .0017). An additional 9 individuals carried mutations in other genes linked to high lifetime risks of cancer (5 had mutations in APC, 3 had bi-allelic mutations in MUTYH, and 1 had a mutation in STK11); all of these patients met NCCN criteria for Lynch syndrome testing. A total of 479 individuals had 1 or more VUS (38%; 95% CI, 35%-41%). In individuals with suspected Lynch syndrome, multigene panel testing identified high-penetrance mutations in cancer predisposition genes, many

  18. Common mutations identified in the MLH1 gene in familial Lynch syndrome

    Directory of Open Access Journals (Sweden)

    Jisha Elias

    2017-12-01

    In this study we identified three families with Lynch syndrome from a rural cancer center in western India (KCHRC, Goraj, Gujarat, where 70-75 CRC patients are seen annually. DNA isolated from the blood of consented family members of all three families (8-10 members/family was subjected to NGS sequencing methods on an Illumina HiSeq 4000 platform. We identified unique mutations in the MLH1 gene in all three HNPCC family members. Two of the three unrelated families shared a common mutation (154delA and 156delA. Total 8 members of a family were identified as carriers for 156delA mutation of which 5 members were unaffected while 3 were affected (age of onset: 1 member <30yrs & 2 were>40yr. The family with 154delA mutation showed 2 affected members (>40yr carrying the mutations.LYS618DEL mutation found in 8 members of the third family showed that both affected and unaffected carried the mutation. Thus the common mutations identified in the MLH1 gene in two unrelated families had a high risk for lynch syndrome especially above the age of 40.

  19. Identification of three novel NHS mutations in families with Nance-Horan syndrome.

    Science.gov (United States)

    Huang, Kristen M; Wu, Junhua; Brooks, Simon P; Hardcastle, Alison J; Lewis, Richard Alan; Stambolian, Dwight

    2007-03-27

    Nance-Horan Syndrome (NHS) is an infrequent and often overlooked X-linked disorder characterized by dense congenital cataracts, microphthalmia, and dental abnormalities. The syndrome is caused by mutations in the NHS gene, whose function is not known. The purpose of this study was to identify the frequency and distribution of NHS gene mutations and compare genotype with Nance-Horan phenotype in five North American NHS families. Genomic DNA was isolated from white blood cells from NHS patients and family members. The NHS gene coding region and its splice site donor and acceptor regions were amplified from genomic DNA by PCR, and the amplicons were sequenced directly. We identified three unique NHS coding region mutations in these NHS families. This report extends the number of unique identified NHS mutations to 14.

  20. Prognostic implications of mutation-specific QTc standard deviation in congenital long QT syndrome.

    Science.gov (United States)

    Mathias, Andrew; Moss, Arthur J; Lopes, Coeli M; Barsheshet, Alon; McNitt, Scott; Zareba, Wojciech; Robinson, Jennifer L; Locati, Emanuela H; Ackerman, Michael J; Benhorin, Jesaia; Kaufman, Elizabeth S; Platonov, Pyotr G; Qi, Ming; Shimizu, Wataru; Towbin, Jeffrey A; Michael Vincent, G; Wilde, Arthur A M; Zhang, Li; Goldenberg, Ilan

    2013-05-01

    Individual corrected QT interval (QTc) may vary widely among carriers of the same long QT syndrome (LQTS) mutation. Currently, neither the mechanism nor the implications of this variable penetrance are well understood. To hypothesize that the assessment of QTc variance in patients with congenital LQTS who carry the same mutation provides incremental prognostic information on the patient-specific QTc. The study population comprised 1206 patients with LQTS with 95 different mutations and ≥ 5 individuals who carry the same mutation. Multivariate Cox proportional hazards regression analysis was used to assess the effect of mutation-specific standard deviation of QTc (QTcSD) on the risk of cardiac events (comprising syncope, aborted cardiac arrest, and sudden cardiac death) from birth through age 40 years in the total population and by genotype. Assessment of mutation-specific QTcSD showed large differences among carriers of the same mutations (median QTcSD 45 ms). Multivariate analysis showed that each 20 ms increment in QTcSD was associated with a significant 33% (P = .002) increase in the risk of cardiac events after adjustment for the patient-specific QTc duration and the family effect on QTc. The risk associated with QTcSD was pronounced among patients with long QT syndrome type 1 (hazard ratio 1.55 per 20 ms increment; P<.001), whereas among patients with long QT syndrome type 2, the risk associated with QTcSD was not statistically significant (hazard ratio 0.99; P = .95; P value for QTcSD-by-genotype interaction = .002). Our findings suggest that mutations with a wider variation in QTc duration are associated with increased risk of cardiac events. These findings appear to be genotype-specific, with a pronounced effect among patients with the long QT syndrome type 1 genotype. Copyright © 2013. Published by Elsevier Inc.

  1. Identification of three novel NHS mutations in families with Nance-Horan syndrome

    OpenAIRE

    Huang, Kristen M.; Wu, Junhua; Brooks, Simon P.; Hardcastle, Alison J.; Lewis, Richard Alan; Stambolian, Dwight

    2007-01-01

    Purpose Nance-Horan Syndrome (NHS) is an infrequent and often overlooked X-linked disorder characterized by dense congenital cataracts, microphthalmia, and dental abnormalities. The syndrome is caused by mutations in the NHS gene, whose function is not known. The purpose of this study was to identify the frequency and distribution of NHS gene mutations and compare genotype with Nance-Horan phenotype in five North American NHS families. Methods Genomic DNA was isolated from white blood cells f...

  2. Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency Syndrome.

    Science.gov (United States)

    van der Klift, Heleen M; Mensenkamp, Arjen R; Drost, Mark; Bik, Elsa C; Vos, Yvonne J; Gille, Hans J J P; Redeker, Bert E J W; Tiersma, Yvonne; Zonneveld, José B M; García, Encarna Gómez; Letteboer, Tom G W; Olderode-Berends, Maran J W; van Hest, Liselotte P; van Os, Theo A; Verhoef, Senno; Wagner, Anja; van Asperen, Christi J; Ten Broeke, Sanne W; Hes, Frederik J; de Wind, Niels; Nielsen, Maartje; Devilee, Peter; Ligtenberg, Marjolijn J L; Wijnen, Juul T; Tops, Carli M J

    2016-11-01

    Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are applied to overcome problematic PMS2 mutation analysis due to the presence of pseudogenes and frequent gene conversion events. Here, we determined PMS2 mutation detection yield and mutation spectrum in a nationwide cohort of 396 probands. Furthermore, we studied concordance between tumor IHC/MSI (immunohistochemistry/microsatellite instability) profile and mutation carrier state. Overall, we found 52 different pathogenic PMS2 variants explaining 121 Lynch syndrome and nine CMMRD patients. In vitro mismatch repair assays suggested pathogenicity for three missense variants. Ninety-one PMS2 mutation carriers (70%) showed isolated loss of PMS2 in their tumors, for 31 (24%) no or inconclusive IHC was available, and eight carriers (6%) showed discordant IHC (presence of PMS2 or loss of both MLH1 and PMS2). Ten cases with isolated PMS2 loss (10%; 10/97) harbored MLH1 mutations. We confirmed that recently improved mutation analysis provides a high yield of PMS2 mutations in patients with isolated loss of PMS2 expression. Application of universal tumor prescreening methods will however miss some PMS2 germline mutation carriers. © 2016 WILEY PERIODICALS, INC.

  3. Insights into the mutation-induced HHH syndrome from modeling human mitochondrial ornithine transporter-1.

    Directory of Open Access Journals (Sweden)

    Jing-Fang Wang

    Full Text Available Human mitochondrial ornithine transporter-1 is reported in coupling with the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH syndrome, which is a rare autosomal recessive disorder. For in-depth understanding of the molecular mechanism of the disease, it is crucially important to acquire the 3D structure of human mitochondrial ornithine transporter-1. Since no such structure is available in the current protein structure database, we have developed it via computational approaches based on the recent NMR structure of human mitochondrial uncoupling protein (Berardi MJ, Chou JJ, et al. Nature 2011, 476:109-113. Subsequently, we docked the ligand L-ornithine into the computational structure to search for the favorable binding mode. It was observed that the binding interaction for the most favorable binding mode is featured by six remarkable hydrogen bonds between the receptor and ligand, and that the most favorable binding mode shared the same ligand-binding site with most of the homologous mitochondrial carriers from different organisms, implying that the ligand-binding sites are quite conservative in the mitochondrial carriers family although their sequences similarity is very low with 20% or so. Moreover, according to our structural analysis, the relationship between the disease-causing mutations of human mitochondrial ornithine transporter-1 and the HHH syndrome can be classified into the following three categories: (i the mutation occurs in the pseudo-repeat regions so as to change the region of the protein closer to the mitochondrial matrix; (ii the mutation is directly affecting the substrate binding pocket so as to reduce the substrate binding affinity; (iii the mutation is located in the structural region closer to the intermembrane space that can significantly break the salt bridge networks of the protein. These findings may provide useful insights for in-depth understanding of the molecular mechanism of the HHH syndrome and

  4. De Novo Mutations in SLC25A24 Cause a Craniosynostosis Syndrome with Hypertrichosis, Progeroid Appearance, and Mitochondrial Dysfunction.

    Science.gov (United States)

    Ehmke, Nadja; Graul-Neumann, Luitgard; Smorag, Lukasz; Koenig, Rainer; Segebrecht, Lara; Magoulas, Pilar; Scaglia, Fernando; Kilic, Esra; Hennig, Anna F; Adolphs, Nicolai; Saha, Namrata; Fauler, Beatrix; Kalscheuer, Vera M; Hennig, Friederike; Altmüller, Janine; Netzer, Christian; Thiele, Holger; Nürnberg, Peter; Yigit, Gökhan; Jäger, Marten; Hecht, Jochen; Krüger, Ulrike; Mielke, Thorsten; Krawitz, Peter M; Horn, Denise; Schuelke, Markus; Mundlos, Stefan; Bacino, Carlos A; Bonnen, Penelope E; Wollnik, Bernd; Fischer-Zirnsak, Björn; Kornak, Uwe

    2017-11-02

    Gorlin-Chaudhry-Moss syndrome (GCMS) is a dysmorphic syndrome characterized by coronal craniosynostosis and severe midface hypoplasia, body and facial hypertrichosis, microphthalmia, short stature, and short distal phalanges. Variable lipoatrophy and cutis laxa are the basis for a progeroid appearance. Using exome and genome sequencing, we identified the recurrent de novo mutations c.650G>A (p.Arg217His) and c.649C>T (p.Arg217Cys) in SLC25A24 in five unrelated girls diagnosed with GCMS. Two of the girls had pronounced neonatal progeroid features and were initially diagnosed with Wiedemann-Rautenstrauch syndrome. SLC25A24 encodes a mitochondrial inner membrane ATP-Mg/P i carrier. In fibroblasts from affected individuals, the mutated SLC25A24 showed normal stability. In contrast to control cells, the probands' cells showed mitochondrial swelling, which was exacerbated upon treatment with hydrogen peroxide (H 2 O 2 ). The same effect was observed after overexpression of the mutant cDNA. Under normal culture conditions, the mitochondrial membrane potential of the probands' fibroblasts was intact, whereas ATP content in the mitochondrial matrix was lower than that in control cells. However, upon H 2 O 2 exposure, the membrane potential was significantly elevated in cells harboring the mutated SLC25A24. No reduction of mitochondrial DNA copy number was observed. These findings demonstrate that mitochondrial dysfunction with increased sensitivity to oxidative stress is due to the SLC25A24 mutations. Our results suggest that the SLC25A24 mutations induce a gain of pathological function and link mitochondrial ATP-Mg/P i transport to the development of skeletal and connective tissue. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  5. [Schinzel-Giedion syndrome: a new mutation in SETBP1].

    Science.gov (United States)

    López-González, V; Domingo-Jiménez, M R; Burglen, L; Ballesta-Martínez, M J; Whalen, S; Piñero-Fernández, J A; Guillén-Navarro, E

    2015-01-01

    Schinzel-Giedion syndrome (SGS) (#MIM 269150) is a rare genetic disorder characterized by very marked craniofacial dysmorphism, multiple congenital anomalies and severe intellectual disability. Most affected patients die in early childhood. SETBP1 was identified as the causative gene, but a limited number of patients with molecular confirmation have been reported to date. The case is reported of a 4 and a half year-old male patient, affected by SGS. SETBP1 sequencing analysis revealed the presence of a non-previously described mutation: c.2608G>T (p.Gly870Cys). The clinical features and differential diagnosis of this rare condition are reviewed. Dysmorphic features are strongly suggestive of SGS. Its clinical recognition is essential to enable an early diagnosis, a proper follow-up, and to provide the family with genetic counseling. To date, this is the seventeenth SGS patient published with SETBP1 mutation, and the first in Spain, helping to widen clinical and molecular knowledge of the disease. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  6. Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency (CMMRD) Syndrome

    NARCIS (Netherlands)

    van der Klift, Heleen M; Mensenkamp, Arjen R; Drost, Mark; Bik, Elsa C; Vos, Yvonne J; Gille, Hans J J P; Redeker, Bert E J W; Tiersma, Yvonne; Zonneveld, José B M; García, Encarna Gómez; Letteboer, Tom G W; Olderode-Berends, Maran J W; van Hest, Liselotte P; van Os, Theo A; Verhoef, Senno; Wagner, Anja; van Asperen, Christi J; Ten Broeke, Sanne W; Hes, Frederik J; de Wind, Niels; Nielsen, Maartje; Devilee, Peter; Ligtenberg, Marjolijn J L; Wijnen, Juul T; Tops, Carli M J

    2016-01-01

    Monoallelic PMS2 germline mutations cause 5-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional MMR deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA and RNA-based strategies are applied to

  7. Beneficial Outcome of Losartan Therapy Depends on Type of FBN1 Mutation in Marfan Syndrome.

    Science.gov (United States)

    Franken, Romy; den Hartog, Alexander W; Radonic, Teodora; Micha, Dimitra; Maugeri, Alessandra; van Dijk, Fleur S; Meijers-Heijboer, Hanne E; Timmermans, Janneke; Scholte, Arthur J; van den Berg, Maarten P; Groenink, Maarten; Mulder, Barbara J M; Zwinderman, Aeilko H; de Waard, Vivian; Pals, Gerard

    2015-04-01

    It has been shown that losartan reduces aortic dilatation in patients with Marfan syndrome. However, treatment response is highly variable. This study investigates losartan effectiveness in genetically classified subgroups. In this predefined substudy of COMPARE, Marfan patients were randomized to daily receive losartan 100 mg or no losartan. Aortic root dimensions were measured by MRI at baseline and after 3 years. FBN1 mutations were classified based on fibrillin-1 protein effect into (1) haploinsufficiency, decreased amount of normal fibrillin-1, or (2) dominant negative, normal fibrillin-1 abundance with mutant fibrillin-1 incorporated in the matrix. A pathogenic FBN1 mutation was found in 117 patients, of whom 79 patients were positive for a dominant negative mutation (67.5%) and 38 for a mutation causing haploinsufficiency (32.5%). Baseline characteristics between treatment groups were similar. Overall, losartan significantly reduced aortic root dilatation rate (no losartan, 1.3±1.5 mm/3 years, n=59 versus losartan, 0.8±1.4 mm/3 years, n=58; P=0.009). However, losartan reduced only aortic root dilatation rate in haploinsufficient patients (no losartan, 1.8±1.5 mm/3 years, n=21 versus losartan 0.5±0.8 mm/3 years, n=17; P=0.001) and not in dominant negative patients (no losartan, 1.2±1.7 mm/3 years, n=38 versus losartan 0.8±1.3 mm/3 years, n=41; P=0.197). Marfan patients with haploinsufficient FBN1 mutations seem to be more responsive to losartan therapy for inhibition of aortic root dilatation rate compared with dominant negative patients. Additional treatment strategies are needed in Marfan patients with dominant negative FBN1 mutations. http://www.trialregister.nl/trialreg/index.asp; Unique Identifier: NTR1423. © 2015 American Heart Association, Inc.

  8. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly

    NARCIS (Netherlands)

    Braun, Daniela A; Rao, Jia; Mollet, Geraldine; Schapiro, David; Daugeron, Marie-Claire; Tan, Weizhen; Gribouval, Olivier; Boyer, Olivia; Revy, Patrick; Jobst-Schwan, Tilman; Schmidt, Johanna Magdalena; Lawson, Jennifer A; Schanze, Denny; Ashraf, Shazia; Ullmann, Jeremy F P; Hoogstraten, Charlotte A; Boddaert, Nathalie; Collinet, Bruno; Martin, Gaëlle; Liger, Dominique; Lovric, Svjetlana; Furlano, Monica; Guerrera, I Chiara; Sanchez-Ferras, Oraly; Hu, Jennifer F; Boschat, Anne-Claire; Sanquer, Sylvia; Menten, Björn; Vergult, Sarah; De Rocker, Nina; Airik, Merlin; Hermle, Tobias; Shril, Shirlee; Widmeier, Eugen; Gee, Heon Yung; Choi, Won-Il; Sadowski, Carolin E; Pabst, Werner L; Warejko, Jillian K; Daga, Ankana; Basta, Tamara; Matejas, Verena; Scharmann, Karin; Kienast, Sandra D; Behnam, Babak; Beeson, Brendan; Begtrup, Amber; Bruce, Malcolm; Ch'ng, Gaik-Siew; Lin, Shuan-Pei; Chang, Jui-Hsing; Chen, Chao-Huei; Cho, Megan T; Gaffney, Patrick M; Gipson, Patrick E; Hsu, Chyong-Hsin; Kari, Jameela A; Ke, Yu-Yuan; Kiraly-Borri, Cathy; Lai, Wai-Ming; Lemyre, Emmanuelle; Littlejohn, Rebecca Okashah; Masri, Amira; Moghtaderi, Mastaneh; Nakamura, Kazuyuki; Ozaltin, Fatih; Praet, Marleen; Prasad, Chitra; Prytula, Agnieszka; Roeder, Elizabeth R; Rump, Patrick; Schnur, Rhonda E; Shiihara, Takashi; Sinha, Manish D; Soliman, Neveen A; Soulami, Kenza; Sweetser, David A; Tsai, Wen-Hui; Tsai, Jeng-Daw; Topaloglu, Rezan; Vester, Udo; Viskochil, David H; Vatanavicharn, Nithiwat; Waxler, Jessica L; Wierenga, Klaas J; Wolf, Matthias T F; Wong, Sik-Nin; Leidel, Sebastian A; Truglio, Gessica; Dedon, Peter C; Poduri, Annapurna; Mane, Shrikant; Lifton, Richard P; Bouchard, Maxime; Kannu, Peter; Chitayat, David; Magen, Daniella; Callewaert, Bert; van Tilbeurgh, Herman; Zenker, Martin; Antignac, Corinne; Hildebrandt, Friedhelm

    2017-01-01

    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS

  9. TP53 germline mutation testing in 180 families suspected of Li-Fraumeni syndrome: mutation detection rate and relative frequency of cancers in different familial phenotypes

    NARCIS (Netherlands)

    Ruijs, M.W.G.; Verhoef, S.; Rookus, M.A.; Pruntel, R.; van der Hout, A.H.; Hogervorst, F.B.L.; Kluijt, I.; Sijmons, R.H.; Aalfs, C.M.; Wagner, A.; Ausems, M.G.E.M.; Hoogerbrugge, N.; van Asperen, C.J.; Gómez García, E.B.; Meijers-Heijboer, H.; ten Kate, L.P.; Menko, F.H.; van 't Veer, L.J.

    2010-01-01

    Background Li-Fraumeni syndrome (LFS) is a rare autosomal dominant cancer predisposition syndrome. Most families fulfilling the classical diagnostic criteria harbour TP53 germline mutations. However, TP53 germline mutations may also occur in less obvious phenotypes. As a result, different criteria

  10. Electrophysiological characteristics of a SCN5A voltage sensors mutation R1629Q associated with Brugada syndrome.

    Directory of Open Access Journals (Sweden)

    Zhipeng Zeng

    Full Text Available Brugada syndrome (BrS is an inherited arrhythmogenic syndrome leading to sudden cardiac death, partially associated with autosomal dominant mutations in SCN5A, which encodes the cardiac sodium channel alpha-subunit (Nav1.5. To date some SCN5A mutations related with BrS have been identified in voltage sensor of Nav1.5. Here, we describe a dominant missense mutation (R1629Q localized in the fourth segment of domain IV region (DIV-S4 in a Chinese Han family. The mutation was identified by direct sequencing of SCN5A from the proband's DNA. Co-expression of Wild-type (WT or R1629Q Nav1.5 channel and hβ1 subunit were achieved in human embryonic kidney cells by transient transfection. Sodium currents were recorded using whole cell patch-clamp protocols. No significant changes between WT and R1629Q currents were observed in current density or steady-state activation. However, hyperpolarized shift of steady-state inactivation curve was identified in cells expressing R1629Q channel (WT: V1/2 = -81.1 ± 1.3 mV, n = 13; R1629Q: V1/2 = -101.7 ± 1.2 mV, n = 18. Moreover, R1629Q channel showed enhanced intermediate inactivation and prolonged recovery time from inactivation. In summary, this study reveals that R1629Q mutation causes a distinct loss-of-function of the channel due to alter its electrophysiological characteristics, and facilitates our understanding of biophysical mechanisms of BrS.

  11. A COLQ missense mutation in Labrador Retrievers having congenital myasthenic syndrome.

    Directory of Open Access Journals (Sweden)

    Caitlin J Rinz

    Full Text Available Congenital myasthenic syndromes (CMSs are heterogeneous neuromuscular disorders characterized by skeletal muscle weakness caused by disruption of signal transmission across the neuromuscular junction (NMJ. CMSs are rarely encountered in veterinary medicine, and causative mutations have only been identified in Old Danish Pointing Dogs and Brahman cattle to date. Herein, we characterize a novel CMS in 2 Labrador Retriever littermates with an early onset of marked generalized muscle weakness. Because the sire and dam share 2 recent common ancestors, CMS is likely the result of recessive alleles inherited identical by descent (IBD. Genome-wide SNP profiles generated from the Illumina HD array for 9 nuclear family members were used to determine genomic inheritance patterns in chromosomal regions encompassing 18 functional candidate genes. SNP haplotypes spanning 3 genes were consistent with autosomal recessive transmission, and microsatellite data showed that only the segment encompassing COLQ was inherited IBD. COLQ encodes the collagenous tail of acetylcholinesterase, the enzyme responsible for termination of signal transduction in the NMJ. Sequences from COLQ revealed a variant in exon 14 (c.1010T>C that results in the substitution of a conserved amino acid (I337T within the C-terminal domain. Both affected puppies were homozygous for this variant, and 16 relatives were heterozygous, while 288 unrelated Labrador Retrievers and 112 dogs of other breeds were wild-type. A recent study in which 2 human CMS patients were found to be homozygous for an identical COLQ mutation (c.1010T>C; I337T provides further evidence that this mutation is pathogenic. This report describes the first COLQ mutation in canine CMS and demonstrates the utility of SNP profiles from nuclear family members for the identification of private mutations.

  12. ATP6V0A2 mutations present in two Mexican Mestizo children with an autosomal recessive cutis laxa syndrome type IIA

    Directory of Open Access Journals (Sweden)

    D. Bahena-Bahena

    2014-01-01

    Full Text Available Patients with ARCL-IIA harbor mutations in ATP6V0A2 that codes for an organelle proton pump. The ARCL-IIA syndrome characteristically presents a combined glycosylation defect affecting N-linked and O-linked glycosylations, differentiating it from other cutis laxa syndromes and classifying it as a Congenital Disorder of Glycosylation (ATP6V0A2-CDG. We studied two Mexican Mestizo patients with a clinical phenotype corresponding to an ARCL-IIA syndrome. Both patients presented abnormal transferrin (N-linked glycosylation but Patient 1 had a normal ApoCIII (O-linked glycosylation profile. Mutational screening of ATP6V0A2 using cDNA and genomic DNA revealed in Patient 1 a previously reported homozygous nonsense mutation c.187C>T (p.R63X associated with a novel clinical finding of a VSD. In Patient 2 we found a homozygous c.2293C>T (p.Q765X mutation that had been previously reported but found that it also altered RNA processing generating a novel transcript not previously identified (r.2176_2293del; p.F726Sfs*10. This is the first report to describe Mestizo patients with molecular diagnosis of ARCL-IIA/ATP6V0A2-CDG and to establish that their mutations are the first to be found in patients from different regions of the world and with different genetic backgrounds.

  13. CLINICAL PRESENTATION AND DISEASE COURSE OF USHER SYNDROME BECAUSE OF MUTATIONS IN MYO7A OR USH2A.

    Science.gov (United States)

    Testa, Francesco; Melillo, Paolo; Bonnet, Crystel; Marcelli, Vincenzo; de Benedictis, Antonella; Colucci, Raffaella; Gallo, Beatrice; Kurtenbach, Anne; Rossi, Settimio; Marciano, Elio; Auricchio, Alberto; Petit, Christine; Zrenner, Eberhart; Simonelli, Francesca

    2017-08-01

    To evaluate differences in the visual phenotype and natural history of Usher syndrome caused by mutations in MYO7A or USH2A, the most commonly affected genes of Usher syndrome Type I (USH1) and Type II (USH2), respectively. Eighty-eight patients with a clinical diagnosis of USH1 (26 patients) or USH2 (62 patients) were retrospectively evaluated. Of these, 48 patients had 2 disease-causing mutations in MYO7A (10 USH1 patients), USH2A (33 USH2 patients), and other USH (5 patients) genes. Clinical investigation included best-corrected visual acuity, Goldmann visual field, fundus photography, electroretinography, and audiologic and vestibular assessments. Longitudinal analysis was performed over a median follow-up time of 3.5 years. Patients carrying mutations in MYO7A had a younger age of onset of hearing and visual impairments than those carrying mutations in USH2A, leading to an earlier diagnosis of the disease in the former patients. Longitudinal analysis showed that visual acuity and visual field decreased more rapidly in subjects carrying MYO7A mutations than in those carrying USH2A mutations (mean annual exponential rates of decline of 3.92 vs. 3.44% and of 8.52 vs. 4.97%, respectively), and the former patients reached legal blindness on average 15 years earlier than the latter. The current study confirmed a more severe progression of the retinal disease in USH1 patients rather than in USH2 patients. Furthermore, most visual symptoms (i.e., night blindness, visual acuity worsening) occurred at an earlier age in USH1 patients carrying mutations in MYO7A.

  14. Plasma Screening for Progranulin Mutations in Patients with Progressive Supranuclear Palsy and Corticobasal Syndromes.

    Science.gov (United States)

    Galimberti, Daniela; Bertram, Kelly; Formica, Alessandra; Fenoglio, Chiara; Cioffi, Sara M G; Arighi, Andrea; Scarpini, Elio; Colosimo, Carlo

    2016-05-04

    Progranulin gene (GRN) mutations are characterized by heterogeneous presentations. Corticobasal syndrome (CBS) is often associated with GRN mutations, whereas association with progressive supranuclear palsy syndrome (PSPS) is rare. Plasma progranulin levels were evaluated in 34 patients, including 19 with PSPS, 12 with CBS, and 3 with mixed signs, with the purpose to screen for the presence of causal mutations, associated with low levels. We found undetectable levels in a patient with CBS. Sequencing confirmed the presence of the Thr272fs deletion. Progranulin mutation screening is suggested in cases of CBS, even in the absence of positive family history for dementia and/or movement disorders.

  15. Heterozygous Mutations in TREX1 Cause Familial Chilblain Lupus and Dominant Aicardi-Goutières Syndrome

    Science.gov (United States)

    Rice, Gillian; Newman, William G.; Dean, John; Patrick, Teresa; Parmar, Rekha; Flintoff, Kim; Robins, Peter; Harvey, Scott; Hollis, Thomas; O’Hara, Ann; Herrick, Ariane L.; Bowden, Andrew P.; Perrino, Fred W.; Lindahl, Tomas; Barnes, Deborah E.; Crow, Yanick J.

    2007-01-01

    TREX1 constitutes the major 3′→5′ DNA exonuclease activity measured in mammalian cells. Recently, biallelic mutations in TREX1 have been shown to cause Aicardi-Goutières syndrome at the AGS1 locus. Interestingly, Aicardi-Goutières syndrome shows overlap with systemic lupus erythematosus at both clinical and pathological levels. Here, we report a heterozygous TREX1 mutation causing familial chilblain lupus. Additionally, we describe a de novo heterozygous mutation, affecting a critical catalytic residue in TREX1, that results in typical Aicardi-Goutières syndrome. PMID:17357087

  16. Constitutional NRAS mutations are rare among patients with Noonan syndrome or juvenile myelomonocytic leukemia.

    Science.gov (United States)

    Kraoua, Lilia; Journel, Hubert; Bonnet, Philippe; Amiel, Jeanne; Pouvreau, Nathalie; Baumann, Clarisse; Verloes, Alain; Cavé, Hélène

    2012-10-01

    Recently, germline mutations of NRAS have been shown to be associated with Noonan syndrome (NS), a relatively common developmental disorder characterized by short stature, congenital heart disease, and distinctive facial features. We report on the mutational analysis of NRAS in a cohort of 125 French patients with NS and no known mutation for PTPN11, KRAS, SOS1, MEK1, MEK2, RAF1, BRAF, and SHOC2. The c.179G>A (p.G60E) mutation was identified in two patients with typical NS, confirming that NRAS germline mutations are a rare cause of this syndrome. We also screened our cohort of 95 patients with juvenile myelomonocytic leukemia (JMML). Among 17 patients with NRAS-mutated JMML, none had clinical features suggestive of NS. None of the 11 JMML patients for which germline DNA was available had a constitutional NRAS mutation. Copyright © 2012 Wiley Periodicals, Inc.

  17. A FBN1 mutation association with different phenotypes of Marfan syndrome in a Chinese family.

    Science.gov (United States)

    Li, Yapeng; Xu, Jianhua; Chen, Mingjie; Du, Binbin; Li, Qiaoli; Xing, Qinghe; Zhang, Yanzhou

    2016-09-01

    Previous studies demonstrated that patients with different FBN1 mutations often present more considerable phenotypic variation compared to different members of the related family carrying a same mutation. The purpose of our study was to identify pathogenic mutation and provide more information about genotype-phenotypic correlations in a large Chinese family with Marfan syndrome. 15 related family members from a Chinese 4-generation pedigree with Marfan syndrome underwent physical, ophthalmologic, radiological and cardiovascular examinations. The propositus has De Bakey III aortic dissection and didn't fulfill the revised Ghent criteria for Marfan syndrome. Nine family members have ectopia lentis and their echocardiogram was normal. Five other family members have no evidence of Marfan syndrome. Genomic DNA was isolated from blood leukocytes. The exome sequencing was employed on the propositus, then the Sanger sequencing was conducted for mutation verification in other 14 participants of this family. The causative mutation in FBN1 discovered in the propositus was a known heterozygous missense mutation, c.1633T>G (p.R545C), in exon 14 (NM 000138). This same mutation was also identified in all 9 ectopia lentis patients and one unaffected 8-year-old girl. However, the same mutation was not discovered in other 4 unaffected family members. Our data enhance the information of genotype-phenotype correlation owing to FBN1 mutations. To our current knowledge, we firstly reported that the same FBN1 mutation, c. 1633C>T (Arg545Cys), was detected simultaneously in three different cardinal phenotypes (ectopia lentis, aortic dissection and unaffected) within one family. The unaffected girl with FBN1 mutation may presumably represent a rare case of nonpenetrance. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Analyses of a novel SCN5A mutation (C1850S): conduction vs. repolarization disorder hypotheses in the Brugada syndrome

    DEFF Research Database (Denmark)

    Petitprez, Séverine; Jespersen, Thomas; Pruvot, Etienne

    2008-01-01

    S SCN5A mutation. METHODS AND RESULTS: SCN5A was screened for mutations in a male patient with type-1 BrS pattern ECG. Wild-type (WT) and mutant Na(v)1.5 channels were expressed in HEK293 cells. Sodium currents (I(Na)) were analysed using the whole-cell patch-clamp technique at 37 degrees C......AIMS: Brugada syndrome (BrS) is characterized by arrhythmias leading to sudden cardiac death. BrS is caused, in part, by mutations in the SCN5A gene, which encodes the sodium channel alpha-subunit Na(v)1.5. Here, we aimed to characterize the biophysical properties and consequences of a novel Br....... The electrophysiological effects of the mutation were simulated using the Luo-Rudy model, into which the transient outward current (I(to)) was incorporated. A new mutation (C1850S) was identified in the Na(v)1.5 C-terminal domain. In HEK293 cells, mutant I(Na) density was decreased by 62% at -20 mV. Inactivation of mutant...

  19. Lack of Mutation-histopathology Correlation in a Patient with Proteus Syndrome

    OpenAIRE

    Doucet, Meggie E.; Bloomhardt, Hadley M.; Moroz, Krzysztof; Lindhurst, Marjorie J.; Biesecker, Leslie G.

    2016-01-01

    Proteus syndrome (PS) is characterized by progressive, disproportionate, segmental overgrowth and tumor susceptibility caused by a somatic mosaic AKT1 activating mutation. Each individual has unique manifestations making this disorder extremely heterogeneous. We correlated three variables in 38 tissue samples from a patient who died with PS: the gross affection status, the microscopic affection status, and the mutation level. The AKT1 mutation was measured using a PCR-based RFLP assay. Thirte...

  20. A restricted spectrum of NRAS mutations causes Noonan syndrome

    NARCIS (Netherlands)

    Cirstea, Ion C.; Kutsche, Kerstin; Dvorsky, Radovan; Gremer, Lothar; Carta, Claudio; Horn, Denise; Roberts, Amy E.; Lepri, Francesca; Merbitz-Zahradnik, Torsten; Koenig, Rainer; Kratz, Christian P.; Pantaleoni, Francesca; Dentici, Maria L.; Joshi, Victoria A.; Kucherlapati, Raju S.; Mazzanti, Laura; Mundlos, Stefan; Patton, Michael A.; Silengo, Margherita Cirillo; Rossi, Cesare; Zampino, Giuseppe; Digilio, Cristina; Stuppia, Liborio; Seemanova, Eva; Pennacchio, Len A.; Gelb, Bruce D.; Dallapiccola, Bruno; Wittinghofer, Alfred; Ahmadian, Mohammad R.; Tartaglia, Marco; Zenker, Martin

    Noonan syndrome, a developmental disorder characterized by congenital heart defects, reduced growth, facial dysmorphism and variable cognitive deficits, is caused by constitutional dysregulation of the RAS-MAPK signaling pathway. Here we report that germline NRAS mutations conferring enhanced

  1. De novo dominant mutation of SOX10 gene in a Chinese family with Waardenburg syndrome type II.

    Science.gov (United States)

    Chen, Kaitian; Zong, Ling; Liu, Min; Zhan, Yuan; Wu, Xuan; Zou, Wenting; Jiang, Hongyan

    2014-06-01

    Waardenburg syndrome is a rare genetic disorder, inherited as an autosomal dominant trait. The condition is characterized by sensorineural hearing loss and pigment disturbances of the hair, skin, and iris. The de novo mutation in the SOX10 gene, responsible for Waardenburg syndrome type II, is rarely seen. The present study aimed to identify the genetic causes of Waardenburg syndrome type II in a Chinese family. Clinical and molecular evaluations were conducted in a Chinese family with Waardenburg syndrome type II. A novel SOX10 heterozygous c.259-260delCT mutation was identified. Heterozygosity was not observed in the parents and sister of the proband, indicating that the mutation has arisen de novo. The novel frameshift mutation, located in exon 3 of the SOX10 gene, disrupted normal amino acid coding from Leu87, leading to premature termination at nucleotide 396 (TGA). The high mobility group domain of SOX10 was inferred to be partially impaired. The novel heterozygous c.259-260delCT mutation in the SOX10 gene was considered to be the cause of Waardenburg syndrome in the proband. The clinical and genetic characterization of this family would help elucidate the genetic heterogeneity of SOX10 in Waardenburg syndrome type II. Moreover, the de novo pattern expanded the mutation data of SOX10. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Hypoparathyroidism, sensorineural deafness, and renal dysgenesis syndrome with a mutation

    Directory of Open Access Journals (Sweden)

    Yong Suk Shim

    2015-03-01

    Full Text Available Hypoparathyroidism, sensorineural deafness, and renal dysgenesis syndrome is an autosomal dominant disease caused by mutations in the GATA3 gene on chromosome 10p15. We identified a patient diagnosed with hypoparathyroidism who also had a family history of hypoparathyroidism and sensorineural deafness, present in the father. The patient was subsequently diagnosed and found to be a heterozygote for an insertion mutation c.255_256ins4 (GTGC in exon 2 of GATA3. His father was also confirmed to have the same mutation in GATA3.

  3. Noonan syndrome: Severe phenotype and PTPN11 mutations.

    Science.gov (United States)

    Carrasco Salas, Pilar; Gómez-Molina, Gertrudis; Carreto-Alba, Páxedes; Granell-Escobar, Reyes; Vázquez-Rico, Ignacio; León-Justel, Antonio

    2018-04-24

    Noonan syndrome (NS) is a genetic disorder characterized by a wide range of distinctive features and health problems. It caused in 50% of cases by missense mutations in PTPN11 gene. It has been postulated that it is possible to predict the disease course based into the impact of mutations on the protein. We report two cases of severe NS phenotype including hydrops fetalis. PTPN11 gene was studied in germinal cells of both patients by sequencing. Two different mutations (p.Gly503Arg and p.Met504Val) was detected in PTPN11 gene. These mutations have been reported previously, and when they were germinal variants, patients presented classic NS, NS with other malignancies and recently, p.Gly503Arg has been also observed in a patient with severe NS and hydrops fetalis, as our cases. Therefore, these observations shade light on that it is not always possibly to determine the genotype-phenotype relation based into the impact of mutations on the protein in NS patients with PTPN11 mutations. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  4. MELAS syndrome associated with a new mitochondrial tRNA-Val gene mutation (m.1616A>G).

    Science.gov (United States)

    Toyoshima, Yuka; Tanaka, Yuji; Satomi, Kazuo

    2017-09-11

    We describe the case of a 40-year-old-man with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, with cardiomyopathy and severe heart failure. He had a mitochondrial transfer RNA (tRNA) mutation (m.1616A>G) of the (tRNA-Val) gene, and it was not found in MELAS syndrome ever before. The presence of this newly observed tRNA-Val mutation (m.1616A>G) may induce multiple respiratory chain enzyme deficiencies and contribute to MELAS syndrome symptoms that are associated with mitochondrial DNA (mtDNA) mutations. We report that the pathognomonic symptom in MELAS syndrome caused by this newly observed mtDNA mutation may be rapid progression of cardiomyopathy and severe heart failure. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Nonsyndromic recessive deafness DFNB18 and Usher syndrome type IC are allelic mutations of USHIC.

    Science.gov (United States)

    Ahmed, Zubair M; Smith, Tenesha N; Riazuddin, Saima; Makishima, Tomoko; Ghosh, Manju; Bokhari, Sirosh; Menon, Puthezhath S N; Deshmukh, Dilip; Griffith, Andrew J; Riazuddin, Sheikh; Friedman, Thomas B; Wilcox, Edward R

    2002-06-01

    Human chromosome 11 harbors two Usher type I loci, USHIB and USHIC, which encode myosin VIIA and harmonin, respectively. The USHIC locus overlaps the reported critical interval for nonsyndromic deafness locus DFNB18. We found an IVS12+5G-->C mutation in the USHIC gene, which is associated with nonsyndromic recessive deafness ( DFNB18) segregating in the original family, S-11/12. No other disease-associated mutation was found in the other 27 exons or in the intron-exon boundaries, and the IVS12+5G-->C mutation was not present in 200 representative unaffected individuals ascertained from the same area of India. An exon-trapping assay with a construct harboring IVS12+5G-->C generated wildtype spliced mRNA having exons 11 and 12 and mRNA that skipped exon 12. We conclude that mutations of USHIC can cause both Usher syndrome type IC and nonsyndromic recessive deafness DFNB18.

  6. Phenotypic spectrum of STRA6 mutations: from Matthew-Wood syndrome to non-lethal anophthalmia.

    Science.gov (United States)

    Chassaing, Nicolas; Golzio, Christelle; Odent, Sylvie; Lequeux, Léopoldine; Vigouroux, Adeline; Martinovic-Bouriel, Jelena; Tiziano, Francesco Danilo; Masini, Lucia; Piro, Francesca; Maragliano, Giovanna; Delezoide, Anne-Lise; Attié-Bitach, Tania; Manouvrier-Hanu, Sylvie; Etchevers, Heather C; Calvas, Patrick

    2009-05-01

    Matthew-Wood, Spear, PDAC or MCOPS9 syndrome are alternative names used to refer to combinations of microphthalmia/anophthalmia, malformative cardiac defects, pulmonary dysgenesis, and diaphragmatic hernia. Recently, mutations in STRA6, encoding a membrane receptor for vitamin A-bearing plasma retinol binding protein, have been identified in such patients. We performed STRA6 molecular analysis in three fetuses and one child diagnosed with Matthew-Wood syndrome and in three siblings where two adult living brothers are affected with combinations of clinical anophthalmia, tetralogy of Fallot, and mental retardation. Among these patients, six novel mutations were identified, bringing the current total of known STRA6 mutations to seventeen. We extensively reviewed clinical data pertaining to all twenty-one reported patients with STRA6 mutations (the seven of this report and fourteen described elsewhere) and discuss additional features that may be part of the syndrome. The clinical spectrum associated with STRA6 deficiency is even more variable than initially described. Copyright 2009 Wiley-Liss, Inc.

  7. Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome.

    Science.gov (United States)

    Tsurusaki, Yoshinori; Okamoto, Nobuhiko; Ohashi, Hirofumi; Kosho, Tomoki; Imai, Yoko; Hibi-Ko, Yumiko; Kaname, Tadashi; Naritomi, Kenji; Kawame, Hiroshi; Wakui, Keiko; Fukushima, Yoshimitsu; Homma, Tomomi; Kato, Mitsuhiro; Hiraki, Yoko; Yamagata, Takanori; Yano, Shoji; Mizuno, Seiji; Sakazume, Satoru; Ishii, Takuma; Nagai, Toshiro; Shiina, Masaaki; Ogata, Kazuhiro; Ohta, Tohru; Niikawa, Norio; Miyatake, Satoko; Okada, Ippei; Mizuguchi, Takeshi; Doi, Hiroshi; Saitsu, Hirotomo; Miyake, Noriko; Matsumoto, Naomichi

    2012-03-18

    By exome sequencing, we found de novo SMARCB1 mutations in two of five individuals with typical Coffin-Siris syndrome (CSS), a rare autosomal dominant anomaly syndrome. As SMARCB1 encodes a subunit of the SWItch/Sucrose NonFermenting (SWI/SNF) complex, we screened 15 other genes encoding subunits of this complex in 23 individuals with CSS. Twenty affected individuals (87%) each had a germline mutation in one of six SWI/SNF subunit genes, including SMARCB1, SMARCA4, SMARCA2, SMARCE1, ARID1A and ARID1B.

  8. Mutation in filamin A causes periventricular heterotopia, developmental regression, and West syndrome in males.

    Science.gov (United States)

    Masruha, Marcelo R; Caboclo, Luis O S F; Carrete, Henrique; Cendes, Iscia L; Rodrigues, Murilo G; Garzon, Eliana; Yacubian, Elza M T; Sakamoto, Américo C; Sheen, Volney; Harney, Megan; Neal, Jason; Hill, R Sean; Bodell, Adria; Walsh, Christopher; Vilanova, Luiz C P

    2006-01-01

    Familial periventricular heterotopia (PH) represents a disorder of neuronal migration resulting in multiple gray-matter nodules along the lateral ventricular walls. Prior studies have shown that mutations in the filamin A (FLNA) gene can cause PH through an X-linked dominant pattern. Heterozygotic female patients usually remain asymptomatic until the second or third decade of life, when they may have predominantly focal seizures, whereas hemizygotic male fetuses typically die in utero. Recent studies have also reported mutations in FLNA in male patients with PH who are cognitively normal. We describe PH in three male siblings with PH due to FLNA, severe developmental regression, and West syndrome. The study includes the three affected brothers and their parents. Video-EEG recordings and magnetic resonance image (MRI) scanning were performed on all individuals. Mutations for FLNA were detected by using polymerase chain reaction (PCR) on genomic DNA followed by single-stranded conformational polymorphism (SSCP) analysis or sequencing. Two of the siblings are monozygotic twins, and all had West syndrome with hypsarrhythmia on EEG. MRI of the brain revealed periventricular nodules of cerebral gray-matter intensity, typical for PH. Mutational analyses demonstrated a cytosine-to-thymidine missense mutation (c. C1286T), resulting in a threonine-to-methionine amino acid substitution in exon 9 of the FLNA gene. The association between PH and West syndrome, to our knowledge, has not been previously reported. Males with PH have been known to harbor FLNA mutations, although uniformly, they either show early lethality or survive and have a normal intellect. The current studies show that FLNA mutations can cause periventricular heterotopia, developmental regression, and West syndrome in male patients, suggesting that this type of FLNA mutation may contribute to severe neurologic deficits.

  9. Noonan syndrome gain-of-function mutations in NRAS cause zebrafish gastrulation defects

    NARCIS (Netherlands)

    Runtuwene, V.J.; van Eekelen, M.J.L.; Overvoorde, J.; Rehmann, H.; Yntema, H.G.; Nillesen, W.M.; van Haeringen, A.; van der Burgt, I.; Burgering, B.; den Hertog, J.

    2011-01-01

    Noonan syndrome is a relatively common developmental disorder that is characterized by reduced growth, wide-set eyes and congenital heart defects. Noonan syndrome is associated with dysregulation of the Ras-mitogen-activated-protein-kinase (MAPK) signaling pathway. Recently, two mutations in NRAS

  10. MELAS syndrome, cardiomyopathy, rhabdomyolysis, and autism associated with the A3260G mitochondrial DNA mutation.

    Science.gov (United States)

    Connolly, Barbara S; Feigenbaum, Annette S J; Robinson, Brian H; Dipchand, Anne I; Simon, David K; Tarnopolsky, Mark A

    2010-11-12

    The A to G transition mutation at position 3260 of the mitochondrial genome is usually associated with cardiomyopathy and myopathy. One Japanese kindred reported the phenotype of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS syndrome) in association with the A3260G mtDNA mutation. We describe the first Caucasian cases of MELAS syndrome associated with the A3260G mutation. Furthermore, this mutation was associated with exercise-induced rhabdomyolysis, hearing loss, seizures, cardiomyopathy, and autism in the large kindred. We conclude that the A3260G mtDNA mutation is associated with wide phenotypic heterogeneity with MELAS and other "classical" mitochondrial phenotypes being manifestations. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Intrafamiliar clinical variability of circumferential skin creases Kunze type caused by a novel heterozygous mutation of N-terminal TUBB gene.

    Science.gov (United States)

    Dentici, M L; Terracciano, A; Bellacchio, E; Capolino, R; Novelli, A; Digilio, M C; Dallapiccola, B

    2018-02-10

    Circumferential skin creases Kunze type (CSC-KT; OMIM 156610, 616734) is a rare disorder characterized by folding of excess skin, which leads to ringed creases, known as Michelin Tire Baby Syndrome (MTBS). CSC-KT patients also exhibit facial dysmorphism, growth retardation, intellectual disability (ID) and multiple congenital malformations. Recently, 2 heterozygous mutations in TUBB gene and 4 mutations (both homozygous and heterozygous) in MAPRE2 gene were identified in 3 and 4 CSC-KT patients, respectively. In the 3 TUBB gene-related CSC-KT patients, all mutations fall in the N-terminal gene domain and were de novo. Mutations in the C-terminal of TUBB gene have been associated to microcephaly and structural brain malformation, in the absence of CSC-KT features. We report a 9-year-old boy with a diagnosis of CSC-KT based on MTBS, facial dysmorphism, microcephaly, severe ID, cortical atrophy and corpus callosum hypoplasia. Sanger sequencing identified a novel heterozygous c.218T>C (p.Met73Thr) mutation in the N-terminal of TUBB gene, that was inherited from the mother affected by isolated MTBS. This is the first report of inherited TUBB gene-related CSC-KT resulting from a novel heterozygous mutation in the N-terminal domain. Present data support the role of TUBB mutations in CSC-KT and definitely includes CSC-KT syndrome within the tubulinopathies. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. A patient with Dent disease and features of Bartter syndrome caused by a novel mutation of CLCN5.

    Science.gov (United States)

    Okamoto, Takayuki; Tajima, Toshihiro; Hirayama, Tomoya; Sasaki, Satoshi

    2012-02-01

    Dent disease is an X-linked tubulopathy mainly caused by inactivating mutations of CLCN5. Features of Bartter syndrome such as hypokalemic metabolic alkalosis are rarely observed in patients with Dent disease. We report a Japanese male patient with Dent disease who also manifested features of Bartter syndrome. At the age of 3 years, he was diagnosed with Dent disease based on low molecular weight proteinuria and hypercalciuria. One year later, he was found to have features of Bartter syndrome, i.e., hypokalemia and metabolic alkalosis, and high levels of plasma renin activity and aldosterone with a normal blood pressure. Despite medical interventions, he developed chronic kidney disease stage 3 at the age of 21 years. To investigate the molecular basis of his disease, CLCN5, KCNJ1, SLC12A1, and CLCkb were analyzed and a novel mutation (Y567X) in CLCN5 was identified. Hypokalemic metabolic alkalosis is a rare manifestation in Dent disease. It is speculated that Dent patients with features of Bartter syndrome are susceptible to progression to renal failure. To study this hypothesis, additional observations and long-term follow-up of such patients are necessary.

  13. Identification of Germline Genetic Mutations in Pancreatic Cancer Patients

    Science.gov (United States)

    Salo-Mullen, Erin E.; O’Reilly, Eileen; Kelsen, David; Ashraf, Asad M.; Lowery, Maeve; Yu, Kenneth; Reidy, Diane; Epstein, Andrew S.; Lincoln, Anne; Saldia, Amethyst; Jacobs, Lauren M.; Rau-Murthy, Rohini; Zhang, Liying; Kurtz, Robert; Saltz, Leonard; Offit, Kenneth; Robson, Mark; Stadler, Zsofia K.

    2016-01-01

    Background Pancreatic adenocarcinoma (PAC) is part of several cancer predisposition syndromes; however, indications for genetic counseling/testing are not well-defined. We sought to determine mutation prevalence and characteristics that predict for inherited predisposition to PAC. Methods We identified 175 consecutive PAC patients who underwent clinical genetics assessment at Memorial Sloan Kettering between 2011–2014. Clinical data, family history, and germline results were evaluated. Results Among 159 PAC patients who pursued genetic testing, 24 pathogenic mutations were identified (15.1%; 95%CI, 9.5%–20.7%), including BRCA2(n=13), BRCA1(n=4), p16(n=2), PALB2(n=1), and Lynch syndrome(n=4). BRCA1/BRCA2 prevalence was 13.7% in Ashkenazi Jewish(AJ) (n=95) and 7.1% in non-AJ(n=56) patients. In AJ patients with strong, weak, or absent family history of BRCA-associated cancers, mutation prevalence was 16.7%, 15.8%, and 7.4%, respectively. Mean age at diagnosis in all mutation carriers was 58.5y(range 45–75y) compared to 64y(range 27–87y) in non-mutation carriers(P=0.02). Although BRCA2 was the most common mutation identified, no patients with early-onset PAC(≤50y) harbored a BRCA2 mutation and the mean age at diagnosis in BRCA2 carriers was equivalent to non-mutation carriers(P=0.34). Mutation prevalence in early-onset patients(n=21) was 28.6%, including BRCA1(n=2), p16(n=2), MSH2(n=1) and MLH1(n=1). Conclusion Mutations in BRCA2 account for over 50% of PAC patients with an identified susceptibility syndrome. AJ patients had high BRCA1/BRCA2 prevalence regardless of personal/family history, suggesting that ancestry alone indicates a need for genetic evaluation. With the exception of BRCA2-associated PAC, inherited predisposition to PAC is associated with earlier age at PAC diagnosis suggesting that this subset of patients may also represent a population warranting further evaluation. PMID:26440929

  14. Norrie-Warburg syndrome: two novel mutations in patients with classical clinical phenotype.

    Science.gov (United States)

    Gal, A; Veske, A; Jojart, G; Grammatico, B; Huber, B; Gu, S; del Porto, G; Senyi, K

    1996-01-01

    Norrie-Warburg syndrome (NWS) is a rare X-linked disorder characterized by blindness, which is invariable, deafness and mental disturbances, which are present occasionally. We describe here two novel mutations, a missense mutation (C126S) and a 1-base pair insertion (insT466/T467), together with a recurrent mutation (M1V), found in patients presenting with the classical clinical phenotype of NWS. All three mutations are likely to result in prominent structural changes of the norrin protein.

  15. Whole exome sequencing identifies mutations in Usher syndrome genes in profoundly deaf Tunisian patients.

    Science.gov (United States)

    Riahi, Zied; Bonnet, Crystel; Zainine, Rim; Lahbib, Saida; Bouyacoub, Yosra; Bechraoui, Rym; Marrakchi, Jihène; Hardelin, Jean-Pierre; Louha, Malek; Largueche, Leila; Ben Yahia, Salim; Kheirallah, Moncef; Elmatri, Leila; Besbes, Ghazi; Abdelhak, Sonia; Petit, Christine

    2015-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3) are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys), in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24), and a nonsense mutation, c.52A>T (p.Lys18*). Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss.

  16. Whole exome sequencing identifies mutations in Usher syndrome genes in profoundly deaf Tunisian patients.

    Directory of Open Access Journals (Sweden)

    Zied Riahi

    Full Text Available Usher syndrome (USH is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3 are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys, in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24, and a nonsense mutation, c.52A>T (p.Lys18*. Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss.

  17. Neonatal Marfan syndrome caused by an exon 25 mutation of the fibrillin-1 gene.

    Science.gov (United States)

    Elçioglu, N H; Akalin, F; Elçioglu, M; Comeglio, P; Child, A H

    2004-01-01

    Neonatal Marfan syndrome caused by an exon 25 mutation of the Fibrillin-1 gene: We describe a male infant with severe arachnodactyly, hypermobility of the fingers, flexion contractures of elbows, wrists, hips, and knees, microretrognathia, crumpled ears, rockerbottom feet, loose redundant skin, and lens dislocations. Cardiac valve insufficiency and aortic dilatation resulted in cardiac failure, decompensated with digitalisation and death occurred at the age of 4 months. This case represents the severe end of the clinical spectrum of Marfan syndrome, namely neonatal Marfan syndrome. Molecular diagnostic analyses confirmed a de novo exon 25 mutation in the FBN1 gene.

  18. A Mosaic Activating Mutation in AKT1 Associated with the Proteus Syndrome

    NARCIS (Netherlands)

    Lindhurst, Marjorie J.; Sapp, Julie C.; Teer, Jamie K.; Johnston, Jennifer J.; Finn, Erin M.; Peters, Kathryn; Turner, Joyce; Cannons, Jennifer L.; Bick, David; Blakemore, Laurel; Blumhorst, Catherine; Brockmann, Knut; Calder, Peter; Cherman, Natasha; Deardorff, Matthew A.; Everman, David B.; Golas, Gretchen; Greenstein, Robert M.; Kato, B. Maya; Keppler-Noreuil, Kim M.; Kuznetsov, Sergei A.; Miyamoto, Richard T.; Newman, Kurt; Ng, David; O'Brien, Kevin; Rothenberg, Steven; Schwartzentruber, Douglas J.; Singhal, Virender; Tirabosco, Roberto; Upton, Joseph; Wientroub, Shlomo; Zackai, Elaine H.; Hoag, Kimberly; Whitewood-Neal, Tracey; Robey, Pamela G.; Schwartzberg, Pamela L.; Darling, Thomas N.; Tosi, Laura L.; Mullikin, James C.; Biesecker, Leslie G.

    2011-01-01

    BACKGROUND The Proteus syndrome is characterized by the overgrowth of skin, connective tissue, brain, and other tissues. It has been hypothesized that the syndrome is caused by somatic mosaicism for a mutation that is lethal in the nonmosaic state. METHODS We performed exome sequencing of DNA from

  19. HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy.

    Science.gov (United States)

    Estep, Anne L; Tidyman, William E; Teitell, Michael A; Cotter, Philip D; Rauen, Katherine A

    2006-01-01

    Costello syndrome (CS) is a complex developmental disorder involving characteristic craniofacial features, failure to thrive, developmental delay, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Based on similarities with other cancer syndromes, we previously hypothesized that CS is likely due to activation of signal transduction through the Ras/MAPK pathway [Tartaglia et al., 2003]. In this study, the HRAS coding region was sequenced for mutations in a large, well-characterized cohort of 36 CS patients. Heterogeneous missense point mutations predicting an amino acid substitution were identified in 33/36 (92%) patients. The majority (91%) had a 34G --> A transition in codon 12. Less frequent mutations included 35G --> C (codon 12) and 37G --> T (codon 13). Parental samples did not have an HRAS mutation supporting the hypothesis of de novo heterogeneous mutations. There is phenotypic variability among patients with a 34G --> A transition. The most consistent features included characteristic facies and skin, failure to thrive, developmental delay, musculoskeletal abnormalities, visual impairment, cardiac abnormalities, and generalized hyperpigmentation. The two patients with 35G --> C had cardiac arrhythmias whereas one patient with a 37G --> T transversion had an enlarged aortic root. Of the patients with a clinical diagnosis of CS, neoplasia was the most consistent phenotypic feature for predicating an HRAS mutation. To gain an understanding of the relationship between constitutional HRAS mutations and malignancy, HRAS was sequenced in an advanced biphasic rhabdomyosarcoma/fibrosarcoma from an individual with a 34G --> A mutation. Loss of the wild-type HRAS allele was observed, suggesting tumorigenesis in CS patients is accompanied by additional somatic changes affecting HRAS. Finally, due to phenotypic overlap between CS and cardio-facio-cutaneous (CFC) syndromes, the HRAS coding region was sequenced in a well-characterized CFC cohort

  20. A novel Noonan syndrome RAF1 mutation: lethal course in a preterm infant

    Directory of Open Access Journals (Sweden)

    Ana Ratola

    2015-06-01

    Full Text Available Noonan syndrome is a relatively common and heterogeneous genetic disorder, associated with congenital heart defect in about 50% of the cases. If the defect is not severe, life expectancy is normal. We report a case of Noonan syndrome in a preterm infant with hypertrophic cardiomyopathy and lethal outcome associated to acute respiratory distress syndrome caused by Adenovirus pneumonia. A novel mutation in the RAF1 gene was identified: c.782C>G (p.Pro261Arg in heterozygosity, not described previously in the literature. Consequently, the common clinical course in this mutation and its respective contribution to the early fatal outcome is unknown. No conclusion can be established regarding genotype/phenotype correlation.

  1. Potential hot spot for de novo mutations in PTCH1 gene in Gorlin syndrome patients: a case report of twins from Croatia.

    Science.gov (United States)

    Musani, Vesna; Ozretić, Petar; Trnski, Diana; Sabol, Maja; Poduje, Sanja; Tošić, Mateja; Šitum, Mirna; Levanat, Sonja

    2018-02-28

    We describe a case of twins with sporadic Gorlin syndrome. Both twins had common Gorlin syndrome features including calcification of the falx cerebri, multiple jaw keratocysts, and multiple basal cell carcinomas, but with different expressivity. One brother also had benign testicular mesothelioma. We propose this tumor type as a possible new feature of Gorlin syndrome. Gorlin syndrome is a rare autosomal dominant disorder characterized by both developmental abnormalities and cancer predisposition, with variable expression of various developmental abnormalities and different types of tumors. The syndrome is primarily caused by mutations in the Patched 1 (PTCH1) gene, although rare mutations of Patched 2 (PTCH2) or Suppressor of Fused (SUFU) genes have also been found. Neither founder mutations nor hot spot locations have been described for PTCH1 in Gorlin syndrome patients. Although de novo mutations of the PTCH1 gene occur in almost 50% of Gorlin syndrome cases, there are a few recurrent mutations. Our twin patients were carriers of a de novo mutation in the PTCH1 gene, c.3364_3365delAT (p.Met1122ValfsX22). This is, to our knowledge, the first Gorlin syndrome-causing mutation that has been reported four independent times in distant geographical locations. Therefore, we propose the location of the described mutation as a potential hot spot for mutations in PTCH1.

  2. WS1 gene mutation analysis of Wolfram syndrome in a Chinese patient and a systematic review of literatures.

    Science.gov (United States)

    Yu, Guang; Yu, Man-li; Wang, Jia-feng; Gao, Cong-rong; Chen, Zhong-jin

    2010-10-01

    Wolfram syndrome is a rare hereditary disease characterized by diabetes mellitus and optic atrophy. The outcome of this disease is always poor. WFS1 gene mutation is the main cause of this disease. A patient with diabetes mellitus, diabetes insipidus, renal tract disorder, psychiatric abnormality, and cataract was diagnosed with Wolfram syndrome. Mutations in open reading frame (ORF) of WFS1 gene was analyzed by sequencing. Mutations in WFS1 gene was also summarized by a systematic review in Pubmed and Chinese biological and medical database. Sequencing of WFS1 gene in this patient showed a new mutation, 1962G>A, and two other non-sense mutations, 2433A>G and 2565G>A. Systematic review included 219 patients in total and identified 172 WFS1 gene mutations, most of which were located in Exon 8. These mutations in WFS1 gene might be useful in prenatal diagnosis of Wolfram syndrome.

  3. Novel PSTPIP1 gene mutation in a patient with pyogenic arthritis, pyoderma gangrenosum and acne (PAPA) syndrome.

    Science.gov (United States)

    Lindwall, Elvira; Singla, Shikha; Davis, William E; Quinet, Robert J

    2015-08-01

    Pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome is a rare autosomal dominant disease that usually presents in childhood with recurrent sterile arthritis. As the child ages into puberty, cutaneous features develop and arthritis subsides. We report the case of a now 25-year-old male patient with PAPA syndrome with the E250K mutation in PSTPIP1. We also present a systematic literature review of other PAPA cases. We conducted a literature search of PubMed using the following search terms: E250K mutation, PSTPIP1, and PAPA. PAPA syndrome is caused by mutations on chromosome 15q affecting the proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1) gene, also known as CD2-binding protein 1 (CD2BP1). The reported cases of PAPA syndrome currently in the literature involve mutations in A230T and E250Q. One case of a novel E250K mutation has been reported, which presented with a different phenotype to previously described cases of PAPA syndrome. With variation present between disease presentations from case to case, it is possible that the spectrum of PAPA syndrome is wider than currently thought. Further research is needed which may uncover an as-yet undiscovered genetic abnormality linking these interrelated diseases together. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. MSX1 Mutation in Witkop Syndrome; A Case Report

    Directory of Open Access Journals (Sweden)

    Faezeh Ghaderi

    2013-06-01

    Full Text Available The Witkop syndrome is a rare autosomal dominant disorder characterized by the absence of several teeth and abnormalities of the nails. This is the first report of a rare genetic tooth and nail syndrome diagnosed in a 2.5-year-old boy with early exfoliation of the primary canine, absence of the primary incisors, and nail dysplasia. A homozygous mutation was identified in 3’-UTR of MSX1 gene in the proband. The parents of the patient had no dental and nail anomalies.

  5. [Mutation screening of MITF gene in patients with Waardenburg syndrome type 2].

    Science.gov (United States)

    Chen, Jing; Yang, Shu-Zhi; Liu, Jun; Han, Bing; Wang, Guo-Jian; Zhang, Xin; Kang, Dong-Yang; Dai, Pu; Young, Wie-Yen; Yuan, Hui-Jun

    2008-04-01

    Warrgenburg syndrome type 2 (WS2) is the most common autosomal dominantly-inherited syndrome with hearing loss. MITF (microphthalmia associated transcription factor)is a basic-helix-loop-helix-luecine zipper (bHLHZip) factor which regulates expression of tyrosinase, and is involved in melanocyte differentiation. Mutations in MITF associated with WS2 have been identified in some but not all affected families. Here, we report a three-generation Chinese family with a point mutation in the MITF gene causing WS2. The proband exhibits congenital severe sensorineural hearing loss, heterochromia iridis and facial freckles. One of family members manifests sensorineural deafness, and the other patients show premature greying or/and freckles. This mutation, heterozygous deletion c.639delA, creates a stop codon in exon 7 and is predicted to result in a truncated protein lacking normal interaction with its target DNA motif. This mutation is a novel mutation and the third case identified in exon 7 of MITF in WS2. Though there is only one base pair distance between this novel mutation and the other two documented cases and similar amino acids change, significant difference is seen in clinical phenotype, which suggests genetic background may play an important role.

  6. Prenatal diagnosis and genetic counseling in a case of spina bifida in a family with Waardenburg syndrome type I.

    Science.gov (United States)

    Kujat, Annegret; Veith, Veit-Peter; Faber, Renaldo; Froster, Ursula G

    2007-01-01

    Waardenburg syndrome type I (WS I) is an autosomal dominant inherited disorder with an incidence of 1:45,000 in Europe. Mutations within the PAX3 gene are responsible for the clinical phenotype ranging from mild facial features to severe malformations detectable in prenatal diagnosis. Here, we report a four-generation family with several affected members showing various symptoms of WS I. We diagnosed the syndrome first in a pregnant young woman; she was referred because of a spina bifida in prenatal diagnosis. We performed clinical genetic investigations and molecular genetic analysis in all available family members. The phenotype displays a wide intra-familial clinical variability of pigmentary disturbances, facial anomalies and developmental defects. Molecular studies identified a novel splice site mutation within the PAX3 gene in intron 5 in all affected family members, but in none of the unaffected relatives. This case demonstrates the prenatal diagnosis of spina bifida in a fetus which leads to the initial diagnosis of WS I. Further studies could identify a private splice site mutation within the PAX3 gene responsible for the phenotype in this family.

  7. N-isopropyl-p-[123I]iodoamphetamine SPECT in MELAS syndrome: Comparison with CT and MR imaging

    International Nuclear Information System (INIS)

    Satoh, M.; Ishikawa, N.; Yoshizawa, T.; Takeda, T.; Akisada, M.

    1991-01-01

    Regional cerebral perfusion was studied in three patients with the mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, using single photon emission computed tomography (SPECT) with N-isopropyl-p-[123I]iodoamphetamine (IMP). Accumulation of the tracer was relatively decreased in the parietooccipital regions and also in the frontotemporal regions after stroke-like episodes. However, quantitative regional cerebral blood flow (rCBF) measurement showed that rCBF was relatively well preserved even at these sites, and a hyperemic state was observed at the sites of normal accumulation. IMP SPECT may be useful in the diagnosis and assessment of the progress of the MELAS syndrome

  8. Defining functional classes of Barth syndrome mutation in humans

    NARCIS (Netherlands)

    Lu, Ya-Wen; Galbraith, Laura; Herndon, Jenny D.; Lu, Ya-Lin; Pras-Raves, Mia; Vervaart, Martin; van Kampen, Antoine; Luyf, Angela; Koehler, Carla M.; McCaffery, J. Michael; Gottlieb, Eyal; Vaz, Frederic M.; Claypool, Steven M.

    2016-01-01

    The X-linked disease Barth syndrome (BTHS) is caused by mutations in TAZ; TAZ is the main determinant of the final acyl chain composition of the mitochondrial-specific phospholipid, cardiolipin. To date, a detailed characterization of endogenous TAZ has only been performed in yeast. Further, why a

  9. Homozygous EDNRB mutation in a patient with Waardenburg syndrome type 1.

    Science.gov (United States)

    Morimoto, Noriko; Mutai, Hideki; Namba, Kazunori; Kaneko, Hiroki; Kosaki, Rika; Matsunaga, Tatsuo

    2018-04-01

    To examine and expand the genetic spectrum of Waardenburg syndrome type 1 (WS1). Clinical features related to Waardenburg syndrome (WS) were examined in a five-year old patient. Mutation analysis of genes related to WS was performed in the proband and her parents. Molecular modeling of EDNRB and the p.R319W mutant was conducted to predict the pathogenicity of the mutation. The proband showed sensorineural hearing loss, heterochromia iridis, and dystopia canthorum, fulfilling the clinical criteria of WS1. Genetic analyses revealed that the proband had no mutation in PAX3 which has been known as the cause of WS1, but had a homozygous missense mutation (p.R319W) in endothelin receptor type B (EDNRB) gene. The asymptomatic parents had the mutation in a heterozygote state. This mutation has been previously reported in a heterozygous state in a patient with Hirschsprung's disease unaccompanied by WS, but the patient and her parents did not show any symptoms in gastrointestinal tract. Molecular modeling of EDNRB with the p.R319W mutation demonstrated reduction of the positively charged surface area in this region, which might reduce binding ability of EDNRB to G protein and lead to abnormal signal transduction underlying the WS phenotype. Our findings suggested that autosomal recessive mutation in EDNRB may underlie a part of WS1 with the current diagnostic criteria, and supported that Hirschsprung's disease is a multifactorial genetic disease which requires additional factors. Further molecular analysis is necessary to elucidate the gene interaction and to reappraise the current WS classification. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Phenotype and genotype in 17 patients with Goltz-Gorlin syndrome.

    Science.gov (United States)

    Maas, S M; Lombardi, M P; van Essen, A J; Wakeling, E L; Castle, B; Temple, I K; Kumar, V K A; Writzl, K; Hennekam, Raoul C M

    2009-10-01

    Goltz-Gorlin syndrome or focal dermal hypoplasia is a highly variable, X-linked dominant syndrome with abnormalities of ectodermal and mesodermal origin. In 2007, mutations in the PORCN gene were found to be causative in Goltz-Gorlin syndrome. A series of 17 patients with Goltz-Gorlin syndrome is reported on, and their phenotype and genotype are described. In 14 patients (13 females and one male), a PORCN mutation was found. Mutations included nonsense (n = 5), frameshift (n = 2), aberrant splicing (n = 2) and missense (n = 5) mutations. No genotype-phenotype correlation was found. All patients with the classical features of the syndrome had a detectable mutation. In three females with atypical signs, no mutation was found. The male patient had classical features and showed mosaicism for a PORCN nonsense mutation in fibroblasts. Two affected sisters had a mutation not detectable in their parents, supporting germline mosaicism. Their father had undergone radiation for testicular cancer in the past. Two classically affected females had three severely affected female fetuses which all had midline thoracic and abdominal wall defects, resembling the pentalogy of Cantrell and the limb-body wall complex. Thoracic and abdominal wall defects were also present in two surviving patients. PORCN mutations can possibly cause pentalogy of Cantrell and limb-body wall complexes as well. Therefore, particularly in cases with limb defects, it seems useful to search for these. PORCN mutations can be found in all classically affected cases of Goltz-Gorlin syndrome, including males. Somatic and germline mosaicism occur. There is no evident genotype-phenotype correlation.

  11. Clinical spectrum and molecular diagnosis of Angelman and Prader-Willi syndrome patients with an imprinting mutation

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, S.; Cassidy, S.B.; Conroy, J.M. [Univ. of Hospitals of Cleveland, OH (United States)] [and others

    1997-01-20

    Recent studies have identified a new class of Prader-Willi syndrome (PWS) and Angelman syndrome (AS) patients who have biparental inheritance, but neither the typical deletion nor uniparental disomy (UPD) or translocation. However, these patients have uniparental DNA methylation throughout 15q11-q13, and thus appear to have a mutation in the imprinting process for this region. Here we describe detailed clinical findings of five AS imprinting mutation patients (three families) and two PWS imprinting mutation patients (one new family). All these patients have essentially the classical clinical phenotype for the respective syndrome, except that the incidence of microcephaly is lower in imprinting mutation AS patients than in deletion AS patients. Furthermore, imprinting mutation AS and PWS patients do not typically have hypopigmentation, which is commonly found in patients with the usual large deletion. Molecular diagnosis of these cases is initially achieved by DNA methylation analyses of the DN34/ZNF127, PW71 (D15S63), and SNRPN loci. The latter two probes have clear advantages in the simple molecular diagnostic analysis of PWS and AS patients with an imprinting mutation, as has been found for typical deletion or UPD PWS and AS cases. With the recent finding of inherited microdeletions in PWS and AS imprinting mutation families, our studies define a new class of these two syndromes. The clinical and molecular identification of these PWS and AS patients has important genetic counseling consequences. 49 refs., 4 figs., 3 tabs.

  12. Chronic constipation recognized as a sign of a SOX10 mutation in a patient with Waardenburg syndrome.

    Science.gov (United States)

    Arimoto, Yukiko; Namba, Kazunori; Nakano, Atsuko; Matsunaga, Tatsuo

    2014-05-01

    Waardenburg syndrome is characterized by hearing loss, pigmentation abnormalities, dysmorphologic features, and neurological phenotypes. Waardenburg syndrome consists of four distinct subtypes, and SOX10 mutations have been identified in type II and type IV. Type IV differs from type II owing to the presence of Hirschsprung disease. We identified a de novo nonsense mutation in SOX10 (p.G39X) in a female pediatric patient with Waardenburg syndrome with heterochromia iridis, profound bilateral sensorineural hearing loss, inner ear malformations, and overall hypopigmentation of the hair without dystopia canthorum. This patient has experienced chronic constipation since she was a neonate, but anorectal manometry showed a normal anorectal reflex. Chronic constipation in this patient was likely to be a consequence of a mild intestinal disorder owing to the SOX10 mutation, and this patient was considered to have a clinical phenotype intermediate between type II and type IV of the syndrome. Chronic constipation may be recognized as indicative of a SOX10 mutation in patients with Waardenburg syndrome. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Spectrum of mismatch repair gene mutations and clinical presentation of Hispanic individuals with Lynch syndrome.

    Science.gov (United States)

    Sunga, Annette Y; Ricker, Charité; Espenschied, Carin R; Castillo, Danielle; Melas, Marilena; Herzog, Josef; Bannon, Sarah; Cruz-Correa, Marcia; Lynch, Patrick; Solomon, Ilana; Gruber, Stephen B; Weitzel, Jeffrey N

    2017-04-01

    Lynch syndrome (LS), the most common hereditary colorectal cancer syndrome, is caused by mismatch repair (MMR) gene mutations. However, data about MMR mutations in Hispanics are limited. This study aims to describe the spectrum of MMR mutations in Hispanics with LS and explore ancestral origins. This case series involved an IRB-approved retrospective chart review of self-identified Hispanic patients (n = 397) seen for genetic cancer risk assessment at four collaborating academic institutions in California, Texas, and Puerto Rico who were evaluated by MMR genotyping and/or tumor analysis. A literature review was conducted for all mutations identified. Of those who underwent clinical genetic testing (n = 176), 71 had MMR gene mutations. Nine mutations were observed more than once. One third (3/9) of recurrent mutations and two additional mutations (seen only once) were previously reported in Spain, confirming the influence of Spanish ancestry on MMR mutations in Hispanic populations. The recurrent mutations identified (n = 9) included both previously reported mutations as well as unique mutations not in the literature. This is the largest report of Hispanic MMR mutations in North America; however, a larger sample and haplotype analyses are needed to better understand recurrent MMR mutations in Hispanic populations. Copyright © 2017. Published by Elsevier Inc.

  14. Novel mutations in the long isoform of the USH2A gene in patients with Usher syndrome type II or non-syndromic retinitis pigmentosa.

    Science.gov (United States)

    McGee, Terri L; Seyedahmadi, Babak Jian; Sweeney, Meredith O; Dryja, Thaddeus P; Berson, Eliot L

    2010-07-01

    Usher syndrome type II (USH2) is an autosomal recessive disorder characterised by retinitis pigmentosa (RP) and mild to moderate sensorineural hearing loss. Mutations in the USH2A gene are the most common cause of USH2 and are also a cause of some forms of RP without hearing loss (ie, non-syndromic RP). The USH2A gene was initially identified as a transcript comprised of 21 exons but subsequently a longer isoform containing 72 exons was identified. The 51 exons unique to the long isoform of USH2A were screened for mutations among a core set of 108 patients diagnosed with USH2 and 80 patients with non-syndromic RP who were all included in a previously reported screen of the short isoform of USH2A. For several exons, additional patients were screened. In total, 35 deleterious mutations were identified including 17 nonsense mutations, 9 frameshift mutations, 5 splice-site mutations, and 4 small in-frame deletions or insertions. Twenty-seven mutations were novel. In addition, 65 rare missense changes were identified. A method of classifying the deleterious effect of the missense changes was developed using the summed results of four different mutation assessment algorithms, SIFT, pMUT, PolyPhen, and AGVGD. This system classified 8 of the 65 changes as 'likely deleterious' and 9 as 'possibly deleterious'. At least one mutation was identified in 57-63% of USH2 cases and 19-23% of cases of non-syndromic recessive RP (calculated without and including probable/possible deleterious changes) thus supporting that USH2A is the most common known cause of RP in the USA.

  15. Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syndromes

    DEFF Research Database (Denmark)

    Duchatelet, Sabine; Ostergaard, Elsebet; Cortes, Dina

    2005-01-01

    Eiken syndrome is a rare autosomal recessive skeletal dysplasia. We identified a truncation mutation in the C-terminal cytoplasmic tail of the parathyroid hormone (PTH)/PTH-related peptide (PTHrP) type 1 receptor (PTHR1) gene as the cause of this syndrome. Eiken syndrome differs from Jansen...

  16. Neonatal pulmonary arterial hypertension and Noonan syndrome: two fatal cases with a specific RAF1 mutation.

    Science.gov (United States)

    Hopper, Rachel K; Feinstein, Jeffrey A; Manning, Melanie A; Benitz, William; Hudgins, Louanne

    2015-04-01

    Mutations in RAF1 are associated with Noonan syndrome and hypertrophic cardiomyopathy. We present two infants with Noonan syndrome and an identical RAF1 mutation, p.Ser257Leu (c.770C>T), who developed severe pulmonary arterial hypertension (PAH) that proved to be fatal. The RAF1 gene encodes Raf-1 kinase, part of the Ras/mitogen-activated kinase (MAPK) signaling pathway, which has been linked to the development of PAH. This specific mutation has been associated with dephosphorylation of a critical serine residue and constitutive activation of the Raf-1 kinase. These two cases suggest that abnormal activation of the Ras/MAPK pathway may play a significant role in the development of pulmonary vascular disease in the subset of patients with Noonan syndrome and a specific RAF1 mutation. © 2015 Wiley Periodicals, Inc.

  17. A novel NDUFV1 gene mutation in complex I deficiency in consanguineous siblings with brainstem lesions and Leigh syndrome.

    Science.gov (United States)

    Vilain, C; Rens, C; Aeby, A; Balériaux, D; Van Bogaert, P; Remiche, G; Smet, J; Van Coster, R; Abramowicz, M; Pirson, I

    2012-09-01

    Although deficiency of complex I of the mitochondrial respiratory chain is a frequent cause of encephalopathy in children, only a few mutations have been reported in each of its subunits. In the absence of families large enough for conclusive segregation analysis and of robust functional testing, it is difficult to unequivocally show the causality of the observed mutations and to delineate genotype-phenotype correlations, making additional observations necessary. We observed two consanguineous siblings with an early-onset encephalopathy, medulla, brainstem and mesencephalon lesions on brain magnetic resonance imaging and death before 8 months of age, caused by a complex I deficiency. We used a homozygosity mapping approach and identified a missense mutation in the NDUFV1 gene. The mutation, p.Arg386His, affects a highly conserved residue, contiguous to a cysteine residue known to coordinate an Fe ion. This observation adds to our understanding of complex I deficiency disease. It validates the important role of Arg386 and therefore supports the current molecular model of iron-sulfur clusters in NDUFV1. © 2011 John Wiley & Sons A/S.

  18. Identification and functional analysis of a novel mutation in the PAX3 gene associated with Waardenburg syndrome type I.

    Science.gov (United States)

    Niu, Zhijie; Li, Jiada; Tang, Fen; Sun, Jie; Wang, Xueping; Jiang, Lu; Mei, Lingyun; Chen, Hongsheng; Liu, Yalan; Cai, Xinzhang; Feng, Yong; He, Chufeng

    2018-02-05

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant genetic disorder of neural crest cells (NCC) characterized by congenital sensorineural hearing loss, dystopia canthorum, and abnormal iris pigmentation. WS1 is due to loss-of-function mutations in paired box gene 3 (PAX3). Here, we identified a novel PAX3 mutation (c.808C>G, p.R270G) in a three-generation Chinese family with WS1, and then analyzed its in vitro activities. The R270G PAX3 retained nuclear distribution and normal DNA-binding ability; however, it failed to activate MITF promoter, suggesting that haploinsufficiency may be the underlying mechanism for the mild WS1 phenotype of the study family. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [Study of gene mutation and pathogenetic mechanism for a family with Waardenburg syndrome].

    Science.gov (United States)

    Chen, Hongsheng; Liao, Xinbin; Liu, Yalan; He, Chufeng; Zhang, Hua; Jiang, Lu; Feng, Yong; Mei, Lingyun

    2017-08-10

    To explore the pathogenetic mechanism of a family affected with Waardenburg syndrome. Clinical data of the family was collected. Potential mutation of the MITF, SOX10 and SNAI2 genes were screened. Plasmids for wild type (WT) and mutant MITF proteins were constructed to determine their exogenous expression and subcellular distribution by Western blotting and immunofluorescence assay, respectively. A heterozygous c.763C>T (p.R255X) mutation was detected in exon 8 of the MITF gene in the proband and all other patients from the family. No pathological mutation of the SOX10 and SNAI2 genes was detected. The DNA sequences of plasmids of MITF wild and mutant MITF R255X were confirmed. Both proteins were detected with the expected size. WT MITF protein only localized in the nucleus, whereas R255X protein showed aberrant localization in the nucleus as well as the cytoplasm. The c.763C>T mutation of the MITF gene probably underlies the disease in this family. The mutation can affect the subcellular distribution of MITF proteins in vitro, which may shed light on the molecular mechanism of Waardenburg syndrome caused by mutations of the MITF gene.

  20. Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Diaz-Llopis Manuel

    2011-10-01

    Full Text Available Abstract Background Usher Syndrome type II (USH2 is an autosomal recessive disorder, characterized by moderate to severe hearing impairment and retinitis pigmentosa (RP. Among the three genes implicated, mutations in the USH2A gene account for 74-90% of the USH2 cases. Methods To identify the genetic cause of the disease and determine the frequency of USH2A mutations in a cohort of 88 unrelated USH Spanish patients, we carried out a mutation screening of the 72 coding exons of this gene by direct sequencing. Moreover, we performed functional minigene studies for those changes that were predicted to affect splicing. Results As a result, a total of 144 DNA sequence variants were identified. Based upon previous studies, allele frequencies, segregation analysis, bioinformatics' predictions and in vitro experiments, 37 variants (23 of them novel were classified as pathogenic mutations. Conclusions This report provide a wide spectrum of USH2A mutations and clinical features, including atypical Usher syndrome phenotypes resembling Usher syndrome type I. Considering only the patients clearly diagnosed with Usher syndrome type II, and results obtained in this and previous studies, we can state that mutations in USH2A are responsible for 76.1% of USH2 disease in patients of Spanish origin.

  1. The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome.

    Science.gov (United States)

    Garrity, Deborah M; Childs, Sarah; Fishman, Mark C

    2002-10-01

    Holt-Oram syndrome is one of the autosomal dominant human "heart-hand" disorders, with a combination of upper limb malformations and cardiac defects. Holt-Oram syndrome is caused by mutations in the TBX5 gene, a member of a large family of T-box transcription factors that play important roles in cell-type specification and morphogenesis. In a screen for mutations affecting zebrafish cardiac function, we isolated the recessive lethal mutant heartstrings, which lacks pectoral fins and exhibits severe cardiac dysfunction, beginning with a slow heart rate and progressing to a stretched, non-functional heart. We mapped and cloned the heartstrings mutation and find it to encode the zebrafish ortholog of the TBX5 gene. The heartstrings mutation causes premature termination at amino acid 316. Homozygous mutant embryos never develop pectoral fin buds and do not express several markers of early fin differentiation. The total absence of any fin bud differentiation distinguishes heartstrings from most other mutations that affect zebrafish fin development, suggesting that Tbx5 functions very early in the pectoral fin induction pathway. Moderate reduction of Tbx5 by morpholino causes fin malformations, revealing an additional early requirement for Tbx5 in coordinating the axes of fin outgrowth. The heart of heartstrings mutant embryos appears to form and function normally through the early heart tube stage, manifesting only a slight bradycardia compared with wild-type siblings. However, the heart fails to loop and then progressively deteriorates, a process affecting the ventricle as well as the atrium. Relative to mammals, fish require lower levels of Tbx5 to produce malformed appendages and display whole-heart rather than atrial-predominant cardiac defects. However, the syndromic deficiencies of tbx5 mutation are remarkably well retained between fish and mammals.

  2. Co-occurrence of hypertrophic cardiomyopathy and myeloproliferative disorder in a neonate with Noonan syndrome carrying Thr73Ile mutation in PTPN11.

    Science.gov (United States)

    Yagasaki, Hideaki; Nakane, Takaya; Hasebe, Youhei; Watanabe, Atsushi; Kise, Hiroaki; Toda, Takako; Koizumi, Keiichi; Hoshiai, Minako; Sugita, Kanji

    2015-12-01

    Most cases of Noonan syndrome (NS) result from mutations in one of the RAS-MAPK signaling genes, including PTPN11, SOS1, KRAS, NRAS, RAF1, BRAF, SHOC2, MEK1 (MAP2K1), and CBL. Cardiovascular diseases of varying severity, such as pulmonary stenosis and hypertrophic cardiomyopathy (HCM), are common in NS patients. RAF1 mutations are most frequent in NS with HCM, while PTPN11 mutations are also well known. Thr73Ile is a gain-of-function mutation of PTPN11, which has been highly associated with juvenile myelomonocytic leukemia and NS/myeloproliferative disease (MPD), but has not previously been reported in HCM. Here, we report a Japanese female infant with NS carrying the PTPN11 T73I mutation with NS/MPD, complete atrio-ventricular septal defect, and rapidly progressive HCM. No other HCM-related mutations were detected in PTPN11, RAF1, KRAS, BRAF, and SHOC2. This patient provides additional information regarding the genotype-phenotype correlation for PTPN11 T73I mutation in NS. © 2015 Wiley Periodicals, Inc.

  3. Whole exome sequencing identifies a POLRID mutation segregating in a father and two daughters with findings of Klippel-Feil and Treacher Collins syndromes.

    Science.gov (United States)

    Giampietro, Philip F; Armstrong, Linlea; Stoddard, Alex; Blank, Robert D; Livingston, Janet; Raggio, Cathy L; Rasmussen, Kristen; Pickart, Michael; Lorier, Rachel; Turner, Amy; Sund, Sarah; Sobrera, Nara; Neptune, Enid; Sweetser, David; Santiago-Cornier, Alberto; Broeckel, Ulrich

    2015-01-01

    We report on a father and his two daughters diagnosed with Klippel-Feil syndrome (KFS) but with craniofacial differences (zygomatic and mandibular hypoplasia and cleft palate) and external ear abnormalities suggestive of Treacher Collins syndrome (TCS). The diagnosis of KFS was favored, given that the neck anomalies were the predominant manifestations, and that the diagnosis predated later recognition of the association between spinal segmentation abnormalities and TCS. Genetic heterogeneity and the rarity of large families with KFS have limited the ability to identify mutations by traditional methods. Whole exome sequencing identified a nonsynonymous mutation in POLR1D (subunit of RNA polymerase I and II): exon2:c.T332C:p.L111P. Mutations in POLR1D are present in about 5% of individuals diagnosed with TCS. We propose that this mutation is causal in this family, suggesting a pathogenetic link between KFS and TCS. © 2014 Wiley Periodicals, Inc.

  4. Postprandial hyperglycemia corrected by IGF-I (Increlex®) in Laron syndrome.

    Science.gov (United States)

    Latrech, Hanane; Simon, Albane; Beltrand, Jacques; Souberbielle, Jean-Claude; Belmejdoub, Ghizlane; Polak, Michel

    2012-01-01

    Laron syndrome is caused by a mutation in the growth hormone (GH) receptor and manifests as insulin-like growth factor-I (IGF-I) deficiency, severe short stature, and early hypoglycemia. We report a case with postprandial hyperglycemia, an abnormality not reported previously. Postprandial hyperglycemia was due to chronic IGF-I deficiency, and was reversed by IGF-I replacement therapy. A Moroccan girl referred for short stature at 7 years and 8 months of age had dwarfism [height, 78 cm (-9 SDs); weight, 10 kg (-4 SDs)], hypoglycemia, and truncal obesity. Her serum IGF-I level was very low, and her baseline serum GH level was elevated to 47 mIU/l. Molecular analysis showed a homozygous mutation in the GH receptor gene. Continuous glucose monitoring before treatment showed asymptomatic hypoglycemia with postprandial hyperglycemia (2.5 g/l, 13.75 mmol/l). Treatment with recombinant human IGF-I (mecasermin, Increlex®) was started. The blood glucose profile improved with 0.04 µg/kg/day and returned to normal with 0.12 µg/kg/day. Postprandial hyperglycemia is a metabolic consequence of chronic IGF-I deficiency. The beneficial effect of IGF-I replacement therapy may be ascribable to improved postprandial transfer of glucose. Copyright © 2012 S. Karger AG, Basel.

  5. Visual Outcomes in Japanese Patients with Retinitis Pigmentosa and Usher Syndrome Caused by USH2A Mutations.

    Science.gov (United States)

    Nagase, Yasunori; Kurata, Kentaro; Hosono, Katsuhiro; Suto, Kimiko; Hikoya, Akiko; Nakanishi, Hiroshi; Mizuta, Kunihiro; Mineta, Hiroyuki; Minoshima, Shinsei; Hotta, Yoshihiro

    2017-07-05

    EYS and USH2A are the most common causative genes for retinitis pigmentosa (RP) in Japan. We determined the clinical outcomes for USH2A-related non-syndromic RP or Usher syndrome type II (USH2). Two non-syndromic RP and 11 USH2 patients with previously identified USH2A mutations were included. Their complete history and medical records were collected using standard procedures. Visual fields and acuity were compared with those of patients with EYS mutations. Clinical analyses were based on ophthalmic and otolaryngologic examinations. In all patients, the fundus displayed changes typical of RP. Most patients showed relatively well-preserved visual acuity in their thirties or forties, with rapid deterioration in their fifties. Concentric constriction started in the twenties or thirties, and no effective residual visual field was observed after the fifties. The visual outcome for non-syndromic RP or USH2 patients with USH2A mutations is consistent with that for RP patients with EYS mutations.

  6. Novel compound heterozygous MYO7A mutations in Moroccan families with autosomal recessive non-syndromic hearing loss.

    Directory of Open Access Journals (Sweden)

    Amina Bakhchane

    Full Text Available The MYO7A gene encodes a protein belonging to the unconventional myosin super family. Mutations within MYO7A can lead to either non syndromic hearing loss or to the Usher syndrome type 1B (USH1B. Here, we report the results of genetic analyses performed on Moroccan families with autosomal recessive non syndromic hearing loss that identified two families with compound heterozygous MYO7A mutations. Five mutations (c.6025delG, c.6229T>A, c.3500T>A, c.5617C>T and c.4487C>A were identified in these families, the latter presenting two differently affected branches. Multiple bioinformatics programs and molecular modelling predicted the pathogenic effect of these mutations. In conclusion, the absence of vestibular and retinal symptom in the affected patients suggests that these families have the isolated non-syndromic hearing loss DFNB2 (nonsyndromic autosomal recessive hearing loss presentation, instead of USH1B.

  7. Mutations in myosin VIIA (MYO7A) and usherin (USH2A) in Spanish patients with Usher syndrome types I and II, respectively.

    Science.gov (United States)

    Nájera, Carmen; Beneyto, Magdalena; Blanca, José; Aller, Elena; Fontcuberta, Ana; Millán, José María; Ayuso, Carmen

    2002-07-01

    Usher syndrome is an autosomal recessive disorder characterized by congenital hearing impairment and retinitis pigmentosa. Three clinical types are known (USH1, USH2 and USH3), and there is an extensive genetic heterogeneity, with at least ten genes implicated. The most frequently mutated genes are MYO7A, which causes USH1B, and usherin, which causes USH2A. We carried out a mutation analysis of these two genes in the Spanish population. Analysis of the MYO7A gene in patients from 30 USH1 families and sporadic cases identified 32% of disease alleles, with mutation Q821X being the most frequent. Most of the remaining variants are private mutations. With regard to USH2, mutation 2299delG was detected in 25% of the Spanish patients. Altogether the mutations detected in USH2A families account for 23% of the disease alleles. Copyright 2002 Wiley-Liss, Inc.

  8. 41 CFR 304-3.12 - Must I receive advance approval from my agency before I perform travel paid by a non-Federal...

    Science.gov (United States)

    2010-07-01

    ... approval from my agency before I perform travel paid by a non-Federal source to attend a meeting? 304-3.12... agency before I perform travel paid by a non-Federal source to attend a meeting? Yes, you must receive advance approval from your agency before performing travel paid by a non-Federal source to attend a...

  9. Identification of a novel MYO7A mutation in Usher syndrome type 1.

    Science.gov (United States)

    Cheng, Ling; Yu, Hongsong; Jiang, Yan; He, Juan; Pu, Sisi; Li, Xin; Zhang, Li

    2018-01-05

    Usher syndrome (USH) is an autosomal recessive disease characterized by deafness and retinitis pigmentosa. In view of the high phenotypic and genetic heterogeneity in USH, performing genetic screening with traditional methods is impractical. In the present study, we carried out targeted next-generation sequencing (NGS) to uncover the underlying gene in an USH family (2 USH patients and 15 unaffected relatives). One hundred and thirty-five genes associated with inherited retinal degeneration were selected for deep exome sequencing. Subsequently, variant analysis, Sanger validation and segregation tests were utilized to identify the disease-causing mutations in this family. All affected individuals had a classic USH type I (USH1) phenotype which included deafness, vestibular dysfunction and retinitis pigmentosa. Targeted NGS and Sanger sequencing validation suggested that USH1 patients carried an unreported splice site mutation, c.5168+1G>A, as a compound heterozygous mutation with c.6070C>T (p.R2024X) in the MYO7A gene. A functional study revealed decreased expression of the MYO7A gene in the individuals carrying heterozygous mutations. In conclusion, targeted next-generation sequencing provided a comprehensive and efficient diagnosis for USH1. This study revealed the genetic defects in the MYO7A gene and expanded the spectrum of clinical phenotypes associated with USH1 mutations.

  10. Association of a Novel Nonsense Mutation in KIAA1279 with Goldberg-Shprintzen Syndrome.

    Science.gov (United States)

    Salehpour, Shadab; Hashemi-Gorji, Feyzollah; Soltani, Ziba; Ghafouri-Fard, Soudeh; Miryounesi, Mohammad

    2017-01-01

    Goldberg-Shprintzen syndrome (OMIM 609460) (GOSHS) is an autosomal recessive multiple congenital anomaly syndrome distinguished by intellectual disability, microcephaly, and dysmorphic facial characteristics. Most affected individuals also have Hirschsprung disease and/or gyral abnormalities of the brain. This syndrome has been associated with KIAA1279 gene mutations at 10q22.1. Here we report a 16 yr old male patient referred to Center for Comprehensive Genetic Services, Tehran, Iran in 2015 with cardinal features of GOSHS in addition to refractory seizures. Whole exome sequencing in the patient revealed a novel nonsense (stop gain) homozygous mutation in KIAA1279 gene (KIAA1279: NM_015634:exon6:c.C976T:p.Q326X). Considering the wide range of phenotypic variations in GOSHS, relying on phenotypic characteristics for discrimination of GOSH from similar syndromes may lead to misdiagnosis. Consequently, molecular diagnostic tools would help in accurate diagnosis of such overlapping phenotypes.

  11. Association of germline mutation in the PTEN tumour suppressor gene and Proteus and Proteus-like syndromes

    NARCIS (Netherlands)

    Zhou, X.; Hampel, H.; Thiele, H.; Gorlin, R. J.; Hennekam, R. C.; Parisi, M.; Winter, R. M.; Eng, C.

    2001-01-01

    The molecular aetiology of Proteus syndrome (PS) remains elusive. Germline mutations in PTEN cause Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome, which are hereditary hamartoma syndromes. Some features-eg, macrocephaly, lipomatosis, and vascular malformations-can be seen in all three

  12. A p.(Glu809Lys) Mutation in the WFS1 Gene Associated with Wolfram-like Syndrome: A Case Report.

    Science.gov (United States)

    Prochazkova, Dagmar; Hruba, Zuzana; Konecna, Petra; Skotakova, Jarmila; Fajkusova, Lenka

    2016-12-01

    Wolfram-like syndrome (WFSL) is a rare autosomal dominant disease characterised by congenital progressive hearing loss, diabetes mellitus, and optic atrophy. The patient was a boy with the juvenile form of diabetes mellitus and findings which clinically matched the symptoms of Wolfram syndrome. At the age of 3 1/4 years, diabetes mellitus was diagnosed in this boy who also had severe psychomotor retardation, failure to thrive, a dysmorphic face with Peters anomaly type 3 (i.e. posterior central defect with stromal opacity of the cornea, adhering stripes of the iris, and cataract with corneolenticular adhesion), congenital glaucoma, megalocornea, severe hearing impairment, a one-sided deformity of the auricle with atresia of the bony and soft external auditory canal, non-differentiable eardrum, missing os incus, hypothyreosis, and nephrocalcinosis. Molecular-genetic examinations revealed a de novo mutation p.(Glu809Lys) in the WFS1 gene. No mutations were detected in the biological parents. The mutation p.(Glu809Lys) in the WFS1 gene is associated with WFSL.

  13. Juvenile-Onset Diabetes and Congenital Cataract: “Double-Gene” Mutations Mimicking a Syndromic Diabetes Presentation

    Directory of Open Access Journals (Sweden)

    Caroline Lenfant

    2017-11-01

    Full Text Available Monogenic forms of diabetes may account for 1–5% of all cases of diabetes, and may occur in the context of syndromic presentations. We investigated the case of a girl affected by insulin-dependent diabetes, diagnosed at 6 years old, associated with congenital cataract. Her consanguineous parents and her four other siblings did not have diabetes or cataract, suggesting a recessive syndrome. Using whole exome sequencing of the affected proband, we identified a heterozygous p.R825Q ABCC8 mutation, located at the exact same amino-acid position as the p.R825W recurring diabetes mutation, hence likely responsible for the diabetes condition, and a homozygous p.G71S mutation in CRYBB1, a gene known to be responsible for congenital cataract. Both mutations were predicted to be damaging and were absent or extremely rare in public databases. Unexpectedly, we found that the mother was also homozygous for the CRYBB1 mutation, and both the mother and one unaffected sibling were heterozygous for the ABCC8 mutation, suggesting incomplete penetrance of both mutations. Incomplete penetrance of ABCC8 mutations is well documented, but this is the first report of an incomplete penetrance of a CRYBB1 mutation, manifesting between susceptible subjects (unaffected mother vs. affected child and to some extent within the patient herself, who had distinct cataract severities in both eyes. Our finding illustrates the importance of family studies to unmask the role of confounding factors such as double-gene mutations and incomplete penetrance that may mimic monogenic syndromes including in the case of strongly evocative family structure with consanguinity.

  14. Mutation and DNA replication in Escherichia coli treated with low concentrations of N-methyl-N'-nitro-N-nitrosoguanidine

    International Nuclear Information System (INIS)

    Jimenez-Sanchez, A.; Cerda-Olmedo, E.

    1975-01-01

    N-Methyl-N'-nitro-N-nitrosoguanidine (nitrosoguanidine) causes an unexpectedly high frequency of closely linked double mutants because of its specificity for chromosome regions in replication. Low nitrosoguanidine concentrations (I μg/ml) in liquid cultures allow replication at the normal rate and are mutagenic. It was expected that mutations would be spread over the chromosome as it replicated, but a high frequency of closely linked double mutants was found. If a thymine auxotroph is grown in the presence of 5-bromodeoxyuridine (BUdR) and nitrosoguanidine and then exposed to 313-nm radiation (which destroys BUdR-substituted DNA), the mutation frequency is much higher among survivors than among non-irradiated cells. It is concluded that nitrosoguanidine inhibits DNA replication in a small fraction of the population and that mutations are induced in that same fraction. Nitrosoguanidine treatment leads to a high frequency of closely linked double mutants under all known conditions

  15. SOS1 and PTPN11 mutations in five cases of Noonan syndrome with multiple giant cell lesions.

    Science.gov (United States)

    Beneteau, Claire; Cavé, Hélène; Moncla, Anne; Dorison, Nathalie; Munnich, Arnold; Verloes, Alain; Leheup, Bruno

    2009-10-01

    We report five cases of multiple giant cell lesions in patients with typical Noonan syndrome. Such association has frequently been referred to as Noonan-like/multiple giant cell (NL/MGCL) syndrome before the molecular definition of Noonan syndrome. Two patients show mutations in PTPN11 (p.Tyr62Asp and p.Asn308Asp) and three in SOS1 (p.Arg552Ser and p.Arg552Thr). The latter are the first SOS1 mutations reported outside PTPN11 in NL/MGCL syndrome. MGCL lesions were observed in jaws ('cherubism') and joints ('pigmented villonodular synovitis'). We show through those patients that both types of MGCL are not PTPN11-specific, but rather represent a low penetrant (or perhaps overlooked) complication of the dysregulated RAS/MAPK signaling pathway. We recommend discarding NL/MGCL syndrome from the nosology, as this presentation is neither gene-nor allele-specific of Noonan syndrome; these patients should be described as Noonan syndrome with MGCL (of the mandible, the long bone...). The term cherubism should be used only when multiple giant cell lesions occur without any other clinical and molecular evidence of Noonan syndrome, with or without mutations of the SH3BP2 gene.

  16. Mutations in WNT7A cause a range of limb malformations, including Fuhrmann syndrome and Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome.

    Science.gov (United States)

    Woods, C G; Stricker, S; Seemann, P; Stern, R; Cox, J; Sherridan, E; Roberts, E; Springell, K; Scott, S; Karbani, G; Sharif, S M; Toomes, C; Bond, J; Kumar, D; Al-Gazali, L; Mundlos, S

    2006-08-01

    Fuhrmann syndrome and the Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome are considered to be distinct limb-malformation disorders characterized by various degrees of limb aplasia/hypoplasia and joint dysplasia in humans. In families with these syndromes, we found homozygous missense mutations in the dorsoventral-patterning gene WNT7A and confirmed their functional significance in retroviral-mediated transfection of chicken mesenchyme cell cultures and developing limbs. The results suggest that a partial loss of WNT7A function causes Fuhrmann syndrome (and a phenotype similar to mouse Wnt7a knockout), whereas the more-severe limb truncation phenotypes observed in Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome result from null mutations (and cause a phenotype similar to mouse Shh knockout). These findings illustrate the specific and conserved importance of WNT7A in multiple aspects of vertebrate limb development.

  17. Mutation spectrum and risk of colorectal cancer in African American families with Lynch syndrome.

    Science.gov (United States)

    Guindalini, Rodrigo Santa Cruz; Win, Aung Ko; Gulden, Cassandra; Lindor, Noralane M; Newcomb, Polly A; Haile, Robert W; Raymond, Victoria; Stoffel, Elena; Hall, Michael; Llor, Xavier; Ukaegbu, Chinedu I; Solomon, Ilana; Weitzel, Jeffrey; Kalady, Matthew; Blanco, Amie; Terdiman, Jonathan; Shuttlesworth, Gladis A; Lynch, Patrick M; Hampel, Heather; Lynch, Henry T; Jenkins, Mark A; Olopade, Olufunmilayo I; Kupfer, Sonia S

    2015-11-01

    African Americans (AAs) have the highest incidence of and mortality resulting from colorectal cancer (CRC) in the United States. Few data are available on genetic and nongenetic risk factors for CRC among AAs. Little is known about cancer risks and mutations in mismatch repair (MMR) genes in AAs with the most common inherited CRC condition, Lynch syndrome. We aimed to characterize phenotype, mutation spectrum, and risk of CRC in AAs with Lynch syndrome. We performed a retrospective study of AAs with mutations in MMR genes (MLH1, MSH2, MSH6, and PMS2) using databases from 13 US referral centers. We analyzed data on personal and family histories of cancer. Modified segregation analysis conditioned on ascertainment criteria was used to estimate age- and sex-specific CRC cumulative risk, studying members of the mutation-carrying families. We identified 51 AA families with deleterious mutations that disrupt function of the MMR gene product: 31 in MLH1 (61%), 11 in MSH2 (21%), 3 in MSH6 (6%), and 6 in PMS2 (12%); 8 mutations were detected in more than 1 individual, and 11 have not been previously reported. In the 920 members of the 51 families with deleterious mutations, the cumulative risks of CRC at 80 years of age were estimated to be 36.2% (95% confidence interval [CI], 10.5%-83.9%) for men and 29.7% (95% CI, 8.31%-76.1%) for women. CRC risk was significantly higher among individuals with mutations in MLH1 or MSH2 (hazard ratio, 13.9; 95% CI, 3.44-56.5). We estimate the cumulative risk for CRC in AAs with MMR gene mutations to be similar to that of individuals of European descent with Lynch syndrome. Two-thirds of mutations were found in MLH1, some of which were found in multiple individuals and some that have not been previously reported. Differences in mutation spectrum are likely to reflect the genetic diversity of this population. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. A novel mutation of CLCNKB in a Korean patient of mixed phenotype of Bartter-Gitelman syndrome.

    Science.gov (United States)

    Cho, Hee-Won; Lee, Sang Taek; Cho, Heeyeon; Cheong, Hae Il

    2016-11-01

    Bartter syndrome (BS) is an inherited renal tubular disorder characterized by low or normal blood pressure, hypokalemic metabolic alkalosis, and hyperreninemic hyperaldosteronism. Type III BS is caused by loss-of-function mutations in CLCNKB encoding basolateral ClC-Kb. The clinical phenotype of patients with CLCNKB mutations has been known to be highly variable, and cases that are difficult to categorize as type III BS or other hereditary tubulopathies, such as Gitelman syndrome, have been rarely reported. We report a case of a 10-year-old Korean boy with atypical clinical findings caused by a novel CLCNKB mutation. The boy showed intermittent muscle cramps with laboratory findings of hypokalemia, severe hypomagnesemia, and nephrocalcinosis. These findings were not fully compatible with those observed in cases of BS or Gitelman syndrome. The CLCNKB mutation analysis revealed a heterozygous c.139G>A transition in exon 13 [p.Gly(GGG)465Glu(GAG)]. This change is not a known mutation; however, the clinical findings and in silico prediction results indicated that it is the underlying cause of his presentation.

  19. Importance of sigma factor mutations in increased triclosan resistance in <i>Salmonella> Typhimurium

    DEFF Research Database (Denmark)

    Gantzhorn, Mette Rørbæk; Olsen, John Elmerdahl; Thomsen, Line Elnif

    2015-01-01

    towards the antibiotics enrofloxacin and sulphamethoxazole/trimethoprim. CONCLUSIONS: Medium level triclosan resistance could be obtained by fabI mutations in S. Typhimurium, however, high level resistance was found to require sigma factor mutations in addition to a fabI mutation. Reduced antibiotic...

  20. Alport Syndrome: De Novo Mutation in the COL4A5 Gene Converting Glycine 1205 to Valine

    Directory of Open Access Journals (Sweden)

    Pilar Antón-Martín

    2012-01-01

    Full Text Available Background Alport syndrome is a primary basement membrane disorder arising from mutations in genes encoding the type IV collagen protein family. It is a genetically heterogeneous disease with different mutations and forms of inheritance that presents with renal affection, hearing loss and eye defects. Several new mutations related to X-linked forms have been previously determined. Methods We report the case of a 12 years old male and his family diagnosed with Alport syndrome after genetic analysis was performed. Result Anew mutation determining a nucleotide change C.3614G > T (p. Gly1205Val in hemizygosis in the COL4A5 gene was found. This molecular defect has not been previously described. Conclusion Molecular biology has helped us to comprehend the mechanisms of pathophysiology in Alport syndrome. Genetic analysis provides the only conclusive diagnosis of the disorder at the moment. Our contribution with a new mutation further supports the need of more sophisticated molecular methods to increase the mutation detection rates with lower costs and less time.

  1. Influenza A virus NS1 gene mutations F103L and M106I increase replication and virulence

    Directory of Open Access Journals (Sweden)

    Ping Jihui

    2011-01-01

    Full Text Available Abstract Background To understand the evolutionary steps required for a virus to become virulent in a new host, a human influenza A virus (IAV, A/Hong Kong/1/68(H3N2 (HK-wt, was adapted to increased virulence in the mouse. Among eleven mutations selected in the NS1 gene, two mutations F103L and M106I had been previously detected in the highly virulent human H5N1 isolate, A/HK/156/97, suggesting a role for these mutations in virulence in mice and humans. Results To determine the selective advantage of these mutations, reverse genetics was used to rescue viruses containing each of the NS1 mouse adapted mutations into viruses possessing the HK-wt NS1 gene on the A/PR/8/34 genetic backbone. Both F103L and M106I NS1 mutations significantly enhanced growth in vitro (mouse and canine cells and in vivo (BALB/c mouse lungs as well as enhanced virulence in the mouse. Only the M106I NS1 mutation enhanced growth in human cells. Furthermore, these NS1 mutations enhanced early viral protein synthesis in MDCK cells and showed an increased ability to replicate in mouse interferon β (IFN-β pre-treated mouse cells relative to rPR8-HK-NS-wt NS1. The double mutant, rPR8-HK-NS-F103L + M106I, demonstrated growth attenuation late in infection due to increased IFN-β induction in mouse cells. We then generated a rPR8 virus possessing the A/HK/156/97 NS gene that possesses 103L + 106I, and then rescued the L103F + I106M mutant. The 103L + 106I mutations increased virulence by >10 fold in BALB/c mice. We also inserted the avian A/Ck/Beijing/1/95 NS1 gene (the source lineage of the A/HK/156/97 NS1 gene that possesses 103L + 106I, onto the A/WSN/33 backbone and then generated the L103F + I106M mutant. None of the H5N1 and H9N2 NS containing viruses resulted in increased IFN-β induction. The rWSN-A/Ck/Beijing/1/95-NS1 gene possessing 103L and 106I demonstrated 100 fold enhanced growth and >10 fold enhanced virulence that was associated with increased tropism for lung

  2. [Constitutional mismatch repair-deficiency syndrome (CMMR-D) - a case report of a family with biallelic MSH6 mutation].

    Science.gov (United States)

    Ilenčíková, D

    2012-01-01

    This work gives comprehensive information about new recessively inherited syndrome characterized by development of childhood malignancies. Behind this new described syndrome, called Constitutional mismatch repair-deficiency syndrome (CMMR-D), there are biallelic mutations in genes, which cause adult cancer syndrom termed Lynch syndrom (Hereditary non-polyposis cancer syndrom-HNPCC) if they are heterozygous mutations. Biallelic germline mutations of genes MLH1, MSH2, MSH6 and PMS2 in CMMR-D are characterized by increased risk of hematological malignancies, atypical brain tumors and early onset of colorectal cancers. An accompanying manifestation of the disease are skin spots with diffuse margins and irregular pigmentation reminiscent of Café au lait spots of NF1. This paper reports a case of a family with CMMR-D caused by novel homozygous MSH6 mutations leading to gliomatosis cerebri, T-ALL in an 11-year-old female and glioblastoma multiforme in her 10-year-old brother, both with rapid progression of the diseases. A literature review of brain tumors in CMMR-D families shows that they are treatment-resistant and lead to early death. Therefore, this work highlights the importance of early identification of patients with CMMR-D syndrome - in terms of initiation of a screening program for early detection of malignancies as well as early surgical intervention.

  3. The mutational spectrum in Treacher Collins syndrome reveals a predominance of mutations that create a premature-termination codon

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, S.J.; Gladwin, A.J.; Dixon, M.J. [Univ. of Manchester (United Kingdom)

    1997-03-01

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. The TCS locus has been mapped to human chromosome 5q31.3-32 and the mutated gene identified. In the current investigation, 25 previously undescribed mutations, which are spread throughout the gene, are presented. This brings the total reported to date to 35, which represents a detection rate of 60%. Of the mutations that have been reported to date, all but one result in the introduction of a premature-termination codon into the predicted protein, treacle. Moreover, the mutations are largely family specific, although a common 5-bp deletion in exon 24 (seven different families) and a recurrent splicing mutation in intron 3 (two different families) have been identified. This mutational spectrum supports the hypothesis that TCS results from haploin-sufficiency. 49 refs., 4 figs., 3 tabs.

  4. Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.

    Science.gov (United States)

    Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Rivera, Henry; Hernández-Laín, Aurelio; Coca-Robinot, David; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, Miguel A; Martínez-Azorín, Francisco

    2017-01-01

    Whole-exome sequencing was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase, deficiency of mitochondrial complex III and depletion of mtDNA. With whole-exome sequencing data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in thymidine kinase 2 gene ( TK2; NM_004614.4:c.323 C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes. This patient presents an atypical TK2-related myopathic form of mtDNA depletion syndromes, because despite having a very low content of mtDNA (TK2 gene in mtDNA depletion syndromes and expanded the phenotypic spectrum.

  5. A Novel MAPT Mutation Causing Corticobasal Syndrome Led by Progressive Apraxia of Speech.

    Science.gov (United States)

    Marshall, Charles R; Guerreiro, Rita; Thust, Steffi; Fletcher, Phillip; Rohrer, Jonathan D; Fox, Nick C

    2015-01-01

    The authors describe a case of corticobasal syndrome led by progressive apraxia of speech, associated with a novel mutation in exon 10 of the MAPT gene. Genetic bases for progressive apraxia of speech and corticobasal syndrome are only rarely described, and have not been described in conjunction.

  6. Spectrum of PEX6 mutations in Zellweger syndrome spectrum patients

    NARCIS (Netherlands)

    Ebberink, Merel S.; Kofster, Janet; Wanders, Ronald J. A.; Waterham, Hans R.

    2010-01-01

    The autosomal recessive Zellweger syndrome spectrum (ZSS) disorders comprise a main subgroup of the peroxisome biogenesis disorders. The ZSS disorders can be caused by mutations in any of 12 different currently identified PEX genes resulting in severe, often lethal, multi-systemic disorders. Defects

  7. Predicting the impact of Lynch syndrome-causing missense mutations from structural calculations

    DEFF Research Database (Denmark)

    Nielsen, Sofie V,; Stein, Amelie; Dinitzen, Alexander B.

    2017-01-01

    selected the human mismatch repair protein, MSH2, where missense variants are known to cause the hereditary cancer predisposition disease, known as Lynch syndrome. We show that the majority of disease-causing MSH2 mutations give rise to folding defects and proteasome-dependent degradation rather than...... and for diagnosis of Lynch syndrome, and perhaps other hereditary diseases....

  8. Identification and characterization of a novel XK splice site mutation in a patient with McLeod syndrome.

    Science.gov (United States)

    Arnaud, Lionel; Salachas, François; Lucien, Nicole; Maisonobe, Thierry; Le Pennec, Pierre-Yves; Babinet, Jérôme; Cartron, Jean-Pierre

    2009-03-01

    McLeod syndrome is a rare X-linked neuroacanthocytosis syndrome with hematologic, muscular, and neurologic manifestations. McLeod syndrome is caused by mutations in the XK gene whose product is expressed at the red blood cell (RBC) surface but whose function is currently unknown. A variety of XK mutations has been reported but no clear phenotype-genotype correlation has been found, especially for the point mutations affecting splicing sites. A man suspected of neuroacanthocytosis was evaluated by neurologic examination, electromyography, muscle biopsy, muscle computed tomography, and cerebral magnetic resonance imaging. The McLeod RBC phenotype was disclosed by blood smear and immunohematology analyses and then confirmed at the biochemical level by Western blot analysis. The responsible XK mutation was characterized at the mRNA level by reverse transcription-polymerase chain reaction (PCR), identified by genomic DNA sequencing, and verified by allele-specific PCR. A novel XK splice site mutation (IVS1-1G>A) has been identified in a McLeod patient who has developed hematologic, neuromuscular, and neurologic symptoms. This is the first reported example of a XK point mutation affecting the 3' acceptor splice site of Intron 1, and it was demonstrated that this mutation indeed induces aberrant splicing of XK RNA and lack of XK protein at the RBC membrane. The detailed characterization at the molecular biology level of this novel XK splice site mutation associated with the clinical description of the patient contributes to a better understanding of the phenotype-genotype correlation in the McLeod syndrome.

  9. Flecainide provocation reveals concealed brugada syndrome in a long QT syndrome family with a novel L1786Q mutation in SCN5A

    DEFF Research Database (Denmark)

    Kanters, Jørgen K.; Yuan, Lei; Hedley, Paula L

    2014-01-01

    BACKGROUND: Mutations in SCN5A can result in both long QT type 3 (LQT3) and Brugada syndrome (BrS), and a few mutations have been found to have an overlapping phenotype. Long QT syndrome is characterized by prolonged QT interval, and a prerequisite for a BrS diagnosis is ST elevation in the right...... interval. The proband presented with an aborted cardiac arrest, and his mother died suddenly and unexpectedly at the age of 65. Flecainide treatment revealed coved ST elevation in all mutation carriers. Electrophysiological investigations of the mutant in HEK293 cells indicated a reduced peak current...

  10. Novel mutation in forkhead box G1 (FOXG1) gene in an Indian patient with Rett syndrome.

    Science.gov (United States)

    Das, Dhanjit Kumar; Jadhav, Vaishali; Ghattargi, Vikas C; Udani, Vrajesh

    2014-03-15

    Rett syndrome (RTT) is a severe neurodevelopmental disorder characterized by the progressive loss of intellectual functioning, fine and gross motor skills and communicative abilities, deceleration of head growth, and the development of stereotypic hand movements, occurring after a period of normal development. The classic form of RTT involves mutation in MECP2 while the involvement of CDKL5 and FOXG1 genes has been identified in atypical RTT phenotype. FOXG1 gene encodes for a fork-head box protein G1, a transcription factor acting primarily as transcriptional repressor through DNA binding in the embryonic telencephalon as well as a number of other neurodevelopmental processes. In this report we have described the molecular analysis of FOXG1 gene in Indian patients with Rett syndrome. FOXG1 gene mutation analysis was done in a cohort of 34 MECP2/CDKL5 mutation negative RTT patients. We have identified a novel mutation (p. D263VfsX190) in FOXG1 gene in a patient with congenital variant of Rett syndrome. This mutation resulted into a frameshift, thereby causing an alteration in the reading frames of the entire coding sequence downstream of the mutation. The start position of the frameshift (Asp263) and amino acid towards the carboxyl terminal end of the protein was found to be well conserved across species using multiple sequence alignment. Since the mutation is located at forkhead binding domain, the resultant mutation disrupts the secondary structure of the protein making it non-functional. This is the first report from India showing mutation in FOXG1 gene in Rett syndrome. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Wolfram syndrome: new mutations, different phenotype.

    Directory of Open Access Journals (Sweden)

    Concetta Aloi

    Full Text Available BACKGROUND: Wolfram Syndrome (WS is an autosomal recessive neurodegenerative disorder characterized by Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness identified by the acronym "DIDMOAD". The WS gene, WFS1, encodes a transmembrane protein called Wolframin, which recent evidence suggests may serve as a novel endoplasmic reticulum calcium channel in pancreatic β-cells and neurons. WS is a rare disease, with an estimated prevalence of 1/550.000 children, with a carrier frequency of 1/354. The aim of our study was to determine the genotype of WS patients in order to establish a genotype/phenotype correlation. METHODOLOGY/PRINCIPAL FINDINGS: We clinically evaluated 9 young patients from 9 unrelated families (6 males, 3 females. Basic criteria for WS clinical diagnosis were coexistence of insulin-treated diabetes mellitus and optic atrophy occurring before 15 years of age. Genetic analysis for WFS1 was performed by direct sequencing. Molecular sequencing revealed 5 heterozygous compound and 3 homozygous mutations. All of them were located in exon 8, except one in exon 4. In one proband only an heterozygous mutation (A684V was found. Two new variants c.2663 C>A and c.1381 A>C were detected. CONCLUSIONS/SIGNIFICANCE: Our study increases the spectrum of WFS1 mutations with two novel variants. The male patient carrying the compound mutation [c.1060_1062delTTC]+[c.2663 C>A] showed the most severe phenotype: diabetes mellitus, optic atrophy (visual acuity 5/10, deafness with deep auditory bilaterally 8000 Hz, diabetes insipidus associated to reduced volume of posterior pituitary and pons. He died in bed at the age of 13 years. The other patient carrying the compound mutation [c.409_424dup16]+[c.1381 A>C] showed a less severe phenotype (DM, OA.

  12. Microstructure and mechanical properties of Ti/TiN film coated on AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Park, Ji Yoon; Kim, Kwan Hyu; Choe, Han Cheol

    1999-01-01

    The microstructure and mechanical properties of Ti/TiN film coated on AISI 304 stainless steels have been studied. AISI 304 stainless steels containing 0.1∼1.0 wt% Ti were fabricated by using vacuum furnace and followed by solutionization treatment at 1050 .deg. C for 1hr. The specimens were coated by Ti and TiN with 1 μm and 2 μm thickness by electron-beam PVD method. The microstructure and phase analysis were carried out by using XRD, WDS and SEM. Mechanical properties such as hardness (micro-Vickers) and wear resistance were examined. Coated films showed fine columnar structure and some defects. Surface roughness increased in all specimens after TiN coating. XRD patterns showed that the TiN(111) peak was major in TiN single-layer and the other peaks were very weak, but TiN(220) and TiN(200) peaks were developed in Ti/TiN double-layer. The hardness of the coating film was higher in Ti/TiN double-layer than in TiN single-layer and not affected by the Ti content of substrate. Ti/TiN double-layer showed better wear resistance than TiN single-layer. The observed wear traces were sheared type in all coated specimens

  13. NHS Gene Mutations in Ashkenazi Jewish Families with Nance-Horan Syndrome.

    Science.gov (United States)

    Shoshany, Nadav; Avni, Isaac; Morad, Yair; Weiner, Chen; Einan-Lifshitz, Adi; Pras, Eran

    2017-09-01

    To describe ocular and extraocular abnormalities in two Ashkenazi Jewish families with infantile cataract and X-linked inheritance, and to identify their underlying mutations. Seven affected members were recruited. Medical history, clinical findings, and biometric measurements were recorded. Mutation analysis of the Nance-Horan syndrome (NHS) gene was performed by direct sequencing of polymerase chain reaction-amplified exons. An unusual anterior Y-sutural cataract was documented in the affected male proband. Other clinical features among examined patients included microcorneas, long and narrow faces, and current or previous dental anomalies. A nonsense mutation was identified in each family, including a previously described 742 C>T, p.(Arg248*) mutation in Family A, and a novel mutation 2915 C>A, p.(Ser972*) in Family B. Our study expands the repertoire of NHS mutations and the related phenotype, including newly described anterior Y-sutural cataract and dental findings.

  14. Precision Medicine in Myelodysplastic Syndromes and Leukemias: Lessons from Sequential Mutations.

    Science.gov (United States)

    Nazha, Aziz; Sekeres, Mikkael A

    2017-01-14

    Precision medicine can be simply defined as the identification of personalized treatment that matches patient-specific clinical and genomic characteristics. Since the completion of the Human Genome Project in 2003, significant advances have been made in our understanding of the genetic makeup of diseases, especially cancers. The identification of somatic mutations that can drive cancer has led to the development of therapies that specifically target the abnormal proteins derived from these mutations. This has led to a paradigm shift in our treatment methodology. Although some success has been achieved in targeting some genetic abnormalities, several challenges and limitations exist when applying precision-medicine concepts in leukemia and myelodysplastic syndromes. We review the current understanding of genomics in myelodysplastic syndromes (MDS) and leukemias and the limitations of precision-medicine concepts in MDS.

  15. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders.

    Science.gov (United States)

    Damm, Frederik; Chesnais, Virginie; Nagata, Yasunobu; Yoshida, Kenichi; Scourzic, Laurianne; Okuno, Yusuke; Itzykson, Raphael; Sanada, Masashi; Shiraishi, Yuichi; Gelsi-Boyer, Véronique; Renneville, Aline; Miyano, Satoru; Mori, Hiraku; Shih, Lee-Yung; Park, Sophie; Dreyfus, François; Guerci-Bresler, Agnes; Solary, Eric; Rose, Christian; Cheze, Stéphane; Prébet, Thomas; Vey, Norbert; Legentil, Marion; Duffourd, Yannis; de Botton, Stéphane; Preudhomme, Claude; Birnbaum, Daniel; Bernard, Olivier A; Ogawa, Seishi; Fontenay, Michaela; Kosmider, Olivier

    2013-10-31

    Patients with low-risk myelodysplastic syndromes (MDS) that rapidly progress to acute myeloid leukemia (AML) remain a challenge in disease management. Using whole-exome sequencing of an MDS patient, we identified a somatic mutation in the BCOR gene also mutated in AML. Sequencing of BCOR and related BCORL1 genes in a cohort of 354 MDS patients identified 4.2% and 0.8% of mutations respectively. BCOR mutations were associated with RUNX1 (P = .002) and DNMT3A mutations (P = .015). BCOR is also mutated in chronic myelomonocytic leukemia patients (7.4%) and BCORL1 in AML patients with myelodysplasia-related changes (9.1%). Using deep sequencing, we show that BCOR mutations arise after mutations affecting genes involved in splicing machinery or epigenetic regulation. In univariate analysis, BCOR mutations were associated with poor prognosis in MDS (overall survival [OS]: P = .013; cumulative incidence of AML transformation: P = .005). Multivariate analysis including age, International Prognostic Scoring System, transfusion dependency, and mutational status confirmed a significant inferior OS to patients with a BCOR mutation (hazard ratio, 3.3; 95% confidence interval, 1.4-8.1; P = .008). These data suggest that BCOR mutations define the clinical course rather than disease initiation. Despite infrequent mutations, BCOR analyses should be considered in risk stratification.

  16. Allelic hierarchy of CDH23 mutations causing non-syndromic deafness DFNB12 or Usher syndrome USH1D in compound heterozygotes.

    Science.gov (United States)

    Schultz, Julie M; Bhatti, Rashid; Madeo, Anne C; Turriff, Amy; Muskett, Julie A; Zalewski, Christopher K; King, Kelly A; Ahmed, Zubair M; Riazuddin, Saima; Ahmad, Nazir; Hussain, Zawar; Qasim, Muhammad; Kahn, Shaheen N; Meltzer, Meira R; Liu, Xue Z; Munisamy, Murali; Ghosh, Manju; Rehm, Heidi L; Tsilou, Ekaterini T; Griffith, Andrew J; Zein, Wadih M; Brewer, Carmen C; Riazuddin, Sheikh; Friedman, Thomas B

    2011-11-01

    Recessive mutant alleles of MYO7A, USH1C, CDH23, and PCDH15 cause non-syndromic deafness or type 1 Usher syndrome (USH1) characterised by deafness, vestibular areflexia, and vision loss due to retinitis pigmentosa. For CDH23, encoding cadherin 23, non-syndromic DFNB12 deafness is associated primarily with missense mutations hypothesised to have residual function. In contrast, homozygous nonsense, frame shift, splice site, and some missense mutations of CDH23, all of which are presumably functional null alleles, cause USH1D. The phenotype of a CDH23 compound heterozygote for a DFNB12 allele in trans configuration to an USH1D allele is not known and cannot be predicted from current understanding of cadherin 23 function in the retina and vestibular labyrinth. To address this issue, this study sought CDH23 compound heterozygotes by sequencing this gene in USH1 probands, and families segregating USH1D or DFNB12. Five non-syndromic deaf individuals were identified with normal retinal and vestibular phenotypes that segregate compound heterozygous mutations of CDH23, where one mutation is a known or predicted USH1 allele. One DFNB12 allele in trans configuration to an USH1D allele of CDH23 preserves vision and balance in deaf individuals, indicating that the DFNB12 allele is phenotypically dominant to an USH1D allele. This finding has implications for genetic counselling and the development of therapies for retinitis pigmentosa in Usher syndrome. ACCESSION NUMBERS: The cDNA and protein Genbank accession numbers for CDH23 and cadherin 23 used in this paper are AY010111.2 and AAG27034.2, respectively.

  17. Pitt-Hopkins syndrome: report of a case with a TCF4 gene mutation

    Directory of Open Access Journals (Sweden)

    Orsini Alessandro

    2010-02-01

    Full Text Available Abstract Aims We will discuss the clinical and genetic diagnosis of a child with severe psychomotor delay, who at 3 years of age presented with paroxysms of hyperpnea-apnea and seizures unrelated to breathing anomalies. Methods The child underwent genetic (karyotype, FISH telomeres and neuroradiological (cranial CT and MRI tests, which proved to be normal. He came under our clinical observation at 3 years and 5 months of age. Due to severe psychomotor delay and facial dysmorphisms we completed the genetic investigations based on his clinical feature and analysis of the available literature. Results The presence of severe mental retardation associated with anomalous breathing pattern may suggest the Joubert and Rett syndrome, however these were excluded on the basis of clinical and genetic examination. Angelman syndrome, suspected for facial dysmorphisms and absent language, was also excluded because of the presence of a normal pattern of methylation at SNRPN locus. Another possible diagnosis was the Pitt-Hopkins Syndrome (PHS, characterized by severe mental retardation, breathing anomalies (paroxisms of hyperpnea-apnea, dysmorphisms and sometimes epilepsy. Haploinsufficiency of TCF4 gene located at 18q21.2 region has been recently identified as causative of this syndrome. In our patient the research of TCF4 mutation by the Institute of Human Genetics, University Hospital Erlangen (Germany, showed a de novo mutation. Conclusions The diagnosis of Pitt-Hopkins syndrome, an underdiagnosed cause of mental retardation, was based on clinical and genetic findings. Searching for TCF4 mutations is highly recommended when others overlapping syndromes was excluded. At our knowledge our patient is the first italian case of PHS diagnosed at molecular level.

  18. Evaluation the frequency of factor V Leiden mutation in pregnant women with preeclampsia syndrome in an Iranian population

    Directory of Open Access Journals (Sweden)

    Azadeh Azinfar

    2012-01-01

    Full Text Available Background: Role of genetic factors in etiology of preeclampsia is not confirmed yet.Objective: Gene defect frequency varies in different geographic areas as well as ethnic groups. In this study, the role of factor V Leiden mutation in the pathogenesis of preeclampsia syndrome among the pregnant population of northern shore of Persian Gulf in Iran, were considered.Materials and Methods: Between Jan. 2008 and Dec. 2009, in a nested case control study, pregnant women with preeclampsia (N=198 as cases and healthy (N=201 as controls were enrolled in the study. DNA were extracted from 10 CC peripheral blood and analyzed for presence of factor V Leiden mutation in these subjects. The maternal and neonatal outcomes of pregnancy according to the distribution of factor V Leiden were also compared among cases.Results: In total, 17(8.6% of cases and 2(1% of controls showed the factor V Leiden mutation. The incidence of factor V Leiden was typically higher in preeclamptic women than control group (OR: 9.34 %95 CI: 2.12-41.01. There was no difference in incidence rate of preterm delivery< 37 weeks (OR: 1.23 %95 CI: 0.38-4.02, very early preterm delivery<32 weeks (OR: 1.00 %95 CI: 0.12-8.46, intra uterine fetal growth restriction (IUGR (OR: 1.32 %95 CI: 0.15-11.30 ,and the rate of cesarean section (OR: 0.88 %95 CI: 0.29-2.62 among cases based on the prevalence of factor V Leiden mutation.Conclusion: The pregnant women with factor V Leiden mutation are prone for preeclampsia syndrome during pregnancy, but this risk factor was not correlated to pregnancy complications in the studied women

  19. Hypertrophic cardiomyopathy-linked mutation in troponin T causes myofibrillar disarray and pro-arrhythmic action potential changes in human iPSC cardiomyocytes.

    Science.gov (United States)

    Wang, Lili; Kim, Kyungsoo; Parikh, Shan; Cadar, Adrian Gabriel; Bersell, Kevin R; He, Huan; Pinto, Jose R; Kryshtal, Dmytro O; Knollmann, Bjorn C

    2018-01-01

    Mutations in cardiac troponin T (TnT) are linked to increased risk of ventricular arrhythmia and sudden death despite causing little to no cardiac hypertrophy. Studies in mice suggest that the hypertrophic cardiomyopathy (HCM)-associated TnT-I79N mutation increases myofilament Ca sensitivity and is arrhythmogenic, but whether findings from mice translate to human cardiomyocyte electrophysiology is not known. To study the effects of the TnT-I79N mutation in human cardiomyocytes. Using CRISPR/Cas9, the TnT-I79N mutation was introduced into human induced pluripotent stem cells (hiPSCs). We then used the matrigel mattress method to generate single rod-shaped cardiomyocytes (CMs) and studied contractility, Ca handling and electrophysiology. Compared to isogenic control hiPSC-CMs, TnT-I79N hiPSC-CMs exhibited sarcomere disorganization, increased systolic function and impaired relaxation. The Ca-dependence of contractility was leftward shifted in mutation containing cardiomyocytes, demonstrating increased myofilament Ca sensitivity. In voltage-clamped hiPSC-CMs, TnT-I79N reduced intracellular Ca transients by enhancing cytosolic Ca buffering. These changes in Ca handling resulted in beat-to-beat instability and triangulation of the cardiac action potential, which are predictors of arrhythmia risk. The myofilament Ca sensitizer EMD57033 produced similar action potential triangulation in control hiPSC-CMs. The TnT-I79N hiPSC-CM model not only reproduces key cellular features of TnT-linked HCM such as myofilament disarray, hypercontractility and diastolic dysfunction, but also suggests that this TnT mutation causes pro-arrhythmic changes of the human ventricular action potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Comprehensive population-wide analysis of Lynch syndrome in Iceland reveals founder mutations in MSH6 and PMS2.

    Science.gov (United States)

    Haraldsdottir, Sigurdis; Rafnar, Thorunn; Frankel, Wendy L; Einarsdottir, Sylvia; Sigurdsson, Asgeir; Hampel, Heather; Snaebjornsson, Petur; Masson, Gisli; Weng, Daniel; Arngrimsson, Reynir; Kehr, Birte; Yilmaz, Ahmet; Haraldsson, Stefan; Sulem, Patrick; Stefansson, Tryggvi; Shields, Peter G; Sigurdsson, Fridbjorn; Bekaii-Saab, Tanios; Moller, Pall H; Steinarsdottir, Margret; Alexiusdottir, Kristin; Hitchins, Megan; Pritchard, Colin C; de la Chapelle, Albert; Jonasson, Jon G; Goldberg, Richard M; Stefansson, Kari

    2017-05-03

    Lynch syndrome, caused by germline mutations in the mismatch repair genes, is associated with increased cancer risk. Here using a large whole-genome sequencing data bank, cancer registry and colorectal tumour bank we determine the prevalence of Lynch syndrome, associated cancer risks and pathogenicity of several variants in the Icelandic population. We use colorectal cancer samples from 1,182 patients diagnosed between 2000-2009. One-hundred and thirty-two (11.2%) tumours are mismatch repair deficient per immunohistochemistry. Twenty-one (1.8%) have Lynch syndrome while 106 (9.0%) have somatic hypermethylation or mutations in the mismatch repair genes. The population prevalence of Lynch syndrome is 0.442%. We discover a translocation disrupting MLH1 and three mutations in MSH6 and PMS2 that increase endometrial, colorectal, brain and ovarian cancer risk. We find thirteen mismatch repair variants of uncertain significance that are not associated with cancer risk. We find that founder mutations in MSH6 and PMS2 prevail in Iceland unlike most other populations.

  1. Short-Rib Polydactyly and Jeune Syndromes Are Caused by Mutations in WDR60

    Science.gov (United States)

    McInerney-Leo, Aideen M.; Schmidts, Miriam; Cortés, Claudio R.; Leo, Paul J.; Gener, Blanca; Courtney, Andrew D.; Gardiner, Brooke; Harris, Jessica A.; Lu, Yeping; Marshall, Mhairi; Scambler, Peter J.; Beales, Philip L.; Brown, Matthew A.; Zankl, Andreas; Mitchison, Hannah M.; Duncan, Emma L.; Wicking, Carol

    2013-01-01

    Short-rib polydactyly syndromes (SRPS I–V) are a group of lethal congenital disorders characterized by shortening of the ribs and long bones, polydactyly, and a range of extraskeletal phenotypes. A number of other disorders in this grouping, including Jeune and Ellis-van Creveld syndromes, have an overlapping but generally milder phenotype. Collectively, these short-rib dysplasias (with or without polydactyly) share a common underlying defect in primary cilium function and form a subset of the ciliopathy disease spectrum. By using whole-exome capture and massive parallel sequencing of DNA from an affected Australian individual with SRPS type III, we detected two novel heterozygous mutations in WDR60, a relatively uncharacterized gene. These mutations segregated appropriately in the unaffected parents and another affected family member, confirming compound heterozygosity, and both were predicted to have a damaging effect on the protein. Analysis of an additional 54 skeletal ciliopathy exomes identified compound heterozygous mutations in WDR60 in a Spanish individual with Jeune syndrome of relatively mild presentation. Of note, these two families share one novel WDR60 missense mutation, although haplotype analysis suggested no shared ancestry. We further show that WDR60 localizes at the base of the primary cilium in wild-type human chondrocytes, and analysis of fibroblasts from affected individuals revealed a defect in ciliogenesis and aberrant accumulation of the GLI2 transcription factor at the centrosome or basal body in the absence of an obvious axoneme. These findings show that WDR60 mutations can cause skeletal ciliopathies and suggest a role for WDR60 in ciliogenesis. PMID:23910462

  2. Dural ectasia and FBN1 mutation screening of 40 patients with Marfan syndrome and related disorders: role of dural ectasia for the diagnosis.

    Science.gov (United States)

    Attanasio, Monica; Pratelli, Elisa; Porciani, Maria Cristina; Evangelisti, Lucia; Torricelli, Elena; Pellicanò, Giannantonio; Abbate, Rosanna; Gensini, Gian Franco; Pepe, Guglielmina

    2013-07-01

    Marfan syndrome is an autosomal dominant disorder of connective tissue caused by mutations in the gene encoding fibrillin-1 (FBN1), a matrix component of microfibrils. Dural ectasia, i.e. enlargement of the neural canal mainly located in the lower lumbar and sacral region, frequently occurs in Marfan patients. The aim of our study was to investigate the role of dural ectasia in raising the diagnosis of Marfan syndrome and its association with FBN1 mutations. We studied 40 unrelated patients suspected for MFS, who underwent magnetic resonance imaging searching for dural ectasia. In all of them FBN1 gene analysis was also performed. Thirty-seven patients resulted affected by Marfan syndrome according to the '96 Ghent criteria; in 30 of them the diagnosis was confirmed when revaluated by the recently revised criteria (2010). Thirty-six patients resulted positive for dural ectasia. The degree of dural ectasia was grade 1 in 19 patients, grade 2 in 11 patients, and grade 3 in 6 patients. In 7 (24%) patients, the presence of dural ectasia allowed to reach a positive score for systemic feature criterion. Twenty-four patients carried an FBN1 mutation, that were represented by 13 missense (54%), and 11 (46%) mutations generating a premature termination codon (PTC, frameshifts and stop codons). No mutation was detected in the remaining 16 (6 patients with MFS and 10 with related disorders according to revised Ghent criteria). The prevalence of severe (grade 2 and grade 3) involvement of dura mater was higher in patients harbouring premature termination codon (PTC) mutations than those carrying missense-mutations (8/11 vs 2/13, P = 0.0111). Our data emphasizes the importance of dural ectasia screening to reach the diagnosis of Marfan syndrome especially when it is uncertain and indicates an association between PTC mutations and severe dural ectasia in Marfan patients. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Vascular-type Ehlers-Danlos syndrome caused by a hitherto unknown genetic mutation: a case report

    Directory of Open Access Journals (Sweden)

    Kashizaki Fumihiro

    2013-02-01

    Full Text Available Abstract Introduction Vascular-type Ehlers-Danlos syndrome is an autosomal dominant disease that causes arterial spurting, intestinal perforation, uterine rupture and hemopneumothorax due to decreased production of type III collagen. The average age at death is 48 years old, and it is considered to be the most severe form of Ehlers-Danlos syndrome. We report the case of a 64-year-old Japanese woman and her 38-year-old daughter who were diagnosed with this disease. Case presentation A 64-year-old Japanese woman was referred to our hospital because of right anterior chest pain following cough and pharyngeal discomfort. Pleurisy was suspected due to the presence of right pleural effusion, so the next day she was referred to our department, where a detailed examination led to the diagnosis of hemothorax. The bleeding that caused the right hemothorax was difficult to control, so our patient was transferred to the Department of Thoracic Surgery for hemostasis control. Our patient’s personal history of uterine hemorrhage and skin ulcers, as well as the finding of skin fragility during surgery, were indicative of a weak connective tissue disease; therefore, after improvement of the hemothorax, a genetic analysis was performed. This revealed a heterozygous missense mutation in COL3A1, c.2411 G>T p.Gly804Val (exon 36. A detailed investigation conducted at a later date revealed that her daughter also had the same genetic mutation. This led to the diagnosis of vascular-type Ehlers-Danlos syndrome characterized by a new gene mutation. Conclusion We report a new genetic mutation associated with vascular-type Ehlers-Danlos syndrome. We present the clinical and imaging findings, and the disease and treatment course in this patient. We believe this information will be important in treating future cases of vascular-type Ehlers-Danlos syndrome in patients with this mutation.

  4. A novel CISD2 mutation associated with a classical Wolfram syndrome phenotype alters Ca2+ homeostasis and ER-mitochondria interactions.

    Science.gov (United States)

    Rouzier, Cécile; Moore, David; Delorme, Cécile; Lacas-Gervais, Sandra; Ait-El-Mkadem, Samira; Fragaki, Konstantina; Burté, Florence; Serre, Valérie; Bannwarth, Sylvie; Chaussenot, Annabelle; Catala, Martin; Yu-Wai-Man, Patrick; Paquis-Flucklinger, Véronique

    2017-05-01

    Wolfram syndrome (WS) is a progressive neurodegenerative disease characterized by early-onset optic atrophy and diabetes mellitus, which can be associated with more extensive central nervous system and endocrine complications. The majority of patients harbour pathogenic WFS1 mutations, but recessive mutations in a second gene, CISD2, have been described in a small number of families with Wolfram syndrome type 2 (WFS2). The defining diagnostic criteria for WFS2 also consist of optic atrophy and diabetes mellitus, but unlike WFS1, this phenotypic subgroup has been associated with peptic ulcer disease and an increased bleeding tendency. Here, we report on a novel homozygous CISD2 mutation (c.215A > G; p.Asn72Ser) in a Moroccan patient with an overlapping phenotype suggesting that Wolfram syndrome type 1 and type 2 form a continuous clinical spectrum with genetic heterogeneity. The present study provides strong evidence that this particular CISD2 mutation disturbs cellular Ca2+ homeostasis with enhanced Ca2+ flux from the ER to mitochondria and cytosolic Ca2+ abnormalities in patient-derived fibroblasts. This Ca2+ dysregulation was associated with increased ER-mitochondria contact, a swollen ER lumen and a hyperfused mitochondrial network in the absence of overt ER stress. Although there was no marked alteration in mitochondrial bioenergetics under basal conditions, culture of patient-derived fibroblasts in glucose-free galactose medium revealed a respiratory chain defect in complexes I and II, and a trend towards decreased ATP levels. Our results provide important novel insight into the potential disease mechanisms underlying the neurodegenerative consequences of CISD2 mutations and the subsequent development of multisystemic disease. © The Author 2017. Published by Oxford University Press.

  5. Al-Awadi-Raas-Rothschild syndrome with dental anomalies and a novel WNT7A mutation.

    Science.gov (United States)

    Kantaputra, Piranit Nik; Kapoor, Seema; Verma, Prashant; Kaewgahya, Massupa; Kawasaki, Katsushige; Ohazama, Atsushi; Ketudat Cairns, James R

    2017-12-01

    Al-Awadi-Raas-Rothschild syndrome (AARRS; OMIM 276820) is a very rare autosomal recessive limb malformation syndrome caused by WNT7A mutations. AARRS is characterized by various degrees of limb aplasia and hypoplasia. Normal intelligence and malformations of urogenital system are frequent findings. Complete loss of WNT7A function has been shown to cause AARRS, however, its partial loss leads to the milder malformation, Fuhrmann syndrome. An Indian boy affected with AARRS is reported. A novel homozygous base substitution mutation c.550A > C (p.Asn184Asp) is identified in the patient. Parents were heterozygous for the mutation. In addition to the typical features of AARRS, the patient had agenesis of the mandibular left deciduous lateral incisor. The heterozygous parents had microdontia of the maxillary left permanent third molar and taurodontism (enlarged dental pulp chamber at the expense of root) in a number of their permanent molars. Whole exome sequencing of the patient and his parents ruled out mutations in 11 known hypodontia-associated genes including WNT10A, MSX1, EDA, EDAR, EDARADD, PAX9, AXIN2, GREM2, NEMO, KRT17, and TFAP2B. In situ hybridization during tooth development showed Wnt7a expression in wild-type tooth epithelium at E14.5. All lines of evidence suggest that WNT7A has important role in tooth development and its mutation may lead to tooth agenesis, microdontia, and taurodontism. Oral examination of patients with AARRS and Fuhrmann syndromes is highly recommended. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Structure of the human MLH1 N-terminus: implications for predisposition to Lynch syndrome

    International Nuclear Information System (INIS)

    Wu, Hong; Zeng, Hong; Lam, Robert; Tempel, Wolfram; Kerr, Iain D.; Min, Jinrong

    2015-01-01

    The crystal structure of the human MLH1 N-terminus is reported at 2.30 Å resolution. The overall structure is described along with an analysis of two clinically important mutations. Mismatch repair prevents the accumulation of erroneous insertions/deletions and non-Watson–Crick base pairs in the genome. Pathogenic mutations in the MLH1 gene are associated with a predisposition to Lynch and Turcot’s syndromes. Although genetic testing for these mutations is available, robust classification of variants requires strong clinical and functional support. Here, the first structure of the N-terminus of human MLH1, determined by X-ray crystallography, is described. The structure shares a high degree of similarity with previously determined prokaryotic MLH1 homologs; however, this structure affords a more accurate platform for the classification of MLH1 variants

  7. Structure of the human MLH1 N-terminus: implications for predisposition to Lynch syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zeng, Hong; Lam, Robert; Tempel, Wolfram [University of Toronto, 101 College Street, Toronto, ON M5G 1L7 (Canada); Kerr, Iain D., E-mail: ikerr@myriad.com [Myriad Genetic Laboratories Inc., 320 Wakara Way, Salt Lake City, UT 84108 (United States); Min, Jinrong, E-mail: ikerr@myriad.com [University of Toronto, 101 College Street, Toronto, ON M5G 1L7 (Canada); University of Toronto, Toronto, ON M5G 1L7 (Canada)

    2015-07-28

    The crystal structure of the human MLH1 N-terminus is reported at 2.30 Å resolution. The overall structure is described along with an analysis of two clinically important mutations. Mismatch repair prevents the accumulation of erroneous insertions/deletions and non-Watson–Crick base pairs in the genome. Pathogenic mutations in the MLH1 gene are associated with a predisposition to Lynch and Turcot’s syndromes. Although genetic testing for these mutations is available, robust classification of variants requires strong clinical and functional support. Here, the first structure of the N-terminus of human MLH1, determined by X-ray crystallography, is described. The structure shares a high degree of similarity with previously determined prokaryotic MLH1 homologs; however, this structure affords a more accurate platform for the classification of MLH1 variants.

  8. Somatic HLA Mutations Expose the Role of Class I-Mediated Autoimmunity in Aplastic Anemia and its Clonal Complications.

    Science.gov (United States)

    Babushok, Daria V; Duke, Jamie L; Xie, Hongbo M; Stanley, Natasha; Atienza, Jamie; Perdigones, Nieves; Nicholas, Peter; Ferriola, Deborah; Li, Yimei; Huang, Hugh; Ye, Wenda; Morrissette, Jennifer J D; Kearns, Jane; Porter, David L; Podsakoff, Gregory M; Eisenlohr, Laurence C; Biegel, Jaclyn A; Chou, Stella T; Monos, Dimitrios S; Bessler, Monica; Olson, Timothy S

    2017-10-10

    Acquired aplastic anemia (aAA) is an acquired deficiency of early hematopoietic cells, characterized by inadequate blood production, and a predisposition to myelodysplastic syndrome (MDS) and leukemia. Although its exact pathogenesis is unknown, aAA is thought to be driven by Human Leukocyte Antigen (HLA)-restricted T cell immunity, with earlier studies favoring HLA class II-mediated pathways. Using whole exome sequencing (WES), we recently identified two aAA patients with somatic mutations in HLA class I genes. We hypothesized that HLA class I mutations are pathognomonic for autoimmunity in aAA, but were previously underappreciated because the Major Histocompatibility Complex (MHC) region is notoriously difficult to analyze by WES. Using a combination of targeted deep sequencing of HLA class I genes and single nucleotide polymorphism array (SNP-A) genotyping we screened 66 aAA patients for somatic HLA class I loss. We found somatic HLA loss in eleven patients (17%), with thirteen loss-of-function mutations in HLA-A *33:03, HLA-A *68:01, HLA-B *14:02 and HLA-B *40:02 alleles. Three patients had more than one mutation targeting the same HLA allele. Interestingly, HLA-B *14:02 and HLA-B *40:02 were significantly overrepresented in aAA patients, compared to ethnicity-matched controls. Patients who inherited the targeted HLA alleles, regardless of HLA mutation status, had a more severe disease course with more frequent clonal complications as assessed by WES, SNP-A, and metaphase cytogenetics, and more frequent secondary MDS. The finding of recurrent HLA class I mutations provides compelling evidence for a predominant HLA class I-driven autoimmunity in aAA, and establishes a novel link between aAA patients' immunogenetics and clonal evolution.

  9. Dissecting the Contributions of Cooperating Gene Mutations to Cancer Phenotypes and Drug Responses with Patient-Derived iPSCs

    Directory of Open Access Journals (Sweden)

    Chan-Jung Chang

    2018-05-01

    Full Text Available Summary: Connecting specific cancer genotypes with phenotypes and drug responses constitutes the central premise of precision oncology but is hindered by the genetic complexity and heterogeneity of primary cancer cells. Here, we use patient-derived induced pluripotent stem cells (iPSCs and CRISPR/Cas9 genome editing to dissect the individual contributions of two recurrent genetic lesions, the splicing factor SRSF2 P95L mutation and the chromosome 7q deletion, to the development of myeloid malignancy. Using a comprehensive panel of isogenic iPSCs—with none, one, or both genetic lesions—we characterize their relative phenotypic contributions and identify drug sensitivities specific to each one through a candidate drug approach and an unbiased large-scale small-molecule screen. To facilitate drug testing and discovery, we also derive SRSF2-mutant and isogenic normal expandable hematopoietic progenitor cells. We thus describe here an approach to dissect the individual effects of two cooperating mutations to clinically relevant features of malignant diseases. : Papapetrou and colleagues develop a comprehensive panel of isogenic iPSC lines with SRSF2 P95L mutation and chr7q deletion. They use these cells to identify cellular phenotypes contributed by each genetic lesion and therapeutic vulnerabilities specific to each one and develop expandable hematopoietic progenitor cell lines to facilitate drug discovery. Keywords: induced pluripotent stem cells, myelodysplastic syndrome, CRISPR/Cas9, gene editing, mutational cooperation, splicing factor mutations, spliceosomal mutations, SRSF2, chr7q deletion

  10. Noonan syndrome-causing genes: Molecular update and an assessment of the mutation rate

    Directory of Open Access Journals (Sweden)

    Ihssane El Bouchikhi

    2016-12-01

    Full Text Available Noonan syndrome is a common autosomal dominant disorder characterized by short stature, congenital heart disease and facial dysmorphia with an incidence of 1/1000 to 2500 live births. Up to now, several genes have been proven to be involved in the disturbance of the transduction signal through the RAS-MAP Kinase pathway and the manifestation of Noonan syndrome. The first gene described was PTPN11, followed by SOS1, RAF1, KRAS, BRAF, NRAS, MAP2K1, and RIT1, and recently SOS2, LZTR1, and A2ML1, among others. Progressively, the physiopathology and molecular etiology of most signs of Noonan syndrome have been demonstrated, and inheritance patterns as well as genetic counseling have been established. In this review, we summarize the data concerning clinical features frequently observed in Noonan syndrome, and then, we describe the molecular etiology as well as the physiopathology of most Noonan syndrome-causing genes. In the second part of this review, we assess the mutational rate of Noonan syndrome-causing genes reported up to now in most screening studies. This review should give clinicians as well as geneticists a full view of the molecular aspects of Noonan syndrome and the authentic prevalence of the mutational events of its causing-genes. It will also facilitate laying the groundwork for future molecular diagnosis research, and the development of novel treatment strategies.

  11. Long QT interval in Turner syndrome: a high prevalence of LQTS gene mutations

    DEFF Research Database (Denmark)

    Trolle, Christian

    Objective: QT interval prolongation of unknown aetiology is common in Turner syndrome (TS). This study set out to explore the presence of known pathogenic long QT (LQT) mutations in TS and to examine the corrected QT interval (QTc) over time and relate the findings to the TS phenotype. Methods......QTc). The prevalence of mutations in genes related to Long QT syndrome (LQTS) was determined in females with TS and a QTc >432.0 milliseconds (ms). Echocardiographic assessment of aortic valve morphology, 24-hour blood pressures and blood samples were done. Results: The mean hQTc in females with TS (414.0±25.5 ms...

  12. Novel mutations of PAX3, MITF, and SOX10 genes in Chinese patients with type I or type II Waardenburg syndrome.

    Science.gov (United States)

    Chen, Hongsheng; Jiang, Lu; Xie, Zhiguo; Mei, Lingyun; He, Chufeng; Hu, Zhengmao; Xia, Kun; Feng, Yong

    2010-06-18

    Waardenburg syndrome (WS) is a rare disorder characterized by distinctive facial features, pigment disturbances, and sensorineural deafness. There are four WS subtypes. WS1 is mostly caused by PAX3 mutations, while MITF, SNAI2, and SOX10 mutations are associated with WS2. More than 100 different disease-causing mutations have been reported in many ethnic groups, but the data from Chinese patients with WS remains poor. Herein we report 18 patients from 15 Chinese WS families, in which five cases were diagnosed as WS1 and the remaining as WS2. Clinical evaluation revealed intense phenotypic variability in Chinese WS patients. Heterochromia iridis and sensorineural hearing loss were the most frequent features (100% and 88.9%, respectively) of the two subtypes. Many brown freckles on normal skin could be a special subtype of cutaneous pigment disturbances in Chinese WS patients. PAX3, MITF, SNAI2, and SOX10 genes mutations were screened for in all the patients. A total of nine mutations in 11 families were identified and seven of them were novel. The SOX10 mutations in WS2 were first discovered in the Chinese population, with an estimated frequency similar to that of MITF mutations, implying SOX10 is an important pathogenic gene in Chinese WS2 cases and should be considered for first-step analysis in WS2, as well as MITF. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  13. Novel splice mutation in microthalmia-associated transcription factor in Waardenburg Syndrome.

    Science.gov (United States)

    Brenner, Laura; Burke, Kelly; Leduc, Charles A; Guha, Saurav; Guo, Jiancheng; Chung, Wendy K

    2011-01-01

    Waardenburg Syndrome (WS) is a syndromic form of hearing loss associated with mutations in six different genes. We identified a large family with WS that had previously undergone clinical testing, with no reported pathogenic mutation. Using linkage analysis, a region on 3p14.1 with an LOD score of 6.6 was identified. Microthalmia-Associated Transcription Factor, a gene known to cause WS, is located within this region of linkage. Sequencing of Microthalmia-Associated Transcription Factor demonstrated a c.1212 G>A synonymous variant that segregated with the WS in the family and was predicted to cause a novel splicing site that was confirmed with expression analysis of the mRNA. This case illustrates the need to computationally analyze novel synonymous sequence variants for possible effects on splicing to maximize the clinical sensitivity of sequence-based genetic testing.

  14. The prevalence of CHD7 missense versus truncating mutations is higher in patients with Kallmann syndrome than in typical CHARGE patients

    DEFF Research Database (Denmark)

    Marcos, Séverine; Sarfati, Julie; Leroy, Chrystel

    2014-01-01

    CONTEXT: Mutations in CHD7, a gene previously implicated in CHARGE (coloboma, heart defect, choanal atresia, retardation of growth and/or development, genital hypoplasia, ear anomalies) syndrome, have been reported in patients presenting with Kallmann syndrome (KS) or congenital hypogonadotropic...... hypogonadism (CHH). Most mutations causing CHARGE syndrome result in premature stop codons and occur de novo, but the proportion of truncating vs nontruncating mutations in KS and CHH patients is still unknown. OBJECTIVE: The objective of the study was to determine the nature, prevalence, mode of transmission......, and clinical spectrum of CHD7 mutations in a large series of patients. DESIGN: We studied 209 KS and 94 CHH patients. These patients had not been diagnosed with CHARGE syndrome according to the current criteria. We searched for mutations in 16 KS and CHH genes including CHD7. RESULTS: We found presumably...

  15. RIG-I-Like Receptor Signaling in Singleton-Merten Syndrome

    Directory of Open Access Journals (Sweden)

    Changming Lu

    2017-09-01

    Full Text Available Singleton-Merten syndrome (SMS is an autosomal dominant, multi-system innate immune disorder characterized by early and severe aortic and valvular calcification, dental and skeletal abnormalities, psoriasis, glaucoma, and other varying clinical findings. Recently we identified a specific gain-of-function mutation in IFIH1, interferon induced with helicase C domain 1, segregated with this disease. SMS disease without hallmark dental anomalies, termed atypical SMS, has recently been reported caused by variants in DDX58, DEXD/H-box helicase 58. IFIH1 and DDX58 encode retinoic acid-inducible gene I (RIG-I-like receptors family members melanoma differentiation-associated gene 5 and RIG-I, respectively. These cytosolic pattern recognition receptors function in viral RNA detection initiating an innate immune response through independent pathways that promote type I and type III interferon expression and proinflammatory cytokines. In this review, we focus on SMS as an innate immune disorder summarizing clinical features, molecular aspects of the pathogenetic pathway and discussing underlying mechanisms of the disease.

  16. Prostate cancer in a male with Holt-Oram syndrome: first clinical association of the TBX5 mutation.

    LENUS (Irish Health Repository)

    Aherne, Noel J

    2013-08-05

    Holt-Oram syndrome is an autosomal dominant disorder which is caused by mutations of TBX5 and is characterised by cardiac and skeletal abnormalities. TBX5 is part of the T-box gene family and is thought to upregulate tumour cell proliferation and metastasis when mutated. We report the first clinical case of prostate cancer in an individual with Holt Oram syndrome.

  17. Novel TGM5 mutations in acral peeling skin syndrome.

    Science.gov (United States)

    van der Velden, Jaap J A J; van Geel, Michel; Nellen, Ruud G L; Jonkman, Marcel F; McGrath, John A; Nanda, Arti; Sprecher, Eli; van Steensel, Maurice A M; McLean, W H Irwin; Cassidy, Andrew J

    2015-04-01

    Acral peeling skin syndrome (APSS, MIM #609796) is a rare autosomal recessive disorder characterized by superficial exfoliation and blistering of the volar and dorsal aspects of hands and feet. The level of separation is at the junction of the stratum granulosum and stratum corneum. APSS is caused by mutations in the TGM5 gene encoding transglutaminase-5, which is important for structural integrity of the outermost epidermal layers. The majority of patients originate from Europe and carry a p.(Gly113Cys) mutation in TGM5. In this study, we report both European and non-European families carrying other mutations in the TGM5 gene. In 5 patients, we found 3 novel mutations: c.1001+2_1001+3del, c.1171G>A and c.1498C>T. To confirm their pathogenicity, we performed functional analyses with a transglutaminase activity assay, determined alternative splicing by reverse-transcribed PCR analysis and used databases and in silico prediction tools. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D.

    Science.gov (United States)

    Bolz, H; von Brederlow, B; Ramírez, A; Bryda, E C; Kutsche, K; Nothwang, H G; Seeliger, M; del C-Salcedó Cabrera, M; Vila, M C; Molina, O P; Gal, A; Kubisch, C

    2001-01-01

    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss, vestibular dysfunction and visual impairment due to early onset retinitis pigmentosa (RP). So far, six loci (USH1A-USH1F) have been mapped, but only two USH1 genes have been identified: MYO7A for USH1B and the gene encoding harmonin for USH1C. We identified a Cuban pedigree linked to the locus for Usher syndrome type 1D (MIM 601067) within the q2 region of chromosome 10). Affected individuals present with congenital deafness and a highly variable degree of retinal degeneration. Using a positional candidate approach, we identified a new member of the cadherin gene superfamily, CDH23. It encodes a protein of 3,354 amino acids with a single transmembrane domain and 27 cadherin repeats. In the Cuban family, we detected two different mutations: a severe course of the retinal disease was observed in individuals homozygous for what is probably a truncating splice-site mutation (c.4488G-->C), whereas mild RP is present in individuals carrying the homozygous missense mutation R1746Q. A variable expression of the retinal phenotype was seen in patients with a combination of both mutations. In addition, we identified two mutations, Delta M1281 and IVS51+5G-->A, in a German USH1 patient. Our data show that different mutations in CDH23 result in USH1D with a variable retinal phenotype. In an accompanying paper, it is shown that mutations in the mouse ortholog cause disorganization of inner ear stereocilia and deafness in the waltzer mouse.

  19. Two Novel Mutations Identified in an African-American Child with Chediak-Higashi Syndrome

    Directory of Open Access Journals (Sweden)

    Kerry Morrone

    2010-01-01

    Full Text Available Background. Chediak-Higashi syndrome (CHS is a rare, autosomal recessive disorder characterized by oculocutaneous albinism, immunodeficiency, coagulopathy and late-onset, progressive neurological dysfunction. It also has an “accelerated phase” characterized by hemophagocytic lymphohistiocytosis (HLH. The disease is caused by mutations in the CHS1/LYST gene located on chromosome 1, which affects lysosome morphology and function. We report the case of an African-American child with CHS in Case. This 16-month old African-American girl presented with fever and lethargy. The proband had pale skin compared to her parents, with light brown eyes, silvery hair and massive hepatosplenomegaly. Her laboratory evaluation was remarkable for pancytopenia, high serum ferritin and an elevated LDH. Bone marrow aspirate revealed large inclusions in granulocytes and erythrophagocytosis consistent with HLH. Genetic evaluation revealed two novel nonsense mutations in the CHS1 gene: c.3622C>T (p.Q1208X and c.11002G>T (p.E3668X. Conclusions. Our patient is one of the few cases of CHS reported in the African American population. We identified 2 nonsense mutations in the CHS1 gene, the first mutation analysis published of an African-American child with Chediak-Higashi Syndrome. These two mutations predict a severe phenotype and thus identification of these mutations has an important clinical significance in CHS.

  20. Effects of Germline Mutations in the Ras/MAPK Signaling Pathway on Adaptive Behavior: Cardiofaciocutaneous Syndrome and Noonan Syndrome

    Science.gov (United States)

    Pierpont, Elizabeth I.; Pierpont, Mary Ella; Mendelsohn, Nancy J.; Roberts, Amy E.; Tworog-Dube, Erica; Rauen, Katherine A.; Seidenberg, Mark S.

    2011-01-01

    Cardiofaciocutaneous syndrome (CFC) and Noonan syndrome (NS) are two phenotypically overlapping genetic disorders whose underlying molecular etiologies affect a common signaling pathway. Mutations in the BRAF, MEK1 and MEK2 genes cause most cases of CFC and mutations in PTPN11, SOS1, KRAS and RAF1 typically cause NS. Although both syndromes are associated with developmental delays of varying severity, the extent to which the behavioral profiles differ may shed light on the different roles these respective genes play in development of skills necessary for everyday functioning. In this study, profiles of adaptive behavior of individuals with CFC and NS who had confirmed pathogenic mutations in Ras/MAPK pathway genes were investigated. Patterns of strengths and weaknesses, age-related differences, and risk factors for difficulties in adaptive skills were assessed. Although genes acting more downstream in the Ras/MAPK pathway were associated with more difficulties in adaptive functioning than genes more upstream in the pathway, several inconsistencies highlight the wide spectrum of possible developmental courses in CFC and NS. Along with clinical and genetic factors, variables such as chronological age, gestational age at birth and parental education levels accounted for significant variance in adaptive skills. Results indicate that there is wide heterogeneity in adaptive ability in CFC and NS, but that these abilities are correlated to some extent with the specific disease-causing genes. PMID:20186801

  1. Urinary Tract Cancer in Lynch Syndrome; Increased Risk in Carriers of <i>MSH2i> Mutations

    DEFF Research Database (Denmark)

    Joost, Patrick; Therkildsen, Christina; Dominguez-Valentin, Mev

    2015-01-01

    and microsatellite instability in 23% of the tumors. Mutations in MSH2 were overrepresented (73%), and MSH2 mutation carriers were at a significantly increased risk of developing urinary tract cancer compared with individuals with mutations in MLH1 or MSH6. CONCLUSION: Cancers of the upper urinary tract...

  2. The genetic basis of long QT and short QT syndromes: a mutation update

    DEFF Research Database (Denmark)

    Hedley, Paula L; Jørgensen, Poul; Schlamowitz, Sarah

    2009-01-01

    Long QT and short QT syndromes (LQTS and SQTS) are cardiac repolarization abnormalities that are characterized by length perturbations of the QT interval as measured on electrocardiogram (ECG). Prolonged QT interval and a propensity for ventricular tachycardia of the torsades de pointes (TdP) type......-Nielsen syndrome (JLNS), Andersen syndrome (AS), and Timothy syndrome (TS). The genetics are further complicated by the occurrence of double and triple heterozygotes in LQTS and a considerable number of nonpathogenic rare polymorphisms in the involved genes. SQTS is a very rare condition, caused by mutations...

  3. Acral peeling skin syndrome associated with a novel CSTA gene mutation.

    Science.gov (United States)

    Muttardi, K; Nitoiu, D; Kelsell, D P; O'Toole, E A; Batta, K

    2016-06-01

    Acral peeling skin syndrome (APSS) is a rare autosomal recessive condition, characterized by asymptomatic peeling of the skin of the hands and feet, often linked to mutations in the gene TGM5. However, more recently recessive loss of function mutations in CSTA, encoding cystatin A, have been linked with APSS and exfoliative ichthyosis. We describe the clinical features in two sisters with APSS, associated with a novel large homozygous deletion encompassing exon 1 of CSTA. © 2015 British Association of Dermatologists.

  4. N348I in the connection domain of HIV-1 reverse transcriptase confers zidovudine and nevirapine resistance.

    Directory of Open Access Journals (Sweden)

    Soo-Huey Yap

    2007-12-01

    Full Text Available The catalytically active 66-kDa subunit of the human immunodeficiency virus type 1 (HIV-1 reverse transcriptase (RT consists of DNA polymerase, connection, and ribonuclease H (RNase H domains. Almost all known RT inhibitor resistance mutations identified to date map to the polymerase domain of the enzyme. However, the connection and RNase H domains are not routinely analysed in clinical samples and none of the genotyping assays available for patient management sequence the entire RT coding region. The British Columbia Centre for Excellence in HIV/AIDS (the Centre genotypes clinical isolates up to codon 400 in RT, and our retrospective statistical analyses of the Centre's database have identified an N348I mutation in the RT connection domain in treatment-experienced individuals. The objective of this multidisciplinary study was to establish the in vivo relevance of this mutation and its role in drug resistance.The prevalence of N348I in clinical isolates, the time taken for it to emerge under selective drug pressure, and its association with changes in viral load, specific drug treatment, and known drug resistance mutations was analysed from genotypes, viral loads, and treatment histories from the Centre's database. N348I increased in prevalence from below 1% in 368 treatment-naïve individuals to 12.1% in 1,009 treatment-experienced patients (p = 7.7 x 10(-12. N348I appeared early in therapy and was highly associated with thymidine analogue mutations (TAMs M41L and T215Y/F (p < 0.001, the lamivudine resistance mutations M184V/I (p < 0.001, and non-nucleoside RTI (NNRTI resistance mutations K103N and Y181C/I (p < 0.001. The association with TAMs and NNRTI resistance mutations was consistent with the selection of N348I in patients treated with regimens that included both zidovudine and nevirapine (odds ratio 2.62, 95% confidence interval 1.43-4.81. The appearance of N348I was associated with a significant increase in viral load (p < 0.001, which

  5. A novel GATA3 nonsense mutation in a newly diagnosed adult patient of hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome.

    Science.gov (United States)

    Nanba, Kazutaka; Usui, Takeshi; Nakamura, Michikazu; Toyota, Yuko; Hirota, Keisho; Tamanaha, Tamiko; Kawashima, Sachiko-Tsukamoto; Nakao, Kanako; Yuno, Akiko; Tagami, Tetsuya; Naruse, Mitsuhide; Shimatsu, Akira

    2013-01-01

    Hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome is an autosomal dominant disorder caused by a GATA3 gene mutation. Here we report a novel mutation of GATA3 in a patient diagnosed with HDR syndrome at the age of 58 with extensive intracranial calcification. A 58-year-old Japanese man showed severe hypocalcemia and marked calcification in the basal ganglia, cerebellum, deep white matter, and gray-white junction on computed tomography (CT). The serum intact parathyroid hormone level was relatively low against low serum calcium concentration. The patient had been diagnosed with bilateral sensorineural deafness in childhood and had a family history of hearing disorders. Imaging studies revealed no renal anomalies. The patient was diagnosed with HDR syndrome, and genetic testing was performed. Genetic analysis of GATA3 showed a novel nonsense mutation at codon 198 (S198X) in exon 3. The S198X mutation leads to a loss of two zinc finger deoxyribonucleic acid (DNA) binding domains and is considered to be responsible for HDR syndrome. We identified a novel nonsense mutation of GATA3 in an adult patient with HDR syndrome who showed extensive intracranial calcification.

  6. [Analysis of USH2A gene mutation in a Chinese family affected with Usher syndrome].

    Science.gov (United States)

    Li, Pengcheng; Liu, Fei; Zhang, Mingchang; Wang, Qiufen; Liu, Mugen

    2015-08-01

    To investigate the disease-causing mutation in a Chinese family affected with Usher syndrome type II. All of the 11 members from the family underwent comprehensive ophthalmologic examination and hearing test, and their genomic DNA were isolated from venous leukocytes. PCR and direct sequencing of USH2A gene were performed for the proband. Wild type and mutant type minigene vectors containing exon 42, intron 42 and exon 43 of the USH2A gene were constructed and transfected into Hela cells by lipofectamine reagent. Reverse transcription (RT)-PCR was carried out to verify the splicing of the minigenes. Pedigree analysis and clinical diagnosis indicated that the patients have suffered from autosomal recessive Usher syndrome type II. DNA sequencing has detected a homozygous c.8559-2A>G mutation of the USH2A gene in the proband, which has co-segregated with the disease in the family. The mutation has affected a conserved splice site in intron 42, which has led to inactivation of the splice site. Minigene experiment has confirmed the retaining of intron 42 in mature mRNA. The c.8559-2A>G mutation in the USH2A gene probably underlies the Usher syndrome type II in this family. The splice site mutation has resulted in abnormal splicing of USH2A pre-mRNA.

  7. The N355K atlastin 1 mutation is associated with hereditary sensory neuropathy and pyramidal tract features.

    Science.gov (United States)

    Leonardis, L; Auer-Grumbach, M; Papić, L; Zidar, J

    2012-07-01

    Mutations in atlastin-1 (ATL-1), a gene known to cause pure, early-onset autosomal dominant hereditary spastic paraplegia SPG3A, have been recently reported to cause hereditary sensory neuropathy I (HSN I). We describe the detailed clinical and electrophysiologic findings in the first family with ulcero-mutilating sensory neuropathy carrying the c. C1065A, p.N355K mutation in ATL-1.   Detailed clinical and electrophysiologic studies were performed in affected and at-risk family members. Motor and sensory nerve conductions studies (NCS) were carried out in upper and lower limbs. ATL-1 was screened for mutations by direct sequencing.   Ten patients were found to carry the N355K mutation. With the exception of the two youngest patients, all had trophic skin changes in the feet consisting mainly of painless ulcers. Frequently, amputation of toes, feet, or even more proximal parts of the lower legs became necessary. A variable degree of increased muscle tone was observed in younger patients, whilst some older affected individuals only presented with hyperreflexia of patellar tendon reflexes. NCS revealed signs of an axonal motor and sensory neuropathies.   Our family carrying the N355K ATL1 mutation, which was initially diagnosed as HSN I, enlarges the SPG3A phenotype. We therefore suggest that patients with HSN I excluded for more common causes of HSN I, and in particular, affected individuals who exhibit additional pyramidal tract features should also be screened for mutations in ATL1. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.

  8. Comprehensive population-wide analysis of Lynch syndrome in Iceland reveals founder mutations in MSH6 and PMS2

    Science.gov (United States)

    Haraldsdottir, Sigurdis; Rafnar, Thorunn; Frankel, Wendy L.; Einarsdottir, Sylvia; Sigurdsson, Asgeir; Hampel, Heather; Snaebjornsson, Petur; Masson, Gisli; Weng, Daniel; Arngrimsson, Reynir; Kehr, Birte; Yilmaz, Ahmet; Haraldsson, Stefan; Sulem, Patrick; Stefansson, Tryggvi; Shields, Peter G.; Sigurdsson, Fridbjorn; Bekaii-Saab, Tanios; Moller, Pall H.; Steinarsdottir, Margret; Alexiusdottir, Kristin; Hitchins, Megan; Pritchard, Colin C.; de la Chapelle, Albert; Jonasson, Jon G.; Goldberg, Richard M.; Stefansson, Kari

    2017-01-01

    Lynch syndrome, caused by germline mutations in the mismatch repair genes, is associated with increased cancer risk. Here using a large whole-genome sequencing data bank, cancer registry and colorectal tumour bank we determine the prevalence of Lynch syndrome, associated cancer risks and pathogenicity of several variants in the Icelandic population. We use colorectal cancer samples from 1,182 patients diagnosed between 2000–2009. One-hundred and thirty-two (11.2%) tumours are mismatch repair deficient per immunohistochemistry. Twenty-one (1.8%) have Lynch syndrome while 106 (9.0%) have somatic hypermethylation or mutations in the mismatch repair genes. The population prevalence of Lynch syndrome is 0.442%. We discover a translocation disrupting MLH1 and three mutations in MSH6 and PMS2 that increase endometrial, colorectal, brain and ovarian cancer risk. We find thirteen mismatch repair variants of uncertain significance that are not associated with cancer risk. We find that founder mutations in MSH6 and PMS2 prevail in Iceland unlike most other populations. PMID:28466842

  9. Somatic mosaicism containing double mutations in PTCH1 revealed by generation of induced pluripotent stem cells from nevoid basal cell carcinoma syndrome.

    Science.gov (United States)

    Ikemoto, Yu; Takayama, Yoshinaga; Fujii, Katsunori; Masuda, Mokuri; Kato, Chise; Hatsuse, Hiromi; Fujitani, Kazuko; Nagao, Kazuaki; Kameyama, Kohzoh; Ikehara, Hajime; Toyoda, Masashi; Umezawa, Akihiro; Miyashita, Toshiyuki

    2017-08-01

    Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder characterised by developmental defects and tumorigenesis, such as medulloblastomas and basal cell carcinomas, caused by mutations of the patched-1 ( PTCH1 ) gene. In this article, we seek to demonstrate a mosaicism containing double mutations in PTCH1 in an individual with NBCCS. A de novo germline mutation of PTCH1 (c.272delG) was detected in a 31-year-old woman with NBCCS. Gene analysis of two out of four induced pluripotent stem cell (iPSC) clones established from the patient unexpectedly revealed an additional mutation, c.274delT. Deep sequencing confirmed a low-prevalence somatic mutation (5.5%-15.6% depending on the tissue) identical to the one found in iPSC clones. This is the first case of mosaicism unequivocally demonstrated in NBCCS. Furthermore, the mosaicism is unique in that the patient carries one normal and two mutant alleles. Because these mutations are located in close proximity, reversion error is likely to be involved in this event rather than a spontaneous mutation. In addition, this study indicates that gene analysis of iPSC clones can contribute to the detection of mosaicism containing a minor population carrying a second mutation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Novel Calmodulin (CALM2) Mutations Associated with Congenital Arrhythmia Susceptibility

    Science.gov (United States)

    Makita, Naomasa; Yagihara, Nobue; Crotti, Lia; Johnson, Christopher N.; Beckmann, Britt-Maria; Roh, Michelle S.; Shigemizu, Daichi; Lichtner, Peter; Ishikawa, Taisuke; Aiba, Takeshi; Homfray, Tessa; Behr, Elijah R.; Klug, Didier; Denjoy, Isabelle; Mastantuono, Elisa; Theisen, Daniel; Tsunoda, Tatsuhiko; Satake, Wataru; Toda, Tatsushi; Nakagawa, Hidewaki; Tsuji, Yukiomi; Tsuchiya, Takeshi; Yamamoto, Hirokazu; Miyamoto, Yoshihiro; Endo, Naoto; Kimura, Akinori; Ozaki, Kouichi; Motomura, Hideki; Suda, Kenji; Tanaka, Toshihiro; Schwartz, Peter J.; Meitinger, Thomas; Kääb, Stefan; Guicheney, Pascale; Shimizu, Wataru; Bhuiyan, Zahurul A.; Watanabe, Hiroshi; Chazin, Walter J.; George, Alfred L.

    2014-01-01

    Background Genetic predisposition to life-threatening cardiac arrhythmias such as in congenital long-QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT) represent treatable causes of sudden cardiac death in young adults and children. Recently, mutations in calmodulin (CALM1, CALM2) have been associated with severe forms of LQTS and CPVT, with life-threatening arrhythmias occurring very early in life. Additional mutation-positive cases are needed to discern genotype-phenotype correlations associated with calmodulin mutations. Methods and Results We employed conventional and next-generation sequencing approaches including exome analysis in genotype-negative LQTS probands. We identified five novel de novo missense mutations in CALM2 in three subjects with LQTS (p.N98S, p.N98I, p.D134H) and two subjects with clinical features of both LQTS and CPVT (p.D132E, p.Q136P). Age of onset of major symptoms (syncope or cardiac arrest) ranged from 1–9 years. Three of five probands had cardiac arrest and one of these subjects did not survive. Although all probands had LQTS, two subjects also exhibited electrocardiographic features consistent with CPVT. The clinical severity among subjects in this series was generally less than that originally reported for CALM1 and CALM2 associated with recurrent cardiac arrest during infancy. Four of five probands responded to β-blocker therapy whereas one subject with mutation p.Q136P died suddenly during exertion despite this treatment. Mutations affect conserved residues located within calcium binding loops III (p.N98S, p.N98I) or IV (p.D132E, p.D134H, p.Q136P) and caused reduced calcium binding affinity. Conclusions CALM2 mutations can be associated with LQTS and with overlapping features of LQTS and CPVT. PMID:24917665

  11. New mutations in the NHS gene in Nance-Horan Syndrome families from the Netherlands.

    Science.gov (United States)

    Florijn, Ralph J; Loves, Willem; Maillette de Buy Wenniger-Prick, Liesbeth J J M; Mannens, Marcel M A M; Tijmes, Nel; Brooks, Simon P; Hardcastle, Alison J; Bergen, Arthur A B

    2006-09-01

    Mutations in the NHS gene cause Nance-Horan Syndrome (NHS), a rare X-chromosomal recessive disorder with variable features, including congenital cataract, microphthalmia, a peculiar form of the ear and dental anomalies. We investigated the NHS gene in four additional families with NHS from the Netherlands, by dHPLC and direct sequencing. We identified an unique mutation in each family. Three out of these four mutations were not reported before. We report here the first splice site sequence alteration mutation and three protein truncating mutations. Our results suggest that X-linked cataract and NHS are allelic disorders.

  12. Report of Chinese family with severe dermatitis, multiple allergies and metabolic wasting syndrome caused by novel homozygous desmoglein-1 gene mutation.

    Science.gov (United States)

    Cheng, Ruhong; Yan, Ming; Ni, Cheng; Zhang, Jia; Li, Ming; Yao, Zhirong

    2016-10-01

    Recently, homozygous mutations in the desmoglein-1 (DSG1) gene and heterozygous mutation in the desmoplakin (DSP) gene have been demonstrated to be associated with severe dermatitis, multiple allergies and metabolic wasting (SAM) syndrome (Mendelian Inheritance in Man no. 615508). We aim to identify the molecular basis for a Chinese pedigree of SAM syndrome. A Chinese pedigree of SAM syndrome was subjected to mutation detection in the DSG1 gene. Sequence analysis of the DSG1 gene and quantitative reverse transcriptase polymerase chain reaction analysis for gene expression of DSG1 using cDNA derived from the epidermis of patients and controls were both performed. Skin biopsies were also taken from patients for pathological study and transmission electron microscopy observation. Novel homozygous splicing mutation c.1892-1delG in the exon-intron border of the DSG1 gene has been demonstrated to be associated with SAM syndrome. We report a new family of SAM syndrome of Asian decent and expand the spectrum of mutations in the DSG1 gene. © 2016 Japanese Dermatological Association.

  13. Collagen XVIII Mutation in Knobloch Syndrome with Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Mahajan, Vinit B.; Olney, Ann Haskins; Garrett, Penny; Chary, Ajit; Dragan, Ecaterina; Lerner, Gary; Murray, Jeffrey; Bassuk, Alexander G.

    2010-01-01

    Knobloch syndrome (KNO) is caused by mutations in the collagen XIII gene (COL18A1) and patients develop encephalocele and vitreoretinal degeneration. Here we report an El Salvadorian family where two sisters showed features of KNO. One of the siblings also developed acute lymphoblastic leukemia. DNA sequencing of COL18A1revealed a homozygous, 2-base pair deletion (c3514-3515delCT) in exon 41, which leads to abnormal collagen XVIII and deficiency of its proteolytic cleavage product endostatin. KNO patients with mutations in COL18A1 may be at risk for endostatin-related conditions including malignancy. PMID:20799329

  14. De novo SOX11 mutations cause Coffin-Siris syndrome.

    Science.gov (United States)

    Tsurusaki, Yoshinori; Koshimizu, Eriko; Ohashi, Hirofumi; Phadke, Shubha; Kou, Ikuyo; Shiina, Masaaki; Suzuki, Toshifumi; Okamoto, Nobuhiko; Imamura, Shintaro; Yamashita, Michiaki; Watanabe, Satoshi; Yoshiura, Koh-ichiro; Kodera, Hirofumi; Miyatake, Satoko; Nakashima, Mitsuko; Saitsu, Hirotomo; Ogata, Kazuhiro; Ikegawa, Shiro; Miyake, Noriko; Matsumoto, Naomichi

    2014-06-02

    Coffin-Siris syndrome (CSS) is a congenital disorder characterized by growth deficiency, intellectual disability, microcephaly, characteristic facial features and hypoplastic nails of the fifth fingers and/or toes. We previously identified mutations in five genes encoding subunits of the BAF complex, in 55% of CSS patients. Here we perform whole-exome sequencing in additional CSS patients, identifying de novo SOX11 mutations in two patients with a mild CSS phenotype. sox11a/b knockdown in zebrafish causes brain abnormalities, potentially explaining the brain phenotype of CSS. SOX11 is the downstream transcriptional factor of the PAX6-BAF complex, highlighting the importance of the BAF complex and SOX11 transcriptional network in brain development.

  15. Genetic heterogeneity of Usher syndrome: analysis of 151 families with Usher type I.

    Science.gov (United States)

    Astuto, L M; Weston, M D; Carney, C A; Hoover, D M; Cremers, C W; Wagenaar, M; Moller, C; Smith, R J; Pieke-Dahl, S; Greenberg, J; Ramesar, R; Jacobson, S G; Ayuso, C; Heckenlively, J R; Tamayo, M; Gorin, M B; Reardon, W; Kimberling, W J

    2000-12-01

    Usher syndrome type I is an autosomal recessive disorder marked by hearing loss, vestibular areflexia, and retinitis pigmentosa. Six Usher I genetic subtypes at loci USH1A-USH1F have been reported. The MYO7A gene is responsible for USH1B, the most common subtype. In our analysis, 151 families with Usher I were screened by linkage and mutation analysis. MYO7A mutations were identified in 64 families with Usher I. Of the remaining 87 families, who were negative for MYO7A mutations, 54 were informative for linkage analysis and were screened with the remaining USH1 loci markers. Results of linkage and heterogeneity analyses showed no evidence of Usher types Ia or Ie. However, one maximum LOD score was observed lying within the USH1D region. Two lesser peak LOD scores were observed outside and between the putative regions for USH1D and USH1F, on chromosome 10. A HOMOG chi(2)((1)) plot shows evidence of heterogeneity across the USH1D, USH1F, and intervening regions. These results provide conclusive evidence that the second-most-common subtype of Usher I is due to genes on chromosome 10, and they confirm the existence of one Usher I gene in the previously defined USH1D region, as well as providing evidence for a second, and possibly a third, gene in the 10p/q region.

  16. Novel mutation in Sjogren-Larsson syndrome is associated with divergent neurologic phenotypes.

    Science.gov (United States)

    Davis, Kathleen; Holden, Kenton R; S'Aulis, Dana; Amador, Claudia; Matheus, M Gisele; Rizzo, William B

    2013-10-01

    Sjögren-Larsson syndrome is an inherited disorder of lipid metabolism caused by mutations in the ALDH3A2 gene that codes for fatty aldehyde dehydrogenase, which results in accumulation of fatty aldehydes and alcohols and is characterized by ichthyosis, intellectual disability, and spastic diplegia/quadriplegia. The authors describe 2 unrelated Honduran patients who carried the same novel homozygous nonsense mutation (c.1309A>T, p.K437X) and ALDH3A2 DNA haplotype, but widely differed in disease severity. One patient exhibited spastic quadriplegia with unusual neuroregression, whereas the other patient had the usual static form of spastic diplegia with neurodevelopmental disabilities. Biochemical analyses showed a similar profound deficiency of fatty aldehyde dehydrogenase activity and impaired fatty alcohol metabolism in both patients' cultured fibroblasts. These results indicate that variation in the neurologic phenotype of Sjögren-Larsson syndrome is not strictly determined by the ALDH3A2 mutation or the biochemical defect as expressed in cultured fibroblasts, but by unidentified epigenetic/environmental factors, gene modifiers, or other mechanisms.

  17. Identification of a novel mutation in RIPK4 in a kindred with phenotypic features of Bartsocas-Papas and CHAND syndromes.

    Science.gov (United States)

    Gollasch, Benjamin; Basmanav, Fitnat Buket; Nanda, Arti; Fritz, Günter; Mahmoudi, Hassnaa; Thiele, Holger; Wehner, Maria; Wolf, Sabrina; Altmüller, Janine; Nürnberg, Peter; Frank, Jorge; Betz, Regina C

    2015-11-01

    Three children from an expanded consanguineous Kuwaiti kindred presented with ankyloblepharon, sparse and curly hair, and hypoplastic nails, suggestive of CHAND syndrome (OMIM 214350) that belongs to the heterogeneous spectrum of ectodermal dysplasias. After exclusion of pathogenic mutations in TP63 we performed homozygosity mapping, followed by exome sequencing of one affected individual. We initially identified three homozygous mutations in the linked region, located in PWP2, MX2 and RIPK4. Recently, mutations in RIPK4 have been reported in Bartsocas-Papas syndrome (OMIM 263650) that shows overlapping clinical symptoms with the phenotype observed in the affected individuals studied here. Subsequent analysis of affected and non-affected family members showed that mutation c.850G>A (p.Glu284Lys) in RIPK4 was in complete segregation with the disease phenotype, in accordance with an autosomal recessive inheritance pattern, thus supporting pathogenicity of this variant. Interestingly, however, our patients did not have cleft lip/palate, a common feature encountered in Bartsocas-Papas syndrome. Whereas in Bartsocas-Papas syndromes missense mutations are usually located within the serin/threonin kinase of RIPK4, the mutation detected in our family resides just outside of the kinase domain, which could explain the milder phenotype. Our data raise the question if CHAND syndrome indeed is a distinct entity. Alternatively, CHAND and Bartsocas-Papas syndrome might be allelic disorders or RIPK4 mutations could confer varying degrees of phenotypic severity, depending on their localization within or outside functionally important domains. Our findings indicate that making an accurate diagnosis based only on the prevailing clinical symptoms is challenging. © 2015 Wiley Periodicals, Inc.

  18. Usher syndrome type 1 due to missense mutations on both CDH23 alleles: investigation of mRNA splicing.

    Science.gov (United States)

    Becirovic, Elvir; Ebermann, Inga; Nagy, Ditta; Zrenner, Eberhart; Seeliger, Mathias Wolfgang; Bolz, Hanno Jörn

    2008-03-01

    Usher syndrome (USH) is an autosomal recessive condition characterized by sensorineural hearing loss, vestibular dysfunction, and visual impairment due to retinitis pigmentosa. Truncating mutations in the cadherin-23 gene (CDH23) result in Usher syndrome type 1D (USH1D), whereas missense mutations affecting strongly conserved motifs of the CDH23 protein cause non-syndromic deafness (DFNB12). Four missense mutations constitute an exception from this genotype-phenotype correlation: they have been described in USH1 patients in homozygous state. Using a minigene assay, we have investigated these changes (c.1450G>C, p.A484P; c.3625A>G, p.T1209A; c.4520G>A, p.R1507Q; and c.5237G>A, p.R1746Q) for a possible impact on mRNA splicing which could explain the syndromic phenotype. While in silico analysis suggested impairment of splicing in all four cases, we found aberrant splicing for only one mutation, p.R1746Q. However, splicing was normal in case of p.A484P, p.T1209A and p.R1507Q. These three latter CDH23 missense mutations could interfere with functions of both, the auditory and the visual system. Alternatively, they could represent rare non-pathogenic polymorphisms.

  19. A novel thromboxane A2 receptor D304N variant that abrogates ligand binding in a patient with a bleeding diathesis.

    Science.gov (United States)

    Mumford, Andrew D; Dawood, Ban B; Daly, Martina E; Murden, Sherina L; Williams, Michael D; Protty, Majd B; Spalton, Jennifer C; Wheatley, Mark; Mundell, Stuart J; Watson, Steve P

    2010-01-14

    We investigated the cause of mild mucocutaneous bleeding in a 14-year-old male patient (P1). Platelet aggregation and ATP secretion induced by arachidonic acid and the thromboxane A(2) receptor (TxA(2)R) agonist U46619 were reduced in P1 compared with controls, whereas the responses to other platelet agonists were retained. P1 was heterozygous for a transversion within the TBXA2R gene predictive of a D304N substitution in the TxA(2)R. In Chinese hamster ovary-K1 cells expressing the variant D304N TxA(2)R, U46619 did not increase cytosolic free Ca(2+) concentration, indicating loss of receptor function. The TxA(2)R antagonist [(3)H]-SQ29548 showed an approximate 50% decrease in binding to platelets from P1 but absent binding to Chinese hamster ovary-K1 cells expressing variant D304N TxA(2)R. This is the second naturally occurring TxA(2)R variant to be associated with platelet dysfunction and the first in which loss of receptor function is associated with reduced ligand binding. D304 lies within a conserved NPXXY motif in transmembrane domain 7 of the TxA(2)R that is a key structural element in family A G protein-coupled receptors. Our demonstration that the D304N substitution causes clinically significant platelet dysfunction by reducing ligand binding establishes the importance of the NPXXY motif for TxA(2)R function in vivo.

  20. Genetic analysis of PAX3 for diagnosis of Waardenburg syndrome type I.

    Science.gov (United States)

    Matsunaga, Tatsuo; Mutai, Hideki; Namba, Kazunori; Morita, Noriko; Masuda, Sawako

    2013-04-01

    PAX3 genetic analysis increased the diagnostic accuracy for Waardenburg syndrome type I (WS1). Analysis of the three-dimensional (3D) structure of PAX3 helped verify the pathogenicity of a missense mutation, and multiple ligation-dependent probe amplification (MLPA) analysis of PAX3 increased the sensitivity of genetic diagnosis in patients with WS1. Clinical diagnosis of WS1 is often difficult in individual patients with isolated, mild, or non-specific symptoms. The objective of the present study was to facilitate the accurate diagnosis of WS1 through genetic analysis of PAX3 and to expand the spectrum of known PAX3 mutations. In two Japanese families with WS1, we conducted a clinical evaluation of symptoms and genetic analysis, which involved direct sequencing, MLPA analysis, quantitative PCR of PAX3, and analysis of the predicted 3D structure of PAX3. The normal-hearing control group comprised 92 subjects who had normal hearing according to pure tone audiometry. In one family, direct sequencing of PAX3 identified a heterozygous mutation, p.I59F. Analysis of PAX3 3D structures indicated that this mutation distorted the DNA-binding site of PAX3. In the other family, MLPA analysis and subsequent quantitative PCR detected a large, heterozygous deletion spanning 1759-2554 kb that eliminated 12-18 genes including a whole PAX3 gene.

  1. Mutations in HPSE2 cause urofacial syndrome.

    Science.gov (United States)

    Daly, Sarah B; Urquhart, Jill E; Hilton, Emma; McKenzie, Edward A; Kammerer, Richard A; Lewis, Malcolm; Kerr, Bronwyn; Stuart, Helen; Donnai, Dian; Long, David A; Burgu, Berk; Aydogdu, Ozgu; Derbent, Murat; Garcia-Minaur, Sixto; Reardon, Willie; Gener, Blanca; Shalev, Stavit; Smith, Rupert; Woolf, Adrian S; Black, Graeme C; Newman, William G

    2010-06-11

    Urinary voiding dysfunction in childhood, manifesting as incontinence, dysuria, and urinary frequency, is a common condition. Urofacial syndrome (UFS) is a rare autosomal recessive disease characterized by facial grimacing when attempting to smile and failure of the urinary bladder to void completely despite a lack of anatomical bladder outflow obstruction or overt neurological damage. UFS individuals often have reflux of infected urine from the bladder to the upper renal tract, with a risk of kidney damage and renal failure. Whole-genome SNP mapping in one affected individual defined an autozygous region of 16 Mb on chromosome 10q23-q24, within which a 10 kb deletion encompassing exons 8 and 9 of HPSE2 was identified. Homozygous exonic deletions, nonsense mutations, and frameshift mutations in five further unrelated families confirmed HPSE2 as the causative gene for UFS. Mutations were not identified in four additional UFS patients, indicating genetic heterogeneity. We show that HPSE2 is expressed in the fetal and adult central nervous system, where it might be implicated in controlling facial expression and urinary voiding, and also in bladder smooth muscle, consistent with a role in renal tract morphology and function. Our findings have broader implications for understanding the genetic basis of lower renal tract malformations and voiding dysfunction.

  2. Mutations in HPSE2 Cause Urofacial Syndrome

    Science.gov (United States)

    Daly, Sarah B.; Urquhart, Jill E.; Hilton, Emma; McKenzie, Edward A.; Kammerer, Richard A.; Lewis, Malcolm; Kerr, Bronwyn; Stuart, Helen; Donnai, Dian; Long, David A.; Burgu, Berk; Aydogdu, Ozgu; Derbent, Murat; Garcia-Minaur, Sixto; Reardon, Willie; Gener, Blanca; Shalev, Stavit; Smith, Rupert; Woolf, Adrian S.; Black, Graeme C.; Newman, William G.

    2010-01-01

    Urinary voiding dysfunction in childhood, manifesting as incontinence, dysuria, and urinary frequency, is a common condition. Urofacial syndrome (UFS) is a rare autosomal recessive disease characterized by facial grimacing when attempting to smile and failure of the urinary bladder to void completely despite a lack of anatomical bladder outflow obstruction or overt neurological damage. UFS individuals often have reflux of infected urine from the bladder to the upper renal tract, with a risk of kidney damage and renal failure. Whole-genome SNP mapping in one affected individual defined an autozygous region of 16 Mb on chromosome 10q23-q24, within which a 10 kb deletion encompassing exons 8 and 9 of HPSE2 was identified. Homozygous exonic deletions, nonsense mutations, and frameshift mutations in five further unrelated families confirmed HPSE2 as the causative gene for UFS. Mutations were not identified in four additional UFS patients, indicating genetic heterogeneity. We show that HPSE2 is expressed in the fetal and adult central nervous system, where it might be implicated in controlling facial expression and urinary voiding, and also in bladder smooth muscle, consistent with a role in renal tract morphology and function. Our findings have broader implications for understanding the genetic basis of lower renal tract malformations and voiding dysfunction. PMID:20560210

  3. A de novo deletion mutation in SOX10 in a Chinese family with Waardenburg syndrome type 4.

    Science.gov (United States)

    Wang, Xiong; Zhu, Yaowu; Shen, Na; Peng, Jing; Wang, Chunyu; Liu, Haiyi; Lu, Yanjun

    2017-01-27

    Waardenburg syndrome type 4 (WS4) or Waardenburg-Shah syndrome is a rare genetic disorder with a prevalence of <1/1,000,000 and characterized by the association of congenital sensorineural hearing loss, pigmentary abnormalities, and intestinal aganglionosis. There are three types of WS4 (WS4A-C) caused by mutations in endothelin receptor type B, endothelin 3, and SRY-box 10 (SOX10), respectively. This study investigated a genetic mutation in a Chinese family with one WS4 patient in order to improve genetic counselling. Genomic DNA was extracted, and mutation analysis of the three WS4 related genes was performed using Sanger sequencing. We detected a de novo heterozygous deletion mutation [c.1333delT (p.Ser445Glnfs*57)] in SOX10 in the patient; however, this mutation was absent in the unaffected parents and 40 ethnicity matched healthy controls. Subsequent phylogenetic analysis and three-dimensional modelling of the SOX10 protein confirmed that the c.1333delT heterozygous mutation was pathogenic, indicating that this mutation might constitute a candidate disease-causing mutation.

  4. Shah-Waardenburg syndrome and PCWH associated with SOX10 mutations: a case report and review of the literature.

    Science.gov (United States)

    Verheij, Johanna B G M; Sival, Deborah A; van der Hoeven, Johannes H; Vos, Yvonne J; Meiners, Linda C; Brouwer, Oebele F; van Essen, Anthonie J

    2006-01-01

    Shah-Waardenburg syndrome is a rare congenital disorder with variable clinical expression, characterised by aganglionosis of the rectosigmoïd (Hirschsprung disease), and abnormal melanocyte migration, resulting in pigmentary abnormalities and sensorineural deafness (Waardenburg syndrome). Mutations in the EDN, EDNRB and SOX10 genes can be found in patients with this syndrome. SOX10 mutations are specifically associated with a more severe phenotype called PCWH: peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease. Neuronal expression of SOX10 occurs in neural crest cells during early embryonic development and in glial cells of the peripheral and central nervous systems during late embryonic development and in adults. We present a 4-year-old girl with the PCWH phenotype associated with a de novo nonsense mutation (S384X) in SOX10. Main clinical features were mental retardation, peripheral neuropathy, deafness, Hirschsprung disease, distal arthrogryposis, white hairlock, and growth retardation. She presented with hypotonia, developmental delay, reduced peripheral nerve conduction velocities, and radiologically assessed central hypomyelination. Subsequently, the formation of abnormal myelin within the central and peripheral nervous system was functionally and radiologically assessed. Children presenting with features of Waardenburg syndrome and neurological dysfunction should be tested for mutations in the SOX10 gene to enable diagnosis and counselling.

  5. Inherited germline ATRX mutation in two brothers with ATR-X syndrome and osteosarcoma.

    Science.gov (United States)

    Ji, Jianling; Quindipan, Catherine; Parham, David; Shen, Lishuang; Ruble, David; Bootwalla, Moiz; Maglinte, Dennis T; Gai, Xiaowu; Saitta, Sulagna C; Biegel, Jaclyn A; Mascarenhas, Leo

    2017-05-01

    We report a family in which two brothers had an undiagnosed genetic disorder comprised of dysmorphic features, microcephaly, severe intellectual disability (non-verbal), mild anemia, and cryptorchidism. Both developed osteosarcoma. Trio exome sequencing (using blood samples from the younger brother and both parents) was performed and a nonsense NM_000489.4:c.7156C>T (p.Arg2386*) mutation in the ATRX gene was identified in the proband (hemizygous) and in the mother's peripheral blood DNA (heterozygous). The mother is healthy, does not exhibit any clinical manifestations of ATR-X syndrome and there was no family history of cancer. The same hemizygous pathogenic variant was confirmed in the affected older brother's skin tissue by subsequent Sanger sequencing. Chromosomal microarray studies of both brothers' osteosarcomas revealed complex copy number alterations consistent with the clinical diagnosis of osteosarcoma. Recently, somatic mutations in the ATRX gene have been observed as recurrent alterations in both osteosarcoma and brain tumors. However, it is unclear if there is any association between osteosarcoma and germline ATRX mutations, specifically in patients with constitutional ATR-X syndrome. This is the first report of osteosarcoma diagnosed in two males with ATR-X syndrome, suggesting a potential increased risk for cancer in patients with this disorder. © 2017 Wiley Periodicals, Inc.

  6. Compound heterozygosity for two GHR missense mutations in a patient affected by Laron Syndrome: a case report.

    Science.gov (United States)

    Moia, Stefania; Tessaris, Daniele; Einaudi, Silvia; de Sanctis, Luisa; Bona, Gianni; Bellone, Simonetta; Prodam, Flavia

    2017-10-12

    Mutations localized in the Growth Hormone Receptor (GHR) gene are often associated with the pathogenesis of Laron Syndrome, an autosomal recessive hereditary disorder characterized by severe growth retardation. Biochemically, patients present normal to high circulating GH levels, in presence of very low or undetectable IGF-I levels, which do not rise after rhGH treatment. We describe the case of a 3.8 years old girl with symmetrical short stature (-3.76 SDS), low IGF-1 and IGFBP-3, in presence of normal GH levels. Parents were not relatives and there was no family history of short stature. During the second day of birth, she developed severe hypoglycaemia that required glucose infusion. She presented frontal bossing and depressed nasal bridge. IGF-1 generation test showed no response, suggesting a GH resistance evidence. In the hypothesis of Laron Syndrome, we decided to perform a molecular analysis of Growth Hormone Receptor (GHR) gene. This analysis demonstrated that the patient was compound heterozygote for two missense mutations. GHR gene mutations are a well demonstrated cause of GH insensitivity. In heterozygous patients, probably the normal stature may be achieved by a compensatory mechanism of GH secretion or signalling. On the contrary, in homozygous or compound heterozygous patients these compensatory mechanisms are inadequate, and short stature may be the consequence.

  7. Mutations in plasmalemma vesicle-associated protein cause severe syndromic protein-losing enteropathy.

    Science.gov (United States)

    Broekaert, Ilse Julia; Becker, Kerstin; Gottschalk, Ingo; Körber, Friederike; Dötsch, Jörg; Thiele, Holger; Altmüller, Janine; Nürnberg, Peter; Hünseler, Christoph; Cirak, Sebahattin

    2018-04-16

    Protein-losing enteropathy (PLE) is characterised by gastrointestinal protein leakage due to loss of mucosal integrity or lymphatic abnormalities. PLE can manifest as congenital diarrhoea and should be differentiated from other congenital diarrhoeal disorders. Primary PLEs are genetically heterogeneous and the underlying genetic defects are currently emerging. We report an infant with fatal PLE for whom we aimed to uncover the underlying pathogenic mutation. We performed whole exome sequencing (WES) for the index patient. Variants were classified based on the American College of Medical Genetics and Genomics guidelines. WES results and our detailed clinical description of the patient were compared with the literature. We discovered a novel homozygous stop mutation (c.988C>T, p.Q330*) in the Plasmalemma Vesicle-Associated Protein ( PLVAP ) gene in a newborn with fatal PLE, facial dysmorphism, and renal, ocular and cardiac anomalies. The Q330* mutation is predicted to result in complete loss of PLVAP protein expression leading to deletion of the diaphragms of endothelial fenestrae, resulting in plasma protein extravasation and PLE. Recently, another single homozygous stop mutation in PLVAP causing lethal PLE in an infant was reported. Our findings validate PLVAP mutations as a cause of syndromic PLE. Prenatal anomalies, severe PLE and syndromic features may guide the diagnosis of this rare disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Autoimmune manifestations in SCID due to IL7R mutations: Omenn syndrome and cytopenias.

    Science.gov (United States)

    Zago, Claudia Augusta; Jacob, Cristina Miuki Abe; de Albuquerque Diniz, Edna Maria; Lovisolo, Silvana Maria; Zerbini, Maria Claudia Nogueira; Dorna, Mayra; Watanabe, Letícia; Fernandes, Juliana Folloni; Rocha, Vanderson; Oliveira, João Bosco; Carneiro-Sampaio, Magda

    2014-07-01

    B+NK+SCID (severe combined immunodeficiency) due to IL7Rα deficiency represents approximately 10% of American SCID cases. To better understand the spectrum of autoimmune disorders associated with IL7Rα deficiency, we describe two unrelated IL7Rα-deficient female SCID infants whose clinical picture was dominated by autoimmune manifestations: one with intrauterine Omenn syndrome (OS) and another with persistent thrombocytopenic purpura since 4months of age. The OS baby harbored a homozygous p.C118Y mutation in IL7R. She presented dense eosinophilic infiltrates in several organs, including pancarditis, which may have contributed to her death (on the 2nd day of life). B cells were observed in lymph nodes, spleen, bone marrow and thymus. The second patient harbored compound heterozygous p.C118Y and p.I121NfsX8 mutations. She underwent a successful unrelated cord blood transplant. In conclusion, early OS can be observed in patients with IL7R mutations, and autoimmune cytopenias could also complicate the clinical course of SCID babies with this type of defect. Copyright © 2014. Published by Elsevier Inc.

  9. Expanding the clinical and mutational spectrum of B4GALT7-spondylodysplastic Ehlers-Danlos syndrome.

    Science.gov (United States)

    Ritelli, Marco; Dordoni, Chiara; Cinquina, Valeria; Venturini, Marina; Calzavara-Pinton, Piergiacomo; Colombi, Marina

    2017-09-07

    Spondylodysplastic EDS (spEDS) is a rare connective tissue disorder that groups the phenotypes caused by biallelic B4GALT7, B3GALT6, and SLC39A13 mutations. In the 2017 EDS nosology, minimal criteria (general and gene-specific) for a clinical suspicion of spEDS have been proposed, but molecular analysis is required to reach a definite diagnosis. The majority of spEDS patients presented with short stature, skin hyperextensibility, facial dysmorphisms, peculiar radiological findings, muscle hypotonia and joint laxity and/or its complications. To date only 7 patients with β4GALT7-deficiency (spEDS-B4GALT7) have been described and their clinical data suggested that, in addition to short stature and muscle hypotonia, radioulnar synostosis, hypermetropia, and delayed cognitive development might be a hallmark of this specific type of spEDS. Additional 22 patients affected with an overlapping phenotype, i.e., Larsen of Reunion Island syndrome, all carrying a homozygous B4GALT7 mutation, are also recognized. Herein, we report on a 30-year-old Moroccan woman who fitted the minimal criteria to suspect spEDS, but lacked radioulnar synostosis and intellectual disability and presented with neurosensorial hearing loss and limb edema of lymphatic origin. Sanger sequencing of B4GALT7 was performed since the evaluation of the spEDS gene-specific minor criteria suggested this specific subtype. Mutational screening revealed the homozygous c.829G>T, p.Glu277* pathogenetic variant leading to aberrant splicing. Our findings expand both the clinical and mutational spectrum of this ultrarare connective tissue disorder. The comparison of the patient's features with those of the other spEDS and Larsen of Reunion Island syndrome patients reported up to now offers future perspectives for spEDS nosology and clinical research in this field.

  10. Germline mutation of CBL is associated with moyamoya disease in a child with juvenile myelomonocytic leukemia and Noonan syndrome-like disorder.

    Science.gov (United States)

    Hyakuna, Nobuyuki; Muramatsu, Hideki; Higa, Takeshi; Chinen, Yasutsugu; Wang, Xinan; Kojima, Seiji

    2015-03-01

    Germline mutations in CBL have been identified in patients with Noonan syndrome-like phenotypes, while juvenile myelomonocytic leukemia (JMML) harbors duplication of a germline CBL, resulting in acquired isodisomy. The association between moyamoya disease and Noonan syndrome carrying a PTPN11 mutation has recently been reported. We present a patient with JMML who developed moyamoya disease and neovascular glaucoma. Our patient exhibited a Noonan syndrome-like phenotype. Genetic analysis revealed acquired isodisomy and a germline heterozygous mutation in CBL. This is a rare case of CBL mutation associated with moyamoya disease. Prolonged RAS pathway signaling may cause disruption of cerebrovascular development. © 2014 Wiley Periodicals, Inc.

  11. Heterozygous Germline Mutations in the CBL Tumor-Suppressor Gene Cause a Noonan Syndrome-like Phenotype

    Science.gov (United States)

    Martinelli, Simone; De Luca, Alessandro; Stellacci, Emilia; Rossi, Cesare; Checquolo, Saula; Lepri, Francesca; Caputo, Viviana; Silvano, Marianna; Buscherini, Francesco; Consoli, Federica; Ferrara, Grazia; Digilio, Maria C.; Cavaliere, Maria L.; van Hagen, Johanna M.; Zampino, Giuseppe; van der Burgt, Ineke; Ferrero, Giovanni B.; Mazzanti, Laura; Screpanti, Isabella; Yntema, Helger G.; Nillesen, Willy M.; Savarirayan, Ravi; Zenker, Martin; Dallapiccola, Bruno; Gelb, Bruce D.; Tartaglia, Marco

    2010-01-01

    RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies. PMID:20619386

  12. Acute myeloid leukemia-associated DNMT3A p.Arg882His mutation in a patient with Tatton-Brown-Rahman overgrowth syndrome as a constitutional mutation.

    Science.gov (United States)

    Kosaki, Rika; Terashima, Hiroshi; Kubota, Masaya; Kosaki, Kenjiro

    2017-01-01

    DNA methylation plays a critical role in both embryonic development and tumorigenesis and is mediated through various DNA methyltransferases. Constitutional mutations in the de novo DNA methyltransferase DNMT3A cause a recently identified Tatton-Brown-Rahman overgrowth syndrome (TBRS). Somatically acquired mutations in DNMT3A are causally associated with acute myeloid leukemia (AML), and p.Arg882His represents the most prevalent hotspot. So far, no patients with TBRS have been reported to have subsequently developed AML. Here, we report a live birth and the survival of a female with the TBRS phenotype who had a heterozygous constitutional DNMT3A mutation at the AML somatic mutation hotspot p.Arg882His in her DNA from peripheral blood and buccal tissue. Her characteristic features at birth included hypotonia, narrow palpebral fissures, ventricular septal defect, umbilical hernia, sacral cyst, Chiari type I anomaly. At the age of 6 years, she exhibited overgrowth (> 3 SD) and round face and intellectual disability. This report represents the first documentation of the same variant (DNMT3A p.Arg882His) as both the constitutional mutation associated with TBRS and the somatic mutation hotspot of AML. The observation neither confirms nor denies the notion that mutations responsible for TBRS and those for AML might share the same mode of action. Larger data sets are required to determine whether TBRS patients with constitutional DNMT3A mutations are at an increased risk for AML. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Targeted/exome sequencing identified mutations in ten Chinese patients diagnosed with Noonan syndrome and related disorders

    Directory of Open Access Journals (Sweden)

    Shanshan Xu

    2017-10-01

    Full Text Available Abstract Background Noonan syndrome (NS and Noonan syndrome with multiple lentigines (NSML are autosomal dominant developmental disorders. NS and NSML are caused by abnormalities in genes that encode proteins related to the RAS-MAPK pathway, including PTPN11, RAF1, BRAF, and MAP2K. In this study, we diagnosed ten NS or NSML patients via targeted sequencing or whole exome sequencing (TS/WES. Methods TS/WES was performed to identify mutations in ten Chinese patients who exhibited the following manifestations: potential facial dysmorphisms, short stature, congenital heart defects, and developmental delay. Sanger sequencing was used to confirm the suspected pathological variants in the patients and their family members. Results TS/WES revealed three mutations in the PTPN11 gene, three mutations in RAF1 gene, and four mutations in BRAF gene in the NS and NSML patients who were previously diagnosed based on the abovementioned clinical features. All the identified mutations were determined to be de novo mutations. However, two patients who carried the same mutation in the RAF1 gene presented different clinical features. One patient with multiple lentigines was diagnosed with NSML, while the other patient without lentigines was diagnosed with NS. In addition, a patient who carried a hotspot mutation in the BRAF gene was diagnosed with NS instead of cardiofaciocutaneous syndrome (CFCS. Conclusions TS/WES has emerged as a useful tool for definitive diagnosis and accurate genetic counseling of atypical cases. In this study, we analyzed ten Chinese patients diagnosed with NS and related disorders and identified their correspondingPTPN11, RAF1, and BRAF mutations. Among the target genes, BRAF showed the same degree of correlation with NS incidence as that of PTPN11 or RAF1.

  14. A Novel Frameshift Mutation of the USH2A Gene in a Korean Patient with Usher Syndrome Type II.

    Science.gov (United States)

    Boo, Sung Hyun; Song, Min-Jung; Kim, Hee-Jin; Cho, Yang-Sun; Chu, Hosuk; Ko, Moon-Hee; Chung, Won-Ho; Kim, Jong-Won; Hong, Sung Hwa

    2013-03-01

    Usher syndrome type II (USH2) is the most common form of Usher syndrome, characterized by moderate to severe hearing impairment and progressive visual loss due to retinitis pigmentosa. It has been shown that mutations in the USH2A gene are responsible for USH2. The authors herein describe a 34-year-old Korean woman with the typical clinical manifestation of USH2; she had bilateral hearing disturbance and progressive visual deterioration, without vestibular dysfunction. Molecular genetic study of the USH2A gene revealed a novel frameshift mutation (c.2310delA; Glu771LysfsX17). She was heterozygous for this mutation, and no other mutation was found in USH2A, suggesting the possibility of an intronic or large genomic rearrangement mutation. To the best of our knowledge, this is the first report of a genetically confirmed case of USH2 in Korea. More investigations are needed to delineate genotype-phenotype correlations and ethnicity-specific genetic background of Usher syndrome.

  15. Fibrillin mutations in the Marfan syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Price, C.E.; Wang, M.; Wang, J.; Godfrey, M. [Univ. of Nebraska Medical Center, Omaha, NE (United States)

    1994-09-01

    The Marfan syndrome (MFS) is an autosomal dominant heritable disorder of connective tissue manifested by variable and pleiotropic defect in the skeletal, ocular, and cardiovascular systems. We have recently begun to use intron-specific primers that have become available through the International Marfan Syndrome Consortium to screen for fibrillin mutations in MFS patients. Using the genomic PCR-based approach in addition to RT-PCR methodologies, we have identified several novel mutations. A single base insertion was identified in all affected individuals of one family. The insertion of an {open_quote}A{close_quote} at position 1891 in exon 15 causes a premature stop codon and thus a truncated polypeptide. The truncated protein of 617 amino acids has an expected molecular weight of 63 kD. Metabolic labeling and immunoprecipitation studies are in progress. A C{r_arrow}T transition at position 1634 in exon 12 causing a 5th position Cys to Phe substitution in an EGF-like motif was observed in another MFS patient. Finally, we have identified a G{r_arrow}A transition at the +1 position of the donor splice site that causes the deletion of fibrillin exon 32 in a patient with the neonatal form of MFS. Exon 32 is a precursor EGF-like calcium binding motif that is located in a single stretch of 12 similar domains. We had previously identified the skipping of this exon due to an A{r_arrow}T transversion at the -2 position of the consensus acceptor splice site in another patient with neonatal MFS. The reason that the skipping of exon 32 causes a neonatal lethal MFS phenotype is presently unclear. These studies will help elucidate the role of diverse regions of fibrillin.

  16. Multidrug resistant 2009 A/H1N1 influenza clinical isolate with a neuraminidase I223R mutation retains its virulence and transmissibility in ferrets.

    Directory of Open Access Journals (Sweden)

    Erhard van der Vries

    2011-09-01

    Full Text Available Only two classes of antiviral drugs, neuraminidase inhibitors and adamantanes, are approved for prophylaxis and therapy against influenza virus infections. A major concern is that influenza virus becomes resistant to these antiviral drugs and spreads in the human population. The 2009 pandemic A/H1N1 influenza virus is naturally resistant to adamantanes. Recently a novel neuraminidase I223R mutation was identified in an A/H1N1 virus showing cross-resistance to the neuraminidase inhibitors oseltamivir, zanamivir and peramivir. However, the ability of this virus to cause disease and spread in the human population is unknown. Therefore, this clinical isolate (NL/2631-R223 was compared with a well-characterized reference virus (NL/602. In vitro experiments showed that NL/2631-I223R replicated as well as NL/602 in MDCK cells. In a ferret pathogenesis model, body weight loss was similar in animals inoculated with NL/2631-R223 or NL/602. In addition, pulmonary lesions were similar at day 4 post inoculation. However, at day 7 post inoculation, NL/2631-R223 caused milder pulmonary lesions and degree of alveolitis than NL/602. This indicated that the mutant virus was less pathogenic. Both NL/2631-R223 and a recombinant virus with a single I223R change (recNL/602-I223R, transmitted among ferrets by aerosols, despite observed attenuation of recNL/602-I223R in vitro. In conclusion, the I223R mutated virus isolate has comparable replicative ability and transmissibility, but lower pathogenicity than the reference virus based on these in vivo studies. This implies that the 2009 pandemic influenza A/H1N1 virus subtype with an isoleucine to arginine change at position 223 in the neuraminidase has the potential to spread in the human population. It is important to be vigilant for this mutation in influenza surveillance and to continue efforts to increase the arsenal of antiviral drugs to combat influenza.

  17. Usher syndrome type III can mimic other types of Usher syndrome.

    Science.gov (United States)

    Pennings, Ronald J E; Fields, Randall R; Huygen, Patrick L M; Deutman, August F; Kimberling, William J; Cremers, Cor W R J

    2003-06-01

    Clinical and genetic characteristics are presented of 2 patients from a Dutch Usher syndrome type III family who have a new homozygous USH3 gene mutation: 149-152delCAGG + insTGTCCAAT. One individual (IV:1) is profoundly hearing impaired and has normal vestibular function and retinitis punctata albescens (RPA). The other individual is also profoundly hearing impaired, but has well-developed speech, vestibular areflexia, and retinitis pigmentosa sine pigmento (RPSP). These findings suggest that Usher syndrome type III can be clinically misdiagnosed as either Usher type I or II; that Usher syndrome patients who are profoundly hearing impaired and have normal vestibular function should be tested for USH3 mutations; and that RPA and RPSP can occur as fundoscopic manifestations of pigmentary retinopathy in Usher syndrome.

  18. Molecular and clinical characterization of Waardenburg syndrome type I in an Iranian cohort with two novel PAX3 mutations.

    Science.gov (United States)

    Jalilian, Nazanin; Tabatabaiefar, Mohammad Amin; Farhadi, Mohammad; Bahrami, Tayeb; Emamdjomeh, Hesam; Noori-Daloii, Mohammad Reza

    2015-12-15

    Waardenburg syndrome (WS) is a disease of abnormal neural-crest derived melanocyte development characterized by hearing loss and pigmentary disturbances in hair, eyes and skin. WS is subdivided into four major types, WS1-WS4, where WS1 is recognized by the presence of dystopia canthorum, with PAX3 being the only known gene involved. This study aimed at investigating PAX3 mutations and clinical characteristics of WS1 in a group of Iranian patients. A total of 12 WS1 patients from four unrelated Iranian families were enrolled. Waardenburg consortium guidelines were used for WS1 diagnosis. A detailed family history was traced and a thorough clinical examination was performed for all participants. Furthermore, WS1 patients underwent screening for PAX3 mutations using PCR-sequencing. Dystopia canthorum, broad high nasal root and synophrys were observed in all patients. Early graying, hair discoloration, hypoplastic blue eyes (characteristic brilliant blue iris) and hearing loss were the most common features observed, while heterochromia iridis was the least frequently observed sign among the studied Iranian WS1 patients. Genetic analysis of PAX3 revealed four mutations including c.667C>T, c.784C>T, c.951delT and c.451+3A>C. Two of the four mutations reported here (c.951delT and c.451+3A>C) are being reported for the first time in this study. Our data provide insight into genotypic and phenotypic spectrum of WS1 in an Iranian series of patients. Our results expand the spectrum of PAX3 mutations and may have implications for the genetic counseling of WS in Iran. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A novel mitochondrial mutation m.8989G>C associated with neuropathy, ataxia, retinitis pigmentosa - the NARP syndrome

    DEFF Research Database (Denmark)

    Duno, Morten; Wibrand, Flemming; Baggesen, Kirsten

    2013-01-01

    mitochondrial point mutation, m.8989G>C, in a patient presenting with neuropathy, ataxia and retinitis pigmentosa constituting the classical NARP phenotype. This mutation alters the amino acid right next to canonical NARP mutation. We suggest that classic NARP syndrome relates to a defined dysfunction of p...

  20. Ophthalmologic abnormalities in Mowat-Wilson syndrome and a mutation in ZEB2.

    Science.gov (United States)

    Ariss, Michelle; Natan, Kristina; Friedman, Neil; Traboulsi, Elias I

    2012-09-01

    Mowat-Wilson syndrome is a genetic disorder characterized by a distinct facial appearance, moderate-to-severe mental retardation, microcephaly, agenesis of the corpus callosum, Hirschsprung disease, congenital heart disease, and genital anomalies. Ophthalmological abnormalities have been rarely described in patients with this condition which is caused by mutations in the ZEB2 gene. We report a 9-year-old female with this syndrome who has severe ocular abnormalities including bilateral microphthalmia, cataract, and retinal aplasia.

  1. Further Insights into the Allan-Herndon-Dudley Syndrome: Clinical and Functional Characterization of a Novel MCT8 Mutation.

    Directory of Open Access Journals (Sweden)

    Christine M Armour

    Full Text Available Mutations in the thyroid hormone (TH transporter MCT8 have been identified as the cause for Allan-Herndon-Dudley Syndrome (AHDS, characterized by severe psychomotor retardation and altered TH serum levels. Here we report a novel MCT8 mutation identified in 4 generations of one family, and its functional characterization.Proband and family members were screened for 60 genes involved in X-linked cognitive impairment and the MCT8 mutation was confirmed. Functional consequences of MCT8 mutations were studied by analysis of [125I]TH transport in fibroblasts and transiently transfected JEG3 and COS1 cells, and by subcellular localization of the transporter.The proband and a male cousin demonstrated clinical findings characteristic of AHDS. Serum analysis showed high T3, low rT3, and normal T4 and TSH levels in the proband. A MCT8 mutation (c.869C>T; p.S290F was identified in the proband, his cousin, and several female carriers. Functional analysis of the S290F mutant showed decreased TH transport, metabolism and protein expression in the three cell types, whereas the S290A mutation had no effect. Interestingly, both uptake and efflux of T3 and T4 was impaired in fibroblasts of the proband, compared to his healthy brother. However, no effect of the S290F mutation was observed on TH efflux from COS1 and JEG3 cells. Immunocytochemistry showed plasma membrane localization of wild-type MCT8 and the S290A and S290F mutants in JEG3 cells.We describe a novel MCT8 mutation (S290F in 4 generations of a family with Allan-Herndon-Dudley Syndrome. Functional analysis demonstrates loss-of-function of the MCT8 transporter. Furthermore, our results indicate that the function of the S290F mutant is dependent on cell context. Comparison of the S290F and S290A mutants indicates that it is not the loss of Ser but its substitution with Phe, which leads to S290F dysfunction.

  2. Further Insights into the Allan-Herndon-Dudley Syndrome: Clinical and Functional Characterization of a Novel MCT8 Mutation.

    Science.gov (United States)

    Armour, Christine M; Kersseboom, Simone; Yoon, Grace; Visser, Theo J

    2015-01-01

    Mutations in the thyroid hormone (TH) transporter MCT8 have been identified as the cause for Allan-Herndon-Dudley Syndrome (AHDS), characterized by severe psychomotor retardation and altered TH serum levels. Here we report a novel MCT8 mutation identified in 4 generations of one family, and its functional characterization. Proband and family members were screened for 60 genes involved in X-linked cognitive impairment and the MCT8 mutation was confirmed. Functional consequences of MCT8 mutations were studied by analysis of [125I]TH transport in fibroblasts and transiently transfected JEG3 and COS1 cells, and by subcellular localization of the transporter. The proband and a male cousin demonstrated clinical findings characteristic of AHDS. Serum analysis showed high T3, low rT3, and normal T4 and TSH levels in the proband. A MCT8 mutation (c.869C>T; p.S290F) was identified in the proband, his cousin, and several female carriers. Functional analysis of the S290F mutant showed decreased TH transport, metabolism and protein expression in the three cell types, whereas the S290A mutation had no effect. Interestingly, both uptake and efflux of T3 and T4 was impaired in fibroblasts of the proband, compared to his healthy brother. However, no effect of the S290F mutation was observed on TH efflux from COS1 and JEG3 cells. Immunocytochemistry showed plasma membrane localization of wild-type MCT8 and the S290A and S290F mutants in JEG3 cells. We describe a novel MCT8 mutation (S290F) in 4 generations of a family with Allan-Herndon-Dudley Syndrome. Functional analysis demonstrates loss-of-function of the MCT8 transporter. Furthermore, our results indicate that the function of the S290F mutant is dependent on cell context. Comparison of the S290F and S290A mutants indicates that it is not the loss of Ser but its substitution with Phe, which leads to S290F dysfunction.

  3. Translational read-through of a nonsense mutation causing Bartter syndrome.

    Science.gov (United States)

    Cho, Hee Yeon; Lee, Beom Hee; Cheong, Hae Il

    2013-06-01

    Bartter syndrome (BS) is classified into 5 genotypes according to underlying mutant genes and BS III is caused by loss-of-function mutations in the CLCNKB gene encoding for basolateral ClC-Kb. BS III is the most common genotype in Korean patients with BS and W610X is the most common CLCNKB mutation in Korean BS III. In this study, we tested the hypothesis that the CLCNKB W610X mutation can be rescued in vitro using aminoglycoside antibiotics, which are known to induce translational read-through of a nonsense mutation. The CLCNKB cDNA was cloned into a eukaryotic expression vector and the W610X nonsense mutation was generated by site-directed mutagenesis. Cultured polarized MDCK cells were transfected with the vectors, and the read-through was induced using an aminoglycoside derivative, G418. Cellular expression of the target protein was monitored via immunohistochemistry. While cells transfected with the mutant CLCNKB failed to express ClC-Kb, G418 treatment of the cells induced the full-length protein expression, which was localized to the basolateral plasma membranes. It is demonstrated that the W610X mutation in CLCNKB can be a good candidate for trial of translational read-through induction as a therapeutic modality.

  4. Mutations in EXTL3 Cause Neuro-immuno-skeletal Dysplasia Syndrome.

    Science.gov (United States)

    Oud, Machteld M; Tuijnenburg, Paul; Hempel, Maja; van Vlies, Naomi; Ren, Zemin; Ferdinandusse, Sacha; Jansen, Machiel H; Santer, René; Johannsen, Jessika; Bacchelli, Chiara; Alders, Marielle; Li, Rui; Davies, Rosalind; Dupuis, Lucie; Cale, Catherine M; Wanders, Ronald J A; Pals, Steven T; Ocaka, Louise; James, Chela; Müller, Ingo; Lehmberg, Kai; Strom, Tim; Engels, Hartmut; Williams, Hywel J; Beales, Phil; Roepman, Ronald; Dias, Patricia; Brunner, Han G; Cobben, Jan-Maarten; Hall, Christine; Hartley, Taila; Le Quesne Stabej, Polona; Mendoza-Londono, Roberto; Davies, E Graham; de Sousa, Sérgio B; Lessel, Davor; Arts, Heleen H; Kuijpers, Taco W

    2017-02-02

    EXTL3 regulates the biosynthesis of heparan sulfate (HS), important for both skeletal development and hematopoiesis, through the formation of HS proteoglycans (HSPGs). By whole-exome sequencing, we identified homozygous missense mutations c.1382C>T, c.1537C>T, c.1970A>G, and c.2008T>G in EXTL3 in nine affected individuals from five unrelated families. Notably, we found the identical homozygous missense mutation c.1382C>T (p.Pro461Leu) in four affected individuals from two unrelated families. Affected individuals presented with variable skeletal abnormalities and neurodevelopmental defects. Severe combined immunodeficiency (SCID) with a complete absence of T cells was observed in three families. EXTL3 was most abundant in hematopoietic stem cells and early progenitor T cells, which is in line with a SCID phenotype at the level of early T cell development in the thymus. To provide further support for the hypothesis that mutations in EXTL3 cause a neuro-immuno-skeletal dysplasia syndrome, and to gain insight into the pathogenesis of the disorder, we analyzed the localization of EXTL3 in fibroblasts derived from affected individuals and determined glycosaminoglycan concentrations in these cells as well as in urine and blood. We observed abnormal glycosaminoglycan concentrations and increased concentrations of the non-sulfated chondroitin disaccharide D0a0 and the disaccharide D0a4 in serum and urine of all analyzed affected individuals. In summary, we show that biallelic mutations in EXTL3 disturb glycosaminoglycan synthesis and thus lead to a recognizable syndrome characterized by variable expression of skeletal, neurological, and immunological abnormalities. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Cone structure in patients with usher syndrome type III and mutations in the Clarin 1 gene.

    Science.gov (United States)

    Ratnam, Kavitha; Västinsalo, Hanna; Roorda, Austin; Sankila, Eeva-Marja K; Duncan, Jacque L

    2013-01-01

    To study macular structure and function in patients with Usher syndrome type III (USH3) caused by mutations in the Clarin 1 gene (CLRN1). High-resolution macular images were obtained by adaptive optics scanning laser ophthalmoscopy and spectral domain optical coherence tomography in 3 patients with USH3 and were compared with those of age-similar control subjects. Vision function measures included best-corrected visual acuity, kinetic and static perimetry, and full-field electroretinography. Coding regions of the CLRN1 gene were sequenced. CLRN1 mutations were present in all the patients; a 20-year-old man showed compound heterozygous mutations (p.N48K and p.S188X), and 2 unrelated women aged 25 and 32 years had homozygous mutations (p.N48K). Best-corrected visual acuity ranged from 20/16 to 20/40, with scotomas beginning at 3° eccentricity. The inner segment-outer segment junction or the inner segment ellipsoid band was disrupted within 1° to 4° of the fovea, and the foveal inner and outer segment layers were significantly thinner than normal. Cones near the fovea in patients 1 and 2 showed normal spacing, and the preserved region ended abruptly. Retinal pigment epithelial cells were visible in patient 3 where cones were lost. Cones were observed centrally but not in regions with scotomas, and retinal pigment epithelial cells were visible in regions without cones in patients with CLRN1 mutations. High-resolution measures of retinal structure demonstrate patterns of cone loss associated with CLRN1 mutations. These findings provide insight into the effect of CLRN1 mutations on macular cone structure, which has implications for the development of treatments for USH3. clinicaltrials.gov Identifier: NCT00254605.

  6. Cone Structure in Patients With Usher Syndrome Type III and Mutations in the Clarin 1 Gene

    Science.gov (United States)

    Ratnam, Kavitha; Västinsalo, Hanna; Roorda, Austin; Sankila, Eeva-Marja K.; Duncan, Jacque L.

    2015-01-01

    Objective To study macular structure and function in patients with Usher syndrome type III (USH3) caused by mutations in the Clarin 1 gene (CLRN1). Methods High-resolution macular images were obtained by adaptive optics scanning laser ophthalmoscopy and spectral domain optical coherence tomography in 3 patients with USH3 and were compared with those of age-similar control subjects. Vision function measures included best-corrected visual acuity, kinetic and static perimetry, and full-field electroretinography. Coding regions of the CLRN1 gene were sequenced. Results CLRN1 mutations were present in all the patients; a 20-year-old man showed compound heterozygous mutations (p.N48K and p.S188X), and 2 unrelated women aged 25 and 32 years had homozygous mutations (p.N48K). Best-corrected visual acuity ranged from 20/16 to 20/40, with scotomas beginning at 3° eccentricity. The inner segment-outer segment junction or the inner segment ellipsoid band was disrupted within 1° to 4° of the fovea, and the foveal inner and outer segment layers were significantly thinner than normal. Cones near the fovea in patients 1 and 2 showed normal spacing, and the preserved region ended abruptly. Retinal pigment epithelial cells were visible in patient 3 where cones were lost. Conclusions Cones were observed centrally but not in regions with scotomas, and retinal pigment epithelial cells were visible in regions without cones in patients with CLRN1 mutations. High-resolution measures of retinal structure demonstrate patterns of cone loss associated with CLRN1 mutations. Clinical Relevance These findings provide insight into the effect of CLRN1 mutations on macular cone structure, which has implications for the development of treatments for USH3. Trial Registration clinicaltrials.gov Identifier: NCT00254605 PMID:22964989

  7. Identification of four novel mutations of the WFS1 gene in Iranian Wolfram syndrome pedigrees.

    Science.gov (United States)

    Ghahraman, Martha; Abbaszadegan, Mohammad Reza; Vakili, Rahim; Hosseini, Sousan; Fardi Golyan, Fatemeh; Ghaemi, Nosrat; Forghanifard, Mohammad Mahdi

    2016-12-01

    Wolfram syndrome is a rare neurodegenerative disorder with an autosomal recessive pattern of inheritance characterized by various clinical manifestations. The related gene, WFS1, encodes a transmembrane glycoprotein, named wolframin. Genetic analyses demonstrated that mutations in this gene are associated with WS type 1. Our aim in this study was to sequence WFS1 coding region in Iranian Wolfram syndrome pedigrees. Genomic DNA was extracted from peripheral blood of 12 WS patients and their healthy parents. Exons 2-8 and the exon-intron junctions of WFS1 were sequenced. DNA sequences were compared to the reference using Sequencher software. Molecular analysis of WFS1 revealed six different mutations. Four novel and two previously reported mutations were identified. One novel mutation, c.1379_1381del, is predicted to produce an aberrant protein. A second novel mutation, c.1384G > T, encodes a truncated protein. Novel mutation, c.1097-1107dup (11 bp), causes a frameshift which results in a premature stop codon. We screened for the novel missense mutation, c.1010C > T, in 100 control alleles. This mutation was not found in any of the healthy controls. Our study increased the spectrum of WFS1 mutations and supported the role of WFS1 in susceptibility to WS. We hope that these findings open new horizons to future molecular investigations which may help to prevent and treat this devastating disease.

  8. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly.

    Science.gov (United States)

    Braun, Daniela A; Rao, Jia; Mollet, Geraldine; Schapiro, David; Daugeron, Marie-Claire; Tan, Weizhen; Gribouval, Olivier; Boyer, Olivia; Revy, Patrick; Jobst-Schwan, Tilman; Schmidt, Johanna Magdalena; Lawson, Jennifer A; Schanze, Denny; Ashraf, Shazia; Ullmann, Jeremy F P; Hoogstraten, Charlotte A; Boddaert, Nathalie; Collinet, Bruno; Martin, Gaëlle; Liger, Dominique; Lovric, Svjetlana; Furlano, Monica; Guerrera, I Chiara; Sanchez-Ferras, Oraly; Hu, Jennifer F; Boschat, Anne-Claire; Sanquer, Sylvia; Menten, Björn; Vergult, Sarah; De Rocker, Nina; Airik, Merlin; Hermle, Tobias; Shril, Shirlee; Widmeier, Eugen; Gee, Heon Yung; Choi, Won-Il; Sadowski, Carolin E; Pabst, Werner L; Warejko, Jillian K; Daga, Ankana; Basta, Tamara; Matejas, Verena; Scharmann, Karin; Kienast, Sandra D; Behnam, Babak; Beeson, Brendan; Begtrup, Amber; Bruce, Malcolm; Ch'ng, Gaik-Siew; Lin, Shuan-Pei; Chang, Jui-Hsing; Chen, Chao-Huei; Cho, Megan T; Gaffney, Patrick M; Gipson, Patrick E; Hsu, Chyong-Hsin; Kari, Jameela A; Ke, Yu-Yuan; Kiraly-Borri, Cathy; Lai, Wai-Ming; Lemyre, Emmanuelle; Littlejohn, Rebecca Okashah; Masri, Amira; Moghtaderi, Mastaneh; Nakamura, Kazuyuki; Ozaltin, Fatih; Praet, Marleen; Prasad, Chitra; Prytula, Agnieszka; Roeder, Elizabeth R; Rump, Patrick; Schnur, Rhonda E; Shiihara, Takashi; Sinha, Manish D; Soliman, Neveen A; Soulami, Kenza; Sweetser, David A; Tsai, Wen-Hui; Tsai, Jeng-Daw; Topaloglu, Rezan; Vester, Udo; Viskochil, David H; Vatanavicharn, Nithiwat; Waxler, Jessica L; Wierenga, Klaas J; Wolf, Matthias T F; Wong, Sik-Nin; Leidel, Sebastian A; Truglio, Gessica; Dedon, Peter C; Poduri, Annapurna; Mane, Shrikant; Lifton, Richard P; Bouchard, Maxime; Kannu, Peter; Chitayat, David; Magen, Daniella; Callewaert, Bert; van Tilbeurgh, Herman; Zenker, Martin; Antignac, Corinne; Hildebrandt, Friedhelm

    2017-10-01

    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.

  9. Quantification of sequence exchange events between PMS2 and PMS2CL provides a basis for improved mutation scanning of Lynch syndrome patients.

    NARCIS (Netherlands)

    Klift, H.M. van der; Tops, C.M.; Bik, E.C.; Boogaard, M.W.; Borgstein, A.M.; Hansson, K.B.; Ausems, M.G.E.M.; Gomez Garcia, E.; Green, A.; Hes, F.J.; Izatt, L.; Hest, L.P. van; Alonso, A.M.; Vriends, A.H.; Wagner, A.; Zelst-Stams, W.A.G. van; Vasen, H.F.; Morreau, H.; Devilee, P.; Wijnen, J.T.

    2010-01-01

    Heterozygous mutations in PMS2 are involved in Lynch syndrome, whereas biallelic mutations are found in Constitutional mismatch repair-deficiency syndrome patients. Mutation detection is complicated by the occurrence of sequence exchange events between the duplicated regions of PMS2 and PMS2CL. We

  10. Two novel POC1A mutations in the primordial dwarfism, SOFT syndrome: Clinical homogeneity but also unreported malformations.

    Science.gov (United States)

    Barraza-García, Jimena; Iván Rivera-Pedroza, Carlos; Salamanca, Luis; Belinchón, Alberta; López-González, Vanesa; Sentchordi-Montané, Lucía; del Pozo, Ángela; Santos-Simarro, Fernando; Campos-Barros, Ángel; Lapunzina, Pablo; Guillén-Navarro, Encarna; González-Casado, Isabel; García-Miñaur, Sixto; Heath, Karen E

    2016-01-01

    Primordial dwarfism encompasses rare conditions characterized by severe intrauterine growth retardation and growth deficiency throughout life. Recently, three POC1A mutations have been reported in six families with the primordial dwarfism, SOFT syndrome (Short stature, Onychodysplasia, Facial dysmorphism, and hypoTrichosis). Using a custom-designed Next-generation sequencing skeletal dysplasia panel, we have identified two novel homozygous POC1A mutations in two individuals with primordial dwarfism. The severe growth retardation and the facial profiles are strikingly similar between our patients and those described previously. However, one of our patients was diagnosed with severe foramen magnum stenosis and subglottic tracheal stenosis, malformations not previously associated with this syndrome. Our findings confirm that POC1A mutations cause SOFT syndrome and that mutations in this gene should be considered in patients with severe pre- and postnatal short stature, symmetric shortening of long bones, triangular facies, sparse hair and short, thickened distal phalanges. © 2015 Wiley Periodicals, Inc.

  11. Novel GALNT3 mutations causing hyperostosis-hyperphosphatemia syndrome result in low intact fibroblast growth factor 23 concentrations.

    Science.gov (United States)

    Ichikawa, Shoji; Guigonis, Vincent; Imel, Erik A; Courouble, Mélanie; Heissat, Sophie; Henley, John D; Sorenson, Andrea H; Petit, Barbara; Lienhardt, Anne; Econs, Michael J

    2007-05-01

    Hyperostosis-hyperphosphatemia syndrome (HHS) is a rare metabolic disorder characterized by hyperphosphatemia and localized hyperostosis. HHS is caused by mutations in GALNT3, which encodes UDP-N-acetyl-alpha-D-galactosamine:polypeptide N- acetylgalactosaminyltransferase 3. Familial tumoral calcinosis (TC), characterized by ectopic calcifications and hyperphosphatemia, is caused by mutations in the GALNT3 or fibroblast growth factor 23 (FGF23) genes. Our objective was to identify mutations in FGF23 or GALNT3 and determine serum FGF23 levels in an HHS patient. Mutation detection in FGF23 and GALNT3 was performed by DNA sequencing, and serum FGF23 concentrations were measured by ELISA. A 5-year-old French boy with HHS and his family members participated. The patient presented with painful cortical lesions in his leg. Radiographs of the affected bone showed diaphyseal hyperostosis. The lesional tissue comprised trabeculae of immature, woven bone surrounded by fibrous tissue. Biochemistry revealed elevated phosphate, tubular maximum rate for phosphate reabsorption per deciliter of glomerular filtrate, and 1,25-dihydroxyvitamin D levels. The patient was a compound heterozygote for two novel GALNT3 mutations. His parents and brother were heterozygous for one of the mutations and had no biochemical abnormalities. Intact FGF23 level in the patient was low normal, whereas C-terminal FGF23 was elevated, a pattern similar to TC. The presence of GALNT3 mutations and elevated C-terminal, but low intact serum FGF23, levels in HHS resemble those seen in TC, suggesting that HHS and TC are different manifestations of the same disorder. The absence of biochemical abnormalities in the heterozygous individuals suggests that one normal allele is sufficient for secretion of intact FGF23.

  12. Craniosynostosis and Noonan syndrome with KRAS mutations: Expanding the phenotype with a case report and review of the literature.

    Science.gov (United States)

    Addissie, Yonit A; Kotecha, Udhaya; Hart, Rachel A; Martinez, Ariel F; Kruszka, Paul; Muenke, Maximilian

    2015-11-01

    Noonan syndrome (NS) is a multiple congenital anomaly syndrome caused by germline mutations in genes coding for components of the Ras-mitogen-activated protein kinase (RAS-MAPK) pathway. Features include short stature, characteristic facies, congenital heart anomalies, and developmental delay. While there is considerable clinical heterogeneity in NS, craniosynostosis is not a common feature of the condition. Here, we report on a 2 month-old girl with Noonan syndrome associated with a de novo mutation in KRAS (p.P34Q) and premature closure of the sagittal suture. We provide a review of the literature of germline KRAS mutations and find that approximately 10% of published cases have craniosynostosis. Our findings expand on the NS phenotype and suggest that germline mutations in the KRAS gene are causally involved in craniosynostosis, supporting the role of the RAS-MAPK pathway as a mediator of aberrant bone growth in cranial sutures. The inclusion of craniosynostosis as a possible phenotype in KRAS-associated Noonan Syndrome has implications in the differential diagnosis and surgical management of individuals with craniosynostosis. © 2015 Wiley Periodicals, Inc.

  13. Neonatal Marfan Syndrome: Report of a Case with an Inherited Splicing Mutation outside the Neonatal Domain.

    Science.gov (United States)

    Le Gloan, Laurianne; Hauet, Quentin; David, Albert; Hanna, Nadine; Arfeuille, Chloé; Arnaud, Pauline; Boileau, Catherine; Romefort, Bénédicte; Benbrik, Nadir; Gournay, Véronique; Joram, Nicolas; Baron, Olivier; Isidor, Bertrand

    2016-02-01

    We report a child and her mother affected by Marfan syndrome. The child presented with a phenotype of neonatal Marfan syndrome, revealed by acute and refractory heart failure, finally leading to death within the first 4 months of life. Her mother had a common clinical presentation. Genetic analysis revealed an inherited FBN1 mutation. This intronic mutation (c.6163+3_6163+6del), undescribed to date, leads to exon 49 skipping, corresponding to in-frame deletion of 42 amino acids (p.Ile2014_Asp2055del). FBN1 next-generation sequencing did not show any argument for mosaicism. Association in the same family of severe neonatal and classical Marfan syndrome illustrates the intrafamilial phenotype variability.

  14. Constitutional abnormalities of IDH1 combined with secondary mutations predispose a patient with Maffucci syndrome to acute lymphoblastic leukemia.

    Science.gov (United States)

    Hirabayashi, Shinsuke; Seki, Masafumi; Hasegawa, Daisuke; Kato, Motohiro; Hyakuna, Nobuyuki; Shuo, Takuya; Kimura, Shunsuke; Yoshida, Kenichi; Kataoka, Keisuke; Fujii, Yoichi; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Kiyokawa, Nobutaka; Miyano, Satoru; Ogawa, Seishi; Takita, Junko; Manabe, Atsushi

    2017-12-01

    Maffucci syndrome is a nonhereditary disorder caused by somatic mosaic isocitrate dehydrogenase 1 or 2 (IDH1 or IDH2) mutations and is characterized by multiple enchondromas along with hemangiomas. Malignant transformation of enchondromas to chondrosarcomas and secondary neoplasms, such as brain tumors or acute myeloid leukemia, are serious complications. A 15-year-old female with Maffucci syndrome developed B-cell precursor acute lymphoblastic leukemia (BCP-ALL). A somatic mutation in IDH1 was detected in hemangioma and leukemic cells. KRAS mutation and deletion of IKZF1 were detected in leukemic cells. Patients with Maffucci syndrome may, therefore, be at risk of BCP-ALL associated with secondary genetic events that affect lymphocyte differentiation. © 2017 Wiley Periodicals, Inc.

  15. A novel mutation in the MITF may be digenic with GJB2 mutations in a large Chinese family of Waardenburg syndrome type II.

    Science.gov (United States)

    Yan, Xukun; Zhang, Tianyu; Wang, Zhengmin; Jiang, Yi; Chen, Yan; Wang, Hongyan; Ma, Duan; Wang, Lei; Li, Huawei

    2011-12-20

    Waardenburg syndrome type II (WS2) is associated with syndromic deafness. A subset of WS2, WS2A, accounting for approximately 15% of patients, is attributed to mutations in the microphthalmia-associated transcription factor (MITF) gene. We examined the genetic basis of WS2 in a large Chinese family. All 9 exons of the MITF gene, the single coding exon (exon 2) of the most common hereditary deafness gene GJB2 and the mitochondrial DNA (mtDNA) 12S rRNA were sequenced. A novel heterozygous mutation c.[742_743delAAinsT;746_747delCA] in exon 8 of the MITF gene co-segregates with WS2 in the family. The MITF mutation results in a premature termination codon and a truncated MITF protein with only 247 of the 419 wild type amino acids. The deaf proband had this MITF gene heterozygous mutation as well as a c.[109G>A]+[235delC] compound heterozygous pathogenic mutation in the GJB2 gene. No pathogenic mutation was found in mtDNA 12S rRNA in this family. Thus, a novel compound heterozygous mutation, c.[742_743delAAinsT;746_747delCA] in MITF exon 8 was the key genetic reason for WS2 in this family, and a digenic effect of MITF and GJB2 genes may contribute to deafness of the proband. Copyright © 2011. Published by Elsevier Ltd.

  16. Long-term IGF-I treatment of children with Laron syndrome increases adiposity.

    Science.gov (United States)

    Laron, Zvi; Ginsberg, Shira; Lilos, Pnina; Arbiv, Mira; Vaisman, Nahum

    2006-02-01

    Laron syndrome (LS) is an autosomal recessive disease caused by deletions or mutations in the GH receptor gene leading to an inability of insulin-like growth factor I (IGF-I) generation. Among the major resulting body changes are dwarfism and obesity. The only effective treatment is daily administration of biosynthetic IGF-I. Body composition determination by DEXA (dual energy X-ray absorptiometry) of three girls with LS treated by IGF-I for 1, 3 and 11 1/2 years, respectively, revealed that concomitantly with the increase in growth there was a significant increase in body adipose tissue to double or triple the normal values. Due to the underdevelopment of the muscular and skeletal systems body mass index (BMI) did not accurately reflect the degree of obesity. In conclusion, IGF-I similar to insulin, exerts an adipogenic effect.

  17. Deletions and de novo mutations of SOX11 are associated with a neurodevelopmental disorder with features of Coffin–Siris syndrome

    Science.gov (United States)

    Hempel, Annmarie; Pagnamenta, Alistair T; Blyth, Moira; Mansour, Sahar; McConnell, Vivienne; Kou, Ikuyo; Ikegawa, Shiro; Tsurusaki, Yoshinori; Matsumoto, Naomichi; Lo-Castro, Adriana; Plessis, Ghislaine; Albrecht, Beate; Battaglia, Agatino; Taylor, Jenny C; Howard, Malcolm F; Keays, David; Sohal, Aman Singh; Kühl, Susanne J; Kini, Usha; McNeill, Alisdair

    2016-01-01

    Background SOX11 is a transcription factor proposed to play a role in brain development. The relevance of SOX11 to human developmental disorders was suggested by a recent report of SOX11 mutations in two patients with Coffin–Siris syndrome. Here we further investigate the role of SOX11 variants in neurodevelopmental disorders. Methods We used array based comparative genomic hybridisation and trio exome sequencing to identify children with intellectual disability who have deletions or de novo point mutations disrupting SOX11. The pathogenicity of the SOX11 mutations was assessed using an in vitro gene expression reporter system. Loss-of-function experiments were performed in xenopus by knockdown of Sox11 expression. Results We identified seven individuals with chromosome 2p25 deletions involving SOX11. Trio exome sequencing identified three de novo SOX11 variants, two missense (p.K50N; p.P120H) and one nonsense (p.C29*). The biological consequences of the missense mutations were assessed using an in vitro gene expression system. These individuals had microcephaly, developmental delay and shared dysmorphic features compatible with mild Coffin–Siris syndrome. To further investigate the function of SOX11, we knocked down the orthologous gene in xenopus. Morphants had significant reduction in head size compared with controls. This suggests that SOX11 loss of function can be associated with microcephaly. Conclusions We thus propose that SOX11 deletion or mutation can present with a Coffin–Siris phenotype. PMID:26543203

  18. Identification of 51 novel exons of the Usher syndrome type 2A (USH2A) gene that encode multiple conserved functional domains and that are mutated in patients with Usher syndrome type II.

    NARCIS (Netherlands)

    Wijk, E. van; Pennings, R.J.E.; Brinke, H. te; Claassen, A.M.W.; Yntema, H.G.; Hoefsloot, L.H.; Cremers, F.P.M.; Cremers, C.W.R.J.; Kremer, J.M.J.

    2004-01-01

    The USH2A gene is mutated in patients with Usher syndrome type IIa, which is the most common subtype of Usher syndrome and is characterized by hearing loss and retinitis pigmentosa. Since mutation analysis by DNA sequencing of exons 1-21 revealed only ~63% of the expected USH2A mutations, we

  19. Indsigter og udfordringer i danske Lynch-syndrom-familier

    DEFF Research Database (Denmark)

    Therkildsen, Christina; Timshel, Susanne; Nilbert, Mef

    2008-01-01

    identified 88 unique mutations in 164 Danish families delineated as Lynch syndrome families. Predictive genetic diagnostics enables the identification of high risk individuals, who are offered participation in surveillance programmes that effectively reduce morbidity and mortality in colorectal cancer....

  20. 657del5 mutation of the NBS1 gene in myelodysplastic syndrome

    Directory of Open Access Journals (Sweden)

    Bunjevacki Vera

    2014-01-01

    Full Text Available Myelodysplastic syndromes (MDS are clonal hematologic stem cell disorders with an as yet unknown molecular pathology. Genetic instability has been proposed as a cause of MDS. Mutations in the NBS1 gene, whose product nibrin (p95 is involved in DNA damage repair and cell-cycle control, might be associated with an elevated predisposition to the development of MDS. The aim of the study was to examine truncating 5 bp deletion (657del5, the most frequent NBS1 gene mutation in Slavic populations, in MDS patients. Among 71 MDS patients, we found one case that was heterozygous for the NBS1 657del5 mutation. To the best of our knowledge, this is the first report of a NBS1 mutation in MDS. [Projekat Ministarstva nauke Republike Srbije, br. 175091

  1. Genetic and Clinical Analyses of DOA and LHON in 304 Chinese Patients with Suspected Childhood-Onset Hereditary Optic Neuropathy.

    Directory of Open Access Journals (Sweden)

    Yadi Li

    Full Text Available Leber hereditary optic neuropathy (LHON and dominant optic atrophy (DOA, the most common forms of hereditary optic neuropathy, are easily confused, and it is difficult to distinguish one from the other in the clinic, especially in young children. The present study was designed to survey the mutation spectrum of common pathogenic genes (OPA1, OPA3 and mtDNA genes and to analyze the genotype-phenotype characteristics of Chinese patients with suspected childhood-onset hereditary optic neuropathy. Genomic DNA and clinical data were collected from 304 unrelated Chinese probands with suspected hereditary optic neuropathy with an age of onset below 14 years. Sanger sequencing was used to screen variants in the coding and adjacent regions of OPA1, OPA3 and the three primary LHON-related mutation sites in mitochondrial DNA (mtDNA (m.3460G>A, m.11778G>A and m.14484T>C. All patients underwent a complete ophthalmic examination and were compared with age-matched controls. We identified 89/304 (29.3% primary mtDNA mutations related to LHON in 304 probands, including 76 mutations at m.11778 (76/89, 85.4% of all mtDNA mutations, four at m.3460 (4/89, 4.5% and nine at m.14484 (9/89, 10.1%. This result was similar to the mutation frequency among Chinese patients with LHON of any age. Screening of OPA1 revealed 23 pathogenic variants, including 11 novel and 12 known pathogenic mutations. This study expanded the OPA1 mutation spectrum, and our results showed that OPA1 mutation is another common cause of childhood-onset hereditary optic neuropathy in Chinese pediatric patients, especially those with disease onset during preschool age.

  2. Predicting the impact of Lynch syndrome-causing missense mutations from structural calculations.

    Directory of Open Access Journals (Sweden)

    Sofie V Nielsen

    2017-04-01

    Full Text Available Accurate methods to assess the pathogenicity of mutations are needed to fully leverage the possibilities of genome sequencing in diagnosis. Current data-driven and bioinformatics approaches are, however, limited by the large number of new variations found in each newly sequenced genome, and often do not provide direct mechanistic insight. Here we demonstrate, for the first time, that saturation mutagenesis, biophysical modeling and co-variation analysis, performed in silico, can predict the abundance, metabolic stability, and function of proteins inside living cells. As a model system, we selected the human mismatch repair protein, MSH2, where missense variants are known to cause the hereditary cancer predisposition disease, known as Lynch syndrome. We show that the majority of disease-causing MSH2 mutations give rise to folding defects and proteasome-dependent degradation rather than inherent loss of function, and accordingly our in silico modeling data accurately identifies disease-causing mutations and outperforms the traditionally used genetic disease predictors. Thus, in conclusion, in silico biophysical modeling should be considered for making genotype-phenotype predictions and for diagnosis of Lynch syndrome, and perhaps other hereditary diseases.

  3. A novel frameshift mutation of CHD7 in a Japanese patient with CHARGE syndrome.

    Science.gov (United States)

    Kohmoto, Tomohiro; Shono, Miki; Naruto, Takuya; Watanabe, Miki; Suga, Ken-Ichi; Nakagawa, Ryuji; Kagami, Shoji; Masuda, Kiyoshi; Imoto, Issei

    2016-01-01

    CHARGE syndrome is a rare autosomal dominant developmental disorder involving multiple organs. CHD7 is a major causative gene of CHARGE syndrome. We performed targeted-exome sequencing using a next-generation sequencer for molecular diagnosis of a 4-month-old male patient who was clinically suspected to have CHARGE syndrome, and report a novel monoallelic mutation in CHD7, NM_017780.3(CHD7_v001):c.2966del causing a reading frameshift [p.(Cys989Serfs*3)].

  4. [Research progress of mutational spectrum and pathophysiology of WFS1 gene in Wolfram syndrome and nonsyndromic low frequency sensorineural hearing loss].

    Science.gov (United States)

    Shi, S M; Han, Y H; Wang, H B

    2016-09-07

    Compound homozygous or heterozygous mutations in WFS 1 can lead to autosomal recessive Wolfram syndrome (WS), and heterozygous mutations in WFS 1 can lead to autosomal dominant non-syndromic low frequency sensorineural hearing loss (LFSNHL). In addition, mutations in the WFS region has relationship with diabetes and psychiatric diseases. In this paper, we provide an overview of genetic research with different phenotypes, including WS and LFSNHL.

  5. Tietz/Waardenburg type 2A syndrome associated with posterior microphthalmos in two unrelated patients with novel MITF gene mutations.

    Science.gov (United States)

    Cortés-González, Vianney; Zenteno, Juan Carlos; Guzmán-Sánchez, Martín; Giordano-Herrera, Verónica; Guadarrama-Vallejo, Dalia; Ruíz-Quintero, Narlly; Villanueva-Mendoza, Cristina

    2016-12-01

    Tietz syndrome and Waardenburg syndrome type 2A are allelic conditions caused by MITF mutations. Tietz syndrome is inherited in an autosomal dominant pattern and is characterized by congenital deafness and generalized skin, hair, and eye hypopigmentation, while Waardenburg syndrome type 2A typically includes variable degrees of sensorineural hearing loss and patches of de-pigmented skin, hair, and irides. In this paper, we report two unrelated families with MITF mutations. The first family showed an autosomal dominant pattern and variable expressivity. The second patient was isolated. MITF gene analysis in the first family demonstrated a c.648A>C heterozygous mutation in exon 8 c.648A>C; p. (R216S), while in the isolated patient, an apparently de novo heterozygous c.1183_1184insG truncating mutation was demonstrated in exon 10. All patients except one had bilateral reduced ocular anteroposterior axial length and a high hyperopic refractive error corresponding to posterior microphthalmos, features that have not been described as part of the disease. Our results suggest that posterior microphthalmos might be part of the clinical characteristics of Tietz/Waardenburg syndrome type 2A and expand both the clinical and molecular spectrum of the disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Waardenburg syndrome type 4: report of two new cases caused by SOX10 mutations in Spain.

    Science.gov (United States)

    Fernández, Raquel M; Núñez-Ramos, Raquel; Enguix-Riego, M Valle; Román-Rodríguez, Francisco José; Galán-Gómez, Enrique; Blesa-Sánchez, Emilio; Antiñolo, Guillermo; Núñez-Núñez, Ramón; Borrego, Salud

    2014-02-01

    Shah-Waardenburg syndrome or Waardenburg syndrome type 4 (WS4) is a neurocristopathy characterized by the association of deafness, depigmentation and Hirschsprung disease. Three disease-causing genes have been identified so far for WS4: EDNRB, EDN3, and SOX10. SOX10 mutations, found in 45-55% of WS4 patients, are inherited in autosomal dominant way. In addition, mutations in SOX10 are also responsible for an extended syndrome involving peripheral and central neurological phenotypes, referred to as PCWH (peripheral demyelinating neuropathy, central dysmyelinating leucodystrophy, Waardenburg syndrome, Hirschsprung disease). Such mutations are mostly private, and a high intra- and inter-familial variability exists. In this report, we present a patient with WS4 and a second with PCWH due to SOX10 mutations supporting again the genetic and phenotypic heterogeneity of these syndromes. Interestingly, the WS4 family carries an insertion of 19 nucleotides in exon 5 of SOX10, which results in distinct phenotypes along three different generations: hypopigmentation in the maternal grandmother, hearing loss in the mother, and WS4 in the proband. Since mosaicism cannot explain the three different related-WS features observed in this family, we propose as the most plausible explanation the existence of additional molecular events, acting in an additive or multiplicative fashion, in genes or regulatory regions unidentified so far. On the other hand, the PCWH case was due to a de novo deletion in exon 5 of the gene. Efforts should be devoted to unravel the mechanisms underlying the intrafamilial phenotypic variability observed in the families affected, and to identify new genes responsible for the still unsolved WS4 cases. © 2013 Wiley Periodicals, Inc.

  7. FAM20A mutations can cause enamel-renal syndrome (ERS.

    Directory of Open Access Journals (Sweden)

    Shih-Kai Wang

    Full Text Available Enamel-renal syndrome (ERS is an autosomal recessive disorder characterized by severe enamel hypoplasia, failed tooth eruption, intrapulpal calcifications, enlarged gingiva, and nephrocalcinosis. Recently, mutations in FAM20A were reported to cause amelogenesis imperfecta and gingival fibromatosis syndrome (AIGFS, which closely resembles ERS except for the renal calcifications. We characterized three families with AIGFS and identified, in each case, recessive FAM20A mutations: family 1 (c.992G>A; g.63853G>A; p.Gly331Asp, family 2 (c.720-2A>G; g.62232A>G; p.Gln241_Arg271del, and family 3 (c.406C>T; g.50213C>T; p.Arg136* and c.1432C>T; g.68284C>T; p.Arg478*. Significantly, a kidney ultrasound of the family 2 proband revealed nephrocalcinosis, revising the diagnosis from AIGFS to ERS. By characterizing teeth extracted from the family 3 proband, we demonstrated that FAM20A(-/- molars lacked true enamel, showed extensive crown and root resorption, hypercementosis, and partial replacement of resorbed mineral with bone or coalesced mineral spheres. Supported by the observation of severe ectopic calcifications in the kidneys of Fam20a null mice, we conclude that FAM20A, which has a kinase homology domain and localizes to the Golgi, is a putative Golgi kinase that plays a significant role in the regulation of biomineralization processes, and that mutations in FAM20A cause both AIGFS and ERS.

  8. Kallmann syndrome: 14 novel mutations in KAL1 and FGFR1 (KAL2).

    Science.gov (United States)

    Albuisson, Juliette; Pêcheux, Chistophe; Carel, Jean-Claude; Lacombe, Didier; Leheup, Bruno; Lapuzina, Pablo; Bouchard, Philippe; Legius, Eric; Matthijs, Gert; Wasniewska, Malgorzata; Delpech, Marc; Young, Jacques; Hardelin, Jean-Pierre; Dodé, Catherine

    2005-01-01

    Kallmann syndrome (KAL) combines hypogonadotropic hypogonadism and anosmia. Hypogonadism is due to Gonadotropin Releasing Hormone (GnRH) deficiency and anosmia is related to hypoplasia of the olfactory bulbs. Occasional symptoms include renal agenesis, bimanual synkinesia, cleft lip palate, dental agenesis. KAL is genetically heterogeneous and two genes have so far been identified, namely KAL1 (Xp22.3) and FGFR1/KAL2 (8p12), which underlie the X chromosome-linked form and an autosomal dominant form of the disease, respectively. We studied a cohort of 98 unrelated Caucasian KAL patients. We identified KAL1 mutations in 14 patients, of which 7 (c.3G>A (p.M1?), g.IVS1+1G>T, c.570_571insA (p.R191fsX14), c.784G>C (p.R262P), c.958G>T (p.E320X), c.1651_1654delinsAGCT (p.P551_E552delinsSX), c.1711T>A (p.W571R)) have not been previously reported. In addition, we found FGFR1 mutations in 7 patients, namely c.303G>A (p.V102I), C.385A>C (p.D129A), c.810G>A (p.V273M), c.1093_1094delAG (p.R365fsX41), c.1561G>A (p.A520T), c.1836_1837insT (p.Y613fsX42), c.2190C>G (p.Y730X), all of which were novel mutations. In this study, unilateral renal agenesis and bimanual synkinesia were exclusively found associated with KAL1mutations, cleft palate and dental agenesia with FGFR1mutations. (c) 2004 Wiley-Liss, Inc.

  9. The genetic basis of Brugada syndrome: a mutation update

    DEFF Research Database (Denmark)

    Hedley, Paula L; Jørgensen, Poul; Schlamowitz, Sarah

    2009-01-01

    of inheritance with an average prevalence of 5:10,000 worldwide. Currently, more than 100 mutations in seven genes have been associated with BrS. Loss-of-function mutations in SCN5A, which encodes the alpha-subunit of the Na(v)1.5 sodium ion channel conducting the depolarizing I(Na) current, causes 15-20% of Br......S cases. A few mutations have been described in GPD1L, which encodes glycerol-3-phosphate dehydrogenase-1 like protein; CACNA1C, which encodes the alpha-subunit of the Ca(v)1.2 ion channel conducting the depolarizing I(L,Ca) current; CACNB2, which encodes the stimulating beta2-subunit of the Ca(v)1.2 ion...

  10. Mutation in LEMD3 (Man1 Associated with Osteopoikilosis and Late-Onset Generalized Morphea: A New Buschke-Ollendorf Syndrome Variant

    Directory of Open Access Journals (Sweden)

    Benjamin Korman

    2016-01-01

    Full Text Available Introduction. Buschke-Ollendorf syndrome (BOS is an uncommon syndrome characterized by osteopoikilosis and other bone abnormalities, accompanied by skin lesions, most frequently connective tissue nevi. BOS is caused by mutations in the LEMD3 gene, which encodes the inner nuclear membrane protein Man1. We describe a unique case of osteopoikilosis associated with late-onset localized scleroderma and familial LEMD3 mutations. Case Report. A 72-year-old woman presented with adult-onset diffuse morphea and bullous skin lesions. Evaluation revealed multiple hyperostotic lesions (osteopoikilosis suggestive of BOS. DNA sequencing identified a previously undescribed nonsense mutation (Trp621X in the LEMD3 gene encoding Man1. Two additional family members were found to have osteopoikilosis and carry the same LEMD3 mutation. Conclusions and Relevance. We report a unique familial LEMD3 mutation in an individual with osteopoikilosis and late-onset morphea. We propose that this constellation represents a novel syndromic variant of BOS.

  11. Prevalence of 2314delG mutation in Spanish patients with Usher syndrome type II (USH2).

    Science.gov (United States)

    Beneyto, M M; Cuevas, J M; Millán, J M; Espinós, C; Mateu, E; González-Cabo, P; Baiget, M; Doménech, M; Bernal, S; Ayuso, C; García-Sandoval, B; Trujillo, M J; Borrego, S; Antiñolo, G; Carballo, M; Nájera, C

    2000-06-01

    The Usher syndrome (USH) is a group of autosomal recessive diseases characterized by congenital sensorineural hearing loss and retinitis pigmentosa. Three clinically distinct forms of Usher syndrome have so far been recognized and can be distinguished from one another by assessing auditory and vestibular function. Usher syndrome type II (USH2) patients have congenital moderate-to-severe nonprogressive hearing loss, retinitis pigmentosa, and normal vestibular function. Genetic linkage studies have revealed genetic heterogeneity among the three types of USH, with the majority of USH2 families showing linkage to the USH2A locus in 1q41. The USH2A gene (MIM 276901) has been identified: three mutations, 2314delG, 2913delG, and 4353-54delC, were initially reported in USH2A patients, the most frequent of which is the 2314delG mutation. It has been reported that this mutation can give rise to typical and atypical USH2 phenotypes. USH2 cases represent 62% of all USH cases in the Spanish population, and 95% of these cases have provided evidence of linkage to the USH2A locus. In the present study, the three reported mutations were analyzed in 59 Spanish families with a diagnosis of USH type II. The 2314delG was the only mutation identified in our population: it was detected in 25% of families and 16% of USH2 chromosomes analyzed. This study attempts to estimate the prevalence of this common mutation in a homogeneous Spanish population.

  12. Mutations in the VLGR1 Gene Implicate G-Protein Signaling in the Pathogenesis of Usher Syndrome Type II

    Science.gov (United States)

    Weston, Michael D.; Luijendijk, Mirjam W. J.; Humphrey, Kurt D.; Möller, Claes; Kimberling, William J.

    2004-01-01

    Usher syndrome type II (USH2) is a genetically heterogeneous autosomal recessive disorder with at least three genetic subtypes (USH2A, USH2B, and USH2C) and is classified phenotypically as congenital hearing loss and progressive retinitis pigmentosa. The VLGR1 (MASS1) gene in the 5q14.3-q21.1 USH2C locus was considered a likely candidate on the basis of its protein motif structure and expressed-sequence-tag representation from both cochlear and retinal subtracted libraries. Denaturing high-performance liquid chromatography and direct sequencing of polymerase-chain-reaction products amplified from 10 genetically independent patients with USH2C and 156 other patients with USH2 identified four isoform-specific VLGR1 mutations (Q2301X, I2906FS, M2931FS, and T6244X) from three families with USH2C, as well as two sporadic cases. All patients with VLGR1 mutations are female, a significant deviation from random expectations. The ligand(s) for the VLGR1 protein is unknown, but on the basis of its potential extracellular and intracellular protein-protein interaction domains and its wide mRNA expression profile, it is probable that VLGR1 serves diverse cellular and signaling processes. VLGR1 mutations have been previously identified in both humans and mice and are associated with a reflex-seizure phenotype in both species. The identification of additional VLGR1 mutations to test whether a phenotype/genotype correlation exists, akin to that shown for other Usher syndrome disease genes, is warranted. PMID:14740321

  13. A novel CLCN5 mutation in a boy with Bartter-like syndrome and partial growth hormone deficiency.

    Science.gov (United States)

    Bogdanović, Radovan; Draaken, Markus; Toromanović, Alma; Dordević, Maja; Stajić, Natasa; Ludwig, Michael

    2010-11-01

    Dent disease is an X-linked recessive disorder affecting the proximal tubule and is characterized by low-molecular-weight proteinuria (LMWP), hypercalciuria, nephrocalcinosis/nephrolithiasis with a variable number of features of Fanconi syndrome. It is most often associated with mutations in CLCN5, which encodes the endosomal electrogenic chloride/proton exchanger ClC-5. Renal acidification abnormalities are only rarely seen in Dent disease, whereas the hypokalemic metabolic alkalosis associated with hyperreninemic hyperaldosteronism (Bartter-like syndrome) has been reported in only one patient so far. We report on a 5-year-old boy with Dent disease caused by mutation in CLCN5 gene, c.1073G>A, who presented with hypokalemic metabolic alkalosis and hyperreninemic hyperaldosteronism persisting over the entire follow-up. No mutations were found in NKCC2, ROMK, NCCT, or ClC-Kb genes. In addition, the patient exhibited growth failure associated with partial growth hormone (GH) deficiency. Coexistence of Bartter-like syndrome features with LMWP should prompt a clinician to search for Dent disease. The Bartter syndrome phenotype seen in Dent disease patients may represent a distinct form of Bartter syndrome, the exact mechanism of which has yet to be fully elucidated. Growth delay that persists in spite of appropriate therapy should raise suspicion of other causes, such as GH deficiency.

  14. Compound-heterozygous Marfan syndrome

    NARCIS (Netherlands)

    van Dijk, F. S.; Hamel, B. C.; Hilhorst-Hofstee, Y.; Mulder, B. J. M.; Timmermans, J.; Pals, G.; Cobben, J. M.

    2009-01-01

    We report two families in which the probands have compound-heterozygous Marfan syndrome (MFS). The proband of family I has the R2726W FBN1 mutation associated with isolated skeletal features on one allele and a pathogenic FBN1 mutation on the other allele. The phenotype of the compound-heterozygous

  15. PB2 mutations D701N and S714R promote adaptation of an influenza H5N1 virus to a mammalian host.

    Science.gov (United States)

    Czudai-Matwich, Volker; Otte, Anna; Matrosovich, Mikhail; Gabriel, Gülsah; Klenk, Hans-Dieter

    2014-08-01

    Mutation D701N in the PB2 protein is known to play a prominent role in the adaptation of avian influenza A viruses to mammalian hosts. In contrast, little is known about the nearby mutations S714I and S714R, which have been observed in some avian influenza viruses highly pathogenic for mammals. We have generated recombinant H5N1 viruses with PB2 displaying the avian signature 701D or the mammalian signature 701N and serine, isoleucine, and arginine at position 714 and compared them for polymerase activity and virus growth in avian and mammalian cells, as well as for pathogenicity in mice. Mutation D701N led to an increase in polymerase activity and replication efficiency in mammalian cells and in mouse pathogenicity, and this increase was significantly enhanced when mutation D701N was combined with mutation S714R. Stimulation by mutation S714I was less distinct. These observations indicate that PB2 mutation S714R, in combination with the mammalian signature at position 701, has the potential to promote the adaptation of an H5N1 virus to a mammalian host. Influenza A/H5N1 viruses are avian pathogens that have pandemic potential, since they are spread over large parts of Asia, Africa, and Europe and are occasionally transmitted to humans. It is therefore of high scientific interest to understand the mechanisms that determine the host specificity and pathogenicity of these viruses. It is well known that the PB2 subunit of the viral polymerase is an important host range determinant and that PB2 mutation D701N plays an important role in virus adaptation to mammalian cells. In the present study, we show that mutation S714R is also involved in adaptation and that it cooperates with D701N in exposing a nuclear localization signal that mediates importin-α binding and entry of PB2 into the nucleus, where virus replication and transcription take place. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Tissue-specific mosaicism for a lethal osteogenesis imperfecta COL1A1 mutation causes mild OI/EDS overlap syndrome.

    Science.gov (United States)

    Symoens, Sofie; Steyaert, Wouter; Demuynck, Lynn; De Paepe, Anne; Diderich, Karin E M; Malfait, Fransiska; Coucke, Paul J

    2017-04-01

    Type I collagen is the predominant protein of connective tissues such as skin and bone. Mutations in the type I collagen genes (COL1A1 and COL1A2) mainly cause osteogenesis imperfecta (OI). We describe a patient with clinical signs of Ehlers-Danlos syndrome (EDS), including fragile skin, easy bruising, recurrent luxations, and fractures resembling mild OI. Biochemical collagen analysis of the patients' dermal fibroblasts showed faint overmodification of the type I collagen bands, a finding specific for structural defects in type I collagen. Bidirectional Sanger sequencing detected an in-frame deletion in exon 44 of COL1A1 (c.3150_3158del), resulting in the deletion of three amino acids (p.Ala1053_Gly1055del) in the collagen triple helix. This COL1A1 mutation was hitherto identified in four probands with lethal OI, and never in EDS patients. As the peaks on the electropherogram corresponding to the mutant allele were decreased in intensity, we performed next generation sequencing of COL1A1 to study mosaicism in skin and blood. While approximately 9% of the reads originating from fibroblast gDNA harbored the COL1A1 deletion, the deletion was not detected in gDNA from blood. Most likely, the mild clinical symptoms observed in our patient can be explained by the mosaic state of the mutation. © 2017 Wiley Periodicals, Inc.

  17. Impact Of Mutation-derived Antigens In Immune Recognition Of Hematological Malignancies, Specifically Myeloid Dysplastic Syndromes (MDS)

    DEFF Research Database (Denmark)

    Saini, Sunil Kumar; Dorfmüller, S.; Bjerregaard, Anne-Mette

    2016-01-01

    Mutation-derived neoepitopes have been suggested as a major component for immune recognition of solid tumors with a high mutational load, e.g. Melanoma and Non-Small-Cell Lung Cancer (NSCLC). Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid neoplasms characterized by increasing...

  18. Multivariate Analysis of Variance: Finding significant growth in mice with craniofacial dysmorphology caused by the Crouzon mutation

    DEFF Research Database (Denmark)

    Thorup, Signe Strann; Ólafsdóttir, Hildur; Darvann, Tron Andre

    2010-01-01

    Crouzon syndrome is characterized by growth disturbances caused by premature fusion of the cranial growth zones. A mouse model with mutation Fgfr2C342Y, equivalent to the most common Crouzon syndrome mutation (henceforth called the Crouzon mouse model), has a phenotype showing many parallels to t...... used micro-CT scans of 4-week-old mice (N=5) and 6-week-old mice (N=10) with Crouzon syndrome (Fgfr2 C342Y/+) were compared to control groups of 4-week-old wild-type mice (N=5) and 6-week-old wild-type mice (N=10), respectively....

  19. Severe manifestation of Bartter syndrome Type IV caused by a novel insertion mutation in the BSND gene.

    Science.gov (United States)

    de Pablos, Augusto Luque; García-Nieto, Victor; López-Menchero, Jesús C; Ramos-Trujillo, Elena; González-Acosta, Hilaria; Claverie-Martín, Félix

    2014-05-01

    Bartter syndrome Type IV is a rare subtype of the Bartter syndromes that leads to both severe renal salt wasting and sensorineural deafness. This autosomal recessive disease is caused by mutations in the gene encoding barttin, BSND, an essential subunit of the ClC-K chloride channels expressed in renal and inner ear epithelia. Patients differ in the severity of renal symptoms, which appears to depend on the modification of channel function by the mutant barttin. To date, only a few BSND mutations have been reported, most of which are missense or nonsense mutations. In this study, we report the identification of the first insertion mutation, p.W102Vfs*7, in the BSND gene of a newborn girl with acute clinical symptoms including early-onset chronic renal failure. The results support previous data indicating that mutations that are predicted to abolish barttin expression are associated with a severe phenotype and early onset renal failure.

  20. Variable clinical expressivity of STAT3 mutation in hyperimmunoglobulin E syndrome: genetic and clinical studies of six patients

    NARCIS (Netherlands)

    Wolach, Ofir; Kuijpers, Taco; Ben-Ari, Josef; Gavrieli, Ronit; Feinstein-Goren, Neta; Alders, Marielle; Garty, Ben Zion; Wolach, Baruch

    2014-01-01

    Autosomal dominant Hyper IgE syndrome (AD-HIES) is a rare and complex primary immunodeficiency that affects multiple systems. Mutations in signal transducer and activator of transcription 3 (STAT3) gene cause AD-HIES. These mutations have a dominant-negative effect and the presence of such mutations

  1. Autosomal dominant Carvajal plus syndrome due to the novel desmoplakin mutation c.1678A > T (p.Ile560Phe).

    Science.gov (United States)

    Finsterer, Josef; Stöllberger, Claudia; Wollmann, Eva; Dertinger, Susanne; Laccone, Franco

    2016-09-01

    Carvajal syndrome is an autosomal dominant or autosomal recessive disorder, manifesting with dilated cardiomyopathy, woolly hair, and palmoplantar keratoma. Additional manifestations can be occasionally found. Carvajal syndrome may be due to mutations in the desmocollin-2, desmoplakin, or plakophilin-2 gene. We report a family with Carvajal syndrome which additionally presented with hypoacusis, noncompaction, recurrent pharyngeal infections, oligodontia, and recurrent diarrhoea. Father and brother were also affected and had died suddenly, the father despite implantation of a cardioverter defibrillator (ICD). Genetic studies revealed the novel pathogenic mutation c.1678A > T in the desmoplakin gene resulting in the amino acid change Ile to Phe at position 560 in the index case and her brother. The index case underwent ICD implantation recently. Phenotypic manifestations of Carvajal syndrome are even broader than so far anticipated, the number of mutations in the desmoplakin gene responsible for Carvajal syndrome is still increasing, and these patients require implantation of an ICD as soon as their diagnosis is established.

  2. POLG1 mutations and stroke like episodes: a distinct clinical entity rather than an atypical MELAS syndrome.

    Science.gov (United States)

    Cheldi, Antonella; Ronchi, Dario; Bordoni, Andreina; Bordo, Bianca; Lanfranconi, Silvia; Bellotti, Maria Grazia; Corti, Stefania; Lucchini, Valeria; Sciacco, Monica; Moggio, Maurizio; Baron, Pierluigi; Comi, Giacomo Pietro; Colombo, Antonio; Bersano, Anna

    2013-01-15

    POLG1 mutations have been associated with MELAS-like phenotypes. However given several clinical differences it is unknown whether POLG1 mutations are possible causes of MELAS or give raise to a distinct clinical and genetic entity, named POLG1-associated encephalopathy. We describe a 74 years old man carrying POLG1 mutations presenting with strokes, myopathy and ragged red fibers with some atypical aspects for MELAS such as late onset, lack of cerebral calcification and presence of frontal and occipital MRI lesions better consistent with the POLG associated-encephalopathy spectrum. The lack of available data hampers a definite diagnosis in our patient as well as makes it difficult to compare MELAS, which is a clearly defined clinical syndrome, with POLG1-associated encephalopathy, which is so far a purely molecularly defined syndrome with a quite heterogeneous clinical picture. However, the present report contributes to expand the phenotypic spectrum of POLG1 mutations underlining the importance of searching POLG1 mutations in patients with mitochondrial signs and MELAS like phenotypes but negative for common mtDNA mutations.

  3. Characteristics and mutation analysis of Ph-positive leukemia patients with T315I mutation receiving tyrosine kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Xu PP

    2017-09-01

    Full Text Available Peipei Xu,1 Dan Guo,2 Xiaoyan Shao,1 Miaoxin Peng,1 Bing Chen2 1Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, 2Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China Background: TKIs are the first-line treatment for patients with Ph-positive (Ph+ leukemia. However, drug resistance is frequently observed, mainly due to mutations within the breakpoint cluster region-Abelson leukemia virus (BCR-ABL kinase domain. The T315I substitution confers complete resistance to TKIs. The aim of this study was to analyze the clinical characteristics of 17 patients with T315I mutation after TKI treatment and provide a basis for prognosis.Patients and methods: The clinical data of 17 TKI-resistant Ph+ leukemia patients who were found to have a ABL kinase domain mutation from September 2008 to January 2017 were collected. Karyotypes and BCR-ABL fusion gene were analyzed by R-banding and fluorescence in situ hybridization, respectively. Total RNA was extracted by TRIzol reagent, and the ABL kinase domain mutation was detected by direct sequencing.Results: A total of 17 patients reached effective remission including major molecular response and complete cytogenetic response. However, all the patients subsequently developed a T315I mutation after treatment with TKIs. The rate of the BCR-ABL fusion gene in most of the patients who developed the T315I mutation was significantly higher than that before the mutation. At initial diagnosis, patients average platelet count was 149.7×109/L, whereas the average platelet count was only 53.88×109/L after the T315I mutation (P<0.01. The results also showed that the survival time of patients with a high proportion of blast cells or a high number of white blood cells was obviously shortened.Conclusion: Patients platelet count decreased when detected with the T315I mutation compared with the initial

  4. Introducing Pitt-Hopkins syndrome-associated mutations of TCF4 to Drosophila daughterless

    Directory of Open Access Journals (Sweden)

    Laura Tamberg

    2015-12-01

    Full Text Available Pitt-Hopkins syndrome (PTHS is caused by haploinsufficiency of Transcription factor 4 (TCF4, one of the three human class I basic helix-loop-helix transcription factors called E-proteins. Drosophila has a single E-protein, Daughterless (Da, homologous to all three mammalian counterparts. Here we show that human TCF4 can rescue Da deficiency during fruit fly nervous system development. Overexpression of Da or TCF4 specifically in adult flies significantly decreases their survival rates, indicating that these factors are crucial even after development has been completed. We generated da transgenic fruit fly strains with corresponding missense mutations R578H, R580W, R582P and A614V found in TCF4 of PTHS patients and studied the impact of these mutations in vivo. Overexpression of wild type Da as well as human TCF4 in progenitor tissues induced ectopic sensory bristles and the rough eye phenotype. By contrast, overexpression of DaR580W and DaR582P that disrupt DNA binding reduced the number of bristles and induced the rough eye phenotype with partial lack of pigmentation, indicating that these act dominant negatively. Compared to the wild type, DaR578H and DaA614V were less potent in induction of ectopic bristles and the rough eye phenotype, respectively, suggesting that these are hypomorphic. All studied PTHS-associated mutations that we introduced into Da led to similar effects in vivo as the same mutations in TCF4 in vitro. Consequently, our Drosophila models of PTHS are applicable for further studies aiming to unravel the molecular mechanisms of this disorder.

  5. Review and update of mutations causing Waardenburg syndrome.

    Science.gov (United States)

    Pingault, Véronique; Ente, Dorothée; Dastot-Le Moal, Florence; Goossens, Michel; Marlin, Sandrine; Bondurand, Nadège

    2010-04-01

    Waardenburg syndrome (WS) is characterized by the association of pigmentation abnormalities, including depigmented patches of the skin and hair, vivid blue eyes or heterochromia irides, and sensorineural hearing loss. However, other features such as dystopia canthorum, musculoskeletal abnormalities of the limbs, Hirschsprung disease, or neurological defects are found in subsets of patients and used for the clinical classification of WS. Six genes are involved in this syndrome: PAX3 (encoding the paired box 3 transcription factor), MITF (microphthalmia-associated transcription factor), EDN3 (endothelin 3), EDNRB (endothelin receptor type B), SOX10 (encoding the Sry bOX10 transcription factor), and SNAI2 (snail homolog 2), with different frequencies. In this review we provide an update on all WS genes and set up mutation databases, summarize molecular and functional data available for each of them, and discuss the applications in diagnostics and genetic counseling. (c) 2010 Wiley-Liss, Inc.

  6. FATP4 missense and nonsense mutations cause similar features in Ichthyosis Prematurity Syndrome

    Directory of Open Access Journals (Sweden)

    Dahl Niklas

    2011-03-01

    Full Text Available Abstract Background Ichthyosis Prematurity Syndrome (IPS is an autosomal recessive disorder characterized by premature birth, non-scaly ichthyosis and atopic manifestations. The disease was recently shown to be caused by mutations in the gene encoding the fatty acid transport protein 4 (FATP4 and a specific reduction in the incorporation of very long chain fatty acids (VLCFA into cellular lipids. Findings We screened probands from five families segregating IPS for mutations in the FATP4 gene. Four probands were compound heterozygous for four different mutations of which three are novel. Four patients were heterozygous and one patient homozygous for the previously reported non-sense mutation p.C168X (c.504c > a. All patients had clinical characteristics of IPS and a similar clinical course. Conclusions Missense mutations and non-sense mutations in FATP4 are associated with similar clinical features suggesting that missense mutations have a severe impact on FATP4 function. The results broaden the mutational spectrum in FATP4 associated with IPS for molecular diagnosis of and further functional analysis of FATP4.

  7. Novel mutations of endothelin-B receptor gene in Pakistani patients with Waardenburg syndrome.

    Science.gov (United States)

    Jabeen, Raheela; Babar, Masroor Ellahi; Ahmad, Jamil; Awan, Ali Raza

    2012-01-01

    Mutations in EDNRB gene have been reported to cause Waardenburg-Shah syndrome (WS4) in humans. We investigated 17 patients with WS4 for identification of mutations in EDNRB gene using PCR and direct sequencing technique. Four genomic mutations were detected in four patients; a G to C transversion in codon 335 (S335C) in exon 5 and a transition of T to C in codon (S361L) in exon 5, a transition of A to G in codon 277 (L277L) in exon 4, a non coding transversion of T to A at -30 nucleotide position of exon 5. None of these mutations were found in controls. One of the patients harbored two novel mutations (S335C, S361L) in exon 5 and one in Intronic region (-30exon5 A>G). All of the mutations were homozygous and novel except the mutation observed in exon 4. In this study, we have identified 3 novel mutations in EDNRB gene associated with WS4 in Pakistani patients.

  8. [Identification of an ideal noninvasive method to detect A3243G gene mutation in MELAS syndrome].

    Science.gov (United States)

    Ma, Yi-nan; Fang, Fang; Yang, Yan-ling; Zhang, Ying; Wang, Song-tao; Xu, Yu-feng; Pei, Pei; Yuan, Yun; Bu, Ding-fang; Qi, Yu

    2008-12-16

    To identify a better non-invasive method to detect the carrier of mitochondrial A3243G mutation, a cause of mitochondrial encephalopathy-lactic acidosis-stroke like episode (MELAS) syndrome. DNA was extracted from the peripheral blood, urine, hair follicle, and saliva of 25 MELAS syndrome patients carrying A3243G mutation and their mothers and other maternal relatives, 33 persons in number, and the muscle tissues from 5 patients obtained by biopsy. A3243G mutation was detected by PCR-RFLP method, and the A3243G mutation ratio was identified by measuring the density of each band and calculation with the software AlphaEase 5.0. A3243G mutations were detected in all tissues of the 25 MELAS patients. The A3243G mutation ratio in urine was 62% +/- 9%, significantly higher than that in the blood [(36% +/- 10%), t = -11.13, P < 0.01]. A3243G mutations were detected in at least one tissue of the 28 maternal relatives. The A3243G mutation rates in their urine samples was 33.0% (5.0% - 70.4%), significantly higher than that in their blood samples [8.0% (0 - 33.3%), z = -4.197, P < 0.01]. There was no significant difference in A3243G mutation ratio among the samples of hair follicle, saliva, and blood. The A3243G mutation ratio in urine is significantly higher than those in blood samples of the patients and their maternal relatives. A noninvasive method, A3243G mutation ratio analysis of urine is superior to that in blood.

  9. MKS3/TMEM67 mutations are a major cause of COACH Syndrome, a Joubert Syndrome related disorder with liver involvement.

    Science.gov (United States)

    Brancati, Francesco; Iannicelli, Miriam; Travaglini, Lorena; Mazzotta, Annalisa; Bertini, Enrico; Boltshauser, Eugen; D'Arrigo, Stefano; Emma, Francesco; Fazzi, Elisa; Gallizzi, Romina; Gentile, Mattia; Loncarevic, Damir; Mejaski-Bosnjak, Vlatka; Pantaleoni, Chiara; Rigoli, Luciana; Salpietro, Carmelo D; Signorini, Sabrina; Stringini, Gilda Rita; Verloes, Alain; Zabloka, Dominika; Dallapiccola, Bruno; Gleeson, Joseph G; Valente, Enza Maria

    2009-02-01

    The acronym COACH defines an autosomal recessive condition of Cerebellar vermis hypo/aplasia, Oligophrenia, congenital Ataxia, Coloboma and Hepatic fibrosis. Patients present the "molar tooth sign", a midbrain-hindbrain malformation pathognomonic for Joubert Syndrome (JS) and Related Disorders (JSRDs). The main feature of COACH is congenital hepatic fibrosis (CHF), resulting from malformation of the embryonic ductal plate. CHF is invariably found also in Meckel syndrome (MS), a lethal ciliopathy already found to be allelic with JSRDs at the CEP290 and RPGRIP1L genes. Recently, mutations in the MKS3 gene (approved symbol TMEM67), causative of about 7% MS cases, have been detected in few Meckel-like and pure JS patients. Analysis of MKS3 in 14 COACH families identified mutations in 8 (57%). Features such as colobomas and nephronophthisis were found only in a subset of mutated cases. These data confirm COACH as a distinct JSRD subgroup with core features of JS plus CHF, which major gene is MKS3, and further strengthen gene-phenotype correlates in JSRDs. (c) 2008 Wiley-Liss, Inc.

  10. Whole exome sequencing identifies RAI1 mutation in a morbidly obese child diagnosed with ROHHAD syndrome.

    Science.gov (United States)

    Thaker, Vidhu V; Esteves, Kristyn M; Towne, Meghan C; Brownstein, Catherine A; James, Philip M; Crowley, Laura; Hirschhorn, Joel N; Elsea, Sarah H; Beggs, Alan H; Picker, Jonathan; Agrawal, Pankaj B

    2015-05-01

    The current obesity epidemic is attributed to complex interactions between genetic and environmental factors. However, a limited number of cases, especially those with early-onset severe obesity, are linked to single gene defects. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation and autonomic dysregulation (ROHHAD) is one of the syndromes that presents with abrupt-onset extreme weight gain with an unknown genetic basis. To identify the underlying genetic etiology in a child with morbid early-onset obesity, hypoventilation, and autonomic and behavioral disturbances who was clinically diagnosed with ROHHAD syndrome. Design/Setting/Intervention: The index patient was evaluated at an academic medical center. Whole-exome sequencing was performed on the proband and his parents. Genetic variants were validated by Sanger sequencing. We identified a novel de novo nonsense mutation, c.3265 C>T (p.R1089X), in the retinoic acid-induced 1 (RAI1) gene in the proband. Mutations in the RAI1 gene are known to cause Smith-Magenis syndrome (SMS). On further evaluation, his clinical features were not typical of either SMS or ROHHAD syndrome. This study identifies a de novo RAI1 mutation in a child with morbid obesity and a clinical diagnosis of ROHHAD syndrome. Although extreme early-onset obesity, autonomic disturbances, and hypoventilation are present in ROHHAD, several of the clinical findings are consistent with SMS. This case highlights the challenges in the diagnosis of ROHHAD syndrome and its potential overlap with SMS. We also propose RAI1 as a candidate gene for children with morbid obesity.

  11. Le Syndrome de Denys-Drash, une Cause Rare de Syndrome ...

    African Journals Online (AJOL)

    Le syndrome de Denys-Drash (DD) est une affection génétique rare due à la mutation du gène WT1, impliqué dans la morphogenèse des organes génitaux externes et du rein. Il associe un syndrome néphrotique congénital et une ambiguïté sexuelle. Les premiers signes surviennent dès les 3 premiers mois de vie sous ...

  12. The mitochondrial DNA 10197 G > A mutation causes MELAS/Leigh overlap syndrome presenting with acute auditory agnosia.

    Science.gov (United States)

    Leng, Yinglin; Liu, Yuhe; Fang, Xiaojing; Li, Yao; Yu, Lei; Yuan, Yun; Wang, Zhaoxia

    2015-04-01

    Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes/Leigh (MELAS/LS) overlap syndrome is a mitochondrial disorder subtype with clinical and magnetic resonance imaging (MRI) features that are characteristic of both MELAS and Leigh syndrome (LS). Here, we report an MELAS/LS case presenting with cortical deafness and seizures. Cranial MRI revealed multiple lesions involving bilateral temporal lobes, the basal ganglia and the brainstem, which conformed to neuroimaging features of both MELAS and LS. Whole mitochondrial DNA (mtDNA) sequencing and PCR-RFLP revealed a de novo heteroplasmic m.10197 G > A mutation in the NADH dehydrogenase subunit 3 gene (ND3), which was predicted to cause an alanine to threonine substitution at amino acid 47. Although the mtDNA m.10197 G > A mutation has been reported in association with LS, Leber hereditary optic neuropathy and dystonia, it has never been linked with MELAS/LS overlap syndrome. Our patient therefore expands the phenotypic spectrum of the mtDNA m.10197 G > A mutation.

  13. Juvenil polypose-syndrom og hereditær hæmoragisk telangiektasi hos en patient med SMAD4-mutation

    DEFF Research Database (Denmark)

    Jelsig, Anne Marie; Tørring, Pernille Mathiesen; Wikman, Friedrik

    2014-01-01

    Germ line mutations in SMAD4 can cause both juvenile polyposis syndrome and hereditary haemorrhagic telangiectasia syndrome. In this case we present a 37-year-old man with a frameshift mutation in SMAD4. The patient had multiple polyps in the gastrointestinal tract and was diagnosed with colon ca...... cancer at the age of 21 and gastro-oesophageal junction cancer at the age of 37. Furthermore the patient had telangiectasias and recurrent epistaxis....

  14. A novel mutation in the succinate dehydrogenase subunit D gene in siblings with the hereditary paraganglioma–pheochromocytoma syndrome

    Directory of Open Access Journals (Sweden)

    Chaithra Prasad

    2014-10-01

    Full Text Available Germline mutations in the succinate dehydrogenase complex subunit D gene are now known to be associated with hereditary paraganglioma–pheochromocytoma syndromes. Since the initial succinate dehydrogenase complex subunit D gene mutation was identified about a decade ago, more than 131 unique variants have been reported. We report the case of two siblings presenting with multiple paragangliomas and pheochromocytomas; they were both found to carry a mutation in the succinate dehydrogenase complex subunit D gene involving a substitution of thymine to guanine at nucleotide 236 in exon 3. This particular mutation of the succinate dehydrogenase complex subunit D gene has only been reported in one previous patient in Japan; this is, therefore, the first report of this pathogenic mutation in siblings and the first report of this mutation in North America. With continued screening of more individuals, we will be able to create a robust mutation database that can help us understand disease patterns associated with particular variants and may be a starting point in the development of new therapies for familial paraganglioma syndromes.

  15. Genetic counseling in Usher syndrome: linkage and mutational analysis of 10 Colombian families.

    Science.gov (United States)

    Tamayo, M L; Lopez, G; Gelvez, N; Medina, D; Kimberling, W J; Rodríguez, V; Tamayo, G E; Bernal, J E

    2008-01-01

    Usher Syndrome (US), an autosomal recessive disease, is characterized by retinitis pigmentosa (RP), vestibular dysfunction, and congenital sensorineural deafness. There are three recognized clinical types of the disorder. In order to improve genetic counseling for affected families, we conducted linkage analysis and DNA sequencing in 10 Colombian families with confirmed diagnosis of US (4 type I and 6 type II). Seventy-five percent of the US1 families showed linkage to locus USH1B, while the remaining 25% showed linkage to loci USH1B and USH1C. Among families showing linkage to USH1B we found two different mutations in the MYO7A gene: IVS42-26insTTGAG in exon 43 (heterozygous state) and R634X (CGA-TGA) in exon 16 (homozygous state). All six US2 families showed linkage to locus USH2A. Of them, 4 had c.2299delG mutation (1 homozygote state and 3 heterozygous); in the remaining 2 we did not identify any pathologic DNA variant. USH2A individuals with a 2299delG mutation presented a typical and homogeneous retinal phenotype with bilateral severe hearing loss, except for one individual with a heterozygous 2299delG mutation, whose hearing loss was asymmetric, but more profound than in the other cases. The study of these families adds to the genotype-phenotype characterization of the different types and subtypes of US and facilitates genetic counseling in these families. We would like to emphasize the need to perform DNA studies as a prerequisite for genetic counseling in affected families.

  16. [Suspected pathogenic mutation identified in two cases with oculocutaneous albinism].

    Science.gov (United States)

    He, Jiangmei; Zheng, Meiling; Zhang, Guilin; Hua, Ailing

    2015-08-01

    To detect potential mutations in genes related with non-syndromic oculocutaneous albinism I-IV and ocular albinism type I in two couples who had given births to children with albinism. All exons of the non-syndromic albinism related genes TYR, OCA2, TYRP-1, MITF, SLC45A2 and GPR143 were subjected to deep sequencing. The results were verified with Sanger sequencing. For the two female carriers, the coding region of the TYR gene was found to harbor a frameshift mutation c.925_926insC, which was also suspected to have been pathogenic. In one of the male partners, a nonsense mutations c.832C>T was found, which was also known to be pathogenic. Another male partner was found to harbor a TYR gene mutation c.346C>T, which was also known to be a pathogenic nonsense mutation. The coding region of the TYR gene c.925_926insC (p.Thr309ThrfsX9) probably underlies the OCA1 disease phenotype.

  17. TALEN-mediated single-base-pair editing identification of an intergenic mutation upstream of BUB1B as causative of PCS (MVA) syndrome

    Science.gov (United States)

    Ochiai, Hiroshi; Miyamoto, Tatsuo; Kanai, Akinori; Hosoba, Kosuke; Sakuma, Tetsushi; Kudo, Yoshiki; Asami, Keiko; Ogawa, Atsushi; Watanabe, Akihiro; Kajii, Tadashi; Yamamoto, Takashi; Matsuura, Shinya

    2014-01-01

    Cancer-prone syndrome of premature chromatid separation with mosaic variegated aneuploidy [PCS (MVA) syndrome] is a rare autosomal recessive disorder characterized by constitutional aneuploidy and a high risk of childhood cancer. We previously reported monoallelic mutations in the BUB1B gene (encoding BUBR1) in seven Japanese families with the syndrome. No second mutation was found in the opposite allele of any of the families studied, although a conserved BUB1B haplotype and a decreased transcript were identified. To clarify the molecular pathology of the second allele, we extended our mutational search to a candidate region surrounding BUB1B. A unique single nucleotide substitution, G > A at ss802470619, was identified in an intergenic region 44 kb upstream of a BUB1B transcription start site, which cosegregated with the disorder. To examine whether this is the causal mutation, we designed a transcription activator-like effector nuclease–mediated two-step single-base pair editing strategy and biallelically introduced this substitution into cultured human cells. The cell clones showed reduced BUB1B transcripts, increased PCS frequency, and MVA, which are the hallmarks of the syndrome. We also encountered a case of a Japanese infant with PCS (MVA) syndrome carrying a homozygous single nucleotide substitution at ss802470619. These results suggested that the nucleotide substitution identified was the causal mutation of PCS (MVA) syndrome. PMID:24344301

  18. Identification and functional analysis of SOX10 missense mutations in different subtypes of Waardenburg syndrome.

    Science.gov (United States)

    Chaoui, Asma; Watanabe, Yuli; Touraine, Renaud; Baral, Viviane; Goossens, Michel; Pingault, Veronique; Bondurand, Nadege

    2011-12-01

    Waardenburg syndrome (WS) is a rare disorder characterized by pigmentation defects and sensorineural deafness, classified into four clinical subtypes, WS1-S4. Whereas the absence of additional features characterizes WS2, association with Hirschsprung disease defines WS4. WS is genetically heterogeneous, with six genes already identified, including SOX10. About 50 heterozygous SOX10 mutations have been described in patients presenting with WS2 or WS4, with or without myelination defects of the peripheral and central nervous system (PCWH, Peripheral demyelinating neuropathy-Central dysmyelinating leukodystrophy-Waardenburg syndrome-Hirschsprung disease, or PCW, PCWH without HD). The majority are truncating mutations that most often remove the main functional domains of the protein. Only three missense mutations have been thus far reported. In the present study, novel SOX10 missense mutations were found in 11 patients and were examined for effects on SOX10 characteristics and functions. The mutations were associated with various phenotypes, ranging from WS2 to PCWH. All tested mutations were found to be deleterious. Some mutants presented with partial cytoplasmic redistribution, some lost their DNA-binding and/or transactivation capabilities on various tissue-specific target genes. Intriguingly, several mutants were redistributed in nuclear foci. Whether this phenomenon is a cause or a consequence of mutation-associated pathogenicity remains to be determined, but this observation could help to identify new SOX10 modes of action. © 2011 Wiley-Liss, Inc.

  19. Coronary artery ectasia in Noonan syndrome: Report of an individual with SOS1 mutation and literature review.

    Science.gov (United States)

    Calcagni, Giulio; Baban, Anwar; De Luca, Enrica; Leonardi, Benedetta; Pongiglione, Giacomo; Digilio, Maria Cristina

    2016-03-01

    Noonan syndrome (NS) is the second most frequent hereditary syndrome with cardiac involvement. Pulmonary valve stenosis and hypertrophic cardiomyopathy are the most prevalent cardiovascular abnormalities. We report on a 14-year-old girl with NS due to SOS1 mutation with pulmonary stenosis and idiopathic coronary ectasia. To the best of our knowledge, this is the first report describing coronary ectasia in a patient with NS secondary to a SOS1 mutation. We include a literature review of this rare association. © 2015 Wiley Periodicals, Inc.

  20. Gitelman or Bartter type 3 syndrome? A case of distal convoluted tubulopathy caused by CLCNKB gene mutation.

    Science.gov (United States)

    Cruz, António José; Castro, Alexandra

    2013-01-22

    A 32-year-old woman with no significant medical history was sent to our consultation due to hypokalaemia (syndrome (GS) came negative. CLCNKB gene mutation analysis present in both GS and Bartter (BS) type 3 syndromes was positive. The patient is now being treated with potassium and magnesium oral supplements, ramipril and spironolactone with stable near-normal potassium and magnesium levels. This article presents the case of a patient with hypokalaemia caused by CLCNKB gene mutation hard to categorise as GS or BS type 3.

  1. Spectrum of temporal bone abnormalities in patients with Waardenburg syndrome and SOX10 mutations.

    Science.gov (United States)

    Elmaleh-Bergès, M; Baumann, C; Noël-Pétroff, N; Sekkal, A; Couloigner, V; Devriendt, K; Wilson, M; Marlin, S; Sebag, G; Pingault, V

    2013-01-01

    Waardenburg syndrome, characterized by deafness and pigmentation abnormalities, is clinically and genetically heterogeneous, consisting of 4 distinct subtypes and involving several genes. SOX10 mutations have been found both in types 2 and 4 Waardenburg syndrome and neurologic variants. The purpose of this study was to evaluate both the full spectrum and relative frequencies of inner ear malformations in these patients. Fifteen patients with Waardenburg syndrome and different SOX10 mutations were studied retrospectively. Imaging was performed between February 2000 and March 2010 for cochlear implant work-up, diagnosis of hearing loss, and/or evaluation of neurologic impairment. Eleven patients had both CT and MR imaging examinations, 3 had MR imaging only, and 1 had CT only. Temporal bone abnormalities were bilateral. The most frequent pattern associated agenesis or hypoplasia of ≥1 semicircular canal, an enlarged vestibule, and a cochlea with a reduced size and occasionally an abnormal shape, but with normal partition in the 13/15 cases that could be analyzed. Three patients lacked a cochlear nerve, bilaterally in 2 patients. In addition, associated abnormalities were found when adequate MR imaging sequences were available: agenesis of the olfactory bulbs (7/8), hypoplastic or absent lacrimal glands (11/14), hypoplastic parotid glands (12/14), and white matter signal anomalies (7/13). In the appropriate clinical context, bilateral agenesis or hypoplasia of the semicircular canals or both, associated with an enlarged vestibule and a cochlear deformity, strongly suggests a diagnosis of Waardenburg syndrome linked to a SOX10 mutation.

  2. A deep intronic CLRN1 (USH3A) founder mutation generates an aberrant exon and underlies severe Usher syndrome on the Arabian Peninsula.

    Science.gov (United States)

    Khan, Arif O; Becirovic, Elvir; Betz, Christian; Neuhaus, Christine; Altmüller, Janine; Maria Riedmayr, Lisa; Motameny, Susanne; Nürnberg, Gudrun; Nürnberg, Peter; Bolz, Hanno J

    2017-05-03

    Deafblindness is mostly due to Usher syndrome caused by recessive mutations in the known genes. Mutation-negative patients therefore either have distinct diseases, mutations in yet unknown Usher genes or in extra-exonic parts of the known genes - to date a largely unexplored possibility. In a consanguineous Saudi family segregating Usher syndrome type 1 (USH1), NGS of genes for Usher syndrome, deafness and retinal dystrophy and subsequent whole-exome sequencing each failed to identify a mutation. Genome-wide linkage analysis revealed two small candidate regions on chromosome 3, one containing the USH3A gene CLRN1, which has never been associated with Usher syndrome in Saudi Arabia. Whole-genome sequencing (WGS) identified a homozygous deep intronic mutation, c.254-649T > G, predicted to generate a novel donor splice site. CLRN1 minigene-based analysis confirmed the splicing of an aberrant exon due to usage of this novel motif, resulting in a frameshift and a premature termination codon. We identified this mutation in an additional two of seven unrelated mutation-negative Saudi USH1 patients. Locus-specific markers indicated that c.254-649T > G CLRN1 represents a founder allele that may significantly contribute to deafblindness in this population. Our finding underlines the potential of WGS to uncover atypically localized, hidden mutations in patients who lack exonic mutations in the known disease genes.

  3. Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of the same coin

    Science.gov (United States)

    McDonell, Laura M.; Kernohan, Kristin D.; Boycott, Kym M.; Sawyer, Sarah L.

    2015-01-01

    Receptor tyrosine kinases (RTKs) are a family of ligand-binding cell surface receptors that regulate a wide range of essential cellular activities, including proliferation, differentiation, cell-cycle progression, survival and apoptosis. As such, these proteins play an important role during development and throughout life; germline mutations in genes encoding RTKs cause several developmental syndromes, while somatic alterations contribute to the pathogenesis of many aggressive cancers. This creates an interesting paradigm in which mutation timing, type and location in a gene leads to different cell signaling and biological responses, and ultimately phenotypic outcomes. In this review, we highlight the roles of RTKs in developmental disorders and cancer. The multifaceted roles of these receptors, their genetic signatures and their signaling during developmental morphogenesis and oncogenesis are discussed. Additionally, we propose that comparative analysis of RTK mutations responsible for developmental syndromes may shed light on those driving tumorigenesis. PMID:26152202

  4. Generation of Hermansky Pudlak syndrome type 2 (HPS2 induced pluripotent stem cells (iPSCs

    Directory of Open Access Journals (Sweden)

    Jean Ann Maguire

    2016-03-01

    Full Text Available Hermansky–Pudlak syndrome type 2 (HPS2 is a rare autosomal recessive disorder resulting from functional mutations in the adaptor-related protein complex 3, beta 1 subunit (AP3B1 gene. This gene plays a role in organelle biogenesis associated with melanosomes, platelet dense granules, and lysosomes. Here we describe the generation of an HPS2 iPS cell line (CHOPHPS2 using a Cre-excisable polycistronic STEMCCA lentivirus. This line was derived from human fibroblasts isolated from a patient carrying two mutations in the AP3B1 gene. The patient presented with severe neutropenia, ocular albinism, interstitial pulmonary fibrosis, hemorrhagic diathesis, and an absence of platelet-dense granules.

  5. Mechanistic basis for type 2 long QT syndrome caused by KCNH2 mutations that disrupt conserved arginine residues in the voltage sensor.

    Science.gov (United States)

    McBride, Christie M; Smith, Ashley M; Smith, Jennifer L; Reloj, Allison R; Velasco, Ellyn J; Powell, Jonathan; Elayi, Claude S; Bartos, Daniel C; Burgess, Don E; Delisle, Brian P

    2013-05-01

    KCNH2 encodes the Kv11.1 channel, which conducts the rapidly activating delayed rectifier K+ current (I Kr) in the heart. KCNH2 mutations cause type 2 long QT syndrome (LQT2), which increases the risk for life-threatening ventricular arrhythmias. LQT2 mutations are predicted to prolong the cardiac action potential (AP) by reducing I Kr during repolarization. Kv11.1 contains several conserved basic amino acids in the fourth transmembrane segment (S4) of the voltage sensor that are important for normal channel trafficking and gating. This study sought to determine the mechanism(s) by which LQT2 mutations at conserved arginine residues in S4 (R531Q, R531W or R534L) alter Kv11.1 function. Western blot analyses of HEK293 cells transiently expressing R531Q, R531W or R534L suggested that only R534L inhibited Kv11.1 trafficking. Voltage-clamping experiments showed that R531Q or R531W dramatically altered Kv11.1 current (I Kv11.1) activation, inactivation, recovery from inactivation and deactivation. Coexpression of wild type (to mimic the patients' genotypes) mostly corrected the changes in I Kv11.1 activation and inactivation, but deactivation kinetics were still faster. Computational simulations using a human ventricular AP model showed that accelerating deactivation rates was sufficient to prolong the AP, but these effects were minimal compared to simply reducing I Kr. These are the first data to demonstrate that coexpressing wild type can correct activation and inactivation dysfunction caused by mutations at a critical voltage-sensing residue in Kv11.1. We conclude that some Kv11.1 mutations might accelerate deactivation to cause LQT2 but that the ventricular AP duration is much more sensitive to mutations that decrease I Kr. This likely explains why most LQT2 mutations are nonsense or trafficking-deficient.

  6. A novel nonsense mutation in the WFS1 gene causes the Wolfram syndrome.

    Science.gov (United States)

    Noorian, Shahab; Savad, Shahram; Mohammadi, Davood Shah

    2016-05-01

    Wolfram syndrome is a rare autosomal recessive neurodegenerative disorder, which is mostly caused by mutations in the WFS1 gene. The WFS1 gene product, which is called wolframin, is thought to regulate the function of endoplasmic reticulum. The endoplasmic reticulum has a critical role in protein folding and material transportation within the cell or to the surface of the cell. Identification of new mutations in WFS1 gene will unravel the molecular pathology of WS. The aim of this case report study is to describe a novel mutation in exon 4 of the WFS1 gene (c.330C>A) in a 9-year-old boy with WS.

  7. Choline transporter mutations in severe congenital myasthenic syndrome disrupt transporter localization.

    Science.gov (United States)

    Wang, Haicui; Salter, Claire G; Refai, Osama; Hardy, Holly; Barwick, Katy E S; Akpulat, Ugur; Kvarnung, Malin; Chioza, Barry A; Harlalka, Gaurav; Taylan, Fulya; Sejersen, Thomas; Wright, Jane; Zimmerman, Holly H; Karakaya, Mert; Stüve, Burkhardt; Weis, Joachim; Schara, Ulrike; Russell, Mark A; Abdul-Rahman, Omar A; Chilton, John; Blakely, Randy D; Baple, Emma L; Cirak, Sebahattin; Crosby, Andrew H

    2017-11-01

    The presynaptic, high-affinity choline transporter is a critical determinant of signalling by the neurotransmitter acetylcholine at both central and peripheral cholinergic synapses, including the neuromuscular junction. Here we describe an autosomal recessive presynaptic congenital myasthenic syndrome presenting with a broad clinical phenotype due to homozygous choline transporter missense mutations. The clinical phenotype ranges from the classical presentation of a congenital myasthenic syndrome in one patient (p.Pro210Leu), to severe neurodevelopmental delay with brain atrophy (p.Ser94Arg) and extend the clinical outcomes to a more severe spectrum with infantile lethality (p.Val112Glu). Cells transfected with mutant transporter construct revealed a virtually complete loss of transport activity that was paralleled by a reduction in transporter cell surface expression. Consistent with these findings, studies to determine the impact of gene mutations on the trafficking of the Caenorhabditis elegans choline transporter orthologue revealed deficits in transporter export to axons and nerve terminals. These findings contrast with our previous findings in autosomal dominant distal hereditary motor neuropathy of a dominant-negative frameshift mutation at the C-terminus of choline transporter that was associated with significantly reduced, but not completely abrogated choline transporter function. Together our findings define divergent neuropathological outcomes arising from different classes of choline transporter mutation with distinct disease processes and modes of inheritance. These findings underscore the essential role played by the choline transporter in sustaining acetylcholine neurotransmission at both central and neuromuscular synapses, with important implications for treatment and drug selection. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. ADAMTS13 Gene Mutations in Children with Hemolytic Uremic Syndrome

    Science.gov (United States)

    Choi, Hyoung Soo; Cheong, Hae Il; Kim, Nam Keun

    2011-01-01

    We investigated ADAMTS13 activity as well as the ADAMTS13 gene mutation in children with hemolytic uremic syndrome (HUS). Eighteen patients, including 6 diarrhea-negative (D-HUS) and 12 diarrhea-associated HUS (D+HUS) patients, were evaluated. The extent of von Willebrand factor (VWF) degradation was assayed by multimer analysis, and all exons of the ADAMTS13 gene were PCR-amplified using Taq DNA polymerase. The median and range for plasma activity of ADAMTS13 in 6 D-HUS and 12 D+HUS patients were 71.8% (22.8-94.1%) and 84.9% (37.9-119.9%), respectively, which were not statistically significantly different from the control group (86.4%, 34.2-112.3%) (p>0.05). Five ADAMTS13 gene mutations, including 2 novel mutations [1584+2T>A, 3941C>T (S1314L)] and 3 polymorphisms (Q448E, P475S, S903L), were found in 2 D-HUS and one D+HUS patients, which were not associated with deficiency of ADAMTS13 activity. Whether these mutations without reduced ADAMTS13 activity are innocent bystanders or predisposing factors in HUS remains unanswered. PMID:21488199

  9. The effects of N+ implantation on the wear and friction of type 304 and 15-5 PH stainless steels

    International Nuclear Information System (INIS)

    Yost, F.G.; Picraux, S.T.; Follstaedt, D.M.; Pope, L.E.; Knapp, J.A.

    1983-01-01

    Ion implantation of N + into mechanically polished type 304 and 15-5 PH stainless steels was studied to determine its effect on dry wear and friction behavior. Implantation of 4.0 X 10 17 N + cm -2 at 50 keV yielded a depth profile with a peak concentration of about 45 at.% at a depth of 70 nm which dropped to about 10 at.% at 120 nm. Wear and friction were studied in an unlubricated pin-on-disc configuration using type 304 and 440C stainless steel pins. Both N + -implanted steels exhibited reduced wear at low loads but no significant reduction in the coefficient of friction was found. At the lowest normal load studied (12.3 gf), the average maximum wear depth of the implanted 15-5 PH stainless steel disc (about 0.1 μm) was reduced to approximately 10% of that for the corresponding unimplanted pin-on-disc pair after 1000 cycles. At normal loads of 50 gf or above (corresponding to hertzian stresses of 1160 MPa or higher) all beneficial effects were gone. Vacuum heat treatment at 923 K for 1.8 ks of an identically implanted type 304 stainless steel specimen eradicated the beneficial effects of the nitrogen implantation. The N + -implanted discs show similar reductions in wear to discs implanted with titanium and carbon, but the N + -implanted discs do not exhibit the reductions in the coefficient of friction seen with the discs implanted with titanium and carbon. (Auth.)

  10. Identification and verification of a pathogenic MLH1 mutation c.1145dupA in a Lynch syndrome family

    Directory of Open Access Journals (Sweden)

    Huang Feifei

    2017-06-01

    Full Text Available Lynch syndrome (LS, an autosomal-dominant disorder with an increased risk of predominantly colorectal and endometrial cancers, is caused by germ-line mutations in mismatch repair genes. The identification of germ-line mutations that predispose to cancer is important to further our understanding of tumorigenesis, guide patient management and inform the best practice for healthcare. A 45-year-old woman with atypical endometrial hyperplasia who suffered colon cancer at the age of 30 years underwent hysterectomy and genetic counseling. Pedigree analysis revealed her family fulfilling the Amsterdam I criteria. Next-generation sequencing was offered to the patient. A mutation in the MLH1 gene, c.1145dupA, was identified and verified by Sanger sequencing. In addition, her nine family members were tested for the mutation. Two were affected (colon cancer at the age of 43 years and 45 years and one healthy relative carried the same mutation in the MLH1 gene. The mutation resulted in a frame-shift (p.Met383Aspfs*12 located in exon12, as well as a polypeptide truncation of 393 amino acids by the formation of a premature stop codon. An immunohistochemistry analysis of endometrial hyperplasia tissues revealed defects in MLH1 and PMS2 protein expression in the patient. Based on the 2015 American College of Medical Genetics and Genomics (ACMG guideline, we report this MLH1 c.1145dupA variation to be a pathogenic mutation that contributes to a strongly increased cancer risk in this LS family. Proper screening suggestions were offered to the three affected patients and the healthy carrier. To the best of our knowledge, this germ-line mutation of MLH1 was previously submitted to the Leiden Open Variation Database (LOVD database, but no comprehensive evidence or supporting observations were reported previously in the literature. The present report found a single nucleotide insertion in exon12 of the MLH1 gene, which can be considered causative of Lynch phenotype

  11. A new heterozygous mutation of the FOXL2 gene is associated with a large ovarian cyst and ovarian dysfunction in an adolescent girl with blepharophimosis/ptosis/epicanthus inversus syndrome.

    Science.gov (United States)

    Raile, K; Stobbe, H; Tröbs, R B; Kiess, W; Pfäffle, R

    2005-09-01

    Blepharophimosis/ptosis/epicanthus inversus syndrome (BPES), an autosomal dominant syndrome in which eyelid malformation is associated with (type I BPES) or without premature ovarian failure (type II BPES). Mutations of a putative winged helix/forkhead transcription factor FOXL2 account for both types of BPES. We report on a 16-year-old adolescent girl with blepharophimosis and ptosis. Subsequently she developed oligomenorrhea, secondary amenorrhea for 6 months, and an extremely large cyst of one ovary. The cyst contained 8 l of cyst fluid and histopathology displayed a large corpus luteum cyst. Following laparotomy, gonadotropin levels were elevated (LH 17.2 U/l, FSH 29.4 U/l) and estradiol levels decreased (67 pmol/l). Because of clinical aspects of BPES and abnormal ovarian function we suspected a mutation of her FOXL2 gene and found a new in-frame mutation (904_939dup36) on one allele, leading to a 12 alanine expansion within the polyalanine domain. We conclude that the FOXL2 mutation 904_939dup36 may account not only for blepharophimosis and ptosis but also for ovarian dysfunction and growth of the large corpus luteum cyst. In contrast to known FOXL2 mutations with polyalanine expansions and association with BPES type II, clinical aspects of our girl may indicate some degree of ovarian dysfunction that might finally lead to BPES type I with premature ovarian failure.

  12. Nonsyndromic Hearing Loss Caused by USH1G Mutations: Widening the USH1G Disease Spectrum

    NARCIS (Netherlands)

    Oonk, A.M.M.; Huet, R.A.C. van; Leijendeckers, J.M.; Oostrik, J.; Venselaar, H.; WIjk, E. van; Beynon, A.J.; Kunst, H.P.M.; Hoyng, C.B.; Kremer, H.; Schraders, M.; Pennings, R.J.E.

    2015-01-01

    OBJECTIVE: Currently, six genes are known to be associated with Usher syndrome type I, and mutations in most of these genes can also cause nonsyndromic hearing loss. The one exception is USH1G, which is currently only known to be involved in Usher syndrome type I and atypical Usher syndrome. DESIGN:

  13. K-RasV14I recapitulates Noonan syndrome in mice

    Science.gov (United States)

    Hernández-Porras, Isabel; Fabbiano, Salvatore; Schuhmacher, Alberto J.; Aicher, Alexandra; Cañamero, Marta; Cámara, Juan Antonio; Cussó, Lorena; Desco, Manuel; Heeschen, Christopher; Mulero, Francisca; Bustelo, Xosé R.; Guerra, Carmen; Barbacid, Mariano

    2014-01-01

    Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. NS also is associated with a risk for developing myeloproliferative disorders (MPD), including juvenile myelomonocytic leukemia (JMML). Mutations responsible for NS occur in at least 11 different loci including KRAS. Here we describe a mouse model for NS induced by K-RasV14I, a recurrent KRAS mutation in NS patients. K-RasV14I–mutant mice displayed multiple NS-associated developmental defects such as growth delay, craniofacial dysmorphia, cardiac defects, and hematologic abnormalities including a severe form of MPD that resembles human JMML. Homozygous animals had perinatal lethality whose penetrance varied with genetic background. Exposure of pregnant mothers to a MEK inhibitor rescued perinatal lethality and prevented craniofacial dysmorphia and cardiac defects. However, Mek inhibition was not sufficient to correct these defects when mice were treated after weaning. Interestingly, Mek inhibition did not correct the neoplastic MPD characteristic of these mutant mice, regardless of the timing at which the mice were treated, thus suggesting that MPD is driven by additional signaling pathways. These genetically engineered K-RasV14I–mutant mice offer an experimental tool for studying the molecular mechanisms underlying the clinical manifestations of NS. Perhaps more importantly, they should be useful as a preclinical model to test new therapies aimed at preventing or ameliorating those deficits associated with this syndrome. PMID:25359213

  14. TGM5 mutations impact epidermal differentiation in acral peeling skin syndrome.

    Science.gov (United States)

    Pigors, Manuela; Kiritsi, Dimitra; Cobzaru, Cristina; Schwieger-Briel, Agnes; Suárez, Jose; Faletra, Flavio; Aho, Heikki; Mäkelä, Leeni; Kern, Johannes S; Bruckner-Tuderman, Leena; Has, Cristina

    2012-10-01

    Acral peeling skin syndrome (APSS) is an autosomal recessive skin disorder characterized by acral blistering and peeling of the outermost layers of the epidermis. It is caused by mutations in the gene for transglutaminase 5, TGM5. Here, we report on clinical and molecular findings in 11 patients and extend the TGM5 mutation database by four, to our knowledge, previously unreported mutations: p.M1T, p.L41P, p.L214CfsX15, and p.S604IfsX9. The recurrent mutation p.G113C was found in 9 patients, but also in 3 of 100 control individuals in a heterozygous state, indicating that APSS might be more widespread than hitherto expected. Using quantitative real-time PCR, immunoblotting, and immunofluorescence analysis, we demonstrate that expression and distribution of several epidermal differentiation markers and corneodesmosin (CDSN) is altered in APSS keratinocytes and skin. Although the expression of transglutaminases 1 and 3 was not changed, we found an upregulation of keratin 1, keratin 10, involucrin, loricrin, and CDSN, probably as compensatory mechanisms for stabilization of the epidermal barrier. Our results give insights into the consequences of TGM5 mutations on terminal epidermal differentiation.

  15. Novel Mutations in MLH1 and MSH2 Genes in Mexican Patients with Lynch Syndrome

    Directory of Open Access Journals (Sweden)

    Jose Miguel Moreno-Ortiz

    2016-01-01

    Full Text Available Background. Lynch Syndrome (LS is characterized by germline mutations in the DNA mismatch repair (MMR genes MLH1, MSH2, MSH6, and PMS2. This syndrome is inherited in an autosomal dominant pattern and is characterized by early onset colorectal cancer (CRC and extracolonic tumors. The aim of this study was to identify mutations in MMR genes in three Mexican patients with LS. Methods. Immunohistochemical analysis was performed as a prescreening method to identify absent protein expression. PCR, Denaturing High Performance Liquid Chromatography (dHPLC, and Sanger sequencing complemented the analysis. Results. Two samples showed the absence of nuclear staining for MLH1 and one sample showed loss of nuclear staining for MSH2. The mutations found in MLH1 gene were c.2103+1G>C in intron 18 and compound heterozygous mutants c.1852_1854delAAG (p.K618del and c.1852_1853delinsGC (p.K618A in exon 16. In the MSH2 gene, we identified mutation c.638dupT (p.L213fs in exon 3. Conclusions. This is the first report of mutations in MMR genes in Mexican patients with LS and these appear to be novel.

  16. Compound heterozygous MYO7A mutations segregating Usher syndrome type 2 in a Han family.

    Science.gov (United States)

    Zong, Ling; Chen, Kaitian; Wu, Xuan; Liu, Min; Jiang, Hongyan

    2016-11-01

    Identification of rare deafness genes for inherited congenital sensorineural hearing impairment remains difficult, because a large variety of genes are implicated. In this study we applied targeted capture and next-generation sequencing to uncover the underlying gene in a three-generation Han family segregating recessive inherited hearing loss and retinitis pigmentosa. After excluding mutations in common deafness genes GJB2, SLC26A4 and the mitochondrial gene, genomic DNA of the proband of a Han family was subjected to targeted next-generation sequencing. The candidate mutations were confirmed by Sanger sequencing and subsequently analyzed with in silico tools. An unreported splice site mutation c.3924+1G > C compound with c.6028G > A in the MYO7A gene were detected to cosegregate with the phenotype in this pedigree. Both mutations, located in the evolutionarily conserved FERM domain in myosin VIIA, were predicted to be pathogenic. In this family, profound sensorineural hearing impairment and retinitis pigmentosa without vestibular disorder, constituted the typical Usher syndrome type 2. Identification of novel mutation in compound heterozygosity in MYO7A gene revealed the genetic origin of Usher syndrome type 2 in this Han family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Evaluating the performance of clinical criteria for predicting mismatch repair gene mutations in Lynch syndrome: a comprehensive analysis of 3,671 families.

    Science.gov (United States)

    Steinke, Verena; Holzapfel, Stefanie; Loeffler, Markus; Holinski-Feder, Elke; Morak, Monika; Schackert, Hans K; Görgens, Heike; Pox, Christian; Royer-Pokora, Brigitte; von Knebel-Doeberitz, Magnus; Büttner, Reinhard; Propping, Peter; Engel, Christoph

    2014-07-01

    Carriers of mismatch repair (MMR) gene mutations have a high lifetime risk for colorectal and endometrial cancers, as well as other malignancies. As mutation analysis to detect these patients is expensive and time-consuming, clinical criteria and tumor-tissue analysis are widely used as pre-screening methods. The aim of our study was to evaluate the performance of commonly applied clinical criteria (the Amsterdam I and II Criteria, and the original and revised Bethesda Guidelines) and the results of tumor-tissue analysis in predicting MMR gene mutations. We analyzed 3,671 families from the German HNPCC Registry and divided them into nine mutually exclusive groups with different clinical criteria. A total of 680 families (18.5%) were found to have a pathogenic MMR gene mutation. Among all 1,284 families with microsatellite instability-high (MSI-H) colorectal cancer, the overall mutation detection rate was 53.0%. Mutation frequencies and their distribution between the four MMR genes differed significantly between clinical groups (p small-bowel cancer (p small-bowel cancer were clinically relevant predictors for Lynch syndrome. © 2013 UICC.

  18. Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome.

    Science.gov (United States)

    Laugel, V; Dalloz, C; Durand, M; Sauvanaud, F; Kristensen, U; Vincent, M C; Pasquier, L; Odent, S; Cormier-Daire, V; Gener, B; Tobias, E S; Tolmie, J L; Martin-Coignard, D; Drouin-Garraud, V; Heron, D; Journel, H; Raffo, E; Vigneron, J; Lyonnet, S; Murday, V; Gubser-Mercati, D; Funalot, B; Brueton, L; Sanchez Del Pozo, J; Muñoz, E; Gennery, A R; Salih, M; Noruzinia, M; Prescott, K; Ramos, L; Stark, Z; Fieggen, K; Chabrol, B; Sarda, P; Edery, P; Bloch-Zupan, A; Fawcett, H; Pham, D; Egly, J M; Lehmann, A R; Sarasin, A; Dollfus, H

    2010-02-01

    Cockayne syndrome is an autosomal recessive multisystem disorder characterized principally by neurological and sensory impairment, cachectic dwarfism, and photosensitivity. This rare disease is linked to mutations in the CSB/ERCC6 and CSA/ERCC8 genes encoding proteins involved in the transcription-coupled DNA repair pathway. The clinical spectrum of Cockayne syndrome encompasses a wide range of severity from severe prenatal forms to mild and late-onset presentations. We have reviewed the 45 published mutations in CSA and CSB to date and we report 43 new mutations in these genes together with the corresponding clinical data. Among the 84 reported kindreds, 52 (62%) have mutations in the CSB gene. Many types of mutations are scattered along the whole coding sequence of both genes, but clusters of missense mutations can be recognized and highlight the role of particular motifs in the proteins. Genotype-phenotype correlation hypotheses are considered with regard to these new molecular and clinical data. Additional cases of molecular prenatal diagnosis are reported and the strategy for prenatal testing is discussed. Two web-based locus-specific databases have been created to list all identified variants and to allow the inclusion of future reports (www.umd.be/CSA/ and www.umd.be/CSB/). (c) 2009 Wiley-Liss, Inc.

  19. Lamb–Shaffer syndrome, deferred outside not described by SOX5 mutation

    Directory of Open Access Journals (Sweden)

    I. V. Sharkova

    2018-01-01

    Full Text Available Clinical and genetic characteristics of a patient with Lamb–Shaffer syndrome due to the newly discovered heterozygous missense mutation p.1868A>C in the 14 exon of the SOX5 gene are presented in the next generation sequencing of exom. It is shown that, in contrast to the previously described patients due to the presence of a deletion in the region of the gene or segment of chromosome 12p12.1, in the presence of missense mutation, the intellectual deficit and the dysmorphic features of the structure are not pronounced sharply and there is no anomaly in the development of other organs and systems.

  20. Genotype-phenotype correlation of Coffin-Siris syndrome caused by mutations in SMARCB1, SMARCA4, SMARCE1, and ARID1A

    NARCIS (Netherlands)

    Kosho, T.; Okamoto, N.; Bon, B.W. van; Vulto-van Silfhout, A.T.; et al.,

    2014-01-01

    Coffin-Siris syndrome (CSS) is a rare congenital malformation syndrome, recently found to be caused by mutations in several genes encoding components of the BAF complex. To date, 109 patients have been reported with their mutations: SMARCB1 (12%), SMARCA4 (11%), SMARCE1 (2%), ARID1A (7%), ARID1B

  1. Genotype-Phenotype Correlation of Coffin-Siris Syndrome Caused by Mutations in SMARCB1, SMARCA4, SMARCE1, and ARID1A

    NARCIS (Netherlands)

    Kosho, Tomoki; Okamoto, Nobuhiko; Imai, Yoko; Ohashi, Hirofumi; van Eerde, Albertien M.; Chrzanowska, Krystyna; Clayton-Smith, Jill; Kingston, Helen; Mari, Francesca; Aggarwal, Shagun; Mowat, David; Niikawa, Norio; Hiraki, Yoko; Matsumoto, Naoya; Fukushima, Yoshimitsu; Josifova, Dragana; Dean, John; Smigiel, Robert; Sakazume, Satoru; Silengo, Margherita; Tinschert, Sigrid; Kawame, Hiroshi; Yano, Shoji; Yamagata, Takanori; van Bon, Bregje W. M.; Vulto-van Silfhout, Anneke T.; Ben-Omran, Tawfeg; Bigoni, Stefania; Alanay, Yasemin; Miyake, Noriko; Tsurusaki, Yoshinori; Matsumoto, Naomichi; Santen, Gijs W. E.; Wieczorek, Dagmar; Wollnik, Bernd; Hennekam, Raul C. M.

    2014-01-01

    Coffin-Siris syndrome (CSS) is a rare congenital malformation syndrome, recently found to be caused by mutations in several genes encoding components of the BAF complex. To date, 109 patients have been reported with their mutations: SMARCB1 (12%), SMARCA4 (11%), SMARCE1 (2%), ARID1A (7%), ARID1B

  2. Elevated temperature tensile properties of borated 304 stainless steel

    International Nuclear Information System (INIS)

    Stephens, J.J.; Sorenson, K.B.; McConnell, P.

    1993-01-01

    This paper presents a comparison of the tensile properties of Powder Metallurgy (PM) 'Grade A' material with that of the conventional IM 'Grade B' material for two selected Types (i.e., boron contents) as defined by the ASTM A887 specification: Types 304B5 and 304B7. Tensile properties have been generated for these materials at temperatures ranging from room temperature to 400degC (752degF). The data at higher temperatures are required for ASME Code Case purposes, since the use temperature of a basket under 'worst case' cask conditions may be as high as 343degC (650degF), due to self-heating by the activated fuel elements. We will also discuss the current status of efforts aimed at obtaining an ASME Boiler and Pressure Vessel Code Case for selected grades of borated stainless steel covered by the ASTM A887 specification. (J.P.N.)

  3. Identification of a novel FBN1 gene mutation in a large Pakistani family with Marfan syndrome

    NARCIS (Netherlands)

    Micheal, S.; Khan, M.I.; Akhtar, F.; Weiss, M.M.; Islam, F.; Ali, M.; Qamar, R.; Maugeri, A.; Hollander, A.I. den

    2012-01-01

    PURPOSE: To describe a novel mutation in the fibrillin-1 (FBN1) gene in a large Pakistani family with autosomal dominant Marfan syndrome (MFS). METHODS: Blood samples were collected of 11 family members affected with Marfan syndrome, and DNA was isolated by phenol-extraction. The coding exons of

  4. Blau syndrome-associated mutations in exon 4 of the caspase activating recruitment domain 15 (CARD 15) gene are not found in ethnic Danes with sarcoidosis

    DEFF Research Database (Denmark)

    Milman, Nils; Nielsen, Finn Cilius; Hviid, Thomas Vauvert F

    2007-01-01

    BACKGROUND: Distinct mutations of the caspase activating recruitment domain 15 (CARD15) gene (also known as nucleotide-binding oligomerisation domain protein 2) on chromosome 16q are associated with the chronic granulomatous disease called Blau syndrome. Sarcoidosis is a systemic granulomatous...... disease, which has features in common with Blau syndrome. AIM: The aim of this study was to evaluate whether ethnic Danes with sarcoidosis have CARD15 mutations associated with Blau syndrome. METHODS: Analysis of exon 4 of the CARD15 gene containing mutations associated with Blau syndrome was performed...

  5. Prevalence and clinical correlates of JAK2 mutations in Down syndrome acute lymphoblastic leukemia

    Science.gov (United States)

    Gaikwad, Amos; Rye, Cassia L.; Devidas, Meenakshi; Heerema, Nyla A.; Carroll, Andrew J.; Izraeli, Shai; Plon, Sharon E.; Basso, Giuseppe; Pession, Andrea; Rabin, Karen R.

    2009-01-01

    Summary Recurrent, prognostically significant chromosomal abnormalities occur in approximately 75% of pediatric acute lymphoblastic leukemia (ALL), but only infrequently in children with Down syndrome (DS) and ALL. Recently, novel somatic activating mutations in Janus kinase 2 (JAK2) were reported in 18% of DS ALL. Here we report identification and clinical correlates of JAK2 mutations in an independent cohort. JAK2 activating mutations occurred in 10 of 53 DS ALL cases (18.9%). Mutations were overrepresented in males (p<0.03), occurred once in association with high hyperdiploidy, and were not significantly correlated with age, initial white blood count, or event-free survival. Our results confirm significance of JAK-STAT pathway activation in DS ALL. PMID:19120350

  6. Shah-Waardenburg syndrome and PCWH associated with SOX10 mutations : A case report and review of the literature

    NARCIS (Netherlands)

    Verheij, Johanna B G M; Sival, Deborah A; van der Hoeven, Johannes H; Vos, Yvonne J; Meiners, Linda C; Brouwer, Oebele F; van Essen, Anthonie J

    Shah-Waardenburg syndrome is a rare congenital disorder with variable clinical expression, characterised by aganglionosis of the rectosigmoid (Hirschsprung disease), and abnormal melanocyte migration, resulting in pigmentary abnormalities and sensorineural deafness (Waardenburg syndrome). Mutations

  7. Recurrent Skin and Lung Infections in Autosomal Dominant Hyper IgE Syndrome with Transactivation Domain STAT3 Mutation

    Directory of Open Access Journals (Sweden)

    Chad J. Cooper

    2014-01-01

    Full Text Available Background. Hyper IgE is a rare systemic disease characterized by the clinical triad of high serum levels of IgE (>2000 IU/mL, eczema, and recurrent staphylococcal skin and lung infections. The presentation of hyper IgE syndrome is highly variable, which makes it easy to confuse the diagnosis with that of severe atopy or other rare immunodeficiency disorders. Case Report. A 23-year-old Hispanic presented with history of frequent respiratory and gastrointestinal infections as a child and multiple episodes of skin and lung infections (abscess with Staphylococcus aureus throughout his adult life. He had multiple eczematous lesions and folliculitis over his entire body, oral/esophageal candidiasis, and retention of his primary teeth. The IgE was elevated (>5000 IU/mL. Genetic mutation analysis revealed a mutation affecting the transactivation domain of the STAT3 gene. Conclusion. The hallmark of hyper IgE syndrome is serum IgE of >2000 IU/mL. Hyper IgE syndrome is a genetic disorder that is either autosomal dominant or recessive. A definite diagnosis can be made with genetic mutation analysis, and in this case, it revealed a very rare finding of the transactivation domain STAT3 mutation. Hyper IgE syndrome is a challenge for clinicians in establishing a diagnosis in suspected cases.

  8. Two truncating USH3A mutations, including one novel, in a German family with Usher syndrome.

    Science.gov (United States)

    Ebermann, Inga; Wilke, Robert; Lauhoff, Thomas; Lübben, Dirk; Zrenner, Eberhart; Bolz, Hanno Jörn

    2007-08-30

    To identify the genetic defect in a German family with Usher syndrome (USH) and linkage to the USH3A locus. DNA samples of five family members (both parents and the three patients) were genotyped with polymorphic microsatellite markers specific for eight USH genes. Three affected family members underwent detailed ocular and audiologic characterization. Symptoms in the patients were compatible with Usher syndrome and show intrafamilial variation, for both hearing loss (ranging from severe to profound with non-linear progression) and vision. Genotyping of microsatellite markers for the different USH loci was in line with a defect in the USH3A gene on chromosome 3q25. Sequence analysis of the USH3A gene revealed two truncating mutations; c.149_152delCAGGinsTGTCCAAT, which has been described previously, and a novel mutation, c.502_503insA, segregating with the phenotype. To date, only 11 USH3A mutations have been described. This is the first description of a German family with USH due to USH3A mutations, including one novel. Our findings indicate that also in the Central European population, USH3A mutations should be considered in cases of USH.

  9. A novel D458V mutation in the SANS PDZ binding motif causes atypical Usher syndrome.

    Science.gov (United States)

    Kalay, E; de Brouwer, A P M; Caylan, R; Nabuurs, S B; Wollnik, B; Karaguzel, A; Heister, J G A M; Erdol, H; Cremers, F P M; Cremers, C W R J; Brunner, H G; Kremer, H

    2005-12-01

    Homozygosity mapping and linkage analysis in a Turkish family with autosomal recessive prelingual sensorineural hearing loss revealed a 15-cM critical region at 17q25.1-25.3 flanked by the polymorphic markers D17S1807 and D17S1806. The maximum two-point lod score was 4.07 at theta=0.0 for the marker D17S801. The linkage interval contains the Usher syndrome 1G gene (USH1G) that is mutated in patients with Usher syndrome (USH) type 1g and encodes the SANS protein. Mutation analysis of USH1G led to the identification of a homozygous missense mutation D458V at the -3 position of the PDZ binding motif of SANS. This mutation was also present homozygously in one out of 64 additional families from Turkey with autosomal recessive nonsyndromic hearing loss and heterozygously in one out of 498 control chromosomes. By molecular modeling, we provide evidence that this mutation impairs the interaction of SANS with harmonin. Ophthalmologic examination and vestibular evaluation of patients from both families revealed mild retinitis pigmentosa and normal vestibular function. These results suggest that these patients suffer from atypical USH.

  10. Genetic counseling for a three-generation Chinese family with Waardenburg syndrome type II associated with a rare SOX10 mutation.

    Science.gov (United States)

    Chen, Kaitian; Zong, Ling; Zhan, Yuan; Wu, Xuan; Liu, Min; Jiang, Hongyan

    2015-05-01

    Waardenburg syndrome is clinically and genetically heterogeneous. The SOX10 mutation related with Waardenburg syndrome type II is rare in Chinese. This study aimed to uncover the genetic causes of Waardenburg syndrome type II in a three-generation family to improve genetic counseling. Complete clinical and molecular evaluations were conducted in a three-generation Han Chinese family with Waardenburg syndrome type II. Targeted genetic counseling was provided to this family. We identified a rare heterozygous dominant mutation c.621C>A (p.Y207X) in SOX10 gene in this family. The premature termination codon occurs in exon 4, 27 residues downstream of the carboxyl end of the high mobility group box. Bioinformatics prediction suggested this variant to be disease-causing, probably due to nonsense-mediated mRNA decay. Useful genetic counseling was given to the family for prenatal guidance. Identification of a rare dominant heterozygous SOX10 mutation c.621C>A in this family provided an efficient way to understand the causes of Waardenburg syndrome type II and improved genetic counseling. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Loss-of-function mutations in SOX10 cause Kallmann syndrome with deafness.

    Science.gov (United States)

    Pingault, Veronique; Bodereau, Virginie; Baral, Viviane; Marcos, Severine; Watanabe, Yuli; Chaoui, Asma; Fouveaut, Corinne; Leroy, Chrystel; Vérier-Mine, Odile; Francannet, Christine; Dupin-Deguine, Delphine; Archambeaud, Françoise; Kurtz, François-Joseph; Young, Jacques; Bertherat, Jérôme; Marlin, Sandrine; Goossens, Michel; Hardelin, Jean-Pierre; Dodé, Catherine; Bondurand, Nadege

    2013-05-02

    Transcription factor SOX10 plays a role in the maintenance of progenitor cell multipotency, lineage specification, and cell differentiation and is a major actor in the development of the neural crest. It has been implicated in Waardenburg syndrome (WS), a rare disorder characterized by the association between pigmentation abnormalities and deafness, but SOX10 mutations cause a variable phenotype that spreads over the initial limits of the syndrome definition. On the basis of recent findings of olfactory-bulb agenesis in WS individuals, we suspected SOX10 was also involved in Kallmann syndrome (KS). KS is defined by the association between anosmia and hypogonadotropic hypogonadism due to incomplete migration of neuroendocrine gonadotropin-releasing hormone (GnRH) cells along the olfactory, vomeronasal, and terminal nerves. Mutations in any of the nine genes identified to date account for only 30% of the KS cases. KS can be either isolated or associated with a variety of other symptoms, including deafness. This study reports SOX10 loss-of-function mutations in approximately one-third of KS individuals with deafness, indicating a substantial involvement in this clinical condition. Study of SOX10-null mutant mice revealed a developmental role of SOX10 in a subpopulation of glial cells called olfactory ensheathing cells. These mice indeed showed an almost complete absence of these cells along the olfactory nerve pathway, as well as defasciculation and misrouting of the nerve fibers, impaired migration of GnRH cells, and disorganization of the olfactory nerve layer of the olfactory bulbs. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. A novel pathogenic MYH3 mutation in a child with Sheldon-Hall syndrome and vertebral fusions.

    Science.gov (United States)

    Scala, Marcello; Accogli, Andrea; De Grandis, Elisa; Allegri, Anna; Bagowski, Christoph P; Shoukier, Moneef; Maghnie, Mohamad; Capra, Valeria

    2018-03-01

    Sheldon-Hall syndrome (SHS) is the most common of the distal arthrogryposes (DAs), a group of disorders characterized by congenital non-progressive contractures. Patients with SHS present with contractures of the limbs and a distinctive triangular facies with prominent nasolabial folds. Calcaneovalgus deformity is frequent, as well as camptodactyly and ulnar deviation. Causative mutations in at least four different genes have been reported (MYH3, TNNI2, TPM2, and TNNT3). MYH3 plays a pivotal role in fetal muscle development and mutations in this gene are associated with Freeman-Sheldon syndrome, distal arthrogryposis 8 (DA8), and autosomal dominant spondylocarpotarsal synostosis. The last two disorders are characterized by skeletal abnormalities, in particular bony fusions. The observation that MYH3 may be mutated in these syndromes has suggested the involvement of this gene in bone development. We report the case of a boy with a novel pathogenic MYH3 mutation, presenting with the classical clinical features of SHS in association with unilateral carpal bone fusion and multiple vertebral fusions. This distinctive phenotype has never been reported in the literature so far and expands the phenotypic spectrum of SHS, endorsing the clinical variability of patients with MYH3-related disorders. Our findings also support a role for MYH3 in both muscle and bone development, suggesting a phenotypic continuum in MYH3-related disorders. © 2018 Wiley Periodicals, Inc.

  13. A novel gene for Usher syndrome type 2: mutations in the long isoform of whirlin are associated with retinitis pigmentosa and sensorineural hearing loss.

    Science.gov (United States)

    Ebermann, Inga; Scholl, Hendrik P N; Charbel Issa, Peter; Becirovic, Elvir; Lamprecht, Jürgen; Jurklies, Bernhard; Millán, José M; Aller, Elena; Mitter, Diana; Bolz, Hanno

    2007-04-01

    Usher syndrome is an autosomal recessive condition characterized by sensorineural hearing loss, variable vestibular dysfunction, and visual impairment due to retinitis pigmentosa (RP). The seven proteins that have been identified for Usher syndrome type 1 (USH1) and type 2 (USH2) may interact in a large protein complex. In order to identify novel USH genes, we followed a candidate strategy, assuming that mutations in proteins interacting with this "USH network" may cause Usher syndrome as well. The DFNB31 gene encodes whirlin, a PDZ scaffold protein with expression in both hair cell stereocilia and retinal photoreceptor cells. Whirlin represents an excellent candidate for USH2 because it binds to Usherin (USH2A) and VLGR1b (USH2C). Genotyping of microsatellite markers specific for the DFNB31 gene locus on chromosome 9q32 was performed in a German USH2 family that had been excluded for all known USH loci. Patients showed common haplotypes. Sequence analysis of DFNB31 revealed compound heterozygosity for a nonsense mutation, p.Q103X, in exon 1, and a mutation in the splice donor site of exon 2, c.837+1G>A. DFNB31 mutations appear to be a rare cause of Usher syndrome, since no mutations were identified in an additional 96 USH2 patients. While mutations in the C-terminal half of whirlin have previously been reported in non-syndromic deafness (DFNB31), both alterations identified in our USH2 family affect the long protein isoform. We propose that mutations causing Usher syndrome are probably restricted to exons 1-6 that are specific for the long isoform and probably crucial for retinal function. We describe a novel genetic subtype for Usher syndrome, which we named USH2D and which is caused by mutations in whirlin. Moreover, this is the first case of USH2 that is allelic to non-syndromic deafness.

  14. Mutations within the nuclear localization signal of the porcine reproductive and respiratory syndrome virus nucleocapsid protein attenuate virus replication

    International Nuclear Information System (INIS)

    Lee, Changhee; Hodgins, Douglas; Calvert, Jay G.; Welch, Siao-Kun W.; Jolie, Rika; Yoo, Dongwan

    2006-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus replicating in the cytoplasm, but the nucleocapsid (N) protein is specifically localized to the nucleus and nucleolus in virus-infected cells. A 'pat7' motif of 41-PGKK(N/S)KK has previously been identified in the N protein as the functional nuclear localization signal (NLS); however, the biological consequences of N protein nuclear localization are unknown. In the present study, the role of N protein nuclear localization during infection was investigated in pigs using an NLS-null mutant virus. When two lysines at 43 and 44 at the NLS locus were substituted to glycines, the modified NLS with 41-PGGGNKK restricted the N protein to the cytoplasm. This NLS-null mutation was introduced into a full-length infectious cDNA clone of PRRSV. Upon transfection of cells, the NLS-null full-length clone induced cytopathic effects and produced infectious progeny. The NLS-null virus grew to a titer 100-fold lower than that of wild-type virus. To examine the response to NLS-null PRRSV in the natural host, three groups of pigs, consisting of seven animals per group, were intranasally inoculated with wild-type, placebo, or NLS-null virus, and the animals were maintained for 4 weeks. The NLS-null-infected pigs had a significantly shorter mean duration of viremia than wild-type-infected pigs but developed significantly higher titers of neutralizing antibodies. Mutations occurred at the NLS locus in one pig during viremia, and four types of mutations were identified: 41-PGRGNKK, 41-PGGRNKK, and 41-PGRRNKK, and 41-PGKKSKK. Both wild-type and NLS-null viruses persisted in the tonsils for at least 4 weeks, and the NLS-null virus persisting in the tonsils was found to be mutated to either 41-PGRGNKK or 41-PGGRNKK in all pigs. No other mutation was found in the N gene. All types of reversions which occurred during viremia and persistence were able to translocate the mutated N proteins to the nucleus, indicating a

  15. Novel compound heterozygous mutations in MYO7A Associated with Usher syndrome 1 in a Chinese family.

    Science.gov (United States)

    Gao, Xue; Wang, Guo-Jian; Yuan, Yong-Yi; Xin, Feng; Han, Ming-Yu; Lu, Jing-Qiao; Zhao, Hui; Yu, Fei; Xu, Jin-Cao; Zhang, Mei-Guang; Dong, Jiang; Lin, Xi; Dai, Pu

    2014-01-01

    Usher syndrome is an autosomal recessive disease characterized by sensorineural hearing loss, age-dependent retinitis pigmentosa (RP), and occasionally vestibular dysfunction. The most severe form is Usher syndrome type 1 (USH1). Mutations in the MYO7A gene are responsible for USH1 and account for 29-55% of USH1 cases. Here, we characterized a Chinese family (no. 7162) with USH1. Combining the targeted capture of 131 known deafness genes, next-generation sequencing, and bioinformatic analysis, we identified two deleterious compound heterozygous mutations in the MYO7A gene: a reported missense mutation c.73G>A (p.G25R) and a novel nonsense mutation c.462C>A (p.C154X). The two compound variants are absent in 219 ethnicity-matched controls, co-segregates with the USH clinical phenotypes, including hearing loss, vestibular dysfunction, and age-dependent penetrance of progressive RP, in family 7162. Therefore, we concluded that the USH1 in this family was caused by compound heterozygous mutations in MYO7A.

  16. Novel compound heterozygous mutations in MYO7A Associated with Usher syndrome 1 in a Chinese family.

    Directory of Open Access Journals (Sweden)

    Xue Gao

    Full Text Available Usher syndrome is an autosomal recessive disease characterized by sensorineural hearing loss, age-dependent retinitis pigmentosa (RP, and occasionally vestibular dysfunction. The most severe form is Usher syndrome type 1 (USH1. Mutations in the MYO7A gene are responsible for USH1 and account for 29-55% of USH1 cases. Here, we characterized a Chinese family (no. 7162 with USH1. Combining the targeted capture of 131 known deafness genes, next-generation sequencing, and bioinformatic analysis, we identified two deleterious compound heterozygous mutations in the MYO7A gene: a reported missense mutation c.73G>A (p.G25R and a novel nonsense mutation c.462C>A (p.C154X. The two compound variants are absent in 219 ethnicity-matched controls, co-segregates with the USH clinical phenotypes, including hearing loss, vestibular dysfunction, and age-dependent penetrance of progressive RP, in family 7162. Therefore, we concluded that the USH1 in this family was caused by compound heterozygous mutations in MYO7A.

  17. Factor V Leiden mutation, prothrombin gene mutation, and deficiencies in coagulation inhibitors associated with Budd-Chiari syndrome and portal vein thrombosis: results of a case-control study

    NARCIS (Netherlands)

    Janssen, H. L.; Meinardi, J. R.; Vleggaar, F. P.; van Uum, S. H.; Haagsma, E. B.; van der Meer, F. J.; van Hattum, J.; Chamuleau, R. A.; Adang, R. P.; Vandenbroucke, J. P.; van Hoek, B.; Rosendaal, F. R.

    2000-01-01

    In a collaborative multicenter case-control study, we investigated the effect of factor V Leiden mutation, prothrombin gene mutation, and inherited deficiencies of protein C, protein S, and antithrombin on the risk of Budd-Chiari syndrome (BCS) and portal vein thrombosis (PVT). We compared 43 BCS

  18. Factor V Leiden mutation, prothrombin gene mutation, and deficiencies in coagulation inhibitors associated with Budd-Chiari syndrome and portal vein thrombosis : results of a case-control study

    NARCIS (Netherlands)

    Janssen, HLA; Meinardi, [No Value; Vleggaar, FP; van Uum, SHM; Haagsma, EB; van der Meer, FJM; van Hattum, J; Chamuleau, RAFM; Adang, RP; Vandenbroucke, JP; van Hoek, B; Rosendaal, FR

    2000-01-01

    In a collaborative multicenter case-control study, we investigated the effect of factor V Leiden mutation, prothrombin gene mutation, and inherited deficiencies of protein C, protein S, and antithrombin on the risk of Budd-Chiari syndrome (BCS) and portal vein thrombosis (PVT), We compared 43 BCS

  19. A MITF mutation associated with a dominant white phenotype and bilateral deafness in German Fleckvieh cattle.

    Directory of Open Access Journals (Sweden)

    Ute Philipp

    Full Text Available A dominantly inherited syndrome associated with hypopigmentation, heterochromia irides, colobomatous eyes and bilateral hearing loss has been ascertained in Fleckvieh cattle (German White Fleckvieh syndrome. This syndrome has been mapped to bovine chromosome (BTA 22 using a genome-wide association study with the bovine high density single nucleotide polymorphism array. An R210I missense mutation has been identified within microphthalmia-associated transcription factor (MITF as responsible for this syndrome. The mutation is located in the highly conserved basic region of the protein and causes a negative-dominant effect. SOX10 and PAX3 promoter binding site mutations in MITF could be ruled out as causative for the German White Fleckvieh syndrome. Molecular characterization of this newly detected bovine syndrome means a large animal model is now available for the Tietz syndrome in humans.

  20. WNT10A missense mutation associated with a complete odonto-onycho-dermal dysplasia syndrome.

    Science.gov (United States)

    Nawaz, Sadia; Klar, Joakim; Wajid, Muhammad; Aslam, Muhammad; Tariq, Muhammad; Schuster, Jens; Baig, Shahid Mahmood; Dahl, Niklas

    2009-12-01

    Wnt signalling is one of a few pathways that are crucial for controlling genetic programs during embryonic development as well as in adult tissues. WNT10A is expressed in the skin and epidermis and it has shown to be critical for the development of ectodermal appendages. A nonsense mutation in WNT10A was recently identified in odonto-onycho-dermal dysplasia (OODD; MIM 257980), a rare syndrome characterised by severe hypodontia, nail dystrophy, smooth tongue, dry skin, keratoderma and hyperhydrosis of palms and soles. We identified a large consanguineous Pakistani pedigree comprising six individuals affected by a complete OODD syndrome. Autozygosity mapping using SNP array analysis showed that the affected individuals are homozygous for the WNT10A gene region. Subsequent mutation screening showed a homozygous c.392C>T transition in exon 3 of WNT10A, which predicts a p.A131V substitution in a conserved alpha-helix domain. We report here on the first inherited missense mutation in WNT10A with associated ectodermal features.

  1. Major contribution from recurrent alterations and MSH6 mutations in the Danish Lynch syndrome population

    DEFF Research Database (Denmark)

    Nilbert, Mef; Wikman, Friedrik P; Hansen, Thomas V O

    2009-01-01

    mutations in 164 families are considered pathogenic and an additional 50 variants from 76 families are considered to represent variants of unknown pathogenicity. The different MMR genes contribute to 40% (MSH2), 29% (MLH1), and 22% (MSH6) of the mutations and the Danish population thus shows a considerably...... higher frequency of MSH6 mutations than previously described. Although 69/88 (78%) pathogenic mutations were present in a single family, previously recognized recurrent/founder mutations were causative in 75/137 (55%) MLH1/MSH2 mutant families. In addition, the Danish MLH1 founder mutation c.1667......+2_1667_+8TAAATCAdelinsATTT was identified in 14/58 (24%) MLH1 mutant families. The Danish Lynch syndrome population thus demonstrates that MSH6 mutations and recurrent/founder mutations have a larger contribution than previously recognized, which implies that the MSH6 gene should be included in routine diagnostics...

  2. Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families.

    Science.gov (United States)

    Chang, Wendy; Winder, Thomas L; LeDuc, Charles A; Simpson, Lynn L; Millar, William S; Dungan, Jeffrey; Ginsberg, Norman; Plaga, Stacey; Moore, Steven A; Chung, Wendy K

    2009-06-01

    Walker-Warburg syndrome (WWS) is a genetically heterogeneous congenital muscular dystrophy caused by abnormal glycosylation of alpha-dystroglycan (alpha-DG) that is associated with brain malformations and eye anomalies. The Fukutin (FKTN) gene, which causes autosomal recessively inherited WWS is most often associated with Fukuyama congenital muscular dystrophy in Japan. We describe the clinical features of four nonconsanguinous Ashkenazi Jewish families with WWS and identify the underlying genetic basis for WWS. We screened for mutations in POMGnT1, POMT1, POMT2, and FKTN, genes causing WWS, by dideoxy sequence analysis. We identified an identical homozygous c.1167insA mutation in the FKTN gene on a common haplotype in all four families and identified 2/299 (0.7%) carriers for the c.1167insA mutation among normal American Ashkenazi Jewish adults. These data suggest that the c.1167insA FKTN mutation described by us is a founder mutation that can be used to target diagnostic testing and carrier screening in the Ashkenazi Jewish population. Copyright (c) 2009 John Wiley & Sons, Ltd.

  3. Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families†

    Science.gov (United States)

    Chang, Wendy; Winder, Thomas L.; LeDuc, Charles A.; Simpson, Lynn L.; Millar, William S.; Dungan, Jeffrey; Ginsberg, Norman; Plaga, Stacey; Moore, Steven A.; Chung, Wendy K.

    2009-01-01

    Objective Walker-Warburg syndrome (WWS) is a genetically heterogeneous congenital muscular dystrophy caused by abnormal glycosylation of α-dystroglycan (α-DG) that is associated with brain malformations and eye anomalies. The Fukutin (FKTN) gene, which causes autosomal recessively inherited WWS is most often associated with Fukuyama congenital muscular dystrophy in Japan. We describe the clinical features of four nonconsanguinous Ashkenazi Jewish families with WWS and identify the underlying genetic basis for WWS. Method We screened for mutations in POMGnT1, POMT1, POMT2, and FKTN, genes causing WWS, by dideoxy sequence analysis. Results We identified an identical homozygous c.1167insA mutation in the FKTN gene on a common haplotype in all four families and identified 2/299 (0.7%) carriers for the c.1167insA mutation among normal American Ashkenazi Jewish adults. Conclusion These data suggest that the c.1167insA FKTN mutation described by us is a founder mutation that can be used to target diagnostic testing and carrier screening in the Ashkenazi Jewish population. PMID:19266496

  4. Expanding the spectrum of genetic mutations in antenatal Bartter syndrome type II.

    Science.gov (United States)

    Fretzayas, Andreas; Gole, Evangelia; Attilakos, Achilleas; Daskalaki, Anna; Nicolaidou, Polyxeni; Papadopoulou, Anna

    2013-06-01

    Bartter syndrome (BS) is a group of genetic disorders characterized by hypokalemic metabolic alkalosis, hyponatremia and elevated renin and aldosterone plasma concentrations. BS type II is caused by mutations in the KCNJ1 gene and usually presents with transient hyperkalemia. We report here a novel KCNJ1 mutation in a male neonate, prematurely born after a pregnancy complicated by polyhydramnios. The infant presented with typical clinical and laboratory findings of BS type II, such as hyponatremia, hypochloremic metabolic alkalosis, severe weight loss, elevated renin and aldosterone levels and transient hyperkalemia in the early postnatal period, which were later normalized. Molecular analysis revealed a compound heterozygous mutation in the KCNJ1 gene, consisting of a novel K76E and an already described V315G mutation, both affecting functional domains of the channel protein. Typical manifestations of antenatal BS in combination with hyperkalemia should prompt the clinician to search for mutations in the KCNJ1 gene first. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.

  5. GBA2 Mutations Cause a Marinesco-Sjögren-Like Syndrome: Genetic and Biochemical Studies.

    Directory of Open Access Journals (Sweden)

    Kristoffer Haugarvoll

    Full Text Available With the advent new sequencing technologies, we now have the tools to understand the phenotypic diversity and the common occurrence of phenocopies. We used these techniques to investigate two Norwegian families with an autosomal recessive cerebellar ataxia with cataracts and mental retardation.Single nucleotide polymorphism (SNP chip analysis followed by Exome sequencing identified a 2 bp homozygous deletion in GBA2 in both families, c.1528_1529del [p.Met510Valfs*17]. Furthermore, we report the biochemical characterization of GBA2 in these patients. Our studies show that a reduced activity of GBA2 is sufficient to elevate the levels of glucosylceramide to similar levels as seen in Gaucher disease. Furthermore, leucocytes seem to be the proper enzyme source for in vitro analysis of GBA2 activity.We report GBA2 mutations causing a Marinesco-Sjögren-like syndrome in two Norwegian families. One of the families was originally diagnosed with Marinesco-Sjögren syndrome based on an autosomal recessive cerebellar ataxia with cataracts and mental retardation. Our findings highlight the phenotypic variability associated with GBA2 mutations, and suggest that patients with Marinesco-Sjögren-like syndromes should be tested for mutations in this gene.

  6. Cataract as a phenotypic marker for a mutation in WFS1, the Wolfram syndrome gene.

    Science.gov (United States)

    Titah, Salah Mohamed Cherif; Meunier, Isabelle; Blanchet, Catherine; Lopez, Severine; Rondouin, Gerard; Lenaers, Guy; Amati-Bonneau, Patrizia; Reynier, Pascal; Paquis-Flucklinger, Veronique; Hamel, Christian P

    2012-01-01

    Wolfram syndrome (WS) or diabetes insipidus, diabetes mellitus, optic atrophy, and deafness (DIDMOAD) (OMIM 222300) is an inherited neurodegenerative disease characterized by diabetes mellitus and optic atrophy as the 2 major criteria, followed later in life by deafness, diabetes insipidus, and various signs of neurologic impairment. The presence of a cataract has been variably mentioned in WS. Two members of a family had thorough ophthalmic examination and their DNA was screened for mutations in mitochondrial DNA, WFS1, OPA1, and OPA3 genes. We report a patient who first had surgery for bilateral cataract at age 5 and who subsequently presented typical signs of WS, i.e., diabetes mellitus, optic atrophy with reduced visual acuity at 20/400 on both eyes at age 22, and mild deafness. The patient was found to be a compound heterozygote for 2 truncating mutations in WFS1, the major WS gene. She carried the previously reported c.1231_1233 delCT and a novel c.2431_2465dup35 mutation. She also was heterozygote for a novel OPA1 sequence variant, c.929A>G in exon 9, whose pathogenicity remains uncertain. The patient's mother was a heterozygous carrier of the c.2431_2465dup35 mutation. She did not have diabetes mellitus or optic atrophy but had bilateral polar cataract. She did not carry the OPA1 sequence variant. Cataract could be a marker for the WFS1 heterozygosity in this family, namely the c.2431_2465dup35 mutation.

  7. Association of Mismatch Repair Mutation With Age at Cancer Onset in Lynch Syndrome: Implications for Stratified Surveillance Strategies.

    Science.gov (United States)

    Ryan, Neil A J; Morris, Julie; Green, Kate; Lalloo, Fiona; Woodward, Emma R; Hill, James; Crosbie, Emma J; Evans, D Gareth

    2017-12-01

    Lynch syndrome is caused by dominantly inherited germline mutations that predispose individuals to colorectal, endometrial, ovarian, and other cancers through inactivation of the cellular mismatch repair system. Lynch syndrome–associated cancers are amenable to surveillance strategies that may improve survival. The age at which surveillance should start is disputed. To determine whether mutated gene and type of mutation influence age at onset of Lynch syndrome–associated cancers. A retrospective cohort study of individuals with Lynch syndrome–associated colorectal, endometrial, and/or ovarian cancers whose medical records were included in the clinical database of a large quaternary referral center for genomic medicine in the Northwest of England. Mutated gene (MLH1, MSH2, MSH6, and/or PMS2) and type of mutation (truncating, splicing, or large rearrangement). Age at cancer diagnosis. A total of 1063 individuals with proven Lynch syndrome were included, 495 male and 568 female (mean age 52 years; age range, 10-93 years [children were included in the database, but no children developed cancer]). There were 546 men and women with colorectal cancer, 162 women with endometrial cancer, and 49 women with ovarian cancer; mean follow-up was 68.2 months. Among MLH1 mutation carriers, mutations in MLH1 were associated with colorectal cancer in 249 (61%) of 409 men and women; endometrial cancer in 53 of 196 (27%) women; and ovarian cancer in 15 (8%) of 196 women. Among MSH2 mutation carriers, mutations in MSH2 (the most prevalent mutations overall) were most commonly associated with female-specific cancers: endometrial cancer in 83 (30%) of 279 women; ovarian cancer in 28 (10%) of 279 women; and colorectal cancer in 239 (50%) 479 men and women. Mutations in MSH6 were less prevalent, and MSH6 mutation carriers presented with colorectal and endometrial cancer at later ages than carriers of mutations in MSH2 or MLH1. When stratified by mutation type, women with truncating

  8. Mainzer-Saldino Syndrome Is a Ciliopathy Caused by IFT140 Mutations

    Science.gov (United States)

    Perrault, Isabelle; Saunier, Sophie; Hanein, Sylvain; Filhol, Emilie; Bizet, Albane A.; Collins, Felicity; Salih, Mustafa A.M.; Gerber, Sylvie; Delphin, Nathalie; Bigot, Karine; Orssaud, Christophe; Silva, Eduardo; Baudouin, Véronique; Oud, Machteld M.; Shannon, Nora; Le Merrer, Martine; Roche, Olivier; Pietrement, Christine; Goumid, Jamal; Baumann, Clarisse; Bole-Feysot, Christine; Nitschke, Patrick; Zahrate, Mohammed; Beales, Philip; Arts, Heleen H.; Munnich, Arnold; Kaplan, Josseline; Antignac, Corinne; Cormier-Daire, Valérie; Rozet, Jean-Michel

    2012-01-01

    Mainzer-Saldino syndrome (MSS) is a rare disorder characterized by phalangeal cone-shaped epiphyses, chronic renal failure, and early-onset, severe retinal dystrophy. Through a combination of ciliome resequencing and Sanger sequencing, we identified IFT140 mutations in six MSS families and in a family with the clinically overlapping Jeune syndrome. IFT140 is one of the six currently known components of the intraflagellar transport complex A (IFT-A) that regulates retrograde protein transport in ciliated cells. Ciliary abundance and localization of anterograde IFTs were altered in fibroblasts of affected individuals, a result that supports the pivotal role of IFT140 in proper development and function of ciliated cells. PMID:22503633

  9. A Novel FOXE1 Mutation (R73S) in Bamforth–Lazarus Syndrome Causing Increased Thyroidal Gene Expression

    Science.gov (United States)

    Carré, Aurore; Hamza, Rasha T.; Kariyawasam, Dulanjalee; Guillot, Loïc; Teissier, Raphaël; Tron, Elodie; Castanet, Mireille; Dupuy, Corinne; El Kholy, Mohamed; Polak, Michel

    2014-01-01

    Background: Homozygous loss-of-function mutations in the FOXE1 gene have been reported in several patients with partial or complete Bamforth–Lazarus syndrome: congenital hypothyroidism (CH) with thyroid dysgenesis (usually athyreosis), cleft palate, spiky hair, with or without choanal atresia, and bifid epiglottis. Here, our objective was to evaluate potential functional consequences of a FOXE1 mutation in a patient with a similar clinical phenotype. Methods: FOXE1 was sequenced in eight patients with thyroid dysgenesis and cleft palate. Transient transfection was performed in HEK293 cells using the thyroglobulin (TG) and thyroid peroxidase (TPO) promoters in luciferase reporter plasmids to assess the functional impact of the FOXE1 mutations. Primary human thyrocytes transfected with wild type and mutant FOXE1 served to assess the impact of the mutation on endogenous TG and TPO expression. Results: We identified and characterized the function of a new homozygous FOXE1 missense mutation (p.R73S) in a boy with a typical phenotype (athyreosis, cleft palate, and partial choanal atresia). This new mutation located within the forkhead domain was inherited from the heterozygous healthy consanguineous parents. In vitro functional studies in HEK293 cells showed that this mutant gene enhanced the activity of the TG and TPO gene promoters (1.5-fold and 1.7-fold respectively vs. wild type FOXE1; p<0.05), unlike the five mutations previously reported in Bamforth–Lazarus syndrome. The gain-of-function effect of the FOXE1-p.R73S mutant gene was confirmed by an increase in endogenous TG production in primary human thyrocytes. Conclusion: We identified a new homozygous FOXE1 mutation responsible for enhanced expression of the TG and TPO genes in a boy whose phenotype is similar to that reported previously in patients with loss-of-function FOXE1 mutations. This finding further delineates the role for FOXE1 in both thyroid and palate development, and shows that enhanced gene

  10. Xeroderma Pigmentosum with Severe Neurological Manifestations/De Sanctis–Cacchione Syndrome and a Novel XPC Mutation

    Directory of Open Access Journals (Sweden)

    Esteban Uribe-Bojanini

    2017-01-01

    Full Text Available Several genetic disorders caused by defective nucleotide excision repair that affect the skin and the nervous system have been described, including Xeroderma Pigmentosum (XP, De Sanctis–Cacchione syndrome (DSC, Cockayne syndrome, and Trichothiodystrophy. Cutaneous photosensitivity with an increased risk of skin malignancy is a common feature of these disorders, but clinical manifestations commonly overlap these syndromes. Several genes have been found to be altered in these pathologies, but we lack more genotype-phenotype correlations in order to make an accurate diagnosis. Very few cases of DSC syndrome have been reported in the literature. We present a case of a 12-year-old Colombian male, with multiple skin lesions in sun-exposed areas from the age of 3 months and a history of 15 skin cancers. He also displayed severe neurologic abnormalities (intellectual disability, ataxia, altered speech, and hyperreflexia, short stature, and microcephaly, which are features associated with DSC. Genetic testing revealed a novel germline mutation in the XP-C gene (c.547A>T. This is the first case of an XP-C mutation causing De Sanctis–Cacchione syndrome. Multigene panel testing is becoming more widely available and accessible in the clinical setting and will help rapidly unveil the molecular etiology of these rare genetic disorders.

  11. Xeroderma Pigmentosum with Severe Neurological Manifestations/De Sanctis–Cacchione Syndrome and a Novel XPC Mutation

    Science.gov (United States)

    Hernandez-Quiceno, Sara

    2017-01-01

    Several genetic disorders caused by defective nucleotide excision repair that affect the skin and the nervous system have been described, including Xeroderma Pigmentosum (XP), De Sanctis–Cacchione syndrome (DSC), Cockayne syndrome, and Trichothiodystrophy. Cutaneous photosensitivity with an increased risk of skin malignancy is a common feature of these disorders, but clinical manifestations commonly overlap these syndromes. Several genes have been found to be altered in these pathologies, but we lack more genotype-phenotype correlations in order to make an accurate diagnosis. Very few cases of DSC syndrome have been reported in the literature. We present a case of a 12-year-old Colombian male, with multiple skin lesions in sun-exposed areas from the age of 3 months and a history of 15 skin cancers. He also displayed severe neurologic abnormalities (intellectual disability, ataxia, altered speech, and hyperreflexia), short stature, and microcephaly, which are features associated with DSC. Genetic testing revealed a novel germline mutation in the XP-C gene (c.547A>T). This is the first case of an XP-C mutation causing De Sanctis–Cacchione syndrome. Multigene panel testing is becoming more widely available and accessible in the clinical setting and will help rapidly unveil the molecular etiology of these rare genetic disorders. PMID:28255305

  12. MERRF/MELAS overlap syndrome due to the m.3291T>C mutation.

    Science.gov (United States)

    Liu, Kaiming; Zhao, Hui; Ji, Kunqian; Yan, Chuanzhu

    2014-03-01

    We report the case of a 19-year-old Chinese female harboring the m.3291T>C mutation in the MT-TL1 gene encoding the mitochondrial transfer RNA for leucine. She presented with a complex phenotype characterized by progressive cerebellar ataxia, frequent myoclonus seizures, recurrent stroke-like episodes, migraine-like headaches with nausea and vomiting, and elevated resting lactate blood level. It is known that the myoclonus epilepsy with ragged-red fibers (MERRF) is characterized by cerebellar ataxia and myoclonus epilepsy, while that the mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is characterized by recurrent stroke-like episodes, migraine-like headaches, and elevated resting lactate blood level. So the patient's clinical manifestations suggest the presence of a MERRF/MELAS overlap syndrome. Muscle biopsy of the patient showed the presence of numerous scattered ragged-red fibers, some cytochrome c oxidase-deficient fibers, and several strongly succinate dehygrogenase-reactive vessels, suggestive of a mitochondrial disorder. Direct sequencing of the complete mitochondrial genome of the proband revealed no mutations other than the T-to-C transition at nucleotide position 3291. Restriction fragment length polymorphism analysis of the proband and her family revealed maternal inheritance of the mutation in a heteroplasmic manner. The analysis of aerobic respiration and glycolysis demonstrated that the fibroblasts from the patient had mitochondrial dysfunction. Our results suggest that the m.3291T>C is pathogenic. This study is the first to describe the m.3291T>C mutation in association with the MERRF/MELAS overlap syndrome.

  13. An Usher syndrome type 1 patient diagnosed before the appearance of visual symptoms by MYO7A mutation analysis.

    Science.gov (United States)

    Yoshimura, Hidekane; Iwasaki, Satoshi; Kanda, Yukihiko; Nakanishi, Hiroshi; Murata, Toshinori; Iwasa, Yoh-ichiro; Nishio, Shin-ya; Takumi, Yutaka; Usami, Shin-ichi

    2013-02-01

    Usher syndrome type 1 (USH1) appears to have only profound non-syndromic hearing loss in childhood and retinitis pigmentosa develops in later years. This study examined the frequency of USH1 before the appearance of visual symptoms in Japanese deaf children by MYO7A mutation analysis. We report the case of 6-year-old male with profound hearing loss, who did not have visual symptoms. The frequency of MYO7A mutations in profound hearing loss children is also discussed. We sequenced all exons of the MYO7A gene in 80 Japanese children with severe to profound non-syndromic HL not due to mutations of the GJB2 gene (ages 0-14 years). A total of nine DNA variants were found and six of them were presumed to be non-pathogenic variants. In addition, three variants of them were found in two patients (2.5%) with deafness and were classified as possible pathogenic variants. Among them, at least one nonsense mutation and one missense mutation from the patient were confirmed to be responsible for deafness. After MYO7A mutation analysis, the patient was diagnosed with RP, and therefore, also diagnosed with USH1. This is the first case report to show the advantage of MYO7A mutation analysis to diagnose USH1 before the appearance of visual symptoms. We believed that MYO7A mutation analysis is valid for the early diagnosis of USH1. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Alagille syndrome in a Vietnamese cohort: mutation analysis and assessment of facial features.

    Science.gov (United States)

    Lin, Henry C; Le Hoang, Phuc; Hutchinson, Anne; Chao, Grace; Gerfen, Jennifer; Loomes, Kathleen M; Krantz, Ian; Kamath, Binita M; Spinner, Nancy B

    2012-05-01

    Alagille syndrome (ALGS, OMIM #118450) is an autosomal dominant disorder that affects multiple organ systems including the liver, heart, eyes, vertebrae, and face. ALGS is caused by mutations in one of two genes in the Notch Signaling Pathway, Jagged1 (JAG1) or NOTCH2. In this study, analysis of 21 Vietnamese ALGS individuals led to the identification of 19 different mutations (18 JAG1 and 1 NOTCH2), 17 of which are novel, including the third reported NOTCH2 mutation in Alagille Syndrome. The spectrum of JAG1 mutations in the Vietnamese patients is similar to that previously reported, including nine frameshift, three missense, two splice site, one nonsense, two whole gene, and one partial gene deletion. The missense mutations are all likely to be disease causing, as two are loss of cysteines (C22R and C78G) and the third creates a cryptic splice site in exon 9 (G386R). No correlation between genotype and phenotype was observed. Assessment of clinical phenotype revealed that skeletal manifestations occur with a higher frequency than in previously reported Alagille cohorts. Facial features were difficult to assess and a Vietnamese pediatric gastroenterologist was only able to identify the facial phenotype in 61% of the cohort. To assess the agreement among North American dysmorphologists at detecting the presence of ALGS facial features in the Vietnamese patients, 37 clinical dysmorphologists evaluated a photographic panel of 20 Vietnamese children with and without ALGS. The dysmorphologists were unable to identify the individuals with ALGS in the majority of cases, suggesting that evaluation of facial features should not be used in the diagnosis of ALGS in this population. This is the first report of mutations and phenotypic spectrum of ALGS in a Vietnamese population. Copyright © 2012 Wiley Periodicals, Inc.

  15. Generation of an induced pluripotent stem cell (iPSC line from a 40-year-old patient with the A8344G mutation of mitochondrial DNA and MERRF (myoclonic epilepsy with ragged red fibers syndrome

    Directory of Open Access Journals (Sweden)

    Yu-Ting Wu

    2018-03-01

    Full Text Available Mitochondrial defects are associated with clinical manifestations from common diseases to rare genetic disorders. Myoclonus epilepsy associated with ragged-red fibers (MERRF syndrome results from an A to G transition at nucleotide position 8344 in the tRNALys gene of mitochondrial DNA (mtDNA and is characterized by myoclonus, myopathy and severe neurological symptoms. In this study, Sendai reprogramming method was used to generate an iPS cell line carrying the A8344G mutation of mtDNA from a MERRF patient. This patient-specific iPSC line expressed pluripotent stem cell markers, possessed normal karyotype, and displayed the capability to differentiate into mature cells in three germ layers.

  16. Clinical Features and Long-Term Outcome of Nephrotic Syndrome Associated with Heterozygous NPHS1 and NPHS2 Mutations

    Science.gov (United States)

    Caridi, Gianluca; Gigante, Maddalena; Ravani, Pietro; Trivelli, Antonella; Barbano, Giancarlo; Scolari, Francesco; Dagnino, Monica; Murer, Luisa; Murtas, Corrado; Edefonti, Alberto; Allegri, Landino; Amore, Alessandro; Coppo, Rosanna; Emma, Francesco; De Palo, Tommaso; Penza, Rosa; Gesualdo, Loreto; Ghiggeri, Gian Marco

    2009-01-01

    Background and objectives: Mutations in nephrin (NPHS1) and podocin (NPHS2) genes represent a major cause of idiopathic nephrotic syndrome (NS) in children. It is not yet clear whether the presence of a single mutation acts as a modifier of the clinical course of NS. Design, setting, participants, & measurements: We reviewed the clinical features of 40 patients with NS associated with heterozygous mutations or variants in NPHS1 (n = 7) or NPHS2 (n = 33). Long-term renal survival probabilities were compared with those of a concurrent cohort with idiopathic NS. Results: Patients with a single mutation in NPHS1 received a diagnosis before those with potentially nongenetic NS and had a good response to therapies. Renal function was normal in all cases. For NPHS2, six patients had single heterozygous mutations, six had a p.P20L variant, and 21 had a p.R229Q variant. Age at diagnosis and the response to drugs were comparable in all NS subgroups. Overall, they had similar renal survival probabilities as non-NPHS1/NPHS2 cases (log-rank χ2 0.84, P = 0.656) that decreased in presence of resistance to therapy (P < 0.001) and in cases with renal lesions of glomerulosclerosis and IgM deposition (P < 0.001). Cox regression confirmed that the only significant predictor of dialysis was resistance to therapy. Conclusions: Our data indicate that single mutation or variant in NPHS1 and NPHS2 does not modify the outcome of primary NS. These patients should be treated following consolidated schemes and have good chances for a good long-term outcome. PMID:19406966

  17. Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: Robust phenotype prediction from the type and position of GLI3 mutations

    NARCIS (Netherlands)

    Johnston, Jennifer J.; Olivos-Glander, Isabelle; Killoran, Christina; Elson, Emma; Turner, Joyce T.; Peters, Kathryn F.; Abbott, Margaret H.; Aughton, David J.; Aylsworth, Arthur S.; Bamshad, Michael J.; Booth, Carol; Curry, Cynthia J.; David, Albert; Dinulos, Mary Beth; Flannery, David B.; Fox, Michelle A.; Graham, John M.; Grange, Dorothy K.; Guttmacher, Alan E.; Hannibal, Mark C.; Henn, Wolfram; Hennekam, Raoul C. M.; Holmes, Lewis B.; Hoyme, H. Eugene; Leppig, Kathleen A.; Lin, Angela E.; Macleod, Patrick; Manchester, David K.; Marcelis, Carlo; Mazzanti, Laura; McCann, Emma; McDonald, Marie T.; Mendelsohn, Nancy J.; Moeschler, John B.; Moghaddam, Billur; Neri, Giovanni; Newbury-Ecob, Ruth; Pagon, Roberta A.; Phillips, John A.; Sadler, Laurie S.; Stoler, Joan M.; Tilstra, David; Walsh Vockley, Catherine M.; Zackai, Elaine H.; Zadeh, Touran M.; Brueton, Louise; Black, Graeme Charles M.; Biesecker, Leslie G.

    2005-01-01

    Mutations in the GLI3 zinc-finger transcription factor gene cause Greig cephalopolysyndactyly syndrome (GCPS) and Pallister-Hall syndrome (PHS), which are variable but distinct clinical entities. We hypothesized that GLI3 mutations that predict a truncated functional repressor protein cause PHS and

  18. A novel PAX3 mutation in a Japanese boy with Waardenburg syndrome type 1.

    Science.gov (United States)

    Yoshida, Yu; Doi, Rieko; Adachi, Kaori; Nanba, Eiji; Kodani, Isamu; Ryoke, Kazuo

    2016-01-01

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant disorder characterized by hair hypopigmentation, abnormal iris pigmentation, and congenital hearing loss. WS1 is caused by mutations in paired box gene 3 (PAX3). We identified a novel PAX3 mutation (c.1107 C>G, p.Ser369Arg) in a Japanese WS1 patient showing abnormal right iris pigmentation, right-sided congenital hearing loss, synophrys, incomplete left cleft lip, and cryptorchidism.

  19. A novel PAX3 mutation in a Japanese boy with Waardenburg syndrome type 1

    OpenAIRE

    Yoshida, Yu; Doi, Rieko; Adachi, Kaori; Nanba, Eiji; Kodani, Isamu; Ryoke, Kazuo

    2016-01-01

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant disorder characterized by hair hypopigmentation, abnormal iris pigmentation, and congenital hearing loss. WS1 is caused by mutations in paired box gene 3 (PAX3). We identified a novel PAX3 mutation (c.1107 C>G, p.Ser369Arg) in a Japanese WS1 patient showing abnormal right iris pigmentation, right-sided congenital hearing loss, synophrys, incomplete left cleft lip, and cryptorchidism.

  20. Mutations of the catalytic subunit of RAB3GAP cause Warburg Micro syndrome

    DEFF Research Database (Denmark)

    Aligianis, Irene A; Johnson, Colin A; Gissen, Paul

    2005-01-01

    Warburg Micro syndrome (WARBM1) is a severe autosomal recessive disorder characterized by developmental abnormalities of the eye and central nervous system and by microgenitalia. We identified homozygous inactivating mutations in RAB3GAP, encoding RAB3 GTPase activating protein, a key regulator...

  1. Respiratory chain complex I deficiency due to NDUFA12 mutations as a new cause of Leigh syndrome

    DEFF Research Database (Denmark)

    Ostergaard, Elsebet; Rodenburg, Richard J; van den Brand, Mariël

    2011-01-01

    This study investigated a girl with Leigh syndrome born to first-cousin parents of Pakistani descent with an isolated respiratory chain complex I deficiency in muscle and fibroblasts. Her early development was delayed, and from age 2 years she started losing motor abilities. Cerebral MRI showed...

  2. Coffin-Siris syndrome: phenotypic evolution of a novel SMARCA4 mutation.

    Science.gov (United States)

    Tzeng, Michael; du Souich, Christèle; Cheung, Helen Wing-Hong; Boerkoel, Cornelius F

    2014-07-01

    Coffin-Siris Syndrome (CSS) is an intellectual disability disorder caused by mutation of components of the SWI/SNF chromatin-remodeling complex. We describe the evolution of the phenotypic features for a male patient with CSS from birth to age 7 years and 9 months and by review of reported CSS patients, we expand the phenotype to include neonatal and infantile hypertonia and upper airway obstruction. The propositus had a novel de novo heterozygous missense mutation in exon 17 of SMARCA4 (NM_001128849.1:c.2434C>T (NP_001122321.1:p.Leu812Phe)). This is the first reported mutation within motif Ia of the SMARCA4 SNF2 domain. In summary, SMARCA4-associated CSS is a pleiotropic disorder in which the pathognomic clinical features evolve and for which the few reported individuals do not demonstrate a clear genotype-phenotype correlation. © 2014 Wiley Periodicals, Inc.

  3. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms.

    Science.gov (United States)

    Malkin, D; Li, F P; Strong, L C; Fraumeni, J F; Nelson, C E; Kim, D H; Kassel, J; Gryka, M A; Bischoff, F Z; Tainsky, M A

    1990-11-30

    Familial cancer syndromes have helped to define the role of tumor suppressor genes in the development of cancer. The dominantly inherited Li-Fraumeni syndrome (LFS) is of particular interest because of the diversity of childhood and adult tumors that occur in affected individuals. The rarity and high mortality of LFS precluded formal linkage analysis. The alternative approach was to select the most plausible candidate gene. The tumor suppressor gene, p53, was studied because of previous indications that this gene is inactivated in the sporadic (nonfamilial) forms of most cancers that are associated with LFS. Germ line p53 mutations have been detected in all five LFS families analyzed. These mutations do not produce amounts of mutant p53 protein expected to exert a trans-dominant loss of function effect on wild-type p53 protein. The frequency of germ line p53 mutations can now be examined in additional families with LFS, and in other cancer patients and families with clinical features that might be attributed to the mutation.

  4. [Gene mutation analysis and prenatal diagnosis of a family with Bartter syndrome].

    Science.gov (United States)

    Li, Long; Ma, Na; Li, Xiu-Rong; Gong, Fei; DU, Juan

    2016-08-01

    To investigate the mutation of related genes and prenatal diagnosis of a family with Bartter syndrome (BS). The high-throughput capture sequencing technique and PCR-Sanger sequencing were used to detect pathogenic genes in the proband of this family and analyze the whole family at the genomic level. After the genetic cause was clarified, the amniotic fluid was collected from the proband's mother who was pregnant for 5 months for prenatal diagnosis. The proband carried compound heterozygous mutations of c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene; c.88C>T(p.Arg30*) had been reported as a pathogenic mutation, and c.968+2T>A was a new mutation. Pedigree analysis showed that the two mutations were inherited from the mother and father, respectively. Prenatal diagnosis showed that the fetus did not inherit the mutations from parents and had no mutations at the two loci. The follow-up visit confirmed that the infant was in a healthy state, which proved the accuracy of genetic diagnosis and prenatal diagnosis. The compound heterozygous mutations c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene are the cause of BS in the proband, and prenatal diagnosis can prevent the risk of recurrence of BS in this family.

  5. Discovery of potential drugs for human-infecting H7N9 virus containing R294K mutation

    Directory of Open Access Journals (Sweden)

    He JY

    2014-12-01

    calculated the binding energy for each candidate drug.Results: We found five inhibitors that could be candidate drugs for treating the mutated H7N9 virus. Docking poses showed these drugs could bind to the virus effectively, with the contribution of hydrogen bonds and hydrophobic interactions. With regard to the molecular dynamic simulations, receptor–ligand complexes formed by these candidate drugs were more stable than the one formed by oseltamivir carboxylate. The binding energy of ­oseltamivir ­carboxylate was -122.4 kJ/mol, while those for these potential inhibitors were -417.5, -404.7, -372.2, -304.3, and -289.9 kJ/mol, much better than the reference drug.Conclusion: Given the current and future threat of the mutated H7N9 virus, it is urgent that potent drugs and effective antiviral therapeutics be found. Our study therefore is able to complement currently available drugs for influenza A infectors and helps to prevent the ongoing threat of H7N9 virus. Keywords: H7N9, neuraminidase, mutation, virtual screening, inhibitor

  6. Four novel ELANE mutations in patients with congenital neutropenia.

    Science.gov (United States)

    Kurnikova, Maria; Maschan, Michael; Dinova, Evgeniya; Shagina, Irina; Finogenova, Natalia; Mamedova, Elena; Polovtseva, Tatyana; Shagin, Dmitry; Shcherbina, Anna

    2011-08-01

    Congenital neutropenia is a heterogeneous bone marrow failure syndrome characterized by a maturation arrest of myelopoesis at the promyelocyte/myelocyte stage. Cyclic neutropenia (CyN) and severe congenital neutropenia (SCN) are two main forms of congenital neutropenia. Genetic analysis has shown that heterozygous mutations in the ELANE gene encoding the neutrophil elastase are the major cause of these disorders. We investigated the prevalence of ELANE mutations in a group of 16 patients from 14 families with congenital neutropenia. Five patients had typical manifestations of CyN, and 11 patients had SCN. Seven different heterozygous ELANE mutations were found, including four novel mutations. Copyright © 2011 Wiley-Liss, Inc.

  7. Evaluation of cerebral perfusion imaging with N-isopropyl-p-[123I]iodoamphetamine (IMP) in the cases of antiphospholipid syndrome

    International Nuclear Information System (INIS)

    Kato, Toru; Nanbu, Ichiro; Tohyama, Junko; Ohba, Satoru

    1995-01-01

    Five cases of antiphospholipid syndrome with mild headache, but without any neurological deficits and abnormal findings by CT and MRI, were examined by cerebral blood perfusion SPECT using N-isopropyl-p-[ 123 I] iodoamphetamine (IMP). Although three cases were performed quantification of cerebral blood flow with a microsphere method simultaneously, their values were within normal limits. Two of them showed focal low perfusion areas. One case had relatively low perfusion areas in the bilateral occipital lobes and the right temporal lobe, which improved after treatment. One of two had low perfusion in the bilateral occipital lobes. Other three cases only showed ununiformity of radioisotope uptake on the cerebral blood perfusion SPECT. Low perfusion areas in antiphospholipid syndrome might be caused by microarterial thrombosis, microvenous thrombosis or spasms, although they could be reversible. As early irreversible progress of cerebral blood flow, cerebral blood flow SPECT should be performed in cases of antiphospholipid syndrome with neurological complainments. (author)

  8. A novel STXBP1 mutation causes typical Rett syndrome in a Japanese girl.

    Science.gov (United States)

    Yuge, Kotaro; Iwama, Kazuhiro; Yonee, Chihiro; Matsufuji, Mayumi; Sano, Nozomi; Saikusa, Tomoko; Yae, Yukako; Yamashita, Yushiro; Mizuguchi, Takeshi; Matsumoto, Naomichi; Matsuishi, Toyojiro

    2018-06-01

    Rett syndrome (RTT) is a neurodevelopmental disorder mostly caused by mutations in Methyl-CpG-binding protein 2 (MECP2); however, mutations in various other genes may lead to RTT-like phenotypes. Here, we report the first case of a Japanese girl with RTT caused by a novel syntaxin-binding protein 1 (STXBP1) frameshift mutation (c.60delG, p.Lys21Argfs*16). She showed epilepsy at one year of age, regression of acquired psychomotor abilities thereafter, and exhibited stereotypic hand and limb movements at 3 years of age. Her epilepsy onset was earlier than is typical for RTT patients. However, she fully met the 2010 diagnostic criteria of typical RTT. STXBP1 mutations cause early infantile epileptic encephalopathy (EIEE), various intractable epilepsies, and neurodevelopmental disorders. However, the case described here presented a unique clinical presentation of typical RTT without EIEE and a novel STXBP1 mutation. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  9. Genetic mutations in non-syndromic deafness patients of uyghur and han chinese ethnicities in xinjiang, China: a comparative study

    Directory of Open Access Journals (Sweden)

    Kuyaxi Pilidong

    2011-09-01

    Full Text Available Abstract Background The deafness-associated gene mutation profile varies greatly among regions and races. Due to the multi-ethnic coalition of over one thousand years, non-syndromic deafness (NSD patients of Uyghur ethnicity may exhibit a unique deafness-associated gene mutation spectrum as compared to Han Chinese deaf population. Methods In order to characterize nine loci of four deafness-associated genes of Uyghur NSD patients in comparison with Chinese Han deaf population, NSD patients (n = 350 were enrolled, including Uyghur (n = 199 and Han Chinese (n = 151. Following the history taking, blood samples were collected for DNA extraction. DNA microarray was performed on nine loci of four deafness-associated genes, including 35delG, 176-191del16, 235delC, 299-300delAT, 538C > T, 1555A > G, 1494C > T, 2168A > G, and IVS7-2A > G. The samples that showed the absence of both wild and mutant probe signals were tested for further DNA sequencing analysis. Results The mutations in the nine loci of prevalent deafness-associated genes were detected in 13.06% of Uyghur NSD patients and 32.45% of Han Chinese patients (P GJB2 mutation was detected in 9.05% of Uyghur patients and 16.56% of Han Chinese patients (P > 0.05, respectively. 235delC was the hotspot mutation region in NSD patients of the two ethnicities, whereas 35delG was the mutation hotspot in Uyghur patients. 187delG mutation was detected for the first time in Uyghur NSD patients and considered as an unreported pathological variant of GJB2. SLC26A4 mutation was found in 2.01% of Uyghur patients and 14.57% of Han Chinese patients (P P > 0.05, respectively. The NSD patients exhibited a low frequency of GJB3 mutation regardless of ethnicity. Conclusion Prevalent deafness-associated gene mutations in the nine loci studied were less frequently detected in Uyghur NSD patients than in Han Chinese patients. GJB2 was the most common mutant gene in the two ethnicities, whilst the two ethnicities differed

  10. Tumor suppressor microRNAs are downregulated in myelodysplastic syndrome with spliceosome mutations

    DEFF Research Database (Denmark)

    Aslan, Derya; Garde, Christian; Nygaard, Mette Katrine

    2016-01-01

    Spliceosome mutations are frequently observed in patients with myelodysplastic syndromes (MDS). However, it is largely unknown how these mutations contribute to the disease. MicroRNAs (miRNAs) are small noncoding RNAs, which have been implicated in most human cancers due to their role in post...... the most downregulated miRNAs were several tumor-suppressor miRNAs, including several let-7 family members, miR-423, and miR-103a. Finally, we observed that the predicted targets of the most downregulated miRNAs were involved in apoptosis, hematopoiesis, and acute myeloid leukemia among other cancer......- and metabolic pathways. Our data indicate that spliceosome mutations may play an important role in MDS pathophysiology by affecting the expression of tumor suppressor miRNA genes involved in the development and progression of MDS....

  11. Functional assessment of compound mutations in the KCNQ1 and KCNH2 genes associated with long QT syndrome

    DEFF Research Database (Denmark)

    Grunnet, Morten; Behr, Elijah Raphael; Calloe, Kirstine

    2005-01-01

    BACKGROUND: Long QT syndrome (LQTS) is a cardiovascular disorder characterized by prolonged QTc time, syncope, or sudden death caused by torsades de pointes and ventricular fibrillation. We investigated the clinical and electrophysiologic phenotype of individual mutations and the compound mutations...

  12. New truncation mutation of the NR2E3 gene in a Japanese patient with enhanced S-cone syndrome.

    Science.gov (United States)

    Kuniyoshi, Kazuki; Hayashi, Takaaki; Sakuramoto, Hiroyuki; Mishima, Hiroshi; Tsuneoka, Hiroshi; Tsunoda, Kazushige; Iwata, Takeshi; Shimomura, Yoshikazu

    2016-11-01

    The enhanced S-cone syndrome (ESCS) is a rare hereditary retinal degeneration that has enhanced short wavelength-sensitive cone (S-cone) functions. The longitudinal clinical course of this disease has been rarely reported, and the genetic aspects of ESCS have not been well investigated in the Japanese population. In this report, we present our clinical and genetic findings for 2 patients with ESCS. The patients were 2 unrelated Japanese men. Standard ophthalmic examinations and mutation screening for the NR2E3 gene were performed. Patient 1 was a 36-year-old man, and his clinical findings were typical of ESCS. His decimal best-corrected visual acuity (BCVA) was 1.0 OD and 0.5 OS after removal of cataracts. Genetic investigations revealed a homozygous truncation frameshift, the p.I307LfsX33 mutation. Patient 2 was an 11-year-old boy when he was first examined by us. His clinical findings were typical of ESCS except for uveitis in the left eye. His decimal BCVA at the age of 39 years was maintained at 1.5 in each eye, although the retinal degeneration and visual field impairments had progressed during the follow-up period. The genetic investigations revealed homozygous mutations of p.R104Q in the NR2E3 gene. The frameshift mutation, p.I307LfsX33, in the NR2E3 gene is a new causative mutation for ESCS. The clinical observations for patient 2 are the longest ever reported. The retinal degeneration caused by this mutation is slowly progressive, and these patients maintained good vision with maintenance of the foveal structure until their late thirties.

  13. An inducible mouse model of podocin-mutation-related nephrotic syndrome.

    Directory of Open Access Journals (Sweden)

    Mansoureh Tabatabaeifar

    Full Text Available Mutations in the NPHS2 gene, encoding podocin, cause hereditary nephrotic syndrome. The most common podocin mutation, R138Q, is associated with early disease onset and rapid progression to end-stage renal disease. Knock-in mice carrying a R140Q mutation, the mouse analogue of human R138Q, show developmental arrest of podocytes and lethal renal failure at neonatal age. Here we created a conditional podocin knock-in model named NPHS2 R140Q/-, using a tamoxifen-inducible Cre recombinase, which permits to study the effects of the mutation in postnatal life. Within the first week of R140Q hemizygosity induction the animals developed proteinuria, which peaked after 4-5 weeks. Subsequently the animals developed progressive renal failure, with a median survival time of 12 (95% CI: 11-13 weeks. Foot process fusion was observed within one week, progressing to severe and global effacement in the course of the disease. The number of podocytes per glomerulus gradually diminished to 18% compared to healthy controls 12-16 weeks after induction. The fraction of segmentally sclerosed glomeruli was 25%, 85% and 97% at 2, 4 and 8 weeks, respectively. Severe tubulointerstitial fibrosis was present at later disease stage and was correlated quantitatively with the level of proteinuria at early disease stages. While R140Q podocin mRNA expression was elevated, protein abundance was reduced by more than 50% within one week following induction. Whereas miRNA21 expression persistently increased during the first 4 weeks, miRNA-193a expression peaked 2 weeks after induction. In conclusion, the inducible R140Q-podocin mouse model is an auspicious model of the most common genetic cause of human nephrotic syndrome, with a spontaneous disease course strongly reminiscent of the human disorder. This model constitutes a valuable tool to test the efficacy of novel pharmacological interventions aimed to improve podocyte function and viability and attenuate proteinuria

  14. AIRE variations in Addison's disease and autoimmune polyendocrine syndromes (APS): partial gene deletions contribute to APS I.

    Science.gov (United States)

    Bøe Wolff, A S; Oftedal, B; Johansson, S; Bruland, O; Løvås, K; Meager, A; Pedersen, C; Husebye, E S; Knappskog, P M

    2008-03-01

    Autoimmune Addison's disease (AAD) is often associated with other components in autoimmune polyendocrine syndromes (APS). Whereas APS I is caused by mutations in the AIRE gene, the susceptibility genes for AAD and APS II are unclear. In the present study, we investigated whether polymorphisms or copy number variations in the AIRE gene were associated with AAD and APS II. First, nine SNPs in the AIRE gene were analyzed in 311 patients with AAD and APS II and 521 healthy controls, identifying no associated risk. Second, in a subgroup of 25 of these patients, AIRE sequencing revealed three novel polymorphisms. Finally, the AIRE copy number was determined by duplex quantitative PCR in 14 patients with APS I, 161 patients with AAD and APS II and in 39 healthy subjects. In two Scandinavian APS I patients previously reported to be homozygous for common AIRE mutations, we identified large deletions of the AIRE gene covering at least exon 2 to exon 8. We conclude that polymorphisms in the AIRE gene are not associated with AAD and APS II. We further suggest that DNA analysis of the parents of patients found to be homozygous for mutations in AIRE, always should be performed.

  15. De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome.

    Science.gov (United States)

    Burrage, Lindsay C; Charng, Wu-Lin; Eldomery, Mohammad K; Willer, Jason R; Davis, Erica E; Lugtenberg, Dorien; Zhu, Wenmiao; Leduc, Magalie S; Akdemir, Zeynep C; Azamian, Mahshid; Zapata, Gladys; Hernandez, Patricia P; Schoots, Jeroen; de Munnik, Sonja A; Roepman, Ronald; Pearring, Jillian N; Jhangiani, Shalini; Katsanis, Nicholas; Vissers, Lisenka E L M; Brunner, Han G; Beaudet, Arthur L; Rosenfeld, Jill A; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Xia, Fan; Lalani, Seema R; Lupski, James R; Bongers, Ernie M H F; Yang, Yaping

    2015-12-03

    Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5' end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1(st) coding exon), c.16A>T (p.Lys6(∗)) and c.35_38delTCAA (p.Ile12Lysfs(∗)4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5' end of the geminin protein. All three GMNN mutations identified alter sites 5' to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Nelson`s syndrome associated with a somatic frame shift mutation in the glucocorticoid recepter gene

    Energy Technology Data Exchange (ETDEWEB)

    Karl, M.; Stratakis, C.A.; Chrousos, G.P.; Katz, D.A.; Ali, I.U.; Oldfield, E.H. [National Inst. of Neurological Disorders and Stroke, Bethesda, MD (United States)] [and others

    1996-01-01

    Nelson`s syndrome is the appearance and/or progression of ACTH-secreting pituitary macroadenomas in patients who had previously undergone bilateral adrenalectomy for Cushing`s disease. Extremely high plasma ACTH levels and aggressive neoplastic growth might be explained by the lack of appropriate glucocorticoid negative feedback due to defective glucocorticoid signal transduction. To study the glucocorticoid receptor (GR) gene in Nelson`s syndrome, DNA was extracted from pituitary adenomas and leukocytes of four patients with this condition and amplified by PCR for direct sequence analysis. In one of the tumors, a heterozygous mutation, consisting of an insertion of a thymine between complementary DNA nucleotides 1188 and 1189, was found in exon 2. This frame-shift mutation led to premature termination at amino acid residue 366 of the world-type coding sequence, excluding the expression of a functioning receptor protein from the defective allele. The mutation was not detected in the sequence of the GR gene in the patient`s leukocyte DNA, indicating a somatic origin. By lowering the receptor number in tumorous cells, this defect might have caused local resistance to negative glucocorticoid feedback similar to that caused by the presence of a null allele in a kindred with the generalized glucocorticoid resistance syndrome. P53 protein accumulation, previously reported in 60% of corticotropinomas, could not be detected in any of the four pituitary tumors examined by immunohistochemistry. We suggest that a somatic GR defect might have played a pathophysiological role in the tumorigenesis of the corticotropinoma bearing this mutation. 35 refs., 3 figs., 1 tab.

  17. Prognostic implications of mutation-specific QTc standard deviation in congenital long QT syndrome

    NARCIS (Netherlands)

    Mathias, Andrew; Moss, Arthur J.; Lopes, Coeli M.; Barsheshet, Alon; McNitt, Scott; Zareba, Wojciech; Robinson, Jennifer L.; Locati, Emanuela H.; Ackerman, Michael J.; Benhorin, Jesaia; Kaufman, Elizabeth S.; Platonov, Pyotr G.; Qi, Ming; Shimizu, Wataru; Towbin, Jeffrey A.; Michael Vincent, G.; Wilde, Arthur A. M.; Zhang, Li; Goldenberg, Ilan

    2013-01-01

    Individual corrected QT interval (QTc) may vary widely among carriers of the same long QT syndrome (LQTS) mutation. Currently, neither the mechanism nor the implications of this variable penetrance are well understood. To hypothesize that the assessment of QTc variance in patients with congenital

  18. Mutation and phenotypic spectrum in patients with cardio-facio-cutaneous and Costello syndrome.

    NARCIS (Netherlands)

    Schulz, A.L.; Albrecht, B.; Arici, C.; Burgt, I. van der; Buske, A.; Gillessen-Kaesbach, G.; Heller, R.; Horn, D.; Hubner, C.A.; Korenke, C.G.; Konig, R.; Kress, W.; Kruger, G.; Meinecke, P.; Mucke, J.; Plecko, B.; Rossier, E.; Schinzel, A.; Schulze, A.; Seemanova, E.; Seidel, H.; Spranger, S.; Tuysuz, B.; Uhrig, S.; Wieczorek, D.; Kutsche, K.; Zenker, M.

    2008-01-01

    Cardio-facio-cutaneous (CFC) and Costello syndrome (CS) are congenital disorders with a significant clinical overlap. The recent discovery of heterozygous mutations in genes encoding components of the RAS-RAF-MAPK pathway in both CFC and CS suggested a similar underlying pathogenesis of these two

  19. The changing landscape of Lynch syndrome due to PMS2 mutations.

    Science.gov (United States)

    Blount, J; Prakash, A

    2018-07-01

    DNA repair pathways are essential for cellular survival as our DNA is constantly under assault from both exogenous and endogenous DNA damaging agents. Five major mammalian DNA repair pathways exist within a cell to maintain genomic integrity. Of these, the DNA mismatch repair (MMR) pathway is highly conserved among species and is well documented in bacteria. In humans, the importance of MMR is underscored by the discovery that a single mutation in any 1 of 4 genes within the MMR pathway (MLH1, MSH2, MSH6 and PMS2) results in Lynch syndrome (LS). LS is a autosomal dominant condition that predisposes individuals to a higher incidence of many malignancies including colorectal, endometrial, ovarian, and gastric cancers. In this review, we discuss the role of PMS2 in the MMR pathway, the evolving testing criteria used to identify variants in the PMS2 gene, the LS phenotype as well as the autosomal recessive condition called constitutional mismatch repair deficiency syndrome, and current methods used to elucidate the clinical impact of PMS2 mutations. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Deletions and de novo mutations of SOX11 are associated with a neurodevelopmental disorder with features of Coffin-Siris syndrome.

    Science.gov (United States)

    Hempel, Annmarie; Pagnamenta, Alistair T; Blyth, Moira; Mansour, Sahar; McConnell, Vivienne; Kou, Ikuyo; Ikegawa, Shiro; Tsurusaki, Yoshinori; Matsumoto, Naomichi; Lo-Castro, Adriana; Plessis, Ghislaine; Albrecht, Beate; Battaglia, Agatino; Taylor, Jenny C; Howard, Malcolm F; Keays, David; Sohal, Aman Singh; Kühl, Susanne J; Kini, Usha; McNeill, Alisdair

    2016-03-01

    SOX11 is a transcription factor proposed to play a role in brain development. The relevance of SOX11 to human developmental disorders was suggested by a recent report of SOX11 mutations in two patients with Coffin-Siris syndrome. Here we further investigate the role of SOX11 variants in neurodevelopmental disorders. We used array based comparative genomic hybridisation and trio exome sequencing to identify children with intellectual disability who have deletions or de novo point mutations disrupting SOX11. The pathogenicity of the SOX11 mutations was assessed using an in vitro gene expression reporter system. Loss-of-function experiments were performed in xenopus by knockdown of Sox11 expression. We identified seven individuals with chromosome 2p25 deletions involving SOX11. Trio exome sequencing identified three de novo SOX11 variants, two missense (p.K50N; p.P120H) and one nonsense (p.C29*). The biological consequences of the missense mutations were assessed using an in vitro gene expression system. These individuals had microcephaly, developmental delay and shared dysmorphic features compatible with mild Coffin-Siris syndrome. To further investigate the function of SOX11, we knocked down the orthologous gene in xenopus. Morphants had significant reduction in head size compared with controls. This suggests that SOX11 loss of function can be associated with microcephaly. We thus propose that SOX11 deletion or mutation can present with a Coffin-Siris phenotype. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/