WorldWideScience

Sample records for syndecan-2 downregulation impairs

  1. Molecular characterization of chicken syndecan-2 proteoglycan

    DEFF Research Database (Denmark)

    Chen, Ligong; Couchman, John R; Smith, Jacqueline

    2002-01-01

    A partial syndecan-2 sequence (147 bp) was obtained from chicken embryonic fibroblast poly(A)+ RNA by reverse transcription-PCR. This partial sequence was used to produce a 5'-end-labelled probe. A chicken liver cDNA library was screened with this probe, and overlapping clones were obtained......Da. Western blotting of chicken embryonic fibroblast cell lysates with species-specific monoclonal antibody mAb 8.1 showed that chicken syndecan-2 is substituted with heparan sulphate, and that the major form of chicken syndecan-2 isolated from chicken fibroblasts is consistent with the formation of SDS......-resistant dimers, which is common for syndecans. A 5'-end-labelled probe hybridized to two mRNA species in chicken embryonic fibroblasts, while Northern analysis with poly(A)+ RNAs from different tissues of chicken embryos showed wide and distinct distributions of chicken syndecan-2 during embryonic development...

  2. Serine phosphorylation of syndecan-2 proteoglycan cytoplasmic domain

    DEFF Research Database (Denmark)

    Oh, E S; Couchman, J R; Woods, A

    1997-01-01

    sequence. We investigated phosphorylation of syndecan-2 cytoplasmic domain by PKC, using purified GST-syndecan-2 fusion proteins and synthetic peptides corresponding to regions of the cytoplasmic domain. A synthetic peptide encompassing the entire cytoplasmic domain of syndecan-2 was phosphorylated by PKC...

  3. EphB/syndecan-2 signaling in dendritic spine morphogenesis

    DEFF Research Database (Denmark)

    Ethell, I M; Irie, F; Kalo, M S

    2001-01-01

    We previously reported that the cell surface proteoglycan syndecan-2 can induce dendritic spine formation in hippocampal neurons. We demonstrate here that the EphB2 receptor tyrosine kinase phosphorylates syndecan-2 and that this phosphorylation event is crucial for syndecan-2 clustering and spine...... formation. Syndecan-2 is tyrosine phosphorylated and forms a complex with EphB2 in mouse brain. Dominant-negative inhibition of endogenous EphB receptor activities blocks clustering of endogenous syndecan-2 and normal spine formation in cultured hippocampal neurons. This is the first evidence that Eph...... receptors play a physiological role in dendritic spine morphogenesis. Our observations suggest that spine morphogenesis is triggered by the activation of Eph receptors, which causes tyrosine phosphorylation of target molecules, such as syndecan-2, in presumptive spines....

  4. Syndecan-2 is a novel ligand for the protein tyrosine phosphatase receptor CD148

    DEFF Research Database (Denmark)

    Whiteford, James R; Xian, Xiaojie; Chaussade, Claire

    2011-01-01

    Syndecan-2 is a heparan sulfate proteoglycan that has a cell adhesion regulatory domain contained within its extracellular core protein. Cell adhesion to the syndecan-2 extracellular domain (S2ED) is ß1 integrin dependent; however, syndecan-2 is not an integrin ligand. Here the protein tyrosine p...

  5. [Role of syndecan-2 in amyloid plaque formation].

    Science.gov (United States)

    Leonova, E I; Galzitskaia, O V

    2015-01-01

    The famous phrase of F. Engels "Life is the mode of existence of protein bodies", has deeply insinuated itself in our mind. However at a more profound insight, the form of protein bodies is associaited not only with the fact of their existence, but also with the time changes. What unites all of us in our oldage? The answer is clear: it is the change in the way of existence of protein molecules, and more precisely, their uncontrolled aggregation that can take place in any organ and be associated with any protein. In spite of different clinical presentations, all diseases associated with pathological accumulation of aggregated proteins are combined in a general group called amyloisosis. Depen- dent on the place of formation, it is possible to distinguish an infinite number of pathologies from neurodegen- erative and oncologic ones to arthritis and tuberculosis. There is no doubt that provided all clandestine mechanisms are clarified at which an absolutely normal functioning.protein can transform into a pathological aggregated form, it will give us a chance to prevent protein aggregation and create a new form of drugs for prolongation of life. In this review we considered the function of syndecan-2, the structure of syndecan-2 and its role in the formation of amyloid plaques.

  6. Control of extracellular matrix assembly by syndecan-2 proteoglycan

    DEFF Research Database (Denmark)

    Klass, C M; Couchman, J R; Woods, A

    2000-01-01

    Extracellular matrix (ECM) deposition and organization is maintained by transmembrane signaling and integrins play major roles. We now show that a second transmembrane component, syndecan-2 heparan sulfate proteoglycan, is pivotal in matrix assembly. Chinese Hamster Ovary (CHO) cells were stably....... The loss of matrix formation was not caused by a failure to synthesize or externalize ECM components as determined by metabolic labeling or due to differences in surface expression of alpha5 or beta1 integrin. The matrix assembly defect was at the cell surface, since S2deltaS cells also lost the ability...... to rearrange laminin or fibronectin substrates into fibrils and to bind exogenous fibronectin. Transfection of activated alphaIIbalphaLdeltabeta3 integrin into alpha(5)-deficient CHO B2 cells resulted in reestablishment of the previously lost fibronectin matrix. However, cotransfection of this cell line with S...

  7. Syndecan-2 promotes perineural invasion and cooperates with K-ras to induce an invasive pancreatic cancer cell phenotype.

    Science.gov (United States)

    De Oliveira, Tiago; Abiatari, Ivane; Raulefs, Susanne; Sauliunaite, Danguole; Erkan, Mert; Kong, Bo; Friess, Helmut; Michalski, Christoph W; Kleeff, Jörg

    2012-04-03

    We have identified syndecan-2 as a protein potentially involved in perineural invasion of pancreatic adenocarcinoma (PDAC) cells. Syndecan-2 (SDC-2) expression was analyzed in human normal pancreas, chronic pancreatitis and PDAC tissues. Functional in vitro assays were carried out to determine its role in invasion, migration and signaling. SDC-2 was expressed in the majority of the tested pancreatic cancer cell lines while it was upregulated in nerve-invasive PDAC cell clones. There were 2 distinct expression patterns of SDC-2 in PDAC tissue samples: SDC-2 positivity in the cancer cell cytoplasm and a peritumoral expression. Though SDC-2 silencing (using specific siRNA oligonucleotides) did not affect anchorage-dependent growth, it significantly reduced cell motility and invasiveness in the pancreatic cancer cell lines T3M4 and Su8686. On the transcriptional level, migration-and invasion-associated genes were down-regulated following SDC-2 RNAi. Furthermore, SDC-2 silencing reduced K-ras activity, phosphorylation of Src and--further downstream--phosphorylation of ERK2 while levels of the putative SDC-2 signal transducer p120GAP remained unaltered. SDC-2 is a novel (perineural) invasion-associated gene in PDAC which cooperates with K-ras to induce a more invasive phenotype.

  8. Syndecan-2 promotes perineural invasion and cooperates with K-ras to induce an invasive pancreatic cancer cell phenotype

    Directory of Open Access Journals (Sweden)

    De Oliveira Tiago

    2012-04-01

    Full Text Available Abstract Background We have identified syndecan-2 as a protein potentially involved in perineural invasion of pancreatic adenocarcinoma (PDAC cells. Methods Syndecan-2 (SDC-2 expression was analyzed in human normal pancreas, chronic pancreatitis and PDAC tissues. Functional in vitro assays were carried out to determine its role in invasion, migration and signaling. Results SDC-2 was expressed in the majority of the tested pancreatic cancer cell lines while it was upregulated in nerve-invasive PDAC cell clones. There were 2 distinct expression patterns of SDC-2 in PDAC tissue samples: SDC-2 positivity in the cancer cell cytoplasm and a peritumoral expression. Though SDC-2 silencing (using specific siRNA oligonucleotides did not affect anchorage-dependent growth, it significantly reduced cell motility and invasiveness in the pancreatic cancer cell lines T3M4 and Su8686. On the transcriptional level, migration-and invasion-associated genes were down-regulated following SDC-2 RNAi. Furthermore, SDC-2 silencing reduced K-ras activity, phosphorylation of Src and - further downstream - phosphorylation of ERK2 while levels of the putative SDC-2 signal transducer p120GAP remained unaltered. Conclusion SDC-2 is a novel (perineural invasion-associated gene in PDAC which cooperates with K-ras to induce a more invasive phenotype.

  9. Syndecan-2 regulation of morphology in breast carcinoma cells is dependent on RhoGTPases

    DEFF Research Database (Denmark)

    Lim, Hooi Ching; Couchman, John Robert

    2014-01-01

    While syndecan-2 is usually considered a mesenchymal transmembrane proteoglycan, it can be upregulated in some tumour cells, such as the malignant breast carcinoma cell line, MDA-MB231. Depletion of this syndecan by siRNA, but not other syndecans, has a marked effect on cell morphology, increasin...... spreading, microfilament bundle and focal adhesion formation, with reduced cell migration....

  10. P120-GAP associated with syndecan-2 to function as an active switch signal for Src upon transformation with oncogenic ras

    International Nuclear Information System (INIS)

    Huang, J.-W.; Chen, C.-L.; Chuang, N.-N.

    2005-01-01

    BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q 61 K)] of shrimp Penaeus japonicus were applied to reveal a complex of p120-GAP/syndecan-2 being highly expressed upon transformation. Of interest, most of the p120-GAP/syndecan-2 complex was localized at caveolae, a membrane microdomain enriched with caveolin-1. To confirm the molecular interaction between syndecan-2 and p120-GAP, we further purified p120-GAP protein from mouse brains by using an affinity column of HiTrap-RACK1 and expressed mouse RACK1-encoded fusion protein and mouse syndecan-2-encoded fusion protein in bacteria. We report molecular affinities exist between p120-GAP and RACK1, syndecan-2 and RACK1 as well as p120-GAP and syndecan-2. The selective affinity between p120-GAP and syndecan-2 was found to be sufficient to detach RACK1. The p120-GAP/syndecan-2 complex was demonstrated to keep Src tyrosine kinase in an activated form. On the other hand, the syndecan-2/RACK1 complex was found to have Src in an inactivated form. These data indicate that the p120-GAP/syndecan-2 complex at caveolae could provide a docking site for Src to transmit tyrosine signaling, implying that syndecan-2/p120-GAP functions as a tumor promoter upon transformation with oncogenic ras of shrimp P. japonicus

  11. Extra-embryonic syndecan 2 regulates organ primordia migration and fibrillogenesis throughout the zebrafish embryo.

    Science.gov (United States)

    Arrington, Cammon B; Yost, H Joseph

    2009-09-01

    One of the first steps in zebrafish heart and gut organogenesis is the migration of bilateral primordia to the midline to form cardiac and gut tubes. The mechanisms that regulate this process are poorly understood. Here we show that the proteoglycan syndecan 2 (Sdc2) expressed in the extra-embryonic yolk syncytial layer (YSL) acts locally at the YSL-embryo interface to direct organ primordia migration, and is required for fibronectin and laminin matrix assembly throughout the embryo. Surprisingly, neither endogenous nor exogenous sdc2 expressed in embryonic cells can compensate for knockdown of sdc2 in the YSL, indicating that Sdc2 expressed in extra-embryonic tissues is functionally distinct from Sdc2 in embryonic cells. The effects of sdc2 knockdown in the YSL can be rescued by extra-embryonic Sdc2 lacking an extracellular proteolytic cleavage (shedding) site, but not by extra-embryonic Sdc2 lacking extracellular glycosaminoglycan (GAG) addition sites, suggesting that distinct GAG chains on extra-embryonic Sdc2 regulate extracellular matrix assembly, cell migration and epithelial morphogenesis of multiple organ systems throughout the embryo.

  12. Downregulation of SIRT1 signaling underlies hepatic autophagy impairment in glycogen storage disease type Ia.

    Directory of Open Access Journals (Sweden)

    Jun-Ho Cho

    2017-05-01

    Full Text Available A deficiency in glucose-6-phosphatase-α (G6Pase-α in glycogen storage disease type Ia (GSD-Ia leads to impaired glucose homeostasis and metabolic manifestations including hepatomegaly caused by increased glycogen and neutral fat accumulation. A recent report showed that G6Pase-α deficiency causes impairment in autophagy, a recycling process important for cellular metabolism. However, the molecular mechanism underlying defective autophagy is unclear. Here we show that in mice, liver-specific knockout of G6Pase-α (L-G6pc-/- leads to downregulation of sirtuin 1 (SIRT1 signaling that activates autophagy via deacetylation of autophagy-related (ATG proteins and forkhead box O (FoxO family of transcriptional factors which transactivate autophagy genes. Consistently, defective autophagy in G6Pase-α-deficient liver is characterized by attenuated expressions of autophagy components, increased acetylation of ATG5 and ATG7, decreased conjugation of ATG5 and ATG12, and reduced autophagic flux. We further show that hepatic G6Pase-α deficiency results in activation of carbohydrate response element-binding protein, a lipogenic transcription factor, increased expression of peroxisome proliferator-activated receptor-γ (PPAR-γ, a lipid regulator, and suppressed expression of PPAR-α, a master regulator of fatty acid β-oxidation, all contributing to hepatic steatosis and downregulation of SIRT1 expression. An adenovirus vector-mediated increase in hepatic SIRT1 expression corrects autophagy defects but does not rectify metabolic abnormalities associated with G6Pase-α deficiency. Importantly, a recombinant adeno-associated virus (rAAV vector-mediated restoration of hepatic G6Pase-α expression corrects metabolic abnormalities, restores SIRT1-FoxO signaling, and normalizes defective autophagy. Taken together, these data show that hepatic G6Pase-α deficiency-mediated down-regulation of SIRT1 signaling underlies defective hepatic autophagy in GSD-Ia.

  13. EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes

    DEFF Research Database (Denmark)

    Grandal, Michael V; Zandi, Roza; Pedersen, Mikkel W

    2007-01-01

    proteins, we have investigated the down-regulation of EGFRvIII and compared it to that of EGFR. We show that, in contrast to EGFR, EGFRvIII is inefficiently degraded. EGFRvIII is internalized, but the internalization rate of the mutated receptor is significantly less than that of unstimulated EGFR....... Moreover, internalized EGFRvIII is recycled rather than delivered to lysosomes. EGFRvIII binds the ubiquitin ligase c-Cbl via Grb2, whereas binding via phosphorylated tyrosine residue 1045 seems to be limited. Despite c-Cbl binding, the receptor fails to become effectively ubiquitinylated. Thus, our...... results suggest that the long lifetime of EGFRvIII is caused by inefficient internalization and impaired sorting to lysosomes due to lack of effective ubiquitinylation....

  14. Downregulation of Protein 4.1R impairs centrosome function,bipolar spindle organization and anaphase

    Energy Technology Data Exchange (ETDEWEB)

    Spence, Jeffrey R.; Go, Minjoung M.; Bahmanyar, S.; Barth,A.I.M.; Krauss, Sharon Wald

    2006-03-17

    Centrosomes nucleate and organize interphase MTs and areinstrumental in the assembly of the mitotic bipolar spindle. Here wereport that two members of the multifunctional protein 4.1 family havedistinct distributions at centrosomes. Protein 4.1R localizes to maturecentrioles whereas 4.1G is a component of the pericentriolar matrixsurrounding centrioles. To selectively probe 4.1R function, we used RNAinterference-mediated depletion of 4.1R without decreasing 4.1Gexpression. 4.1R downregulation reduces MT anchoring and organization atinterphase and impairs centrosome separation during prometaphase.Metaphase chromosomes fail to properly condense/align and spindleorganization is aberrant. Notably 4.1R depletion causes mislocalizationof its binding partner NuMA (Nuclear Mitotic Apparatus Protein),essential for spindle pole focusing, and disrupts ninein. Duringanaphase/telophase, 4.1R-depleted cells have lagging chromosomes andaberrant MT bridges. Our data provide functional evidence that 4.1R makescrucial contributions to centrosome integrity and to mitotic spindlestructure enabling mitosis and anaphase to proceed with the coordinatedprecision required to avoid pathological events.

  15. Aminoguanidine alleviated MMA-induced impairment of cognitive ability in rats by downregulating oxidative stress and inflammatory reaction.

    Science.gov (United States)

    Li, Qiliang; Song, Wenqi; Tian, Ze; Wang, Peichang

    2017-03-01

    Methylmalonic acidemia (MMA) is the most common organic acidemia in childhood. Many "treated" patients continued to display various degrees of mental retardation and psychomotor delay, which could be caused by brain damage from elevated oxidative stress. Aminoguanidine (AG), a synthetic antioxidant, was tested in a MMA rat model for its potential therapeutic effects on memory impairment. The effects of AG on MMA-induced cognitive impairment in Wistar rats were evaluated with Morris Water Maze. The levels of nerve cell apoptosis and microglial activation were investigated to illustrate the mechanisms of the improvement of cognition with AG treatment in MMA rats. To further explore the mechanism of neuroprotection induced by AG, several biomarkers including free radicals and inflammatory cytokines in the hippocampus were quantified. The results showed that the rats treated with AG exhibited better neurological behavior performances than MMA model rats. The AG-treated rats had a decreased level of apoptosis of the hippocampal neurons, which could be the structural basis of the observed neural behavior protection. In addition, AG treatment significantly inhibited the activation of microglia. The AG-treated rats had decreased levels of IL-1β, IL-6, TNF-α, NO, malonaldehyde and iNOS activities in the hippocampus. The level of glutathione and superoxide dismutase activity in the hippocampus of the AG-treated rats increased significantly. In conclusion, AG could alleviate the MMA-induced cognitive impairment via down-regulating of oxidative stress and inflammatory reaction and provide a basis as a therapeutic potential against MMA-induced cognitive impairment. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Down-regulation of homing receptors: a mechanism for impaired recruitment of human phagocytes in sepsis.

    Science.gov (United States)

    Hasslen, S R; Nelson, R D; Kishimoto, T K; Warren, W E; Ahrenholz, D H; Solem, L D

    1991-05-01

    Receptors known as DREG adhesion molecules on human neutrophils and monocytes provide for homing of these phagocytic leukocytes to sites of inflammation. They mediate the initial adhesive interaction of the leukocytes to vascular endothelial cells and are then shed from the cell surface in response to chemotactic factors and inflammatory mediators. Systemic accumulation of these agents following major injury or sepsis may therefore promote shedding of DREG receptors from circulating leukocytes and impair their recruitment to sites of inflammation. To test this hypothesis, we have analyzed the expression of DREG receptors on neutrophils and monocytes from 25 patients admitted to the Surgical Intensive Care Unit. Receptor expression was measured by flow cytometry of cells stained with murine monoclonal DREG-56 anti-DREG antibody. For 14 nonseptic patients, mean monocyte positivity for DREG was reduced from 64% to 40%. For 11 septic patients, mean neutrophil and monocyte positivity for DREG was reduced from 94% to 82% and 64% to 34%, respectively. These results suggest that monocytes are more affected than neutrophils in vivo by conditions expected to stimulate shedding of DREG and that sepsis promotes shedding of these adherence receptors. Accumulation of DREG-negative monocytes in association with sepsis may be sufficient to impair their recruitment to inflammatory sites and limit their contribution to host defense against infection and tissue repair.

  17. Aluminum trichloride impairs bone and downregulates Wnt/β-catenin signaling pathway in young growing rats.

    Science.gov (United States)

    Sun, Xudong; Cao, Zheng; Zhang, Qiuyue; Liu, Shimin; Xu, Feibo; Che, Jianfang; Zhu, Yanzhu; Li, Yanfei; Pan, Chuanyi; Liang, Wannan

    2015-12-01

    Aluminum (Al) can accumulate in bone and cause bone diseases. Few studies have investigated molecular mechanism of Al-induced bone diseases. Thus, in this study, rats were orally exposed to 0 (control group) and 0.4 g/L aluminum trichloride (AlCl3) (treatment group) for 30, 60, 90 or 120 days, respectively. The Al content of femora and serum, bone histological structure, bone mineral density (BMD) of the distal and proximal femoral metaphysis and Wnt/β-catenin signaling pathway (the mRNA expressions of Wnt3a, Fzd2, LRP-5, β-catenin, Tcf4, cyclin D1 and c-Myc, the protein levels of Wnt3a and β-catenin, the activities of Fzd2 and LRP-5) in rat femora were determined on day 30, 60, 90 or 120, respectively. The results showed that the Al contents of femora and serum were increased, the BMD of the distal and proximal femoral metaphysis were decreased, the femora histological structure were disrupted, the mRNA expressions of Wnt3a, Fzd2, LRP-5, β-catenin, Tcf4, cyclin D1 and c-Myc, the protein levels of Wnt3a and β-catenin, the activities of Fzd2 and LRP-5 were all decreased in the treatment group compared with the control group with time prolonged. These results indicated that AlCl3 impaired femora by inhibiting the Wnt/β-catenin signaling pathway in young growing rats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Antioxidants Impair Anti-Tumoral Effects of Vorinostat, but Not Anti-Neoplastic Effects of Vorinostat and Caspase-8 Downregulation

    OpenAIRE

    Bergadà, Laura; Yeramian, Andree; Sorolla, Annabel; Matias-Guiu, Xavier; Dolcet, Xavier

    2014-01-01

    We have recently demonstrated that histone deacetylase inhibitor, Vorinostat, applied as a single therapy or in combination with caspase-8 downregulation exhibits high anti-tumoral activity on endometrial carcinoma cell lines. In the present study, we have assessed the signalling processes underlying anti-tumoral effects of Vorinostat. Increasing evidence suggests that reactive oxygen species are responsible for histone deacetylase inhibitor-induced cell killing. We have found that Vorinostat...

  19. Selective down-regulation of α4β2 neuronal nicotinic acetylcholine receptors in the brain of uremic rats with cognitive impairment.

    Science.gov (United States)

    Ballesta, Juan J; del Pozo, Carlos; Castelló-Banyuls, Juan; Faura, Clara C

    2012-07-01

    Cognitive impairment is common in patients with chronic kidney disease. Brain nicotinic acetylcholine receptors modulate cognitive functions, such as learning and memory. Pharmacological cholinergic enhancement is useful in patients with cognitive dysfunction. The major nicotinic acetylcholine receptor subtypes in the brain are heteromeric α4β2 and homomeric α7 receptors. To study the involvement of neuronal acetylcholine receptors in cognitive impairment in uremic rats, bilateral nephrectomy was performed. 24 weeks after nephrectomy, memory was assessed using the one trial step-down inhibitory avoidance test. Neuronal nicotinic acetylcholine receptors in the brain were studied by radioligand binding, immunoprecipitation, Western blot and sucrose gradient experiments. We demonstrated that rats with severe renal failure show disorders of short term memory. Long term memory was not altered in these rats. The number of functional α4β2 heteromeric neuronal nicotinic receptors was decreased in the brains of rats with severe renal failure. There was a significant correlation between the degree of renal impairment and the number of heteromeric nicotinic acetylcholine receptors in the brain. The down-regulation of functional α4β2 receptors in the brains of rats with severe renal failure was not due to a reduction of α4 or β2 subunit proteins. The number of α7 homomeric neuronal nicotinic acetylcholine receptors was not altered. These findings may have important clinical significance for the management of cognitive impairment in patients with chronic kidney disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Antioxidants Impair Anti-Tumoral Effects of Vorinostat, but Not Anti-Neoplastic Effects of Vorinostat and Caspase-8 Downregulation

    Science.gov (United States)

    Bergadà, Laura; Yeramian, Andree; Sorolla, Annabel

    2014-01-01

    We have recently demonstrated that histone deacetylase inhibitor, Vorinostat, applied as a single therapy or in combination with caspase-8 downregulation exhibits high anti-tumoral activity on endometrial carcinoma cell lines. In the present study, we have assessed the signalling processes underlying anti-tumoral effects of Vorinostat. Increasing evidence suggests that reactive oxygen species are responsible for histone deacetylase inhibitor-induced cell killing. We have found that Vorinostat induces formation of reactive oxygen species and DNA damage. To investigate the role of oxidative stress as anti-neoplastic mechanism, we have evaluated the effects of different antioxidants (Bha, Nac and Tiron) on endometrial carcinoma cell line Ishikawa treated with Vorinostat. We show that Bha, Nac and Tiron markedly inhibited the cytotoxic effects of Vorinostat, increasing cell viability in vitro. We found that all three antioxidants did not inhibited accumulation of acetyl Histone H4, so that antioxidants did not inhibit Vorinostat activity. Finally, we have evaluated the effects of antioxidants on anti-tumoral activity of Vorinostat as monotherapy or in combination with caspase-8 downregulation in vivo. Interestingly, antioxidants blocked the reduction of tumour growth caused by Vorinostat, but they were unable to inhibit anti-tumoral activity of Vorinostat plus caspase-8 inhibition. PMID:24651472

  1. Antioxidants impair anti-tumoral effects of Vorinostat, but not anti-neoplastic effects of Vorinostat and caspase-8 downregulation.

    Science.gov (United States)

    Bergadà, Laura; Yeramian, Andree; Sorolla, Annabel; Matias-Guiu, Xavier; Dolcet, Xavier

    2014-01-01

    We have recently demonstrated that histone deacetylase inhibitor, Vorinostat, applied as a single therapy or in combination with caspase-8 downregulation exhibits high anti-tumoral activity on endometrial carcinoma cell lines. In the present study, we have assessed the signalling processes underlying anti-tumoral effects of Vorinostat. Increasing evidence suggests that reactive oxygen species are responsible for histone deacetylase inhibitor-induced cell killing. We have found that Vorinostat induces formation of reactive oxygen species and DNA damage. To investigate the role of oxidative stress as anti-neoplastic mechanism, we have evaluated the effects of different antioxidants (Bha, Nac and Tiron) on endometrial carcinoma cell line Ishikawa treated with Vorinostat. We show that Bha, Nac and Tiron markedly inhibited the cytotoxic effects of Vorinostat, increasing cell viability in vitro. We found that all three antioxidants did not inhibited accumulation of acetyl Histone H4, so that antioxidants did not inhibit Vorinostat activity. Finally, we have evaluated the effects of antioxidants on anti-tumoral activity of Vorinostat as monotherapy or in combination with caspase-8 downregulation in vivo. Interestingly, antioxidants blocked the reduction of tumour growth caused by Vorinostat, but they were unable to inhibit anti-tumoral activity of Vorinostat plus caspase-8 inhibition.

  2. Myricetin ameliorates scopolamine-induced memory impairment in mice via inhibiting acetylcholinesterase and down-regulating brain iron.

    Science.gov (United States)

    Wang, Beiyun; Zhong, Yuan; Gao, Chengjie; Li, Jingbo

    2017-08-19

    The aim of our study was to investigate to investigate the effect of myricetin on Alzheimer's disease (AD) and its underlying mechanisms. In our study, Myricetin effectively attenuated Fe 2+ -induced cell death in SH-SY5Y cells in vitro. In a mouse model of AD, myricetin treatment significantly reversed scopolamine-induced cognitive deficits deriving from a novel action of inhibiting acetylcholinesterase (AChE) and down-regulating brain iron. Furthermore, Myricetin treatment reduced oxidative damage and increased antioxidant enzymes activity in mice. Interestingly, the effect of myricetin was largely abolished by high iron diet. Therefore we suggested that treatment with myricetin attenuated cognitive deficits in mice via inhibiting AChE and brain iron regulation. In addition, myricetin reduce iron contents may via inhibiting transferrin receptor 1 (TrR1) expression. In conclusion, accumulated data demonstrates that myricetin is a potential multifunctional drug for AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. UVA-mediated down-regulation of MMP-2 and MT1-MMP coincides with impaired angiogenic phenotype of human dermal endothelial cells

    International Nuclear Information System (INIS)

    Cauchard, Jean-Hubert; Robinet, Arnaud; Poitevin, Stephane; Bobichon, Helene; Maziere, Jean-Claude; Bellon, Georges; Hornebeck, William

    2006-01-01

    UVA irradiation, dose-dependently (5-20 J/cm 2 ), was shown to impair the morphogenic differentiation of human microvascular endothelial cells (HMECs) on Matrigel. Parallely, UVA down-regulated the expression of MMP-2 and MT1-MMP, both at the protein and the mRNA levels. On the contrary, the production of MMP-1 and TIMP-1 by HMECs increased following UVA treatment. The inhibitory effect of UVA on MMP expression and pseudotubes formation was mediated by UVA-generated singlet oxygen ( 1 O 2 ). The contribution of MT1-MMP, but not TIMP-1, to the regulation of HMECs' angiogenic phenotype following UVA irradiation was suggested using elastin-derived peptides and TIMP-1 blocking antibody, respectively

  4. Aluminium chloride impairs long-term memory and downregulates cAMP-PKA-CREB signalling in rats

    International Nuclear Information System (INIS)

    Zhang, Lifeng; Jin, Cuihong; Lu, Xiaobo; Yang, Jinghua; Wu, Shengwen; Liu, Qiufang; Chen, Rong; Bai, Chunyu; Zhang, Di; Zheng, Linlin; Du, Yanqiu; Cai, Yuan

    2014-01-01

    Epidemiological investigations have indicated that aluminium (Al) is an important environmental neurotoxicant that may be involved in the aetiology of the cognitive dysfunction associated with neurodegenerative diseases. Additionally, exposure to Al is known to cause neurobehavioural abnormalities in animals. Previous studies demonstrated that Al impaired early-phase long-term potentiation (E-LTP) in vivo and in vitro. Our previous research revealed that Al could impair long-term memory via the impairment of late-phase long-term potentiation (L-LTP) in vivo. However, the exact mechanism by which Al impairs long-term memory has been poorly studied thus far. This study was designed not only to observe the effects of subchronic Al treatment on long-term memory and hippocampal ultrastructure but also to explore a possible underlying mechanism (involving the cAMP-PKA-CREB signalling pathway) in the hippocampus of rats.. Pregnant Wistar rats were assigned to four groups. Neonatal rats were exposed to Al by parental lactation for 3 weeks and then fed with distilled water containing 0, 0.2%, 0.4% or 0.6% Al chloride (AlCl 3 ) for 3 postnatal months. The levels of Al in the blood and hippocampus were quantified by atomic absorption spectrophotometry. The shuttle–box test was performed to detect long-term memory. The hippocampus was collected for ultrastructure observation, and the level of cAMP-PKA-CREB signalling was examined. The results showed that the Al concentrations in the blood and hippocampus of Al-treated rats were higher than those of the control rats. Al may impair the long-term memory of rats. Hippocampal cAMP, cPKA, pCREB, BDNF and c-jun expression decreased significantly, and the neuronal and synaptic ultrastructure exhibited pathological changes after Al treatment. These results indicated that Al may induce long-term memory damage in rats by inhibiting cAMP-PKA-CREB signalling and altering the synaptic and neuronal ultrastructure in the hippocampus

  5. Aluminium chloride impairs long-term memory and downregulates cAMP-PKA-CREB signalling in rats.

    Science.gov (United States)

    Zhang, Lifeng; Jin, Cuihong; Lu, Xiaobo; Yang, Jinghua; Wu, Shengwen; Liu, Qiufang; Chen, Rong; Bai, Chunyu; Zhang, Di; Zheng, Linlin; Du, Yanqiu; Cai, Yuan

    2014-09-02

    Epidemiological investigations have indicated that aluminium (Al) is an important environmental neurotoxicant that may be involved in the aetiology of the cognitive dysfunction associated with neurodegenerative diseases. Additionally, exposure to Al is known to cause neurobehavioural abnormalities in animals. Previous studies demonstrated that Al impaired early-phase long-term potentiation (E-LTP) in vivo and in vitro. Our previous research revealed that Al could impair long-term memory via the impairment of late-phase long-term potentiation (L-LTP) in vivo. However, the exact mechanism by which Al impairs long-term memory has been poorly studied thus far. This study was designed not only to observe the effects of subchronic Al treatment on long-term memory and hippocampal ultrastructure but also to explore a possible underlying mechanism (involving the cAMP-PKA-CREB signalling pathway) in the hippocampus of rats.. Pregnant Wistar rats were assigned to four groups. Neonatal rats were exposed to Al by parental lactation for 3 weeks and then fed with distilled water containing 0, 0.2%, 0.4% or 0.6% Al chloride (AlCl3) for 3 postnatal months. The levels of Al in the blood and hippocampus were quantified by atomic absorption spectrophotometry. The shuttle-box test was performed to detect long-term memory. The hippocampus was collected for ultrastructure observation, and the level of cAMP-PKA-CREB signalling was examined. The results showed that the Al concentrations in the blood and hippocampus of Al-treated rats were higher than those of the control rats. Al may impair the long-term memory of rats. Hippocampal cAMP, cPKA, pCREB, BDNF and c-jun expression decreased significantly, and the neuronal and synaptic ultrastructure exhibited pathological changes after Al treatment. These results indicated that Al may induce long-term memory damage in rats by inhibiting cAMP-PKA-CREB signalling and altering the synaptic and neuronal ultrastructure in the hippocampus. Copyright

  6. SET overexpression decreases cell detoxification efficiency: ALDH2 and GSTP1 are downregulated, DDR is impaired and DNA damage accumulates.

    Science.gov (United States)

    Almeida, Luciana O; Goto, Renata N; Pestana, Cezar R; Uyemura, Sérgio A; Gutkind, Silvio; Curti, Carlos; Leopoldino, Andréia M

    2012-12-01

    Alcohol and tobacco consumption are risk factors for head and neck squamous cell carcinoma (HNSCC). Aldehyde dehydrogenase 2 (ALDH2) and glutathione S-transferase pi 1 (GSTP1) are important enzymes for cellular detoxification and low efficiencies are implicated in cancer. We assessed the potential role of SET protein overexpression, a histone acetylation modulator accumulated in HNSCC, in gene regulation and protein activity of ALDH2 and GSTP1. SET was knocked down in HN13, HN12 and Cal27, and overexpressed in HEK293 cells; ethanol and cisplatin were the chemical agents. Cells with SET overexpression (HEK293/SET, HN13 and HN12) showed lower ALDH2 and GSTP1 mRNA levels and trichostatin A increased them (real-time PCR). Ethanol upregulated GSTP1 and ALDH2 mRNAs, whereas cisplatin upregulated GSTP1 in HEK293 cells. SET-chromatin binding revealed SET interaction with ALDH2 and GSTP1 promoters, specifically via SET NAP domain; ethanol and cisplatin abolished SET binding. ALDH2 and GSTP1 efficiency was assessed by enzymatic and comet assay. A lower ALDH2 activity was associated with greater DNA damage (tail intensity) in HEK293/SET compared with HEK293 cells, whereas HN13/siSET showed ALDH2 activity higher than HN13 cells. HN13/siSET cells showed increased tail intensity. Cisplatin-induced DNA damage response showed negative relationship between SET overexpression and BRCA2 recruitment. SET downregulated repair genes ATM, BRCA1 and CHEK2 and upregulated TP53. Cisplatin-induced cell-cycle arrest occurred in G(0) /G(1) and S in HEK293 cells, whereas HEK293/SET showed G(2) /M stalling. Overall, cisplatin was more cytotoxic for HN13 than HN13/siSET cells. Our data suggest a role for SET in cellular detoxification, DNA damage response and genome integrity. © 2012 The Authors Journal compilation © 2012 FEBS.

  7. Prenatal stress down-regulates Reelin expression by methylation of its promoter and induces adult behavioral impairments in rats.

    Directory of Open Access Journals (Sweden)

    Ismael Palacios-García

    Full Text Available Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby supporting a relevant role of PNS in the genesis of neuropsychiatric diseases. We also propose an in vitro model that

  8. IL-6 down-regulates HLA class II expression and IL-12 production of human dendritic cells to impair activation of antigen-specific CD4(+) T cells.

    Science.gov (United States)

    Ohno, Yosuke; Kitamura, Hidemitsu; Takahashi, Norihiko; Ohtake, Junya; Kaneumi, Shun; Sumida, Kentaro; Homma, Shigenori; Kawamura, Hideki; Minagawa, Nozomi; Shibasaki, Susumu; Taketomi, Akinobu

    2016-02-01

    Immunosuppression in tumor microenvironments critically affects the success of cancer immunotherapy. Here, we focused on the role of interleukin (IL)-6/signal transducer and activator of transcription (STAT3) signaling cascade in immune regulation by human dendritic cells (DCs). IL-6-conditioned monocyte-derived DCs (MoDCs) impaired the presenting ability of cancer-related antigens. Interferon (IFN)-γ production attenuated by CD4(+) T cells co-cultured with IL-6-conditioned MoDCs corresponded with decreased DC IL-12p70 production. Human leukocyte antigen (HLA)-DR and CD86 expression was significantly reduced in CD11b(+)CD11c(+) cells obtained from peripheral blood mononuclear cells (PBMCs) of healthy donors by IL-6 treatment and was STAT3 dependent. Arginase-1 (ARG1), lysosomal protease, cathepsin L (CTSL), and cyclooxygenase-2 (COX2) were involved in the reduction of surface HLA-DR expression. Gene expressions of ARG1, CTSL, COX2, and IL6 were higher in tumor-infiltrating CD11b(+)CD11c(+) cells compared with PBMCs isolated from colorectal cancer patients. Expression of surface HLA-DR and CD86 on CD11b(+)CD11c(+) cells was down-regulated, and T cell-stimulating ability was attenuated compared with PBMCs, suggesting that an immunosuppressive phenotype might be induced by IL-6, ARG1, CTSL, and COX2 in tumor sites of colorectal cancer patients. There was a relationship between HLA-DR expression levels in tumor tissues and the size of CD4(+) T and CD8(+) T cell compartments. Our findings indicate that IL-6 causes a dysfunction in human DCs that activates cancer antigen-specific Th cells, suggesting that blocking the IL-6/STAT3 signaling pathway might be a promising strategy to improve cancer immunotherapy.

  9. Expression of glycogenes in differentiating human NT2N neurons. Downregulation of fucosyltransferase 9 leads to decreased Lewis(x) levels and impaired neurite outgrowth.

    Science.gov (United States)

    Gouveia, Ricardo; Schaffer, Lana; Papp, Suzanne; Grammel, Nicolas; Kandzia, Sebastian; Head, Steven R; Kleene, Ralf; Schachner, Melitta; Conradt, Harald S; Costa, Júlia

    2012-12-01

    Several glycan structures are functionally relevant in biological events associated with differentiation and regeneration which occur in the central nervous system. Here we have analysed the glycogene expression and glycosylation patterns during human NT2N neuron differentiation. We have further studied the impact of downregulating fucosyltransferase 9 (FUT9) on neurite outgrowth. The expression of glycogenes in human NT2N neurons differentiating from teratocarcinoma NTERA-2/cl.D1 cells has been analysed using the GlycoV4 GeneChip expression microarray. Changes in glycosylation have been monitored by immunoblot, immunofluorescence microscopy, HPLC and MALDI-TOF MS. Peptide mass fingerprinting and immunoprecipitation have been used for protein identification. FUT9 was downregulated using silencing RNA. One hundred twelve mRNA transcripts showed statistically significant up-regulation, including the genes coding for proteins involved in the synthesis of the Lewis(x) motif (FUT9), polysialic acid (ST8SIA2 and ST8SIA4) and HNK-1 (B3GAT2). Accordingly, increased levels of the corresponding carbohydrate epitopes have been observed. The Lewis(x) structure was found in a carrier glycoprotein that was identified as the CRA-a isoform of human neural cell adhesion molecule 1. Downregulation of FUT9 caused significant decreases in the levels of Lewis(x), as well as GAP-43, a marker of neurite outgrowth. Concomitantly, a reduction in neurite formation and outgrowth has been observed that was reversed by FUT9 overexpression. These results provided information about the regulation of glycogenes during neuron differentiation and they showed that the Lewis(x) motif plays a functional role in neurite outgrowth from human neurons. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Flooding impairs Fe uptake and distribution in Citrus due to the strong down-regulation of genes involved in Strategy I responses to Fe deficiency in roots.

    Directory of Open Access Journals (Sweden)

    Mary-Rus Martínez-Cuenca

    Full Text Available This work determines the ffects of long-term anoxia conditions--21 days--on Strategy I responses to iron (Fe deficiency in Citrus and its impact on Fe uptake and distribution. The study was carried out in Citrus aurantium L. seedlings grown under flooding conditions (S and in both the presence (+Fe and absence of Fe (-Fe in nutritive solution. The results revealed a strong down-regulation (more than 65% of genes HA1 and FRO2 coding for enzymes proton-ATPase and Ferric-Chelate Reductase (FC-R, respectively, in -FeS plants when compared with -Fe ones. H+-extrusion and FC-R activity analyses confirmed the genetic results, indicating that flooding stress markedly repressed acidification and reduction responses to Fe deficiency (3.1- and 2.0-fold, respectively. Waterlogging reduced by half Fe concentration in +FeS roots, which led to 30% up-regulation of Fe transporter IRT1, although this effect was unable to improve Fe absorption. Consequently, flooding inhibited 57Fe uptake in +Fe and -Fe seedlings (29.8 and 66.2%, respectively and 57Fe distribution to aerial part (30.6 and 72.3%, respectively. This evidences that the synergistic action of both enzymes H+-ATPase and FC-R is the preferential regulator of the Fe acquisition system under flooding conditions and, hence, their inactivation implies a limiting factor of citrus in their Fe-deficiency tolerance in waterlogged soils.

  11. Impaired recovery of brain muscarinic receptor sites following an adaptive down-regulation induced by repeated administration of diisopropyl fluorophosphate in aged rats

    International Nuclear Information System (INIS)

    Pintor, A.; Fortuna, S.; De Angelis, S.; Michalek, H.

    1990-01-01

    Potential age-related differences in the recovery rate of brain cholinesterase activity (ChE) and muscarinic acetylcholine receptor binding sites (mAChRs) following reduction induced by repeated treatment with diisopropyl fluorophosphate (DFP) were evaluated in Sprague-Dawley rats. Male 3- and 24-month old rats were s.c. injected with DFP on alternate days for 2 weeks and killed 48 hr and 7, 14, 21, 28 and 35 days after the last treatment. In the hippocampus and striatum, but not in the cerebral cortex, of control rats there as a significant age-related decline of ChE activity and maximal density of 3H-QNB binding sites (Bmax). The repeated administration of DFP during the first week caused a syndrome of cholinergic stimulation both in aged and young rats. The syndrome was more pronounced, in terms of intensity and duration in aged than in young animals resulting in 40 and 12% mortality, respectively; during the second week the syndrome attenuated in the two age-groups. The percentage inhibition of brain ChE at the end of DFP treatment did not differ between young and surviving aged rats. The down-regulation of mACRs was present in the three brain regions of both young and age rats (from 20 to 40%). Factorial analysis of variance showed significant differences for age, recovery rate, and significant interaction between age and recovery rate, both for ChE and mAChRs in young rats the three brain areas

  12. Knockdown of a HIF-2α promoter upstream long noncoding RNA impairs colorectal cancer stem cell properties in vitro through HIF-2α downregulation.

    Science.gov (United States)

    Yao, Jie; Li, Jianxiong; Geng, Peiliang; Li, Yi; Chen, Hong; Zhu, Yunfeng

    2015-01-01

    Currently, various long noncoding RNAs (lncRNAs) have been identified as key regulators of multiple cancers. However, cancer stem cell (CSC)-related lncRNAs have rarely been reported. In this study, we found an lncRNA that is a promoter upstream transcript of hypoxia-inducible factor-2α (HIF-2α), and we named it "lncRNA-HIF2PUT". The function of HIF-2α is closely connected with "stem cell-like" properties, and the function of PROMPTs is often associated with the adjacent protein-coding transcripts. Herein, we showed that the expression of lncRNA-HIF2PUT was significantly correlated with HIF-2α in colorectal cancer (CRC) tissues. Knockdown of lncRNA-HIF2PUT blocked the HIF-2α expression and inhibited the CSC properties in CRC cell lines DLD-1 and HT29. LncRNA-HIF2PUTsmall interfering RNA transfection resulted in decreased stemness genes expression, impaired colony formation, and spheroid formation ability, retarded migration, and invasion of the cells. These data suggest that lncRNA-HIF2PUT may be a regulator of HIF-2α and a mediator of CSCs in CRC.

  13. Knockdown of a HIF-2α promoter upstream long noncoding RNA impairs colorectal cancer stem cell properties in vitro through HIF-2α downregulation

    Directory of Open Access Journals (Sweden)

    Yao J

    2015-11-01

    Full Text Available Jie Yao,1,* Jianxiong Li,2,* Peiliang Geng,2,* Yi Li,3,* Hong Chen,3 Yunfeng Zhu2 1Department of Oncology, People’s Liberation Army No 161 Hospital, Wuhan, 2Cancer Center, Division of Internal Medicine, Chinese PLA General Hospital, Beijing, 3Department of Oncology, Kunming General Hospital of Chendu Military Command, Kunming, People’s Republic of China *These authors contributed equally to this work Abstract: Currently, various long noncoding RNAs (lncRNAs have been identified as key regulators of multiple cancers. However, cancer stem cell (CSC-related lncRNAs have rarely been reported. In this study, we found an lncRNA that is a promoter upstream transcript of hypoxia-inducible factor-2α (HIF-2α, and we named it “lncRNA-HIF2PUT”. The function of HIF-2α is closely connected with “stem cell-like” properties, and the function of PROMPTs is often associated with the adjacent protein-coding transcripts. Herein, we showed that the expression of lncRNA-HIF2PUT was significantly correlated with HIF-2α in colorectal cancer (CRC tissues. Knockdown of lncRNA-HIF2PUT blocked the HIF-2α expression and inhibited the CSC properties in CRC cell lines DLD-1 and HT29. LncRNA-HIF2PUTsmall interfering RNA transfection resulted in decreased stemness genes expression, impaired colony formation, and spheroid formation ability, retarded migration, and invasion of the cells. These data suggest that lncRNA-HIF2PUT may be a regulator of HIF-2α and a mediator of CSCs in CRC. Keywords: HIF-2α, long noncoding RNA, colorectal cancer, stem cell properties

  14. Syndecans-2 and -4; close cousins, but not identical twins

    DEFF Research Database (Denmark)

    Oh, Eok-Soo; Couchman, John R

    2004-01-01

    , the extracellular domain sequences are molecule-specific, implying that different syndecans have evolved to carry out similar, but non-identical, functions. While all four syndecans have been implicated in regulation of the cytoskeleton, their roles are clearly complex. Recent developments indicate that the closely...

  15. A novel cognitive impairment mechanism that astrocytic p-connexin 43 promotes neuronic autophagy via activation of P2X7R and down-regulation of GLT-1 expression in the hippocampus following traumatic brain injury in rats.

    Science.gov (United States)

    Sun, Liqian; Gao, Junling; Zhao, Manman; Cui, Jianzhong; Li, Youxiang; Yang, Xinjian; Jing, Xiaobin; Wu, Zhongxue

    2015-09-15

    Connexin 43 (Cx43) is one of the major gap junction proteins in astrocytes. Our previous studies reported that astrocytic phosphorylated Cx43 (p-CX43) regulated neuronic autophagy levels in the rat hippocampus after traumatic brain injury (TBI). In this study, we explored the underlying molecular mechanism by which gap junctional intercellular communication influenced neuronic autophagy and therefore initiated cognitive and memory impairments after TBI. The gap junctional blocker carbenoxolone (CBX) or autophagy inhibitor 3-methyladenine (3-MA) reduced latencies, as compared to TBI rats. Similarly, CBX or 3-MA restored long-term potentiation (LTP), relative to TBI hippocampal slices. Immunoblotting analysis showed that the expression of autophagy-related gene Beclin-1 in the hippocampus post-TBI were decreased in response to treatment with CBX, the P2X7 receptor (P2X7R) antagonist Oxidized ATP (OxATP) or ceftriaxone (Cef) which increased the expression and activity of the glutamate transporter (GLT-1) in the central nervous system (CNS). Moreover, CBX or OxATP pretreatment increased GLT-1 level in the rat hippocampus after TBI. However, CBX pretreatment suppressed P2X7R expression whereas maintained P2X7 level post-TBI. Confocal images revealed that p-CX43, P2X7 and GLT-1 strongly colocalized with glial fibrillary acidic protein (GFAP). Taken together, these results implied that Cx43, might induce neuronic autophagy by activation of P2X7R and reduce the expression of GLT-1 in the hippocampus, promoting TBI-induced cognitive deficits repair. Therefore, control of this communication may be serve as therapeutic strategies for intervention against TBI. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Visual Impairment

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Visual Impairment KidsHealth / For Teens / Visual Impairment What's in ... with the brain, making vision impossible. What Is Visual Impairment? Many people have some type of visual ...

  17. Spontaneous Physical Activity Downregulates Pax7 in Cancer Cachexia

    Directory of Open Access Journals (Sweden)

    Dario Coletti

    2016-01-01

    Full Text Available Emerging evidence suggests that the muscle microenvironment plays a prominent role in cancer cachexia. We recently showed that NF-kB-induced Pax7 overexpression impairs the myogenic potential of muscle precursors in cachectic mice, suggesting that lowering Pax7 expression may be beneficial in cancer cachexia. We evaluated the muscle regenerative potential after acute injury in C26 colon carcinoma tumor-bearing mice and healthy controls. Our analyses confirmed that the delayed muscle regeneration observed in muscles form tumor-bearing mice was associated with a persistent local inflammation and Pax7 overexpression. Physical activity is known to exert positive effects on cachectic muscles. However, the mechanism by which a moderate voluntary exercise ameliorates muscle wasting is not fully elucidated. To verify if physical activity affects Pax7 expression, we hosted control and C26-bearing mice in wheel-equipped cages and we found that voluntary wheel running downregulated Pax7 expression in muscles from tumor-bearing mice. As expected, downregulation of Pax7 expression was associated with a rescue of muscle mass and fiber size. Our findings shed light on the molecular basis of the beneficial effect exerted by a moderate physical exercise on muscle stem cells in cancer cachexia. Furthermore, we propose voluntary exercise as a physiological tool to counteract the overexpression of Pax7 observed in cancer cachexia.

  18. Up-regulation of the multidrug resistance genes, mrp1 and mdr1b, and down-regulation of the organic anion transporter, Mrp2, and the bile salt transporter, spgp, in endotoxemic rat liver

    NARCIS (Netherlands)

    Vos, TA; Hooiveld, GJEJ; Childs, S; Meijer, DKF; Moshage, H; Jansen, PLM; Muller, M

    1998-01-01

    Endotoxin-induced cholestasis is mainly caused by an impaired canalicular secretion. Mrp2, the canalicular multispecific organic anion transporter, is strongly downregulated in this situation, and canalicular bile salt secretion is also reduced. We hypothesized that other adenosine

  19. TCR Down-Regulation Controls Virus-Specific CD8+ T Cell Responses

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menné; Haks, Mariëlle; Nielsen, Bodil

    2008-01-01

    The CD3gamma di-leucine-based motif plays a central role in TCR down-regulation. However, little is understood about the role of the CD3gamma di-leucine-based motif in physiological T cell responses. In this study, we show that the expansion in numbers of virus-specific CD8(+) T cells is impaired...... molecule Bcl-2. This resulted in a 2-fold reduction in the clonal expansion of virus-specific CD8(+) T cells during the acute phase of vesicular stomatitis virus and lymphocytic choriomeningitis virus infections. These results identify an important role of CD3gamma-mediated TCR down-regulation in virus......-specific CD8(+) T cell responses....

  20. TCR down-regulation controls virus-specific CD8+ T cell responses

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menné; Haks, Mariëlle; Nielsen, Bodil

    2008-01-01

    The CD3gamma di-leucine-based motif plays a central role in TCR down-regulation. However, little is understood about the role of the CD3gamma di-leucine-based motif in physiological T cell responses. In this study, we show that the expansion in numbers of virus-specific CD8(+) T cells is impaired...... molecule Bcl-2. This resulted in a 2-fold reduction in the clonal expansion of virus-specific CD8(+) T cells during the acute phase of vesicular stomatitis virus and lymphocytic choriomeningitis virus infections. These results identify an important role of CD3gamma-mediated TCR down-regulation in virus......-specific CD8(+) T cell responses....

  1. Genetically Determined Insulin Resistance is Characterized by Down-Regulation of Mitochondrial Oxidative Metabolism in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas M; Skov, Vibe; Wojtaszewski, Jørgen

    2010-01-01

    Transcriptional profiling of skeletal muscle from patients with type 2 diabetes and high-risk individuals have demonstrated a co-ordinated down-regulation of oxidative phosphorylation (OxPhos) genes, suggesting a link between insulin resistance and mitochondrial dysfunction. However, whether...... mitochondrial dysfunction is a cause or consequence of insulin resistance remains to be clarified. In the present study, we tested the hypothesis that mitochondrial oxidative metabolism was down-regulated in skeletal muscle of patients with genetically determined insulin resistance. Skeletal muscle biopsies.......02), and complex V (ATP5B; p=0.005). Our data demonstrate that genetically determined insulin resistance is associated with a co-ordinated down-regulation of OxPhos components both at the transcriptional and translational level. These findings suggest that an impaired biological response to insulin in skeletal...

  2. Renal tubular vasopressin receptors downregulated by dehydration

    International Nuclear Information System (INIS)

    Steiner, M.; Phillips, M.I.

    1988-01-01

    Receptors for arginine vasopressin (AVP) were characterized in tubular epithelial basolateral membranes (BL membranes) prepared from the kidneys of male Spraque-Dawley rats. Association of [ 3 H]AVP was rapid, reversible, and specific. Saturation studies revealed a single class of saturable binding sites with a maximal binding (B max ) of 184 ± 15 fmol/mg protein. The V 2 receptor antagonist was more than 3,700 times as effective in displacing [ 3 H]AVP than was the V 1 antagonist. To investigate the physiological regulation of vasopressin receptors, the effects of elevated levels of circulating AVP on receptor characteristics were studied. Seventy-two-hour water deprivation significantly elevated plasma osmolality and caused an 11.5-fold increase in plasma [AVP]. Scatchard analysis revealed a 38% decreased in the number of AVP receptors on the BL membranes from dehydrated animals. The high-affinity binding sites on the BL membranes fit the pharmacological profile for adenylate cyclase-linked vasopressin receptors (V 2 ), which mediate the antidiuretic action of the hormone. The authors conclude that physiologically elevated levels of AVP can downregulate vasopressin receptors in the kidney

  3. Selective lignin downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Gallego-Giraldo, Lina; Jikumaru, Yusuke; Kamiya, Yuji; Tang, Yuhong; Dixon, Richard A

    2011-05-01

    Downregulation of hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT) in alfalfa (Medicago sativa) reduces lignin levels and improves forage quality and saccharification efficiency for bioethanol production. However, the plants have reduced stature. It was previously reported that HCT-down-regulated Arabidopsis have impaired auxin transport, but this has recently been disproved. • To address the basis for the phenotypes of lignin-modified alfalfa, we measured auxin transport, profiled a range of metabolites including flavonoids and hormones, and performed in depth transcriptome analyses. • Auxin transport is unaffected in HCT antisense alfalfa despite increased flavonoid biosynthesis. The plants show increased cytokinin and reduced auxin levels, and gibberellin levels and sensitivity are both reduced. Levels of salicylic, jasmonic and abscisic acids are elevated, associated with massive upregulation of pathogenesis and abiotic stress-related genes and enhanced tolerance to fungal infection and drought. • We suggest that HCT downregulated alfalfa plants exhibit constitutive activation of defense responses, triggered by release of bioactive cell wall fragments and production of hydrogen peroxide as a result of impaired secondary cell wall integrity. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  4. Visual impairment in the hearing impaired students

    OpenAIRE

    Gogate Parikshit; Rishikeshi Nikhil; Mehata Reshma; Ranade Satish; Kharat Jitesh; Deshpande Madan

    2009-01-01

    Background : Ocular problems are more common in children with hearing problems than in normal children. Neglected visual impairment could aggravate educational and social disability. Aim : To detect and treat visual impairment, if any, in hearing-impaired children. Setting and Design : Observational, clinical case series of hearing-impaired children in schools providing special education. Materials and Methods : Hearing-impaired children in selected schools underwent detailed vis...

  5. Gas6 downregulation impaired cytoplasmic maturation and pronuclear formation independent to the MPF activity.

    Directory of Open Access Journals (Sweden)

    Kyeoung-Hwa Kim

    Full Text Available Previously, we found that the growth arrest-specific gene 6 (Gas6 is more highly expressed in germinal vesicle (GV oocytes than in metaphase II (MII oocytes using annealing control primer (ACP-PCR technology. The current study was undertaken to investigate the role of Gas6 in oocyte maturation and fertilization using RNA interference (RNAi. Interestingly, despite the specific and marked decrease in Gas6 mRNA and protein expression in GVs after Gas6 RNAi, nuclear maturation including spindle structures and chromosome segregation was not affected. The only discernible effect induced by Gas6 RNAi was a change in maturation promoting factor (MPF activity. After parthenogenetic activation, Gas6 RNAi-treated oocytes at the MII stage had not developed further and arrested at MII (90.0%. After stimulation with Sr(2+, Gas6-silenced MII oocytes had markedly reduced Ca(2+ oscillation and exhibited no exocytosis of cortical granules. In these oocytes, sperm penetration occurred during fertilization but not pronucleus (PN formation. By roscovitine and colcemid treatment, we found that the Gas6 knockdown affected cytoplasmic maturation directly, independent to the changed MPF activity. These results strongly suggest that 1 the Gas6 signaling itself is important to the cytoplasmic maturation, but not nuclear maturation, and 2 the decreased Gas6 expression and decreased MPF activity separately or mutually influence sperm head decondensation and PN formation.

  6. Impaired down-regulation of negative emotion in self-referent social situations in bipolar disorder

    DEFF Research Database (Denmark)

    Kjærstad, Hanne L; Vinberg, Maj; Goldin, Philippe R

    2016-01-01

    naturally or dampen their emotional response to positive and negative social scenarios and associated self-beliefs. They were also given an established experimental task for comparison, involving reappraisal of negative affective picture stimuli, as well as a questionnaire of habitual ER strategies. BD...

  7. The "Alarmins" HMBG1 and IL-33 Downregulate Structural Skin Barrier Proteins and Impair Epidermal Growth

    NARCIS (Netherlands)

    Nygaard, U.; Bogaard, E.H.J. van den; Niehues, H.; Hvid, M.; Deleuran, M.; Johansen, C.; Vestergaard, C.

    2017-01-01

    The epidermal-derived +ACI-alarmins+ACI- high-mobility group box 1 (HMGB1) protein and interleukin-33 (IL-33) are upregulated in patients with atopic dermatitis. How-ever, their capacity as pro-inflammatory cytokines and their derived effects on skin barrier regulation are poorly elucidated. We

  8. Salmonella Typhimurium induces SPI-1 and SPI-2 regulated and strain dependent downregulation of MHC II expression on porcine alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Van Parys Alexander

    2012-06-01

    Full Text Available Abstract Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host’s immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig’s immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology.

  9. Separate enrichment analysis of pathways for up- and downregulated genes.

    Science.gov (United States)

    Hong, Guini; Zhang, Wenjing; Li, Hongdong; Shen, Xiaopei; Guo, Zheng

    2014-03-06

    Two strategies are often adopted for enrichment analysis of pathways: the analysis of all differentially expressed (DE) genes together or the analysis of up- and downregulated genes separately. However, few studies have examined the rationales of these enrichment analysis strategies. Using both microarray and RNA-seq data, we show that gene pairs with functional links in pathways tended to have positively correlated expression levels, which could result in an imbalance between the up- and downregulated genes in particular pathways. We then show that the imbalance could greatly reduce the statistical power for finding disease-associated pathways through the analysis of all-DE genes. Further, using gene expression profiles from five types of tumours, we illustrate that the separate analysis of up- and downregulated genes could identify more pathways that are really pertinent to phenotypic difference. In conclusion, analysing up- and downregulated genes separately is more powerful than analysing all of the DE genes together.

  10. Specific Language Impairment

    Science.gov (United States)

    ... Home » Health Info » Voice, Speech, and Language Specific Language Impairment On this page: What is specific language ... percent of children in kindergarten. What is specific language impairment? Specific language impairment (SLI) is a language ...

  11. Cortical Visual Impairment

    Science.gov (United States)

    ... Frequently Asked Questions Español Condiciones Chinese Conditions Cortical Visual Impairment En Español Read in Chinese What is cortical visual impairment? Cortical visual impairment (CVI) is a decreased ...

  12. All Vision Impairment

    Science.gov (United States)

    ... Prevalence Rates for Vision Impairment by Age and Race/Ethnicity Table for 2010 U.S. Age-Specific Prevalence ... Ethnicity 2010 Prevalence Rates of Vision Impairment by Race Table for 2010 Prevalence Rates of Vision Impairment ...

  13. T cell exhaustion and Interleukin 2 downregulation.

    Science.gov (United States)

    Balkhi, Mumtaz Y; Ma, Qiangzhong; Ahmad, Shazia; Junghans, Richard P

    2015-02-01

    T cells reactive to tumor antigens and viral antigens lose their reactivity when exposed to the antigen-rich environment of a larger tumor bed or viral load. Such non-responsive T cells are termed exhausted. T cell exhaustion affects both CD8+ and CD4+ T cells. T cell exhaustion is attributed to the functional impairment of T cells to produce cytokines, of which the most important may be Interleukin 2 (IL2). IL2 performs functions critical for the elimination of cancer cells and virus infected cells. In one such function, IL2 promotes CD8+ T cell and natural killer (NK) cell cytolytic activities. Other functions include regulating naïve T cell differentiation into Th1 and Th2 subsets upon exposure to antigens. Thus, the signaling pathways contributing to T cell exhaustion could be linked to the signaling pathways contributing to IL2 loss. This review will discuss the process of T cell exhaustion and the signaling pathways that could be contributing to T cell exhaustion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Internalization and down-regulation of the human epidermal growth factor receptor are regulated by the carboxyl-terminal tyrosines

    DEFF Research Database (Denmark)

    Helin, K; Beguinot, L

    1991-01-01

    The C terminus of the epidermal growth factor receptor (EGF-R) contains three tyrosines (Y1068, Y1148, and Y1173) which correspond to the major autophosphorylation sites. To investigate the role of the tyrosines in internalization and down-regulation of the EGF-R, mutational analysis was performed......-R in response to EGF showing a half-life of about 1 h. Degradation of the triple point mutant, however, was impaired and resulted in a half-life of 4 h in the presence of EGF. EGF-dependent down-regulation of surface receptors was decreased in the triple point mutant EGF-R as was internalization and degradation...... of EGF. The specific rate of internalization of the triple point mutant was reduced. By contrast, intracellular processing of ligand previously internalized at 20 degrees C was similar between wild type and mutant receptors. Taken together the data indicate that the delay in degradation observed in cells...

  15. Genetically Determined Insulin Resistance is Characterized by Down-Regulation of Mitochondrial Oxidative Metabolism in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas M; Skov, Vibe; Wojtaszewski, Jørgen

    2010-01-01

    mitochondrial dysfunction is a cause or consequence of insulin resistance remains to be clarified. In the present study, we tested the hypothesis that mitochondrial oxidative metabolism was down-regulated in skeletal muscle of patients with genetically determined insulin resistance. Skeletal muscle biopsies......Transcriptional profiling of skeletal muscle from patients with type 2 diabetes and high-risk individuals have demonstrated a co-ordinated down-regulation of oxidative phosphorylation (OxPhos) genes, suggesting a link between insulin resistance and mitochondrial dysfunction. However, whether...... Set Enrichment Analysis (GSEA) and Gene Map Annotator and Pathway Profiler (GenMAPP). In carriers of a INSR mutation reduced insulin-stimulated total and non-oxidative glucose disposal and impaired insulin signaling through Akt and glycogen synthase were associated with a co-ordinated down...

  16. Mycobacterium leprae downregulates the expression of PHEX in Schwann cells and osteoblasts

    Directory of Open Access Journals (Sweden)

    Sandra R Boiça Silva

    2010-08-01

    Full Text Available Neuropathy and bone deformities, lifelong sequelae of leprosy that persist after treatment, result in significant impairment to patients and compromise their social rehabilitation. Phosphate-regulating gene with homologies to endopeptidase on the X chromosome (PHEX is a Zn-metalloendopeptidase, which is abundantly expressed in osteoblasts and many other cell types, such as Schwann cells, and has been implicated in phosphate metabolism and X-linked rickets. Here, we demonstrate that Mycobacterium leprae stimulation downregulates PHEX transcription and protein expression in a human schwannoma cell line (ST88-14 and human osteoblast lineage. Modulation of PHEX expression was observed to a lesser extent in cells stimulated with other species of mycobacteria, but was not observed in cultures treated with latex beads or with the facultative intracellular bacterium Salmonella typhimurium. Direct downregulation of PHEX by M. leprae could be involved in the bone resorption observed in leprosy patients. This is the first report to describe PHEX modulation by an infectious agent.

  17. Coordinating Role of RXRα in Downregulating Hepatic Detoxification during Inflammation Revealed by Fuzzy-Logic Modeling.

    Directory of Open Access Journals (Sweden)

    Roland Keller

    2016-01-01

    Full Text Available During various inflammatory processes circulating cytokines including IL-6, IL-1β, and TNFα elicit a broad and clinically relevant impairment of hepatic detoxification that is based on the simultaneous downregulation of many drug metabolizing enzymes and transporter genes. To address the question whether a common mechanism is involved we treated human primary hepatocytes with IL-6, the major mediator of the acute phase response in liver, and characterized acute phase and detoxification responses in quantitative gene expression and (phospho-proteomics data sets. Selective inhibitors were used to disentangle the roles of JAK/STAT, MAPK, and PI3K signaling pathways. A prior knowledge-based fuzzy logic model comprising signal transduction and gene regulation was established and trained with perturbation-derived gene expression data from five hepatocyte donors. Our model suggests a greater role of MAPK/PI3K compared to JAK/STAT with the orphan nuclear receptor RXRα playing a central role in mediating transcriptional downregulation. Validation experiments revealed a striking similarity of RXRα gene silencing versus IL-6 induced negative gene regulation (rs = 0.79; P<0.0001. These results concur with RXRα functioning as obligatory heterodimerization partner for several nuclear receptors that regulate drug and lipid metabolism.

  18. Cornelia de Lange Syndrome: NIPBL haploinsufficiency downregulates canonical Wnt pathway in zebrafish embryos and patients fibroblasts.

    Science.gov (United States)

    Pistocchi, A; Fazio, G; Cereda, A; Ferrari, L; Bettini, L R; Messina, G; Cotelli, F; Biondi, A; Selicorni, A; Massa, V

    2013-10-17

    Cornelia de Lange Syndrome is a severe genetic disorder characterized by malformations affecting multiple systems, with a common feature of severe mental retardation. Genetic variants within four genes (NIPBL (Nipped-B-like), SMC1A, SMC3, and HDAC8) are believed to be responsible for the majority of cases; all these genes encode proteins that are part of the 'cohesin complex'. Cohesins exhibit two temporally separated major roles in cells: one controlling the cell cycle and the other involved in regulating the gene expression. The present study focuses on the role of the zebrafish nipblb paralog during neural development, examining its expression in the central nervous system, and analyzing the consequences of nipblb loss of function. Neural development was impaired by the knockdown of nipblb in zebrafish. nipblb-loss-of-function embryos presented with increased apoptosis in the developing neural tissues, downregulation of canonical Wnt pathway genes, and subsequent decreased Cyclin D1 (Ccnd1) levels. Importantly, the same pattern of canonical WNT pathway and CCND1 downregulation was observed in NIPBL-mutated patient-specific fibroblasts. Finally, chemical activation of the pathway in nipblb-loss-of-function embryos rescued the adverse phenotype and restored the physiological levels of cell death.

  19. Cortical visual impairment

    OpenAIRE

    Koželj, Urša

    2013-01-01

    In this thesis we discuss cortical visual impairment, diagnosis that is in the developed world in first place, since 20 percent of children with blindness or low vision are diagnosed with it. The objectives of the thesis are to define cortical visual impairment and the definition of characters suggestive of the cortical visual impairment as well as to search for causes that affect the growing diagnosis of cortical visual impairment. There are a lot of signs of cortical visual impairment. ...

  20. HIV-1 Nef mutations abrogating downregulation of CD4 affect other Nef functions and show reduced pathogenicity in transgenic mice

    International Nuclear Information System (INIS)

    Hanna, Zaher; Priceputu, Elena; Hu, Chunyan; Vincent, Patrick; Jolicoeur, Paul

    2006-01-01

    HIV-1 Nef has the ability to downmodulate CD4 cell surface expression. Several studies have shown that CD4 downregulation is required for efficient virus replication and high infectivity. However, the pathophysiological relevance of this phenomenon in vivo, independently of its role in sustaining high virus loads, remains unclear. We studied the impact of the CD4 downregulation function of Nef on its pathogenesis in vivo, in the absence of viral replication, in the CD4C/HIV transgenic (Tg) mouse model. Two independent Nef mutants (RD35/36AA and D174K), known to abrogate CD4 downregulation, were tested in Tg mice. Flow cytometry analysis showed that downregulation of murine CD4 was severely decreased or abrogated on Tg T cells expressing respectively Nef RD35/36AA and Nef D174K . Similarly, the severe depletion of double-positive CD4 + CD8 + and of single-positive CD4 + CD8 - thymocytes, usually observed with Nef Wt , was not detected in Nef RD35/36AA and Nef D174K Tg mice. However, both mutant Tg mice showed a partial depletion of peripheral CD4 + T cells. This was accompanied, as previously reported for Net Wt Tg mice, by the presence of an activated/memory-like phenotype (CD69 + , CD25 + , CD44 + , CD45RB Low , CD62 Low ) of CD4 + T cells expressing Nef RD35/36AA and to a lesser extent Nef D174K . In addition, both mutants retained the ability to block CD4 + T cell proliferation in vitro after anti-CD3 stimulation, but not to enhance apoptosis/death of CD4 + T cells. Therefore, it appears that Nef-mediated CD4 downregulation is associated with thymic defects, but segregates independently of the activated/memory-like phenotype, of the partial depletion and of the impaired in vitro proliferation of peripheral CD4 + T cells. Histopathological assessment revealed the total absence of or decrease severity and frequency of organ AIDS-like diseases (lung, heart and kidney pathologies) in respectively Nef RD35/36AA and Nef D174K Tg mice, relative to those developing in

  1. Visual impairment in the hearing impaired students.

    Science.gov (United States)

    Gogate, Parikshit; Rishikeshi, Nikhil; Mehata, Reshma; Ranade, Satish; Kharat, Jitesh; Deshpande, Madan

    2009-01-01

    Ocular problems are more common in children with hearing problems than in normal children. Neglected visual impairment could aggravate educational and social disability. To detect and treat visual impairment, if any, in hearing-impaired children. Observational, clinical case series of hearing-impaired children in schools providing special education. Hearing-impaired children in selected schools underwent detailed visual acuity testing, refraction, external ocular examination and fundoscopy. Ocular motility testing was also performed. Teachers were sensitized and trained to help in the assessment of visual acuity using Snellen's E charts. Refractive errors and squint were treated as per standard practice. Excel software was used for data entry and SSPS for analysis. The study involved 901 hearing-impaired students between four and 21 years of age, from 14 special education schools. A quarter of them (216/901, 24%) had ocular problems. Refractive errors were the most common morbidity 167(18.5%), but only 10 children were using appropriate spectacle correction at presentation. Fifty children had visual acuity less than 20/80 at presentation; after providing refractive correction, this number reduced to three children, all of whom were provided low-vision aids. Other common conditions included strabismus in 12 (1.3%) children, and retinal pigmentary dystrophy in five (0.6%) children. Ocular problems are common in hearing-impaired children. Screening for ocular problems should be made mandatory in hearing-impaired children, as they use their visual sense to compensate for the poor auditory sense.

  2. Downregulation of ABCD1 in human renal cell carcinoma.

    Science.gov (United States)

    Hour, Tzyh-Chyuan; Kuo, Yi-Zih; Liu, Guang-Yan; Kang, Wang-Yi; Huang, Chao-Yuan; Tsai, Yu-Chieh; Wu, Wen-Jeng; Huang, Shu-Pin; Pu, Yeong-Shiau

    2009-01-01

    Renal cell carcinoma (RCC) is the most common malignant tumor of the kidney. Delayed diagnosis may result in progression and metastasis. Markers for early detection of RCC are lacking. The ATP-binding cassette transporter D1 (ABCD1) is located in the human peroxisome membrane. Its mutation causes X-linked adrenoleukodystrophy (X-ALD), a peroxisomal disorder affecting lipid storage. The role of ABCD1 in human renal tumorigenesis was unclear. In this study, three pairs of RCC tissues were examined by cDNA microarray and data suggested that ABCD1 mRNA is downregulated. Downregulation of ABCD1 expression was confirmed by real-time PCR. ABCD1 expression was also downregulated in four renal cancer cell lines compared to immortalized benign renal tubular cells. ABCD1 mRNA and protein expression levels assessed by immunohistochemistry in the RCC tissues were similar between genders, tumor grades, and tumor stages. Immunohistochemical assays also showed that ABCD1 expression was significantly higher in normal than in cancerous tissues (pABCD1 downregulation may be involved in human renal tumorigenesis.

  3. HIV-1 Vpu Mediates HLA-C Downregulation.

    Science.gov (United States)

    Apps, Richard; Del Prete, Gregory Q; Chatterjee, Pramita; Lara, Abigail; Brumme, Zabrina L; Brockman, Mark A; Neil, Stuart; Pickering, Suzanne; Schneider, Douglas K; Piechocka-Trocha, Alicja; Walker, Bruce D; Thomas, Rasmi; Shaw, George M; Hahn, Beatrice H; Keele, Brandon F; Lifson, Jeffrey D; Carrington, Mary

    2016-05-11

    Many pathogens evade cytotoxic T lymphocytes (CTLs) by downregulating HLA molecules on infected cells, but the loss of HLA can trigger NK cell-mediated lysis. HIV-1 is thought to subvert CTLs while preserving NK cell inhibition by Nef-mediated downregulation of HLA-A and -B but not HLA-C molecules. We find that HLA-C is downregulated by most primary HIV-1 clones, including transmitted founder viruses, in contrast to the laboratory-adapted NL4-3 virus. HLA-C reduction is mediated by viral Vpu and reduces the ability of HLA-C restricted CTLs to suppress viral replication in CD4+ cells in vitro. HLA-A/B are unaffected by Vpu, and primary HIV-1 clones vary in their ability to downregulate HLA-C, possibly in response to whether CTLs or NK cells dominate immune pressure through HLA-C. HIV-2 also suppresses HLA-C expression through distinct mechanisms, underscoring the immune pressure HLA-C exerts on HIV. This viral immune evasion casts new light on the roles of CTLs and NK cells in immune responses against HIV. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Biotrophy-specific downregulation of siderophore biosynthesis in Colletotrichum graminicola is required for modulation of immune responses of maize.

    Science.gov (United States)

    Albarouki, Emad; Schafferer, Lukas; Ye, Fanghua; von Wirén, Nicolaus; Haas, Hubertus; Deising, Holger B

    2014-04-01

    The hemibiotrophic maize pathogen Colletotrichum graminicola synthesizes one intracellular and three secreted siderophores. eGFP fusions with the key siderophore biosynthesis gene, SID1, encoding l-ornithine-N(5) -monooxygenase, suggested that siderophore biosynthesis is rigorously downregulated specifically during biotrophic development. In order to investigate the role of siderophores during vegetative development and pathogenesis, SID1, which is required for synthesis of all siderophores, and the non-ribosomal peptide synthetase gene NPS6, synthesizing secreted siderophores, were deleted. Mutant analyses revealed that siderophores are required for vegetative growth under iron-limiting conditions, conidiation, ROS tolerance, and cell wall integrity. Δsid1 and Δnps6 mutants were hampered in formation of melanized appressoria and impaired in virulence. In agreement with biotrophy-specific downregulation of siderophore biosynthesis, Δsid1 and Δnps6 strains were not affected in biotrophic development, but spread of necrotrophic hyphae was reduced. To address the question why siderophore biosynthesis is specifically downregulated in biotrophic hyphae, maize leaves were infiltrated with siderophores. Siderophore infiltration alone did not induce defence responses, but formation of biotrophic hyphae in siderophore-infiltrated leaves caused dramatically increased ROS formation and transcriptional activation of genes encoding defence-related peroxidases and PR proteins. These data suggest that fungal siderophores modulate the plant immune system. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  5. Up-regulation of the multidrug resistance genes, Mrp1 and Mdr1b, and down-regulation of the organic anion transporter, Mrp2, and the bile salt transporter, Spgp, in endotoxemic rat liver

    NARCIS (Netherlands)

    Vos, T. A.; Hooiveld, G. J.; Koning, H.; Childs, S.; Meijer, D. K.; Moshage, H.; Jansen, P. L.; Müller, M.

    1998-01-01

    Endotoxin-induced cholestasis is mainly caused by an impaired canalicular secretion. Mrp2, the canalicular multispecific organic anion transporter, is strongly down-regulated in this situation, and canalicular bile salt secretion is also reduced. We hypothesized that other adenosine

  6. Endocrine gland derived-VEGF is down-regulated in human pituitary adenoma.

    Science.gov (United States)

    Raica, Marius; Coculescu, Mihail; Cimpean, Anca Maria; Ribatti, Domenico

    2010-10-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic molecule restricted to endocrine glands and, particularly, to steroid-secreting cells. The expression of EG-VEGF and its significance in human adenohypophysis in physiological and pathological conditions is still unknown. In this study, we investigated by immunohistochemistry the expression of EG-VEGF in 2 samples of normal adenohypophysis and 43 bioptic samples of pituitary adenoma. Moreover, the expression of growth hormone (GH), prolactin (PRL), follicle-stimulating hormone (FSH), luteinizing hormone (LH), thyroid-stimulating hormone (TSH) and adrenocorticoprophic hormone (ACTH) were also estimated. The results of this study for the first time demonstrate a down-regulation of EG-VEGF expression in human pituitary adenoma as compared to normal adenohypophysis, suggesting an impaired function of the neoplastic cells in terms of hormone release in the blood stream, as a consequence of impaired tumor angiogenesis in the tumor. On the basis of our data showing a marked decrease in the expression of EG-VEGF in pituitary adenoma, with the exception of LH-secreting adenomas, we suggest that LH might be involved in the induction of EG-VEGF secretion.

  7. Mild Cognitive Impairment (MCI)

    Science.gov (United States)

    Mild cognitive impairment (MCI) Overview Mild cognitive impairment (MCI) is an intermediate stage between the expected cognitive decline of normal aging and the more-serious decline of dementia. It can involve ...

  8. Mild Cognitive Impairment (MCI)

    Science.gov (United States)

    Mild cognitive impairment (MCI) Overview Mild cognitive impairment (MCI) is an intermediate stage between the expected cognitive decline of normal aging and the more-serious decline of dementia. It ...

  9. Lactogenic differentiation of HC11 cells is not accompanied by downregulation of AP-2 transcription factor genes

    Directory of Open Access Journals (Sweden)

    Schorle Hubert

    2008-06-01

    Full Text Available Abstract Background During pregnancy the mammary epithelium undergoes a complex developmental process which culminates in the generation of the milk-secreting epithelium. Secretory epithelial cells display lactogenic differentiation which is characterized by the expression of milk protein genes, such as beta-casein or whey acidic protein (WAP. Transcription factors AP-2alpha and AP-2gamma are downregulated during lactation, and their overexpression in transgenic mice impaired the secretory differentiation of the mammary epithelium, resulting in lactation failure. To explore whether the downregulation of AP-2alpha and AP-2gamma is of functional significance for lactogenic differentiation, we analyzed the expression of the AP-2 family members during the lactogenic differentiation of HC11 mammary epithelial cells in vitro. Differentiation of HC11 cells was induced following established protocols by applying the lactogenic hormones prolactin, dexamethasone and insulin. Findings HC11 cells express all AP-2 family members except AP-2delta. Using RT-PCR we could not detect a downregulation of any of these genes during the lactogenic differentiation of HC11 cells in vitro. This finding was confirmed for AP-2alpha and AP-2gamma using Northern analysis. Differentiating HC11 cells displayed lower expression levels of milk protein genes than mammary glands of mid-pregnant or lactating mice. Conclusion The extent of lactogenic differentiation of HC11 cells in vitro is limited compared to mammary epithelium undergoing secretory differentiation in vivo. Downregulation of AP-2 transcription factor genes is not required for lactogenic differentiation of HC11 cells but may functionally be involved in aspects of lactogenic differentiation in vivo that are not reflected by the HC11 system.

  10. Memory Impairment in Children with Language Impairment

    Science.gov (United States)

    Baird, Gillian; Dworzynski, Katharina; Slonims, Vicky; Simonoff, Emily

    2010-01-01

    Aim: The aim of this study was to assess whether any memory impairment co-occurring with language impairment is global, affecting both verbal and visual domains, or domain specific. Method: Visual and verbal memory, learning, and processing speed were assessed in children aged 6 years to 16 years 11 months (mean 9y 9m, SD 2y 6mo) with current,…

  11. Visual impairment in the hearing impaired students

    Directory of Open Access Journals (Sweden)

    Gogate Parikshit

    2009-01-01

    Full Text Available Background : Ocular problems are more common in children with hearing problems than in normal children. Neglected visual impairment could aggravate educational and social disability. Aim : To detect and treat visual impairment, if any, in hearing-impaired children. Setting and Design : Observational, clinical case series of hearing-impaired children in schools providing special education. Materials and Methods : Hearing-impaired children in selected schools underwent detailed visual acuity testing, refraction, external ocular examination and fundoscopy. Ocular motility testing was also performed. Teachers were sensitized and trained to help in the assessment of visual acuity using Snellen′s E charts. Refractive errors and squint were treated as per standard practice. Statistical Analysis : Excel software was used for data entry and SSPS for analysis. Results : The study involved 901 hearing-impaired students between four and 21 years of age, from 14 special education schools. A quarter of them (216/901, 24% had ocular problems. Refractive errors were the most common morbidity 167(18.5%, but only 10 children were using appropriate spectacle correction at presentation. Fifty children had visual acuity less than 20/80 at presentation; after providing refractive correction, this number reduced to three children, all of whom were provided low-vision aids. Other common conditions included strabismus in 12 (1.3% children, and retinal pigmentary dystrophy in five (0.6% children. Conclusion : Ocular problems are common in hearing-impaired children. Screening for ocular problems should be made mandatory in hearing-impaired children, as they use their visual sense to compensate for the poor auditory sense.

  12. DMBT1 expression is down-regulated in breast cancer

    DEFF Research Database (Denmark)

    Braidotti, P; Nuciforo, P G; Mollenhauer, J

    2004-01-01

    and hyperplastic mammary cells positive with DMBTh12 were also MCM5-positive. CONCLUSIONS: The redistribution and up-regulation of DMBT1 in normal and hyperplastic tissues flanking malignant tumours and its down-regulation in carcinomas suggests a potential role in breast cancer. Moreover, the concomitant......BACKGROUND: We studied the expression of DMBT1 (deleted in malignant brain tumor 1), a putative tumor suppressor gene, in normal, proliferative, and malignant breast epithelium and its possible relation to cell cycle. METHODS: Sections from 17 benign lesions and 55 carcinomas were immunostained...... expression was down-regulated in the cancerous lesions compared to the normal and/or hyperplastic epithelium adjacent to carcinomas (3/55 positive carcinomas versus 33/42 positive normal/hyperplastic epithelia; p = 0.0001). In 72% of cases RT-PCR confirmed immunohistochemical results. Most of normal...

  13. Activity-induced and developmental downregulation of the Nogo receptor

    DEFF Research Database (Denmark)

    Josephson, Anna; Trifunovski, Alexandra; Schéele, Camilla

    2003-01-01

    a significant downregulation of NgR mRNA in cortex, hippocampus and the dentate gyrus. NgR mRNA levels decreased from high to low expression in spinal cord and ganglia during the first week of life. No robust regulation of NgR was observed in the spinal cord following spinal cord injury. Together, our data show...... postnatal period using real-time PCR. Strikingly, kainic acid led to a strong transient downregulation of NgR mRNA levels in gyrus dentatus, hippocampus, and neocortex during a time when BDNF mRNA was upregulated instead. Animals exposed to running wheels for 3 and 7, but not 1 or 21, days showed...

  14. Overexpression of Oct4 suppresses the metastatic potential of breast cancer cells via Rnd1 downregulation.

    Science.gov (United States)

    Shen, Long; Qin, Kunhua; Wang, Dekun; Zhang, Yan; Bai, Nan; Yang, Shengyong; Luo, Yunping; Xiang, Rong; Tan, Xiaoyue

    2014-11-01

    Although Oct4 is known as a critical transcription factor involved in maintaining "stemness", its role in tumor metastasis is still controversial. Herein, we overexpressed and silenced Oct4 expression in two breast cancer cell lines, MDA-MB-231 and 4T1, separately. Our data showed that ectopic overexpression of Oct4 suppressed cell migration and invasion in vitro and the formation of metastatic lung nodules in vivo. Conversely, Oct4 downregulation increased the metastatic potential of breast cancer cells both in vitro and in vivo. Furthermore, we identified Rnd1 as the downstream target of Oct4 by ribonucleic acid sequencing (RNA-seq) analysis, which was significantly downregulated upon Oct4 overexpression. Chromatin immunoprecipitation assays revealed the binding of Oct4 to the promoter region of Rnd1 by ectopic overexpression of Oct4. Dual luciferase assays indicated that Oct4 overexpression suppressed transcriptional activity of the Rnd1 promoter. Moreover, overexpression of Rnd1 partially rescued the inhibitory effects of Oct4 on the migration and invasion of breast cancer cells. Overexpression of Rnd1 counteracted the influence of Oct4 on the formation of cell adhesion and lamellipodia, which implied a potential underlying mechanism involving Rnd1. In addition, we also found that overexpression of Oct4 led to an elevation of E-cadherin expression, even in 4T1 cells that possess a relatively high basal level of E-cadherin. Rnd1 overexpression impaired the promoting effects of Oct4 on E-cadherin expression in MDA-MB-231 cells. These results suggest that Oct4 affects the metastatic potential of breast cancer cells through Rnd1-mediated effects that influence cell motility and E-cadherin expression. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Tumour MHC class I downregulation and immunotherapy (Review)

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2003-01-01

    Roč. 10, č. 6 (2003), s. 2005-2008 ISSN 1021-335X R&D Projects: GA MZd NC7148; GA ČR GA301/01/0985; GA AV ČR IAA5052203 Institutional research plan: CEZ:AV0Z5052915 Keywords : tumour vaccines * MHC class I downregulation Subject RIV: FD - Oncology ; Hematology Impact factor: 1.256, year: 2003

  16. Downregulation of angiotensin II type 1 receptors during sepsis.

    Science.gov (United States)

    Bucher, M; Ittner, K P; Hobbhahn, J; Taeger, K; Kurtz, A

    2001-08-01

    Our study aimed to characterize the mechanisms underlying the attenuated cardiovascular responsiveness toward the renin-angiotensin system during sepsis. For this purpose, we determined the effects of experimental Gram-negative and Gram-positive sepsis in rats. We found that sepsis led to a ubiquitous upregulation of NO synthase isoform II expression and to pronounced hypotension. Despite increased plasma renin activity and plasma angiotensin (Ang) II levels, plasma aldosterone concentrations were normal, and the blood pressure response to exogenous Ang II was markedly diminished in septic rats. Mimicking the fall of blood pressure during sepsis by short-term infusion of the NO donor sodium nitroprusside in normal rats did not alter their blood pressure response to exogenous Ang II. Therefore, we considered the possibility of an altered expression of Ang II receptors during sepsis. It turned out that Ang II type 1 receptor expression was markedly downregulated in all organs of septic rats. Further in vitro studies with rat renal mesangial cells showed that NO and a combination of proinflammatory cytokines (interleukin-1beta, tumor necrosis factor-alpha, and interferon-gamma) downregulated Ang II type 1 receptor expression in a synergistic fashion. In summary, our data suggest that sepsis causes a systemic downregulation of Ang II type 1 receptors that is likely mediated by proinflammatory cytokines and NO. We suggest that this downregulation of Ang II type 1 receptors is the main reason for the attenuated responsiveness of blood pressure and of aldosterone formation to Ang II and, therefore, contributes to the characteristic septic shock.

  17. Down-regulation of Smad3 accelerates palatal wound repair.

    Science.gov (United States)

    Yoneda, N; Yasue, A; Watanabe, T; Tanaka, E

    2013-08-01

    Smad3-deficient mice exhibit accelerated re-epithelialization and tissue remodeling during palatal wound repair. In addition, transforming growth factor beta 1 (TGF-β1) and other inflammatory factors are down-regulated compared with those in wild-type mice. The aim of this study was to examine whether targeting of Smad3 with small interfering RNA (siRNA) accelerates wound-healing and inhibits wound contraction in palatal mucoperiosteal wounds. An initial histological examination of wound closure in mouse palates treated with Smad3-targeted siRNA vs. a scrambled siRNA found that wound-healing was accelerated when levels of Smad3 were decreased. Furthermore, with real-time PCR, mRNA levels of Smad3, TGF-β1, monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1α (MIP-1α) were found to be significantly down-regulated in palatal tissue treated with Smad3-targeted siRNA vs. a control siRNA. Protein and mRNA levels of α-smooth-muscle actin (α-SMA), type I collagen, and fibronectin were also lower in palates treated with Smad3-targeted siRNA vs. control siRNA. Taken together, these results indicate that down-regulation of Smad3 expression by siRNA can accelerate wound-healing and may inhibit wound contraction. Therefore, siRNA-targeted inhibition of Smad3 may represent a valuable therapeutic tool for palatal mucoperiosteal wound-healing.

  18. Copper downregulates neprilysin activity through modulation of neprilysin degradation.

    Science.gov (United States)

    Li, Mi; Sun, Miao; Liu, Yi; Yu, Jia; Yang, Huan; Fan, Dongsheng; Chui, Dehua

    2010-01-01

    Copper plays a central role in conserved processes such as respiration, and in highly specialized processes, such as protein modification. The metalloprotease neprilysin (NEP) degrades a variety of bioactive peptides and is involved in many physiological processes. However, very little is known about the regulation of NEP activity. In the current study, we focused on the effect of Cu2+ on the enzymatic activity and protein stability of NEP. Using mouse neuroblastoma N2a cells, we found that the enzymatic activity of NEP was decreased by treatment with Cu2+ in a dose- and time-dependent manner. In our investigation of the mechanism by which Cu2+ downregulates NEP enzyme activity, we found that treatment with Cu2+ caused a decrease in the level of NEP as determined by Western blot analysis. Quantitative analysis of NEP mRNA with RT-PCR excluded the possibility that Cu2+ downregulates NEP protein at the gene transcription level. Moreover, specific proteasome inhibitors, MG132 and lactacystin, blocked the turnover of NEP, whereas inhibitors of lysosome had no significant effect, suggesting that Cu2+-induced degradation of NEP is via a proteasome pathway. Taken together, our data suggest that copper downregulates NEP activity through modulation of NEP protein degradation.

  19. Hypertension and cognitive impairment

    Directory of Open Access Journals (Sweden)

    Su-hang SHANG

    2015-08-01

    Full Text Available As a leading risk factor for stroke, hypertension is also an important risk factor for cognitive impairment. Midlife hypertension doubles the risk of dementia later in life and accelerates the progression of dementia, but the correlation between late-life blood pressure and cognitive impairment is still unclear. Beside blood pressure, the effect of pulse pressure, blood pressure variability and circadian rhythm of blood pressure on cognition is currently attracting more and more attention. Hypertension induces alterations in cerebrovascular structure and functions, which lead to brain lesions including cerebral atrophy, stroke, lacunar infarcts, diffuse white matter damage, microinfarct and microhemorrhage, resuling in cognitive impairment. Hypertension also impairs the metabolism and transfer of amyloid-β protein (Aβ, thus accelerates cognitive impairment. Individualized therapy, focusing on characteristics of hypertensive patients, may be a good choice for prevention and treatment of cognitive impairment. DOI: 10.3969/j.issn.1672-6731.2015.08.004

  20. Autosomal recessive progressive myoclonus epilepsy due to impaired ceramide synthesis.

    Science.gov (United States)

    Ferlazzo, Edoardo; Striano, Pasquale; Italiano, Domenico; Calarese, Tiziana; Gasparini, Sara; Vanni, Nicola; Fruscione, Floriana; Genton, Pierre; Zara, Federico

    2016-09-01

    Autosomal recessive progressive myoclonus epilepsy due to impaired ceramide synthesis is an extremely rare condition, so far reported in a single family of Algerian origin presenting an unusual, severe form of progressive myoclonus epilepsy characterized by myoclonus, generalized tonic-clonic seizures and moderate to severe cognitive impairment, with probable autosomal recessive inheritance. Disease onset was between 6 and 16 years of age. Genetic study allowed to identify a homozygous nonsynonymous mutation in CERS1, the gene encoding ceramide synthase 1, a transmembrane protein of the endoplasmic reticulum (ER), catalyzes the biosynthesis of C18-ceramides. The mutation decreased C18-ceramide levels. In addition, downregulation of CerS1 in neuroblastoma cell line showed activation of ER stress response and induction of proapoptotic pathways. This observation demonstrates that impairment of ceramide biosynthesis underlies neurodegeneration in humans.

  1. Torcetrapib impairs endothelial function in hypertension.

    Science.gov (United States)

    Simic, Branko; Hermann, Matthias; Shaw, Sidney G; Bigler, Laurent; Stalder, Urs; Dörries, Carola; Besler, Christian; Lüscher, Thomas F; Ruschitzka, Frank

    2012-07-01

    A marked increase in HDL notwithstanding, the cholesterol ester transfer protein (CETP) inhibitor torcetrapib was associated with an increase in all-cause mortality in the ILLUMINATE trial. As underlying mechanisms remain elusive, the present study was designed to delineate potential off-target effects of torcetrapib. Spontaneously hypertensive rats (SHRs) and Wistar-Kyoto (WKY) rats were treated with torcetrapib (100 mg/kg/day; SHR-T and WKY-T) or placebo (SHR-P and WKY-P) for 3 weeks. Blood pressure transiently increased during the first 3 days of torcetrapib administration in SHRs and returned to baseline thereafter despite continued drug administration. Acetylcholine-induced endothelium-dependent relaxations of aortic rings were markedly impaired, and endothelial nitric oxide synthase (eNOS) mRNA and protein were down-regulated after 3 weeks of torcetrapib treatment in SHR (P risk is exposed to these compounds.

  2. Emotion down-regulation diminishes cognitive control: a neurophysiological investigation.

    Science.gov (United States)

    Hobson, Nicholas M; Saunders, Blair; Al-Khindi, Timour; Inzlicht, Michael

    2014-12-01

    Traditional models of cognitive control have explained performance monitoring as a "cold" cognitive process, devoid of emotion. In contrast to this dominant view, a growing body of clinical and experimental research indicates that cognitive control and its neural substrates, in particular the error-related negativity (ERN), are moderated by affective and motivational factors, reflecting the aversive experience of response conflict and errors. To add to this growing line of research, here we use the classic emotion regulation paradigm-a manipulation that promotes the cognitive reappraisal of emotion during task performance-to test the extent to which affective variation in the ERN is subject to emotion reappraisal, and also to explore how emotional regulation of the ERN might influence behavioral performance. In a within-subjects design, 41 university students completed 3 identical rounds of a go/no-go task while electroencephalography was recorded. Reappraisal instructions were manipulated so that participants either down-regulated or up-regulated emotional involvement, or completed the task normally, without engaging any reappraisal strategy (control). Results showed attenuated ERN amplitudes when participants down-regulated their emotional experience. In addition, a mediation analysis revealed that the association between reappraisal style and attenuated ERN was mediated by changes in reported emotion ratings. An indirect effects model also revealed that down-regulation predicted sensitivity of error-monitoring processes (difference ERN), which, in turn, predicted poorer task performance. Taken together, these results suggest that the ERN appears to have a strong affective component that is associated with indices of cognitive control and behavioral monitoring.

  3. Criteria for driver impairment

    NARCIS (Netherlands)

    Brookhuis, K.A.; De Waard, D.; Fairclough, S.H

    2003-01-01

    Most traffic accidents can be attributed to driver impairment, e.g. inattention, fatigue, intoxication, etc. It is now technically feasible to monitor and diagnose driver behaviour with respect to impairment with the aid of a limited number of in-vehicle sensors. However, a valid framework for the

  4. Downregulation of GNA13-ERK network in prefrontal cortex of schizophrenia brain identified by combined focused and targeted quantitative proteomics.

    Science.gov (United States)

    Hirayama-Kurogi, Mio; Takizawa, Yohei; Kunii, Yasuto; Matsumoto, Junya; Wada, Akira; Hino, Mizuki; Akatsu, Hiroyasu; Hashizume, Yoshio; Yamamoto, Sakon; Kondo, Takeshi; Ito, Shingo; Tachikawa, Masanori; Niwa, Shin-Ichi; Yabe, Hirooki; Terasaki, Tetsuya; Setou, Mitsutoshi; Ohtsuki, Sumio

    2017-03-31

    Schizophrenia is a disabling mental illness associated with dysfunction of the prefrontal cortex, which affects cognition and emotion. The purpose of the present study was to identify altered molecular networks in the prefrontal cortex of schizophrenia patients by comparing protein expression levels in autopsied brains of patients and controls, using a combination of targeted and focused quantitative proteomics. We selected 125 molecules possibly related to schizophrenia for quantification by knowledge-based targeted proteomics. Among the quantified molecules, GRIK4 and MAO-B were significantly decreased in plasma membrane and cytosolic fractions, respectively, of prefrontal cortex. Focused quantitative proteomics identified 15 increased and 39 decreased proteins. Network analysis identified "GNA13-ERK1-eIF4G2 signaling" as a downregulated network, and proteins involved in this network were significantly decreased. Furthermore, searching downstream of eIF4G2 revealed that eIF4A1/2 and CYFIP1 were decreased, suggesting that downregulation of the network suppresses expression of CYFIP1, which regulates actin remodeling and is involved in axon outgrowth and spine formation. Downregulation of this signaling seems likely to impair axon formation and synapse plasticity of neuronal cells, and could be associated with development of cognitive impairment in the pathology of schizophrenia. The present study compared the proteome of the prefrontal cortex between schizophrenia patients and healthy controls by means of targeted proteomics and global quantitative proteomics. Targeted proteomics revealed that GRIK4 and MAOB were significantly decreased among 125 putatively schizophrenia-related proteins in prefrontal cortex of schizophrenia patients. Global quantitative proteomics identified 54 differentially expressed proteins in schizophrenia brains. The protein profile indicates attenuation of "GNA13-ERK signaling" in schizophrenia brain. In particular, EIF4G2 and CYFIP1

  5. Down-regulation of Wnt10a affects odontogenesis and proliferation in mesenchymal cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: Ly10160624@163.com; Han, Dong, E-mail: Donghan@bjmu.edu.cn; Wang, Lei, E-mail: wanglei_dentist@163.com; Feng, Hailan, E-mail: kqfenghl@bjmu.edu.cn

    2013-05-17

    Highlights: •Down-regulation of Wnt10a in dental mesenchymal cells impairs odontogenesis of reassociated tooth germs. •Dspp is down- and up-regulated after Wnt10a-knockdown and overexpression in dental mesenchymal cells. •Down-regulation of Wnt10a inhibits proliferation of dental mesenchymal cells. -- Abstract: The WNT10a mutation has been found in patients with abnormal odontogenesis. In mice, Wnt10a expression is found in the tooth germ, but its role has not yet been elucidated. We aimed to investigate the role of Wnt10a in odontogenesis. Mesenchymal cells of the first mandibular molar germ at the bell stage were isolated, transfected with Wnt10a SiRNA or plasmid, and reassociated with epithelial part of the molar germ. Scrambled SiRNA or empty vector was used in the control group. The reassociated tooth germs were transplanted into mice subrenal capsules. After gene modification, dental mesenchymal cells cultured in vitro were checked for cell proliferation and the expression of Dspp was examined. All 12 reassociated tooth germs in the control group resumed odontogenesis, while only 5 of 12 in the Wnt10a knockdown group developed into teeth. After Wnt10a knockdown, the mesenchymal cells cultured in vitro presented repressed proliferation. Wnt10a knockdown and overexpression led to both down- and up-regulation of Dspp. We conclude that the down-regulation of Wnt10a impairs odontogensis and cell proliferation, and that Wnt10a regulates Dspp expression in mesenchymal cells. These findings help to elucidate the mechanism of abnormal tooth development in patients with the WNT10A mutation.

  6. Down-regulation of Wnt10a affects odontogenesis and proliferation in mesenchymal cells

    International Nuclear Information System (INIS)

    Liu, Yang; Han, Dong; Wang, Lei; Feng, Hailan

    2013-01-01

    Highlights: •Down-regulation of Wnt10a in dental mesenchymal cells impairs odontogenesis of reassociated tooth germs. •Dspp is down- and up-regulated after Wnt10a-knockdown and overexpression in dental mesenchymal cells. •Down-regulation of Wnt10a inhibits proliferation of dental mesenchymal cells. -- Abstract: The WNT10a mutation has been found in patients with abnormal odontogenesis. In mice, Wnt10a expression is found in the tooth germ, but its role has not yet been elucidated. We aimed to investigate the role of Wnt10a in odontogenesis. Mesenchymal cells of the first mandibular molar germ at the bell stage were isolated, transfected with Wnt10a SiRNA or plasmid, and reassociated with epithelial part of the molar germ. Scrambled SiRNA or empty vector was used in the control group. The reassociated tooth germs were transplanted into mice subrenal capsules. After gene modification, dental mesenchymal cells cultured in vitro were checked for cell proliferation and the expression of Dspp was examined. All 12 reassociated tooth germs in the control group resumed odontogenesis, while only 5 of 12 in the Wnt10a knockdown group developed into teeth. After Wnt10a knockdown, the mesenchymal cells cultured in vitro presented repressed proliferation. Wnt10a knockdown and overexpression led to both down- and up-regulation of Dspp. We conclude that the down-regulation of Wnt10a impairs odontogensis and cell proliferation, and that Wnt10a regulates Dspp expression in mesenchymal cells. These findings help to elucidate the mechanism of abnormal tooth development in patients with the WNT10A mutation

  7. Downregulation of integrin β4 decreases the ability of airway epithelial cells to present antigens.

    Directory of Open Access Journals (Sweden)

    Chi Liu

    Full Text Available Airway epithelial cells have been demonstrated to be accessory antigen presentation cells (APC capable of activating T cells and may play an important role in the development of allergic airway inflammation of asthma. In asthmatic airways, loss of expression of the adhesion molecule integrin β4 (ITGB4 and an increase in Th2 inflammation bias has been observed in our previous study. Given that ITGB4 is engaged in multiple signaling pathways, we studied whether disruption of ITGB4-mediated cell adhesion may contribute to the adaptive immune response of epithelial cells, including their ability to present antigens, induce the activate and differentiate of T cells. We silenced ITGB4 expression in bronchial epithelial cells with an effective siRNA vector and studied the effects of ITGB4 silencing on the antigen presentation ability of airway epithelial cells. T cell proliferation and cytokine production was investigated after co-culturing with ITGB4-silenced epithelial cells. Surface expression of B7 homologs and the major histocompatibility complex (MHC class II was also detected after ITGB4 was silenced. Our results demonstrated that silencing of ITGB4 resulted in impaired antigen presentation processes and suppressed T cell proliferation. Meanwhile, decrease in Th1 cytokine production and increase in Th17 cytokine production was induced after co-culturing with ITGB4-silenced epithelial cells. Moreover, HLA-DR was decreased and the B7 homologs expression was different after ITGB4 silencing. Overall, this study suggested that downregulation of ITGB4 expression in airway epithelial cells could impair the antigen presentation ability of these cells, which further regulate airway inflammation reaction in allergic asthma.

  8. Helminth Products Potently Modulate Experimental Autoimmune Encephalomyelitis by Downregulating Neuroinflammation and Promoting a Suppressive Microenvironment

    Directory of Open Access Journals (Sweden)

    Alberto N. Peón

    2017-01-01

    Full Text Available A negative correlation between the geographical distribution of autoimmune diseases and helminth infections has been largely associated in the last few years with a possible role for such type of parasites in the regulation of inflammatory diseases, suggesting new pathways for drug development. However, few helminth-derived immunomodulators have been tested in experimental autoimmune encephalomyelitis (EAE, an animal model of the human disease multiple sclerosis (MS. The immunomodulatory activities of Taenia crassiceps excreted/secreted products (TcES that may suppress EAE development were sought for. Interestingly, it was discovered that TcES was able to suppress EAE development with more potency than dexamethasone; moreover, TcES treatment was still effective even when inoculated at later stages after the onset of EAE. Importantly, the TcES treatment was able to induce a range of Th2-type cytokines, while suppressing Th1 and Th17 responses. Both the polyclonal and the antigen-specific proliferative responses of lymphocytes were also inhibited in EAE-ill mice receiving TcES in association with a potent recruitment of suppressor cell populations. Peritoneal inoculation of TcES was able to direct the normal inflammatory cell traffic to the site of injection, thus modulating CNS infiltration, which may work along with Th2 immune polarization and lymphocyte activation impairment to downregulate EAE development.

  9. GW501516 Ameliorates A Fructose-Induced Inflammation Independent of AT1r Downregulation in Kidney

    Directory of Open Access Journals (Sweden)

    D’Angelo Carlo Magliano

    2016-11-01

    Full Text Available AT1r high activation is linked to low-grade inflammation and oxidative stress, which yield impaired renal function. This study aimed to verify if GW501516 could improve damage in the kidney of mice with high activation of AT1r. Mice were fed a high-fructose diet (HFru for eight weeks to induce an activation of the AT1r, whereas the control group received standard chow. The animals were randomly divided into four groups and the administration of GW501516 lasted three weeks. Morphological outcomes, urine and plasma determinations were assessed. Renin and ACE/AT1r axis protein and gene expression were evaluated as well as inflammatory cytokines and proteins. Also, the protein and gene expression of the antioxidant enzymes were verified. GW501516 improved systolic blood pressure and urinary parameters in HFru group. Although GW501516 had no effects either on ACE/AT1r axis or renin expression, it improved the inflammatory state, with increased IκB-α protein expression and decreased ERK and JNK phosphorylation. No differences were found in oxidative stress. We conclude that GW501516 acts downstream AT1r activation, improving inflammatory pathways in the kidney of HFru fed model. This is the first report demonstrating the anti-inflammatory actions of GW501516 upon kidney independently of AT1r downregulation in an HFru model.

  10. Histamine downregulates aquaporin 5 in human nasal epithelial cells.

    Science.gov (United States)

    Wang, Weiwei; Wang, Xiaolian; Ma, Lan; Zhang, Ruitao

    2015-01-01

    Aquaporin 5 (AQP5) is a water-specific channel protein. It is thought to be a key participant in fluid secretion and a rate-limiting barrier to the secretion seen during allergic inflammation. We sought to determine the effect of histamine on AQP5 expression in human nasal epithelial cells (HNEpC). HNEpC cells were cultured with four concentrations of histamine in vitro. The phosphorylation of cyclic adenosine monophosphate-responsive element binding protein (CREB) at serine 133 and the AQP5 protein were measured by using immunocytochemistry and Western blotting. Real-time polymerase chain reaction was used to detect AQP5 messenger ribonucleic acid (mRNA). Concentration-dependent histamine induced-inhibition of CREB phosphorylation at serine 133 in HNEpC cells was observed, and AQP5 mRNA and protein were also downregulated in a concentration-dependent fashion. Histamine downregulates AQP5 production in HNEpC cells by inhibiting CREB phosphorylation at serine 133.

  11. Downregulation of the NHE3-binding PDZ-adaptor protein PDZK1 expression during cytokine-induced inflammation in interleukin-10-deficient mice.

    Directory of Open Access Journals (Sweden)

    Henrike Lenzen

    Full Text Available BACKGROUND: Impaired salt and water absorption is an important feature in the pathogenesis of diarrhea in inflammatory bowel disease (IBD. We analyzed the expression of proinflammatory cytokines in the infiltrating immune cells and the function and expression of the Na(+/H(+ exchanger isoform 3 (NHE3 and its regulatory PDZ-adaptor proteins NHERF1, NHERF2, and PDZK1 in the colon of interleukin-10-deficient (IL-10(-/- mice. METHODOLOGY/PRINCIPAL FINDINGS: Gene and protein expression were analyzed by real-time reverse transcription polymerase chain reaction (qRT-PCR, in situ RT-PCR, and immunohistochemistry. NHE3 activity was measured fluorometrically in apical enterocytes within isolated colonic crypts. Mice developed chronic colitis characterized by a typical immune cell infiltration composed of T-lymphocytes and macrophages, with high levels of gene and protein expression of the proinflammatory cytokines interleukin-1β and tumor necrosis factor-α. In parallel, inducible nitric oxide synthase expression was increased while procaspase 3 expression was unaffected. Interferon-γ expression remained low. Although acid-activated NHE3 activity was significantly decreased, the inflammatory process did not affect its gene and protein expression or its abundance and localization in the apical membrane. However, expression of the PDZ-adaptor proteins NHERF2 and PDZK1 was downregulated. NHERF1 expression was unchanged. In a comparative analysis we observed the PDZK1 downregulation also in the DSS (dextran sulphate sodium model of colitis. CONCLUSIONS/SIGNIFICANCE: The impairment of the absorptive function of the inflamed colon in the IL-10(-/- mouse, in spite of unaltered NHE3 expression and localization, is accompanied by the downregulation of the NHE3-regulatory PDZ adaptors NHERF2 and PDZK1. We propose that the downregulation of PDZ-adaptor proteins may be an important factor leading to NHE3 dysfunction and diarrhea in the course of the cytokine

  12. Vesnarinone downregulates CXCR4 expression via upregulation of Krüppel-like factor 2 in oral cancer cells

    Directory of Open Access Journals (Sweden)

    Uchida Daisuke

    2009-08-01

    Full Text Available Abstract Background We have demonstrated that the stromal cell-derived factor-1 (SDF-1; CXCL12/CXCR4 system is involved in the establishment of lymph node metastasis in oral squamous cell carcinoma (SCC. Chemotherapy is a powerful tool for the treatment of oral cancer, including oral SCC; however, the effects of chemotherapeutic agents on the expression of CXCR4 are unknown. In this study, we examined the expression of CXCR4 associated with the chemotherapeutic agents in oral cancer cells. Results The expression of CXCR4 was examined using 3 different chemotherapeutic agents; 5-fluorouracil, cisplatin, and vesnarinone (3,4-dihydro-6-[4-(3,4-dimethoxybenzoyl-1-piperazinyl]-2-(1H-quinolinone in B88, a line of oral cancer cells that exhibits high levels of CXCR4 and lymph node metastatic potential. Of the 3 chemotherapeutic agents that we examined, only vesnarinone downregulated the expression of CXCR4 at the mRNA as well as the protein level. Vesnarinone significantly inhibited lymph node metastasis in tumor-bearing nude mice. Moreover, vesnarinone markedly inhibited 2.7-kb human CXCR4 promoter activity, and we identified the transcription factor, Krüppel-like factor 2 (KLF2, as a novel vesnarinone-responsive molecule, which was bound to the CXCR4 promoter at positions -300 to -167 relative to the transcription start site. The forced-expression of KLF2 led to the downregulation of CXCR4 mRNA and impaired CXCR4 promoter activity. The use of siRNA against KLF2 led to an upregulation of CXCR4 mRNA. Conclusion These Results indicate that vesnarinone downregulates CXCR4 via the upregulation of KLF2 in oral cancer.

  13. Histamine reduces susceptibility to natural killer cells via down-regulation of NKG2D ligands on human monocytic leukaemia THP-1 cells

    Science.gov (United States)

    Nagai, Yasuhiro; Tanaka, Yukinori; Kuroishi, Toshinobu; Sato, Ryutaro; Endo, Yasuo; Sugawara, Shunji

    2012-01-01

    Natural killer (NK) group 2D (NKG2D) is a key activating receptor expressed on NK cells, whose interaction with ligands on target cells plays an important role in tumorigenesis. However, the effect of histamine on NKG2D ligands on tumour cells is unclear. Here we showed that human monocytic leukaemia THP-1 cells constitutively express MHC class I-related chain A (MICA) and UL16-binding protein 1 on their surface, and incubation with histamine reduced the expression in a dose-dependent and time-dependent manner as assessed by flow cytometry. Interferon-γ augmented the surface expression of the NKG2D ligands, and this augmentation was significantly attenuated by histamine. The histamine H1 receptor (H1R) agonist 2-pyridylethylamine and H2R agonist dimaprit down-regulated the expression of NKG2D ligands, and activation of H1R and H2R signalling by A23187 and forskolin, respectively, had the same effect, indicating that the histamine-induced down-regulation of NKG2D ligands is mediated by H1R and H2R. Quantitative reverse transcription-PCR showed that mRNA levels of the NKG2D ligands and relevant microRNAs were not significantly changed by histamine. Histamine down-regulated the surface expression of endoplasmic reticulum protein 5, and inhibition of matrix metalloproteinases did not impair this down-regulation, indicating that proteolytic shedding was not involved. Instead, pharmacological inhibition of protein transport and proteasome abrogated it, and histamine enhanced ubiquitination of MICA. Furthermore, histamine treatment significantly reduced susceptibility to NK cell-mediated cytotoxicity. These results suggest that histamine down-regulates NKG2D ligands through the activation of an H1R- and H2R-mediated ubiquitin–proteasome pathway and consequently reduces susceptibility to NK cells. PMID:22304689

  14. Histamine reduces susceptibility to natural killer cells via down-regulation of NKG2D ligands on human monocytic leukaemia THP-1 cells.

    Science.gov (United States)

    Nagai, Yasuhiro; Tanaka, Yukinori; Kuroishi, Toshinobu; Sato, Ryutaro; Endo, Yasuo; Sugawara, Shunji

    2012-05-01

    Natural killer (NK) group 2D (NKG2D) is a key activating receptor expressed on NK cells, whose interaction with ligands on target cells plays an important role in tumorigenesis. However, the effect of histamine on NKG2D ligands on tumour cells is unclear. Here we showed that human monocytic leukaemia THP-1 cells constitutively express MHC class I-related chain A (MICA) and UL16-binding protein 1 on their surface, and incubation with histamine reduced the expression in a dose-dependent and time-dependent manner as assessed by flow cytometry. Interferon-γ augmented the surface expression of the NKG2D ligands, and this augmentation was significantly attenuated by histamine. The histamine H1 receptor (H1R) agonist 2-pyridylethylamine and H2R agonist dimaprit down-regulated the expression of NKG2D ligands, and activation of H1R and H2R signalling by A23187 and forskolin, respectively, had the same effect, indicating that the histamine-induced down-regulation of NKG2D ligands is mediated by H1R and H2R. Quantitative reverse transcription-PCR showed that mRNA levels of the NKG2D ligands and relevant microRNAs were not significantly changed by histamine. Histamine down-regulated the surface expression of endoplasmic reticulum protein 5, and inhibition of matrix metalloproteinases did not impair this down-regulation, indicating that proteolytic shedding was not involved. Instead, pharmacological inhibition of protein transport and proteasome abrogated it, and histamine enhanced ubiquitination of MICA. Furthermore, histamine treatment significantly reduced susceptibility to NK cell-mediated cytotoxicity. These results suggest that histamine down-regulates NKG2D ligands through the activation of an H1R- and H2R-mediated ubiquitin-proteasome pathway and consequently reduces susceptibility to NK cells. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.

  15. Congenital hearing impairment

    International Nuclear Information System (INIS)

    Robson, Caroline D.

    2006-01-01

    Establishing the etiology of congenital hearing impairment can significantly improve treatment for certain causes of hearing loss and facilitates genetic counseling. High-resolution CT and MRI have contributed to the evaluation and management of hearing impairment. In addition, with the identification of innumerable genetic loci and genetic defects involved in hearing loss, genetic testing has emerged as an invaluable tool in the assessment of hearing impairment. Some of the common forms of congenital hearing loss are reviewed and their imaging features illustrated. (orig.)

  16. Impairment in Non-Word Repetition: A Marker for Language Impairment or Reading Impairment?

    Science.gov (United States)

    Baird, Gillian; Slonims, Vicky; Simonoff, Emily; Dworzynski, Katharina

    2011-01-01

    Aim: A deficit in non-word repetition (NWR), a measure of short-term phonological memory proposed as a marker for language impairment, is found not only in language impairment but also in reading impairment. We evaluated the strength of association between language impairment and reading impairment in children with current, past, and no language…

  17. Impairment of ceramide synthesis causes a novel progressive myoclonus epilepsy.

    Science.gov (United States)

    Vanni, Nicola; Fruscione, Floriana; Ferlazzo, Edoardo; Striano, Pasquale; Robbiano, Angela; Traverso, Monica; Sander, Thomas; Falace, Antonio; Gazzerro, Elisabetta; Bramanti, Placido; Bielawski, Jacek; Fassio, Anna; Minetti, Carlo; Genton, Pierre; Zara, Federico

    2014-08-01

    Alterations of sphingolipid metabolism are implicated in the pathogenesis of many neurodegenerative disorders. We identified a homozygous nonsynonymous mutation in CERS1, the gene encoding ceramide synthase 1, in 4 siblings affected by a progressive disorder with myoclonic epilepsy and dementia. CerS1, a transmembrane protein of the endoplasmic reticulum (ER), catalyzes the biosynthesis of C18-ceramides. We demonstrated that the mutation decreases C18-ceramide levels. In addition, we showed that downregulation of CerS1 in a neuroblastoma cell line triggers ER stress response and induces proapoptotic pathways. This study demonstrates that impairment of ceramide biosynthesis underlies neurodegeneration in humans. © 2014 American Neurological Association.

  18. Impairments to Vision

    Science.gov (United States)

    ... an external Non-Government web site. Impairments to Vision Normal Vision Diabetic Retinopathy Age-related Macular Degeneration In this ... pictures, fixate on the nose to simulate the vision loss. In diabetic retinopathy, the blood vessels in ...

  19. Stormwater Impaired Watersheds

    Data.gov (United States)

    Vermont Center for Geographic Information — Stormwater impaired watersheds occuring on both the Priority Waters (Part D - Completed TMDL) and 303(d) list of waters (Part A - need TMDL) The Vermont State...

  20. TCR down-regulation controls T cell homeostasis

    DEFF Research Database (Denmark)

    Boding, Lasse; Bonefeld, Charlotte Menné; Nielsen, Bodil L

    2009-01-01

    was caused by the combination of reduced thymic output, decreased T cell apoptosis, and increased transition of naive T cells to memory T cells. Experiments with bone marrow chimeric mice confirmed that the CD3gammaLLAA mutation exerted a T cell intrinsic effect on T cell homeostasis that resulted...... in an increased transition of CD3gammaLLAA naive T cells to memory T cells and a survival advantage of CD3gammaLLAA T cells compared with wild-type T cells. The experimental observations were further supported by mathematical modeling of T cell homeostasis. Our study thus identifies an important role of CD3gamma......-mediated TCR down-regulation in T cell homeostasis....

  1. MYC is downregulated by a mitochondrial checkpoint mechanism.

    Science.gov (United States)

    Zhang, Xiaonan; Mofers, Arjan; Hydbring, Per; Olofsson, Maria Hägg; Guo, Jing; Linder, Stig; D'Arcy, Padraig

    2017-10-27

    The MYC proto-oncogene serves as a rheostat coupling mitogenic signaling with the activation of genes regulating growth, metabolism and mitochondrial biogenesis. Here we describe a novel link between mitochondria and MYC levels. Perturbation of mitochondrial function using a number of conventional and novel inhibitors resulted in the decreased expression of MYC mRNA. This decrease in MYC mRNA occurred concomitantly with an increase in the levels of tumor-suppressive miRNAs such as members of the let-7 family and miR-34a-5p . Knockdown of let-7 family or miR-34a-5p could partially restore MYC levels following mitochondria damage. We also identified let-7 -dependent downregulation of the MYC mRNA chaperone, CRD-BP (coding region determinant-binding protein) as an additional control following mitochondria damage. Our data demonstrates the existence of a homeostasis mechanism whereby mitochondrial function controls MYC expression.

  2. Exercise-Induced Fatigue Impairs Bidirectional Corticostriatal Synaptic Plasticity.

    Science.gov (United States)

    Ma, Jing; Chen, Huimin; Liu, Xiaoli; Zhang, Lingtao; Qiao, Decai

    2018-01-01

    Exercise-induced fatigue (EF) is a ubiquitous phenomenon in sports competition and training. It can impair athletes' motor skill execution and cognition. Corticostriatal synaptic plasticity is considered to be the cellular mechanism of movement control and motor learning. However, the effect of EF on corticostriatal synaptic plasticity remains elusive. In the present study, using field excitatory postsynaptic potential recording, we found that the corticostriatal long-term potentiation (LTP) and long-term depression (LTD) were both impaired in EF mice. To further investigate the cellular mechanisms underlying the impaired synaptic plasticity in corticostriatal pathway, whole-cell patch clamp recordings were carried out on striatal medium spiny neurons (MSNs). MSNs in EF mice exhibited increased spontaneous excitatory postsynaptic current (sEPSC) frequency and decreased paired-pulse ratio (PPR), while with normal basic electrophysiological properties and normal sEPSC amplitude. Furthermore, the N-methyl-D-aspartate (NMDA)/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) ratio of MSNs was reduced in EF mice. These results suggest that the enhanced presynaptic glutamate (Glu) release and downregulated postsynaptic NMDA receptor function lead to the impaired corticostriatal plasticity in EF mice. Taken together, our findings for the first time show that the bidirectional corticostriatal synaptic plasticity is impaired after EF, and suggest that the aberrant corticostriatal synaptic plasticity may be involved in the production and/or maintenance of EF.

  3. Trainable Mentally Impaired/Severely Multiply Impaired/Autistic Impaired/Severely Mentally Impaired. Product Evaluation Report 1989-1990.

    Science.gov (United States)

    Claus, Richard N.; And Others

    The evaluation report describes special education services provided to trainable mentally impaired (TMI), autistic impaired (AI), severely multiply impaired (SXI), and severely mentally impaired (SMI) students at and through the Melvin G. Millet Learning Center (Bridgeport, Michigan). The eight program components are described individually and…

  4. Nogo-A downregulation impairs place avoidance in the Carousel maze but not spatial memory in the Morris water maze

    Czech Academy of Sciences Publication Activity Database

    Petrásek, Tomáš; Prokopová, Iva; Bahník, Štěpán; Schönig, K.; Berger, S.; Valeš, Karel; Tews, B.; Schwab, M. E.; Bartsch, D.; Stuchlík, Aleš

    2014-01-01

    Roč. 107, Jan 2014 (2014), s. 42-49 ISSN 1074-7427 R&D Projects: GA ČR(CZ) GCP303/10/J032; GA ČR(CZ) GBP304/12/G069; GA MZd(CZ) NT13386; GA ČR(CZ) GA14-03627S Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200111204; Univerzita Karlova(CZ) 365911 Institutional support: RVO:67985823 Keywords : Nogo-A * spatial navigation * cognitive coordination * spatial mazes * transgenic rat model Subject RIV: FH - Neurology Impact factor: 3.652, year: 2014

  5. Vascular cognitive impairment

    Directory of Open Access Journals (Sweden)

    N.V. Vakhnina

    2014-01-01

    Full Text Available Vascular pathology of the brain is the second most common cause of cognitive impairment after Alzheimer's disease. The article describes the modern concepts of etiology, pathogenetic mechanisms, clinical features and approaches to diagnosis and therapy of vascular cognitive impairment (VCI. Cerebrovascular accident, chronic cerebral circulatory insufficiency and their combination, sometimes in combination with a concomitant neurodegenerative process, are shown to be the major types of brain lesions leading to VCI. The clinical presentation of VCI is characterized by the neuropsychological status dominated by impairment of the executive frontal functions (planning, control, attention in combination with focal neurological symptoms. The diagnosis is based on comparing of the revealed neuropsychological and neurological features with neuroimaging data. Neurometabolic, acetylcholinergic, glutamatergic, and other vasoactive drugs and non-pharmacological methods are widely used to treat VCI. 

  6. Social communication impairments: pragmatics.

    Science.gov (United States)

    Russell, Robert L

    2007-06-01

    Social communication or pragmatic impairments are characterized and illustrated as involving inappropriate or ineffective use of language and gesture in social contexts. Three clinical vignettes illustrate different pragmatic impairments and the wealth of diagnostic information that can be garnered from observation of a child's social communication behavior. Definitions of, and developmental milestones in, domains of pragmatic competence are provided. Several screening instruments are suggested for use in assessing pragmatic competence within the time-frame of a pediatric examination. Frequent comorbid psychiatric conditions are described and a sample of current neurobiologic research is briefly summarized.

  7. Chronic hypoxia facilitates Alzheimer's disease through demethylation of γ-secretase by downregulating DNA methyltransferase 3b.

    Science.gov (United States)

    Liu, Hui; Qiu, Hongyan; Yang, Juan; Ni, Jun; Le, Weidong

    2016-02-01

    Environmental factors and epigenetic mechanisms are believed to contribute to Alzheimer's disease (AD). We previously documented that prenatal hypoxia aggravated the cognitive impairment and neuropathology in offspring mice. Here, we investigate the chronic hypoxia-induced epigenetic modifications in AD. The 3-month-old APP(swe)/PS1(dE9) mice were exposed to hypoxic environment 6 hour/day for 30 days, followed by learning and memory tests and biochemical and neuropathology measurement at the age of 4, 6, and 9 months. We found hypoxia exaggerated the neuropathology and cognitive impairment in AD mice. Chronic hypoxia induced demethylation on genomic DNA and decreased the expression of DNA methyltransferase 3b (DNMT3b) in vivo. We further found that DNMTs inhibition elevated the protein levels of amyloid precursor protein, β- and γ-secretases, whereas overexpression of DNMT3b suppressed the levels of them in vitro. Our study suggests chronic hypoxia can aggravate AD progression through demethylation of genes encoding γ-secretase components by downregulation of DNMT3b. Copyright © 2016 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  8. Neuronal Cholesterol Accumulation Induced by Cyp46a1 Down-Regulation in Mouse Hippocampus Disrupts Brain Lipid Homeostasis

    Directory of Open Access Journals (Sweden)

    Sophie Ayciriex

    2017-07-01

    Full Text Available Impairment in cholesterol metabolism is associated with many neurodegenerative disorders including Alzheimer's disease (AD. However, the lipid alterations underlying neurodegeneration and the connection between altered cholesterol levels and AD remains not fully understood. We recently showed that cholesterol accumulation in hippocampal neurons, induced by silencing Cyp46a1 gene expression, leads to neurodegeneration with a progressive neuronal loss associated with AD-like phenotype in wild-type mice. We used a targeted and non-targeted lipidomics approach by liquid chromatography coupled to high-resolution mass spectrometry to further characterize lipid modifications associated to neurodegeneration and cholesterol accumulation induced by CYP46A1 inhibition. Hippocampus lipidome of normal mice was profiled 4 weeks after cholesterol accumulation due to Cyp46a1 gene expression down-regulation at the onset of neurodegeneration. We showed that major membrane lipids, sphingolipids and specific enzymes involved in phosphatidylcholine and sphingolipid metabolism, were rapidly increased in the hippocampus of AAV-shCYP46A1 injected mice. This lipid accumulation was associated with alterations in the lysosomal cargoe, accumulation of phagolysosomes and impairment of endosome-lysosome trafficking. Altogether, we demonstrated that inhibition of cholesterol 24-hydroxylase, key enzyme of cholesterol metabolism leads to a complex dysregulation of lipid homeostasis. Our results contribute to dissect the potential role of lipids in severe neurodegenerative diseases like AD.

  9. The Anti-Adipogenic Potential of COUP-TFII Is Mediated by Downregulation of the Notch Target Gene Hey1.

    Directory of Open Access Journals (Sweden)

    Ilse Scroyen

    Full Text Available Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII belongs to the steroid/thyroid hormone receptor superfamily and may contribute to the pathogenesis of obesity. It has not conclusively been established, however, whether its role is pro- or anti-adipogenic.Gene silencing of Coup-tfII in 3T3-F442A preadipocytes resulted in enhanced differentiation into mature adipocytes. This was associated with upregulation of the Notch signaling target gene Hey1. A functional role of Hey1 was confirmed by gene silencing in 3T3-F442A preadipocytes, resulting in impaired differentiation. In vivo, de novo fat pad formation in NUDE mice was significantly stimulated following injection of preadipocytes with Coup-tfII gene silencing, but impaired with Hey1 gene silencing. Moreover, expression of Coup-tfII was lower and that of Hey1 higher in isolated adipocytes of obese as compared to lean adipose tissue.These in vitro and in vivo data support an anti-adipogenic role of COUP-TFII via downregulating the Notch signaling target gene Hey1.

  10. DNAJB3/HSP-40 cochaperone is downregulated in obese humans and is restored by physical exercise.

    Directory of Open Access Journals (Sweden)

    Jehad Abubaker

    Full Text Available Obesity is a major risk factor for a myriad of disorders such as insulin resistance and diabetes. The mechanisms underlying these chronic conditions are complex but low grade inflammation and alteration of the endogenous stress defense system are well established. Previous studies indicated that impairment of HSP-25 and HSP-72 was linked to obesity, insulin resistance and diabetes in humans and animals while their induction was associated with improved clinical outcomes. In an attempt to identify additional components of the heat shock response that may be dysregulated by obesity, we used the RT(2-Profiler PCR heat shock array, complemented with RT-PCR and validated by Western blot and immunohistochemistry. Using adipose tissue biopsies and PBMC of non-diabetic lean and obese subjects, we report the downregulation of DNAJB3 cochaperone mRNA and protein in obese that negatively correlated with percent body fat (P = 0.0001, triglycerides (P = 0.035 and the inflammatory chemokines IP-10 and RANTES (P = 0.036 and P = 0.02, respectively. DNAJB positively correlated with maximum oxygen consumption (P = 0.031. Based on the beneficial effect of physical exercise, we investigated its possible impact on DNAJB3 expression and indeed, we found that exercise restored the expression of DNAJB3 in obese subjects with a concomitant decrease of phosphorylated JNK. Using cell lines, DNAJB3 protein was reduced following treatment with palmitate and tunicamycin which is suggestive of the link between the expression of DNAJB3 and the activation of the endoplasmic reticulum stress. DNAJB3 was also shown to coimmunoprecipiate with JNK and IKKβ stress kinases along with HSP-72 and thus, suggesting its potential role in modulating their activities. Taken together, these data suggest that DNAJB3 can potentially play a protective role against obesity.

  11. Chronic hypoxia attenuates VEGF signaling and angiogenic responses by downregulation of KDR in human endothelial cells.

    Science.gov (United States)

    Olszewska-Pazdrak, Barbara; Hein, Travis W; Olszewska, Paulina; Carney, Darrell H

    2009-05-01

    Coronary artery disease results in progressive vascular stenosis associated with chronic myocardial ischemia. Vascular endothelial growth factor (VEGF) stimulates endothelial cell angiogenic responses to revascularize ischemic tissues; however, the effect of chronic hypoxia on the responsiveness of endothelial cells to VEGF remains unclear. We, therefore, investigated whether hypoxia alters VEGF-stimulated signaling and angiogenic responses in primary human coronary artery endothelial (HCAE) cells. Exposure of HCAE cells to hypoxia (1% O(2)) for 24 h decreased VEGF-stimulated endothelial cell migration ( approximately 82%), proliferation ( approximately 30%), and tube formation. Hypoxia attenuated VEGF-stimulated activation of endothelial nitric oxide (NO) synthase (eNOS) ( approximately 72%) and reduced NO production in VEGF-stimulated cells from 237 +/- 38.8 to 61.3 +/- 28.4 nmol/l. Moreover, hypoxia also decreased the ratio of phosphorylated eNOS to total eNOS in VEGF-stimulated cells by approximately 50%. This effect was not observed in thrombin-stimulated cells, suggesting that hypoxia specifically inhibited VEGF signaling upstream of eNOS phosphorylation. VEGF-induced activation of Akt, ERK1/2, p38, p70S6 kinases, and S6 ribosomal protein was also attenuated in hypoxic cells. Moreover, VEGF-stimulated phosphorylation of VEGF receptor-2 (KDR) at Y996 and Y1175 was decreased by hypoxia. This decrease correlated with a 70 +/- 12% decrease in KDR protein expression. Analysis of mRNA from these cells showed that hypoxia reduced steady-state levels of KDR mRNA by 52 +/- 16% and decreased mRNA stability relative to normoxic cells. Our findings demonstrate that chronic hypoxia attenuates VEGF-stimulated signaling in HCAE cells by specific downregulation of KDR expression. These data provide a novel explanation for the impaired angiogenic responses to VEGF in endothelial cells exposed to chronic hypoxia.

  12. Down-regulating alpha-galactosidase enhances freezing tolerance in transgenic petunia.

    Science.gov (United States)

    Pennycooke, Joyce C; Jones, Michelle L; Stushnoff, Cecil

    2003-10-01

    Alpha-galactosidase (alpha-Gal; EC 3.2.1.22) is involved in many aspects of plant metabolism, including hydrolysis of the alpha-1,6 linkage of raffinose oligosaccharides during deacclimation. To examine the relationship between endogenous sugars and freezing stress, the expression of alpha-Gal was modified in transgenic petunia (Petunia x hybrida cv Mitchell). The tomato (Lycopersicon esculentum) Lea-Gal gene under the control of the Figwort Mosaic Virus promoter was introduced into petunia in the sense and antisense orientations using Agrobacterium tumefaciens-mediated transformation. RNA gel blots confirmed that alpha-Gal transcripts were reduced in antisense lines compared with wild type, whereas sense plants had increased accumulation of alpha-Gal mRNAs. alpha-Gal activity followed a similar trend, with reduced activity in antisense lines and increased activity in all sense lines evaluated. Raffinose content of nonacclimated antisense plants increased 12- to 22-fold compared with wild type, and 22- to 53-fold after cold acclimation. Based upon electrolyte leakage tests, freezing tolerance of the antisense lines increased from -4 degrees C for cold-acclimated wild-type plants to -8 degrees C for the most tolerant antisense line. Down-regulating alpha-Gal in petunia results in an increase in freezing tolerance at the whole-plant level in nonacclimated and cold-acclimated plants, whereas overexpression of the alpha-Gal gene caused a decrease in endogenous raffinose and impaired freezing tolerance. These results suggest that engineering raffinose metabolism by transformation with alpha-Gal provides an additional method for improving the freezing tolerance of plants.

  13. Down-Regulating α-Galactosidase Enhances Freezing Tolerance in Transgenic Petunia1

    Science.gov (United States)

    Pennycooke, Joyce C.; Jones, Michelle L.; Stushnoff, Cecil

    2003-01-01

    α-Galactosidase (α-Gal; EC 3.2.1.22) is involved in many aspects of plant metabolism, including hydrolysis of the α-1,6 linkage of raffinose oligosaccharides during deacclimation. To examine the relationship between endogenous sugars and freezing stress, the expression of α-Gal was modified in transgenic petunia (Petunia × hybrida cv Mitchell). The tomato (Lycopersicon esculentum) Lea-Gal gene under the control of the Figwort Mosaic Virus promoter was introduced into petunia in the sense and antisense orientations using Agrobacterium tumefaciens-mediated transformation. RNA gel blots confirmed that α-Gal transcripts were reduced in antisense lines compared with wild type, whereas sense plants had increased accumulation of α-Gal mRNAs. α-Gal activity followed a similar trend, with reduced activity in antisense lines and increased activity in all sense lines evaluated. Raffinose content of nonacclimated antisense plants increased 12- to 22-fold compared with wild type, and 22- to 53-fold after cold acclimation. Based upon electrolyte leakage tests, freezing tolerance of the antisense lines increased from –4°C for cold-acclimated wild-type plants to –8°C for the most tolerant antisense line. Down-regulating α-Gal in petunia results in an increase in freezing tolerance at the whole-plant level in nonacclimated and cold-acclimated plants, whereas overexpression of the α-Gal gene caused a decrease in endogenous raffinose and impaired freezing tolerance. These results suggest that engineering raffinose metabolism by transformation with α-Gal provides an additional method for improving the freezing tolerance of plants. PMID:14500789

  14. Lyso-globotriaosylceramide downregulates KCa3.1 channel expression to inhibit collagen synthesis in fibroblasts.

    Science.gov (United States)

    Choi, Ju Yeon; Shin, Mee-Young; Suh, Suk Hyo; Park, Seonghee

    2015-12-25

    Fabry disease is an X-linked lysosomal storage disorder that is caused by a deficiency of α-galactosidase A. The disease ultimately manifests as multiple organ dysfunctions owing to excessive accumulation of globotriaosylceramide (Gb3). Among the several complications of Fabry disease, ascending thoracic aortic aneurysm is relatively common, which is classically associated with connective tissue disorders characterized by abnormal defects or deficiencies in structural proteins such as collagen and elastin. Although an elevated Gb3 level is regarded as a prerequisite for the manifestations of Fabry disease, only this excess accumulation cannot explain the pathophysiology of these complications. Recently, an increased plasma level of lyso-Gb3 was suggested as a new biomarker in Fabry disease. Therefore, the aim of this study was to assess the effects of lyso-Gb3 on the pathogenesis of thoracic ascending aortic aneurysms in Fabry disease, with a particular focus on the responses related to aortic remodeling by fibroblasts. We found that lyso-Gb3 inhibited the growth of fibroblasts, as well as their differentiation into myofibroblasts, and collagen expression. Moreover, all of these compromised responses could be attributed to the effects of lyso-Gb3 on downregulation of KCa3.1 channel expression, and these impairments could be rescued when activating the KCa3.1 channel or increasing intracellular Ca(2+) concentration. This study provides new evidence that lyso-Gb3 inhibits the differentiation into myofibroblasts and collagen synthesis of fibroblasts owing to decreased Ca(2+) levels by KCa3.1 channel dysfunction. These findings suggest that the KCa3.1 channel can serve as a new target to attenuate and prevent development of ascending thoracic aortic aneurysm in Fabry disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Medications and impaired driving.

    Science.gov (United States)

    Hetland, Amanda; Carr, David B

    2014-04-01

    To describe the association of specific medication classes with driving outcomes and provide clinical recommendations. The MEDLINE and EMBASE databases were searched for articles published from January 1973 to June 2013 on classes of medications associated with driving impairment. The search included outcome terms such as automobile driving, motor vehicle crash, driving simulator, and road tests. Only English-language articles that contained findings from observational or interventional designs with ≥ 10 participants were included in this review. Cross-sectional studies, case series, and case reports were excluded. Driving is an important task and activity for the majority of adults. Some commonly prescribed medications have been associated with driving impairment measured by road performance, driving simulation, and/or motor vehicle crashes. This review of 30 studies identified findings with barbiturates, benzodiazepines, hypnotics, antidepressants, opioid and nonsteroidal analgesics, anticonvulsants, antipsychotics, antiparkinsonian agents, skeletal muscle relaxants, antihistamines, anticholinergic medications, and hypoglycemic agents. Additional studies of medication impact on sedation, sleep latency, and psychomotor function, as well as the role of alcohol, are also discussed. Psychotropic agents and those with central nervous system side effects were associated with measures of impaired driving performance. It is difficult to determine if such associations are actually a result of medication use or the medical diagnosis itself. Regardless, clinicians should be aware of the increased risk of impaired driving with specific classes of medications, educate their patients, and/or consider safer alternatives.

  16. Sulforaphane Prevents Neuronal Apoptosis and Memory Impairment in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Gengyin Wang

    2016-08-01

    Full Text Available Background/Aims: To explore the effects of sulforaphane (SFN on neuronal apoptosis in hippocampus and memory impairment in diabetic rats. Methods: Thirty male rats were randomly divided into normal control, diabetic model and SFN treatment groups (N = 10 in each group. Streptozotocin (STZ was applied to establish diabetic model. Water Morris maze task was applied to test learning and memory. Tunel assaying was used to detect apoptosis in hippocampus. The expressions of Caspase-3 and myeloid cell leukemia 1(MCL-1 were detected by western blotting. Neurotrophic factor levels and AKT/GSK3β pathway were also detected. Results: Compared with normal control, learning and memory were apparently impaired, with up-regulation of Caspase-3 and down-regulation of MCL-1 in diabetic rats. Apoptotic neurons were also found in CA1 region after diabetic modeling. By contrast, SFN treatment prevented the memory impairment, decreased the apoptosis of hippocampal neurons. SFN also attenuated the abnormal expression of Caspase-3 and MCL-1 in diabetic model. Mechanically, SFN treatment reversed diabetic modeling-induced decrease of p-Akt, p-GSK3β, NGF and BDNF expressions. Conclusion: SFN could prevent the memory impairment and apoptosis of hippocampal neurons in diabetic rat. The possible mechanism was related to the regulation of neurotropic factors and Akt/GSK3β pathway.

  17. Incudomalleal joint formation: the roles of apoptosis, migration and downregulation

    Directory of Open Access Journals (Sweden)

    Matalova Eva

    2007-12-01

    Full Text Available Abstract Background The middle ear of mammals is composed of three endochondrial ossicles, the stapes, incus and malleus. Joints link the malleus to the incus and the incus to the stapes. In the mouse the first arch derived malleus and incus are formed from a single Sox9 and Type II collagen expressing condensation that later subdivides to give rise to two separate ossicles. In contrast the stapes forms from a separate condensation derived from the second branchial arch. Fusion of the malleus and incus is observed in a number of human syndromes and results in conductive hearing loss. Understanding how this joint forms during normal development is thus an important step in furthering our understanding of such defects. Results We show that the developing incudomalleal joint is characterised by a lack of proliferation and discrete areas of apoptosis. Apoptosis has been suggested to aid in the removal of pre-cartilaginous cells from the joint region, allowing for the physical separation of the cartilaginous elements, however, we show that joint initiation is unaffected by blocking apoptosis. There is also no evidence of cell migration out of the presumptive joint region, as observed by labelling of joint and ossicle cells in culture. Using Type II collagen lacZ reporter mice, however, it is evident that cells in the presumptive joint region remain in place and downregulate cartilage markers. Conclusion The malleus and incus first appear as a single united condensation expressing early cartilage markers. The incudomalleal joint region forms by cells in the presumptive joint region switching off cartilage markers and turning on joint markers. Failure in this process may result in fusion of this joint, as observed in human syndromes such as Branchio-Oto-Renal Syndrome or Treacher Collins Syndrome.

  18. DFsn collaborates with Highwire to down-regulate the Wallenda/DLK kinase and restrain synaptic terminal growth

    Directory of Open Access Journals (Sweden)

    DiAntonio Aaron

    2007-08-01

    Full Text Available Abstract Background The growth of new synapses shapes the initial formation and subsequent rearrangement of neural circuitry. Genetic studies have demonstrated that the ubiquitin ligase Highwire restrains synaptic terminal growth by down-regulating the MAP kinase kinase kinase Wallenda/dual leucine zipper kinase (DLK. To investigate the mechanism of Highwire action, we have identified DFsn as a binding partner of Highwire and characterized the roles of DFsn in synapse development, synaptic transmission, and the regulation of Wallenda/DLK kinase abundance. Results We identified DFsn as an F-box protein that binds to the RING-domain ubiquitin ligase Highwire and that can localize to the Drosophila neuromuscular junction. Loss-of-function mutants for DFsn have a phenotype that is very similar to highwire mutants – there is a dramatic overgrowth of synaptic termini, with a large increase in the number of synaptic boutons and branches. In addition, synaptic transmission is impaired in DFsn mutants. Genetic interactions between DFsn and highwire mutants indicate that DFsn and Highwire collaborate to restrain synaptic terminal growth. Finally, DFsn regulates the levels of the Wallenda/DLK kinase, and wallenda is necessary for DFsn-dependent synaptic terminal overgrowth. Conclusion The F-box protein DFsn binds the ubiquitin ligase Highwire and is required to down-regulate the levels of the Wallenda/DLK kinase and restrain synaptic terminal growth. We propose that DFsn and Highwire participate in an evolutionarily conserved ubiquitin ligase complex whose substrates regulate the structure and function of synapses.

  19. Impaired Consciousness in Epilepsy

    Science.gov (United States)

    Blumenfeld, Hal

    2013-01-01

    Consciousness is essential to normal human life. In epileptic seizures consciousness is often transiently lost making it impossible for the individual to experience or respond. This has huge consequences for safety, productivity, emotional health and quality of life. To prevent impaired consciousness in epilepsy it is necessary to understand the mechanisms leading to brain dysfunction during seizures. Normally the “consciousness system”—a specialized set of cortical-subcortical structures—maintains alertness, attention and awareness. Recent advances in neuroimaging, electrophysiology and prospective behavioral testing have shed new light on how epileptic seizures disrupt the consciousness system. Diverse seizure types including absence, generalized tonic-clonic and complex partial seizures converge on the same set of anatomical structures through different mechanisms to disrupt consciousness. Understanding these mechanisms may lead to improved treatment strategies to prevent impaired consciousness and improve quality of life in people with epilepsy. PMID:22898735

  20. Age-Related Sensory Impairments and Risk of Cognitive Impairment

    Science.gov (United States)

    Fischer, Mary E; Cruickshanks, Karen J.; Schubert, Carla R; Pinto, Alex A; Carlsson, Cynthia M; Klein, Barbara EK; Klein, Ronald; Tweed, Ted S.

    2016-01-01

    Background/Objectives To evaluate the associations of sensory impairments with the 10-year risk of cognitive impairment. Previous work has primarily focused on the relationship between a single sensory system and cognition. Design The Epidemiology of Hearing Loss Study (EHLS) is a longitudinal, population-based study of aging in the Beaver Dam, WI community. Baseline examinations were conducted in 1993 and follow-up exams have been conducted every 5 years. Setting General community Participants EHLS members without cognitive impairment at EHLS-2 (1998–2000). There were 1,884 participants (mean age = 66.7 years) with complete EHLS-2 sensory data and follow-up information. Measurements Cognitive impairment was a Mini-Mental State Examination score of impairment was a pure-tone average of hearing thresholds (0.5, 1, 2 and 4 kHz) of > 25 decibel Hearing Level in either ear. Visual impairment was Pelli-Robson contrast sensitivity of impairment was a San Diego Odor Identification Test score of impairment were independently associated with cognitive impairment risk [Hearing: Hazard Ratio (HR) = 1.90, 95% Confidence Interval (C.I.) = 1.11, 3.26; Vision: HR = 2.05, 95% C.I. = 1.24, 3.38; Olfaction: HR = 3.92, 95% C.I. = 2.45, 6.26]. However, 85% with hearing impairment, 81% with visual impairment, and 76% with olfactory impairment did not develop cognitive impairment during follow-up. Conclusion The relationship between sensory impairment and cognitive impairment was not unique to one sensory system suggesting sensorineural health may be a marker of brain aging. The development of a combined sensorineurocognitive measure may be useful in uncovering mechanisms of healthy brain aging. PMID:27611845

  1. Age-Related Sensory Impairments and Risk of Cognitive Impairment.

    Science.gov (United States)

    Fischer, Mary E; Cruickshanks, Karen J; Schubert, Carla R; Pinto, Alex A; Carlsson, Cynthia M; Klein, Barbara E K; Klein, Ronald; Tweed, Ted S

    2016-10-01

    To evaluate the associations between sensory impairments and 10-year risk of cognitive impairment. The Epidemiology of Hearing Loss Study (EHLS), a longitudinal, population-based study of aging in the Beaver Dam, Wisconsin community. Baseline examinations were conducted in 1993 and follow-up examinations have been conducted every 5 years. General community. EHLS members without cognitive impairment at EHLS-2 (1998-2000). There were 1,884 participants (mean age 66.7) with complete EHLS-2 sensory data and follow-up information. Cognitive impairment was defined as a Mini-Mental State Examination score of dementia or Alzheimer's disease. Hearing impairment was a pure-tone average of hearing thresholds (0.5, 1, 2, 4 kHz) of >25 dB hearing level in either ear, visual impairment was a Pelli-Robson contrast sensitivity of impairment was a San Diego Odor Identification Test score of impairment were independently associated with cognitive impairment risk (hearing: hazard ratio (HR) = 1.90, 95% confidence interval (CI) = 1.11-3.26; vision: HR = 2.05, 95% CI = 1.24-3.38; olfaction: HR = 3.92, 95% CI = 2.45-6.26)). Nevertheless, 85% of participants with hearing impairment, 81% with visual impairment, and 76% with olfactory impairment did not develop cognitive impairment during follow-up. The relationship between sensory impairment and cognitive impairment was not unique to one sensory system, suggesting that sensorineural health may be a marker of brain aging. The development of a combined sensorineurocognitive measure may be useful in uncovering mechanisms of healthy brain aging. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  2. Voice impairment and menopause.

    Science.gov (United States)

    Schneider, Berit; van Trotsenburg, Michael; Hanke, Gunda; Bigenzahn, Wolfgang; Huber, Johannes

    2004-01-01

    Menopause rating scales still do not regard voice impairment as a genuine climacteric symptom, although voice changes are frequently reported. The purpose of this study was both to register and differentiate voice alterations and disorders in menopausal women. A total of 107 women between 37 and 71 years of age who were rated as postmenopausal according to their hormonal status answered a questionnaire on voice changes and vocal discomfort. Of this group, 49 women mentioned voices changes, and 35 of those women associated these changes with subjective discomfort, whereas 58 women mentioned neither voice changes nor discomfort. Sixteen of the women who mentioned voice changes and eight who did not participated in a comprehensive investigation, which included completion of the Klimax questionnaire, a head and neck examination, videostroboscopy, perceptual evaluation of voice sound, voice range profile measurements, and voice dysfunction index determination. Voice changes during menopause might be a common problem seen in clinical practice. Therefore, an additional systematic registration of voice impairment in future menopause rating scales should be considered if further studies confirm our findings of a high prevalence of voice complaints associated with menopause. Severe menopausal voice impairments, even without other climacteric symptoms, should be regarded as an indication for phoniatric examination.

  3. Oral Administration of N-Acetyl-D Glucosamine Polymer Particles Down-Regulates Airway Allergic Responses

    National Research Council Canada - National Science Library

    Shibata, Yoshimi

    2006-01-01

    ... (IL-12, IL-18 and TNFo) that down-regulate allergic immune responses. We also found that administration of chitin particles resulted in less likely induce the production of IL-10 and prostaglandin E2 (PGE2...

  4. Down-regulation of Notch-1 by γ-secretase inhibitor suppress the ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    ChIP). Taken together, we demonstrate that DAPT inhibited the proliferation and migration of PC cells through down-regulation of the Notch-1 activation and its targeted genes. Key words: Prostate cancer, γ-secretase activation, ...

  5. Mechanisms Down-Regulating Sprouty1, a Growth Inhibitor in Prostate Cancer

    National Research Council Canada - National Science Library

    Kwabi-Addo, Bernard

    2006-01-01

    .... I have demonstrated that Sprouty1 is down-regulated in human prostate cancer (PCa). The purpose of the present study is to characterize the molecular mechanisms regulating Sprouty1 expression in the human PCa. Results...

  6. Hypoxia downregulates Ku70/80 expression in cervical carcinoma tumors

    International Nuclear Information System (INIS)

    Lara, Pedro Carlos; Lloret, Marta; Clavo, Bernardino; Apolinario, Rosa Maria; Bordon, Elisa; Rey, Agustin; Falcon, Orlando; Alonso, Ana Ruiz; Belka, Claus

    2008-01-01

    Hypoxia may inhibits the NHEJ DNA repair through downregulating Ku70/80 expression and combined with an increased angiogenesis and altered p53 expression would be responsible for tumor progression in cervical carcinoma

  7. Cognitive impairment and pragmatics.

    Science.gov (United States)

    Gutiérrez-Rexach, Javier; Schatz, Sara

    2016-01-01

    One of the most important ingredients of felicitous conversation exchanges is the adequate expression of illocutionary force and the achievement of perlocutionary effects, which can be considered essential to the functioning of pragmatic competence. The breakdown of illocutionary and perlocutionary functions is one of the most prominent external features of cognitive impairment in Alzheimer's Disease, with devastating psychological and social consequences for patients, their family and caregivers. The study of pragmatic functions is essential for a proper understanding of the linguistic and communicative aspects of Alzheimer's disease.

  8. A longer and healthier life with TOR down-regulation: genetics and drugs.

    Science.gov (United States)

    Bjedov, Ivana; Partridge, Linda

    2011-04-01

    Genetic down-regulation of a major nutrient-sensing pathway, TOR (target of rapamycin) signalling, can improve health and extend lifespan in evolutionarily distant organisms such as yeast and mammals. Recently, it has been demonstrated that treatment with a pharmacological inhibitor of the TOR pathway, rapamycin, can replicate those findings and improve aging in a variety of model organisms. The proposed underlying anti-aging mechanisms are down-regulated translation, increased autophagy, altered metabolism and increased stress resistance.

  9. Sleep deprivation specifically impairs short-term olfactory memory in Drosophila.

    Science.gov (United States)

    Li, Xinjian; Yu, Feng; Guo, Aike

    2009-11-01

    Sleep is crucial to memory consolidation in humans and other animals; however, the effect of insufficient sleep on subsequent learning and memory remains largely elusive. Learning and memory after 1-day sleep deprivation (slpD) was evaluated using Pavlovian olfactory conditioning in Drosophila, and locomotor activity was measured using the Drosophila Activity Monitoring System in a 12:12 light-dark cycle. We found that slpD specifically impaired 1-h memory in wild type Canton-S flies, and this effect could persist for at least 2 h. However, alternative stresses (heat stress, oxidative stress, starvation, and rotation stress) did not result in a similar effect and left the flies' memory intact. Mechanistic studies demonstrated that flies with either silenced transmission of the mushroom body (MB) during slpD or down-regulated cAMP levels in the MB demonstrated no slpD-induced 1-h memory impairment. We found that slpD specifically impaired 1-h memory in Drosophila, and either silencing of MB transmission during slpD or down-regulation of the cAMP level in the MB protected the flies from slpD-induced impairment.

  10. Critical immunological pathways are downregulated in APECED patient dendritic cells.

    Science.gov (United States)

    Pöntynen, Nora; Strengell, Mari; Sillanpää, Niko; Saharinen, Juha; Ulmanen, Ismo; Julkunen, Ilkka; Peltonen, Leena

    2008-10-01

    Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a monogenic autoimmune disease caused by mutations in the autoimmune regulator (AIRE) gene. AIRE functions as a transcriptional regulator, and it has a central role in the development of immunological tolerance. AIRE regulates the expression of ectopic antigens in epithelial cells of the thymic medulla and has been shown to participate in the development of peripheral tolerance. However, the mechanism of action of AIRE has remained elusive. To further investigate the role of AIRE in host immune functions, we studied the properties and transcript profiles in in vitro monocyte-differentiated dendritic cells (moDCs) obtained from APECED patients and healthy controls. AIRE-deficient monocytes showed typical DC morphology and expressed DC marker proteins cluster of differentiation 86 and human leukocyte antigen class II. APECED patient-derived moDCs were functionally impaired: the transcriptional response of cytokine genes to pathogens was drastically reduced. Interestingly, some changes were observable already at the immature DC stage. Pathway analyses of transcript profiles revealed that the expression of the components of the host cell signaling pathways involved in cell-cell signalling, innate immune responses, and cytokine activity were reduced in APECED moDCs. Our observations support a role for AIRE in peripheral tolerance and are the first ones to show that AIRE has a critical role in DC responses to microbial stimuli in humans.

  11. Mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Pavlović Dragan M.

    2009-01-01

    Full Text Available Mild cognitive impairment (MCI is a syndrome that spans the area between normal ageing and dementia. It is classified into amnestic and non-amnestic types, both with two subtypes: single domain and multiple domains. Prevalence of MCI depends on criteria and population and can vary from 0.1 to 42% persons of older age. In contrast to dementia, cognitive deterioration is less severe and activities of daily living are preserved. Most impaired higher cognitive functions in MCI are memory, executive functions, language, visuospatial functions, attention etc. Also there are depression, apathy or psychomotor agitation, and signs of psychosis. Aetiology of MCI is multiple, mostly neurodegenerative, vascular, psychiatric, internistic, neurological, traumatic and iatrogenic. Persons with amnestic MCI are at a higher risk of converting to Alzheimer's disease, while those with a single non-memory domain are at risk of developing frontotemporal dementia. Some MCI patients also progress to other dementia types, vascular among others. In contrast, some patients have a stationary course, some improve, while others even normalize. Every suspicion of MCI warrants a detailed clinical exploration to discover underlying aetiology, laboratory analyses, neuroimaging methods and some cases require a detailed neuropsychological assessment. At the present time there is no efficacious therapy for cognitive decline in MCI or the one that could postpone conversion to dementia. The treatment of curable causes, application of preventive measures and risk factor control are reasonable measures in the absence of specific therapy.

  12. Fertility impairment in radiotherapy

    Directory of Open Access Journals (Sweden)

    Marta Biedka

    2016-02-01

    Full Text Available Infertility as a result of antineoplastic therapy is becoming a very important issue due to the growing incidence of neoplastic diseases. Routinely applied antineoplastic treatments and the illness itself lead to fertility disorders. Therapeutic methods used in antineoplastic treatment may cause fertility impairment or sterilization due to permanent damage to reproductive cells. The risk of sterilization depends on the patient’s sex, age during therapy, type of neoplasm, radiation dose and treatment area. It is known that chemotherapy and radiotherapy can lead to fertility impairment and the combination of these two gives an additive effect. The aim of this article is to raise the issue of infertility in these patients. It is of growing importance due to the increase in the number of children and young adults who underwent radiotherapy in the past. The progress in antineoplastic therapy improves treatment results, but at the same time requires a deeper look at existential needs of the patient. Reproductive function is an integral element of self-esteem and should be taken into account during therapy planning.

  13. Hymyc1 downregulation promotes stem cell proliferation in Hydra vulgaris.

    Directory of Open Access Journals (Sweden)

    Alfredo Ambrosone

    Full Text Available Hydra is a unique model for studying the mechanisms underlying stem cell biology. The activity of the three stem cell lineages structuring its body constantly replenishes mature cells lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. In vertebrates, one of many genes that participate in regulating stem cell homeostasis is the protooncogene c-myc, which has been recently identified also in Hydra, and found expressed in the interstitial stem cell lineage. In the present paper, by developing a novel strategy of RNA interference-mediated gene silencing (RNAi based on an enhanced uptake of small interfering RNAi (siRNA, we provide molecular and biological evidence for an unexpected function of the Hydra myc gene (Hymyc1 in the homeostasis of the interstitial stem cell lineage. We found that Hymyc1 inhibition impairs the balance between stem cell self renewal/differentiation, as shown by the accumulation of stem cell intermediate and terminal differentiation products in genetically interfered animals. The identical phenotype induced by the 10058-F4 inhibitor, a disruptor of c-Myc/Max dimerization, demonstrates the specificity of the RNAi approach. We show the kinetic and the reversible feature of Hymyc1 RNAi, together with the effects displayed on regenerating animals. Our results show the involvement of Hymyc1 in the control of interstitial stem cell dynamics, provide new clues to decipher the molecular control of the cell and tissue plasticity in Hydra, and also provide further insights into the complex myc network in higher organisms. The ability of Hydra cells to uptake double stranded RNA and to trigger a RNAi response lays the foundations of a comprehensive analysis of the RNAi response in Hydra allowing us to track back in the evolution and the origin of this process.

  14. Hymyc1 downregulation promotes stem cell proliferation in Hydra vulgaris.

    Science.gov (United States)

    Ambrosone, Alfredo; Marchesano, Valentina; Tino, Angela; Hobmayer, Bert; Tortiglione, Claudia

    2012-01-01

    Hydra is a unique model for studying the mechanisms underlying stem cell biology. The activity of the three stem cell lineages structuring its body constantly replenishes mature cells lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. In vertebrates, one of many genes that participate in regulating stem cell homeostasis is the protooncogene c-myc, which has been recently identified also in Hydra, and found expressed in the interstitial stem cell lineage. In the present paper, by developing a novel strategy of RNA interference-mediated gene silencing (RNAi) based on an enhanced uptake of small interfering RNAi (siRNA), we provide molecular and biological evidence for an unexpected function of the Hydra myc gene (Hymyc1) in the homeostasis of the interstitial stem cell lineage. We found that Hymyc1 inhibition impairs the balance between stem cell self renewal/differentiation, as shown by the accumulation of stem cell intermediate and terminal differentiation products in genetically interfered animals. The identical phenotype induced by the 10058-F4 inhibitor, a disruptor of c-Myc/Max dimerization, demonstrates the specificity of the RNAi approach. We show the kinetic and the reversible feature of Hymyc1 RNAi, together with the effects displayed on regenerating animals. Our results show the involvement of Hymyc1 in the control of interstitial stem cell dynamics, provide new clues to decipher the molecular control of the cell and tissue plasticity in Hydra, and also provide further insights into the complex myc network in higher organisms. The ability of Hydra cells to uptake double stranded RNA and to trigger a RNAi response lays the foundations of a comprehensive analysis of the RNAi response in Hydra allowing us to track back in the evolution and the origin of this process.

  15. TGF-β1 down-regulation of NKG2D/DAP10 and 2B4/SAP expression on human NK cells contributes to HBV persistence.

    Directory of Open Access Journals (Sweden)

    Cheng Sun

    Full Text Available The mechanism underlying persistent hepatitis B virus (HBV infection remains unclear. We investigated the role of innate immune responses to persistent HBV infection in 154 HBV-infected patients and 95 healthy controls. The expression of NKG2D- and 2B4-activating receptors on NK cells was significantly decreased, and moreover, the expression of DAP10 and SAP, the intracellular adaptor proteins of NKG2D and 2B4 (respectively, were lower, which then impaired NK cell-mediated cytotoxic capacity and interferon-γ production. Higher concentrations of transforming growth factor-beta 1 (TGF-β1 were found in sera from persistently infected HBV patients. TGF-β1 down-regulated the expression of NKG2D and 2B4 on NK cells in our in vitro study, leading to an impairment of their effector functions. Anti-TGF-β1 antibodies could restore the expression of NKG2D and 2B4 on NK cells in vitro. Furthermore, TGF-β1 induced cell-cycle arrest in NK cells by up-regulating the expression of p15 and p21 in NK cells from immunotolerant (IT patients. We conclude that TGF-β1 may reduce the expression of NKG2D/DAP10 and 2B4/SAP, and those IT patients who are deficient in these double-activating signals have impaired NK cell function, which is correlated with persistent HBV infection.

  16. Inflammation-Induced Downregulation of Butyrate Uptake and Oxidation Is Not Caused by a Reduced Gene Expression.

    Science.gov (United States)

    Boesmans, Leen; Ramakers, Meine; Arijs, Ingrid; Windey, Karen; Vanhove, Wiebe; Schuit, Frans; Rutgeerts, Paul; Verbeke, Kristin; De Preter, Vicky

    2015-02-01

    In ulcerative colitis (UC) the butyrate metabolism is impaired, leading to energy-deficiency in the colonic cells. The effect of inflammation on the butyrate metabolism was investigated. HT-29 cells were incubated with pro-inflammatory cytokines (TNF-α and/or IFN-γ) for 1 and 24 h. Cells were additionally stimulated with butyrate to investigate its anti-inflammatory potential. Butyrate uptake and oxidation were measured using (14)C-labeled butyrate. Gene expression of the butyrate metabolism enzymes, interleukin 8 (IL-8; inflammatory marker) and villin-1 (VIL-1; epithelial cell damage marker) was measured via quantitative RT-PCR. Significantly increased IL-8 expression and decreased VIL-1 expression after 24 h incubation with TNF-α and/or IFN-γ confirmed the presence of inflammation. These conditions induced a decrease of both butyrate uptake and oxidation, whereas the gene expression was not reduced. Simultaneous incubation with butyrate counteracted the reduced butyrate oxidation. In contrast, 1 h incubation with TNF-α induced a significant increased IL-8 expression and decreased butyrate uptake. Incubation with TNF-α and/or IFN-γ for 1 h did not induce cell damage nor influence butyrate oxidation. The inflammation-induced downregulation of the butyrate metabolism was not caused by a reduced gene expression, but appeared consequential to a decreased butyrate uptake. Increasing the luminal butyrate levels might have therapeutic potential in UC. © 2014 Wiley Periodicals, Inc.

  17. Abnormal spermatogenesis following sodium fluoride exposure is associated with the downregulation of CREM and ACT in the mouse testis.

    Science.gov (United States)

    Wang, Chong; Chen, Yan; Manthari, Ram Kumar; Wang, Jundong

    2018-04-01

    cAMP response element modulator (CREM) is involved in regulating gene expression in normal spermatogenesis. The transcriptional activity of CREM is partly regulated by activator of CREM in the testis (ACT). To investigate the effects of different concentrations of sodium fluoride (NaF) on the gene and protein expression of CREM and ACT in the mouse testis, sexually mature male Kunming mice were exposed to 50, 100, or 150 mg/L NaF in their drinking water for 90 days. NaF reduced the sperm count and viability and increased the percentage of malformed sperm in a dose-dependent manner. The mRNA expression of CREM and ACT was markedly downregulated in the NaF-treated groups. Furthermore, immunohistochemistry revealed that CREM and ACT proteins were decreased significantly in the 50, 100, and 150 mg/L NaF-treated groups compared to the control group. These findings indicate that the decreased gene and protein expression of CREM and ACT in the testis is associated with an impairment of reproductive functions by NaF.

  18. Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer's disease mouse model

    International Nuclear Information System (INIS)

    Escribano, Luis; Simon, Ana-Maria; Perez-Mediavilla, Alberto; Salazar-Colocho, Pablo; Rio, Joaquin Del; Frechilla, Diana

    2009-01-01

    Clinical trials with rosiglitazone, a potent agonist at peroxisome proliferator-activated receptor gamma (PPARγ) suggest an improvement of cognitive function in Alzheimer's disease (AD) patients. The mechanisms mediating this potential beneficial effect remain to be fully elucidated. In mice overexpressing mutant human amyloid precursor protein (hAPP), a model of AD, we found that memory impairment in the object recognition test was prevented and also reversed by chronic rosiglitazone treatment. Given the possible involvement of glucocorticoid receptors (GR) in the actions of PPARγ-ligands, we studied the effect of chronic rosiglitazone treatment on GR levels in the hippocampus of hAPP mice. An early down-regulation of GR, not related to elevated plasma corticosterone levels, was found in different hippocampal subfields of the transgenic mice and this decrease was prevented by rosiglitazone. In parallel with behavioural studies, rosiglitazone also normalized GR levels in older animals. This effect may contribute to explain the attenuation of memory decline by PPARγ activation in an AD mouse model.

  19. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease

    Science.gov (United States)

    Berchtold, Nicole C.; Coleman, Paul D.; Cribbs, David H.; Rogers, Joseph; Gillen, Daniel L.; Cotman, Carl W.

    2014-01-01

    Synapses are essential for transmitting, processing, and storing information, all of which decline in aging and Alzheimer’s disease (AD). Because synapse loss only partially accounts for the cognitive declines seen in aging and AD, we hypothesized that existing synapses might undergo molecular changes that reduce their functional capacity. Microarrays were used to evaluate expression profiles of 340 synaptic genes in aging (20–99 years) and AD across 4 brain regions from 81 cases. The analysis revealed an unexpectedly large number of significant expression changes in synapse-related genes in aging, with many undergoing progressive downregulation across aging and AD. Functional classification of the genes showing altered expression revealed that multiple aspects of synaptic function are affected, notably synaptic vesicle trafficking and release, neurotransmitter receptors and receptor trafficking, postsynaptic density scaffolding, cell adhesion regulating synaptic stability, and neuromodulatory systems. The widespread declines in synaptic gene expression in normal aging suggests that function of existing synapses might be impaired, and that a common set of synaptic genes are vulnerable to change in aging and AD. PMID:23273601

  20. Antimicrobial activity of apple cider vinegar against Escherichia coli, Staphylococcus aureus and Candida albicans; downregulating cytokine and microbial protein expression.

    Science.gov (United States)

    Yagnik, Darshna; Serafin, Vlad; J Shah, Ajit

    2018-01-29

    The global escalation in antibiotic resistance cases means alternative antimicrobials are essential. The aim of this study was to investigate the antimicrobial capacity of apple cider vinegar (ACV) against E. coli, S. aureus and C. albicans. The minimum dilution of ACV required for growth inhibition varied for each microbial species. For C. albicans, a 1/2 ACV had the strongest effect, S. aureus, a 1/25 dilution ACV was required, whereas for E-coli cultures, a 1/50 ACV dilution was required (p < 0.05). Monocyte co-culture with microbes alongside ACV resulted in dose dependent downregulation of inflammatory cytokines (TNFα, IL-6). Results are expressed as percentage decreases in cytokine secretion comparing ACV treated with non-ACV treated monocytes cultured with E-coli (TNFα, 99.2%; IL-6, 98%), S. aureus (TNFα, 90%; IL-6, 83%) and C. albicans (TNFα, 83.3%; IL-6, 90.1%) respectively. Proteomic analyses of microbes demonstrated that ACV impaired cell integrity, organelles and protein expression. ACV treatment resulted in an absence in expression of DNA starvation protein, citrate synthase, isocitrate and malate dehydrogenases in E-coli; chaperone protein DNak and ftsz in S. aureus and pyruvate kinase, 6-phosphogluconate dehydrogenase, fructose bisphosphate were among the enzymes absent in C.albican cultures. The results demonstrate ACV has multiple antimicrobial potential with clinical therapeutic implications.

  1. [Multilingualism and specific language impairment].

    Science.gov (United States)

    Arkkila, Eva; Smolander, Sini; Laasonen, Marja

    2013-01-01

    Specific language impairment is one of the most common developmental disturbances in childhood. With the increase of the foreign language population group an increasing number of children assimilating several languages and causing concern in language development attend clinical examinations. Knowledge of factors underlying the specific language impairment and the specific impairment in general, special features of language development of those learning several languages, as well as the assessment and support of the linguistic skills of a multilingual child is essential. The risk of long-term problems and marginalization is high for children having specific language impairment.

  2. 20 CFR 416.998 - If you become disabled by another impairment(s).

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false If you become disabled by another impairment... Disability Or Blindness § 416.998 If you become disabled by another impairment(s). If a new severe impairment(s) begins in or before the month in which your last impairment(s) ends, we will find that your...

  3. 20 CFR 404.1598 - If you become disabled by another impairment(s).

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false If you become disabled by another impairment... Disability § 404.1598 If you become disabled by another impairment(s). If a new severe impairment(s) begins in or before the month in which your last impairment(s) ends, we will find that your disability is...

  4. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages.

    Directory of Open Access Journals (Sweden)

    Zahedi Mujawar

    2006-10-01

    Full Text Available Several steps of HIV-1 replication critically depend on cholesterol. HIV infection is associated with profound changes in lipid and lipoprotein metabolism and an increased risk of coronary artery disease. Whereas numerous studies have investigated the role of anti-HIV drugs in lipodystrophy and dyslipidemia, the effects of HIV infection on cellular cholesterol metabolism remain uncharacterized. Here, we demonstrate that HIV-1 impairs ATP-binding cassette transporter A1 (ABCA1-dependent cholesterol efflux from human macrophages, a condition previously shown to be highly atherogenic. In HIV-1-infected cells, this effect was mediated by Nef. Transfection of murine macrophages with Nef impaired cholesterol efflux from these cells. At least two mechanisms were found to be responsible for this phenomenon: first, HIV infection and transfection with Nef induced post-transcriptional down-regulation of ABCA1; and second, Nef caused redistribution of ABCA1 to the plasma membrane and inhibited internalization of apolipoprotein A-I. Binding of Nef to ABCA1 was required for down-regulation and redistribution of ABCA1. HIV-infected and Nef-transfected macrophages accumulated substantial amounts of lipids, thus resembling foam cells. The contribution of HIV-infected macrophages to the pathogenesis of atherosclerosis was supported by the presence of HIV-positive foam cells in atherosclerotic plaques of HIV-infected patients. Stimulation of cholesterol efflux from macrophages significantly reduced infectivity of the virions produced by these cells, and this effect correlated with a decreased amount of virion-associated cholesterol, suggesting that impairment of cholesterol efflux is essential to ensure proper cholesterol content in nascent HIV particles. These results reveal a previously unrecognized dysregulation of intracellular lipid metabolism in HIV-infected macrophages and identify Nef and ABCA1 as the key players responsible for this effect. Our findings

  5. Renal endoplasmic reticulum stress is coupled to impaired autophagy in a mouse model of GSD Ia.

    Science.gov (United States)

    Farah, Benjamin L; Landau, Dustin J; Wu, Yajun; Sinha, Rohit A; Loh, Alwin; Bay, Boon-Huat; Koeberl, Dwight D; Yen, Paul M

    2017-11-01

    GSD Ia (von Gierke Disease, Glycogen Storage Disease Type Ia) is a devastating genetic disorder with long-term sequelae, such as non-alcoholic fatty liver disease and renal failure. Down-regulated autophagy is involved in the development of hepatic metabolic dysfunction in GSD Ia; however, the role of autophagy in the renal pathology is unknown. Here we show that autophagy is impaired and endoplasmic reticulum (ER) stress is increased in the kidneys of a mouse model of GSD Ia. Induction of autophagy by rapamycin also reduces this ER stress. Taken together, these results show an additional role for autophagy down-regulation in the pathogenesis of GSD Ia, and provide further justification for the use of autophagy modulators in GSD Ia. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    International Nuclear Information System (INIS)

    Ungerer, Christopher; Doberstein, Kai; Buerger, Claudia; Hardt, Katja; Boehncke, Wolf-Henning; Boehm, Beate; Pfeilschifter, Josef; Dummer, Reinhard; Mihic-Probst, Daniela; Gutwein, Paul

    2010-01-01

    Research highlights: → Strong ADAM15 expression is found in normal melanocytes. → ADAM15 expression is significantly downregulated in patients with melanoma metastasis. → TGF-β can downregulate ADAM15 expression in melanoma cells. → Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. → Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far. In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-γ and TGF-β downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.

  7. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Ungerer, Christopher; Doberstein, Kai [Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt, Frankfurt am Main (Germany); Buerger, Claudia; Hardt, Katja; Boehncke, Wolf-Henning [Department of Dermatology, Clinic of the Goethe-University, Theodor-Stern-Kai, Frankfurt (Germany); Boehm, Beate [Division of Rheumatology, Goethe University, Frankfurt am Main (Germany); Pfeilschifter, Josef [Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt, Frankfurt am Main (Germany); Dummer, Reinhard [Department of Pathology, Institute of Surgical Pathology, University Hospital, Zurich (Switzerland); Mihic-Probst, Daniela [Department of Dermatology, University Hospital Zurich (Switzerland); Gutwein, Paul, E-mail: p.gutwein@med.uni-frankfurt.de [Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt, Frankfurt am Main (Germany)

    2010-10-22

    Research highlights: {yields} Strong ADAM15 expression is found in normal melanocytes. {yields} ADAM15 expression is significantly downregulated in patients with melanoma metastasis. {yields} TGF-{beta} can downregulate ADAM15 expression in melanoma cells. {yields} Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. {yields} Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far. In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-{gamma} and TGF-{beta} downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.

  8. ICT, Education, and Visual Impairment.

    Science.gov (United States)

    Douglas, Graeme

    2001-01-01

    Reviews developments in the use of information and communications technology (ICT) in the education of children with visual impairments. Highlights include the population of children with visual impairments in the United Kingdom; and World Health Organization classification of disability as a criteria by which the relevance of ICT can be measured.…

  9. Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity.

    Science.gov (United States)

    Lobo, Ana Karla Moreira; de Oliveira Martins, Marcio; Lima Neto, Milton Costa; Machado, Eduardo Caruso; Ribeiro, Rafael Vasconcelos; Silveira, Joaquim Albenisio Gomes

    2015-05-01

    Photosynthetic modulation by sugars has been known for many years, but the biochemical and molecular comprehension of this process is lacking. We studied how the exogenous sucrose supplied to leaves could affect sugar metabolism in leaf, sheath and stalk and inhibit photosynthesis in four-month old sugarcane plants. Exogenous sucrose 50mM sprayed on attached leaves strongly impaired the net CO2 assimilation (PN) and decreased the instantaneous carboxylation efficiency (PN/Ci), suggesting that the impairment in photosynthesis was caused by biochemical restrictions. The photosystem II activity was also affected by excess sucrose as indicated by the reduction in the apparent electron transport rate, effective quantum yield and increase in non-photochemical quenching. In leaf segments, sucrose accumulation was related to increases in the activities of soluble acid and neutral invertases, sucrose synthase and sucrose phosphate synthase, whereas the contents of fructose increased and glucose slightly decreased. Changes in the activities of sucrose hydrolyzing and synthesizing enzymes in leaf, sheath and stalk and sugar profile in intact plants were not enough to identify which sugar(s) or enzyme(s) were directly involved in photosynthesis modulation. However, exogenous sucrose was able to trigger down-regulation in the Rubisco abundance, activation state and enzymatic activity. Despite the fact that PN/Ci had been notably decreased by sucrose, in vitro activity and abundance of PEPCase did not change, suggesting an in vivo modulation of this enzyme. The data reveal that sucrose and/or other derivative sugars in leaves inhibited sugarcane photosynthesis by down-regulation of Rubisco synthesis and activity. Our data also suggest that sugar modulation was not exerted by a feedback mechanism induced by the accumulation of sugars in immature sugarcane stalk. Copyright © 2015. Published by Elsevier GmbH.

  10. Nutrition and cognitive impairment

    Science.gov (United States)

    Hernando-Requejo, Virgilio

    2016-07-12

    Dementia, closely linked to environmental predisposing factors such as diet, is a public health problem of increasing magnitude: currently there are more than 35 million patients with Alzheimer´s disease, and is expected to exceed 135 million by 2050. If we can delay the development of dementia 5 years will reduce its prevalence by 50%. Patients with dementia modify their diet, and it has been reported in them deficits, among others, of folic acid, vitamin B12, B6, C, E, A, D, K, beta carotene and omega 3 fatty acids, that must be resolved with proper diet and with extra contributions if needed in some cases. But to reduce, or at least delay, the prevalence of dementia we advocate prevention through proper diet from the beginning of life, an idea that is reinforced given that cardiovascular risk factors are related directly to the development of dementia. A lot of literature are available that, although with limits, allows us to make nutritional recommendations for preventing cognitive impairment. Better results are achieved when complete diets have been studied and considered over specific nutrients separately. Particularly, the Mediterranean diet has great interest in this disease, since it ensures a high intake of vegetables, fruits, nuts, legumes, cereals, fish and olive oil, and moderate intake of meat, dairy products and alcohol. We will focus more on this article in this type of diet.

  11. Downregulation of HIF-1a sensitizes U251 glioma cells to the temozolomide (TMZ) treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun-Hai [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Ma, Zhi-Xiong [National Institute of Biological Sciences, Beijing 102206 (China); Huang, Guo-Hao; Xu, Qing-Fu; Xiang, Yan [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Li, Ningning; Sidlauskas, Kastytis [Division of Neuropathology and Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG (United Kingdom); Zhang, Eric Erquan [National Institute of Biological Sciences, Beijing 102206 (China); Lv, Sheng-Qing, E-mail: lvsq0518@hotmail.com [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China)

    2016-05-01

    Purpose: The aim of this study was to investigate the effect of downregulation of HIF-1α gene on human U251 glioma cells and examine the consequent changes of TMZ induced effects and explore the molecular mechanisms. Methods: U251 cell line stably expressing HIF-1α shRNA was acquired via lentiviral vector transfection. The mRNA and protein expression alterations of genes involved in our study were determined respectively by qRT-PCR and Western blot. Cell proliferation was measured by MTT assay and colony formation assay, cell invasion/migration capacity was determined by transwell invasion assay/wound healing assay, and cell apoptosis was detected by flow cytometry. Results: We successfully established a U251 cell line with highly efficient HIF-1α knockdown. HIF-1a downregulation sensitized U251 cells to TMZ treatment and enhanced the proliferation-inhibiting, invasion/migration-suppressing, apoptosis-inducing and differentiation-promoting effects exerted by TMZ. The related molecular mechanisms demonstrated that expression of O{sup 6}-methylguanine DNA methyltransferase gene (MGMT) and genes of Notch1 pathway were significantly upregulated by TMZ treatment. However, this upregulation was abrogated by HIF-1α knockdown. We further confirmed important regulatory roles of HIF-1α in the expression of MGMT and activation of Notch1 pathways. Conclusion: HIF-1α downregulation sensitizes U251 glioma cells to the temozolomide treatment via inhibiting MGMT expression and Notch1 pathway activation. - Highlights: • TMZ caused more significant proliferation inhibition and apoptosis in U251 cells after downregulating HIF-1α. • Under TMZ treatment, HIF-1 downregulated U251 cells exhibited weaker mobility and more differentiated state. • TMZ caused MGMT over-expression and Notch1 pathway activation, which could be abrogated by HIF-1α downregulation.

  12. Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1

    Science.gov (United States)

    Krishnan, Vaishnav; Stoppel, David C.; Nong, Yi; Johnson, Mark A.; Nadler, Monica J.S.; Ozkaynak, Ekim; Teng, Brian L.; Nagakura, Ikue; Mohammad, Fahim; Silva, Michael A.; Peterson, Sally; Cruz, Tristan J.; Kasper, Ekkehard M.; Arnaout, Ramy; Anderson, Matthew P.

    2017-01-01

    Summary Maternally inherited 15q11-13 chromosomal triplications cause a frequent and highly penetrant autism linked to increased gene dosages of UBE3A, which both possesses ubiquitin-ligase and transcriptional co-regulatory functions. Here, using in vivo mouse genetics, we show that increasing UBE3A in the nucleus down-regulates glutamatergic synapse organizer cerebellin-1 (Cbln1) that is needed for sociability in mice. Epileptic seizures also repress Cbln1 and are found to expose sociability impairments in mice with asymptomatic increases of UBE3A. This Ube3a-seizure synergy maps to glutamate neurons of the midbrain ventral tegmental area (VTA) where Cbln1 deletions impair sociability and weaken glutamatergic transmission. We provide preclinical evidence that viral-vector-based chemogenetic activations of, or Cbln1 restorations in VTA glutamatergic neurons rescues sociability deficits induced by Ube3a and/or seizures. Our results suggest a gene × seizure interaction in VTA glutamatergic neurons that impairs sociability by downregulating Cbln1, a key node in the expanding protein interaction network of autism genes. PMID:28297715

  13. Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1.

    Science.gov (United States)

    Krishnan, Vaishnav; Stoppel, David C; Nong, Yi; Johnson, Mark A; Nadler, Monica J S; Ozkaynak, Ekim; Teng, Brian L; Nagakura, Ikue; Mohammad, Fahim; Silva, Michael A; Peterson, Sally; Cruz, Tristan J; Kasper, Ekkehard M; Arnaout, Ramy; Anderson, Matthew P

    2017-03-23

    Maternally inherited 15q11-13 chromosomal triplications cause a frequent and highly penetrant type of autism linked to increased gene dosages of UBE3A, which encodes a ubiquitin ligase with transcriptional co-regulatory functions. Here, using in vivo mouse genetics, we show that increasing UBE3A in the nucleus downregulates the glutamatergic synapse organizer Cbln1, which is needed for sociability in mice. Epileptic seizures also repress Cbln1 and are found to expose sociability impairments in mice with asymptomatic increases in UBE3A. This Ube3a-seizure synergy maps to glutamate neurons of the midbrain ventral tegmental area (VTA), where Cbln1 deletions impair sociability and weaken glutamatergic transmission. We provide preclinical evidence that viral-vector-based chemogenetic activation of, or restoration of Cbln1 in, VTA glutamatergic neurons reverses the sociability deficits induced by Ube3a and/or seizures. Our results suggest that gene and seizure interactions in VTA glutamatergic neurons impair sociability by downregulating Cbln1, a key node in the expanding protein interaction network of autism genes.

  14. A framework for communication between visually impaired, hearing impaired and speech impaired using arduino

    Science.gov (United States)

    Sujatha, R.; Khandelwa, Prakhar; Gupta, Anusha; Anand, Nayan

    2017-11-01

    A long time ago our society accepted the notion of treating people with disabilities not as unviable and disabled but as differently-abled, recognizing their skills beyond their disabilities. The next step has to be taken by our scientific community, that is, to normalize lives of the people with disabilities and make it so as if they are no different to us. The primary step in this direction would be to normalize communication between people. People with an impaired speech or impaired vision or impaired hearing face difficulties while having a casual conversation with others. Any form of communication feels so strenuous that the impaired end up communicating just the important information and avoid a casual conversation. To normalize conversation between the impaired we need a simple and compact device which facilitates the conversation by providing the information in the desired form.

  15. Protein kinase C (PKC) alpha and PKC theta are the major PKC isotypes involved in TCR down-regulation

    DEFF Research Database (Denmark)

    von Essen, Marina; Nielsen, Martin W; Bonefeld, Charlotte M

    2006-01-01

    of this study was to identify the PKC isotype(s) involved in TCR down-regulation and to elucidate the mechanism by which they induce TCR down-regulation. To accomplish this, we studied TCR down-regulation in the human T cell line Jurkat, in primary human T cells, or in the mouse T cell line DO11.10 in which we...

  16. Down-regulation of S100C is associated with bladder cancer progression and poor survival

    DEFF Research Database (Denmark)

    Memon, Ashfaque Ahmed; Sorensen, Boe Sandahl; Meldgaard, Peter

    2005-01-01

    cancer biopsy samples obtained from 88 patients followed for a median of 23 months (range, 1-97 months). RESULTS: We found a significantly lower mRNA expression of S100C in connective tissue invasive tumors (T1, P = 0.0030) and muscle invasive tumors [(T2-T4), P ...PURPOSE: The goal of this study was to identify proteins down-regulated during bladder cancer progression. EXPERIMENTAL DESIGN: By using comparative proteome analysis and measurement of mRNA, we found a significant down-regulation of S100C, a member of the S100 family of proteins, in T24 (grade 3...

  17. Silencing TNFα with lipidoid nanoparticles downregulates both TNFα and MCP-1 in an in vitro co-culture model of diabetic foot ulcers.

    Science.gov (United States)

    Kasiewicz, Lisa N; Whitehead, Kathryn A

    2016-03-01

    Diabetes is one of the most formidable diseases facing the world today, with the number of patients growing every year. Poor glycemic control yields a host of complications, such as impaired wound healing. This often results in the formation of diabetic foot ulcers, which carry a poor prognosis because they are notoriously difficult to treat. Current therapies do not address the increased number of infiltrating macrophages to the wound bed that overproduce tumor necrosis factor α (TNFα), which increases fibroblast apoptosis and collagen dismantling and decreases angiogenesis. In this study, we investigated the potential of RNA interference therapy to reduce the inappropriately high levels of TNFα in the wound bed. Although TNFα is a challenging gene silencing target, our lipidoid nanoparticles potently silence TNFα mRNA and protein expression at siRNA doses of 5-100nM without inducing vehicle-related gene silencing or cell death. We also describe the creation of an in vitro macrophage-fibroblast co-culture model, which reflects the TNFα and monocyte chemotactant protein-1 (MCP-1/CCL2) cross-talk that exists in diabetic wounds. Because TNFα induces fibroblasts to produce MCP-1, we show that silencing TNFα results in a downregulation of MCP-1, which should inhibit the recruitment of additional macrophages to the wound. In co-culture experiments, a single lipidoid nanoparticle dose of 100nM siTNFα downregulated TNFα and MCP-1 by 64% and 32%, respectively. These data underscore the potential of lipidoid nanoparticle RNAi treatment to inhibit a positive feedback cycle that fuels the pathogenesis of diabetic foot ulcers. Diabetic foot ulcers are a rapidly growing issue worldwide, with current ulcer treatments not as effective as desired. RNA interference therapy represents a largely untapped possible solution to impaired wound healing. We show that siRNA-loaded lipidoid nanoparticles silence the overexpression of tumor necrosis factor α (TNFα) in inflammatory

  18. Metabolic syndrome impairs notch signaling and promotes apoptosis in chronically ischemic myocardium.

    Science.gov (United States)

    Elmadhun, Nassrene Y; Sabe, Ashraf A; Lassaletta, Antonio D; Chu, Louis M; Kondra, Katelyn; Sturek, Michael; Sellke, Frank W

    2014-09-01

    Impaired angiogenesis is a known consequence of metabolic syndrome (MetS); however, the mechanism is not fully understood. Recent studies have shown that the notch signaling pathway is an integral component of cardiac angiogenesis. We tested, in a clinically relevant swine model, the effects of MetS on notch and apoptosis signaling in chronically ischemic myocardium. Ossabaw swine were fed either a regular diet (control [CTL], n = 8) or a high-cholesterol diet (MetS, n = 8) to induce MetS. An ameroid constrictor was placed to induce chronic myocardial ischemia. Eleven weeks later, the wine underwent cardiac harvest of the ischemic myocardium. Downregulation of pro-angiogenesis proteins notch2, notch4, jagged2, angiopoietin 1, and endothelial nitric oxide synthase were found in the MetS group compared with the CTL group. Also, upregulation of pro-apoptosis protein caspase 8 and downregulation of anti-angiogenesis protein phosphorylated forkhead box transcription factor 03 and pro-survival proteins phosphorylated P38 and heat shock protein 90 were present in the MetS group. Cell death was increased in the MetS group compared with the CTL group. Both CTL and MetS groups had a similar arteriolar count and capillary density, and notch3 and jagged1 were both similarly concentrated in the smooth muscle wall. MetS in chronic myocardial ischemia significantly impairs notch signaling by downregulating notch receptors, ligands, and pro-angiogenesis proteins. MetS also increases apoptosis signaling, decreases survival signaling, and increases cell death in chronically ischemic myocardium. Although short-term angiogenesis appears unaffected in this model of early MetS, the molecular signals for angiogenesis are impaired, suggesting that inhibition of notch signaling might underlie the decreased angiogenesis in later stages of MetS. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  19. Brain visual impairment in childhood: mini review

    OpenAIRE

    Kozeis, N

    2010-01-01

    Cerebral visual impairment (CVI) is one of the leading causes of severe visual impairment in childhood. This article was written to highlight any new knowledge related to cerebral visual impairment in childhood.

  20. Specific Language Impairment in Families: Evidence for Co-Occurrence with Reading Impairments.

    Science.gov (United States)

    Flax, Judy F.; Realpe-Bonilla, Teresa; Hirsch, Linda S.; Brzustowicz, Linda M.; Bartlett, Christopher W.; Tallal, Paula

    2003-01-01

    Two family aggregation studies involving 25 children (ages 5-10) with specific language impairment (SLI) report the occurrence and co-occurrence of oral language impairments and reading impairments. Results indicate that when language impairments occur within families of SLI probands, these impairments generally co-occur with reading impairments.…

  1. Genetic Counseling in Hearing Impairment.

    Science.gov (United States)

    Fraser, George R.

    1979-01-01

    The problem of counseling is dealt with mainly in the context of severe hearing impairment, since moderate forms are often due to illness or other nongenetic factors and do not constitute a grave handicap. (DLS)

  2. Emotional impairment in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    CHEN Hai-bo

    2013-08-01

    Full Text Available Emotional impairment is the common complication of Parkinson's disease (PD. Depression, anxiety and apathy affect the quality of life and the prognosis of PD patients. Neuropsychological and neuroimaging studies of emotional impairment in PD patients suggest abnormalities involving mesolimbic and mesocortical dopaminergic pathways, but the specific mechanism needs further study. In this review we discuss the clinical manifestation, possible pathological mechanism, diagnosis and treatment in PD patients.

  3. Impaired tooth eruption: a review.

    Science.gov (United States)

    Noffke, C E E; Chabikuli, N J; Nzima, N

    2005-11-01

    Eruption is the continuous process of movement of a tooth from its developmental location inside the jaw to its functional location in the mouth. Impaired tooth eruption, where this process is disturbed, is common in dental practice. It may manifest either as delayed or complete absence of eruption. Although unerupted teeth are usually asymptomatic, they may cause cosmetic and pathologic complications. The purpose of this article is to provide a review on the pathogenesis and differential radiographic interpretation of impaired tooth eruption.

  4. Downregulation of PTEN at Corneal Wound Sites Accelerates Wound Healing through Increased Cell Migration

    OpenAIRE

    Cao, Lin; Graue-Hernandez, Enrique O.; Tran, Vu; Reid, Brian; Pu, Jin; Mannis, Mark J.; Zhao, Min

    2011-01-01

    Wounding downregulates PTEN and activates the PI3 kinase/Akt pathway. Pharmacologic inhibition of PTEN stimulates the motility of corneal epithelial cells and corneal wound healing. These results imply that the inhibition of PTEN may be a plausible approach for corneal wounds.

  5. MiR-128b is down-regulated in gastric cancer and negatively ...

    Indian Academy of Sciences (India)

    2016-02-04

    Feb 4, 2016 ... of colon, lung and pancreas comparing with normal tissues. (Volinia et al. 2006). In contrast, Katada showed that miR-. 128b was down-regulated in undifferentiated GC tissues (Li et al. 2013). These results revealed miR-128b might have different roles depending on the cancer type. Numerous researches ...

  6. ZN2+ INDUCES COX-2 EXPRESSION THROUGH DOWNREGULATION OF LIPID PHOSPHATASE PTEN

    Science.gov (United States)

    Zn2+ Induces COX-2 Expression through Downregulation of Lipid Phosphatase PTEN Weidong Wu*, James M. Samet, Philip A. Bromberg*?, Young E. Whang?, and Lee M. Graves* ?*CEMALB, ?Department of Medicine, and ?Department of Pharmacology, UNC-Chapel Hill, NC27599; Human Studie...

  7. Targeted downregulation of platelet CLEC-2 occurs through Syk-independent internalization

    OpenAIRE

    Lorenz, Viola; Stegner, David; Stritt, Simon; Vögtle, Timo; Kiefer, Friedemann; Witke, Walter; Schymeinsky, Jürgen; Watson, Steve P.; Walzog, Barbara; Nieswandt, Bernhard

    2015-01-01

    CLEC-2 can be downregulated from circulating platelets by anti–CLEC-2 antibodies through Src-family kinase-dependent internalization.Platelet-specific Syk deficiency abrogates anti–CLEC-2 antibodies-induced thrombocytopenia, but not CLEC-2 internalization.

  8. Overexpression of hsa-miR-939 follows by NGFR down-regulation ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 42; Issue 1. Overexpression of hsa-miR-939 follows by NGFR down-regulation and apoptosis reduction. FAHIMEH HOSSEINI AGHDAEI BAHRAM M SOLTANI SADAT DOKANEHIIFARD SEYED JAVAD MOWLA MASOUD SOLEIMANI. Article Volume 42 Issue 1 March 2017 ...

  9. Overexpression of hsa-miR-939 follows by NGFR down-regulation ...

    Indian Academy of Sciences (India)

    2017-02-11

    Feb 11, 2017 ... Also, hsa-miR-939 overexpression brought about down-regulation of NGFR expression in U87 cell line ... hsa-miR-939 is introduced as a novel key regulator of NGFR expression and its involvement in cell death/survival processes is ..... tumor suppressor induces cell cycle arrest facilitating caspase.

  10. Selenium acts as an insulin-like molecule for the down-regulation of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 32; Issue 4. Selenium acts as an insulin-like molecule for the down-regulation of diabetic symptoms via endoplasmic reticulum stress and insulin signalling proteins in diabetes-induced non-obese diabetic mice. Daeyoun Hwang Sujin Seo Yongkyu Kim Chuelkyu Kim Sunbo ...

  11. Cytokine-mediated downregulation of vasopressin V(1A) receptors during acute endotoxemia in rats.

    Science.gov (United States)

    Bucher, Michael; Hobbhahn, Jonny; Taeger, Kai; Kurtz, Armin

    2002-04-01

    The reduced pressure response to vasopressin during acute sepsis has directed our interest to the regulation of vasopressin V(1A) receptors. Rats were injected with lipopolysaccharide for induction of experimental gram-negative sepsis. V(1A) receptor gene expression was downregulated in the liver, lung, kidney, and heart during endotoxemia. Inasmuch as the concentrations of proinflammatory cytokines such as interleukin-1beta, tumor necrosis factor-alpha, and interferon-gamma were highly increased during sepsis, the influence of these cytokines on V(1A) receptor expression was investigated in primary cultures of hepatocytes and in the aortic vascular smooth muscle cell line A7r5. V(1A) receptor expression was downregulated by the cytokines in a nitric oxide-independent manner. Blood pressure dose-response studies after injection of endotoxin showed a diminished responsiveness to the selective V(1) receptor agonist Phe(2),Ile(3),Orn(8)-vasopressin. Our data show that sepsis causes a downregulation of V(1A) receptors and suggest that this effect is likely mediated by proinflammatory cytokines. We propose that this downregulation of V(1A) receptors contributes to the attenuated responsiveness of blood pressure in response to vasopressin and, therefore, contributes to the circulatory failure in septic shock.

  12. microRNA-143 down-regulates Hexokinase 2 in colon cancer cells

    DEFF Research Database (Denmark)

    Gregersen, Lea Haarup; Jacobsen, Anders; Frankel, Lisa

    2012-01-01

    and validated HK2 as a miR-143 target. Furthermore, our results indicate that miR-143 mediated down-regulation of HK2 affects glucose metabolism in colon cancer cells. We hypothesize that loss of miR-143-mediated repression of HK2 can promote glucose metabolism in cancer cells, contributing to the shift towards...

  13. Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in S. cerevisiae

    DEFF Research Database (Denmark)

    Jensen, Mette Moesgaard; Christensen, Marianne Skovgaard; Bonven, Bjarne Juul

    2008-01-01

    Heat shock genes respond to moderate heat stress by a wave of transcription. The induction phase is accompanied by massive eviction of histones, which later reassemble with DNA during the ensuing phase of transcription downregulation. Here, we identify determinants of this reassembly throughout...

  14. MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2.

    Science.gov (United States)

    Huang, C-L; Ueno, M; Liu, D; Masuya, D; Nakano, J; Yokomise, H; Nakagawa, T; Miyake, M

    2006-10-19

    Motility-related protein-1 (MRP-1/CD9) is involved in cell motility. We studied the change in the actin cytoskeleton, and the expression of actin-related protein (Arp) 2 and Arp3 and the Wiskott-Aldrich syndrome protein (WASP) family according to MRP-1/CD9 gene transduction into HT1080 cells. The frequency of cells with lamellipodia was significantly lower in MRP-1/CD9-transfected HT1080 cells than in control HT1080 cells (PMRP-1/CD9 gene transduction affected the subcellular localization of Arp2 and Arp3 proteins. Furthermore, MRP-1/CD9 gene transduction induced a downregulation of WAVE2 expression (PMRP-1/CD9 monoclonal antibody inhibited downregulation of WAVE2 in MRP-1/CD9-transfected HT1080 cells (PMRP-1/CD9 gene transduction. Furthermore, downregulation of WAVE2 by transfection of WAVE2-specific small interfering RNA (siRNA) mimicked the morphological effects of MRP-1/CD9 gene transduction and suppressed cell motility. However, transfection of each siRNA for Wnt1, Wnt2b1 or Wnt5a did not affect WAVE2 expression. Transfection of WAVE2-specific siRNA also did not affect expressions of these Wnts. These results indicate that MRP-1/CD9 regulates the actin cytoskeleton by downregulating of the WAVE2, through the Wnt-independent signal pathway.

  15. Acid-degradable Dextran as an Image Guided siRNA Carrier for COX-2 Downregulation.

    Science.gov (United States)

    Chen, Zhihang; Krishnamachary, Balaji; Penet, Marie-France; Bhujwalla, Zaver M

    2018-01-01

    Purpose: Effective in vivo delivery of siRNA to silence genes is a highly sought-after goal in the treatment of multiple diseases. Cyclooxygenase-2 (COX-2) is a major mediator of inflammation and its effective and specific downregulation has been of major interest to treat conditions ranging from auto-immune diseases to gastric inflammation and cancer. Here we developed a novel and efficient method to produce a multiple imaging reporter labeled cationic dextran nanopolymer with cleavable positive charge groups for COX-2 siRNA delivery. Methods: Small molecules containing amine groups were conjugated to the dextran scaffold through acetal bonds that were cleaved in weak acid conditions. With multiple imaging reporters located on different regions of the nanopolymer, cleavage of acetal bonds was visualized and quantified by imaging, for the first time, in cancer cells and tumors. Results: The biocompatibility of dextran and the rapid cleavage and release of amine groups minimized proinflammatory side effects and COX-2 induction observed with other siRNA carriers, to successfully achieve COX-2 downregulation in cancer cells and tumors. Imaging results confirmed that this nanoplex, consisting of the dextran nanopolymer with COX-2 siRNA, accumulated in tumors, and the amine functional groups were rapidly cleaved in cancer cells and tumors. Along with effective downregulation of COX-2, we also demonstrated, for the first time, effective downregulation of its major product prostaglandin E 2 (PGE 2 ). Conclusions: We successfully developed an efficient method to produce an acid-degradable dextran nanopolymer containing cleavable amine groups as the siRNA carrier. Because of its biocompatibility, this degradable dextran delivered COX-2 siRNA within tumors and efficiently downregulated COX-2 expression.

  16. Downregulation of PTEN at Corneal Wound Sites Accelerates Wound Healing through Increased Cell Migration

    Science.gov (United States)

    Cao, Lin; Graue-Hernandez, Enrique O.; Tran, Vu; Reid, Brian; Pu, Jin; Mannis, Mark J.

    2011-01-01

    Purpose. The PI3K/Akt pathway is required for cell polarization and migration, whereas the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has inhibitory effects on the PI3K/Akt pathway. The authors therefore hypothesized that wounding would downregulate PTEN and that this downregulation would enhance wound healing. Methods. In human corneal epithelial (HCE) cell monolayer and rat cornea scratch wound models, the authors investigated PTEN and Akt expression using Western blot and immunofluorescence analyses. The effects of PTEN and PI3K inhibitors dipotassium bisperoxo (picolinato) oxovanadate (bpv(pic)) and LY294002 on cell migration and wound closure were investigated using time-lapse imaging. Finally, the authors investigated the effect of PTEN inhibition on wound healing in whole rat eyes. Results. In HCE cell monolayer and rat cornea, PTEN was downregulated at the wound edges within 30 minutes of wounding. The downregulation of PTEN was causal in a simultaneous increase in Akt activation, which was responsible for a significant increase in individual cell migration rate from 8.8 μm/h to 17.3 μm/h. An increased migration rate was maintained for 20 hours. PTEN inhibition significantly enhanced the wound healing rate in the HCE cell monolayer from 10 minutes onward after treatment and reduced the healing time in eye organ culture from 30 to 20 hours. Conclusions. Injury to the corneal epithelium downregulates the expression of PTEN at wound edges, allowing increased PI3K/Akt signaling, thereby contributing to a significant enhancement of cell migration and wound healing. These results suggest that PTEN inhibition may be an effective treatment for corneal injury. PMID:21212174

  17. WWC3 downregulation correlates with poor prognosis and inhibition of Hippo signaling in human gastric cancer

    Directory of Open Access Journals (Sweden)

    Hou J

    2017-06-01

    Full Text Available Jiabin Hou, Jin Zhou The First Affiliated Hospital, Harbin Medical University, Harbin, People’s Republic of China Abstract: The aim of this study was to investigate the clinicopathological significance and biological roles of WWC3 in human gastric cancer (GC. Clinical significance of WWC3 in human GCs was examined by using immunohistochemistry (IHC. WWC3 was downregulated in 48 of 111 human GCs, and its downregulation was associated with advanced stage, positive nodal status, and higher relapse rate. Importantly, WWC3 downregulation correlated with poor survival. It was also found that WWC3 protein expression was downregulated in GC cell lines compared with normal cell line GES-1. On one hand, WWC3 overexpression inhibited the cell growth rate and invading ability in HGC-27 cell line. On the other hand, depleting WWC3 by small interfering RNA (siRNA promoted proliferation rate and invading ability in the SGC-7901 cell line. In addition, cell cycle analysis showed that WWC3 overexpression inhibited while its depletion accelerated cell cycle progression at the G1/S transition. Western blot (WB analysis demonstrated that WWC3 repressed cyclin D1 and cyclin E while upregulated p27 expression. Luciferase reporter assay showed that WWC3 activated Hippo signaling pathway by suppressing TEAD transcription activity, with downregulation of total and nuclear YAP and its target CTGF. WWC3 siRNA depletion exhibited the opposite effects. In conclusion, this study indicates that WWC3 serves as a tumor suppressor in GC by activating Hippo signaling. Keywords: WWC3, gastric cancer, cell cycle, Hippo, YAP

  18. Downregulation of MHC-I expression is prevalent but reversible in Merkel cell carcinoma.

    Science.gov (United States)

    Paulson, Kelly G; Tegeder, Andrew; Willmes, Christoph; Iyer, Jayasri G; Afanasiev, Olga K; Schrama, David; Koba, Shinichi; Thibodeau, Renee; Nagase, Kotaro; Simonson, William T; Seo, Aaron; Koelle, David M; Madeleine, Margaret; Bhatia, Shailender; Nakajima, Hideki; Sano, Shigetoshi; Hardwick, James S; Disis, Mary L; Cleary, Michele A; Becker, Jürgen C; Nghiem, Paul

    2014-11-01

    Merkel cell carcinoma (MCC) is an aggressive, polyomavirus-associated skin cancer. Robust cellular immune responses are associated with excellent outcomes in patients with MCC, but these responses are typically absent. We determined the prevalence and reversibility of major histocompatibility complex class I (MHC-I) downregulation in MCC, a potentially reversible immune-evasion mechanism. Cell-surface MHC-I expression was assessed on five MCC cell lines using flow cytometry as well as immunohistochemistry on tissue microarrays representing 114 patients. Three additional patients were included who had received intralesional IFN treatment and had evaluable specimens before and after treatment. mRNA expression analysis of antigen presentation pathway genes from 35 MCC tumors was used to examine the mechanisms of downregulation. Of note, 84% of MCCs (total n = 114) showed reduced MHC-I expression as compared with surrounding tissues, and 51% had poor or undetectable MHC-I expression. Expression of MHC-I was lower in polyomavirus-positive MCCs than in polyomavirus-negative MCCs (P MHC-I downregulation mechanism was multifactorial and did not depend solely on HLA gene expression. Treatment of MCC cell lines with ionizing radiation, etoposide, or IFN resulted in MHC-I upregulation, with IFNs strongly upregulating MHC-I expression in vitro, and in 3 of 3 patients treated with intralesional IFNs. MCC tumors may be amenable to immunotherapy, but downregulation of MHC-I is frequently present in these tumors, particularly those that are positive for polyomavirus. This downregulation is reversible with any of several clinically available treatments that may thus promote the effectiveness of immune-stimulating therapies for MCC. ©2014 American Association for Cancer Research.

  19. Histone Acetylation Regulation in Sleep Deprivation-Induced Spatial Memory Impairment.

    Science.gov (United States)

    Duan, Ruifeng; Liu, Xiaohua; Wang, Tianhui; Wu, Lei; Gao, Xiujie; Zhang, Zhiqing

    2016-09-01

    Sleep disorders negatively affect cognition and health. Recent evidence has indicated that chromatin remodeling via histone acetylation regulates cognitive function. This study aimed to investigate the possible roles of histone acetylation in sleep deprivation (SD)-induced cognitive impairment. Results of the Morris water maze test showed that 3 days of SD can cause spatial memory impairment in Wistar rats. SD can also decrease histone acetylation levels, increase histone deacetylase 2 (HDAC2) expression, and decrease histone acetyltransferase (CBP) expression. Furthermore, SD can reduce H3 and H4 acetylation levels in the promoters of the brain-derived neurotrophic factor (Bdnf) gene and thus significantly downregulate BDNF expression and impair the activity of key BDNF signaling pathways (pCaMKII, pErk2, and pCREB). However, treatment with the HDAC inhibitor trichostatin A attenuated all the negative effects induced by SD. Therefore, BDNF and its histone acetylation regulation may play important roles in SD-induced spatial memory impairment, whereas HDAC inhibition possibly confers protection against SD-induced impairment in spatial memory and hippocampal functions.

  20. Metformin reduces the endotoxin-induced down-regulation of apolipoprotein E gene expression in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Stavri, Simona; Trusca, Violeta G.; Simionescu, Maya; Gafencu, Anca V., E-mail: anca.gafencu@icbp.ro

    2015-05-29

    The atheroprotective role of macrophage-derived apolipoprotein E (apoE) is well known. Our previous reports demonstrated that inflammatory stress down-regulates apoE expression in macrophages, aggravating atherogenesis. Metformin, extensively used as an anti-diabetic drug, has also anti-inflammatory properties, and thus confers vascular protection. In this study, we questioned whether metformin could have an effect on apoE expression in macrophages in normal conditions or under lipopolysaccharide (LPS)-induced stress. The results showed that metformin slightly increases the apoE expression only at high doses (5–10 mM). Low doses of metformin (1–3 mM) significantly reduce the LPS down-regulatory effect on apoE expression in macrophages. Our experiments demonstrated that LPS-induced NF-κB binds to the macrophage-specific distal regulatory element of apoE gene, namely to the multienhancer 2 (ME.2) and its 5′-deletion fragments. The NF-κB binding on ME.2 and apoE promoter has a down-regulatory effect. In addition, data revealed that metformin impairs NF-κB nuclear translocation, and thus, improves the apoE levels in macrophages under inflammatory stress. The positive effect of metformin in the inflammatory states, its clinical safety and low cost, make this drug a potential adjuvant in the therapeutic strategies for atherosclerosis. - Highlights: • High doses of metformin slightly increase apoE expression in macrophages. • Low doses of metformin up-regulate apoE gene in endotoxin-stressed macrophages. • Metformin reduces the negative effect of LPS on apoE expression by NF-κB inhibition.

  1. Downregulation of miR-491-5p promotes gastric cancer metastasis by regulating SNAIL and FGFR4.

    Science.gov (United States)

    Yu, Ting; Wang, Li-Na; Li, Wei; Zuo, Qian-Fei; Li, Meng-Meng; Zou, Quan-Ming; Xiao, Bin

    2018-03-23

    Gastric cancer (GC) is one of the most fatal cancers in China. MicroRNAs (miRNAs) are versatile regulators during GC development and progression. miR-491-5p has been demonstrated to act as a tumor suppressor in several types of cancer. However, the role of miR-491-5p in GC metastasis remains unknown. Here, we found that miR-491-5p was significantly decreased in GC tissues compared with adjacent non-cancerous tissues, and low miR-491-5p level was associated with large tumor size. Overexpression of miR-491-5p significantly suppressed GC cells epithelial-to-mesenchymal transition (EMT) and tumor metastasis in vitro and in vivo. Mechanistically, SNAIL was identified as a direct target of miR-491-5p. The silencing of SNAIL phenocopied the tumor suppressive function of miR-491-5p, whereas re-expression of SNAIL in GC cells rescued the EMT markers and cell migratory ability that were inhibited by miR-491-5p. Additionally, miR-491-5p inhibited FGFR4 indirectly. Inhibition of FGFR4 also decreased the SNAIL level and impaired EMT and cell migration. Taken together, these findings indicate that downregulation of miR-491-5p promoted GC metastasis by inducing EMT via regulation of SNAIL and FGFR4. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Down-regulation of the miR-543 alleviates insulin resistance through targeting the SIRT1.

    Science.gov (United States)

    Hu, Xiaojing; Chi, Liyi; Zhang, Wentao; Bai, Tiao; Zhao, Wei; Feng, Zhanbin; Tian, Hongyan

    2015-12-25

    Insulin resistance plays an important role in the development of hypertension, which is seriously detrimental to human health. Recently, Sirtuin-1 (SIRT1) has been found to participate in regulation of insulin resistance. Therefore, further studies focused on the SIRT1 regulators might provide a potential approach for combating insulin resistance and hypertension. Interestingly, in this study, we found that SIRT1 was the target gene of the miR-543 by the Dual-Luciferase Reporter Assay. Moreover, the miR-543 expression notably increased in the insulin-resistant HepG2 cells induced by TNF-α. Further analysis showed that the overexpression of the miR-543 lowered the SIRT1 mRNA and protein levels, resulting in the insulin resistance in the HepG2 cells; the inhibition of miR-543, however, enhanced the mRNA and protein expression of the SIRT1, and alleviated the insulin resistance. Furthermore, the SIRT1 overexpression abrogated the effect of miR-543 on insulin resistance. In addition, the overexpression of the miR-543 by the lentivirus-mediated gene transfer markedly impaired the insulin signaling assessed by the Western blot analysis of the glycogen synthesis and the phosphorylation of Akt and GSK3β. In summary, our study suggested that the downregulation of the miR-543 could alleviate the insulin resistance via the modulation of the SIRT1 expression, which might be a potential new strategy for treating insulin resistance and a promising therapeutic method for hypertension. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Down-regulation of an Auxin Response Factor in the tomato induces modification of fine pectin structure and tissue architecture.

    Science.gov (United States)

    Guillon, Fabienne; Philippe, Sully; Bouchet, Brigitte; Devaux, Marie-Françoise; Frasse, Pierre; Jones, Brian; Bouzayen, Mondher; Lahaye, Marc

    2008-01-01

    It has previously been shown that down-regulation of an auxin response factor gene (DR12) results in pleiotropic phenotypes including enhanced fruit firmness in antisense transgenic tomato (AS-DR12). To uncover the nature of the ripening-associated modifications affecting fruit texture, comparative analyses were performed of pectin composition and structure in cell wall pericarp tissue of wild-type and AS-DR12 fruit at mature green (MG) and red-ripe (RR) stages. Throughout ripening, pectin showed a decrease in methyl esterification and in the content of galactan side chains in both genotypes. At mature green stage, pectin content in methyl ester groups was slightly higher in AS-DR12 fruit than in wild type, but this ratio was reversed at the red-ripe stage. The amount of water- and oxalate-soluble pectins increased at the red-ripe stage in the wild type, but decreased in AS-DR12. The distribution of methyl ester groups on the homogalaturonan backbone differed between the two genotypes. There was no evidence of more calcium cross-linked homogalacturan involved in cell-to-cell adhesion in AS-DR12 compared with wild-type fruit. Furthermore, the outer pericarp contains higher proportion of small cells in AS-DR12 fruit than in wild type and higher occurrence of (1-->5) alpha-L-arabinan epitope at the RR stage. It is concluded that the increased firmness of transgenic fruit does not result from a major impairment of ripening-related pectin metabolism, but rather involves differences in pectin fine structure associated with changes in tissue architecture.

  4. Assessing functional impairment in individuals with mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Patrícia Belchior

    2016-04-01

    Full Text Available To date, there is no consensus on how to assess functional impairment in individuals with mild cognitive impairment (MCI, and this lack of consensus is reflected in the clinical practice. Since the criterion used in the literature is very vague, clinicians are still left without much guidance in this area. Thus, the main goal of this study was to examine how functional impairment in individuals with MCI has been assessed in the literature. An electronic database search strategy was developed in consultation with an experienced librarian. Four databases (CINAHL, PsycINFO, PubMed, and MEDLINE were searched from 2000 to May 2014 to provide a comprehensive coverage of the literature. The literature search yielded 14 tools that assessed functional impairment in MCI. Among those, nine tools were performance-based measures in which participants were observed while executing a task in a simulated environment using real life material. In terms of questionnaires (either informant- or self-reports, five tools were found. Different functional domains have been assessed in each tool. According to this review, the characteristics of the instruments used in the literature to assess functional impairment in individuals with MCI vary greatly. Nonetheless, results of this study allow clinicians to make better-informed decisions when choosing a functional assessment for this population.

  5. Correlation between activation of PPAR¿ and resistin downregulation in a mouse adipocyte cell line by a series of thiazolidinediones.

    NARCIS (Netherlands)

    Sotiriou, A.; Blaauw, R.H.; Meijer, C.; Gijsbers, L.H.; Burg, van der B.; Vervoort, J.; Rietjens, I.M.C.M.

    2013-01-01

    The present study shows significant correlations between the EC50 for PPAR¿ activation in a reporter gene cell line and resistin downregulation in mouse adipocytes, and between the IC50 for resistin downregulation and the already published minimum effective dose for antihyperglycemic activity in a

  6. Arterial stiffness and cognitive impairment.

    Science.gov (United States)

    Li, Xiaoxuan; Lyu, Peiyuan; Ren, Yanyan; An, Jin; Dong, Yanhong

    2017-09-15

    Arterial stiffness is one of the earliest indicators of changes in vascular wall structure and function and may be assessed using various indicators, such as pulse-wave velocity (PWV), the cardio-ankle vascular index (CAVI), the ankle-brachial index (ABI), pulse pressure (PP), the augmentation index (AI), flow-mediated dilation (FMD), carotid intima media thickness (IMT) and arterial stiffness index-β. Arterial stiffness is generally considered an independent predictor of cardiovascular and cerebrovascular diseases. To date, a significant number of studies have focused on the relationship between arterial stiffness and cognitive impairment. To investigate the relationships between specific arterial stiffness parameters and cognitive impairment, elucidate the pathophysiological mechanisms underlying the relationship between arterial stiffness and cognitive impairment and determine how to interfere with arterial stiffness to prevent cognitive impairment, we searched PUBMED for studies regarding the relationship between arterial stiffness and cognitive impairment that were published from 2000 to 2017. We used the following key words in our search: "arterial stiffness and cognitive impairment" and "arterial stiffness and cognitive impairment mechanism". Studies involving human subjects older than 30years were included in the review, while irrelevant studies (i.e., studies involving subjects with comorbid kidney disease, diabetes and cardiac disease) were excluded from the review. We determined that arterial stiffness severity was positively correlated with cognitive impairment. Of the markers used to assess arterial stiffness, a higher PWV, CAVI, AI, IMT and index-β and a lower ABI and FMD were related to cognitive impairment. However, the relationship between PP and cognitive impairment remained controversial. The potential mechanisms linking arterial stiffness and cognitive impairment may be associated with arterial pulsatility, as greater arterial pulsatility

  7. Patterns of Semantic Memory Impairment in Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Sven Joubert

    2008-01-01

    Full Text Available Although the semantic memory impairment has been largely documented in Alzheimer's disease, little is known about semantic memory in the preclinical phase of the disease (Mild Cognitive Impairment. The purpose of this study was to document the nature of semantic breakdown using a battery of tests assessing different aspects of conceptual knowledge: knowledge about common objects, famous people and famous public events. Results indicate that all domains of semantic memory were impaired in MCI individuals but knowledge about famous people and famous events was affected to a greater extent than knowledge about objects. This pattern of results suggests that conceptual entities with distinctive and unique properties may be more prone to semantic breakdown in MCI. In summary, results of this study support the view that genuine semantic deficits are present in MCI. It could be useful to investigate the etiological outcome of patients failing or succeeding at such tests.

  8. A furin inhibitor downregulates osteosarcoma cell migration by downregulating the expression levels of MT1-MMP via the Wnt signaling pathway.

    Science.gov (United States)

    Liu, Bingshan; Li, Guojun; Wang, Xiao; Liu, Yang

    2014-04-01

    This study aimed to explore the exact mechanism of the effect of a furin inhibitor on the migration and invasion of MG-63 and Saos-2 osteosarcoma cells. MG-63 and Saos-2 osteosarcoma cells were treated with regular culture medium in the presence or absence of 480 nM α1-antitrypsin Portland (α1-PDX). Wound-healing and Transwell assays were used for the detection of the effects of α1-PDX on MG-63 and Saos-2 osteosarcoma cell migration and invasion. Western blot analysis and reverse transcription-polymerase chain reaction were performed to detect the expression levels of membrane type I matrix metalloproteinase (MT1-MMP), Wnt and β-catenin. A chromatin immunoprecipitation assay was used for detection of the levels of MT1-MMP gene transcription activity. The results showed that α1-PDX treatment significantly reduced the migration and invasion ability of the cells. Notably, the expression levels of MT1-MMP decreased evidently upon α1-PDX treatment, paralleled with reductions in the expression levels of Wnt and β-catenin. Further analysis of the transcriptional activity of MT1-MMP revealed that the α1-PDX-induced downregulation of the levels of MT1-MMP was mediated by the Wnt signaling pathway. These data suggest that α1-PDX plays a vital role in inhibiting MG-63 and Saos-2 osteosarcoma cell migration and invasion by downregulating the expression levels of MT1-MMP via the Wnt signaling pathway.

  9. Epstein-Barr virus evades CD4+ T cell responses in lytic cycle through BZLF1-mediated downregulation of CD74 and the cooperation of vBcl-2.

    Directory of Open Access Journals (Sweden)

    Jianmin Zuo

    2011-12-01

    Full Text Available Evasion of immune T cell responses is crucial for viruses to establish persistence in the infected host. Immune evasion mechanisms of Epstein-Barr virus (EBV in the context of MHC-I antigen presentation have been well studied. In contrast, viral interference with MHC-II antigen presentation is less well understood, not only for EBV but also for other persistent viruses. Here we show that the EBV encoded BZLF1 can interfere with recognition by immune CD4+ effector T cells. This impaired T cell recognition occurred in the absence of a reduction in the expression of surface MHC-II, but correlated with a marked downregulation of surface CD74 on the target cells. Furthermore, impaired CD4+ T cell recognition was also observed with target cells where CD74 expression was downregulated by shRNA-mediated inhibition. BZLF1 downregulated surface CD74 via a post-transcriptional mechanism distinct from its previously reported effect on the CIITA promoter. In addition to being a chaperone for MHC-II αβ dimers, CD74 also functions as a surface receptor for macrophage Migration Inhibitory Factor and enhances cell survival through transcriptional upregulation of Bcl-2 family members. The immune-evasion function of BZLF1 therefore comes at a cost of induced toxicity. However, during EBV lytic cycle induced by BZLF1 expression, this toxicity can be overcome by expression of the vBcl-2, BHRF1, at an early stage of lytic infection. We conclude that by inhibiting apoptosis, the vBcl-2 not only maintains cell viability to allow sufficient time for synthesis and accumulation of infectious virus progeny, but also enables BZLF1 to effect its immune evasion function.

  10. Language Impairment and Generative Analysis

    Directory of Open Access Journals (Sweden)

    Andrej Stopar

    2004-12-01

    Full Text Available This article deals with different types of language impairment from the perspective of generative grammar. The paper focuses on syntactic deficiencies observed in aphasic and SLI (specific language impairment patients. We show that the observed ungrammatical structures do not appear in a random fashion but can be predicted by that theory of universal sentence structure which posits a strict hierarchy of its constituent parts. The article shows that while the hierarchically lower elements remain unaffected, the higher positions in the hierarchy show various degrees of syntactic impairment. The paper supports the implementation of recent developments in the field of generative grammar with the intention of encouraging further theoretical, experimental and therapeutic research in the field.

  11. [Behavioral impairments in Parkinson's disease].

    Science.gov (United States)

    Kashihara, Kenichi

    2004-09-01

    Behavioral impairments in parkinsonian patients include agitation, hypersexuality, stereotypic movement, pathological gambling, abuse of antiparkinsonian drugs, REM sleep behavioral disorder, and restless legs syndrome. Dementia, psychoses, and emotional disorders, such as depression and anxiety/panic disorder, also impair behavior. Symptoms may be produced by dysfunction of the central nervous system, medication, and/or the psychosocial problems associated with Parkinson's disease. Treatment therefore should be based on the cause of the symptoms seen. In some cases, the reduction or change of antiparkinsonian drugs, or both, may be effective. Treatment of the motor symptoms of Parkinson's disease, including motor fluctuations, may reduce the risk of panic attacks being evoked in the 'off' period. Use of antidepressants, sedatives, and neuroleptics may often be effective. Physicians should identify the causes of the symptoms of behavioral impairment and select appropriate treatments.

  12. BDNF downregulates 5-HT(2A) receptor protein levels in hippocampal cultures

    DEFF Research Database (Denmark)

    Trajkovska, V; Santini, M A; Marcussen, Anders Bue

    2009-01-01

    Both brain-derived neurotrophic factor (BDNF) and the serotonin receptor 2A (5-HT(2A)) have been related to depression pathology. Specific 5-HT(2A) receptor changes seen in BDNF conditional mutant mice suggest that BDNF regulates the 5-HT(2A) receptor level. Here we show a direct effect of BDNF...... on 5-HT(2A) receptor protein levels in primary hippocampal neuronal and mature hippocampal organotypic cultures exposed to different BDNF concentrations for either 1, 3, 5 or 7 days. In vivo effects of BDNF on hippocampal 5-HT(2A) receptor levels were further corroborated in (BDNF +/-) mice...... with reduced BDNF levels. In primary neuronal cultures, 7 days exposure to 25 and 50ng/mL BDNF resulted in downregulation of 5-HT(2A), but not of 5-HT(1A), receptor protein levels. The BDNF-associated downregulation of 5-HT(2A) receptor levels was also observed in mature hippocampal organotypic cultures...

  13. Ionizing radiation downregulates ASPM, a gene responsible for microcephaly in humans.

    Science.gov (United States)

    Fujimori, Akira; Yaoi, Takeshi; Ogi, Hiroshi; Wang, Bing; Suetomi, Katsutoshi; Sekine, Emiko; Yu, Dong; Kato, Takamitsu; Takahashi, Sentaro; Okayasu, Ryuichi; Itoh, Kyoko; Fushiki, Shinji

    2008-05-09

    Microcephaly is a malformation associated with in utero exposed atomic bomb survivors and can be induced in mice by fetal exposure to ionizing radiation (IR). The pathogenesis of IR-induced microcephaly, however, has not been fully understood. Our analyses of high-coverage expression profiling (HiCEP) demonstrated that the abnormal spindle-like microcephaly associated gene (ASPM) was down-regulated in irradiated human diploid fibroblasts. ASPM was recently reported as the causative gene for MCPH-5, the most common type of congenital microcephaly in humans. Here, we show that the expression of the Aspm gene was significantly reduced by IR in various human and murine cells. Additionally, Aspm was found downregulated in the irradiated fetal mouse brain, particularly in the ventricular zones. A similar suppression was observed in the irradiated neurosphere cultures. This is the first report suggesting that the suppression of Aspm by IR could be the initial molecular target leading to the future microcephaly formation.

  14. Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Veronica; Saraff, Kumuda [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States); Medh, Jheem D., E-mail: jheem.medh@csun.edu [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States)

    2009-11-06

    Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-{gamma}) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-{gamma} activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-{gamma} in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.

  15. Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells

    International Nuclear Information System (INIS)

    Lopez, Veronica; Saraff, Kumuda; Medh, Jheem D.

    2009-01-01

    Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-γ) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-γ activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-γ in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.

  16. Ionizing radiation downregulates ASPM, a gene responsible for microcephaly in humans

    International Nuclear Information System (INIS)

    Fujimori, Akira; Yaoi, Takeshi; Ogi, Hiroshi; Wang Bing; Suetomi, Katsutoshi; Sekine, Emiko; Yu Dong; Kato, Takamitsu; Takahashi, Sentaro; Okayasu, Ryuichi; Itoh, Kyoko; Fushiki, Shinji

    2008-01-01

    Microcephaly is a malformation associated with in utero exposed atomic bomb survivors and can be induced in mice by fetal exposure to ionizing radiation (IR). The pathogenesis of IR-induced microcephaly, however, has not been fully understood. Our analyses of high-coverage expression profiling (HiCEP) demonstrated that the abnormal spindle-like microcephaly associated gene (ASPM) was down-regulated in irradiated human diploid fibroblasts. ASPM was recently reported as the causative gene for MCPH-5, the most common type of congenital microcephaly in humans. Here, we show that the expression of the Aspm gene was significantly reduced by IR in various human and murine cells. Additionally, Aspm was found downregulated in the irradiated fetal mouse brain, particularly in the ventricular zones. A similar suppression was observed in the irradiated neurosphere cultures. This is the first report suggesting that the suppression of Aspm by IR could be the initial molecular target leading to the future microcephaly formation

  17. Teucrium polium hexane extract downregulated androgen receptor in testis and decreased fertility index in rats.

    Science.gov (United States)

    Al-Tikriti, Aaa; Al-Khateeb, E; Abbas, M A

    2017-12-01

    Teucrium polium L. (Lamiaceae) is a commonly used medicinal plant in folk medicine. Among several uses, T. polium is used to treat male fertility problems. This research was conducted to study the effect of T. polium on spermatogenesis, testosterone level, androgen receptor expression, and fertility in male rats. Administration of hexane extract for 6 days to aging rats increased testosterone level. When administered for 60 days, T. polium hexane extract downregulated androgen receptors, decreased sperm count without producing histological changes in different stages of spermatogenesis. Also, fertility index decreased without making teratogenic effects when treated males were mated with untreated females on the 55th day of extract administration. Therefore, the downregulation of androgen receptor could be due to the continued elevation in testosterone level over time. In conclusion, this study suggests that the prolonged use of T. polium in folk medicine may negatively affect male fertility.

  18. p38 MAPK-Mediated Bmi-1 Down-Regulation and Defective Proliferation in ATM-Deficient Neural Stem Cells Can Be Restored by Akt Activation

    Science.gov (United States)

    Kim, Jeesun; Hwangbo, Jeon; Wong, Paul K. Y.

    2011-01-01

    A-T (ataxia telangiectasia) is a genetic disease caused by a mutation in the Atm (A-T mutated) gene that leads to neurodegeneration. Despite an increase in the numbers of studies in this area in recent years, the mechanisms underlying neurodegeneration in human A-T are still poorly understood. Previous studies demonstrated that neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm -/- mouse brains show defective self-renewal and proliferation, which is accompanied by activation of chronic p38 mitogen-activated protein kinase (MAPK) and a lower level of the polycomb protein Bmi-1. However, the mechanism underlying Bmi-1 down-regulation and its relevance to defective proliferation in Atm-/- NSCs remained unclear. Here, we show that over-expression of Bmi-1 increases self-renewal and proliferation of Atm-/- NSCs to normal, indicating that defective proliferation in Atm-/- NSCs is a consequence of down-regulation of Bmi-1. We also demonstrate that epidermal growth factor (EGF)-induced Akt phosphorylation renders Bmi-1 resistant to the proteasomal degradation, leading to its stabilization and accumulation in the nucleus. However, inhibition of the Akt-dependent Bmi-1 stabilizing process by p38 MAPK signaling reduces the levels of Bmi-1. Treatment of the Atm-/- NSCs with a specific p38 MAPK inhibitor SB203580 extended Bmi-1 posttranscriptional turnover and H2A ubiquitination in Atm-/- NSCs. Our observations demonstrate the molecular basis underlying the impairment of self-renewal and proliferation in Atm-/- NSCs through the p38 MAPK-Akt-Bmi-1-p21 signaling pathway. PMID:21305053

  19. Daunorubicin Down-Regulates the Expression of Stem Cell Markers and Factors Involved in Stem Cell Migration and Homing in Rat Heart in Subchronic but not Acute Cardiomyopathy.

    Science.gov (United States)

    Srankova, Jasna; Doka, Gabriel; Pivackova, Lenka; Mesarosova, Lucia; Kyselovic, Jan; Klimas, Jan; Krenek, Peter

    2016-11-01

    We tested the hypothesis that daunorubicin (DAU) cardiotoxicity alters expression of cytokines involved in stem cell migration and homing. Male Wistar rats were treated with daunorubicin to induce acute DAU cardiomyopathy (6 × 3 mg/kg, i.p., every 48 hr, DAU-A) or subchronic DAU cardiomyopathy (15 mg/kg, i.v., DAU-C). The left ventricle was catheterized. The animals were killed 48 hr (DAU-A) and 8 weeks (DAU-C) after the last dose of DAU. Expression of foetal genes (Nppa, Nppb), isomyosins (Myh6, Myh7), sources of oxidative stress (Abcb8, gp91phox), cytokines (Sdf-1, Cxcr4, Scf, Vegf, Hgf, Igf-1), markers of cardiac progenitor (c-kit, Atnx-1), endothelial progenitor (CD34, CD133) and mesenchymal (CD44, CD105) stem cells were determined by qRT-PCR in left ventricular tissue. Reduced body-weight, decreased left ventricular weight and function, and elevated Nppa, Nppb, Myh7 were observed in both models. Myh6 decreased only in DAU-C, which had a 35% mortality. Up-regulated gp91phox and down-regulated Abcb8 in DAU were present only in DAU-C where we observed markedly decreased expressions of Scf and Vegf as well as expressions of stem cell markers. Down-regulation of cytokines and stem cell markers may reflect impaired chemotaxis, migration and homing of stem cells and tissue repair in the heart in subchronic but not acute model of DAU cardiomyopathy. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  20. Infection with hepatitis C virus depends on TACSTD2, a regulator of claudin-1 and occludin highly downregulated in hepatocellular carcinoma.

    Science.gov (United States)

    Sekhar, Vandana; Pollicino, Teresa; Diaz, Giacomo; Engle, Ronald E; Alayli, Farah; Melis, Marta; Kabat, Juraj; Tice, Ashley; Pomerenke, Anna; Altan-Bonnet, Nihal; Zamboni, Fausto; Lusso, Paolo; Emerson, Suzanne U; Farci, Patrizia

    2018-03-14

    Entry of hepatitis C virus (HCV) into hepatocytes is a complex process that involves numerous cellular factors, including the scavenger receptor class B type 1 (SR-B1), the tetraspanin CD81, and the tight junction (TJ) proteins claudin-1 (CLDN1) and occludin (OCLN). Despite expression of all known HCV-entry factors, in vitro models based on hepatoma cell lines do not fully reproduce the in vivo susceptibility of liver cells to primary HCV isolates, implying the existence of additional host factors which are critical for HCV entry and/or replication. Likewise, HCV replication is severely impaired within hepatocellular carcinoma (HCC) tissue in vivo, but the mechanisms responsible for this restriction are presently unknown. Here, we identify tumor-associated calcium signal transducer 2 (TACSTD2), one of the most downregulated genes in primary HCC tissue, as a host factor that interacts with CLDN1 and OCLN and regulates their cellular localization. TACSTD2 gene silencing disrupts the typical linear distribution of CLDN1 and OCLN along the cellular membrane in both hepatoma cells and primary human hepatocytes, recapitulating the pattern observed in vivo in primary HCC tissue. Mechanistic studies suggest that TACSTD2 is involved in the phosphorylation of CLDN1 and OCLN, which is required for their proper cellular localization. Silencing of TACSTD2 dramatically inhibits HCV infection with a pan-genotype effect that occurs at the level of viral entry. Our study identifies TACSTD2 as a novel regulator of two major HCV-entry factors, CLDN1 and OCLN, which is strongly downregulated in malignant hepatocytes. These results provide new insights into the complex process of HCV entry into hepatocytes and may assist in the development of more efficient cellular systems for HCV propagation in vitro.

  1. β-Adrenergic receptor antagonists inhibit vasculogenesis of embryonic stem cells by downregulation of nitric oxide generation and interference with VEGF signalling.

    Science.gov (United States)

    Sharifpanah, Fatemeh; Saliu, Fatjon; Bekhite, Mohamed M; Wartenberg, Maria; Sauer, Heinrich

    2014-11-01

    The β-adrenoceptor antagonist Propranolol has been successfully used to treat infantile hemangioma. However, its mechanism of action is so far unknown. The hypothesis of this research was that β-adrenoceptor antagonists may interfere with endothelial cell differentiation of stem cells. Specifically, the effects of the non-specific β-adrenergic receptor (β-adrenoceptor) antagonist Propranolol, the β1-adrenoceptor-specific antagonist Atenolol and the β2-adrenoceptor-specific antagonist ICI118,551 on vasculogenesis of mouse embryonic stem (ES) cells were investigated. All three β-blockers dose-dependently downregulated formation of capillary structures in ES cell-derived embryoid bodies and decreased the expression of the vascular cell markers CD31 and VE-cadherin. Furthermore, β-blockers downregulated the expression of fibroblast growth factor-2 (FGF-2), hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor 165 (VEGF165), VEGF receptor 2 (VEGF-R2) and phospho VEGF-R2, as well as neuropilin 1 (NRP1) and plexin-B1 which are essential modulators of embryonic angiogenesis with additional roles in vessel remodelling and arteriogenesis. Under conditions of β-adrenoceptor inhibition, the endogenous generation of nitric oxide (NO) as well as the phosphorylation of endothelial nitric oxide synthase (eNOS) was decreased in embryoid bodies, whereas an increase in NO generation was observed with the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP). Consequently, vasculogenesis of ES cells was restored upon treatment of differentiating ES cells with β-adrenoceptor antagonists in the presence of NO donor. In summary, our data suggest that β-blockers impair vasculogenesis of ES cells by interfering with NO generation which could be the explanation for their anti-angiogenic effects in infantile hemangioma.

  2. Expression of DIAPH1 is up-regulated in colorectal cancer and its down-regulation strongly reduces the metastatic capacity of colon carcinoma cells.

    Science.gov (United States)

    Lin, Yuan-Na; Izbicki, Jakob R; König, Alexandra; Habermann, Jens K; Blechner, Christine; Lange, Tobias; Schumacher, Udo; Windhorst, Sabine

    2014-04-01

    In most cases, metastatic colorectal cancer is not curable, thus new approaches are necessary to identify novel targets for colorectal cancer therapy. Actin-binding-proteins (ABPs) directly regulate motility of metastasising tumor cells, and for cortactin an association with colon cancer metastasis has been already shown. However, as its depletion only incompletely inhibits metastasis, additional, more suitable cellular targets have to be identified. Here we analyzed expression of the ABPs, DIAPH1, VASP, N-WASP, and fascin in comparison with cortactin and found that, besides cortactin, DIAPH1 was expressed with the highest frequency (63%) in colorectal cancer. As well as cortactin, DIAPH1 was not detectable in normal colon tissue and expression of both proteins was positively correlated with metastasis of colorectal cancer. To analyse the mechanistic role of DIAPH1 for metastasis of colon carcinoma cells in comparison with cortactin, expression of the proteins was stably down-regulated in the human colon carcinoma cell lines HT-29, HROC-24 and HCT-116. Analysis of metastasis of colon carcinoma cells in SCID mice revealed that depletion of DIAPH1 reduced metastasis 60-fold and depletion of cortactin 16-fold as compared with control cells. Most likely the stronger effect of DIAPH1 depletion on colon cancer metastasis is due to the fact that in vitro knock down of DIAPH1 impaired all steps of metastasis; adhesion, invasion and migration while down-regulation of cortactin only reduced adhesion and invasion. This very strong reducing effect of DIAPH1 depletion on colon carcinoma cell metastasis makes the protein a promising therapeutic target for individualized colorectal cancer therapy. © 2013 UICC.

  3. Expression of the bacterial type III effector DspA/E in Saccharomyces cerevisiae down-regulates the sphingolipid biosynthetic pathway leading to growth arrest.

    Science.gov (United States)

    Siamer, Sabrina; Guillas, Isabelle; Shimobayashi, Mitsugu; Kunz, Caroline; Hall, Michael N; Barny, Marie-Anne

    2014-06-27

    Erwinia amylovora, the bacterium responsible for fire blight, relies on a type III secretion system and a single injected effector, DspA/E, to induce disease in host plants. DspA/E belongs to the widespread AvrE family of type III effectors that suppress plant defense responses and promote bacterial growth following infection. Ectopic expression of DspA/E in plant or in Saccharomyces cerevisiae is toxic, indicating that DspA/E likely targets a cellular process conserved between yeast and plant. To unravel the mode of action of DspA/E, we screened the Euroscarf S. cerevisiae library for mutants resistant to DspA/E-induced growth arrest. The most resistant mutants (Δsur4, Δfen1, Δipt1, Δskn1, Δcsg1, Δcsg2, Δorm1, and Δorm2) were impaired in the sphingolipid biosynthetic pathway. Exogenously supplied sphingolipid precursors such as the long chain bases (LCBs) phytosphingosine and dihydrosphingosine also suppressed the DspA/E-induced yeast growth defect. Expression of DspA/E in yeast down-regulated LCB biosynthesis and induced a rapid decrease in LCB levels, indicating that serine palmitoyltransferase (SPT), the first and rate-limiting enzyme of the sphingolipid biosynthetic pathway, was repressed. SPT down-regulation was mediated by dephosphorylation and activation of Orm proteins that negatively regulate SPT. A Δcdc55 mutation affecting Cdc55-PP2A protein phosphatase activity prevented Orm dephosphorylation and suppressed DspA/E-induced growth arrest. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. High levels of CC-chemokine expression and downregulated levels of CCR5 during HIV-1/HTLV-1 and HIV-1/HTLV-2 coinfections.

    Science.gov (United States)

    Oo, Z; Barrios, C S; Castillo, L; Beilke, M A

    2015-05-01

    The human T-cell lymphotropic virus type 1 (HTLV-1) and HTLV-2 are common copathogens among Human Immunodeficiency Virus (HIV)-infected individuals. HTLV-2 may confer a survival benefit among patients with HIV-1/HTLV-2 coinfections, along with lower plasma HIV-1 levels and delayed rates of CD4(+) T-cell decline. These effects have been attributed to the ability of the HTLV-2 viral transactivating Tax2 protein to induce the production of high levels of antiviral CC-chemokines and to downregulate expression of the CCR5 receptor, resulting in impaired entry of HIV-1 into CD4(+) T-cells. This study investigated the innate immunity of coinfected HIV/HTLV individuals by testing the ability of patient PBMCs to produce CC-chemokines in association CCR5 receptor modulation. The cellular proliferative responses of HIV/HTLV coinfected versus HIV monoinfected individuals were also evaluated. Higher levels of MIP-1α, MIP-1β, and RANTES (P HIV-1/HTLV-2 coinfected group compared to HIV-1 monoinfected population. Upregulated levels of RANTES were shown in HIV-1/HTLV-1 after 1 and 3 days of culture (P HIV-1/HTLV-2 coinfected individuals showed significant CCR5 downregulation after 1 and 3 days of culture compared to lymphocytes from HIV-1 and uninfected groups (P CCR5-positive cells were found in HIV-1/HTLV-1 coinfected after 3 days of incubation (P HIV-1/HTLV-1 group compared to HIV-1 alone (P HIV-1 via stimulation of CC-chemokines and receptors, potentially modifying CCR5/HIV-1 binding and HIV-1 progression in coinfected individuals. © 2015 Wiley Periodicals, Inc.

  5. Downregulation of leptin and resistin expression in blood following bariatric surgery.

    Science.gov (United States)

    Edwards, Claire; Hindle, A Katharine; Fu, Sidney; Brody, Fredrick

    2011-06-01

    Type 2 diabetes (T2D) resolves rapidly after bariatric surgery, even before substantial weight is lost. However, the molecular pathways underlying this phenomenon remain unclear. Microarray data has shown that numerous genes are differentially expressed in blood after bariatric surgery, including resistin and leptin. Resistin and leptin are circulating hormones derived from adipose tissue, which are associated with obesity and insulin resistance. This study examined expression of these genes before and after bariatric surgery in diabetic and nondiabetic obese patients. The study included 16 obese patients who underwent bariatric surgery, either Roux-en-Y gastric bypass (RYGB) or adjustable gastric banding. Eight patients had T2D. Preoperative blood samples were collected in PAXgene tubes to stabilize mRNA. Postoperative samples were collected 3 months after surgery. Total RNA was isolated and cDNA was synthesized. Real-time quantitative PCR was used to quantify mRNA. Results were analyzed using Student's t test with a P<0.05 considered significant. Postoperatively, five diabetic patients had discontinued hypoglycemic medications and one showed improved glycemic control. Both leptin and resistin mRNA levels were elevated in the diabetic group but decreased after surgery to levels near those of the nondiabetic group. Greater downregulation of resistin and leptin expression occurred in patients who lost more excess body weight (EBW), while patients who lost less than 10% EBW had a mean increase in expression of the two genes. Downregulation of both genes was more pronounced after RYGB compared to gastric banding. Downregulation of resistin and leptin gene expression after bariatric surgery may play a role in normalizing obesity-associated insulin resistance. Interestingly, downregulation is greater after RYGB and in patients who lose a greater proportion of EBW. Targeted therapies for obesity and diabetes may be developed by understanding the pathways by which these

  6. Pregnancy Downregulates Actin Polymerization and Pressure-Dependent Myogenic Tone in Ovine Uterine Arteries

    OpenAIRE

    Xiao, Daliao; Huang, Xiaohui; Yang, Shumei; Longo, Lawrence D.; Zhang, Lubo

    2010-01-01

    Pregnancy is associated with significantly decreased uterine vascular tone and increased uterine blood flow. The present study tested the hypothesis that the downregulation of actin polymerization plays a key role in reduced vascular tone of uterine arteries in the pregnant state. Uterine arteries were isolated from nonpregnant and near-term pregnant sheep. Activation of protein kinase C significantly increased the filamentous:globular actin ratio and contractions in the uterine arteries, whi...

  7. Can Selective MHC Downregulation Explain the Specificity and Genetic Diversity of NK Cell Receptors?

    Science.gov (United States)

    Carrillo-Bustamante, Paola; Kesmir, Can; de Boer, Rob J.

    2015-01-01

    Natural killer (NK) cells express inhibiting receptors (iNKRs), which specifically bind MHC-I molecules on the surface of healthy cells. When the expression of MHC-I on the cell surface decreases, which might occur during certain viral infections and cancer, iNKRs lose inhibiting signals and the infected cells become target for NK cell activation (missing-self detection). Although the detection of MHC-I deficient cells can be achieved by conserved receptor-ligand interactions, several iNKRs are encoded by gene families with a remarkable genetic diversity, containing many haplotypes varying in gene content and allelic polymorphism. So far, the biological function of this expansion within the NKR cluster has remained poorly understood. Here, we investigate whether the evolution of diverse iNKRs genes can be driven by a specific viral immunoevasive mechanism: selective MHC downregulation. Several viruses, including EBV, CMV, and HIV, decrease the expression of MHC-I to escape from T cell responses. This downregulation does not always affect all MHC loci in the same way, as viruses target particular MHC molecules. To study the selection pressure of selective MHC downregulation on iNKRs, we have developed an agent-based model simulating an evolutionary scenario of hosts infected with herpes-like viruses, which are able to selectively downregulate the expression of MHC-I molecules on the cell surface. We show that iNKRs evolve specificity and, depending on the similarity of MHC alleles within each locus and the differences between the loci, they can specialize to a particular MHC-I locus. The easier it is to classify an MHC allele to its locus, the lower the required diversity of the NKRs. Thus, the diversification of the iNKR cluster depends on the locus specific MHC structure. PMID:26136746

  8. A herbivorous mite down-regulates plant defence and produces web to exclude competitors.

    Directory of Open Access Journals (Sweden)

    Renato A Sarmento

    Full Text Available Herbivores may interact with each other through resource competition, but also through their impact on plant defence. We recently found that the spider mite Tetranychus evansi down-regulates plant defences in tomato plants, resulting in higher rates of oviposition and population growth on previously attacked than on unattacked leaves. The danger of such down-regulation is that attacked plants could become a more profitable resource for heterospecific competitors, such as the two-spotted spider mite Tetranychus urticae. Indeed, T. urticae had an almost 2-fold higher rate of oviposition on leaf discs on which T. evansi had fed previously. In contrast, induction of direct plant defences by T. urticae resulted in decreased oviposition by T. evansi. Hence, both herbivores affect each other through induced plant responses. However, when populations of T. evansi and T. urticae competed on the same plants, populations of the latter invariably went extinct, whereas T. evansi was not significantly affected by the presence of its competitor. This suggests that T. evansi can somehow prevent its competitor from benefiting from the down-regulated plant defence, perhaps by covering it with a profuse web. Indeed, we found that T. urticae had difficulties reaching the leaf surface to feed when the leaf was covered with web produced by T. evansi. Furthermore, T. evansi produced more web when exposed to damage or other cues associated with T. urticae. We suggest that the silken web produced by T. evansi serves to prevent competitors from profiting from down-regulated plant defences.

  9. Carcinogen inducibility in vivo and down-regulation of DMBT1 during breast carcinogenesis

    DEFF Research Database (Denmark)

    Mollenhauer, Jan; Helmke, Burkhard; Medina, Daniel

    2004-01-01

    sophisticated changes of DMBT1 expression and localization, pointing to a chronological order of events. Here we report on the investigation of DMBT1 in breast cancer in order to test whether these principles might also be attributable to other tumor types. Comprehensive mutational analyses did not uncover...... secretion to secretion to the extracellular matrix and a significant down-regulation compared to that in matched normal flanking tissues (P

  10. Metastasis of tumor cells is enhanced by downregulation of Bit1.

    Directory of Open Access Journals (Sweden)

    Priya Prakash Karmali

    Full Text Available Resistance to anoikis, which is defined as apoptosis induced by loss of integrin-mediated cell attachment to the extracellular matrix, is a determinant of tumor progression and metastasis. We have previously identified the mitochondrial Bit1 (Bcl-2 inhibitor of transcription protein as a novel anoikis effector whose apoptotic function is independent from caspases and is uniquely controlled by integrins. In this report, we examined the possibility that Bit1 is suppressed during tumor progression and that Bit1 downregulation may play a role in tumor metastasis.Using a human breast tumor tissue array, we found that Bit1 expression is suppressed in a significant fraction of advanced stages of breast cancer. Targeted disruption of Bit1 via shRNA technology in lowly aggressive MCF7 cells conferred enhanced anoikis resistance, adhesive and migratory potential, which correlated with an increase in active Extracellular kinase regulated (Erk levels and a decrease in Erk-directed phosphatase activity. These pro-metastasis phenotypes were also observed following downregulation of endogenous Bit1 in Hela and B16F1 cancer cell lines. The enhanced migratory and adhesive potential of Bit1 knockdown cells is in part dependent on their high level of Erk activation since down-regulating Erk in these cells attenuated their enhanced motility and adhesive properties. The Bit1 knockdown pools also showed a statistically highly significant increase in experimental lung metastasis, with no differences in tumor growth relative to control clones in vivo using a BALB/c nude mouse model system. Importantly, the pulmonary metastases of Bit1 knockdown cells exhibited increased phospho-Erk staining.These findings indicate that downregulation of Bit1 conferred cancer cells with enhanced anoikis resistance, adhesive and migratory properties in vitro and specifically potentiated tumor metastasis in vivo. These results underscore the therapeutic importance of restoring Bit1

  11. Celiac Disease Histopathology Recapitulates Hedgehog Downregulation, Consistent with Wound Healing Processes Activation

    Science.gov (United States)

    Senger, Stefania; Sapone, Anna; Fiorentino, Maria Rosaria; Mazzarella, Giuseppe; Lauwers, Gregory Y.; Fasano, Alessio

    2015-01-01

    Background In celiac disease (CD), intestinal epithelium damage occurs secondary to an immune insult and is characterized by blunting of the villi and crypt hyperplasia. Similarities between Hedgehog (Hh)/BMP4 downregulation, as reported in a mouse model, and CD histopathology, suggest mechanistic involvement of Hh/BMP4/WNT pathways in proliferation and differentiation of immature epithelial cells in the context of human intestinal homeostasis and regeneration after damage. Herein we examined the nature of intestinal crypt hyperplasia and involvement of Hh/BMP4 in CD histopathology. Methods and Findings Immunohistochemistry, qPCR and in situ hybridization were used to study a cohort of 24 healthy controls (HC) and 24 patients with diagnosed acute celiac disease (A-CD) intestinal biopsies. In A-CD we observed an increase in cells positive for Leucin-rich repeat-containing G protein-coupled receptor 5 (LGR5), an epithelial stem cell specific marker and expansion of WNT responding compartment. Further, we observed alteration in number and distribution of mesenchymal cells, predicted to be part of the intestinal stem cells niche. At the molecular level we found downregulation of indian hedgehog (IHH) and other components of the Hh pathway, but we did not observe a concurrent downregulation of BMP4. However, we observed upregulation of BMPs antagonists, gremlin 1 and gremlin 2. Conclusions Our data suggest that acute CD histopathology partially recapitulates the phenotype reported in Hh knockdown models. Specifically, Hh/BMP4 paradigm appears to be decoupled in CD, as the expansion of the immature cell population does not occur consequent to downregulation of BMP4. Instead, we provide evidence that upregulation of BMP antagonists play a key role in intestinal crypt hyperplasia. This study sheds light on the molecular mechanisms underlying CD histopathology and the limitations in the use of mouse models for celiac disease. PMID:26649570

  12. Evidence that Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain

    OpenAIRE

    Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Logan, Jean; Benveniste, Helene; Kim, Ron; Thanos, Panayotis K.; Ferré, Sergi

    2012-01-01

    Dopamine D2 receptors are involved with wakefulness but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [11C]raclopride in controls) in striatum, but could not determine if this reflected dopamine increases ([11C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases in...

  13. Butyrate Specifically Down-Regulates Salmonella Pathogenicity Island 1 Gene Expression

    OpenAIRE

    Gantois, I.; Ducatelle, R.; Pasmans, F.; Haesebrouck, F.; Hautefort, I.; Thompson, A.; Hinton, J. C.; Van Immerseel, F.

    2006-01-01

    Invasion of intestinal epithelial cells by Salmonella enterica is decreased after exposure to butyric acid. To understand the molecular mechanisms of this phenomenon, a comparative transcriptomic analysis of Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium grown in medium supplemented with butyrate was performed. We found that butyrate down-regulated the expression of 19 genes common to both serovars by a factor of twofold or more, and 17 of these genes loca...

  14. Celiac Disease Histopathology Recapitulates Hedgehog Downregulation, Consistent with Wound Healing Processes Activation.

    Directory of Open Access Journals (Sweden)

    Stefania Senger

    Full Text Available In celiac disease (CD, intestinal epithelium damage occurs secondary to an immune insult and is characterized by blunting of the villi and crypt hyperplasia. Similarities between Hedgehog (Hh/BMP4 downregulation, as reported in a mouse model, and CD histopathology, suggest mechanistic involvement of Hh/BMP4/WNT pathways in proliferation and differentiation of immature epithelial cells in the context of human intestinal homeostasis and regeneration after damage. Herein we examined the nature of intestinal crypt hyperplasia and involvement of Hh/BMP4 in CD histopathology.Immunohistochemistry, qPCR and in situ hybridization were used to study a cohort of 24 healthy controls (HC and 24 patients with diagnosed acute celiac disease (A-CD intestinal biopsies. In A-CD we observed an increase in cells positive for Leucin-rich repeat-containing G protein-coupled receptor 5 (LGR5, an epithelial stem cell specific marker and expansion of WNT responding compartment. Further, we observed alteration in number and distribution of mesenchymal cells, predicted to be part of the intestinal stem cells niche. At the molecular level we found downregulation of indian hedgehog (IHH and other components of the Hh pathway, but we did not observe a concurrent downregulation of BMP4. However, we observed upregulation of BMPs antagonists, gremlin 1 and gremlin 2.Our data suggest that acute CD histopathology partially recapitulates the phenotype reported in Hh knockdown models. Specifically, Hh/BMP4 paradigm appears to be decoupled in CD, as the expansion of the immature cell population does not occur consequent to downregulation of BMP4. Instead, we provide evidence that upregulation of BMP antagonists play a key role in intestinal crypt hyperplasia. This study sheds light on the molecular mechanisms underlying CD histopathology and the limitations in the use of mouse models for celiac disease.

  15. Down-regulation of rat kidney calcitonin receptors by salmon calcitonin infusion evidence by autoradiography

    International Nuclear Information System (INIS)

    Bouizar, Z.; Rostene, W.H.; Milhaud, G.

    1987-01-01

    In treating age-related osteoporosis and Paget disease of bone, it is of major importance to avoid an escape phenomenon that would reduce effectiveness of the treatment. The factors involved in the loss of therapeutic efficacy with administration of large pharmacological doses of the hormone require special consideration. Down-regulation of the hormone receptors could account for the escape phenomenon. Specific binding sites for salmon calcitonin (sCT) were characterized and localized by autoradiography on rat kidney sections incubated with 125 I-labeled sCT. Autoradiograms demonstrated a heterogeneous distribution of 125 I-labeled sCT binding sites in the kidney, with high densities in both the superficial layer of the cortex and the outer medulla. Infusion of different doses of unlabeled sCT by means of Alzet minipumps for 7 days produced rapid changes in plasma calcium, phosphate, and magnesium levels, which were no longer observed after 2 or 6 days of treatment. Besides, infusion of high doses of sCT induced down-regulation of renal sCT binding sites located mainly in the medulla, where calcitonin (CT) has been shown to exert it physiological effects on water and ion reabsorption. These data suggest that the resistance to high doses of sCT often observed during long-term treatment of patients may be the consequence of not only bone-cell desensitization but also down-regulation of CT-sensitive kidney receptor sites

  16. Genetic defects in downregulation of IgE production and a new genetic classification of atopy

    Directory of Open Access Journals (Sweden)

    Naomi Kondo

    2004-01-01

    Full Text Available Atopic disorders, such as asthma, eczema and rhinitis, develop due to the interactions between genetic and environmental factors. Atopy is characterized by enhanced IgE responses to environmental antigens. The production of IgE is upregulated by Th2 cytokines, in particular interleukin (IL-4, and downregulated by Th1 cytokines, in particular interferon (IFN-γ. In the present review, we present the genetic factors responsible for IgE production and genetic defects in the downregulation (brake of IgE production, especially in terms of IL-12 and IL-18 signaling, mutations of the IL-12 receptor β2 chain gene and mutations of the IL-18 receptor α chain gene in atopy. Moreover, we newly present a genetic classification of atopy. There are four categories of genes that control the expression of allergic disorders, which include: (i antigen recognition; (ii IgE production (downregulation=brake; and upregulation; (iii the production and release of mediators; and (iv events on target organs. In the near future, this genetic classification will facilitate the development of tailor-made treatment.

  17. Red Xylem and Higher Lignin Extractability by Down-Regulating a Cinnamyl Alcohol Dehydrogenase in Poplar.

    Science.gov (United States)

    Baucher, M.; Chabbert, B.; Pilate, G.; Van Doorsselaere, J.; Tollier, M. T.; Petit-Conil, M.; Cornu, D.; Monties, B.; Van Montagu, M.; Inze, D.; Jouanin, L.; Boerjan, W.

    1996-12-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in the biosynthesis of the lignin precursors, the monolignols. We have down-regulated CAD in transgenic poplar (Populus tremula X Populus alba) by both antisense and co-suppression strategies. Several antisense and sense CAD transgenic poplars had an approximately 70% reduced CAD activity that was associated with a red coloration of the xylem tissue. Neither the lignin amount nor the lignin monomeric composition (syringyl/guaiacyl) were significantly modified. However, phloroglucinol-HCl staining was different in the down-regulated CAD plants, suggesting changes in the number of aldehyde units in the lignin. Furthermore, the reactivity of the cell wall toward alkali treatment was altered: a lower amount of lignin was found in the insoluble, saponified residue and more lignin could be precipitated from the soluble alkali fraction. Moreover, large amounts of phenolic compounds, vanillin and especially syringaldehyde, were detected in the soluble alkali fraction of the CAD down-regulated poplars. Alkaline pulping experiments on 3-month-old trees showed a reduction of the kappa number without affecting the degree of cellulose degradation. These results indicate that reducing the CAD activity in trees might be a valuable strategy to optimize certain processes of the wood industry, especially those of the pulp and paper industry.

  18. GPER blockers as Nox downregulators: A new drug class to target chronic non-communicable diseases.

    Science.gov (United States)

    Meyer, Matthias R; Barton, Matthias

    2018-02-01

    Oxidative stress is a hallmark of chronic non-communicable diseases such as arterial hypertension, coronary artery disease, diabetes, and chronic renal disease. Cardiovascular diseases are characterized by increased production of reactive oxygen species (ROS) by NAPDH oxidase 1 (Nox1) and additional Nox isoforms among other sources. Activation of the G protein-coupled estrogen receptor (GPER) can mediate multiple salutary effects on the cardiovascular system. However, GPER also has constitutive activity, e.g. in the absence of specific agonists, that was recently shown to promote hypertension and aging-induced tissue damage by promoting Nox1-derived production of ROS. Furthermore, the small molecule GPER blocker (GRB) G36 reduces blood pressure and vascular ROS production by selectively down-regulating Nox1 expression. These unexpected findings revealed GRBs as first in class Nox downregulators capable to selectively reduce the increased expression and activity of Nox1 in disease conditions. Here, we will discuss the paradigm shift from selective GPER activation to ligand-independent, constitutive GPER signaling as a key regulator of Nox-derived oxidative stress, and the surprising identification of GRBs as the first Nox downregulators for the treatment of chronic non-communicable diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Inflammation and ER Stress Downregulate BDH2 Expression and Dysregulate Intracellular Iron in Macrophages

    Directory of Open Access Journals (Sweden)

    Susu M. Zughaier

    2014-01-01

    Full Text Available Macrophages play a very important role in host defense and in iron homeostasis by engulfing senescent red blood cells and recycling iron. Hepcidin is the master iron regulating hormone that limits dietary iron absorption from the gut and limits iron egress from macrophages. Upon infection macrophages retain iron to limit its bioavailability which limits bacterial growth. Recently, a short chain butyrate dehydrogenase type 2 (BDH2 protein was reported to contain an iron responsive element and to mediate cellular iron trafficking by catalyzing the synthesis of the mammalian siderophore that binds labile iron; therefore, BDH2 plays a crucial role in intracellular iron homeostasis. However, BDH2 expression and regulation in macrophages have not yet been described. Here we show that LPS-induced inflammation combined with ER stress led to massive BDH2 downregulation, increased the expression of ER stress markers, upregulated hepcidin expression, downregulated ferroportin expression, caused iron retention in macrophages, and dysregulated cytokine release from macrophages. We also show that ER stress combined with inflammation synergistically upregulated the expression of the iron carrier protein NGAL and the stress-inducible heme degrading enzyme heme oxygenase-1 (HO-1 leading to iron liberation. This is the first report to show that inflammation and ER stress downregulate the expression of BDH2 in human THP-1 macrophages.

  20. Differential Downregulation of E-Cadherin and Desmoglein by Epidermal Growth Factor

    Directory of Open Access Journals (Sweden)

    Miquella G. Chavez

    2012-01-01

    Full Text Available Modulation of cell : cell junctions is a key event in cutaneous wound repair. In this study we report that activation of the epidermal growth factor (EGF receptor disrupts cel : cell adhesion, but with different kinetics and fates for the desmosomal cadherin desmoglein and for E-cadherin. Downregulation of desmoglein preceded that of E-cadherin in vivo and in an EGF-stimulated in vitro wound reepithelialization model. Dual immunofluorescence staining revealed that neither E-cadherin nor desmoglein-2 internalized with the EGF receptor, or with one another. In response to EGF, desmoglein-2 entered a recycling compartment based on predominant colocalization with the recycling marker Rab11. In contrast, E-cadherin downregulation was accompanied by cleavage of the extracellular domain. A broad-spectrum matrix metalloproteinase inhibitor protected E-cadherin but not the desmosomal cadherin, desmoglein-2, from EGF-stimulated disruption. These findings demonstrate that although activation of the EGF receptor regulates adherens junction and desmosomal components, this stimulus downregulates associated cadherins through different mechanisms.

  1. Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53

    Science.gov (United States)

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  2. Elevated COX2 expression and PGE2 production by downregulation of RXRα in senescent macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huimin, E-mail: huiminchen.jq@gmail.com [Department of Geratology, Liaoning Jinqiu Hospital, Shenyang 110015 (China); Ma, Feng [Institute of Immunology, Zhejiang University of Medicine, Hangzhou 310058 (China); Hu, Xiaona; Jin, Ting; Xiong, Chuhui [Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001 (China); Teng, Xiaochun, E-mail: tengxiaochun@126.com [Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001 (China)

    2013-10-11

    Highlights: •Downregulation of RXRα in senescent macrophage. •RXRα suppresses NF-κB activity and COX2 expression. •Increased PGE2 production due to downregulation of RXRα. -- Abstract: Increased systemic level of inflammatory cytokines leads to numerous age-related diseases. In senescent macrophages, elevated prostaglandin E2 (PGE2) production contributes to the suppression of T cell function with aging, which increases the susceptibility to infections. However, the regulation of these inflammatory cytokines and PGE2 with aging still remains unclear. We have verified that cyclooxygenase (COX)-2 expression and PGE2 production are higher in LPS-stimulated macrophages from old mice than that from young mice. Downregulation of RXRα, a nuclear receptor that can suppress NF-κB activity, mediates the elevation of COX2 expression and PGE2 production in senescent macrophages. We also have found less induction of ABCA1 and ABCG1 by RXRα agonist in senescent macrophages, which partially accounts for high risk of atherosclerosis in aged population. Systemic treatment with RXRα antagonist HX531 in young mice increases COX2, TNF-α, and IL-6 expression in splenocytes. Our study not only has outlined a mechanism of elevated NF-κB activity and PGE2 production in senescent macrophages, but also provides RXRα as a potential therapeutic target for treating the age-related diseases.

  3. Deferasirox-induced iron depletion promotes BclxL downregulation and death of proximal tubular cells.

    Science.gov (United States)

    Martin-Sanchez, Diego; Gallegos-Villalobos, Angel; Fontecha-Barriuso, Miguel; Carrasco, Susana; Sanchez-Niño, Maria Dolores; Lopez-Hernandez, Francisco J; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto; Sanz, Ana Belén

    2017-01-31

    Iron deficiency has been associated with kidney injury. Deferasirox is an oral iron chelator used to treat blood transfusion-related iron overload. Nephrotoxicity is the most serious and common adverse effect of deferasirox and may present as an acute or chronic kidney disease. However, scarce data are available on the molecular mechanisms of nephrotoxicity. We explored the therapeutic modulation of deferasirox-induced proximal tubular cell death in culture. Deferasirox induced dose-dependent tubular cell death and AnexxinV/7AAD staining showed features of apoptosis and necrosis. However, despite inhibiting caspase-3 activation, the pan-caspase inhibitor zVAD-fmk failed to prevent deferasirox-induced cell death. Moreover, zVAD increased deferasirox-induced cell death, a feature sometimes found in necroptosis. Electron microscopy identified mitochondrial injury and features of necrosis. However, neither necrostatin-1 nor RIP3 knockdown prevented deferasirox-induced cell death. Deferasirox caused BclxL depletion and BclxL overexpression was protective. Preventing iron depletion protected from BclxL downregulation and deferasirox cytotoxicity. In conclusion, deferasirox promoted iron depletion-dependent cell death characterized by BclxL downregulation. BclxL overexpression was protective, suggesting a role for BclxL downregulation in iron depletion-induced cell death. This information may be used to develop novel nephroprotective strategies. Furthermore, it supports the concept that monitoring kidney tissue iron depletion may decrease the risk of deferasirox nephrotoxicity.

  4. Downregulation of surface sodium pumps by endocytosis during meiotic maturation of Xenopus laevis oocytes

    International Nuclear Information System (INIS)

    Schmalzing, G.; Eckard, P.; Kroener, S.P.; Passow, H.

    1990-01-01

    During meiotic maturation, plasma membranes of Xenopus laevis oocytes completely lose the capacity to transport Na and K and to bind ouabain. To explore whether the downregulation might be due to an internalization of the sodium pump molecules, the intracellular binding of ouabain was determined. Selective permeabilization of the plasma membrane of mature oocytes (eggs) by digitonin almost failed to disclose ouabain binding sites. However, when the eggs were additionally treated with 0.02% sodium dodecyl sulfate (SDS) to permeabilize inner membranes, all sodium pumps present before maturation were recovered. Phosphorylation by [gamma-32P]ATP combined with SDS-polyacrylamide gel electrophoresis (PAGE) and autoradiography showed that sodium pumps were greatly reduced in isolated plasma membranes of eggs. According to sucrose gradient fractionation, maturation induced a shift of sodium pumps from the plasma membrane fraction to membranes of lower buoyant density with a protein composition different from that of the plasma membrane. Endocytosed sodium pumps identified on the sucrose gradient from [3H]ouabain bound to the cell surface before maturation could be phosphorylated with inorganic [32P]phosphate. The findings suggest that downregulation of sodium pumps during maturation is brought about by translocation of surface sodium pumps to an intracellular compartment, presumably endosomes. This contrasts the mechanism of downregulation of Na-dependent cotransport systems, the activities of which are reduced as a consequence of a maturation-induced depolarization of the membrane without a removal of the corresponding transporter from the plasma membrane

  5. Agonist-induced down-regulation of endogenous protein kinase c α through an endolysosomal mechanism.

    Science.gov (United States)

    Lum, Michelle A; Pundt, Krista E; Paluch, Benjamin E; Black, Adrian R; Black, Jennifer D

    2013-05-03

    Protein kinase C (PKC) isozymes undergo down-regulation upon sustained stimulation. Previous studies have pointed to the existence of both proteasome-dependent and -independent pathways of PKCα processing. Here we demonstrate that these down-regulation pathways are engaged in different subcellular compartments; proteasomal degradation occurs mainly at the plasma membrane, whereas non-proteasomal processing occurs in the perinuclear region. Using cholesterol depletion, pharmacological inhibitors, RNA interference, and dominant-negative mutants, we define the mechanisms involved in perinuclear accumulation of PKCα and identify the non-proteasomal mechanism mediating its degradation. We show that intracellular accumulation of PKCα involves at least two clathrin-independent, cholesterol/lipid raft-mediated pathways that do not require ubiquitination of the protein; one is dynamin-dependent and likely involves caveolae, whereas the other is dynamin- and small GTPase-independent. Internalized PKCα traffics through endosomes and is delivered to the lysosome for degradation. Supportive evidence includes (a) detection of the enzyme in EEA1-positive early endosomes, Rab7-positive late endosomes/multivesicular bodies, and LAMP1-positive lysosomes and (b) inhibition of its down-regulation by lysosome-disrupting agents and leupeptin. Only limited dephosphorylation of PKCα occurs during trafficking, with fully mature enzyme being the main target for lysosomal degradation. These studies define a novel and widespread mechanism of desensitization of PKCα signaling that involves endocytic trafficking and lysosome-mediated degradation of the mature, fully phosphorylated protein.

  6. Down-regulation of T-STAR, a growth inhibitory protein, after SV40-mediated immortalization.

    Science.gov (United States)

    Kool, J; van Zaane, W; van der Eb, A J; Terleth, C

    2001-11-01

    Normal human cells can undergo a limited number of divisions, whereas transformed cells may have an extended life span and can give rise to immortal cells. To isolate genes involved in the immortalization process, gene expression in SV40-transformed preimmortal human fibroblasts was compared with expression in SV40-transformed immortalized fibroblasts using an mRNA differential display. We found that the growth-inhibitory protein testis-signal transduction and activation of RNA (T-STAR) a homologue of cell-cycle regulator Sam68, is strongly down-regulated in immortalized cells. Overexpression of T-STAR in the SV40-transformed immortalized cells resulted in a strong reduction of colony formation, whereas deletion of the RNA-binding domain of T-STAR abrogated this effect. Down-regulation of testis-signal transduction and activation of RNA (T-STAR) expression is found only in immortal cells isolated after a proliferative crisis accompanied with massive cell death. The strict correlation of down-regulation of T-STAR expression only in those immortal cells that arose after a clear proliferative crisis suggests that the loss of T-STAR might be necessary to bypass crisis.

  7. Metabolic Reprogramming of Cancer-Associated Fibroblasts by IDH3α Downregulation

    Directory of Open Access Journals (Sweden)

    Daoxiang Zhang

    2015-03-01

    Full Text Available Cancer-associated fibroblasts (CAFs provide critical metabolites for tumor growth and undergo metabolic reprogramming to support glycolysis. However, the molecular mechanisms responsible for this change remain unclear. Here, we report that TGF-β1- or PDGF-induced CAFs switch from oxidative phosphorylation to aerobic glycolysis. We identify downregulation of isocitrate dehydrogenase 3α (IDH3α as a marker for this switch. Furthermore, miR-424 downregulates IDH3α during CAF formation. Downregulation of IDH3α decreases the effective level of α-ketoglutarate (α-KG by reducing the ratio of α-KG to fumarate and succinate, resulting in PHD2 inhibition and HIF-1α protein stabilization. The accumulation of HIF-1α, in turn, promotes glycolysis by increasing the uptake of glucose, upregulating expression of glycolytic enzymes under normoxic conditions, and inhibiting oxidative phosphorylation by upregulating NDUFA4L2. CAFs from tumor samples exhibit low levels of IDH3α, and overexpression of IDH3α prevents transformation of fibroblasts into CAFs. Our studies reveal IDH3α to be a critical metabolic switch in CAFs.

  8. Down-Regulation of TRPM8 in Pulmonary Arteries of Pulmonary Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Xiao-Ru Liu

    2013-06-01

    Full Text Available Background: Pulmonary hypertension (PH is characterized by profound vascular remodeling and alterations in Ca2+ homeostasis in pulmonary arterial smooth muscle cells (PASMCs. Multiple transient receptor potential melastatin-related (TRPM subtypes have been identified in vascular tissue. However, the changes in the expression and function of TRPM channels in pulmonary hypertension have not been characterized in detail. Methods: We examined the expression of TRPM channels and characterized the functions of the altered TRPM channels in two widely used rat models of chronic hypoxia (CH- and monocrotaline (MCT-induced PH. Results: CH-exposed and MCT-treated rats developed severe PH and right ventricular hypertrophy, with a significant decrease in TRPM8 mRNA and protein expression in pulmonary arteries (PAs. The downregulation of TRPM8 was associated with significant reduction in menthol-induced cation-influx. Time-profiles showed that TRPM8 down-regulation occurred prior to the increase of right ventricular systolic pressure (RVSP and right ventricular mass index (RVMI in CH-exposed rats, but these changes were delayed in MCT-treated rats. The TRPM8 agonist menthol induced vasorelaxation in phenylephrine-precontracted PAs, and the vasorelaxing effects were significantly attenuated in PAs of both PH rat models, consistent with decreased TRPM8 expression. Conclusion: Downregulation of TRPM8 may contribute to the enhanced vasoreactivity in PH.

  9. Language Impairment in Cerebellar Ataxia

    NARCIS (Netherlands)

    van Gaalen, Judith; de Swart, Bert J. M.; Oostveen, Judith; Knuijt, Simone; van de Warrenburg, Bart P. C.; Kremer, Berry (H. ) P. H.

    Background: Several studies have suggested that language impairment can be observed in patients with cerebellar pathology. The aim of this study was to investigate language performance in patients with spinocerebellar ataxia type 6 (SCA6). Methods: We assessed speech and language in 29 SCA6 patients

  10. Oceanography for the Visually Impaired

    Science.gov (United States)

    Fraser, Kate

    2008-01-01

    Amy Bower is a physical oceanographer and senior scientist at the Woods Hole Oceanographic Institution (WHOI) in Woods Hole, Massachusetts--she has also been legally blind for 14 years. Through her partnership with the Perkins School for the Blind in Watertown, Massachusetts, the oldest K-12 school for the visually impaired in the United States,…

  11. Parkinson's Disease and Cognitive Impairment.

    Science.gov (United States)

    Yang, Yang; Tang, Bei-Sha; Guo, Ji-Feng

    2016-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disease primarily characterized by the hallmarks of motor symptoms, such as tremor, bradykinesia, rigidity, and postural instability. However, through clinical investigations in patients and experimental findings in animal models of Parkinson's disease for years, it is now well recognized that Parkinson's disease is more than just a motor-deficit disorder. The majority of Parkinson's disease patients suffer from nonmotor disabilities, for instance, cognitive impairment, autonomic dysfunction, sensory dysfunction, and sleep disorder. So far, anti-PD prescriptions and surgical treatments have been mainly focusing on motor dysfunctions, leaving cognitive impairment a marginal clinical field. Within the nonmotor symptoms, cognitive impairment is one of the most common and significant aspects of Parkinson's disease, and cognitive deficits such as dysexecutive syndrome and visuospatial disturbances could seriously affect the quality of life, reduce life expectancy, prolong the duration of hospitalization, and therefore increase burdens of caregiver and medical costs. In this review, we have done a retrospective study of the recent related researches on epidemiology, clinical manifestation and diagnosis, genetics, and potential treatment of cognitive deficits in Parkinson's disease, aiming to provide a summary of cognitive impairment in Parkinson's disease and make it easy for clinicians to tackle this challenging issue in their future practice.

  12. Downregulation of membrane type-matrix metalloproteinases in the inflamed or injured central nervous system

    Directory of Open Access Journals (Sweden)

    Millward Jason M

    2007-09-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs are thought to mediate cellular infiltration in central nervous system (CNS inflammation by cleaving extracellular matrix proteins associated with the blood-brain barrier. The family of MMPs includes 23 proteinases, including six membrane type-MMPs (MT-MMPs. Leukocyte infiltration is an integral part of the pathogenesis of autoimmune inflammation in the CNS, as occurs in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE, as well as in the response to brain trauma and injury. We have previously shown that gene expression of the majority of MMPs was upregulated in the spinal cord of SJL mice with severe EAE induced by adoptive transfer of myelin basic protein-reactive T cells, whereas four of the six MT-MMPs (MMP-15, 16, 17 and 24 were downregulated. The two remaining MT-MMPs (MMP-14 and 25 were upregulated in whole tissue. Methods We used in vivo models of CNS inflammation and injury to study expression of MT-MMP and cytokine mRNA by real-time RT-PCR. Expression was also assessed in microglia sorted from CNS by flow cytometry, and in primary microglia cultures following treatment with IFNγ. Results We now confirm the expression pattern of MT-MMPs in the B6 mouse, independent of effects of adjuvant. We further show expression of all the MT-MMPs, except MMP-24, in microglia. Microglia isolated from mice with severe EAE showed statistically significant downregulation of MMP-15, 17 and 25 and lack of increase in levels of other MT-MMPs. Downregulation of MT-MMPs was also apparent following CNS injury. The pattern of regulation of MT-MMPs in neuroinflammation showed no association with expression of the proinflammatory cytokines TNFα, IL-1β, or IFNγ. Conclusion CNS inflammation and injury leads to downregulation in expression of the majority of MT-MMPs. Microglia in EAE showed a general downregulation of MT-MMPs, and our findings suggest that MT-MMP levels may

  13. Modafinil treatment prevents REM sleep deprivation-induced brain function impairment by increasing MMP-9 expression.

    Science.gov (United States)

    He, Bin; Peng, Hua; Zhao, Ying; Zhou, Hui; Zhao, Zhongxin

    2011-12-02

    Previous work showed that sleep deprivation (SD) impairs hippocampal-dependent cognitive function and synaptic plasticity, and a novel wake-promoting agent modafinil prevents SD-induced memory impairment in rat. However, the mechanisms by which modafinil prevented REM-SD-induced impairment of brain function remain poorly understood. In the present study, rats were sleep-deprived by using the modified multiple platform method and brain function was detected. The results showed that modafinil treatment prevented REM-SD-induced impairment of cognitive function. Modafinil significantly reduced the number of errors compared to placebo and upregulated synapsin I expression in the dorsal hippocampal CA3 region. A synaptic plasticity-related gene, MMP-9 expression was also upregulated in modafinil-treated rats. Importantly, downregulation of MMP-9 expression by special siRNA decreased synapsin I protein levels and synapse numbers. Therefore, we demonstrated that modafinil increased cognition function and synaptic plasticity, at least in part by increasing MMP-9 expression in REM-SD rats. 2011. Published by Elsevier B.V.

  14. L-glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: the 'collusion' hypothesis for increased extracellular L-glutamate concentration in neuroinflammation.

    Science.gov (United States)

    Takaki, Junpei; Fujimori, Koki; Miura, Marie; Suzuki, Takeshi; Sekino, Yuko; Sato, Kaoru

    2012-12-23

    In the central nervous system, astrocytic L-glutamate (L-Glu) transporters maintain extracellular L-Glu below neurotoxic levels, but their function is impaired with neuroinflammation. Microglia become activated with inflammation; however, the correlation between activated microglia and the impairment of L-Glu transporters is unknown. We used a mixed culture composed of astrocytes, microglia, and neurons. To quantify L-Glu transporter function, we measured the extracellular L-Glu that remained 30 min after an application of L-Glu to the medium (the starting concentration was 100 μM). We determined the optimal conditions of lipopolysaccharide (LPS) treatment to establish an inflammation model without cell death. We examined the predominant subtypes of L-Glu transporters and the changes in the expression levels of these transporters in this inflammation model. We then investigated the role of activated microglia in the changes in L-Glu transporter expression and the underlying mechanisms in this inflammation model. Because LPS (10 ng/mL, 72 h) caused a significant increase in the levels of L-Glu remaining but did not affect cell viability, we adopted this condition for our inflammation model without cell death. GLAST was the predominant L-Glu transporter subtype, and its expression decreased in this inflammation model. As a result of their release of L-Glu, activated microglia were shown to be essential for the significant decrease in L-Glu uptake. The serial application of L-Glu caused a significant decrease in L-Glu uptake and GLAST expression in the astrocyte culture. The hemichannel inhibitor carbenoxolone (CBX) inhibited L-Glu release from activated microglia and ameliorated the decrease in GLAST expression in the inflammation model. In addition, the elevation of the astrocytic intracellular L-Glu itself caused the downregulation of GLAST. Our findings suggest that activated microglia trigger the elevation of extracellular L-Glu through their own release of L

  15. Downregulation of microRNA-130a contributes to endothelial progenitor cell dysfunction in diabetic patients via its target Runx3.

    Directory of Open Access Journals (Sweden)

    Shu Meng

    Full Text Available Dysfunction of endothelial progenitor cells (EPCs contributes to diabetic vascular disease. MicroRNAs (miRs have emerged as key regulators of diverse cellular processes including angiogenesis. We recently reported that miR-126, miR-130a, miR-21, miR-27a, and miR-27b were downregulated in EPCs from type II diabetes mellitus (DM patients, and downregulation of miR-126 impairs EPC function. The present study further explored whether dysregulated miR-130a were also related to EPC dysfunction. EPCs were cultured from peripheral blood mononuclear cells of diabetic patients and healthy controls. Assays on EPC function (proliferation, migration, differentiation, apoptosis, and colony and tubule formation were performed. Bioinformatics analyses were used to identify the potential targets of miR-130a in EPCs. Gene expression of miR-103a and Runx3 was measured by real-time PCR, and protein expression of Runx3, extracellular signal-regulated kinase (ERK, vascular endothelial growth factor (VEGF and Akt was measured by Western blotting. Runx3 promoter activity was measured by luciferase reporter assay. A miR-130a inhibitor or mimic and lentiviral vectors expressing miR-130a, or Runx3, or a short hairpin RNA targeting Runx3 were transfected into EPCs to manipulate miR-130a and Runx3 levels. MiR-130a was decreased in EPCs from DM patients. Anti-miR-130a inhibited whereas miR-130a overexpression promoted EPC function. miR-130a negatively regulated Runx3 (mRNA, protein and promoter activity in EPCs. Knockdown of Runx3 expression enhanced EPC function. MiR-130a also upregulated protein expression of ERK/VEGF and Akt in EPCs. In conclusion, miR-130a plays an important role in maintaining normal EPC function, and decreased miR-130a in EPCs from DM contributes to impaired EPC function, likely via its target Runx3 and through ERK/VEGF and Akt pathways.

  16. Chronic cerebral hypoperfusion independently exacerbates cognitive impairment within the pathopoiesis of Parkinson's disease via microvascular pathologys.

    Science.gov (United States)

    Tang, Hongmei; Gao, Yuyuan; Zhang, Qingxi; Nie, Kun; Zhu, Ruiming; Gao, Liang; Feng, Shujun; Wang, Limin; Zhao, Jiehao; Huang, Zhiheng; Zhang, Yuhu; Wang, Lijuan

    2017-08-30

    To date, the role of microvascular pathology and chronic cerebral hypoperfusion (CHH) in the development of mild cognitive impairment in Parkinson's disease (PD-MCI) is unclear. Here, we investigated how the combined injury through interaction of CHH and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity act as an exacerbating element to damagae cognitive fuction in a mouse model. In the present study, C57BL/6 mice underwent MPTP injection. Subjects were classified into a PD with normal cognitive performance (PDCN) group or a PD-MCI group using the Morris Water Maze test. Further, CHH was induced by stenosis of the bilateral common carotid arteries (BCCAs). Consequently, the animals were divided into 7 groups: they are control, sham, BCCAs, PDCN, PD-MCI, PDCN+BCCAs and PD-MCI+BCCAs. The Morris Water Maze test, open field test, histological investigation and western blotting were performed to analyze cerebral microvascular impairment in each group. The results showed that CHH and MPTP injection caused spatial memory and behavioral impairment, accompanied by microvascular impairment and down-regulation of ZO-1 and Occludin at the protein level compared to the control group. The above injuries were synergistically exacerbated in the PDCN+BCCAs group and the PD-MCI+BCCAs group, which paralleled the elevated expression of p-MAPK and p-Akt. In short, our data demonstrate that CHH and MPTP caused cognitive and microvascular impairment separately. Moreover, CHH may exacerbate cognitive impairment in a mouse model of PD. The study provides a new opportunity for understanding the pathogenesis of PD-MCI. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Isoflurane-induced spatial memory impairment in mice is prevented by the acetylcholinesterase inhibitor donepezil.

    Directory of Open Access Journals (Sweden)

    Diansan Su

    Full Text Available Although many studies have shown that isoflurane exposure impairs spatial memory in aged animals, there are no clinical treatments available to prevent this memory deficit. The anticholinergic properties of volatile anesthetics are a biologically plausible cause of cognitive dysfunction in elderly subjects. We hypothesized that pretreatment with the acetylcholinesterase inhibitor donepezil, which has been approved by the Food and Drug Administration (FDA for the treatment of Alzheimer's disease, prevents isoflurane-induced spatial memory impairment in aged mice. In present study, eighteen-month-old mice were administered donepezil (5 mg/kg or an equal volume of saline by oral gavage with a feeding needle for four weeks. Then the mice were exposed to isoflurane (1.2% for six hours. Two weeks later, mice were subjected to the Morris water maze to examine the impairment of spatial memory after exposure to isoflurane. After the behavioral test, the mice were sacrificed, and the protein expression level of acetylcholinesterase (AChE, choline acetylase (ChAT and α7 nicotinic receptor (α7-nAChR were measured in the brain. Each group consisted of 12 mice. We found that isoflurane exposure for six hours impaired the spatial memory of the mice. Compared with the control group, isoflurane exposure dramatically decreased the protein level of ChAT, but not AChE or α7-nAChR. Donepezil prevented isoflurane-induced spatial memory impairments and increased ChAT levels, which were downregulated by isoflurane. In conclusions, pretreatment with the AChE inhibitor donepezil prevented isoflurane-induced spatial memory impairment in aged mice. The mechanism was associated with the upregulation of ChAT, which was decreased by isoflurane.

  18. Cognitive impairment in Chinese neuromyelitis optica

    NARCIS (Netherlands)

    Zhang, N.; Li, Y.J.; Fu, Y.; Shao, J.H.; Luo, L.L.; Yang, L.; Shi, F.D.; Liu, Y.

    2015-01-01

    Background: Cognitive dysfunction is frequently seen in neuromyelitis optica (NMO). However, the features and influencing factors of cognitive impairment of Chinese NMO patients are unclear. Objective: To investigate the patterns of cognitive impairment in Chinese NMO patients, and correlate the

  19. Cerebral visual impairment in children.

    Science.gov (United States)

    Dutton, G N; Jacobson, L K

    2001-12-01

    Much of the brain is devoted to vision. Damage causes visual problems ranging from profound impairment, to cognitive visual problems only. A child with cerebral blindness may have intact perception of movement. The principal cognitive visual pathways comprise the dorsal and the ventral streams. The dorsal stream runs between the occipital lobes (which process incoming visual data), the posterior parietal lobes (which process the whole visual scene and give attention to component parts), the motor cortex (which facilitates movement through the visual scene) and the frontal cortex (which directs attention to chosen parts of the visual scene). The ventral stream runs between the occipital lobes and the temporal lobes (which enable recognition of people and objects, facilitate route finding and serve visual memory). Damage to these pathways disrupts these functions in a variety of combinations. This paper reviews cerebral visual impairment in children, the differential diagnosis and the management. Copyright 2002 Elsevier Science Ltd.

  20. Impaired sleep and allostatic load

    DEFF Research Database (Denmark)

    Clark, Alice Jessie; Dich, Nadya; Lange, Theis

    2014-01-01

    Objective: Understanding the mechanisms linking sleep impairment to morbidity and mortality is important for future prevention, but these mechanisms are far from elucidated. We aimed to determine the relation between impaired sleep, both in terms of duration and disturbed sleep, and allostatic load...... Biobank with comprehensive information on sleep duration, disturbed sleep, objective measures of an extensive range of biological risk markers, and physical conditions. Results: Long sleep (mean difference 0.23; 95% confidence interval, 0.13, 0.32) and disturbed sleep (0.14; 0.06, 0.22) were associated...... with higher AL as well as with high-risk levels of risk markers from the anthropometric, metabolic, and immune system. Sub-analyses suggested that the association between disturbed sleep and AL might be explained by underlying disorders. Whereas there was no association between short sleep and AL...

  1. Epigenetic treatments for cognitive impairments.

    Science.gov (United States)

    Day, Jeremy J; Sweatt, J David

    2012-01-01

    Epigenetic mechanisms integrate signals from diverse intracellular transduction cascades and in turn regulate genetic readout. Accumulating evidence has revealed that these mechanisms are critical components of ongoing physiology and function in the adult nervous system, and are essential for many cognitive processes, including learning and memory. Moreover, a number of psychiatric disorders and syndromes that involve cognitive impairments are associated with altered epigenetic function. In this review, we will examine how epigenetic mechanisms contribute to cognition, consider how changes in these mechanisms may lead to cognitive impairments in a range of disorders and discuss the potential utility of therapeutic treatments that target epigenetic machinery. Finally, we will comment on a number of caveats associated with interpreting epigenetic changes and using epigenetic treatments, and suggest future directions for research in this area that will expand our understanding of the epigenetic changes underlying cognitive disorders.

  2. Relevance theory and pragmatic impairment.

    Science.gov (United States)

    Leinonen, E; Kerbel, D

    1999-01-01

    This paper summarizes aspects of relevance theory that are useful for exploring impairment of pragmatic comprehension in children. It explores data from three children with pragmatic language difficulties within this framework. Relevance theory is seen to provide a means of explaining why, in a given context, a particular utterance is problematic. It thus enables one to move on from mere description of problematic behaviours towards their explanation. The theory provides a clearer delineation between the explicit and the implicit, and hence between semantics and pragmatics. This enables one to place certain difficulties more firmly within semantics and others within pragmatics. Relevance, and its maximization in communication, are squarely placed within human cognition, which suggests a close connection between pragmatic and cognitive (dis)functioning. Relevance theory thus emerges as a powerful tool in the exploration and understanding of pragmatic language difficulties in children and offers therapeutically valuable insight into the nature of interactions involving individuals with such impairments.

  3. Multilingualism and Specific Language Impairment

    OpenAIRE

    Engel de Abreu, Pascale

    2014-01-01

    Is a multilingual education beneficial for children? What are the optimal conditions under which a child can become perfectly multilingual? When should we be concerned about a multilingual child's language skills? What are the signs of Specific Language Impairment in a child who speaks more than one language? Developmental psychologist and Associate Professor in multilingual cognitive development at the University of Luxembourg Pascale Engel de Abreu will address these questions based on what...

  4. Impairment testing of assets according to IFRS

    OpenAIRE

    Procházka, Michal

    2014-01-01

    The main object of this thesis is to show measurement of assets and its changes under International Financial Reporting Standards with closer focus on impairment testing according to IAS 36 - Impairment of Assets. The first part of the thesis introduces definition of assets and possible measurement bases used at first time recognition and reporting date. The main part deals with impairment testing of individual assets and cash-generating units. There is described when the impairment testing m...

  5. Vascular cognitive impairment in dementia.

    Science.gov (United States)

    Etherton-Beer, Christopher D

    2014-10-01

    Vascular risk factors and cerebrovascular disease are common causes of dementia. Shared risk factors for vascular dementia and Alzheimer's disease, as well as frequent coexistence of these pathologies in cognitively impaired older people, suggests convergence of the aetiology, prevention and management of the commonest dementias affecting older people. In light of this understanding, the cognitive impairment associated with cerebrovascular disease is an increasingly important and recognised area of the medicine of older people. Although the incidence of cerebrovascular events is declining in many populations, the overall burden associated with brain vascular disease will continue to increase associated with population ageing. A spectrum of cognitive disorders related to cerebrovascular disease is now recognised. Cerebrovascular disease in older people is associated with specific clinical and imaging findings. Although prevention remains the cornerstone of management, the diagnosis of brain vascular disease is important because of the potential to improve clinical outcomes through clear diagnosis, enhanced control of risk factors, lifestyle interventions and secondary prevention. Specific pharmacological intervention may also be indicated for some patients with cognitive impairment and cerebrovascular disease. However the evidence base to guide intervention remains relatively sparse. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Cognitive impairment in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Jing YUAN

    2017-07-01

    Full Text Available Parkinson's disease cognitive impairment (PD-CI is one of the major non-motor symtoms (NMS of PD, including Parkinson's disease with mild cognitive impairment (PD - MCI and Parkinson's disease dementia (PDD. Executive dysfunction is relatively prominent, but other cognitive domains as visuospatial ability, memory and language can also be affected. Main risk factors for PD-CI include male gender, advanced age, low education, severe motor symptoms, low baseline cognitive function and excessive daytime sleepiness (EDS. Lewy bodies are main pathological changes, and Alzheimer's disease (AD related pathological changes can also be seen. The application value of decreased α?synuclein (α-Syn and β-amyloid 1-42 (Aβ1-42 levels in cerebrospinal fluid (CSF as biomarkers remains controversial. There are few related research and no defined pathogenic genes currently. Both dopaminergic pathway and acetylcholinergic pathway are involved in the occurrence of PD - CI as demonstrated in PET studies. Cortical and subcortical atrophy are associated with PD - CI as observed in MRI studies. Olfactory dysfunction may be one of the predictors of cognitive impairment. PDD and dementia with Lewy bodies (DLB share common biological characteristics, therefore the differential diagnosis sometimes is difficult. Cholinesterase inhibitors (ChEIs and memantine help to improve clinical symptoms, but treatment decision should be made with individualization. Cognitive behavioral treatment (CBT has potential clinical value and should be investigated by more studies. DOI: 10.3969/j.issn.1672-6731.2017.06.004

  7. Ketogenic Diet Impairs FGF21 Signaling and Promotes Differential Inflammatory Responses in the Liver and White Adipose Tissue.

    Directory of Open Access Journals (Sweden)

    Mohamed Asrih

    Full Text Available Beside its beneficial effects on weight loss, ketogenic diet (KD causes dyslipidemia, a pro-inflammatory state involved in the development of hepatic steatosis, glucose intolerance and insulin resistance, although the latter is still being debated. Additionally, KD is known to increase fibroblast growth factor 21 (FGF21 plasma levels. However, FGF21 cannot initiate its beneficial actions on metabolism in these conditions. We therefore hypothesized and tested in the present study that KD may impair FGF21 signaling.Using indirect calorimetry, we found that KD-fed mice exhibited higher energy expenditure than regular chow (RC-fed mice associated with increased Ucp1 levels in white adipose tissue (WAT, along with increased plasma FGF21 levels. We then assessed the effect of KD on FGF21 signaling in both the liver and WAT. We found that Fgfr4 and Klb (β-klotho were downregulated in the liver, while Fgfr1 was downregulated in WAT of KD-fed mice. Because inflammation could be one of the mechanisms linking KD to impaired FGF21 signaling, we measured the expression levels of inflammatory markers and macrophage accumulation in WAT and liver and found an increased inflammation and macrophage accumulation in the liver, but surprisingly, a reduction of inflammation in WAT.We also showed that KD enhances lipid accumulation in the liver, which may explain hepatic inflammation and impaired Fgfr4 and Klb expression. In contrast, import of lipids from the circulation was significantly reduced in WAT of KD-fed mice, as suggested by a downregulation of Lpl and Cd36. This was further associated with reduced inflammation in WAT.Altogether, these results indicate that KD could be beneficial for a given tissue but deleterious for another.

  8. Communication Skills and Learning in Impaired Individuals

    Science.gov (United States)

    Eliöz, Murat

    2016-01-01

    The purpose of this study is to compare the communication skills of individuals with different disabilities with athletes and sedentary people and to examine their learning abilities which influence the development of communication. A total of 159 male subjects 31 sedentary, 30 visually impaired, 27 hearing impaired, 40 physically impaired and 31…

  9. Evacuation characteristics of visually impaired people

    DEFF Research Database (Denmark)

    Sørensen, Janne Gress; Dederichs, Anne

    2015-01-01

    Evacuation characteristics for blind and visually impaired people are presented in the current study. The study was carried out in 2011 and engaged 40 participants in the age from 10 to 69 years. The participants had impairments for all of the four Danish categories for visual impairments (A...

  10. Social Cognition in Children with Visual Impairments.

    Science.gov (United States)

    Pring, Linda; Dewart, Hazel; Brockbank, Margaret

    1998-01-01

    Comparison of 16 children (ages 9 to 12) with visual impairment to 16 sighted children found visually impaired children had a poorer understanding than did sighted children of characters in stories, as shown by fewer correct justifications based on mental states. Some subgroup patterns concerning congenital impairments and cognitive style were…

  11. Inferential Functioning in Visually Impaired Children

    Science.gov (United States)

    Puche-Navarro, Rebeca; Millan, Rafael

    2007-01-01

    The current study explores the inferential abilities of visually impaired children in a task presented in two formats, manipulative and verbal. The results showed that in the group of visually impaired children, just as with children with normal sight, there was a wide range of inference types. It was found that the visually impaired children…

  12. Evaluating the Visually Impaired: Neuropsychological Techniques.

    Science.gov (United States)

    Price, J. R.; And Others

    1987-01-01

    Assessment of nonvisual neuropsychological impairments in visually impaired persons can be achieved through modification of existing intelligence, memory, sensory-motor, personality, language, and achievement tests so that they do not require vision or penalize visually impaired persons. The Halstead-Reitan and Luria-Nebraska neuropsychological…

  13. Keratin 8 absence down-regulates colonocyte HMGCS2 and modulates colonic ketogenesis and energy metabolism.

    Science.gov (United States)

    Helenius, Terhi O; Misiorek, Julia O; Nyström, Joel H; Fortelius, Lina E; Habtezion, Aida; Liao, Jian; Asghar, M Nadeem; Zhang, Haiyan; Azhar, Salman; Omary, M Bishr; Toivola, Diana M

    2015-06-15

    Simple-type epithelial keratins are intermediate filament proteins important for mechanical stability and stress protection. Keratin mutations predispose to human liver disorders, whereas their roles in intestinal diseases are unclear. Absence of keratin 8 (K8) in mice leads to colitis, decreased Na/Cl uptake, protein mistargeting, and longer crypts, suggesting that keratins contribute to intestinal homeostasis. We describe the rate-limiting enzyme of the ketogenic energy metabolism pathway, mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), as a major down-regulated protein in the K8-knockout (K8(-/-)) colon. K8 absence leads to decreased quantity and activity of HMGCS2, and the down-regulation is not dependent on the inflammatory state, since HMGCS2 is not decreased in dextran sulfate sodium-induced colitis. Peroxisome proliferator-activated receptor α, a transcriptional activator of HMGCS2, is similarly down-regulated. Ketogenic conditions-starvation or ketogenic diet-increase K8(+/+) HMGCS2, whereas this response is blunted in the K8(-/-) colon. Microbiota-produced short-chain fatty acids (SCFAs), substrates in the colonic ketone body pathway, are increased in stool, which correlates with decreased levels of their main transporter, monocarboxylate transporter 1 (MCT1). Microbial populations, including the main SCFA-butyrate producers in the colon, were not altered in the K8(-/-). In summary, the regulation of the SCFA-MCT1-HMGCS2 axis is disrupted in K8(-/-) colonocytes, suggesting a role for keratins in colonocyte energy metabolism and homeostasis. © 2015 Helenius, Misiorek, Nyström, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Shin, Incheol, E-mail: incheol@hanyang.ac.kr [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  15. Frequent down-regulation of ABC transporter genes in prostate cancer

    International Nuclear Information System (INIS)

    Demidenko, Rita; Razanauskas, Deividas; Daniunaite, Kristina; Lazutka, Juozas Rimantas; Jankevicius, Feliksas; Jarmalaite, Sonata

    2015-01-01

    ATP-binding cassette (ABC) transporters are transmembrane proteins responsible for the efflux of a wide variety of substrates, including steroid metabolites, through the cellular membranes. For better characterization of the role of ABC transporters in prostate cancer (PCa) development, the profile of ABC transporter gene expression was analyzed in PCa and noncancerous prostate tissues (NPT). TaqMan Low Density Array (TLDA) human ABC transporter plates were used for the gene expression profiling in 10 PCa and 6 NPT specimens. ABCB1 transcript level was evaluated in a larger set of PCa cases (N = 78) and NPT (N = 15) by real-time PCR, the same PCa cases were assessed for the gene promoter hypermethylation by methylation-specific PCR. Expression of eight ABC transporter genes (ABCA8, ABCB1, ABCC6, ABCC9, ABCC10, ABCD2, ABCG2, and ABCG4) was significantly down-regulated in PCa as compared to NPT, and only two genes (ABCC4 and ABCG1) were up-regulated. Down-regulation of ABC transporter genes was prevalent in the TMPRSS2-ERG-negative cases. A detailed analysis of ABCB1 expression confirmed TLDA results: a reduced level of the transcript was identified in PCa in comparison to NPT (p = 0.048). Moreover, the TMPRSS2-ERG-negative PCa cases showed significantly lower expression of ABCB1 in comparison to NPT (p = 0.003) or the fusion-positive tumors (p = 0.002). Promoter methylation of ABCB1 predominantly occurred in PCa and was rarely detected in NPT (p < 0.001). The study suggests frequent down-regulation of the ABC transporter genes in PCa, especially in the TMPRSS2-ERG-negative tumors. The online version of this article (doi:10.1186/s12885-015-1689-8) contains supplementary material, which is available to authorized users

  16. Downregulation of telomerase maintenance-related ACD expression in patients undergoing immunosuppresive therapy following kidney transplantation.

    Science.gov (United States)

    Witkowska, Agnieszka; Strzalka-Mrozik, Barbara; Owczarek, Aleksander; Gola, Joanna; Mazurek, Urszula; Grzeszczak, Wladyslaw; Gumprecht, Janusz

    2015-12-01

    Chronic administration of immunosuppressants has been associated with long-term consequences, including a higher risk of neoplasm development. The processes regulating telomere function exert a major influence on human cancer biology. The present study aimed to assess the effect of immunosuppressive therapy on the expression of genes associated with telomere maintenance and protection in patients following renal transplantation. A total of 51 patients that had undergone kidney transplantation and 54 healthy controls were enrolled in the study. The 51 transplant patients received a three-drug immunosuppressive regimen consisting of cyclosporine A, prednisone and mycophenolate mofetil. In stage 1 of the study, the expression profiles of 123 transcripts, which represented 70 genes, were assessed in peripheral mononuclear blood cells using an oligonucleotide microarray technique in 8 transplant recipients and 4 healthy control subjects. Among the analyzed transcripts, the expression levels of 4 differed significantly between the studied groups; however, only the ACD (adrenocortical dysplasia homolog) gene, encoding the telomere-binding protein POT1-interacting protein 1 (TPP1), was sufficiently specific for telomere homeostasis. The expression of ACD was downregulated in transplant recipients (fold change, 2.11; P=0.006). In stage 2 of the study, reverse transcription-quantitative polymerase chain reaction analysis of ACD , DKC1 and hTERT mRNA was conducted for all transplant patients and control subjects. The results confirmed the downregulation of the ACD gene in patients that had received immunosuppressive therapy (P=0.002). The results of the present study indicate that the downregulation of ACD gene transcription, and thus TPP1 protein expression, may enhance the capacity for cell immortalization, despite normal levels of other key telomere maintenance factors, in patients undergoing immunosuppressive therapy. Furthermore, the results indicate that TPP1 has

  17. Down-regulation of lipoxygenase gene reduces degradation of carotenoids of golden rice during storage.

    Science.gov (United States)

    Gayen, Dipak; Ali, Nusrat; Sarkar, Sailendra Nath; Datta, Swapan K; Datta, Karabi

    2015-07-01

    Down-regulation of lipoxygenase enzyme activity reduces degradation of carotenoids of bio-fortified rice seeds which would be an effective tool to reduce huge post-harvest and economic losses of bio-fortified rice seeds during storage. Bio-fortified provitamin A-enriched rice line (golden rice) expressing higher amounts of β-carotene in the rice endosperm provides vitamin A for human health. However, it is already reported that degradation of carotenoids during storage is a major problem. The gene responsible for degradation of carotenoids during storage has remained largely unexplored till now. In our previous study, it has been shown that r9-LOX1 gene is responsible for rice seed quality deterioration. In the present study, we attempted to investigate if r9-LOX1 gene has any role in degradation of carotenoids in rice seeds during storage. To establish our hypothesis, the endogenous lipoxygenase (LOX) activity of high-carotenoid golden indica rice seed was silenced by RNAi technology using aleurone layer and embryo-specific Oleosin-18 promoter. To check the storage stability, LOX enzyme down-regulated high-carotenoid T3 transgenic rice seeds were subjected to artificial aging treatment. The results obtained from biochemical assays (MDA, ROS) also indicated that after artificial aging, the deterioration of LOX-RNAi lines was considerably lower compared to β-carotene-enriched transgenic rice which had higher LOX activity in comparison to LOX-RNAi lines. Furthermore, it was also observed by HPLC analysis that down-regulation of LOX gene activity decreases co-oxidation of β-carotene in LOX-RNAi golden rice seeds as compared to the β-carotene-enriched transgenic rice, after artificial aging treatment. Therefore, our study substantially establishes and verifies that LOX is a key enzyme for catalyzing co-oxidation of β-carotene and has a significant role in deterioration of β-carotene levels in the carotenoid-enriched golden rice.

  18. Downregulation of selective microRNAs in trigeminal ganglion neurons following inflammatory muscle pain

    Directory of Open Access Journals (Sweden)

    Wei Dong

    2007-06-01

    Full Text Available Abstract Active regulation of gene expression in the nervous system plays an important role in the development and/or maintenance of inflammatory pain. MicroRNA (miRNA negatively regulates gene expression via posttranscriptional or transcriptional inhibition of specific genes. To explore the possible involvement of miRNA in gene regulation during inflammatory pain, we injected complete Freund's adjuvant (CFA unilaterally into the rat masseter muscle and quantified changes in neuron-specific mature miRNAs in the trigeminal ganglion (TG. Real-time reverse-transcription polymerase chain reaction revealed significant, but differential, downregulation of mature miR-10a, -29a, -98, -99a, -124a, -134, and -183 in the ipsilateral mandibular division (V3 of the TG within 4 hr after CFA. In contrast, levels of tested miRNAs did not change significantly in the contralateral V3 or the ipsilateral ophthalmic and maxillary divisions of the TG from inflamed rats, nor in the ipsilateral V3 of saline-injected animals. The downregulated miRNAs recovered differentially to a level equal to or higher than that in naive animals. Full recovery time varied with miRNA species but was at least 4 days. Expression and downregulation of some miRNAs were further confirmed by in situ hybridization of TG neurons that innervate the inflamed muscle. Although neurons of all sizes expressed these miRNAs, their signals varied between neurons. Our results indicate that miRNA species specific to neurons are quickly regulated following inflammatory muscle pain.

  19. The human LIS1 is downregulated in hepatocellular carcinoma and plays a tumor suppressor function

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Zhen; Tang, Xin; Gao, Yuan; Da, Liang; Song, Hai; Wang, Suiquan [State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Tiollais, Pierre [Unite' d' Organisation Nucleaire et Oncogenese, INSERM U.579, Institut Pasteur, Paris (France); Li, Tsaiping [State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Zhao, Mujun, E-mail: mjzhao@sibs.ac.cn [State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China)

    2011-06-03

    Highlights: {yields} LIS1 mRNA and protein levels are decreased in 70% HCC tissues. {yields} Downregulation of LIS1 expression induces oncogenic transformation of QSG7701 and NIH3T3 cells in vitro and in vivo. {yields} LIS1 downregulation leads to mitotic errors including spindle and chromosome defects. {yields} Ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. {yields} Our results suggest that LIS1 plays a potential tumor suppressor role in the development and progression of HCC. -- Abstract: The human lissencephaly-1 gene (LIS1) is a disease gene responsible for Miller-Dieker lissencephaly syndrome (MDL). LIS1 gene is located in the region of chromosome 17p13.3 that is frequency deleted in MDL patients and in human liver cancer cells. However, the expression and significance of LIS1 in liver cancer remain unknown. Here, we investigated the expression of LIS1 in hepatocellular carcinoma (HCC) tissues by real-time PCR, Western blot, and immunohistochemistry. The results indicated that the mRNA and protein levels of LIS1 were downregulated in about 70% of HCC tissues, and this downregulation was significantly associated with tumor progression. Functional studies showed that the reduction of LIS1 expression in the normal human liver cell line QSG7701 or the mouse fibroblast cell line NIH3T3 by shRNA resulted in colony formation in soft agar and xenograft tumor formation in nude mice, demonstrating that a decrease in the LIS1 level can promote the oncogenic transformation of cells. We also observed that the phenotypes of LIS1-knockdown cells displayed various defective mitotic structures, suggesting that the mechanism by which reduced LIS1 levels results in tumorigenesis is associated with its role in mitosis. Furthermore, we demonstrated that ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. Our results suggest that LIS1 plays a potential tumor suppressor role in the

  20. The human LIS1 is downregulated in hepatocellular carcinoma and plays a tumor suppressor function

    International Nuclear Information System (INIS)

    Xing, Zhen; Tang, Xin; Gao, Yuan; Da, Liang; Song, Hai; Wang, Suiquan; Tiollais, Pierre; Li, Tsaiping; Zhao, Mujun

    2011-01-01

    Highlights: → LIS1 mRNA and protein levels are decreased in 70% HCC tissues. → Downregulation of LIS1 expression induces oncogenic transformation of QSG7701 and NIH3T3 cells in vitro and in vivo. → LIS1 downregulation leads to mitotic errors including spindle and chromosome defects. → Ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. → Our results suggest that LIS1 plays a potential tumor suppressor role in the development and progression of HCC. -- Abstract: The human lissencephaly-1 gene (LIS1) is a disease gene responsible for Miller-Dieker lissencephaly syndrome (MDL). LIS1 gene is located in the region of chromosome 17p13.3 that is frequency deleted in MDL patients and in human liver cancer cells. However, the expression and significance of LIS1 in liver cancer remain unknown. Here, we investigated the expression of LIS1 in hepatocellular carcinoma (HCC) tissues by real-time PCR, Western blot, and immunohistochemistry. The results indicated that the mRNA and protein levels of LIS1 were downregulated in about 70% of HCC tissues, and this downregulation was significantly associated with tumor progression. Functional studies showed that the reduction of LIS1 expression in the normal human liver cell line QSG7701 or the mouse fibroblast cell line NIH3T3 by shRNA resulted in colony formation in soft agar and xenograft tumor formation in nude mice, demonstrating that a decrease in the LIS1 level can promote the oncogenic transformation of cells. We also observed that the phenotypes of LIS1-knockdown cells displayed various defective mitotic structures, suggesting that the mechanism by which reduced LIS1 levels results in tumorigenesis is associated with its role in mitosis. Furthermore, we demonstrated that ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. Our results suggest that LIS1 plays a potential tumor suppressor role in the development and

  1. Downregulation of aquaporin-1 in alveolar microvessels in lungs adapted to chronic heart failure

    DEFF Research Database (Denmark)

    Müllertz, Katrine M; Strøm, Claes; Trautner, Simon

    2011-01-01

    The threshold pressure for lung edema formation is increased in severe chronic heart failure (CHF) due to reduced microvascular permeability. The water channel aquaporin-1 (AQP1) is present in the pulmonary microvascular endothelium, and a number of studies suggest the importance of AQP1......-operated rats served as controls. Echocardiographic verification of left ventricular dysfunction, enhanced left ventricular end-diastolic pressure, and right ventricular hypertrophy confirmed the presence of CHF. Western blotting of whole-lung homogenates revealed significant downregulation of AQP1 in LAD...

  2. Decreased Wnt4 expression inhibits thymoma development through downregulation of FoxN1

    Science.gov (United States)

    Chen, Yuan; Liu, Xin; Liu, Yimei; Wang, Yuanguo; Wang, Hai; Lu, Chao

    2017-01-01

    Background The Wnt signaling pathway controls the development of thymic epithelial cells by regulating the expression of FoxN1. Thymoma is a type of malignant tumor arising from the thymic epithelial cells. To determine whether Wnt4 and FoxN1 are involved in the pathogenesis of thymoma, this study determined the mRNA and protein levels of Wnt4 and Foxn1 in thymoma, and analyzed the effect of thymoma cell apoptosis and tumor growth in nude mice after Wnt4 and FoxN1 downregulation. Methods Wnt4 and FoxN1 mRNA and protein levels in thymoma tissues were analyzed by RT-qPCR and immunohistochemistry, respectively. Thymoma cells were cultured and transfected with siRNA targeting the Wnt4, JNK, and FoxN1 genes. Apoptosis of thymoma cells were analyzed after Wnt4 and FoxN1 downregulation. In addition, thymoma cells were inoculated into nude mice and tumor growth was analyzed. Results The rates of expression of Wnt4 and FoxN1 protein were 64.3% and 58.9%, while the levels of mRNA expression were 2.56±0.04 and 1.83±0.11, respectively. With increasing malignancy of thymoma, the rates of positivity for Wnt4 and FoxN1 mRNA and protein expression gradually increased. Upon interfering with Wnt4, JNK, and FoxN1 gene expression by using siRNA technology, the inhibition rates were 56.7%, 72.6%, and 63.2%, respectively. The expression of FoxN1 mRNA and protein was decreased after Wnt4 and JNK downregulation. After downregulation of Wnt4 and FoxN1 gene expression, the apoptosis rate of thymoma cells increased and the tumor volume decreased in nude mice. Conclusions High expression of Wnt4 and FoxN1 may play an important role in the generation and development of thymoma. The FoxN1 gene produced a marked downstream effect through the regulation of Wnt4. Determining the positivity for both Wnt4 and FoxN1 can help us to evaluate the level of malignancy of thymoma. PMID:28740671

  3. The effect of CD4 receptor downregulation and its downstream signaling molecules on HIV-1 latency

    International Nuclear Information System (INIS)

    Kim, Kyung-Chang; Kim, Hyeon Guk; Roh, Tae-Young; Park, Jihwan; Jung, Kyung-Min; Lee, Joo-Shil; Choi, Sang-Yun; Kim, Sung Soon; Choi, Byeong-Sun

    2011-01-01

    Research highlights: → CD4 receptors were downregulated on the surface of HIV-1 latently infected cells. → CD4 downstream signaling molecules were suppressed in HIV-1 latently infected cells. → HIV-1 progeny can be reactivated by induction of T-cell activation signal molecules. → H3K4me3 and H3K9ac were highly enriched in CD4 downstream signaling molecules. → HIV-1 latency can be maintained by the reduction of downstream signaling molecules. -- Abstract: HIV-1 can establish a latent infection in memory CD4 + T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also as the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.01-derived (NCHA) cells were used to examine the involvement of CD4 downstream signaling in HIV-1 latency. CD4 receptors in NCHA cells were dramatically downregulated on its surface but were slightly decreased in whole-cell lysates. The expression levels of CD4 downstream signaling molecules, including P56 Lck , ZAP-70, LAT, and c-Jun, were sharply decreased in NCHA cells. The lowered histone modifications of H3K4me3 and H3K9ac correlated with the downregulation of P56 Lck , ZAP-70, and LAT in NCHA cells. AP-1 binding activity was also reduced in NCHA cells. LAT and c-Jun suppressed in NCHA cells were highly induced after PMA treatment. In epigenetic analysis, other signal transduction molecules which are associated with active and/or latent HIV-1 infection showed normal states in HIV-1 latently infected cells compared to A3.01 cells. In conclusion, we demonstrated that the HIV-1 latent state is sustained by the reduction of downstream signaling molecules via the downregulation of CD4 and the attenuated activity of transcription factor as AP-1. The HIV-1 latency model via T-cell deactivation may provide some clues for the development of the new antireservoir therapy.

  4. The Missing Link in Epstein-Barr Virus Immune Evasion: the BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II

    Science.gov (United States)

    Quinn, Laura L.; Williams, Luke R.; White, Claire; Forrest, Calum; Rowe, Martin

    2015-01-01

    early lytic cycle antigens. The present work identifies an additional immune evasion protein, BDLF3, that is expressed late in the lytic cycle and impairs CD8+ T cell recognition by targeting cell surface MHC class I molecules for ubiquitination and proteasome-dependent downregulation. Interestingly, BDLF3 also targets MHC class II molecules to impair CD4+ T cell recognition. BDLF3 is therefore a rare example of a viral protein that impairs both the MHC class I and class II antigen-presenting pathways. PMID:26468525

  5. The Missing Link in Epstein-Barr Virus Immune Evasion: the BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II.

    Science.gov (United States)

    Quinn, Laura L; Williams, Luke R; White, Claire; Forrest, Calum; Zuo, Jianmin; Rowe, Martin

    2016-01-01

    early lytic cycle antigens. The present work identifies an additional immune evasion protein, BDLF3, that is expressed late in the lytic cycle and impairs CD8(+) T cell recognition by targeting cell surface MHC class I molecules for ubiquitination and proteasome-dependent downregulation. Interestingly, BDLF3 also targets MHC class II molecules to impair CD4(+) T cell recognition. BDLF3 is therefore a rare example of a viral protein that impairs both the MHC class I and class II antigen-presenting pathways. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Lack of sik1 in mouse embryonic stem cells impairs cardiomyogenesis by down-regulating the cyclin-dependent kinase inhibitor p57kip2.

    Directory of Open Access Journals (Sweden)

    Antonio Romito

    Full Text Available Sik1 (salt inducible kinase 1 is a serine/threonine kinase that belongs to the stress- and energy-sensing AMP-activated protein kinase family. During murine embryogenesis, sik1 marks the monolayer of future myocardial cells that will populate first the primitive ventricle, and later the primitive atrium suggesting its involvement in cardiac cell differentiation and/or heart development. Despite that observation, the involvement of sik1 in cardiac differentiation is still unknown. We examined the sik1 function during cardiomyocyte differentiation using the ES-derived embryoid bodies. We produced a null embryonic stem cell using a gene-trap cell line carrying an insertion in the sik1 locus. In absence of the sik1 protein, the temporal appearance of cardiomyocytes is delayed. Expression profile analysis revealed sik1 as part of a genetic network that controls the cell cycle, where the cyclin-dependent kinase inhibitor p57(Kip2 is directly involved. Collectively, we provided evidence that sik1-mediated effects are specific for cardiomyogenesis regulating cardiomyoblast cell cycle exit toward terminal differentiation.

  7. K(Ca)3.1 channel downregulation and impaired endothelium-derived hyperpolarization-type relaxation in pulmonary arteries from chronically hypoxic rats

    DEFF Research Database (Denmark)

    Kroigaard, Christel; Kudryavtseva, Olga; Dalsgaard, Thomas

    2013-01-01

    hypoxia-induced pulmonary hypertension in rats. For functional studies, pulmonary arteries were mounted in microvascular myographs for isometric tension recordings. The K(Ca) channel expression was evaluated by immunoblotting and quantitative PCR. Although ACh induced similar relaxations, the ACh...

  8. Nitroxide Tempol down-regulates kinase activities associated with NADPH oxidase function in phagocytic cells and potentially decreases their fungicidal response.

    Science.gov (United States)

    Santos, Gérsika B; Ribeiro, Ana C G; Lima, Samuel N P; Trostchansky, Andrés; Cerdeira, Cláudio Daniel; Brigagão, Maísa R P L

    2018-01-05

    The identification of novel targets to control inflammation in humans is probably the primary challenge that impairs the development of new anti-inflammatory drugs. Therefore, the modulation of intracellular signaling pathways in phagocytes may be an interesting means of achieving this goal. However, this change to signaling can compromise the host's susceptibility to invading pathogens. We investigated whether the antioxidant nitroxide Tempol regulates the activity of kinases associated with the production of oxidants in neutrophils, which affects the fungicidal capability of these cells. The effects of Tempol on PMA- or fMLP-activated neutrophils were examined by oxygen consumption as an index of the oxidative burst, a release of extracellular and total Reactive Oxygen Species (ROS) by chemiluminescence, kinase activities through analysis of ATP consumption during enzyme activities and the dot blot immunoassay and, finally, by neutrophil capacity of killing Candida albicans. Tempol significantly inhibited the neutrophil oxidative burst in a concentration-dependent manner and decreased oxygen consumption (IC50 = 45 μM) and extracellular/total ROS formation with an increase on the lag period response. In addition, Tempol inhibited neutrophil kinase activities (i.e., a decrease in protein phosphorylation) elicited through different biochemical pathways and consequently impaired the fungicidal activity of these cells. Although Tempol has potential anti-inflammatory activity that acts on different intracellular pathways (such as those involving kinases), researchers should be cautious, since this nitroxide down-regulated oxidants production and the fungicidal response of neutrophils. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Manneristic behaviors of visually impaired children.

    Science.gov (United States)

    Molloy, Alysha; Rowe, Fiona J

    2011-09-01

    To review the literature on visual impairment in children in order to determine which manneristic behaviors are associated with visual impairment, and to establish why these behaviors occur and whether severity of visual impairment influences these behaviors. A literature search utilizing PubMed, OVID, Google Scholar, and Web of Knowledge databases was performed. The University of Liverpool ( www.liv.ac.uk/orthoptics/research ) and local library facilities were also searched. The main manneristic or stereotypic behaviors associated with visual impairment are eye-manipulatory behaviors, such as eye poking and rocking. The degree of visual impairment influences the type of behavior exhibited by visually impaired children. Totally blind children are more likely to adopt body and head movements whereas sight-impaired children tend to adopt eye-manipulatory behaviors and rocking. The mannerisms exhibited most frequently are those that provide a specific stimulation to the child. Theories to explain these behaviors include behavioral, developmental, functional, and neurobiological approaches. Although the precise etiology of these behaviors is unknown, it is recognized that each of the theories is useful in providing some explanation of why certain behaviors may occur. The age at which the frequency of these behaviors decreases is associated with the child's increasing development, thus those visually impaired children with additional disabilities, whose development is impaired, are at an increased risk of developing and maintaining these behaviors. Certain manneristic behaviors of the visually impaired child may also help indicate the cause of visual impairment. There is a wide range of manneristic behaviors exhibited by visually impaired children. Some of these behaviors appear to be particularly associated with certain causes of visual impairment or severity of visual impairment, thus they may supply the practitioner with useful information. Further research into the

  10. Sustained activation of DNA damage response in irradiated apoptosis-resistant cells induces reversible senescence associated with mTOR downregulation and expression of stem cell markers.

    Science.gov (United States)

    Chitikova, Zhanna V; Gordeev, Serguei A; Bykova, Tatiana V; Zubova, Svetlana G; Pospelov, Valery A; Pospelova, Tatiana V

    2014-01-01

    Cells respond to genotoxic stress by activating the DNA damage response (DDR). When injury is severe or irreparable, cells induce apoptosis or cellular senescence to prevent transmission of the lesions to the daughter cells upon cell division. Resistance to apoptosis is a hallmark of cancer that challenges the efficacy of cancer therapy. In this work, the effects of ionizing radiation on apoptosis-resistant E1A + E1B transformed cells were investigated to ascertain whether the activation of cellular senescence could provide an alternative tumor suppressor mechanism. We show that irradiated cells arrest cell cycle at G 2/M phase and resume DNA replication in the absence of cell division followed by formation of giant polyploid cells. Permanent activation of DDR signaling due to impaired DNA repair results in the induction of cellular senescence in E1A + E1B cells. However, irradiated cells bypass senescence and restore the population by dividing cells, which have near normal size and ploidy and do not express senescence markers. Reversion of senescence and appearance of proliferating cells were associated with downregulation of mTOR, activation of autophagy, mitigation of DDR signaling, and expression of stem cell markers.

  11. Xenoestrogens down-regulate aryl-hydrocarbon receptor nuclear translocator 2 mRNA expression in human breast cancer cells via an estrogen receptor alpha-dependent mechanism.

    Science.gov (United States)

    Qin, Xian-Yang; Zaha, Hiroko; Nagano, Reiko; Yoshinaga, Jun; Yonemoto, Junzo; Sone, Hideko

    2011-10-10

    Environmental chemicals with estrogenic activity, known as xenoestrogens, may cause impaired reproductive development and endocrine-related cancers in humans by disrupting endocrine functions. Aryl-hydrocarbon receptor nuclear translocator 2 (ARNT2) is believed to play important roles in a variety of physiological processes, including estrogen signaling pathways, that may be involved in the pathogenesis and therapeutic responses of endocrine-related cancers. However, much of the underlying mechanism remains unknown. In this study, we investigated whether ARNT2 expression is regulated by a range of representative xenoestrogens in human cancer cell lines. Bisphenol A (BPA), benzyl butyl phthalate (BBP), and 1,1,1-trichloro-2,2-bis(2-chlorophenyl-4-chlorophenyl)ethane (o,p'-DDT) were found to be estrogenic toward BG1Luc4E2 cells by an E-CALUX bioassay. ARNT2 expression was downregulated by BPA, BBP, and o,p'-DDT in a dose-dependent manner in estrogen receptor 1 (ESR1)-positive MCF-7 and BG1Luc4E2 cells, but not in estrogen receptor-negative LNCaP cells. The reduction in ARNT2 expression in cells treated with the xenoestrogens was fully recovered by the addition of a specific ESR1 antagonist, MPP. In conclusion, we have shown for the first time that ARNT2 expression is modulated by xenoestrogens by an ESR1-dependent mechanism in MCF-7 breast cancer cells. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice.

    Science.gov (United States)

    Wang, Chen; Zhang, Xiong; Teng, Zhipeng; Zhang, Tong; Li, Yu

    2014-10-05

    Autophagy is a lysosomal degradation pathway, which is essential for cell survival, proliferation, differentiation and homeostasis. It is well known that beta-amyloid (Aβ) aggregation is one of key characteristics for Alzheimer's disease (AD), which triggers a complex pathological cascade, leading to neurodegeneration. Recent studies have shown that Aβ peptide is generated from amyloid β precursor protein (APP) during autophagic turnover of APP-rich organelles by autophagy. Aβ generation during normal autophagy is subsequently degraded by lysosomes. Curcumin, a nature plant extraction, has been reported to inhibit the generation and deposition of Aβ; however, the underlying mechanisms are not fully understood yet. In the present study, we reported that curcumin treatment not only attenuated cognitive impairment detected by Morris water maze test, but also inhibited the generation of Aβ investigated by immunohistochemistry in APP/PS1 double transgenic AD mice. Moreover, curcumin induced autophagy in the mice, evidenced by LC3 immunofluorescence analysis and western blot assays on LC3. Furthermore, we found that curcumin significantly decreased the expression of Phosphatidylinositol 3-Kinase (PI3K), phosphorylated Akt and rapamycin (mTOR) at protein levels, respectively. Taken together, our data suggests that curcumin inhibits Aβ generation and induces of autophagy by downregulating PI3K/Akt/mTOR signaling pathway, and further shows a neuroprotective effect. Meanwhile curcumin might be a candidate neuroprotective agent for AD patients treatment by inducing autophagy. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Down-regulation of the mitochondrial aspartate-glutamate carrier isoform 1 AGC1 inhibits proliferation and N-acetylaspartate synthesis in Neuro2A cells.

    Science.gov (United States)

    Profilo, Emanuela; Peña-Altamira, Luis Emiliano; Corricelli, Mariangela; Castegna, Alessandra; Danese, Alberto; Agrimi, Gennaro; Petralla, Sabrina; Giannuzzi, Giulia; Porcelli, Vito; Sbano, Luigi; Viscomi, Carlo; Massenzio, Francesca; Palmieri, Erika Mariana; Giorgi, Carlotta; Fiermonte, Giuseppe; Virgili, Marco; Palmieri, Luigi; Zeviani, Massimo; Pinton, Paolo; Monti, Barbara; Palmieri, Ferdinando; Lasorsa, Francesco Massimo

    2017-06-01

    The mitochondrial aspartate-glutamate carrier isoform 1 (AGC1) catalyzes a Ca 2+ -stimulated export of aspartate to the cytosol in exchange for glutamate, and is a key component of the malate-aspartate shuttle which transfers NADH reducing equivalents from the cytosol to mitochondria. By sustaining the complete glucose oxidation, AGC1 is thought to be important in providing energy for cells, in particular in the CNS and muscle where this protein is mainly expressed. Defects in the AGC1 gene cause AGC1 deficiency, an infantile encephalopathy with delayed myelination and reduced brain N-acetylaspartate (NAA) levels, the precursor of myelin synthesis in the CNS. Here, we show that undifferentiated Neuro2A cells with down-regulated AGC1 display a significant proliferation deficit associated with reduced mitochondrial respiration, and are unable to synthesize NAA properly. In the presence of high glutamine oxidation, cells with reduced AGC1 restore cell proliferation, although oxidative stress increases and NAA synthesis deficit persists. Our data suggest that the cellular energetic deficit due to AGC1 impairment is associated with inappropriate aspartate levels to support neuronal proliferation when glutamine is not used as metabolic substrate, and we propose that delayed myelination in AGC1 deficiency patients could be attributable, at least in part, to neuronal loss combined with lack of NAA synthesis occurring during the nervous system development. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Patricio; Soto, Nicolás [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Díaz, Jorge [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Center for Molecular Studies of the Cell, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Mendoza, Pablo [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Díaz, Natalia [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Center for Molecular Studies of the Cell, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Quest, Andrew F.G. [Center for Molecular Studies of the Cell, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Torres, Vicente A., E-mail: vatorres@med.uchile.cl [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago (Chile)

    2015-08-21

    The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5 is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo.

  15. Adipose genes down-regulated during experimental endotoxemia are also suppressed in obesity.

    Science.gov (United States)

    Shah, Rachana; Hinkle, Christine C; Haris, Lalarukh; Shah, Rhia; Mehta, Nehal N; Putt, Mary E; Reilly, Muredach P

    2012-11-01

    Adipose inflammation is a crucial link between obesity and its metabolic complications. Human experimental endotoxemia is a controlled model for the study of inflammatory cardiometabolic responses in vivo. We hypothesized that adipose genes down-regulated during endotoxemia would approximate changes observed with obesity-related inflammation and reveal novel candidates in cardiometabolic disease. Healthy volunteers (n = 14) underwent a 3 ng/kg endotoxin challenge; adipose biopsies were taken at 0, 4, 12, and 24 h for mRNA microarray. A priority list of highly down-regulated and biologically relevant genes was validated by RT-PCR in an independent sample of adipose from healthy subjects (n = 7) undergoing a subclinical 0.6 ng/kg endotoxemia protocol. Expression of validated genes was screened in adipose of lean and severely obese individuals (n = 11 per group), and cellular source was probed in cultured adipocytes and macrophages. Endotoxemia (3 ng/kg) suppressed expression of 353 genes (to endotoxemia revealed suppression of genes involved in cell development and differentiation. A majority of candidates were also suppressed in endogenous human obesity, suggesting a potential pathophysiological role in human obesity-related adipose inflammation.

  16. Hypoxia and Human Genome Stability: Downregulation of BRCA2 Expression in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Daniele Fanale

    2013-01-01

    Full Text Available Previously, it has been reported that hypoxia causes increased mutagenesis and alteration in DNA repair mechanisms. In 2005, an interesting study showed that hypoxia-induced decreases in BRCA1 expression and the consequent suppression of homologous recombination may lead to genetic instability. However, nothing is yet known about the involvement of BRCA2 in hypoxic conditions in breast cancer. Initially, a cell proliferation assay allowed us to hypothesize that hypoxia could negatively regulate the breast cancer cell growth in short term in vitro studies. Subsequently, we analyzed gene expression in breast cancer cell lines exposed to hypoxic condition by microarray analysis. Interestingly, genes involved in DNA damage repair pathways such as mismatch repair, nucleotide excision repair, nonhomologous end-joining and homologous recombination repair were downregulated. In particular, we focused on the BRCA2 downregulation which was confirmed at mRNA and protein level. In addition, breast cancer cells were treated with dimethyloxalylglycine (DMOG, a cell-permeable inhibitor of both proline and asparaginyl hydroxylases able to induce HIF-1α stabilization in normoxia, providing results comparable to those previously described. These findings may provide new insights into the mechanisms underlying genetic instability mediated by hypoxia and BRCA involvement in sporadic breast cancers.

  17. BANF1 is downregulated by IRF1-regulated microRNA-203 in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Langyong Mao

    Full Text Available MicroRNAs (miRNAs play important roles in various biological processes and are closely associated with the development of cancer. In fact, aberrant expression of miRNAs has been implicated in numerous cancers. In cervical cancer, miR-203 levels are decreased, although the cause of this aberrant expression remains unclear. In this study, we investigate the molecular mechanisms regulating miR-203 gene transcription. We identify the miR-203 transcription start site by 5' rapid amplification of cDNA ends and subsequently identify the miR-203 promoter region. Promoter analysis revealed that IRF1, a transcription factor, regulates miR-203 transcription by binding to the miR-203 promoter. We also demonstrate that miR-203 targets the 3' untranslated region of BANF1, thus downregulating its expression, whereas miR-203 expression is driven by IRF1. MiR-203 is involved in cell cycle regulation and overexpression of miR-203 suppresses cervical cancer cell proliferation, colony formation, migration and invasion. The inhibitory effect of miR-203 on the cancer cells is partially mediated by downregulating its target, BANF1, since knockdown of BANF1 also suppresses colony formation, migration and invasion.

  18. Phosphorylation-dependent down-regulation of apolipoprotein A5 by insulin

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Maxine; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Rommens, Corinne; Martin, Genevieve; Duran-Sandoval, Daniel; Staels, Bart; Rubin, Edward M.; Pennacchio, Len A.; Taskinen, Marja-Riitta; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2004-02-15

    The apolipoprotein A5 (APOA5) gene has been shown to be important in lowering plasma triglyceride levels. Since several studies have shown that hyperinsulinemia is associated with hypertriglyceridemia, we sought to determine whether APOA5 gene is regulated by insulin. We show here that cell and mouse treatments with insulin down-regulated APOA5 expression in a dose-dependent manner. Furthermore, we determined that insulin decreases APOA5 promoter activity and subsequent deletion analyses revealed an E-box-containing fragment. We showed that Upstream Stimulatory Factors, USF1/USF2, bind to the identified E-box in the APOA5 promoter. Moreover, in cotransfection studies, USF1 stimulates APOA5 promoter activity. The treatment with insulin reduces the binding of USF1/USF2 to APOA5 promoter. The inhibition of PI3K pathway with wortmannin abolished the insulin s effect on APOA5 gene transcription. Using oligoprecipitation method of USF from nuclear extracts, we demonstrated that phosphorylated USF1 failed to bind to APOA5 promoter. This indicates that the APOA5 gene transrepression by insulin involves a phosphorylation of USF through PI3K, that modulate their binding to APOA5 promoter and results in APOA5 down-regulation. The effect of exogenous hyperinsulinemia in healthy men shows a decrease of the plasma ApoAV level. These data suggest a potential mechanism involving APOA5 gene in hypertriglyceridemia associated with hyperinsulinemia.

  19. Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation

    International Nuclear Information System (INIS)

    Silva, Patricio; Soto, Nicolás; Díaz, Jorge; Mendoza, Pablo; Díaz, Natalia; Quest, Andrew F.G.; Torres, Vicente A.

    2015-01-01

    The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5 is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo

  20. High-fat diet-induced downregulation of anorexic leukemia inhibitory factor in the brain stem.

    Science.gov (United States)

    Licursi, Maria; Alberto, Christian O; Dias, Alex; Hirasawa, Kensuke; Hirasawa, Michiru

    2016-11-01

    High-fat diet (HFD) is known to induce low-grade hypothalamic inflammation. Whether inflammation occurs in other brain areas remains unknown. This study tested the effect of short-term HFD on cytokine gene expression and identified leukemia inhibitory factor (LIF) as a responsive cytokine in the brain stem. Thus, functional and cellular effects of LIF in the brain stem were investigated. Male rats were fed chow or HFD for 3 days, and then gene expression was analyzed in different brain regions for IL-1β, IL-6, TNF-α, and LIF. The effect of intracerebroventricular injection of LIF on chow intake and body weight was also tested. Patch clamp recording was performed in the nucleus tractus solitarius (NTS). HFD increased pontine TNF-α mRNA while downregulating LIF in all major parts of the brain stem, but not in the hypothalamus or hippocampus. LIF injection into the cerebral aqueduct suppressed food intake without conditioned taste aversion, suggesting that LIF can induce anorexia via lower brain regions without causing malaise. In the NTS, a key brain stem nucleus for food intake regulation, LIF induced acute changes in neuronal excitability. HFD-induced downregulation of anorexic LIF in the brain stem may provide a permissive condition for HFD overconsumption. This may be at least partially mediated by the NTS. © 2016 The Obesity Society.

  1. Downregulation of miR-125b in metastatic cutaneous malignant melanoma.

    Science.gov (United States)

    Glud, Martin; Rossing, Maria; Hother, Christoffer; Holst, Line; Hastrup, Nina; Nielsen, Finn C; Gniadecki, Robert; Drzewiecki, Krzysztof T

    2010-12-01

    This study aimed to identify microRNA species involved in the earliest metastatic event in cutaneous malignant melanoma (MM). Samples from 28 patients with MM [stage T2 (tumor), M0 (distant metastasis)] were grouped by the presence of micrometastasis in the sentinel lymph nodes (N0/N1). Melanoma cells were harvested from primary, cutaneous MM tumors by laser-capture microdissection, and microRNA expression profiles were obtained by the microarray technique. Results were validated by quantitative reverse transcription PCR. We found that miR-125b was downregulated in the primary cutaneous melanomas that produced early metastases (T2, N1, M0) compared with the sentinel lymph node-negative (T2, N0, M0) melanomas. MiR-125b has earlier been found to be downregulated in other tumor types and in atypic naevi compared with the common acquired naevi. In conclusion, miR-125b may be involved in an early progression of cutaneous MM.

  2. Decreased Sp1 Expression Mediates Downregulation of SHIP2 in Gastric Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yan Ye

    2017-01-01

    Full Text Available Past studies have shown that the Src homology 2-containing inositol 5-phosphatase 2 (SHIP2 is commonly downregulated in gastric cancer, which contributes to elevated activation of PI3K/Akt signaling, proliferation and tumorigenesis of gastric cancer cells. However, the mechanisms underlying the reduced expression of SHIP2 in gastric cancer remain unclear. While gene copy number variation analysis and exon sequencing indicated the absence of genomic alterations of SHIP2, bisulfite genomic sequencing (BGS showed promoter hypomethylation of SHIP2 in gastric cancer cells. Analysis of transcriptional activity of SHIP2 promoter revealed Specificity protein 1 (Sp1 was responsible for the regulation of SHIP2 expression in gastric cancer cells. Furthermore, Sp1 expression, but not Sp3, was frequently downregulated in gastric cancer compared with normal gastric mucosa, which was associated with a paralleled reduction in SHIP2 levels in gastric cancer. Moreover, overexpression of Sp1 inhibited cell proliferation, induced apoptosis, suppressed cell motility and invasion in gastric cancer cells in vitro, which was, at least in part, due to transcriptional activation of SHIP2 mediated by Sp1, thereby inactivating Akt. Collectively, these results indicate that decreased expression of transcription factor Sp1 contributes to suppression of SHIP2 in gastric cancer cells.

  3. Downregulation of the endogenous opioid peptides in the dorsal striatum of human alcoholics

    Directory of Open Access Journals (Sweden)

    Daniil eSarkisyan

    2015-05-01

    Full Text Available The endogenous opioid peptides dynorphins and enkephalins may be involved in brain-area specific synaptic adaptations relevant for different stages of an addiction cycle. We compared the levels of prodynorphin (PDYN and proenkephalin (PENK mRNAs (by qRT-PCR, and dynorphins and enkephalins (by radioimmunoassay in the caudate nucleus and putamen between alcoholics and control subjects. We also evaluated whether PDYN promoter variant rs1997794 associated with alcoholism affects PDYN expression. Postmortem specimens obtained from 24 alcoholics and 26 controls were included in final statistical analysis. PDYN mRNA and Met-enkephalin-Arg-Phe, a marker of PENK were downregulated in the caudate of alcoholics, while PDYN mRNA and Leu-enkephalin-Arg, a marker of PDYN were decreased in the putamen of alcoholics carrying high risk rs1997794 C allele. Downregulation of opioid peptides in the dorsal striatum may contribute to development of alcoholism including changes in goal directed behavior and formation of a compulsive habit in alcoholics.

  4. Androgen Depletion Induces Senescence in Prostate Cancer Cells through Down-regulation of Skp2

    Directory of Open Access Journals (Sweden)

    Zuzana Pernicová

    2011-06-01

    Full Text Available Although the induction of senescence in cancer cells is a potent mechanism of tumor suppression, senescent cells remain metabolically active and may secrete a broad spectrum of factors that promote tumorigenicity in neighboring malignant cells. Here we show that androgen deprivation therapy (ADT, a widely used treatment for advanced prostate cancer, induces a senescence-associated secretory phenotype in prostate cancer epithelial cells, indicated by increases in senescence-associated β-galactosidase activity, heterochromatin protein 1β foci, and expression of cathepsin B and insulin-like growth factor binding protein 3. Interestingly, ADT also induced high levels of vimentin expression in prostate cancer cell lines in vitro and in human prostate tumors in vivo. The induction of the senescence-associated secretory phenotype by androgen depletion was mediated, at least in part, by down-regulation of S-phase kinase-associated protein 2, whereas the neuroendocrine differentiation of prostate cancer cells was under separate control. These data demonstrate a previously unrecognized link between inhibition of androgen receptor signaling, down-regulation of S-phase kinase-associated protein 2, and the appearance of secretory, tumor-promoting senescent cells in prostate tumors. We propose that ADT may contribute to the development of androgen-independent prostate cancer through modulation of the tissue microenvironment by senescent cells.

  5. NOD2 Suppresses Colorectal Tumorigenesis via Downregulation of the TLR Pathways

    Directory of Open Access Journals (Sweden)

    S.M. Nashir Udden

    2017-06-01

    Full Text Available Although NOD2 is the major inflammatory bowel disease susceptibility gene, its role in colorectal tumorigenesis is poorly defined. Here, we show that Nod2-deficient mice are highly susceptible to experimental colorectal tumorigenesis independent of gut microbial dysbiosis. Interestingly, the expression of inflammatory genes and the activation of inflammatory pathways, including NF-κB, ERK, and STAT3 are significantly higher in Nod2−/− mouse colons during colitis and colorectal tumorigenesis, but not at homeostasis. Consistent with higher inflammation, there is greater proliferation of epithelial cells in hyperplastic regions of Nod2−/− colons. In vitro studies demonstrate that, while NOD2 activates the NF-κB and MAPK pathways in response to MDP, it inhibits TLR-mediated activation of NF-κB and MAPK. Notably, NOD2-mediated downregulation of NF-κB and MAPK is associated with the induction of IRF4. Taken together, NOD2 plays a critical role in the suppression of inflammation and tumorigenesis in the colon via downregulation of the TLR signaling pathways.

  6. Suppression of Antitumor Immune Responses by Human Papillomavirus through Epigenetic Downregulation of CXCL14

    Directory of Open Access Journals (Sweden)

    Louis Cicchini

    2016-05-01

    Full Text Available High-risk human papillomaviruses (HPVs are causally associated with multiple human cancers. Previous studies have shown that the HPV oncoprotein E7 induces immune suppression; however, the underlying mechanisms remain unknown. To understand the mechanisms by which HPV deregulates host immune responses in the tumor microenvironment, we analyzed gene expression changes of all known chemokines and their receptors using our global gene expression data sets from human HPV-positive and -negative head/neck cancer and cervical tissue specimens in different disease stages. We report that, while many proinflammatory chemokines increase expression throughout cancer progression, CXCL14 is dramatically downregulated in HPV-positive cancers. HPV suppression of CXCL14 is dependent on E7 and associated with DNA hypermethylation in the CXCL14 promoter. Using in vivo mouse models, we revealed that restoration of Cxcl14 expression in HPV-positive mouse oropharyngeal carcinoma cells clears tumors in immunocompetent syngeneic mice, but not in Rag1-deficient mice. Further, Cxcl14 reexpression significantly increases natural killer (NK, CD4+ T, and CD8+ T cell infiltration into the tumor-draining lymph nodes in vivo. In vitro transwell migration assays show that Cxcl14 reexpression induces chemotaxis of NK, CD4+ T, and CD8+ T cells. These results suggest that CXCL14 downregulation by HPV plays an important role in suppression of antitumor immune responses. Our findings provide a new mechanistic understanding of virus-induced immune evasion that contributes to cancer progression.

  7. AMPK Re-Activation Suppresses Hepatic Steatosis but its Downregulation Does Not Promote Fatty Liver Development

    Directory of Open Access Journals (Sweden)

    Nadia Boudaba

    2018-02-01

    Full Text Available Nonalcoholic fatty liver disease is a highly prevalent component of disorders associated with disrupted energy homeostasis. Although dysregulation of the energy sensor AMP-activated protein kinase (AMPK is viewed as a pathogenic factor in the development of fatty liver its role has not been directly demonstrated. Unexpectedly, we show here that liver-specific AMPK KO mice display normal hepatic lipid homeostasis and are not prone to fatty liver development, indicating that the decreases in AMPK activity associated with hepatic steatosis may be a consequence, rather than a cause, of changes in hepatic metabolism. In contrast, we found that pharmacological re-activation of downregulated AMPK in fatty liver is sufficient to normalize hepatic lipid content. Mechanistically, AMPK activation reduces hepatic triglyceride content both by inhibiting lipid synthesis and by stimulating fatty acid oxidation in an LKB1-dependent manner, through a transcription-independent mechanism. Furthermore, the effect of the antidiabetic drug metformin on lipogenesis inhibition and fatty acid oxidation stimulation was enhanced by combination treatment with small-molecule AMPK activators in primary hepatocytes from mice and humans. Overall, these results demonstrate that AMPK downregulation is not a triggering factor in fatty liver development but in contrast, establish the therapeutic impact of pharmacological AMPK re-activation in the treatment of fatty liver disease.

  8. Magnetic fluid hyperthermia inhibits the growth of breast carcinoma and downregulates vascular endothelial growth factor expression

    Science.gov (United States)

    WANG, GUIHUA; XU, DERONG; CHAI, QIN; TAN, XIAOLANG; ZHANG, YU; GU, NING; TANG, JINTIAN

    2014-01-01

    The application of magnetic fluid hyperthermia (MFH) with nanoparticles has been shown to inhibit tumor growth in several animal models. However, the feasibility of using MFH in vivo to treat breast cancer is uncertain, and the mechanism is unclear. In the present study, it was observed that the intratumoral administration of MFH induced hyperthermia significantly in rats with Walker-265 breast carcinomas. The hyperthermia treatment with magnetic nanoparticles inhibited tumor growth in vivo and promoted the survival of the tumor-bearing rats. Furthermore, it was found that MFH treatment downregulated the protein expression of vascular endothelial growth factor (VEGF) in the tumor tissue, as observed by immunohistochemistry. MFH treatment also decreased the gene expression of VEGF and its receptors, VEGF receptor 1 and 2, and inhibited angiogenesis in the tumor tissues. Taken together, these results indicate that the application of MFH with nanoparticles is feasible for the treatment of breast carcinoma. The MFH-induced downregulation of angiogenesis may also contribute to the induction of an anti-tumor effect. PMID:24765139

  9. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    International Nuclear Information System (INIS)

    Wang Zuguang; Chen Hong

    2009-01-01

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear β-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  10. Constitutive overexpressed type I interferon induced downregulation of antiviral activity in medaka fish (Oryzias latipes).

    Science.gov (United States)

    Maekawa, Shun; Aoki, Takashi; Wang, Han-Ching

    2017-03-01

    In fish, as well as vertebrates, type I interferons (IFNs) are important cytokines that help to provide innate, antiviral immunity. Although low amounts of IFN are constitutively secreted under normal physiological conditions, long-term and excessive IFN stimulation leads to reduced sensitivity to the IFN signal. This provides a negative feedback mechanism that prevents inappropriate responses and autoimmunity. At present, however, neither IFN desensitization nor the normal physiological role of constitutive IFN are well characterized in fish. The objective here was therefore to produce and characterize a transgenic medaka fish (Oryzias latipes), designated IFNd-Tg, that constitutively overexpressed the IFNd gene. A dual promoter expression vector was constructed for overexpression of IFNd under an EF1α promoter and a DsRed reporter gene under control of a γF-crystaline promoter. The phenotype of the IFNd-Tg fish had a lower response to poly(I:C) and increased susceptibility to nervous necrosis virus (NNV) infection compared to wild-type (WT). Furthermore, transduction of IFN signals for STAT1b, STAT2 and IRF9 were down-regulated in the IFNd-Tg fish, and expression levels of RLR signal molecules (MDA5, MITA, IRF1 and IRF3) were lower than in WT. The constitutive overexpression of IFNd resulted in desensitization of IFN-stimulation, apparently due to downregulation of IFN signal transduction, and this caused increased susceptibility to NNV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Developmental downregulation of LIS1 expression limits axonal extension and allows axon pruning

    Directory of Open Access Journals (Sweden)

    Kanako Kumamoto

    2017-07-01

    Full Text Available The robust axonal growth and regenerative capacities of young neurons decrease substantially with age. This developmental downregulation of axonal growth may facilitate axonal pruning and neural circuit formation but limits functional recovery following nerve damage. While external factors influencing axonal growth have been extensively investigated, relatively little is known about the intrinsic molecular changes underlying the age-dependent reduction in regeneration capacity. We report that developmental downregulation of LIS1 is responsible for the decreased axonal extension capacity of mature dorsal root ganglion (DRG neurons. In contrast, exogenous LIS1 expression or endogenous LIS1 augmentation by calpain inhibition restored axonal extension capacity in mature DRG neurons and facilitated regeneration of the damaged sciatic nerve. The insulator protein CTCF suppressed LIS1 expression in mature DRG neurons, and this reduction resulted in excessive accumulation of phosphoactivated GSK-3β at the axon tip, causing failure of the axonal extension. Conversely, sustained LIS1 expression inhibited developmental axon pruning in the mammillary body. Thus, LIS1 regulation may coordinate the balance between axonal growth and pruning during maturation of neuronal circuits.

  12. Transformation of Astrocytes to a Neuroprotective Phenotype by Microglia via P2Y1 Receptor Downregulation

    Directory of Open Access Journals (Sweden)

    Youichi Shinozaki

    2017-05-01

    Full Text Available Microglia and astrocytes become reactive following traumatic brain injury (TBI. However, the coordination of this reactivity and its relation to pathophysiology are unclear. Here, we show that microglia transform astrocytes into a neuroprotective phenotype via downregulation of the P2Y1 purinergic receptor. TBI initially caused microglial activation in the injury core, followed by reactive astrogliosis in the peri-injured region and formation of a neuroprotective astrocyte scar. Equivalent changes to astrocytes were observed in vitro after injury. This change in astrocyte phenotype resulted from P2Y1 receptor downregulation, mediated by microglia-derived cytokines. In mice, astrocyte-specific P2Y1 receptor overexpression (Astro-P2Y1OE counteracted scar formation, while astrocyte-specific P2Y1 receptor knockdown (Astro-P2Y1KD facilitated scar formation, suggesting critical roles of P2Y1 receptors in the transformation. Astro-P2Y1OE and Astro-P2Y1KD mice showed increased and reduced neuronal damage, respectively. Altogether, our findings indicate that microglia-astrocyte interaction, involving a purinergic signal, is essential for the formation of neuroprotective astrocytes.

  13. Protamine sulfate down-regulates thrombin generation by inhibiting factor V activation.

    LENUS (Irish Health Repository)

    Ni Ainle, Fionnuala

    2009-08-20

    Protamine sulfate is a positively charged polypeptide widely used to reverse heparin-induced anticoagulation. Paradoxically, prospective randomized trials have shown that protamine administration for heparin neutralization is associated with increased bleeding, particularly after cardiothoracic surgery with cardiopulmonary bypass. The molecular mechanism(s) through which protamine mediates this anticoagulant effect has not been defined. In vivo administration of pharmacologic doses of protamine to BALB\\/c mice significantly reduced plasma thrombin generation and prolonged tail-bleeding time (from 120 to 199 seconds). Similarly, in pooled normal human plasma, protamine caused significant dose-dependent prolongations of both prothrombin time and activated partial thromboplastin time. Protamine also markedly attenuated tissue factor-initiated thrombin generation in human plasma, causing a significant decrease in endogenous thrombin potential (41% +\\/- 7%). As expected, low-dose protamine effectively reversed the anticoagulant activity of unfractionated heparin in plasma. However, elevated protamine concentrations were associated with progressive dose-dependent reduction in thrombin generation. To assess the mechanism by which protamine mediates down-regulation of thrombin generation, the effect of protamine on factor V activation was assessed. Protamine was found to significantly reduce the rate of factor V activation by both thrombin and factor Xa. Protamine mediates its anticoagulant activity in plasma by down-regulation of thrombin generation via a novel mechanism, specifically inhibition of factor V activation.

  14. Targeted downregulation of platelet CLEC-2 occurs through Syk-independent internalization

    Science.gov (United States)

    Lorenz, Viola; Stegner, David; Stritt, Simon; Vögtle, Timo; Kiefer, Friedemann; Witke, Walter; Schymeinsky, Jürgen; Watson, Steve P.; Walzog, Barbara

    2015-01-01

    Platelet aggregation at sites of vascular injury is not only essential for hemostasis, but may also cause acute ischemic disease states such as myocardial infarction or stroke. The hemi-immunoreceptor tyrosine-based activation motif–containing C-type lectinlike receptor 2 (CLEC-2) mediates powerful platelet activation through a Src- and spleen tyrosine kinase (Syk)–dependent tyrosine phosphorylation cascade. Thereby, CLEC-2 not only contributes to thrombus formation and stabilization but also plays a central role in blood-lymphatic vessel development, tumor metastasis, and prevention of inflammatory bleeding, making it a potential pharmacologic target to modulate these processes. We have previously shown that injection of the anti–CLEC-2 antibody, INU1, results in virtually complete immunodepletion of platelet CLEC-2 in mice, which is, however, preceded by a severe transient thrombocytopenia thereby limiting its potential therapeutic use. The mechanisms underlying this targeted CLEC-2 downregulation have remained elusive. Here, we show that INU1-induced CLEC-2 immunodepletion occurs through Src-family kinase–dependent receptor internalization in vitro and in vivo, presumably followed by intracellular degradation. In mice with platelet-specific Syk deficiency, INU1-induced CLEC-2 internalization/degradation was fully preserved whereas the associated thrombocytopenia was largely prevented. These results show for the first time that CLEC-2 can be downregulated from the platelet surface through internalization in vitro and in vivo and that this can be mechanistically uncoupled from the associated antibody-induced thrombocytopenia. PMID:25795918

  15. Melittin inhibits the invasion of MCF-7 cells by downregulating CD147 and MMP-9 expression.

    Science.gov (United States)

    Wang, Jianjun; Li, Fengyu; Tan, Jiang; Peng, Xuewei; Sun, Lili; Wang, Ping; Jia, Shengnan; Yu, Qingmiao; Huo, Hongliang; Zhao, Hongyan

    2017-02-01

    Tumor invasion and metastasis are the critical steps in determining the aggressive phenotype of human cancers. Melittin, a major component of bee venom, has been reported to induce apoptosis in several cancer cells. However, the mechanisms of melittin involvement in cancer invasion and metastasis remain unclear. Our previous study indicated that melittin inhibits cyclophilin A (CypA), a ubiquitously distributed peptidylprolyl cis-trans isomerase, in macrophage cells. In the present study, the Transwell assay results showed that melittin may downregulate the invasion level of MCF-7 cells in a dose-dependent manner. Additionally, it was also found, using flow cytometry and reverse transcription-polymerase chain reaction, that melittin decreased the expression of cluster of differentiation (CD)147 and matrix metallopeptidase-9 (MMP-9), whereas CypA upregulated the expression of CD147 and MMP-9. Overall, the present study indicated that melittin decreased the invasion level of MCF-7 cells by downregulating CD147 and MMP-9 by inhibiting CypA expression. The results of the present study provide an evidence for melittin in anticancer therapy and mechanisms.

  16. Downregulation of CXCR4 in Metastasized Breast Cancer Cells and Implication in Their Dormancy

    Science.gov (United States)

    Nobutani, Kentaro; Shimono, Yohei; Mizutani, Kiyohito; Ueda, Yuki; Suzuki, Toshihiro; Kitayama, Midori; Minami, Akihiro; Momose, Kenji; Miyawaki, Kohta; Akashi, Koichi; Azuma, Takeshi; Takai, Yoshimi

    2015-01-01

    Our understanding of the mechanism of cancer dormancy is emerging, but the underlying mechanisms are not fully understood. Here we analyzed mouse xenograft tumors derived from human breast cancer tissue and the human breast cancer cell line MDA-MB-231 to identify the molecules associated with cancer dormancy. In immunohistological examination using the proliferation marker Ki-67, the tumors included both proliferating and dormant cancer cells, but the number of dormant cells was remarkably increased when they metastasized to the lung. In the gene expression analysis of the orthotopic cancer cells by a single-cell multiplex real-time quantitative reverse transcription PCR followed by flow cytometric analysis, restrained cellular proliferation was associated with downregulation of the chemokine receptor CXCR4. In the immunohistological and flow cytometric analyses, the expression level of CXCR4 in the metastasized cancer cells was decreased compared with that in the cancer cells in orthotopic tumors, although the expression level of the CXCR4 ligand CXCL12 was not reduced in the lung. In addition, the proliferation of the metastasized cancer cells was further decreased by the CXCR4 antagonist administration. In the ex vivo culture of the metastasized cancer cells, the expression level of CXCR4 was increased, and in the xenotransplantation of ex vivo cultured cancer cells, the expression level of CXCR4 was again decreased in the metastasized cancer cells in the lung. These findings indicate that CXCR4 is downregulated in metastasized breast cancer cells and implicated in their dormancy. PMID:26083776

  17. Tolerization with BLP down-regulates HMGB1 a critical mediator of sepsis-related lethality.

    LENUS (Irish Health Repository)

    Coffey, J Calvin

    2012-02-03

    Tolerization with bacterial lipoprotein (BLP) affords a significant survival benefit in sepsis. Given that high mobility group box protein-1 (HMGB1) is a recognized mediator of sepsis-related lethality, we determined if tolerization with BLP leads to alterations in HMGB1. In vitro, BLP tolerization led to a reduction in HMGB1 gene transcription. This was mirrored at the protein level, as HMGB1 protein expression and release were reduced significantly in BLP-tolerized human THP-1 monocytic cells. BLP tolerance in vivo led to a highly significant, long-term survival benefit following challenge with lethal dose BLP in C57BL\\/6 mice. This was associated with an attenuation of HMGB1 release into the circulation, as evidenced by negligible serum HMGB1 levels in BLP-tolerized mice. Moreover, HMGB1 levels in peritoneal macrophages from BLP-tolerized mice were reduced significantly. Hence, tolerization with BLP leads to a down-regulation of HMGB1 protein synthesis and release. The improved survival associated with BLP tolerance could thus be explained by a reduction in HMGB1, were the latter associated with lethality in BLP-related sepsis. In testing this hypothesis, it was noted that neutralization of HMGB1, using anti-HMGB1 antibodies, abrogated BLP-associated lethality almost completely. To conclude, tolerization with BLP leads to a down-regulation of HMGB1, thus offering a novel means of targeting the latter. HMGB1 is also a mediator of lethality in BLP-related sepsis.

  18. HSP60, a protein downregulated by IGFBP7 in colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    Lin Jie

    2010-04-01

    Full Text Available Abstract Background In our previous study, it was well defined that IGFBP7 was an important tumor suppressor gene in colorectal cancer (CRC. We aimed to uncover the downstream molecules responsible for IGFBP7's behaviour in this study. Methods Differentially expressed protein profiles between PcDNA3.1(IGFBP7-transfected RKO cells and the empty vector transfected controls were generated by two-dimensional gel electrophoresis (2-DE and mass spectrometry (MS identification. The selected differentially expressed protein induced by IGFBP7 was confirmed by western blot and ELISA. The biological behaviour of the protein was explored by cell growth assay and colony formation assay. Results Six unique proteins were found differentially expressed in PcDNA3.1(IGFBP7-transfected RKO cells, including albumin (ALB, 60 kDa heat shock protein(HSP60, Actin cytoplasmic 1 or 2, pyruvate kinase muscle 2(PKM2, beta subunit of phenylalanyl-tRNA synthetase(FARSB and hypothetical protein. The downregulation of HSP60 by IGFBP7 was confirmed by western blot and ELISA. Recombinant human HSP60 protein could increase the proliferation rate and the colony formation ability of PcDNA3.1(IGFBP7-RKO cells. Conclusion HSP60 was an important downstream molecule of IGFBP7. The downregulation of HSP60 induced by IGFBP7 may be, at least in part, responsible for IGFBP7's tumor suppressive biological behaviour in CRC.

  19. Ezrin dephosphorylation/downregulation contributes to ursolic acid-mediated cell death in human leukemia cells

    International Nuclear Information System (INIS)

    Li, G; Zhou, T; Liu, L; Chen, J; Zhao, Z; Peng, Y; Li, P; Gao, N

    2013-01-01

    Ezrin links the actin filaments with the cell membrane and has a functional role in the apoptotic process. It appears clear that ezrin is directly associated with Fas, leading to activation of caspase cascade and cell death. However, the exact role of ezrin in ursolic acid (UA)-induced apoptosis remains unclear. In this study, we show for the first time that UA induces apoptosis in both transformed and primary leukemia cells through dephosphorylation/downregulation of ezrin, association and polarized colocalization of Fas and ezrin, as well as formation of death-inducing signaling complex. These events are dependent on Rho-ROCK1 signaling pathway. Knockdown of ezrin enhanced cell death mediated by UA, whereas overexpression of ezrin attenuated UA-induced apoptosis. Our in vivo study also showed that UA-mediated inhibition of tumor growth of mouse leukemia xenograft model is in association with the dephosphorylation/downregulation of ezrin. Such findings suggest that the cytoskeletal protein ezrin may represent an attractive target for UA-mediated lethality in human leukemia cells

  20. Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells

    International Nuclear Information System (INIS)

    Dai, Jin; Van Wie, Peter G.; Fai, Leonard Yenwong; Kim, Donghern; Wang, Lei; Poyil, Pratheeshkumar; Luo, Jia; Zhang, Zhuo

    2016-01-01

    Apigenin is a natural flavonoid which possesses multiple anti-cancer properties such as anti-proliferation, anti-inflammation, and anti-metastasis in many types of cancers including colorectal cancer. Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a multi-domain scaffolding protein of the Cas family which has been shown to correlate with cancer metastasis and progression. The present study investigates the role of NEDD9 in apigenin-inhibited cell migration, invasion, and metastasis of colorectal adenocarcinoma DLD1 and SW480 cells. The results show that knockdown of NEDD9 inhibited cell migration, invasion, and metastasis and that overexpression of NEDD9 promoted cell migration and invasion of DLD1 cells and SW4890 cells. Apigenin treatment attenuated NEDD9 expression at protein level, resulting in reduced phosphorylations of FAK, Src, and Akt, leading to inhibition on cell migration, invasion, and metastasis of both DLD1 and SW480 cells. The present study has demonstrated that apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt cascade in colorectal cancer cells. NEDD9 may function as a biomarker for evaluation of cancer aggressiveness and for selection of therapeutic drugs against cancer progression. - Highlights: • Apigenin inhibits migration, invasion, and metastasis of colorectal cancer cells. • Apigenin downregulates NEDD9. • Apigenin decreases phosphorylations of FAK, Src, and Akt. • Apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt.

  1. Antihelminth compound niclosamide downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations.

    Science.gov (United States)

    Osada, Takuya; Chen, Minyong; Yang, Xiao Yi; Spasojevic, Ivan; Vandeusen, Jeffrey B; Hsu, David; Clary, Bryan M; Clay, Timothy M; Chen, Wei; Morse, Michael A; Lyerly, H Kim

    2011-06-15

    Wnt/β-catenin pathway activation caused by adenomatous polyposis coli (APC) mutations occurs in approximately 80% of sporadic colorectal cancers (CRC). The antihelminth compound niclosamide downregulates components of the Wnt pathway, specifically Dishevelled-2 (Dvl2) expression, resulting in diminished downstream β-catenin signaling. In this study, we determined whether niclosamide could inhibit the Wnt/β-catenin pathway in human CRCs and whether its inhibition might elicit antitumor effects in the presence of APC mutations. We found that niclosamide inhibited Wnt/β-catenin pathway activation, downregulated Dvl2, decreased downstream β-catenin signaling, and exerted antiproliferative effects in human colon cancer cell lines and CRC cells isolated by surgical resection of metastatic disease, regardless of mutations in APC. In contrast, inhibition of NF-κB or mTOR did not exert similar antiproliferative effects in these CRC model systems. In mice implanted with human CRC xenografts, orally administered niclosamide was well tolerated, achieved plasma and tumor levels associated with biologic activity, and led to tumor control. Our findings support clinical explorations to reposition niclosamide for the treatment of CRC.

  2. Significant Down-Regulation of “Biological Adhesion” Genes in Porcine Oocytes after IVM

    Directory of Open Access Journals (Sweden)

    Joanna Budna

    2017-12-01

    Full Text Available Proper maturation of the mammalian oocyte is a compound processes determining successful monospermic fertilization, however the number of fully mature porcine oocytes is still unsatisfactory. Since oocytes’ maturation and fertilization involve cellular adhesion and membranous contact, the aim was to investigate cell adhesion ontology group in porcine oocytes. The oocytes were collected from ovaries of 45 pubertal crossbred Landrace gilts and subjected to two BCB tests. After the first test, only granulosa cell-free BCB+ oocytes were directly exposed to microarray assays and RT-qPCR (“before IVM” group, or first in vitro matured and then if classified as BCB+ passed to molecular analyses (“after IVM” group. As a result, we have discovered substantial down-regulation of genes involved in adhesion processes, such as: organization of actin cytoskeleton, migration, proliferation, differentiation, apoptosis, survival or angiogenesis in porcine oocytes after IVM, compared to oocytes analyzed before IVM. In conclusion, we found that biological adhesion may be recognized as the process involved in porcine oocytes’ successful IVM. Down-regulation of genes included in this ontology group in immature oocytes after IVM points to their unique function in oocyte’s achievement of fully mature stages. Thus, results indicated new molecular markers involved in porcine oocyte IVM, displaying essential roles in biological adhesion processes.

  3. Transformation of Astrocytes to a Neuroprotective Phenotype by Microglia via P2Y1Receptor Downregulation.

    Science.gov (United States)

    Shinozaki, Youichi; Shibata, Keisuke; Yoshida, Keitaro; Shigetomi, Eiji; Gachet, Christian; Ikenaka, Kazuhiro; Tanaka, Kenji F; Koizumi, Schuichi

    2017-05-09

    Microglia and astrocytes become reactive following traumatic brain injury (TBI). However, the coordination of this reactivity and its relation to pathophysiology are unclear. Here, we show that microglia transform astrocytes into a neuroprotective phenotype via downregulation of the P2Y 1 purinergic receptor. TBI initially caused microglial activation in the injury core, followed by reactive astrogliosis in the peri-injured region and formation of a neuroprotective astrocyte scar. Equivalent changes to astrocytes were observed in vitro after injury. This change in astrocyte phenotype resulted from P2Y 1 receptor downregulation, mediated by microglia-derived cytokines. In mice, astrocyte-specific P2Y 1 receptor overexpression (Astro-P2Y 1 OE) counteracted scar formation, while astrocyte-specific P2Y 1 receptor knockdown (Astro-P2Y 1 KD) facilitated scar formation, suggesting critical roles of P2Y 1 receptors in the transformation. Astro-P2Y 1 OE and Astro-P2Y 1 KD mice showed increased and reduced neuronal damage, respectively. Altogether, our findings indicate that microglia-astrocyte interaction, involving a purinergic signal, is essential for the formation of neuroprotective astrocytes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Hypoxia-Independent Downregulation of Hypoxia-Inducible Factor 1 Targets by Androgen Deprivation Therapy in Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ragnum, Harald Bull [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Røe, Kathrine [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Division of Medicine, Department of Oncology, Akershus University Hospital, Lørenskog (Norway); Holm, Ruth; Vlatkovic, Ljiljana [Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Nesland, Jahn Marthin [Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Medical Faculty, University of Oslo, Oslo (Norway); Aarnes, Eva-Katrine [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Ree, Anne Hansen [Division of Medicine, Department of Oncology, Akershus University Hospital, Lørenskog (Norway); Medical Faculty, University of Oslo, Oslo (Norway); Flatmark, Kjersti [Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Department of Gastrointestinal Surgery, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Seierstad, Therese [Department of Radiology and Nuclear Medicine, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Faculty of Health Sciences, Buskerud University College, Drammen (Norway); Lilleby, Wolfgang [Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Lyng, Heidi, E-mail: heidi.lyng@rr-research.no [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway)

    2013-11-15

    Purpose: We explored changes in hypoxia-inducible factor 1 (HIF1) signaling during androgen deprivation therapy (ADT) of androgen-sensitive prostate cancer xenografts under conditions in which no significant change in immunostaining of the hypoxia marker pimonidazole had occurred. Methods and Materials: Gene expression profiles of volume-matched androgen-exposed and androgen-deprived CWR22 xenografts, with similar pimonidazole-positive fractions, were compared. Direct targets of androgen receptor (AR) and HIF1 transcription factors were identified among the differentially expressed genes by using published lists. Biological processes affected by ADT were determined by gene ontology analysis. HIF1α protein expression in xenografts and biopsy samples from 35 patients receiving neoadjuvant ADT was assessed by immunohistochemistry. Results: A total of 1344 genes showed more than 2-fold change in expression by ADT, including 35 downregulated and 5 upregulated HIF1 targets. Six genes were shared HIF1 and AR targets, and their downregulation was confirmed with quantitative RT-PCR. Significant suppression of the biological processes proliferation, metabolism, and stress response in androgen-deprived xenografts was found, consistent with tumor regression. Nineteen downregulated HIF1 targets were involved in those significant biological processes, most of them in metabolism. Four of these were shared AR and HIF1 targets, including genes encoding the regulatory glycolytic proteins HK2, PFKFB3, and SLC2A1. Most of the downregulated HIF1 targets were induced by hypoxia in androgen-responsive prostate cancer cell lines, confirming their role as hypoxia-responsive HIF1 targets in prostate cancer. Downregulation of HIF1 targets was consistent with the absence of HIF1α protein in xenografts and downregulation in patients by ADT (P<.001). Conclusions: AR repression by ADT may lead to downregulation of HIF1 signaling independently of hypoxic fraction, and this may contribute to

  5. MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoyou [Department of Organ Transplantation, Zhujiang Hospital, Guangzhou 510282 (China); Dong, Changgui [Institute of Molecular Ecology and Evolution, East China Normal University, Shanghai 200062 (China); Jiang, Zhengyao [Department of Organ Transplantation, Zhujiang Hospital, Guangzhou 510282 (China); Wu, William K.K. [Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Chan, Matthew T.V. [Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Zhang, Jie [Department of Organ Transplantation, Zhujiang Hospital, Guangzhou 510282 (China); Li, Haibin; Qin, Ke [Guangxi Key Laboratory for Transplantation Medicine Department of Organ Transplantation in Guangzhou Military Region, Institute of Transplant Medicine, 303 Hospital of People' s Liberation Army, Nanning, Guangxi 530021 (China); Sun, Xuyong, E-mail: sunxuyong0528@163.com [Guangxi Key Laboratory for Transplantation Medicine Department of Organ Transplantation in Guangzhou Military Region, Institute of Transplant Medicine, 303 Hospital of People' s Liberation Army, Nanning, Guangxi 530021 (China)

    2015-04-10

    Kidney transplantation is the major therapeutic option for end-stage kidney diseases. However, acute rejection could cause allograft loss in some of these patients. Emerging evidence supports that microRNA (miRNA) dysregulation is implicated in acute allograft rejection. In this study, we used next-generation sequencing to profile miRNA expression in normal and acutely rejected kidney allografts. Among 75 identified dysregulated miRNAs, miR-10b was the most significantly downregulated miRNAs in rejected allografts. Transfecting miR-10b inhibitor into human renal glomerular endothelial cells recapitulated key features of acute allograft rejection, including endothelial cell apoptosis, release of pro-inflammatory cytokines (interleukin-6, tumor necrosis factor α, interferon-γ, and chemokine (C–C motif) ligand 2) and chemotaxis of macrophages whereas transfection of miR-10b mimics had opposite effects. Downregulation of miR-10b directly derepressed the expression of BCL2L11 (an apoptosis inducer) as revealed by luciferase reporter assay. Taken together, miR-10b downregulation mediates many aspects of disease pathogenicity of acute kidney allograft rejection. Restoring miR-10b expression in glomerular endothelial cells could be a novel therapeutic approach to reduce acute renal allograft loss. - Highlights: • miR-10b was the most downregulated microRNAs in acutely rejected renal allografts. • miR-10b downregulation triggered glomerular endothelial cell apoptosis. • miR-10b downregulation induced release of pro-inflammatory cytokines. • miR-10b downregulation derepressed its pro-apoptotic target BCL2L11.

  6. Hypoxia-Independent Downregulation of Hypoxia-Inducible Factor 1 Targets by Androgen Deprivation Therapy in Prostate Cancer

    International Nuclear Information System (INIS)

    Ragnum, Harald Bull; Røe, Kathrine; Holm, Ruth; Vlatkovic, Ljiljana; Nesland, Jahn Marthin; Aarnes, Eva-Katrine; Ree, Anne Hansen; Flatmark, Kjersti; Seierstad, Therese; Lilleby, Wolfgang; Lyng, Heidi

    2013-01-01

    Purpose: We explored changes in hypoxia-inducible factor 1 (HIF1) signaling during androgen deprivation therapy (ADT) of androgen-sensitive prostate cancer xenografts under conditions in which no significant change in immunostaining of the hypoxia marker pimonidazole had occurred. Methods and Materials: Gene expression profiles of volume-matched androgen-exposed and androgen-deprived CWR22 xenografts, with similar pimonidazole-positive fractions, were compared. Direct targets of androgen receptor (AR) and HIF1 transcription factors were identified among the differentially expressed genes by using published lists. Biological processes affected by ADT were determined by gene ontology analysis. HIF1α protein expression in xenografts and biopsy samples from 35 patients receiving neoadjuvant ADT was assessed by immunohistochemistry. Results: A total of 1344 genes showed more than 2-fold change in expression by ADT, including 35 downregulated and 5 upregulated HIF1 targets. Six genes were shared HIF1 and AR targets, and their downregulation was confirmed with quantitative RT-PCR. Significant suppression of the biological processes proliferation, metabolism, and stress response in androgen-deprived xenografts was found, consistent with tumor regression. Nineteen downregulated HIF1 targets were involved in those significant biological processes, most of them in metabolism. Four of these were shared AR and HIF1 targets, including genes encoding the regulatory glycolytic proteins HK2, PFKFB3, and SLC2A1. Most of the downregulated HIF1 targets were induced by hypoxia in androgen-responsive prostate cancer cell lines, confirming their role as hypoxia-responsive HIF1 targets in prostate cancer. Downregulation of HIF1 targets was consistent with the absence of HIF1α protein in xenografts and downregulation in patients by ADT (P<.001). Conclusions: AR repression by ADT may lead to downregulation of HIF1 signaling independently of hypoxic fraction, and this may contribute to

  7. Cognitive Impairment in Infratentorial Strokes

    Directory of Open Access Journals (Sweden)

    Melek Kandemir

    2009-12-01

    Full Text Available OBJECTIVE: Beginning in the mid-1980s, with anatomical, behavioral, and neuropsychological evidence, it was suggested that the role of the cerebellum extends beyond a purely motor domain. A series of articles were published reviewing the potential role of the cerebellum in cognition. Both of these functions are supported by connections of dentate nucleus and frontal cortex through the thalamus. The cognitive profile of isolated subtentorial and cerebellar infarcts is related to the involved frontal circuit (especially executive functions. In this study, we aimed to demonstrate the cognitive profile of cerebellar and subtentorial infarcts. METHODS: Nineteen patients with infratentorial infarcts and 19 neurologically healthy individuals as a control group were included in this study. Neuropsychometric test battery was employed in both of the groups. RESULTS: Age, sex, education, clinical syndrome, and localization had no effect on the cognitive test performances. Performance on the California Verbal Learning Test, a verbal memory test, was worse in the patient group. Patients had difficulties in recognizing the items of the Rey-Osterrieth Complex Figure Test, and spent significantly more time to complete the trail making test part B. The patient group also demonstrated lower performance level in the verbal fluency test when compared to the control group. CONCLUSION: The cognitive impairment pattern of the verbal and visual memory tests and impairment determined on the verbal fluency test and the trail making tests may imply frontal impairment. Our results support the knowledge that cerebellar or brainstem strokes cause mild frontal type cognitive syndrome by damaging cerebello-ponto-thalamo-cortical pathways

  8. Impaired Follistatin Secretion in Cirrhosis

    DEFF Research Database (Denmark)

    Rinnov, Anders Rasmussen; Plomgaard, Peter; Pedersen, Bente Klarlund

    2016-01-01

    compared to healthy control participants. DESIGN, SETTING, AND PARTICIPANTS: To experimentally increase the glucagon-insulin ratio (mimicking the hormonal effect of exercise), we infused glucagon/somatostatin (to inhibit insulin secretion) and compared the acute follistatin increase in eight male cirrhosis...... controls (27.6 ± 3.8 vs 34.5 ± 2.9%, respectively; P = .001). CONCLUSIONS: Patients with cirrhosis show impaired capacity to acutely secrete follistatin. The decrease in acute follistatin release may contribute to the loss of muscle mass in liver cirrhosis....

  9. Hippocampal signaling pathways are involved in stress-induced impairment of memory formation in rats.

    Science.gov (United States)

    Sardari, Maryam; Rezayof, Ameneh; Khodagholi, Fariba

    2015-11-02

    Stress is a potent modulator of hippocampal-dependent memory formation. The aim of the present study was to assess the role of hippocampal signaling pathways in stress-induced memory impairment in male Wistar rats. The animals were exposed to acute elevated platform (EP) stress and memory formation was measured by a step-through type passive avoidance task. The results indicated that post-training or pre-test exposure to EP stress impaired memory consolidation or retrieval respectively. Using western blot analysis, it was found that memory retrieval was associated with the increase in the levels of phosphorylated cAMP-responsive element binding protein (P-CREB), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and its downstream targets in the hippocampus. In contrast, the stress exposure decreased the hippocampal levels of these proteins. In addition, stress-induced impairment of memory consolidation or retrieval was associated with the decrease in the P-CREB/CREB ratio and the PGC-1α level in the hippocampus. On the other hand, the hippocampal level of nuclear factor E2-related factor 2 (Nrf2) and gamma-glutamylcysteine synthetase (γ-GCS) which are the master regulators of defense system were decreased by the stress exposure. The increased hippocampal levels of Nrf2 and it׳s downstream was observed during memory retrieval, while stress-induced impairment of memory consolidation or retrieval inhibited this hippocampal signaling pathway. Overall, these findings suggest that down-regulation of CREB/PGC-1α signaling cascade and Nrf2 antioxidant pathways in the hippocampus may be associated with memory impairment induced by stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Engagement of immune effector cells by trastuzumab induces HER2/ERBB2 downregulation in cancer cells through STAT1 activation

    Science.gov (United States)

    2014-01-01

    Introduction Trastuzumab has been widely used for the treatment of human epidermal growth factor receptor 2 (HER2) overexpressing breast cancer for more than a decade. However, reports on the involvement of HER2 downregulation in trastuzumab’s mechanism of action are inconsistent. The aim of this study is to investigate if the dependence of trastuzumab-mediated cancer cell HER2 downregulation on immune effector cells represents a novel mechanism of action for trastuzumab. Methods HER2 expression was evaluated by Western blotting, flow cytometry, and real-time polymerase chain reaction (PCR) in cell lysates from co-cultures of multiple cancer cell lines with peripheral blood mononuclear cells (PBMCs) in the presence or absence of trastuzumab. The engagement of immune cells by trastuzumab through Fc gamma receptors (FcγRs) was tested using three trastuzumab variants with compromised or no Fc (fragment crystallizable) functions and FcγRs blocking experiments. The engagement of immune cells by trastuzumab in HER2 downregulation was also evaluated in in vivo mouse xenograft tumor models. Results HER2 downregulation of cancer cells by trastuzumab occurred only when trastuzumab was actively engaged with immune cells and cancer cells, as demonstrated consistently in co-cultures of cancer cell lines with PBMCs and in vivo mouse xenograft tumor models. We further demonstrated that HER2 downregulation in cancer cells by immune-cell-engaged trastuzumab was at the transcriptional level, not through the HER2 degradation pathway. Activation of signal transducer and activator of transcription 1 (STAT1) in cancer cells by the increased interferon gamma (IFN-γ) production in immune cells played an important role in downregulating HER2 in cancer cells upon engagement of immune cells by trastuzumab. Furthermore, HER2 downregulation in cancer cells induced by trastuzumab engagement of immune cells was correlated with the antibody’s antitumor efficacy in vivo. Conclusions This

  11. Cognitive Impairment in Heart Failure

    Directory of Open Access Journals (Sweden)

    Efthimios Dardiotis

    2012-01-01

    Full Text Available Cognitive impairment (CI is increasingly recognized as a common adverse consequence of heart failure (HF. Although the exact mechanisms remain unclear, microembolism, chronic or intermittent cerebral hypoperfusion, and/or impaired cerebral vessel reactivity that lead to cerebral hypoxia and ischemic brain damage seem to underlie the development of CI in HF. Cognitive decline in HF is characterized by deficits in one or more cognition domains, including attention, memory, executive function, and psychomotor speed. These deficits may affect patients’ decision-making capacity and interfere with their ability to comply with treatment requirements, recognize and self-manage disease worsening symptoms. CI may have fluctuations in severity over time, improve with effective HF treatment or progress to dementia. CI is independently associated with disability, mortality, and decreased quality of life of HF patients. It is essential therefore for health professionals in their routine evaluations of HF patients to become familiar with assessment of cognitive performance using standardized screening instruments. Future studies should focus on elucidating the mechanisms that underlie CI in HF and establishing preventive strategies and treatment approaches.

  12. Sleep, Torpor and Memory Impairment

    Science.gov (United States)

    Palchykova, S.; Tobler, I.

    It is now well known that daily torpor induces a sleep deficit. Djungarian hamsters emerging from this hypometabolic state spend most of the time in sleep. This sleep is characterized by high initial values of EEG slow-wave activity (SWA) that monotonically decline during recovery sleep. These features resemble the changes seen in numerous species during recovery after prolonged wakefulness or sleep deprivation (SD). When hamsters are totally or partially sleep deprived immediately after emerging from torpor, an additional increase in SWA can be induced. It has been therefore postulated, that these slow- waves are homeostatically regulated, as predicted by the two-process model of sleep regulation, and that during daily torpor a sleep deficit is accumulated as it is during prolonged waking. The predominance of SWA in the frontal EEG observed both after SD and daily torpor provides further evidence for the similarity of these conditions. It has been shown in several animal and human studies that sleep can enhance memory consolidation, and that SD leads to memory impairment. Preliminary data obtained in the Djungarian hamster showed that both SD and daily torpor result in object recognition deficits. Thus, animals subjected to SD immediately after learning, or if they underwent an episode of daily torpor between learning and retention, displayed impaired recognition memory for complex object scenes. The investigation of daily torpor can reveal mechanisms that could have important implications for hypometabolic state induction in other mammalian species, including humans.

  13. An index of reservoir habitat impairment

    Science.gov (United States)

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  14. [The Effect of TALENs-mediated Downregulation Expression of Nanog on Malignant Behavior of Cervical Cancer HeLa Cells].

    Science.gov (United States)

    Yu, Ai-qing; Li, Cheng-lin; Yang, Yi; Yan, Shi-rong

    2016-01-01

    To study the effect of downregulation expression of Nanog on malignant behavior of cervical cancer HeLa cells. Gene editing tool TALENs was employed to induce downregulation expression of Nanog, and Nanog mutation was evaluated by sequencing. RT-PCR and Western blot was used to detect the mRNA and protein expression level, respectively. Colony-formation assay, Transwell invasion assay, and chemotherapy sensibility assay was carried out to assess the capacity of colony-formation, invasion, and chemoresistance, respectively. TALENs successfully induced Nanog mutation and downregulated Nanog expression. Nanog mRNA and protein expression of Nanog-mutated monoclonal HeLa cells downregulated 3 times compared to thoses of wild-type HeLa cells (P HeLa cells were observed when compared to those of wild-type HeLa cells (P HeLa cells. Importantly, downregulation or silencing of Nanog is promising to be a novel strategy for the treatment of cervical carcinoma.

  15. Downregulation of HDAC9 inhibits cell proliferation and tumor formation by inducing cell cycle arrest in retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiting; Wu, Dan; Xia, Fengjie; Xian, Hongyu; Zhu, Xinyue [Medical School of Nanjing University, Department of Ophthalmology, Jinling Hospital, Nanjing, 210002 (China); Cui, Hongjuan, E-mail: hcui@swu.edu.cn [State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400716 (China); Huang, Zhenping, E-mail: huangzhenping19633@163.com [Medical School of Nanjing University, Department of Ophthalmology, Jinling Hospital, Nanjing, 210002 (China)

    2016-04-29

    Histone deacetylase 9 (HDAC9) is a member of class II HDACs, which regulates a wide variety of normal and abnormal physiological functions. Recently, HDAC9 has been found to be overexpressed in some types of human cancers. However, the role of HDAC9 in retinoblastoma remains unclear. In this study, we found that HDAC9 was commonly expressed in retinoblastoma tissues and HDAC9 was overexpressed in prognostically poor retinoblastoma patients. Through knocking down HDAC9 in Y79 and WERI-Rb-1 cells, the expression level of HDAC9 was found to be positively related to cell proliferation in vitro. Further investigation indicated that knockdown HDAC9 could significantly induce cell cycle arrest at G1 phase in retinoblastoma cells. Western blot assay showed downregulation of HDAC9 could significantly decrease cyclin E2 and CDK2 expression. Lastly, xenograft study in nude mice showed that downregulation of HDAC9 inhibited tumor growth and development in vivo. Therefore, our results suggest that HDAC9 could serve as a novel potential therapeutic target in the treatment of retinoblastoma. - Highlights: • High expression of HDAC9 correlates with poor patient prognosis. • Downregulation of HDAC9 inhibits cell proliferation in retinoblastoma cells. • Downregulation of HDAC9 induces cell cycle arrest at G1 phase in retinoblastoma cells. • Downregulation of HDAC9 suppresses tumor growth in nude mice.

  16. Downregulation of HDAC9 inhibits cell proliferation and tumor formation by inducing cell cycle arrest in retinoblastoma

    International Nuclear Information System (INIS)

    Zhang, Yiting; Wu, Dan; Xia, Fengjie; Xian, Hongyu; Zhu, Xinyue; Cui, Hongjuan; Huang, Zhenping

    2016-01-01

    Histone deacetylase 9 (HDAC9) is a member of class II HDACs, which regulates a wide variety of normal and abnormal physiological functions. Recently, HDAC9 has been found to be overexpressed in some types of human cancers. However, the role of HDAC9 in retinoblastoma remains unclear. In this study, we found that HDAC9 was commonly expressed in retinoblastoma tissues and HDAC9 was overexpressed in prognostically poor retinoblastoma patients. Through knocking down HDAC9 in Y79 and WERI-Rb-1 cells, the expression level of HDAC9 was found to be positively related to cell proliferation in vitro. Further investigation indicated that knockdown HDAC9 could significantly induce cell cycle arrest at G1 phase in retinoblastoma cells. Western blot assay showed downregulation of HDAC9 could significantly decrease cyclin E2 and CDK2 expression. Lastly, xenograft study in nude mice showed that downregulation of HDAC9 inhibited tumor growth and development in vivo. Therefore, our results suggest that HDAC9 could serve as a novel potential therapeutic target in the treatment of retinoblastoma. - Highlights: • High expression of HDAC9 correlates with poor patient prognosis. • Downregulation of HDAC9 inhibits cell proliferation in retinoblastoma cells. • Downregulation of HDAC9 induces cell cycle arrest at G1 phase in retinoblastoma cells. • Downregulation of HDAC9 suppresses tumor growth in nude mice.

  17. Abiotic Stresses Downregulate Key Genes Involved in Nitrogen Uptake and Assimilation in Brassica juncea L.

    Directory of Open Access Journals (Sweden)

    Parul Goel

    Full Text Available Abiotic stresses such as salinity, drought and extreme temperatures affect nitrogen (N uptake and assimilation in plants. However, little is known about the regulation of N pathway genes at transcriptional level under abiotic stress conditions in Brassica juncea. In the present work, genes encoding nitrate transporters (NRT, ammonium transporters (AMT, nitrate reductase (NR, nitrite reductase (NiR, glutamine synthetase (GS, glutamate synthase (GOGAT, glutamate dehydrogenase (GDH, asparagines synthetase (ASN were cloned from Brassica juncea L. var. Varuna. The deduced protein sequences were analyzed to predict their subcellular localization, which confirmed localization of all the proteins in their respective cellular organelles. The protein sequences were also subjected to conserved domain identification, which confirmed presence of characteristic domains in all the proteins, indicating their putative functions. Moreover, expression of these genes was studied after 1h and 24h of salt (150 mM NaCl, osmotic (250 mM Mannitol, cold (4°C and heat (42°C stresses. Most of the genes encoding nitrate transporters and enzymes responsible for N assimilation and remobilization were found to be downregulated under abiotic stresses. The expression of BjAMT1.2, BjAMT2, BjGS1.1, BjGDH1 and BjASN2 was downregulated after 1hr, while expression of BjNRT1.1, BjNRT2.1, BjNiR1, BjAMT2, BjGDH1 and BjASN2 was downregulated after 24h of all the stress treatments. However, expression of BjNRT1.1, BjNRT1.5 and BjGDH2 was upregulated after 1h of all stress treatments, while no gene was found to be upregulated after 24h of stress treatments, commonly. These observations indicate that expression of most of the genes is adversely affected under abiotic stress conditions, particularly under prolonged stress exposure (24h, which may be one of the reasons of reduction in plant growth and development under abiotic stresses.

  18. Downregulation of DcR3 sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Liang CJ

    2017-01-01

    Full Text Available Chaojie Liang,* Yingchen Xu,* Guangming Li, Tuanjie Zhao, Feng Xia, Guanqun Li, Dongxin Zhang, Jixiang Wu Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: Decoy receptor 3 (DcR3 has been recently described as an antiapoptosis and prometastasis factor since it can competitively bind to FasL, TL1A, and LIGHT, and it is highly expressed in many malignant tumors. Downregulation of DcR3 can promote tumor cell apoptosis and inhibit metastasis. A previous study demonstrated that reduction of DcR3 could induce tumor necrosis factor-related apoptosis-inducing ligand (TRAIL-mediated apoptosis in pancreatic cancer cells. However, whether such an effect is seen in hepatocellular carcinoma (HCC remains to be explored. This study was designed to investigate the sensitivity of HCC cells to TRAIL after silencing DcR3, and this was done by evaluating the expression of DcR3 in HCC cells and the effect on TRAIL-mediated apoptosis after downregulation of DcR3. Our data showed that DcR3 was highly expressed in HepG2, BEL-7402, Hep3B, Huh-7, MHCC97H, and SMCC7721 cell lines compared with normal liver cell line LO-2. Both HepG2 and BEL-7402 were tolerant to TRAIL-mediated apoptosis, and the tolerance was negatively correlated to the expression of DcR3. Silencing of DcR3 with shRNA and treatment with TRAIL induced obvious apoptosis in HepG2 and BEL-7402, with more cancer cells found in the G1 phase. SiDcR3 combined with TRAIL could induce activation of caspases-3, -8, and -9, raise the expression of the apoptotic protein Bax, and reduce the expression of antiapoptotic proteins (Bcl-2, Mcl-1, Bcl-XL, IAP-2, and survivin. Caspase-8 inhibitor Ac-IETD-CHO significantly decreased the activation of caspase cascade, indicating that the extrinsic pathway may have a vital role in the apoptotic events induced by SiDcR3/TRAIL. Furthermore, our

  19. Vasodilator-Stimulated Phosphoprotein (VASP) depletion from breast cancer MDA-MB-231 cells inhibits tumor spheroid invasion through downregulation of Migfilin, β-catenin and urokinase-plasminogen activator (uPA)

    Energy Technology Data Exchange (ETDEWEB)

    Gkretsi, Vasiliki; Stylianou, Andreas; Stylianopoulos, Triantafyllos, E-mail: tstylian@ucy.ac.cy

    2017-03-15

    A hallmark of cancer cells is their ability to invade surrounding tissues and form metastases. Cell-extracellular matrix (ECM)-adhesion proteins are crucial in metastasis, connecting tumor ECM with actin cytoskeleton thus enabling cells to respond to mechanical cues. Vasodilator-stimulated phosphoprotein (VASP) is an actin-polymerization regulator which interacts with cell-ECM adhesion protein Migfilin, and regulates cell migration. We compared VASP expression in MCF-7 and MDA-MB-231 breast cancer (BC) cells and found that more invasive MDA-MB-231 cells overexpress VASP. We then utilized a 3-dimensional (3D) approach to study metastasis in MDA-MB-231 cells using a system that considers mechanical forces exerted by the ECM. We prepared 3D collagen I gels of increasing concentration, imaged them by atomic force microscopy, and used them to either embed cells or tumor spheroids, in the presence or absence of VASP. We show, for the first time, that VASP silencing downregulated Migfilin, β-catenin and urokinase plasminogen activator both in 2D and 3D, suggesting a matrix-independent mechanism. Tumor spheroids lacking VASP demonstrated impaired invasion, indicating VASP’s involvement in metastasis, which was corroborated by Kaplan-Meier plotter showing high VASP expression to be associated with poor remission-free survival in lymph node-positive BC patients. Hence, VASP may be a novel BC metastasis biomarker. - Highlights: • More invasive MDA-MB-231 overexpress VASP compared to MCF-7 breast cancer cells. • We prepared 3D collagen I gels of increasing concentration and characterized them. • VASP silencing downregulated Migfilin, β-catenin and uPA both in 2D and 3D culture. • Tumor spheroids lacking VASP demonstrated impaired invasion. • Kaplan-Meier plotter shows association of high VASP expression with poor survival.

  20. Impaired activity of phagocytic cells in Candida albicans infection after exposure to chronic varied stress.

    Science.gov (United States)

    Rodriguez-Galán, M C; Correa, S G; Cejas, H; Sotomayor, C E

    2001-01-01

    Candidiasis is a prototypic opportunistic fungal disease that may follow severe modulations of the immune system of the host. The purpose of this study was to evaluate which innate immune mechanisms involved in the protection against fungal invasion are impaired under stress conditions. Wistar rats were infected intraperitoneally with Candida albicans and immediately exposed to chronic varied stress (CVS) over 10 days (CVS; Ca-S); the fungal burden (CFU), histopathological lesion and ACTH levels were evaluated. Additionally, functional assessment of peritoneal cells (PC) included the phagocytic and anticandidacidal activities and the production of H(2)O(2) and NO. In the only infected animals (Ca), C. albicans colonization stimulated an efficient inflammatory response, while in Ca-S rats poor tissue reactions were associated with increased CFU in livers and kidneys (p process was not modified, the candidacidal activity of PC was significantly decreased after the application of CVS (p < 0.001, Ca vs. Ca-S). The H(2)O(2) production by macrophages and neutrophils was downregulated by the infection, and while at early intervals these cells possessed a residual oxidative capacity, by day 10, the production of this metabolite was blocked. Spontaneous NO production by macrophages was significantly increased in both Ca and Ca-S animals (p < 0.001), but in stressed rats, this reactive nitrogen intermediate was noticeably downregulated (p < 0.05, Ca vs. Ca-S). The hyperactivity of hypothalamus-pituitary-adrenal axis after exposure to stress was confirmed by an increase in baseline plasma ACTH levels. These results show that during infection with C. albicans, the exposure to CVS contributes to the spread of the fungus and downregulates critical functions of phagocytic cells involved in the control of this opportunistic pathogen. Copyright 2002 S. Karger AG, Basel

  1. Insulin Downregulates the Transcriptional Coregulator CITED2, an Inhibitor of Proangiogenic Function in Endothelial Cells

    DEFF Research Database (Denmark)

    Wang, Xuanchun; Lockhart, Samuel M; Rathjen, Thomas

    2016-01-01

    In patients with atherosclerotic complications of diabetes, impaired neovascularization of ischemic tissue in the myocardium and lower limb limits the ability of these tissues to compensate for poor perfusion. We identified 10 novel insulin-regulated genes, among them Adm, Cited2 and Ctgf, which ...

  2. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol

    International Nuclear Information System (INIS)

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2006-01-01

    As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with δ-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol, tocopherol showed very weak telomerase inhibition. These results provide novel evidence for First time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol

  3. Downregulated Brain-Derived Neurotrophic Factor-Induced Oxidative Stress in the Pathophysiology of Diabetic Retinopathy.

    Science.gov (United States)

    Behl, Tapan; Kotwani, Anita

    2017-04-01

    Brain-derived neurotrophic factor (BDNF), a member of neurotrophin growth factor family, physiologically mediates induction of neurogenesis and neuronal differentiation, promotes neuronal growth and survival and maintains synaptic plasticity and neuronal interconnections. Unlike the central nervous system, its secretion in the peripheral nervous system occurs in an activity-dependent manner. BDNF improves neuronal mortality, growth, differentiation and maintenance. It also provides neuroprotection against several noxious stimuli, thereby preventing neuronal damage during pathologic conditions. However, in diabetic retinopathy (a neuromicrovascular disorder involving immense neuronal degeneration), BDNF fails to provide enough neuroprotection against oxidative stress-induced retinal neuronal apoptosis. This review describes the prime reasons for the downregulation of BDNF-mediated neuroprotective actions during hyperglycemia, which renders retinal neurons vulnerable to damaging stimuli, leading to diabetic retinopathy. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  4. Transcriptional down-regulation through nuclear exclusion of EWS methylated by PRMT1

    International Nuclear Information System (INIS)

    Araya, Natsumi; Hiraga, Hideaki; Kako, Koichiro; Arao, Yukitomo; Kato, Shigeaki; Fukamizu, Akiyoshi

    2005-01-01

    The EWS gene is known to be chromosomally translocated and fused to various members of the DNA-binding transcription factors in Ewing's sarcoma and primitive neuroectodermal tumor. The product of this gene encodes the N-terminal transcriptional activation domain and the C-terminal RNA-binding domain containing an RNA-recognition motif and three arginine-glycine-glycine rich (RGG) motifs. Recently, we demonstrated EWS as a coactivator for hepatocyte nuclear factor 4 (HNF4)-mediated transcription. However, regulatory factors controlling EWS function are poorly characterized. In this study, we found that a protein arginine methyltransferase, PRMT1, physically interacts with EWS, whose cellular localization depends upon its RGG motifs targeted for methylation. Overexpression of PRMT1 down-regulates coactivator activity of EWS for HNF4-mediated transcription, because of the cytoplasmic retention of EWS from the nucleus. These results suggest that PRMT1 plays a post-translationally important role in regulating the transcriptional activity

  5. Natural polyphenols down-regulate universal stress protein in Mycobacterium tuberculosis: An in-silico approach

    Directory of Open Access Journals (Sweden)

    M Vijey Aanandhi

    2014-01-01

    Full Text Available Universal stress protein (USP is a novel target to overcome the tuberculosis resistance. Our present study enlightens the possibilities of some natural polyphenols as an antioxidant for USP. The study has shown some molecular simulations of some selected natural antioxidants with USP. We have considered USP (Rv1636 strain for homology modeling and the selected template was taken for the docking study. Curcumin, catechin, reservetrol has shown ARG 136 (1.8Ε hydrogen bonding and two ionic bonding with carboxyl group of curcumin with LEU 130 (3.3Ε and ASN 144 (3.4Ε respectively. INH was taken for the standard molecule to perform molecular simulation. It showed poor binding interaction with the target, that is, −5.18 kcal, and two hydrogen bonding with SER 140 (1.887Ε, ARG 147 (2.064Ε respectively. The study indicates possible new generation curcumin analogue for future therapy to down-regulate USP.

  6. Carbon nanoparticles downregulate expression of basic fibroblast growth factor in the heart during embryogenesis

    DEFF Research Database (Denmark)

    Wierzbicki, Mateusz; Sawosz, Ewa; Grodzik, Marta

    2013-01-01

    indices of the embryos' health. However, vascularization of the heart and the density of branched vessels were significantly reduced after treatment with diamond nanoparticles and, to a lesser extent, graphite nanoparticles. Application of nanoparticles significantly downregulated gene and protein......Carbon nanoparticles, with their high biocompatibility and low toxicity, have recently been considered for biomedical applications, including antiangiogenic therapy. Critical to normal development and tumor formation, angiogenesis is the process of forming capillary blood vessels from preexisting...... vessels. In the present study, we evaluated the effects of diamond and graphite nanoparticles on the development of chicken embryos, as well as vascularization of the chorioallantoic membrane and heart at the morphological and molecular level. Nanoparticles did not affect either body/heart weight or serum...

  7. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    DEFF Research Database (Denmark)

    La Rocca, Rosanna; Tallerico, Rossana; Hassan, Almosawy Talib

    2014-01-01

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were...... treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells...... (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar5100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range...

  8. Down-regulation of KCa2.3 channels causes erectile dysfunction in mice

    DEFF Research Database (Denmark)

    Comerma Steffensen, Simon Gabriel; Hedegaard, Elise Røge; Kun, Attila

    2017-01-01

    microscopy in the apical-lateral membrane of endothelial cells in the corpus cavernosum. Norepinephrine contraction was enhanced in the corpus cavernosum of KCa2.3T/T(+Dox)versus KCa2.3T/T(−Dox) mice, while acetylcholine relaxation was only reduced at 0.3 µM and relaxations in response to the nitric oxide...... in transgenic mice with overexpression (KCa2.3T/T(−Dox)) or down-regulation (KCa2.3T/T(+Dox)) of the KCa2.3 channels and wild-type C57BL/6-mice (WT). QPCR revealed that KCa2.3 and KCa1.1 channels were the most abundant in mouse corpus cavernosum. KCa2.3 channels were found by immunoreactivity and electron...

  9. Vitamin A induces inhibitory histone methylation modifications and down-regulates trained immunity in human monocytes

    DEFF Research Database (Denmark)

    Arts, Rob J W; Blok, Bastiaan A; van Crevel, Reinout

    2015-01-01

    Epidemiologic studies suggest that VAS has long-lasting immunomodulatory effects. We hypothesized that ATRA inhibits inflammatory cytokines in a model of trained immunity in monocytes by inducing epigenetic reprogramming through histone modifications. We used an previously described in vitro model...... of trained immunity, in which adherent monocytes of healthy volunteers were incubated for 24 h with BCG in the presence or absence of ATRA. After washing the cells, they were incubated for an additional 6 d in culture medium and restimulated with microbial ligands, and cytokine production was assessed. ATRA...... cytokine production. In addition to H3K9me3, the stimulatory histone mark H3K4me3 was down-regulated by ATRA at several promoter locations of cytokine genes. Therefore, we can conclude that ATRA inhibits cytokine production in models of direct stimulation or BCG-induced trained immunity...

  10. Downregulation of matrix metalloproteinases in hyperplastic dental follicles results in abnormal tooth eruption.

    Science.gov (United States)

    Kim, Seong-Gon; Kim, Myung-Hee; Chae, Chang-Hoon; Jung, Youn-Kwan; Choi, Je-Yong

    2008-04-30

    In this study, we compared the gene expression profiles of non-syndromic hyperplastic dental follicle (HDF) fibroblasts and normal dental follicle (NDF) fibroblasts using cDNA microarrays, quantitative PCR, and immunohistochemical staining. Microarray analysis showed that several collagens genes were upregulated in the HDFos, including collagen types I, IV, VIII, and XI and TIMP-1, -3, and -4 (fold ratio > 2.0). In contrast, the expression of MMP-1, -3, -10, and -16 together with IL-8 was more than two fold downregulated. The differential expression of the genes encoding alkaline phosphatase, MMP-1, -3, -8, and IL-8 was confirmed by quantitative RT-PCR, while that of 24 HDFs and 18 NDFs was confirmed by immunohistochemical analysis. However, HDFs showed stronger expression of MMP-3 than NDFs (P eruption.

  11. Possible Power Estimation of Down-Regulated Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Gögmen, Tuhfe

    The penetration of offshore wind power is continuously increasing in the Northern European grids. To assure safety in the operation of the power system, wind power plants are required to provide ancillary services, including reserve power attained through down-regulating the wind farm from its...... power plant. The developed procedure, the PossPOW algorithm, can also be used in the wind farm control as it yields a real-time wind farm power curve. The modern wind turbines have a possible power signal at the turbine level and the current state of the art is to aggregate those signals to achieve...... the wind farm scale production capacity. However the summation of these individual signals is simply an over-estimation for the wind power plant, due to reduced wake losses during curtailment. The determination of the possible power with the PossPOW algorithm works as follows: firstly the second...

  12. Acidosis-induced downregulation of hepatocyte mitochondrial aquaporin-8 and ureagenesis from ammonia.

    Science.gov (United States)

    Molinas, Sara M; Soria, Leandro R; Marrone, Julieta; Danielli, Mauro; Trumper, Laura; Marinelli, Raúl A

    2015-08-01

    It has been proposed that, during metabolic acidosis, the liver downregulates mitochondrial ammonia detoxification via ureagenesis, a bicarbonate-consuming process. Since we previously demonstrated that hepatocyte mitochondrial aquaporin-8 channels (mtAQP8) facilitate the uptake of ammonia and its metabolism into urea, we studied whether mtAQP8 is involved in the liver adaptive response to acidosis. Primary cultured rat hepatocytes were adapted to acidosis by exposing them to culture medium at pH 7.0 for 40 h. Control cells were exposed to pH 7.4. Hepatocytes exposed to acid medium showed a decrease in mtAQP8 protein expression (-30%, p ammonia was assessed by incubating the cells with (15)N-labeled ammonia and measuring (15)N-labeled urea synthesis by nuclear magnetic resonance. Reduced ureagenesis was found in acidified hepatocytes (-31%, p ammonia in response to acidosis.

  13. Sugar Release and Growth of Biofuel Crops are Improved by Downregulation of Pectin Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Donohoe, Bryon S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sykes, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gjersing, Erica L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ziebell, Angela [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Turner, Geoffrey [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Decker, Steve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Davis, Mark F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Biswal, Ajaya K. [University of Georgia; Oak Ridge National Laboratory; Atmodjo, Melani A. [University of Georgia; Oak Ridge National Laboratory; Li, Mi [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; Baxter, Holly L. [Oak Ridge National Laboratory; University of Tennessee; Yoo, Chang Geun [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; Pu, Yunqiao [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; Lee, Yi-Ching [Oak Ridge National Laboratory; Noble Research Institute; Mazarei, Mitra [Oak Ridge National Laboratory; University of Tennessee; Black, Ian M. [University of Georgia; Zhang, Ji-Yi [Oak Ridge National Laboratory; Noble Research Institute; Ramanna, Hema [Oak Ridge National Laboratory; Noble Research Institute; Bray, Adam L. [Oak Ridge National Laboratory; University of Georgia; King, Zachary R. [Oak Ridge National Laboratory; University of Georgia; LaFayette, Peter R. [Oak Ridge National Laboratory; University of Georgia; Pattathil, Sivakumar [University of Georgia; Oak Ridge National Laboratory; Mohanty, Sushree S. [University of Georgia; Oak Ridge National Laboratory; Ryno, David [University of Georgia; Oak Ridge National Laboratory; Yee, Kelsey [Oak Ridge National Laboratory; Thompson, Olivia A. [Oak Ridge National Laboratory; Rodriguez Jr., Miguel [Oak Ridge National Laboratory; Dumitrache, Alexandru [Oak Ridge National Laboratory; Natzke, Jace [Oak Ridge National Laboratory; Winkeler, Kim [Oak Ridge National Laboratory; ArborGen, Inc.; Collins, Cassandra [Oak Ridge National Laboratory; ArborGen, Inc.; Yang, Xiaohan [Oak Ridge National Laboratory; Tan, Li [University of Georgia; Oak Ridge National Laboratory; Hahn, Michael G. [University of Georgia; Oak Ridge National Laboratory; Davison, Brian H. [Oak Ridge National Laboratory; Udvardi, Michael K. [Oak Ridge National Laboratory; Noble Research Institute; Mielenz, Jonathan R. [Oak Ridge National Laboratory; Nelson, Richard S. [Oak Ridge National Laboratory; Noble Research Institute; Parrott, Wayne A. [Oak Ridge National Laboratory; University of Georgia; Ragauskas, Arthur J. [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; University of Tennessee; Stewart Jr., C. Neal [Oak Ridge National Laboratory; University of Tennessee; Mohnen, Debra [University of Georgia; Oak Ridge National Laboratory

    2018-02-12

    Cell walls in crops and trees have been engineered for production of biofuels and commodity chemicals, but engineered varieties often fail multi-year field trials and are not commercialized. We engineered reduced expression of a pectin biosynthesis gene (Galacturonosyltransferase 4, GAUT4) in switchgrass and poplar, and find that this improves biomass yields and sugar release from biomass processing. Both traits were maintained in a 3-year field trial of GAUT4-knockdown switchgrass, with up to sevenfold increased saccharification and ethanol production and sixfold increased biomass yield compared with control plants. We show that GAUT4 is an a-1,4-galacturonosyltransferase that synthesizes homogalacturonan (HG). Downregulation of GAUT4 reduces HG and rhamnogalacturonan II (RGII), reduces wall calcium and boron, and increases extractability of cell wall sugars. Decreased recalcitrance in biomass processing and increased growth are likely due to reduced HG and RGII cross-linking in the cell wall.

  14. Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway

    Science.gov (United States)

    Donato, Verónica; Ayala, Facundo Rodríguez; Cogliati, Sebastián; Bauman, Carlos; Costa, Juan Gabriel; Leñini, Cecilia; Grau, Roberto

    2017-01-01

    Beneficial bacteria have been shown to affect host longevity, but the molecular mechanisms mediating such effects remain largely unclear. Here we show that formation of Bacillus subtilis biofilms increases Caenorhabditis elegans lifespan. Biofilm-proficient B. subtilis colonizes the C. elegans gut and extends worm lifespan more than biofilm-deficient isogenic strains. Two molecules produced by B. subtilis — the quorum-sensing pentapeptide CSF and nitric oxide (NO) — are sufficient to extend C. elegans longevity. When B. subtilis is cultured under biofilm-supporting conditions, the synthesis of NO and CSF is increased in comparison with their production under planktonic growth conditions. We further show that the prolongevity effect of B. subtilis biofilms depends on the DAF-2/DAF-16/HSF-1 signalling axis and the downregulation of the insulin-like signalling (ILS) pathway. PMID:28134244

  15. TCR down-regulation boosts T-cell-mediated cytotoxicity and protection against poxvirus infections

    DEFF Research Database (Denmark)

    Hansen, Ann Kathrine; Regner, Matthias; Bonefeld, Charlotte Menne

    2011-01-01

    Cytotoxic T (Tc) cells play a key role in the defense against virus infections. Tc cells recognize infected cells via the T-cell receptor (TCR) and subsequently kill the target cells by one or more cytotoxic mechanisms. Induction of the cytotoxic mechanisms is finely tuned by the activation signals...... from the TCR. To determine whether TCR down-regulation affects the cytotoxicity of Tc cells, we studied TCR down-regulation-deficient CD3¿LLAA mice. We found that Tc cells from CD3¿LLAA mice have reduced cytotoxicity due to a specific deficiency in exocytosis of lytic granules. To determine whether......-regulation critically increases Tc cell cytotoxicity and protection against poxvirus infection....

  16. Visual impairment workshop for sighted students

    OpenAIRE

    Habjan, Iva

    2015-01-01

    The education process based on the inclusion concept enables primary school education close to home to children with visual impairment. Before admission of visual impairment pupil, the school environment and didactic materials are adapted and teachers are provided with additional training. The preparation of sighted peers is often ignored, who form erroneous ideas through observing the adaptations and activities of a visual impairment peer, or adopt prejudices and stereotypical beliefs from ...

  17. Evidence That Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Volkow N. D.; Fowler J.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Fowler, J.S.; Logan, J.; Benveniste, H.; Kin, R.; Thanos, P.K.; Sergi F.

    2012-03-23

    Dopamine D2 receptors are involved with wakefulness, but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [{sup 11}C]raclopride in controls) in striatum, but could not determine whether this reflected dopamine increases ([{sup 11}C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (a drug that increases dopamine by blocking dopamine transporters) during sleep deprivation versus rested sleep, with the assumption that methylphenidate's effects would be greater if, indeed, dopamine release was increased during sleep deprivation. We scanned 20 controls with [{sup 11}C]raclopride after rested sleep and after 1 night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared with rested sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared with placebo) did not differ between rested sleep and sleep deprivation, and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to 1 night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans.

  18. Downregulation of CD44 reduces doxorubicin resistance of CD44+CD24- breast cancer cells

    Directory of Open Access Journals (Sweden)

    Phuc PV

    2011-06-01

    Full Text Available Pham Van Phuc, Phan Lu Chinh Nhan, Truong Hai Nhung, Nguyen Thanh Tam, Nguyen Minh Hoang, Vuong Gia Tue, Duong Thanh Thuy, Phan Kim NgocLaboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh, VietnamBackground: Cells within breast cancer stem cell populations have been confirmed to have a CD44+CD24- phenotype. Strong expression of CD44 plays a critical role in numerous types of human cancers. CD44 is involved in cell differentiation, adhesion, and metastasis of cancer cells.Methods: In this study, we reduced CD44 expression in CD44+CD24- breast cancer stem cells and investigated their sensitivity to an antitumor drug. The CD44+CD24- breast cancer stem cells were isolated from breast tumors; CD44 expression was downregulated with siRNAs followed by treatment with different concentrations of the antitumor drug.Results: The proliferation of CD44 downregulated CD44+CD24- breast cancer stem cells was decreased after drug treatment. We noticed treated cells were more sensitive to doxorubicin, even at low doses, compared with the control groups.Conclusions: It would appear that expression of CD44 is integral among the CD44+CD24- cell population. Reducing the expression level of CD44, combined with doxorubicin treatment, yields promising results for eradicating breast cancer stem cells in vitro. This study opens a new direction in treating breast cancer through gene therapy in conjunction with chemotherapy.Keywords: antitumor drugs, breast cancer stem cells, CD44, CD44+CD24- cells, doxorubicin

  19. Rose hip exerts antidiabetic effects via a mechanism involving downregulation of the hepatic lipogenic program.

    Science.gov (United States)

    Andersson, Ulrika; Henriksson, Emma; Ström, Kristoffer; Alenfall, Jan; Göransson, Olga; Holm, Cecilia

    2011-01-01

    The aim of this study was to investigate the metabolic effects of a dietary supplement of powdered rose hip to C57BL/6J mice fed a high-fat diet (HFD). Two different study protocols were used; rose hip was fed together with HFD to lean mice for 20 wk (prevention study) and to obese mice for 10 wk (intervention study). Parameters related to obesity and glucose tolerance were monitored, and livers were examined for lipids and expression of genes and proteins related to lipid metabolism and gluconeogenesis. A supplement of rose hip was capable of both preventing and reversing the increase in body weight and body fat mass imposed by a HFD in the C57BL/6J mouse. Oral and intravenous glucose tolerance tests together with lower basal levels of insulin and glucose showed improved glucose tolerance in mice fed a supplement of rose hip compared with control mice. Hepatic lipid accumulation was reduced in mice fed rose hip compared with control, and the expression of lipogenic proteins was downregulated, whereas AMP-activated protein kinase and other proteins involved in fatty acid oxidation were unaltered. Rose hip intake lowered total plasma cholesterol as well as the low-density lipoprotein-to-high-density lipoprotein ratio via a mechanism not involving altered gene expression of sterol regulatory element-binding protein 2 or 3-hydroxymethylglutaryl-CoA reductase. Taken together, these data show that a dietary supplement of rose hip prevents the development of a diabetic state in the C57BL/6J mouse and that downregulation of the hepatic lipogenic program appears to be at least one mechanism underlying the antidiabetic effect of rose hip.

  20. The impact of lignin downregulation on alfalfa yield, chemical composition, and in vitro gas production.

    Science.gov (United States)

    Getachew, Girma; Laca, Emilio A; Putnam, Daniel H; Witte, Dave; McCaslin, Mark; Ortega, Kara P; DePeters, Edward J

    2018-02-06

    Lignin is a complex, phenolic polymer found in plant cell walls that is essential for mechanical support, water and mineral transport, and defense in vascular plants. Over ten different enzymes play a role in the synthesis of lignin in plants. Suppression of any one enzyme or combinations of these enzymes may change the concentration and composition of lignin in the genetically transformed plants. Two lines of alfalfa that were downregulated for caffeoyl coenzyme A O-methyltransferase were used to assess the impact of lignin downregulation on chemical composition and fermentation rate and extent using an in vitro gas production technique. A total of 64 samples consisting of two reduced lignin (RL) and two controls (CL), four field replicates, two cutting intervals (CIs; 28 and 35 days), and two cuts (Cut-1 and Cut-3) were used. No differences were detected in yield, crude protein, neutral detergent fiber (aNDF), and acid detergent fiber between the lines when harvested at the 28-day CI. The acid detergent lignin (ADL) concentration in RL alfalfa lines was significantly (P yield than CL. RL alfalfa lines had 24% and 22% lower (P energy content were greater in RL than in CL alfalfa. RL lines had 3.8% indigestible aNDF per unit ADL, whereas CL had 3.4% (P yield without compromising the nutritional quality of the alfalfa forage for dairy and livestock feeding. However, the in vitro results reported here warrant further study using in vivo methods. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  1. Frequent downregulation of the transcription factor Foxa2 in lung cancer through epigenetic silencing.

    Science.gov (United States)

    Basseres, Daniela S; D'Alò, Francesco; Yeap, Beow Y; Löwenberg, Ester C; Gonzalez, David A; Yasuda, Hiroyuki; Dayaram, Tajhal; Kocher, Olivier N; Godleski, John J; Richards, William G; Meyerson, Matthew; Kobayashi, Susumu; Tenen, Daniel G; Halmos, Balázs; Costa, Daniel B

    2012-07-01

    We sought to determine the mechanisms of downregulation of the airway transcription factor Foxa2 in lung cancer and the expression status of Foxa2 in non-small-cell lung cancer (NSCLC). A series of 25 lung cancer cell lines were evaluated for Foxa2 protein expression, FOXA2 mRNA levels, FOXA2 mutations, FOXA2 copy number changes and for evidence of FOXA2 promoter hypermethylation. In addition, 32 NSCLCs were sequenced for FOXA2 mutations and 173 primary NSCLC tumors evaluated for Foxa2 expression using an immunohistochemical assay. Out of the 25 cell lines, 13 (52%) had undetectable FOXA2 mRNA. The expression of FOXA2 mRNA and Foxa2 protein were congruent in 19/22 cells (p = 0.001). FOXA2 mutations were not identified in primary NSCLCs and were infrequent in cell lines. Focal or broad chromosomal deletions involving FOXA2 were not present. The promoter region of FOXA2 had evidence of hypermethylation, with an inverse correlation between FOXA2 mRNA expression and presence of CpG dinucleotide methylation (p Foxa2. In 130 patients with stage I NSCLC there was a trend towards decreased survival in tumors with no/low expression of Foxa2 (HR of 1.6, 95%CI 0.9-3.1; p = 0.122). Loss of expression of Foxa2 is frequent in lung cancer cell lines and NSCLCs. The main mechanism of downregulation of Foxa2 is epigenetic silencing through promoter hypermethylation. Further elucidation of the involvement of Foxa2 and other airway transcription factors in the pathogenesis of lung cancer may identify novel therapeutic targets. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Additional nitrogen fertilization at heading time of rice down-regulates cellulose synthesis in seed endosperm.

    Directory of Open Access Journals (Sweden)

    Keiko Midorikawa

    Full Text Available The balance between carbon and nitrogen is a key determinant of seed storage components, and thus, is of great importance to rice and other seed-based food crops. To clarify the influence of the rhizosphere carbon/nitrogen balance during the maturation stage of several seed components, transcriptome analysis was performed on the seeds from rice plants that were provided additional nitrogen fertilization at heading time. As a result, it was assessed that genes associated with molecular processes such as photosynthesis, trehalose metabolism, carbon fixation, amino acid metabolism, and cell wall metabolism were differentially expressed. Moreover, cellulose and sucrose synthases, which are involved in cellulose synthesis, were down-regulated. Therefore, we compared cellulose content of mature seeds that were treated with additional nitrogen fertilization with those from control plants using calcofluor staining. In these experiments, cellulose content in endosperm from plants receiving additional nitrogen fertilization was less than that in control endosperm. Other starch synthesis-related genes such as starch synthase 1, starch phosphorylase 2, and branching enzyme 3 were also down-regulated, whereas some α-amylase and β-amylase genes were up-regulated. On the other hand, mRNA expression of amino acid biosynthesis-related molecules was up-regulated. Moreover, additional nitrogen fertilization caused accumulation of storage proteins and up-regulated Cys-poor prolamin mRNA expression. These data suggest that additional nitrogen fertilization at heading time changes the expression of some storage substance-related genes and reduces cellulose levels in endosperm.

  3. Additional nitrogen fertilization at heading time of rice down-regulates cellulose synthesis in seed endosperm.

    Science.gov (United States)

    Midorikawa, Keiko; Kuroda, Masaharu; Terauchi, Kaede; Hoshi, Masako; Ikenaga, Sachiko; Ishimaru, Yoshiro; Abe, Keiko; Asakura, Tomiko

    2014-01-01

    The balance between carbon and nitrogen is a key determinant of seed storage components, and thus, is of great importance to rice and other seed-based food crops. To clarify the influence of the rhizosphere carbon/nitrogen balance during the maturation stage of several seed components, transcriptome analysis was performed on the seeds from rice plants that were provided additional nitrogen fertilization at heading time. As a result, it was assessed that genes associated with molecular processes such as photosynthesis, trehalose metabolism, carbon fixation, amino acid metabolism, and cell wall metabolism were differentially expressed. Moreover, cellulose and sucrose synthases, which are involved in cellulose synthesis, were down-regulated. Therefore, we compared cellulose content of mature seeds that were treated with additional nitrogen fertilization with those from control plants using calcofluor staining. In these experiments, cellulose content in endosperm from plants receiving additional nitrogen fertilization was less than that in control endosperm. Other starch synthesis-related genes such as starch synthase 1, starch phosphorylase 2, and branching enzyme 3 were also down-regulated, whereas some α-amylase and β-amylase genes were up-regulated. On the other hand, mRNA expression of amino acid biosynthesis-related molecules was up-regulated. Moreover, additional nitrogen fertilization caused accumulation of storage proteins and up-regulated Cys-poor prolamin mRNA expression. These data suggest that additional nitrogen fertilization at heading time changes the expression of some storage substance-related genes and reduces cellulose levels in endosperm.

  4. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Directory of Open Access Journals (Sweden)

    Po-Yuan Ke

    Full Text Available So far how hepatitis C virus (HCV replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp infection and downregulated cell surface level of CD81, a critical HCV entry (coreceptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  5. Cholesterol Down-Regulates BK Channels Stably Expressed in HEK 293 Cells

    Science.gov (United States)

    Deng, Xiu-Ling; Sun, Hai-Ying; Li, Gui-Rong

    2013-01-01

    Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit. PMID:24260325

  6. Aminotriazole alleviates acetaminophen poisoning via downregulating P450 2E1 and suppressing inflammation.

    Directory of Open Access Journals (Sweden)

    Yuping Jing

    Full Text Available Aminotriazole (ATZ is commonly used as a catalase (CAT inhibitor. We previously found ATZ attenuated oxidative liver injury, but the underlying mechanisms remain unknown. Acetaminophen (APAP overdose frequently induces life-threatening oxidative hepatitis. In the present study, the potential hepatoprotective effects of ATZ on oxidative liver injury and the underlying mechanisms were further investigated in a mouse model with APAP poisoning. The experimental data indicated that pretreatment with ATZ dose- and time-dependently suppressed the elevation of plasma aminotransferases in APAP exposed mice, these effects were accompanied with alleviated histological abnormality and improved survival rate of APAP-challenged mice. In mice exposed to APAP, ATZ pretreatment decreased the CAT activities, hydrogen peroxide (H2O2 levels, malondialdehyde (MDA contents, myeloperoxidase (MPO levels in liver and reduced TNF-α levels in plasma. Pretreatment with ATZ also downregulated APAP-induced cytochrome P450 2E1 (CYP2E1 expression and JNK phosphorylation. In addition, posttreatment with ATZ after APAP challenge decreased the levels of plasma aminotransferases and increased the survival rate of experimental animals. Posttreatment with ATZ had no effects on CYP2E1 expression or JNK phosphorylation, but it significantly decreased the levels of plasma TNF-α. Our data indicated that the LD50 of ATZ in mice was 5367.4 mg/kg body weight, which is much higher than the therapeutic dose of ATZ in the present study. These data suggested that ATZ might be effective and safe in protect mice against APAP-induced hepatotoxicity, the beneficial effects might resulted from downregulation of CYP2E1 and inhibiton of inflammation.

  7. Evidence That Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain

    International Nuclear Information System (INIS)

    Volkow, N.D.; Fowler, J.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Fowler, J.S.; Logan, J.; Benveniste, H.; Kin, R.; Thanos, P.K.; Sergi, F.

    2012-01-01

    Dopamine D2 receptors are involved with wakefulness, but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [ 11 C]raclopride in controls) in striatum, but could not determine whether this reflected dopamine increases ([ 11 C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (a drug that increases dopamine by blocking dopamine transporters) during sleep deprivation versus rested sleep, with the assumption that methylphenidate's effects would be greater if, indeed, dopamine release was increased during sleep deprivation. We scanned 20 controls with [ 11 C]raclopride after rested sleep and after 1 night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared with rested sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared with placebo) did not differ between rested sleep and sleep deprivation, and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to 1 night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans.

  8. Down-regulation of PTEN by HCV core protein through activating nuclear factor-κB.

    Science.gov (United States)

    Zhang, Yong; Li, Rong-Qing; Feng, Xu-Dong; Zhang, Yan-Hua; Wang, Li

    2014-01-01

    The hepatitis C virus (HCV) core protein is an important causative agent in HCV related hepatocellular carcinoma (HCC). Tumor suppressor gene PTEN appears to act in the liver at the crossroad of processes controlling cell proliferation. In this study we investigated the effect of the HCV core protein on the PTEN pathway in hepatocarcinogenesis. The HCV core was transfected stably into HepG2 cell. The effect of HCV core on cell proliferation and viability were detected by 3-(4, 5)-dimethylthiahiazo-(-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) assay, clonogenic survival assay and Fluorescence Activating Cell Sorter (FACS) analysis. The expressions of PTEN were detected by real time RT-PCR and/or Western blot analysis, also the mechanism of down-regulation of PTEN was explored by western blot, luciferase assay and RNA interference. We found the HCV core promoted cell proliferation, survival and G2/M phase accumulation. It downregulated PTEN at mRNA and protein level and activated PTEN downstream gene Akt accompanied with NF-κB activation. Furthermore, the inhibition of HCV core by its specific shRNAs decreased the effect of growth promotion and G2/M phase arrest, inhibited the expression of nuclear p65 and increased PTEN expression. The activity of PTEN was restored when treated with NF-κB inhibitor PDTC. By luciferase assay we found that NF-κB inhibited PTEN promoter transcription activity directly in HCV core cells, while PDTC was contrary. Our study suggests that HCV proteins could modulate PTEN by activating NF-κB. Furthermore strategies designed to restore the expression of PTEN may be promising therapies for preventing HCV dependent hepatocarcinogenesis.

  9. LPS Induced Acute Lung Injury Involves the NF-κB-mediated Downregulation of SOX18.

    Science.gov (United States)

    Gross, Christine M; Kellner, Manuela; Wang, Ting; Lu, Qing; Sun, Xutong; Zemskov, Evgeny A; Noonepalle, Satish; Kangath, Archana; Kumar, Sanjiv; Gonzalez-Garay, Manuel; Desai, Ankit A; Aggarwal, Saurabh; Gorshkov, Boris; Klinger, Christina; Verin, Alexander D; Catravas, John D; Jacobson, Jeffrey R; Yuan, Jason X-J; Rafikov, Ruslan; Garcia, Joe G N; Black, Stephen M

    2017-11-08

    One of the early events in the progression of lipopolysaccharide (LPS)-mediated acute lung injury (ALI) in mice is the disruption of the pulmonary endothelial barrier resulting in lung edema. However, the molecular mechanisms by which the endothelial barrier becomes compromised remain unresolved. The SRY-related High Mobility Group box (Sox) group-F family member, Sox18, is a barrier- protective protein through its ability to increase the expression of the tight junction protein, Claudin-5. Thus, the purpose of this study was to determine if down-regulation of the Sox18-Claudin-5 axis plays a role in the pulmonary endothelial barrier disruption associated with LPS exposure. Our data indicate that both Sox18 and Claudin-5 expression is decreased in two models of in vivo LPS exposure (intraperitoneal, intratracheal). A similar down-regulation was observed in cultured human lung microvascular endothelial cells (HLMVECs) exposed to LPS. Sox18 over-expression in HLMVECs or in the mouse lung attenuated the LPS-mediated vascular barrier disruption. Conversely, reduced Claudin-5 expression (siRNA) reduced the HLMVEC barrier protective effects of Sox18 over-expression. The mechanism by which LPS decreases Sox18 expression was identified as transcriptional repression through binding of p65 NF-kB to a Sox18 promoter sequence located between -1082 and -1073 bp with peroxynitrite contributing to LPS-mediated NF-kB activation. We conclude that NFkB-dependent decreases in the Sox18-Claudin 5 axis is essentially involved in the disruption of human EC barrier integrity associated with LPS-mediated ALI.

  10. Hypoxia induced downregulation of hepcidin is mediated by platelet derived growth factor BB.

    Science.gov (United States)

    Sonnweber, Thomas; Nachbaur, David; Schroll, Andrea; Nairz, Manfred; Seifert, Markus; Demetz, Egon; Haschka, David; Mitterstiller, Anna-Maria; Kleinsasser, Axel; Burtscher, Martin; Trübsbach, Susanne; Murphy, Anthony T; Wroblewski, Victor; Witcher, Derrick R; Mleczko-Sanecka, Katarzyna; Vecchi, Chiara; Muckenthaler, Martina U; Pietrangelo, Antonello; Theurl, Igor; Weiss, Günter

    2014-12-01

    Hypoxia affects body iron homeostasis; however, the underlying mechanisms are incompletely understood. Using a standardised hypoxia chamber, 23 healthy volunteers were subjected to hypoxic conditions, equivalent to an altitude of 5600 m, for 6 h. Subsequent experiments were performed in C57BL/6 mice, CREB-H knockout mice, primary hepatocytes and HepG2 cells. Exposure of subjects to hypoxia resulted in a significant decrease of serum levels of the master regulator of iron homeostasis hepcidin and elevated concentrations of platelet derived growth factor (PDGF)-BB. Using correlation analysis, we identified PDGF-BB to be associated with hypoxia mediated hepcidin repression in humans. We then exposed mice to hypoxia using a standardised chamber and observed downregulation of hepatic hepcidin mRNA expression that was paralleled by elevated serum PDGF-BB protein concentrations and higher serum iron levels as compared with mice housed under normoxic conditions. PDGF-BB treatment in vitro and in vivo resulted in suppression of both steady state and BMP6 inducible hepcidin expression. Mechanistically, PDGF-BB inhibits hepcidin transcription by downregulating the protein expression of the transcription factors CREB and CREB-H, and pharmacological blockade or genetic ablation of these pathways abrogated the effects of PDGF-BB toward hepcidin expression. Hypoxia decreases hepatic hepcidin expression by a novel regulatory pathway exerted via PDGF-BB, leading to increased availability of circulating iron that can be used for erythropoiesis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Aronia melanocarpa Extract Ameliorates Hepatic Lipid Metabolism through PPARγ2 Downregulation.

    Directory of Open Access Journals (Sweden)

    Chung-Hwa Park

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a hepatic manifestation of metabolic syndrome. Studies have demonstrated that anthocyanin-rich foods may improve hyperlipidemia and ameliorate hepatic steatosis. Here, effects of Aronia melanocarpa (AM, known to be rich of anthocyanins, on hepatic lipid metabolism and adipogenic genes were determined. AM was treated to C57BL/6N mice fed with high fat diet (HFD or to FL83B cells treated with free fatty acid (FFA. Changes in levels of lipids, enzymes and hormones were observed, and expressions of adipogenic genes involved in hepatic lipid metabolism were detected by PCR, Western blotting and luciferase assay. In mice, AM significantly reduced the body and liver weight, lipid accumulation in the liver, and levels of biochemical markers such as fatty acid synthase, hepatic triglyceride and leptin. Serum transaminases, indicators for hepatocyte injury, were also suppressed, while superoxide dismutase activity and liver antioxidant capacity were significantly increased. In FL83B cells, AM significantly reduced FFA-induced lipid droplet accumulation. Protein synthesis of an adipogenic transcription factor, peroxisome proliferator-activated receptor γ2 (PPARγ2 was inhibited in vivo. Furthermore, transcriptional activity of PPARγ2 was down-regulated in vitro, and mRNA expression of PPARγ2 and its downstream target genes, adipocyte protein 2 and lipoprotein lipase were down-regulated by AM both in vitro and in vivo. These results show beneficial effects of AM against hepatic lipid accumulation through the inhibition of PPARγ2 expression along with improvements in body weight, liver functions, lipid profiles and antioxidant capacity suggesting the potential therapeutic efficacy of AM on NAFLD.

  12. VILIP-1 downregulation in non-small cell lung carcinomas: mechanisms and prediction of survival.

    Directory of Open Access Journals (Sweden)

    Jian Fu

    2008-02-01

    Full Text Available VILIP-1, a member of the neuronal Ca++ sensor protein family, acts as a tumor suppressor gene in an experimental animal model by inhibiting cell proliferation, adhesion and invasiveness of squamous cell carcinoma cells. Western Blot analysis of human tumor cells showed that VILIP-1 expression was undetectable in several types of human tumor cells, including 11 out of 12 non-small cell lung carcinoma (NSCLC cell lines. The down-regulation of VILIP-1 was due to loss of VILIP-1 mRNA transcripts. Rearrangements, large gene deletions or mutations were not found. Hypermethylation of the VILIP-1 promoter played an important role in gene silencing. In most VILIP-1-silent cells the VILIP-1 promoter was methylated. In vitro methylation of the VILIP-1 promoter reduced its activity in a promoter-reporter assay. Transcriptional activity of endogenous VILIP-1 promoter was recovered by treatment with 5'-aza-2'-deoxycytidine (5'-Aza-dC. Trichostatin A (TSA, a histone deacetylase inhibitor, potently induced VILIP-1 expression, indicating that histone deacetylation is an additional mechanism of VILIP-1 silencing. TSA increased histone H3 and H4 acetylation in the region of the VILIP-1 promoter. Furthermore, statistical analysis of expression and promoter methylation (n = 150 primary NSCLC samples showed a significant relationship between promoter methylation and protein expression downregulation as well as between survival and decreased or absent VILIP-1 expression in lung cancer tissues (p<0.0001. VILIP-1 expression is silenced by promoter hypermethylation and histone deacetylation in aggressive NSCLC cell lines and primary tumors and its clinical evaluation could have a role as a predictor of short-term survival in lung cancer patients.

  13. Light-induced retinal degeneration causes a transient downregulation of melanopsin in the rat retina.

    Science.gov (United States)

    García-Ayuso, Diego; Galindo-Romero, Caridad; Di Pierdomenico, Johnny; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta; Villegas Pérez, María P

    2017-08-01

    In this work we study the effects of an acute light-induced retinal degeneration on the population of melanopsin positive retinal ganglion cells (m + RGCs) and the expression of the melanopsin protein in the retina. The m + RGCs may be more resistant than other RGCs to lesion, but the effects of an acute light exposure in this population are unknown. Albino rats were exposed to white light (3000 lux) continuously for 48 h and processed 0, 3, 7 or 30 days after light exposure (ALE). Whole-mounted retinas were immunodetected with antibodies against melanopsin, Brn3a, and rhodopsin to study the populations of m + RGC, Brn3a + RGC and rods (which are the most abundant photoreceptors in the rat retina). Three days ALE there was substantial rod loss in an arciform area of the superior retina and with time this loss expanded in the form of rings all throughout the retina. Light exposure did not affect the number of Brn3a + RGCs but diminished the numbers of m + RGCs. Immediately ALE there was a significant decrease in the mean number of immunodetected m + RGCs that was more marked in the superior retina. Later, the number of m + RGCs increased progressively and reached normal values one month ALE. Western blot analysis showed that melanopsin expression down-regulates shortly ALE and recovers thereafter, in accordance with the anatomical data. This study demonstrates that there is a transient downregulation of melanopsin expression in the RGCs during the first month ALE. Further studies would be needed to clarify the long-term effect of light exposure on the m + RGC population. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. LRIG1 negatively regulates RET mutants and is downregulated in thyroid cancer.

    Science.gov (United States)

    Lindquist, David; Alsina, Fernando C; Herdenberg, Carl; Larsson, Catharina; Höppener, Jo; Wang, Na; Paratcha, Gustavo; Tarján, Miklós; Tot, Tibor; Henriksson, Roger; Hedman, Håkan

    2018-04-01

    Papillary thyroid carcinoma (PTC) and medullary thyroid carcinoma (MTC) are characterized by genomic rearrangements and point mutations in the proto-oncogene RET. Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a suppressor of various receptor tyrosine kinases, including RET. LRIG1 expression levels are associated with patient survival in many cancer types. In the present study, we investigated whether the oncogenic RET mutants RET2A (C634R) and RET2B (M918T) were regulated by LRIG1, and the possible effects of LRIG1 expression in thyroid cancer were investigated in three different clinical cohorts and in a RET2B-driven mouse model of MTC. LRIG1 was shown to physically interact with both RET2A and RET2B and to restrict their ligand-independent activation. LRIG1 mRNA levels were downregulated in PTC and MTC compared to normal thyroid gland tissue. There was no apparent association between LRIG1 RNA or protein expression levels and patient survival in the studied cohorts. The transgenic RET2B mice developed pre-cancerous medullary thyroid lesions at a high frequency (36%); however, no overt cancers were observed. There was no significant difference in the incidence of pre-cancerous lesions between Lrig1 wild-type and Lrig1-deficient RET2B mice. In conclusion, the findings that LRIG1 is a negative regulator of RET2A and RET2B and is also downregulated in PTC and MTC may suggest that LRIG1 functions as a thyroid tumor suppressor.

  15. MCT8 is Downregulated by Short Time Iodine Overload in the Thyroid Gland of Rats.

    Science.gov (United States)

    de Souza, E C L; Dias, G R M; Cardoso, R C; Lima, L P; Fortunato, R S; Visser, T J; Vaisman, M; Ferreira, A C F; Carvalho, D P

    2015-11-01

    Wolff-Chaikoff effect is characterized by the blockade of thyroid hormone synthesis and secretion due to iodine overload. However, the regulation of monocarboxylate transporter 8 during Wolff-Chaikoff effect and its possible role in the rapid reduction of T4 secretion by the thyroid gland remains unclear. Patients with monocarboxylate transporter 8 gene loss-of-function mutations and monocarboxylate transporter 8 knockout mice were shown to have decreased serum T4 levels, indicating that monocarboxylate transporter 8 could be involved in the secretion of thyroid hormones from the thyroid gland. Herein, we aimed to evaluate the regulation of monocarboxylate transporter 8 during the Wolff-Chaikoff effect and the escape from iodine overload, besides the importance of iodine organification for this regulation. Monocarboxylate transporter 8 mRNA and protein levels significantly decreased after 1 day of NaI administration to rats, together with decreased serum T4; while no alteration was observed in LAT2 expression. Moreover, both monocarboxylate transporter 8 expression and serum T4 was restored after 6 days of NaI. The inhibition of thyroperoxidase activity by methimazole prevented the inhibitory effect of NaI on thyroid monocarboxylate transporter 8 expression, suggesting that an active thyroperoxidase is necessary for MCT8 downregulation by iodine overload, similarly to other thyroid markers, such as sodium iodide symporter. Therefore, we conclude that thyroid monocarboxylate transporter 8 expression is downregulated during iodine overload and that the normalization of its expression parallels the escape phenomenon. These data suggest a possible role for monocarboxylate transporter 8 in the changes of thyroid hormones secretion during the Wolff-Chaikoff effect and escape. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Use of bacterially expressed dsRNA to downregulate Entamoeba histolytica gene expression.

    Directory of Open Access Journals (Sweden)

    Carlos F Solis

    Full Text Available BACKGROUND: Modern RNA interference (RNAi methodologies using small interfering RNA (siRNA oligonucleotide duplexes or episomally synthesized hairpin RNA are valuable tools for the analysis of gene function in the protozoan parasite Entamoeba histolytica. However, these approaches still require time-consuming procedures including transfection and drug selection, or costly synthetic molecules. PRINCIPAL FINDINGS: Here we report an efficient and handy alternative for E. histolytica gene down-regulation mediated by bacterial double-stranded RNA (dsRNA targeting parasite genes. The Escherichia coli strain HT115 which is unable to degrade dsRNA, was genetically engineered to produce high quantities of long dsRNA segments targeting the genes that encode E. histolytica beta-tubulin and virulence factor KERP1. Trophozoites cultured in vitro were directly fed with dsRNA-expressing bacteria or soaked with purified dsRNA. Both dsRNA delivery methods resulted in significant reduction of protein expression. In vitro host cell-parasite assays showed that efficient downregulation of kerp1 gene expression mediated by bacterial dsRNA resulted in significant reduction of parasite adhesion and lytic capabilities, thus supporting a major role for KERP1 in the pathogenic process. Furthermore, treatment of trophozoites cultured in microtiter plates, with a repertoire of eighty-five distinct bacterial dsRNA segments targeting E. histolytica genes with unknown function, led to the identification of three genes potentially involved in the growth of the parasite. CONCLUSIONS: Our results showed that the use of bacterial dsRNA is a powerful method for the study of gene function in E. histolytica. This dsRNA delivery method is also technically suitable for the study of a large number of genes, thus opening interesting perspectives for the identification of novel drug and vaccine targets.

  17. Microbial symbionts in insects influence down-regulation of defense genes in maize.

    Directory of Open Access Journals (Sweden)

    Kelli L Barr

    Full Text Available Diabrotica virgifera virgifera larvae are root-feeding insects and significant pests to maize in North America and Europe. Little is known regarding how plants respond to insect attack of roots, thus complicating the selection for plant defense targets. Diabrotica virgifera virgifera is the most successful species in its genus and is the only Diabrotica beetle harboring an almost species-wide Wolbachia infection. Diabrotica virgifera virgifera are infected with Wolbachia and the typical gut flora found in soil-living, phytophagous insects. Diabrotica virgifera virgifera larvae cannot be reared aseptically and thus, it is not possible to observe the response of maize to effects of insect gut flora or other transient microbes. Because Wolbachia are heritable, it is possible to investigate whether Wolbachia infection affects the regulation of maize defenses. To answer if the success of Diabrotica virgifera virgifera is the result of microbial infection, Diabrotica virgifera virgifera were treated with antibiotics to eliminate Wolbachia and a microarray experiment was performed. Direct comparisons made between the response of maize root tissue to the feeding of antibiotic treated and untreated Diabrotica virgifera virgifera show down-regulation of plant defenses in the untreated insects compared to the antibiotic treated and control treatments. Results were confirmed via QRT-PCR. Biological and behavioral assays indicate that microbes have integrated into Diabrotica virgifera virgifera physiology without inducing negative effects and that antibiotic treatment did not affect the behavior or biology of the insect. The expression data and suggest that the pressure of microbes, which are most likely Wolbachia, mediate the down-regulation of many maize defenses via their insect hosts. This is the first report of a potential link between a microbial symbiont of an insect and a silencing effect in the insect host plant. This is also the first expression

  18. Evidence that sleep deprivation downregulates dopamine D2R in ventral striatum in the human brain.

    Science.gov (United States)

    Volkow, Nora D; Tomasi, Dardo; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S; Logan, Jean; Benveniste, Helene; Kim, Ron; Thanos, Panayotis K; Ferré, Sergi

    2012-05-09

    Dopamine D2 receptors are involved with wakefulness, but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [(11)C]raclopride in controls) in striatum, but could not determine whether this reflected dopamine increases ([(11)C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (a drug that increases dopamine by blocking dopamine transporters) during sleep deprivation versus rested sleep, with the assumption that methylphenidate's effects would be greater if, indeed, dopamine release was increased during sleep deprivation. We scanned 20 controls with [(11)C]raclopride after rested sleep and after 1 night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared with rested sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared with placebo) did not differ between rested sleep and sleep deprivation, and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to 1 night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans.

  19. Renal Collectrin Protects against Salt-Sensitive Hypertension and Is Downregulated by Angiotensin II.

    Science.gov (United States)

    Chu, Pei-Lun; Gigliotti, Joseph C; Cechova, Sylvia; Bodonyi-Kovacs, Gabor; Chan, Fang; Ralph, Donna Lee; Howell, Nancy; Kalantari, Kambiz; Klibanov, Alexander L; Carey, Robert M; McDonough, Alicia A; Le, Thu H

    2017-06-01

    Collectrin, encoded by the Tmem27 gene, is a transmembrane glycoprotein with approximately 50% homology with angiotensin converting enzyme 2, but without a catalytic domain. Collectrin is most abundantly expressed in the kidney proximal tubule and collecting duct epithelia, where it has an important role in amino acid transport. Collectrin is also expressed in endothelial cells throughout the vasculature, where it regulates L-arginine uptake. We previously reported that global deletion of collectrin leads to endothelial dysfunction, augmented salt sensitivity, and hypertension. Here, we performed kidney crosstransplants between wild-type (WT) and collectrin knockout ( Tmem27 Y/- ) mice to delineate the specific contribution of renal versus extrarenal collectrin on BP regulation and salt sensitivity. On a high-salt diet, WT mice with Tmem27 Y/- kidneys had the highest systolic BP and were the only group to exhibit glomerular mesangial hypercellularity. Additional studies showed that, on a high-salt diet, Tmem27 Y/- mice had lower renal blood flow, higher abundance of renal sodium-hydrogen antiporter 3, and lower lithium clearance than WT mice. In WT mice, administration of angiotensin II for 2 weeks downregulated collectrin expression in a type 1 angiotensin II receptor-dependent manner. This downregulation coincided with the onset of hypertension, such that WT and Tmem27 Y/- mice had similar levels of hypertension after 2 weeks of angiotensin II administration. Altogether, these data suggest that salt sensitivity is determined by intrarenal collectrin, and increasing the abundance or activity of collectrin may have therapeutic benefits in the treatment of hypertension and salt sensitivity. Copyright © 2017 by the American Society of Nephrology.

  20. Down-regulation of NDRG1 promotes migration of cancer cells during reoxygenation.

    Directory of Open Access Journals (Sweden)

    Liang-Chuan Lai

    Full Text Available One characteristic of tumor microenvironment is oxygen fluctuation, which results from hyper-proliferation and abnormal metabolism of tumor cells as well as disorganized neo-vasculature. Reoxygenation of tumors can induce oxidative stress, which leads to DNA damage and genomic instability. Although the cellular responses to hypoxia are well known, little is known about the dynamic response upon reoxygenation. In order to investigate the transcriptional responses of tumor adaptation to reoxygenation, breast cancer MCF-7 cells were cultured under 0.5% oxygen for 24 h followed by 24 h of reoxygenation in normoxia. Cells were harvested at 0, 1, 4, 8, 12, and 24 h during reoxygenation. The transcriptional profile of MCF-7 cells upon reoxygenation was examined using Illumina Human-6 v3 BeadChips. We identified 127 differentially expressed genes, of which 53.1% were up-regulated and 46.9% were down-regulated upon reoxygenation. Pathway analysis revealed that the HIF-1-alpha transcription factor network and validated targets of C-MYC transcriptional activation were significantly enriched in these differentially expressed genes. Among these genes, a subset of interest genes was further validated by quantitative reverse-transcription PCR. In particular, human N-MYC down-regulated gene 1 (NDRG1 was highly suppressed upon reoxygenation. NDRG1 is associated with a variety of stress and cell growth-regulatory conditions. To determine whether NDRG1 plays a role in reoxygenation, NDRG1 protein was overexpressed in MCF-7 cells. Upon reoxygenation, overexpression of NDRG1 significantly inhibited cell migration. Our results revealed the dynamic nature of gene expression in MCF-7 cells upon reoxygenation and demonstrated that NDRG1 is involved in tumor adaptation to reoxygenation.

  1. Lipopolysaccharide induces a downregulation of adiponectin receptors in-vitro and in-vivo

    Directory of Open Access Journals (Sweden)

    Alison Hall

    2015-11-01

    Full Text Available Background. Adipose tissue contributes to the inflammatory response through production of cytokines, recruitment of macrophages and modulation of the adiponectin system. Previous studies have identified a down-regulation of adiponectin in pathologies characterised by acute (sepsis and endotoxaemia and chronic inflammation (obesity and type-II diabetes mellitus. In this study, we investigated the hypothesis that LPS would reduce adiponectin receptor expression in a murine model of endotoxaemia and in adipoocyte and myocyte cell cultures.Methods. 25 mg/kg LPS was injected intra-peritoneally into C57BL/6J mice, equivalent volumes of normal saline were used in control animals. Mice were killed at 4 or 24 h post injection and tissues harvested. Murine adipocytes (3T3-L1 and myocytes (C2C12 were grown in standard culture, treated with LPS (0.1 µg/ml–10 µg/ml and harvested at 4 and 24 h. RNA was extracted and qPCR was conducted according to standard protocols and relative expression was calculated.Results. After LPS treatment there was a significant reduction after 4 h in gene expression of adipo R1 in muscle and peri-renal fat and of adipo R2 in liver, peri-renal fat and abdominal wall subcutaneous fat. After 24 h, significant reductions were limited to muscle. Cell culture extracts showed varied changes with reduction in adiponectin and adipo R2 gene expression only in adipocytes.Conclusions. LPS reduced adiponectin receptor gene expression in several tissues including adipocytes. This reflects a down-regulation of this anti-inflammatory and insulin-sensitising pathway in response to LPS. The trend towards base line after 24 h in tissue depots may reflect counter-regulatory mechanisms. Adiponectin receptor regulation differs in the tissues investigated.

  2. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jin [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wang, Ying [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Su, Ke [Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Liu, Min [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Hu, Peng-Chao [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Ma, Tian; Li, Jia-Xi [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wei, Lei [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zheng, Zhongliang, E-mail: biochem@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072 (China); Yang, Fang, E-mail: fang-yang@whu.edu.cn [Department of Physiology, School of Medicine, Wuhan University, Wuhan 430071 (China)

    2014-10-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.

  3. Zinc downregulates HIF-1α and inhibits its activity in tumor cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Lavinia Nardinocchi

    Full Text Available BACKGROUND: Hypoxia inducible factor-1α (HIF-1α is responsible for the majority of HIF-1-induced gene expression changes under hypoxia and for the "angiogenic switch" during tumor progression. HIF-1α is often upregulated in tumors leading to more aggressive tumor growth and chemoresistance, therefore representing an important target for antitumor intervention. We previously reported that zinc downregulated HIF-1α levels. Here, we evaluated the molecular mechanisms of zinc-induced HIF-1α downregulation and whether zinc affected HIF-1α also in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that zinc downregulated HIF-1α protein levels in human prostate cancer and glioblastoma cells under hypoxia, whether induced or constitutive. Investigations into the molecular mechanisms showed that zinc induced HIF-1α proteasomal degradation that was prevented by treatment with proteasomal inhibitor MG132. HIF-1α downregulation induced by zinc was ineffective in human RCC4 VHL-null renal carcinoma cell line; likewise, the HIF-1αP402/P564A mutant was resistant to zinc treatment. Similarly to HIF-1α, zinc downregulated also hypoxia-induced HIF-2α whereas the HIF-1β subunit remained unchanged. Zinc inhibited HIF-1α recruitment onto VEGF promoter and the zinc-induced suppression of HIF-1-dependent activation of VEGF correlated with reduction of glioblastoma and prostate cancer cell invasiveness in vitro. Finally, zinc administration downregulated HIF-1α levels in vivo, by bioluminescence imaging, and suppressed intratumoral VEGF expression. CONCLUSIONS/SIGNIFICANCE: These findings, by demonstrating that zinc induces HIF-1α proteasomal degradation, indicate that zinc could be useful as an inhibitor of HIF-1α in human tumors to repress important pathways involved in tumor progression, such as those induced by VEGF, MDR1, and Bcl2 target genes, and hopefully potentiate the anticancer therapies.

  4. Cognitive impairment in Wilson's disease

    Directory of Open Access Journals (Sweden)

    Norberto Anizio Ferreira Frota

    Full Text Available Abstract Wilson's disease (WD or hepatolenticular degeneration is a rare, genetic and systemic disease, caused by a deficit in the metabolism of copper, leading to its accumulation in different organs, mainly the liver, followed by the central nervous system, especially the basal ganglia. When symptoms begin between the second and third decades of life, approximately 50% of the patients show neurological symptoms. Although dystonia and dysarthria are the most common neurological signs, cognitive changes have been reported since the first cases were described in 1912. Memory change is one of the most common impairments, but other cognitive changes have been reported, including dementia in untreated cases. In this article we review the cognitive changes in WD patients and the occurrence of dementia.

  5. Methamphetamine-induced changes in the mice hippocampal neuropeptide Y system: implications for memory impairment

    DEFF Research Database (Denmark)

    Gonçalves, J; Baptista, S; Olesen, MV

    2012-01-01

    , being involved in learning and memory processing. It has been demonstrated that METH induces significant alteration in mice striatal NPY, Y(1) and Y(2) receptor mRNA levels. However, the impact of this drug on the hippocampal NPY system and its consequences remain unknown. Thus, in this study, we...... investigated the effect of METH intoxication on mouse hippocampal NPY levels, NPY receptors function, and memory performance. Results show that METH increased NPY, Y(2) and Y(5) receptor mRNA levels, as well as total NPY binding accounted by opposite up- and down-regulation of Y(2) and Y(1) functional binding......, respectively. Moreover, METH-induced impairment in memory performance and AKT/mammalian target of rapamycin pathway were both prevented by the Y(2) receptor antagonist, BIIE0246. These findings demonstrate that METH interferes with the hippocampal NPY system, which seems to be associated with memory failure...

  6. Lipopolysaccharide impairs hepatocyte ureagenesis from ammonia: involvement of mitochondrial aquaporin-8.

    Science.gov (United States)

    Soria, Leandro R; Marrone, Julieta; Molinas, Sara M; Lehmann, Guillermo L; Calamita, Giuseppe; Marinelli, Raúl A

    2014-05-02

    We recently reported that hepatocyte mitochondrial aquaporin-8 (mtAQP8) channels facilitate the uptake of ammonia and its metabolism into urea. Here we studied the effect of bacterial lipopolysaccharides (LPS) on ammonia-derived ureagenesis. In LPS-treated rats, hepatic mtAQP8 protein expression and diffusional ammonia permeability (measured utilizing ammonia analogues) of liver inner mitochondrial membranes were downregulated. NMR studies using 15N-labeled ammonia indicated that basal and glucagon-induced ureagenesis from ammonia were significantly reduced in hepatocytes from LPS-treated rats. Our data suggest that hepatocyte mtAQP8-mediated ammonia removal via ureagenesis is impaired by LPS, a mechanism potentially relevant to the molecular pathogenesis of defective hepatic ammonia detoxification in sepsis. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Clean Water Act 303(d) Listed Impaired Waters and their Causes of Impairment from All Years

    Data.gov (United States)

    U.S. Environmental Protection Agency — Waters identified as impaired as well as their associated causes of impairment from all approved Clean Water Act 303(d) lists submitted by the states. Includes all...

  8. 38 CFR 4.10 - Functional impairment.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Functional impairment. 4.10 Section 4.10 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS SCHEDULE FOR RATING DISABILITIES General Policy in Rating § 4.10 Functional impairment. The basis of disability...

  9. Visual Impairments. ERIC Digest #E511.

    Science.gov (United States)

    Council for Exceptional Children, Reston, VA.

    This digest provides basic information and resources on visual impairments. Legal and educational definitions are given for "legally blind,""partially sighted,""visually handicapped,""blind," and "low vision". Typical characteristics of individuals with visual impairments in the areas of cognitive…

  10. Eye problems in children with hearing impairment

    Directory of Open Access Journals (Sweden)

    Hadi Ostadimoghaddam

    2015-03-01

    Conclusion: In a comparison of children of the same ages, hearing-impaired children have significantly more eye problems; therefore, a possible relation between deafness and eye problems must exist. Paying attention to eye health assessment in hearing-impaired children may help prevent adding eye problems to hearing difficulties.

  11. Identification of Adults with Developmental Language Impairments

    Science.gov (United States)

    Fidler, Lesley J.; Plante, Elena; Vance, Rebecca

    2011-01-01

    Purpose: To assess the utility of a wide range of language measures (phonology, morphology, syntax, and semantics) for the identification of adults with developmental language impairment. Method: Measures were administered to 3 groups of adults, each representing a population expected to demonstrate high levels of language impairment, and to…

  12. Endocrine Risk Factors for Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Jae Hoon Moon

    2016-06-01

    Full Text Available Cognitive impairment, including Alzheimer's disease and other kinds of dementia, is a major health problem in older adults worldwide. Although numerous investigators have attempted to develop effective treatment modalities or drugs, there is no reasonably efficacious strategy for preventing or recovering from cognitive impairment. Therefore, modifiable risk factors for cognitive impairment have received attention, and the growing literature of metabolic risk factors for cognitive impairment has expanded from epidemiology to molecular pathogenesis and therapeutic management. This review focuses on the epidemiological evidence for the association between cognitive impairment and several endocrine risk factors, including insulin resistance, dyslipidemia, thyroid dysfunction, vitamin D deficiency, and subclinical atherosclerosis. Researches suggesting possible mechanisms for this association are reviewed. The research investigating modifiable endocrine risk factors for cognitive impairment provides clues for understanding the pathogenesis of cognitive impairment and developing novel treatment modalities. However, so far, interventional studies investigating the beneficial effect of the "modification" of these "modifiable risk factors" on cognitive impairment have reported variable results. Therefore, well-designed, randomized prospective interventional studies are needed.

  13. Appraising Employment Accomodation for Visually Impaired ...

    African Journals Online (AJOL)

    Shimeles_A

    awareness of the employers about this right and the lack of finance to install some technological apparatus in this respect. Ethiopia should thus work hard to realize its commitment in the Convention by addressing the needs of Ethiopian teachers with visual impairment. Key words. Disability, visually impaired, medical model ...

  14. Library Automation Design for Visually Impaired People

    Science.gov (United States)

    Yurtay, Nilufer; Bicil, Yucel; Celebi, Sait; Cit, Guluzar; Dural, Deniz

    2011-01-01

    Speech synthesis is a technology used in many different areas in computer science. This technology can bring a solution to reading activity of visually impaired people due to its text to speech conversion. Based on this problem, in this study, a system is designed needed for a visually impaired person to make use of all the library facilities in…

  15. Cognitive impairment in COPD: a systematic review

    Directory of Open Access Journals (Sweden)

    Irene Torres-Sánchez

    2015-04-01

    Full Text Available The objectives of this study were to characterize and clarify the relationships between the various cognitive domains affected in COPD patients and the disease itself, as well as to determine the prevalence of impairment in the various cognitive domains in such patients. To that end, we performed a systematic review using the following databases: PubMed, Scopus, and ScienceDirect. We included articles that provided information on cognitive impairment in COPD patients. The review of the findings of the articles showed a significant relationship between COPD and cognitive impairment. The most widely studied cognitive domains are memory and attention. Verbal memory and learning constitute the second most commonly impaired cognitive domain in patients with COPD. The prevalence of impairment in visuospatial memory and intermediate visual memory is 26.9% and 19.2%, respectively. We found that cognitive impairment is associated with the profile of COPD severity and its comorbidities. The articles reviewed demonstrated that there is considerable impairment of the cognitive domains memory and attention in patients with COPD. Future studies should address impairments in different cognitive domains according to the disease stage in patients with COPD.

  16. Recess for Students with Visual Impairments

    Science.gov (United States)

    Lucas, Matthew D.

    2010-01-01

    During recess, the participation of a student with visual impairments in terms of movement can often be both challenging and rewarding for the student and general education teacher. This paper will address common characteristics of students with visual impairments and present basic solutions to improve the participation of these students in the…

  17. Spatial Coding of Individuals with Visual Impairments

    Science.gov (United States)

    Papadopoulos, Konstantinos; Koustriava, Eleni; Kartasidou, Lefkothea

    2012-01-01

    The aim of this study is to examine the ability of children and adolescents with visual impairments to code and represent near space. Moreover, it examines the impact of the strategies they use and individual differences in their performance. A total of 30 individuals with visual impairments up to the age of 18 were given eight different object…

  18. Survivable Impairment-Aware Traffic Grooming

    NARCIS (Netherlands)

    Beshir, A.; Nuijts, R.; Malhotra, R.; Kuipers, F.

    2011-01-01

    Traffic grooming allows efficient utilization of network capacity by aggregating several independent traffic streams into a wavelength. In addition, survivability and impairment-awareness (i.e., taking into account the effect of physical impairments) are two important issues that have gained a lot

  19. Cognitive impairment and mortality among nonagenarians

    DEFF Research Database (Denmark)

    Andersen, Kjeld; Nybo, Hanne; Gaist, David

    2002-01-01

    Cognitive impairment has been associated with increased mortality. Most studies, however, have only included small numbers, if at all, of the very old. In a large nationwide survey of all Danes born in 1905 and still alive in 1998, where the baseline examination was conducted, we examined...... the impact of cognitive impairment on mortality over a 2-year period. No cognitive impairment was defined as a score of 24-30 points on the Mini Mental State Examination, mild cognitive impairment was defined as a score of 18-23 points, and severe impairment was defined as a score of 0-17 points. Cox...... regression analysis was applied to adjust for a number of known and suspected factors known or suspected of being associated with cognition and mortality (e.g. sociodemographic factors, sex, smoking, alcohol consumption, depressive symptoms, and physical abilities), and yielded hazard ratios (95% confidence...

  20. Adaptive behavior of children with visual impairment

    Directory of Open Access Journals (Sweden)

    Anđelković Marija

    2014-01-01

    Full Text Available Adaptive behavior includes a wide range of skills necessary for independent, safe and adequate performance of everyday activities. Practical, social and conceptual skills make the concept of adaptive behavior. The aim of this paper is to provide an insight into the existing studies of adaptive behavior in persons with visual impairment. The paper mainly focuses on the research on adaptive behavior in children with visual impairment. The results show that the acquisition of adaptive skills is mainly low or moderately low in children and youth with visual impairment. Children with visual impairment achieve the worst results in social skills and everyday life skills, while the most acquired are communication skills. Apart from the degree of visual impairment, difficulties in motor development also significantly influence the acquisition of practical and social skills of blind persons and persons with low vision.

  1. Downregulation of a GPCR by β-Arrestin2-Mediated Switch from an Endosomal to a TGN Recycling Pathway.

    Science.gov (United States)

    Abdullah, Nazish; Beg, Muheeb; Soares, David; Dittman, Jeremy S; McGraw, Timothy E

    2016-12-13

    Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone involved in nutrient homeostasis. GIP receptor (GIPR) is constitutively internalized and returned to the plasma membrane, atypical behavior for a G-protein-coupled receptor (GPCR). GIP promotes GIPR downregulation from the plasma membrane by inhibiting recycling without affecting internalization. This transient desensitization is achieved by altered intracellular trafficking of activated GIPR. GIP stimulation induces a switch in GIPR recycling from a rapid endosomal to a slow trans-Golgi network (TGN) pathway. GPCR kinases and β-arrestin2 are required for this switch in recycling. A coding sequence variant of GIPR, which has been associated with metabolic alterations, has altered post-activation trafficking characterized by enhanced downregulation and prolonged desensitization. Downregulation of the variant requires β-arrestin2 targeting to the TGN but is independent of GPCR kinases. The single amino acid substitution in the variant biases the receptor to promote GIP-stimulated β-arrestin2 recruitment without receptor phosphorylation, thereby enhancing downregulation. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. C-reactive protein inhibits survivin expression via Akt/mTOR pathway downregulation by PTEN expression in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Beom Seob Lee

    Full Text Available C-reactive protein (CRP is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We demonstrated that treatment of CRP resulted in a significant decrease of survivin protein expression in a concentration-dependent manner in cardiac myocytes. The upstream signaling proteins of survivin, such as Akt, mTOR and p70S6K, were also downregulated by CRP treatment. In addition, CRP increased the protein and mRNA levels of PTEN. The siRNA transfection or specific inhibitor treatment for PTEN restored the CRP-induced downregulation of Akt/mTOR/p70S6K pathway and survivin protein expression. Moreover, pretreatment with a specific p53 inhibitor decreased the CRP-induced PTEN expression. ERK-specific inhibitor also blocked the p53 phosphorylation and PTEN expression induced by CRP. Our study provides a novel insight into CRP-induced downregulation of survivin protein expression in cardiac myocytes through mechanisms that involved in downregulation of Akt/mTOR/p70S6K pathway by expression of PTEN.

  3. DOWN-REGULATION OF CINNAMOYL-COA REDUCTASE (CCR) IN POPLAR INVESTIGATED WITH CHEMOMETRICS AND 2D-NMR

    Science.gov (United States)

    An understanding of the lignification process is of vital importance, especially for the pulp and paper industry. Cinnamoyl-coa reductase (CCR) is an enzyme that plays a central role in the lignification process. Previous results have shown that down-regulation of CCR decreases the lignin content. B...

  4. C-reactive protein inhibits survivin expression via Akt/mTOR pathway downregulation by PTEN expression in cardiac myocytes.

    Science.gov (United States)

    Lee, Beom Seob; Kim, Soo Hyuk; Oh, Jaewon; Jin, Taewon; Choi, Eun Young; Park, Sungha; Lee, Sang-Hak; Chung, Ji Hyung; Kang, Seok-Min

    2014-01-01

    C-reactive protein (CRP) is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We demonstrated that treatment of CRP resulted in a significant decrease of survivin protein expression in a concentration-dependent manner in cardiac myocytes. The upstream signaling proteins of survivin, such as Akt, mTOR and p70S6K, were also downregulated by CRP treatment. In addition, CRP increased the protein and mRNA levels of PTEN. The siRNA transfection or specific inhibitor treatment for PTEN restored the CRP-induced downregulation of Akt/mTOR/p70S6K pathway and survivin protein expression. Moreover, pretreatment with a specific p53 inhibitor decreased the CRP-induced PTEN expression. ERK-specific inhibitor also blocked the p53 phosphorylation and PTEN expression induced by CRP. Our study provides a novel insight into CRP-induced downregulation of survivin protein expression in cardiac myocytes through mechanisms that involved in downregulation of Akt/mTOR/p70S6K pathway by expression of PTEN.

  5. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar

    Science.gov (United States)

    Steven L. Voelker; Barbara Lachenbruch; Frederick C. Meinzer; Michael Jourdes; Chanyoung Ki; Ann M. Patten; Laurence B. Davin; Norman G. Lewis; Gerald A. Tuskan; Lee Gunter; Stephen R. Decker; Michael J. Selig; Robert Sykes; Michael E. Himmel; Peter Kitin; Olga Shevchenko; Steven H. Strauss

    2010-01-01

    Transgenic down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been reported as a means for reducing lignin content in cell walls and increasing overall growth rates, thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplar (Populus tremula...

  6. T-cell receptor downregulation by ceramide-induced caspase activation and cleavage of the zeta chain

    DEFF Research Database (Denmark)

    Menné, C; Lauritsen, Jens Peter Holst; Dietrich, J

    2001-01-01

    Regulation of T-cell receptor (TCR) cell surface expression levels is probably an important mechanism by which T-cell responsiveness is controlled. Previously, two distinct pathways for TCR downregulation have been described. One is dependent on protein kinase C (PKC) and the leucine-based recept...

  7. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zi-xuan [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Rao, Wei [Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Huan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Nan-ding [Department of Cardiology, Xi' an Traditional Chinese Medicine Hospital, Xi' an, 710032 (China); Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Zong-ren, E-mail: zongren@fmmu.edu.cn [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China)

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.

  8. Overall major histocompatibility complex class I expression is not downregulated in cervix cancer, as detected by immunoelectron microscopy

    NARCIS (Netherlands)

    van Eijkeren, MA; Roovers, JP; Oorschot, [No Value; Geuze, HJ

    2004-01-01

    Downregulation of major histocompatibility complex (MHC) class I molecules in cervix cancer has been proposed as a mechanism for cancer cells to escape immunodetection. By means of light microscopic immunohistochemistry, it has been shown that in 20-70% of cervix cancers MHC class I is

  9. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    International Nuclear Information System (INIS)

    Shi, Zi-xuan; Rao, Wei; Wang, Huan; Wang, Nan-ding; Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang; Wang, Zong-ren

    2015-01-01

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion

  10. Down-regulation of ABCG2, a urate exporter, by parathyroid hormone enhances urate accumulation in secondary hyperparathyroidism.

    Science.gov (United States)

    Sugimoto, Ryusei; Watanabe, Hiroshi; Ikegami, Komei; Enoki, Yuki; Imafuku, Tadashi; Sakaguchi, Yoshiaki; Murata, Michiya; Nishida, Kento; Miyamura, Shigeyuki; Ishima, Yu; Tanaka, Motoko; Matsushita, Kazutaka; Komaba, Hirotaka; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2017-03-01

    Hyperuricemia occurs with increasing frequency among patients with hyperparathyroidism. However, the molecular mechanism by which the serum parathyroid hormone (PTH) affects serum urate levels remains unknown. This was studied in uremic rats with secondary hyperparathyroidism where serum urate levels were found to be increased and urate excretion in the intestine and kidney decreased, presumably due to down-regulation of the expression of the urate exporter ABCG2 in intestinal and renal epithelial membranes. These effects were prevented by administration of the calcimimetic cinacalcet, a PTH suppressor, suggesting that PTH may down-regulate ABCG2 expression. This was directly tested in intestinal Caco-2 cells where the expression of ABCG2 on the plasma membrane was down-regulated by PTH (1-34) while its mRNA level remained unchanged. Interestingly, an inactive PTH derivative (13-34) had no effect, suggesting that a posttranscriptional regulatory system acts through the PTH receptor to regulate ABCG2 plasma membrane expression. As found in an animal study, additional clinical investigations showed that treatment with cinacalcet resulted in significant reductions in serum urate levels together with decreases in PTH levels in patients with secondary hyperparathyroidism undergoing dialysis. Thus, PTH down-regulates ABCG2 expression on the plasma membrane to suppress intestinal and renal urate excretion, and the effects of PTH can be prevented by cinacalcet treatment. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  11. Diabetes Impairs the Aldehyde Detoxifying Capacity of the Retina.

    Science.gov (United States)

    McDowell, Rosemary E; McGahon, Mary K; Augustine, Josy; Chen, Mei; McGeown, J Graham; Curtis, Tim M

    2016-09-01

    We studied whether the accumulation of advanced lipoxidation end-products (ALEs) in the diabetic retina is linked to the impairment of lipid aldehyde detoxification mechanisms. Retinas were collected from nondiabetic and diabetic rats and processed for conventional and quantitative RT-PCR (qRT-PCR), Western blotting, immunohistochemistry, and aldehyde dehydrogenase (ALDH) activity assays. The effect of the ALDH1a1 inhibitor, NCT-501, on ALE accumulation and cell viability in cultured Müller glia also was investigated. The rat retina expressed a range of lipid aldehyde detoxifying ALDH and aldo-keto reductase (AKR) genes. In diabetes, mRNA levels were reduced for 5 of 9 transcripts tested. These findings contrasted with those in the lens and cornea where many of these enzymes were upregulated. We have reported previously accumulation of the acrolein (ACR)-derived ALE, FDP-lysine, in retinal Müller glia during diabetes. In the present study, we show that the main ACR-detoxifying ALDH and AKR genes expressed in the retina, namely, ALDH1a1, ALDH2, and AKR1b1, are principally localized to Müller glia. Diabetes-induced FDP-lysine accumulation in Müller glia was associated with a reduction in ALDH1a1 mRNA and protein expression in whole retina and a decrease in ALDH1a1-immunoreactivity specifically within these cells. No such changes were detected for ALDH2 or AKR1b1. Activity of ALDH was suppressed in the diabetic retina and blockade of ALDH1a1 in cultured Müller glia triggered FDP-lysine accumulation and reduced cell viability. These findings suggest that downregulation of ALDH and AKR enzymes, particularly ALDH1a1, may contribute ALE accumulation in the diabetic retina.

  12. Genistein inhibits the proliferation of human HER2-positive cancer cells by downregulating HER2 receptor

    Directory of Open Access Journals (Sweden)

    Guodong Shen

    2013-07-01

    Full Text Available Functional Foods in Health and Disease 2013; 3(7:291-299Research Article Open AccessGenistein inhibits the proliferation of human HER2-positive cancer cells by downregulating HER2 receptorGuodong Shen, Haiying Yu, Geng Bian, Min Gao, Lingqing Liu, Min Cheng, Gan Shen, Shilian HuGeriatrics Department, Gerontology Institute, Anhui Provincial Hospital; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230001, ChinaCorresponding Author: Shilian Hu, Department of Geriatrics, Anhui Provincial Hospital, No. 17 Lujiang Road, Hefei 230001, China Submission date: June 9, 2013; Acceptance date: July 19, 2013; Publication date: July 20, 2013ABSTRACTBackground: It was well studied that HER2/ErbB2/p185 overexpression in human malignant cancers correlates with poor prognosis and chemo-resistance. Meanwhile, Genistein (4,5,7-trihydroxyisoflavone, a major isoflavone component of soybeans and other leguminous plants, has been shown to exhibit a potent anti-proliferative effect on some sex hormone dependent cancers. Objective: The effects of genistein on the proliferation of human HER2-overexpressing breast and ovarian cancer cell lines were investigated, and the action mechanism was explored.Methods: Western blotting, fluorescence-activated cell sorting (FACS and immunofluorescence methods, cell proliferation assay kit from Promega and cell apoptosis assay kit from Biolegend were used. The dose- or time-response relationship of genistein were observed on the HER2-negative breast cancer cell line MCF-7 or HER2-positive breast cancer cell lines BT-474 and MCF-7/Her2 derived from MCF-7, and ovarian cancer cell line SKOV-3.Results: The addition of genistein ranged from 1-10g/ml in the medium for 48 hours had a marked inhibition on the proliferation of HER2-positive cancer cell lines MCF-7/Her2, BT-474 and SKOV-3, compared with tamoxifen and DMSO control (P<0.01, and a dose-dependent response was presented. However, genistein

  13. MicroRNA-383 upregulation protects against propofol-induced hippocampal neuron apoptosis and cognitive impairment.

    Science.gov (United States)

    Wang, Xinlei; Ding, Guoyou; Lai, Wei; Liu, Shiwen; Shuai, Jun

    2018-04-01

    Anesthesia-induced cognitive impairment is a recognized clinical phenomenon. The present study aimed to investigate the effect of microRNA-383 (miR-383) expression on propofol-induced learning and memory impairment. In total, 48 male Sprague-Dawley rats (weight, 250±10 g) were randomly divided into four groups (n=12 each): Control group, and three groups of rats that were anesthetized with propofol for 6 h and untreated (propofol model group), treated with a constructed lentivirus vector expressing miR-383 mimics (mimic + propofol group), or treated with miR-383 scramble (scramble + propofol group). The learning memory ability, hippocampal neuron apoptosis and expression of apoptosis-associated factors were detected using reverse transcription-quantitiative polymerase chain reaction and western blot analysis. Propofol treatment significantly reduced the relative mRNA and protein expression of miR-383, induced neuron apoptosis, upregulated the Bax/Bcl-2 ratio, downregulated the relative mRNA and protein expression levels of postsynaptic density protein 95 and cAMP-response element binding protein, and inactivated the phosphoinositide 3-kinase/protein kinase B signaling pathway. By contrast, miR-383 mimics significantly altered the propofol-induced dysregulation of the aforementioned factors. In conclusion, miR-383 mimic was able to repair propofol-induced cognitive impairment via protecting against hippocampal neuron apoptosis and dysregulation of related factors. The present study suggested that miR-383 may be used as a potential therapeutic target for the clinical treatment of cognitive impairment induced by propofol anesthesia.

  14. Arthritis and cognitive impairment in older adults.

    Science.gov (United States)

    Baker, Nancy A; Barbour, Kamil E; Helmick, Charles G; Zack, Matthew; Al Snih, Soham

    2017-06-01

    Adults aged 65 or older with arthritis may be at increased risk for cognitive impairment [cognitive impairment but not dementia (CIND) or dementia]. Studies have found associations between arthritis and cognition impairments; however, none have examined whether persons with arthritis develop cognitive impairments at higher rates than those without arthritis. Using data from the Health and Retirement Study, we estimated the prevalence of cognitive impairments in older adults with and without arthritis, and examined associations between arthritis status and cognitive impairments. We calculated incidence density ratios (IDRs) using generalized estimating equations to estimate associations between arthritis and cognitive impairments adjusting for age, sex, race/ethnicity, marital status, education, income, depression, obesity, smoking, the number of chronic conditions, physical activity, and birth cohort. The prevalence of CIND and dementia did not significantly differ between those with and without arthritis (CIND: 20.8%, 95% CI 19.7-21.9 vs. 18.3%, 95% CI 16.8-19.8; dementia: 5.2% 95% CI 4.6-5.8 vs. 5.1% 95% CI 4.3-5.9). After covariate control, older adults with arthritis did not differ significantly from those without arthritis for either cognitive outcome (CIND IDR: 1.6, 95% CI = 0.9-2.9; dementia IDR: 1.1, 95% CI = 0.4-3.3) and developed cognitive impairments at a similar rate to those without arthritis. Older adults with arthritis were not significantly more at risk to develop cognitive impairments and developed cognitive impairments at a similar rate as older adults without arthritis over 6 years.

  15. Current therapy for cognitive impairments

    Directory of Open Access Journals (Sweden)

    Natalia Vasilyevna Vakhnina

    2011-01-01

    Full Text Available Cognitive impairments (CIs are a highly common type of neurological disorders particularly in elderly patients. Choice of a therapeutic strategy for CI is determined by the etiology of abnormalities and their degree. Measures to prevent CI progression and dementia: adequate treatment of existing cardiovascular diseases, prevention of stroke, balanced nutrition, moderate physical and intellectual exercises, and combatting overweight and low activity are of basic value in treating mild and moderate CIs. According to the data of a number of investigations, the above measures reduce the risk of dementia, including in the genetically predisposed. Pharmacotherapy for mild and moderate CIs generally comprises vasoactive, neurometabolic, and noradrenergic agents. The indication for the use of memantine and/or acetylcholinergic agents, i.e. basic therapy for the most common forms of dementia (Alzheimer's disease, Lewy body dementia, vascular, and mixed dementia, hepatic colics is severe CIs. The long-term use of memantine and/or acetylcholinergic agents alleviates the cognitive and behavioral symptoms of dementia, enhances self-dependence in patients, and prolongs their active lifetime.

  16. Obesity may impair lactogenesis II.

    Science.gov (United States)

    Rasmussen, K M; Hilson, J A; Kjolhede, C L

    2001-11-01

    Data from livestock species and experimental animal models suggest that excess body fatness may impair lactogenesis. For example, it has long been known that overfed dairy cows are at risk of fat cow syndrome, a condition characterized by lactation failure in the early postpartum period. Obese rats often lose their litters in the early postpartum period to primary lactation failure. A negative association between high body mass index (BMI) before conception and the duration of lactation has been documented in studies from diverse human populations. Findings from our laboratory establish that among women who ever attempted to breastfeed their infants, high BMI before conception was also associated with failure to initiate breastfeeding successfully. In a more recent study, we found that high prepregnant BMI was specifically associated with later onset of lactogenesis II. This was mediated by parity but not by breastfeeding behavior. Psychosocial factors related to a woman's intention to breastfeed and her planned duration of breastfeeding did not modify this association. Taken together, these findings in animals and women strongly suggest that maternal obesity in the perinatal period is a cause of delayed lactogenesis.

  17. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    International Nuclear Information System (INIS)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia

    2016-01-01

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  18. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia, E-mail: lixiaqi_dph@sina.com

    2016-01-22

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  19. Dorsal Raphe Nucleus Down-Regulates Medial Prefrontal Cortex during Experience of Flow

    Directory of Open Access Journals (Sweden)

    Martin Ulrich

    2016-09-01

    Full Text Available Previous neuroimaging studies have suggested that the experience of flow aligns with a relative increase in activation of the dorsal raphe nucleus, and relative activation decreases of the medial prefrontal cortex and of the amygdala. In the present study, Dynamic Causal Modeling (DCM was used to explore effective connectivity between those brain regions. To test our hypothesis that the dorsal raphe nucleus causally down-regulates activity of the medial prefrontal cortex and/or of the amygdala, 23 healthy male students solved mental arithmetic tasks of varying difficulty during functional magnetic resonance imaging. A flow condition, with task demands automatically balanced with participants’ skill level, was compared with conditions of boredom and overload. DCM models were constructed modeling full reciprocal endogenous connections between the dorsal raphe nucleus, the medial prefrontal cortex, the amygdala, and the calcarine. The calcarine was included to allow sensory input to enter the system. Experimental conditions were modeled as exerting modulatory effects on various possible connections between the dorsal raphe nucleus, the medial prefrontal cortex, and the amygdala, but not on self-inhibitory connections, yielding a total of 64 alternative DCM models. Model space was partitioned into eight families based on commonalities in the arrangement of the modulatory effects. Random effects Bayesian Model Selection was applied to identify a possible winning family (and model. Although Bayesian Model Selection revealed a clear winning family, an outstanding winning model could not be identified. Therefore, Bayesian Model Averaging was performed over models within the winning family to obtain representative DCM parameters for subsequent analyses to test our hypothesis. In line with our expectations, Bayesian averaged parameters revealed stronger down-regulatory influence of the dorsal raphe nucleus on the medial prefrontal cortex when

  20. Short day-mediated cessation of growth requires the downregulation of AINTEGUMENTALIKE1 transcription factor in hybrid aspen.

    Directory of Open Access Journals (Sweden)

    Anna Karlberg

    2011-11-01

    Full Text Available Day length is a key environmental cue regulating the timing of major developmental transitions in plants. For example, in perennial plants such as the long-lived trees of the boreal forest, exposure to short days (SD leads to the termination of meristem activity and bud set (referred to as growth cessation. The mechanism underlying SD-mediated induction of growth cessation is poorly understood. Here we show that the AIL1-AIL4 (AINTEGUMENTALIKE transcription factors of the AP2 family are the downstream targets of the SD signal in the regulation of growth cessation response in hybrid aspen trees. AIL1 is expressed in the shoot apical meristem and leaf primordia, and exposure to SD signal downregulates AIL1 expression. Downregulation of AIL gene expression by SDs is altered in transgenic hybrid aspen plants that are defective in SD perception and/or response, e.g. PHYA or FT overexpressors. Importantly, SD-mediated regulation of growth cessation response is also affected by overexpression or downregulation of AIL gene expression. AIL1 protein can interact with the promoter of the key cell cycle genes, e.g. CYCD3.2, and downregulation of the expression of D-type cyclins after SD treatment is prevented by AIL1 overexpression. These data reveal that execution of SD-mediated growth cessation response requires the downregulation of AIL gene expression. Thus, while early acting components like PHYA and the CO/FT regulon are conserved in day-length regulation of flowering time and growth cessation between annual and perennial plants, signaling pathways downstream of SD perception diverge, with AIL transcription factors being novel targets of the CO/FT regulon connecting the perception of SD signal to the regulation of meristem activity.

  1. 20 CFR 404.1511 - Definition of a disabling impairment.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Definition of a disabling impairment. 404... Definition of a disabling impairment. (a) Disabled workers, persons disabled since childhood and, for months... disabling impairment is an impairment (or combination of impairments) which, of itself, is so severe that it...

  2. 20 CFR 416.911 - Definition of disabling impairment.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Definition of disabling impairment. 416.911... Definition of disabling impairment. (a) If you are an adult: (1) A disabling impairment is an impairment (or combination of impairments) which, of itself, is so severe that it meets or equals a set of criteria in the...

  3. Old age and the associated impairment of bones' adaptation to loading are associated with transcriptomic changes in cellular metabolism, cell-matrix interactions and the cell cycle.

    Science.gov (United States)

    Galea, Gabriel L; Meakin, Lee B; Harris, Marie A; Delisser, Peter J; Lanyon, Lance E; Harris, Stephen E; Price, Joanna S

    2017-01-30

    In old animals, bone's ability to adapt its mass and architecture to functional load-bearing requirements is diminished, resulting in bone loss characteristic of osteoporosis. Here we investigate transcriptomic changes associated with this impaired adaptive response. Young adult (19-week-old) and aged (19-month-old) female mice were subjected to unilateral axial tibial loading and their cortical shells harvested for microarray analysis between 1h and 24h following loading (36 mice per age group, 6 mice per loading group at 6 time points). In non-loaded aged bones, down-regulated genes are enriched for MAPK, Wnt and cell cycle components, including E2F1. E2F1 is the transcription factor most closely associated with genes down-regulated by ageing and is down-regulated at the protein level in osteocytes. Genes up-regulated in aged bone are enriched for carbohydrate metabolism, TNFα and TGFβ superfamily components. Loading stimulates rapid and sustained transcriptional responses in both age groups. However, genes related to proliferation are predominantly up-regulated in the young and down-regulated in the aged following loading, whereas those implicated in bioenergetics are down-regulated in the young and up-regulated in the aged. Networks of inter-related transcription factors regulated by E2F1 are loading-responsive in both age groups. Loading regulates genes involved in similar signalling cascades in both age groups, but these responses are more sustained in the young than aged. From this we conclude that cells in aged bone retain the capability to sense and transduce loading-related stimuli, but their ability to translate acute responses into functionally relevant outcomes is diminished. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Down-regulation of N-deacetylase-N-sulfotransferase-1 signaling in the developing diaphragmatic vasculature of nitrofen-induced congenital diaphragmatic hernia.

    Science.gov (United States)

    Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem

    2017-06-01

    Congenital diaphragmatic hernia (CDH) has been attributed to various developmental abnormalities of the underlying tissue components. N-deacetylase-N-sulfotransferase-1 (Ndst1) is a strongly expressed biosynthetic enzyme in endothelial cells, which has recently been identified as an important factor during diaphragmatic vascularization. Loss of endothelial Ndst1 has been demonstrated to cause angiogenic defects in the developing diaphragm and disrupt normal diaphragmatic development. Furthermore, deficiency of Ndst1 diminishes the expression of slit homolog 3 (Slit3), a known CDH-related gene that has been associated with reduced vascular density and muscle defects in the diaphragm of Slit3 -/- mice. We hypothesized that expression of Ndst1 and Slit3 is decreased in the diaphragmatic vasculature of fetal rats with nitrofen-induced CDH. Time-mated rats received either nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms were microdissected on D13, D15 and D18, and divided into control and nitrofen-exposed specimens. Gene expression levels of Ndst1 and Slit3 were assessed using qRT-PCR. Immunofluorescence-double-staining for Ndst1 and Slit3 was performed to evaluate protein expression and localization. Relative mRNA expression of Ndst1 and Slit3 was significantly decreased in pleuroperitoneal folds (D13), developing diaphragms (D15) and fully muscularized diaphragms (D18) of nitrofen-exposed fetuses compared to controls. Confocal-laser-scanning-microscopy revealed markedly diminished Ndst1 and Slit3 expression in endothelial cells within the diaphragmatic vasculature on D13, D15 and D18 compared to controls. Down-regulation of Ndst1 signaling in the developing diaphragm may impair endothelial cell migration and angiogenesis, thus leading to defective diaphragmatic vascular development and CDH. Ib. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Downregulation of Aquaporins (AQP1 and AQP5) and Na,K-ATPase in Porcine Reproductive and Respiratory Syndrome Virus-Infected Pig Lungs.

    Science.gov (United States)

    Zhang, Jianping; Yan, Meiping; Gu, Wei; Chen, Ao; Liu, Jie; Li, Lexing; Zhang, Songlin; Liu, Guoquan

    2018-03-12

    Aquaporins (AQPs) and Na,K-ATPase control water transport across the air space-capillary barrier in the distal lung and play an important role in the formation and resolution of lung edema. Porcine reproductive and respiratory syndrome virus (PRRSV) infection usually causes pulmonary inflammation and edema in the infected pig lungs. To investigate the possibility that PRRSV infection may cause altered expression of AQPs and Na,K-ATPase messenger RNA (mRNA) levels and protein expression of AQP1, AQP5, and Na,K-ATPase in the PRRSV-infected pig lungs were detected. Quantitative real-time PCR (qRT-PCR) analysis showed markedly decreased mRNA levels of AQP1 and AQP5 and Na,K-ATPase in the PRRSV-infected pig lungs compared to those of uninfected pig lungs. Western blot studies also revealed significantly reduced levels of AQP1, AQP5, and Na,K-ATPase proteins in the PRRSV-infected pig lungs. In addition, immunohistochemical (IHC) analysis showed decreased protein expression of AQP1 and AQP5 in the endothelial cells of the capillaries and venules and secretory cells of terminal bronchiole and the alveolar type I cells, respectively. The expression of Na,K-ATPase in the basolateral membrane of alveolar type II cells presented great reduction in the PRRSV-infected pig lungs. To further understand the reduction of these proteins, the ubiquitination of AQP1 and Na,K-ATPase was examined in uninfected and PRRSV-infected pig lungs. The results showed that there is no difference of ubiquitination for these proteins. Thus, our results suggest that PRRSV infection may induce downregulation of these proteins and cause impairment of edema resolution by failed water clearance in the infected pig lungs.

  6. Dexmedetomidine Protects PC12 Cells from Lidocaine-Induced Cytotoxicity Through Downregulation of COL3A1 Mediated by miR-let-7b.

    Science.gov (United States)

    Wang, Qiong; She, Yingjun; Bi, Xiaobao; Zhao, Baisong; Ruan, Xiangcai; Tan, Yonghong

    2017-07-01

    Safety concerns of some local anesthetics, such as lidocaine, have been raised in recent years due to potential neurological impairment. Dexmedetomidine may protect humans from neurotoxicity, and miR-let-7b is activated by nerve injury; however, the roles of miR-let-7b and its target gene in lidocaine-induced cytotoxicity are not well known. Through bioinformatics and a luciferase reporter assay, COL3A1 was suggested as a direct target gene of miR-let-7b. Here, we confirmed by measuring mRNA and protein levels that miR-let-7b was downregulated and COL3A1 was upregulated in lidocaine-treated cells, an observation that was reversed by dexmedetomidine. Similar to miR-let-7b mimics or knockdown of COL3A1, dexmedetomidine treatment reduced the expression of COL3A1, suppressed cell apoptosis and cell migration/invasion ability, and induced cell cycle progression and cell proliferation in PC12 cells, effects that were reversed by the miR-let-7b inhibitor. Meanwhile, proteins involved in cell apoptosis, such as Bcl2 and caspase 3, were impacted as well. Taken together, dexmedetomidine may protect PC12 cells from lidocaine-induced cytotoxicity through miR-let-7b and COL3A1, while also increasing Bcl2 and inhibiting caspase 3. Therefore, miR-let-7b and COL3A1 might play critical roles in neuronal injury, and they are potential therapeutic targets.

  7. Nicotine-induced survival signaling in lung cancer cells is dependent on their p53 status while its down-regulation by curcumin is independent

    Directory of Open Access Journals (Sweden)

    Puliyappadamba Vineshkumar T

    2010-08-01

    Full Text Available Abstract Background Lung cancer is the most lethal cancer and almost 90% of lung cancer is due to cigarette smoking. Even though nicotine, one of the major ingredients of cigarette smoke and the causative agent for addiction, is not a carcinogen by itself, several investigators have shown that nicotine can induce cell proliferation and angiogenesis. We observed that the proliferative index of nicotine is different in the lung cancer cell lines H1299 (p53-/- and A549 (p53+/+ which indicates that the mode of up-regulation of survival signals by nicotine might be different in cells with and without p53. Results While low concentrations of nicotine induced activation of NF-κB, Akt, Bcl2, MAPKs, AP1 and IAPs in H1299, it failed to induce NF-κB in A549, and compared to H1299, almost 100 times higher concentration of nicotine was required to induce all other survival signals in A549. Transfection of WT-p53 and DN-p53 in H1299 and A549 respectively, reversed the mode of activation of survival signals. Curcumin down-regulated all the survival signals induced by nicotine in both the cells, irrespective of their p53 status. The hypothesis was confirmed when lower concentrations of nicotine induced NF-κB in two more lung cancer cells, Hop-92 and NCI-H522 with mutant p53 status. Silencing of p53 in A549 using siRNA made the cells susceptible to nicotine-induced NF-κB nuclear translocation as in A549 DN-p53 cells. Conclusions The present study reveals a detrimental role of nicotine especially in lung cancer patients with impaired p53 status and identifies curcumin as a potential chemopreventive.

  8. Activation of STAT3/HIF-1α/Hes-1 axis promotes trastuzumab resistance in HER2-overexpressing breast cancer cells via down-regulation of PTEN.

    Science.gov (United States)

    Aghazadeh, Safiyeh; Yazdanparast, Razieh

    2017-08-01

    Resistance to the HER2-targeted antibody trastuzumab remains to be a major clinical challenge in the treatment of HER2-positive breast cancer. Hyper-activation of STAT3 is proposed to be a predictive biomarker of trastuzumab resistance. However, the precise mechanism(s) remains poorly defined. Evidence is emerging that HIF-1α, a central downstream element of STAT3 pathway, serves a pivotal role in the complex signaling network with subsequent diverse cellular events. We have established trastuzumab resistant SKBR3 cells (SKBR3-TR). The cell viability, apoptosis as well as western blot, siRNA transfection and co-immunoprecipitation assays were performed to evaluate the involvement of STAT3/HIF-1α in modulation of trastuzumab resistance. We found that in SKBR3-TR cells and conditioned medium-treated parental cells, constitutive phosphorylated STAT3 coincided with prominent up-regulation of HIF-1α which was accompanied with PTEN attenuation. Moreover, the inhibition of STAT3 activation by Stattic and/or genetically STAT3 knocking down decreased HIF-1α level in SKBR3-TR cells. Additionally, treatment with Stattic and/or STAT3 siRNA engendered the up-regulation of PTEN protein in STAT3-inhibited resistant cells. Restoration of PTEN was also observed following siRNA-mediated silencing of HIF-1α expression. Moreover, down-regulation of HIF-1α caused a reduction in the HES-1 content. Further study with HES-1 specific siRNA revealed the elevation of PTEN expression in HES-1 knock-down trastuzumab resistant cells. The impairment of STAT3-HIF-1α-HES-1 pathway restored trastuzumab sensitivity through up-regulation of PTEN protein. These findings highlighted the signal integrator role of HIF-1α in STAT3-mediated trastuzumab resistance induction which would be valuable in designing more efficient chemosensitization strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Glucose-6-Phosphate Dehydrogenase Enhances Antiviral Response through Downregulation of NADPH Sensor HSCARG and Upregulation of NF-κB Signaling

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Wu

    2015-12-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD-deficient cells are highly susceptible to viral infection. This study examined the mechanism underlying this phenomenon by measuring the expression of antiviral genes—tumor necrosis factor alpha (TNF-α and GTPase myxovirus resistance 1 (MX1—in G6PD-knockdown cells upon human coronavirus 229E (HCoV-229E and enterovirus 71 (EV71 infection. Molecular analysis revealed that the promoter activities of TNF-α and MX1 were downregulated in G6PD-knockdown cells, and that the IκB degradation and DNA binding activity of NF-κB were decreased. The HSCARG protein, a nicotinamide adenine dinucleotide phosphate (NADPH sensor and negative regulator of NF-κB, was upregulated in G6PD-knockdown cells with decreased NADPH/NADP+ ratio. Treatment of G6PD-knockdown cells with siRNA against HSCARG enhanced the DNA binding activity of NF-κB and the expression of TNF-α and MX1, but suppressed the expression of viral genes; however, the overexpression of HSCARG inhibited the antiviral response. Exogenous G6PD or IDH1 expression inhibited the expression of HSCARG, resulting in increased expression of TNF-α and MX1 and reduced viral gene expression upon virus infection. Our findings suggest that the increased susceptibility of the G6PD-knockdown cells to viral infection was due to impaired NF-κB signaling and antiviral response mediated by HSCARG.

  10. Cadmium delays non-homologous end joining (NHEJ) repair via inhibition of DNA-PKcs phosphorylation and downregulation of XRCC4 and Ligase IV

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weiwei; Gu, Xueyan; Zhang, Xiaoning; Kong, Jinxin [Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000 (China); Ding, Nan [Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Qi, Yongmei; Zhang, Yingmei [Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000 (China); Wang, Jufang [Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Huang, Dejun, E-mail: huangdj@lzu.edu.cn [Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000 (China)

    2015-09-15

    Highlights: • Cadmium (Cd) exposure delayed the repair of DNA damage induced by X-ray. • Cd exposure altered the phosphorylation of DNA-PKcs on Thr-2609 and Ser-2056 sites. • Cd impaired the formation of XRCC4 and Ligase IV foci, and down-regulated their protein expression. • Zinc mitigated the effects of Cd on DDR by regulating pDNA-PKcs (Thr-2609), XRCC4 and Ligase IV. - Abstract: Although studies have shown that cadmium (Cd) interfered with DNA damage repair (DDR), whether Cd could affect non-homologous end joining (NHEJ) repair remains elusive. To further understand the effect of Cd on DDR, we used X-ray irradiation of Hela cells as an in vitro model system, along with γH2AX and 53BP1 as markers for DNA damage. Results showed that X-ray significantly increased γH2AX and 53BP1 foci in Hela cells (p < 0.01), all of which are characteristic of accrued DNA damage. The number of foci declined rapidly over time (1–8 h postirradiation), indicating an initiation of NHEJ process. However, the disappearance of γH2AX and 53BP1 foci was remarkably slowed by Cd pretreatment (p < 0.01), suggesting that Cd reduced the efficiency of NHEJ. To further elucidate the mechanisms of Cd toxicity, several markers of NHEJ pathway including Ku70, DNA-PKcs, XRCC4 and Ligase IV were examined. Our data showed that Cd altered the phosphorylation of DNA-PKcs, and reduced the expression of both XRCC4 and Ligase IV in irradiated cells. These observations are indicative of the impairment of NHEJ-dependent DNA repair pathways. In addition, zinc (Zn) mitigated the effects of Cd on NHEJ, suggesting that the Cd-induced NHEJ alteration may partly result from the displacement of Zn or from an interference with the normal function of Zn-containing proteins by Cd. Our findings provide a new insight into the toxicity of Cd on NHEJ repair and its underlying mechanisms in human cells.

  11. Tristetraprolin Down-Regulation Contributes to Persistent TNF-Alpha Expression Induced by Cigarette Smoke Extract through a Post-Transcriptional Mechanism

    Science.gov (United States)

    Cheng, Ming-Liang; Zhang, Quan; Mu, Mao; Li, Hong; Luo, Yuan; Liang, Yue-Dong; Luo, Xin-Hua; Gao, Chang-Qing; Jackson, Patricia L.; Wells, J. Michael; Zhou, Yong; Hu, Meng; Cai, Guoqiang; Thannickal, Victor J.; Steele, Chad; Blalock, J. Edwin; Han, Xiaosi; Chen, Ching-Yi; Ding, Qiang

    2016-01-01

    Rationale Tumor necrosis factor-alpha (TNF-α) is a potent pro-inflammatory mediator and its expression is up-regulated in chronic obstructive pulmonary disease (COPD). Tristetraprolin (TTP) is implicated in regulation of TNF-α expression; however, whether TTP is involved in cigarette smoke-induced TNF-α expression has not been determined. Methods TTP expression was examined by western blot analysis in murine alveolar macrophages and alveolar epithelial cells challenged without or with cigarette smoke extract (CSE). TNF-α mRNA stability, and the decay of TNF-α mRNA, were determined by real-time quantitative RT-PCR. TNF-α protein levels were examined at the same time in these cells. To identify the molecular mechanism involved, a construct expressing the human beta-globin reporter mRNA containing the TNF-α 3’-untranslated region was generated to characterize the TTP targeted site within TNF-α mRNA. Results CSE induced TTP down-regulation in alveolar macrophages and alveolar epithelial cells. Reduced TTP expression resulted in significantly increased TNF-α mRNA stability. Importantly, increased TNF-α mRNA stability due to impaired TTP function resulted in significantly increased TNF-α levels in these cells. Forced TTP expression abrogated the increased TNF-α mRNA stability and expression induced by CSE. By using the globin reporter construct containing TNF-α mRNA 3’-untranslated region, the data indicate that TTP directly targets the adenine- and uridine-rich region (ARE) of TNF-α mRNA and negatively regulates TNF-α expression at the post-transcriptional level. Conclusion The data demonstrate that cigarette smoke exposure reduces TTP expression and impairs TTP function, resulting in significantly increased TNF-α mRNA stability and excessive TNF-α expression in alveolar macrophages and epithelial cells. The data suggest that TTP is a novel post-transcriptional regulator and limits excessive TNF-α expression and inflammatory response induced by

  12. SLX4-SLX1 Protein-independent Down-regulation of MUS81-EME1 Protein by HIV-1 Viral Protein R (Vpr).

    Science.gov (United States)

    Zhou, Xiaohong; DeLucia, Maria; Ahn, Jinwoo

    2016-08-12

    Evolutionarily conserved structure-selective endonuclease MUS81 forms a complex with EME1 and further associates with another endonuclease SLX4-SLX1 to form a four-subunit complex of MUS81-EME1-SLX4-SLX1, coordinating distinctive biochemical activities of both endonucleases in DNA repair. Viral protein R (Vpr), a highly conserved accessory protein in primate lentiviruses, was previously reported to bind SLX4 to mediate down-regulation of MUS81. However, the detailed mechanism underlying MUS81 down-regulation is unclear. Here, we report that HIV-1 Vpr down-regulates both MUS81 and its cofactor EME1 by hijacking the host CRL4-DCAF1 E3 ubiquitin ligase. Multiple Vpr variants, from HIV-1 and SIV, down-regulate both MUS81 and EME1. Furthermore, a C-terminally truncated Vpr mutant and point mutants R80A and Q65R, all of which lack G2 arrest activity, are able to down-regulate MUS81-EME1, suggesting that Vpr-induced G2 arrest is not correlated with MUS81-EME1 down-regulation. We also show that neither the interaction of MUS81-EME1 with Vpr nor their down-regulation is dependent on SLX4-SLX1. Together, these data provide new insight on a conserved function of Vpr in a host endonuclease down-regulation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Intracranial stenosis in cognitive impairment and dementia.

    Science.gov (United States)

    Hilal, Saima; Xu, Xin; Ikram, M Kamran; Vrooman, Henri; Venketasubramanian, Narayanaswamy; Chen, Christopher

    2017-06-01

    Intracranial stenosis is a common vascular lesion observed in Asian and other non-Caucasian stroke populations. However, its role in cognitive impairment and dementia has been under-studied. We, therefore, examined the association of intracranial stenosis with cognitive impairment, dementia and their subtypes in a memory clinic case-control study, where all subjects underwent detailed neuropsychological assessment and 3 T neuroimaging including three-dimensional time-of-flight magnetic resonance angiography. Intracranial stenosis was defined as ≥50% narrowing in any of the intracranial arteries. A total of 424 subjects were recruited of whom 97 were classified as no cognitive impairment, 107 as cognitive impairment no dementia, 70 vascular cognitive impairment no dementia, 121 Alzheimer's Disease, and 30 vascular dementia. Intracranial stenosis was associated with dementia (age/gender/education - adjusted odds ratios (OR): 4.73, 95% confidence interval (CI): 1.93-11.60) and vascular cognitive impairment no dementia (OR: 3.98, 95% CI: 1.59-9.93). These associations were independent of cardiovascular risk factors and MRI markers. However, the association with Alzheimer's Disease and vascular dementia became attenuated in the presence of white matter hyperintensities. Intracranial stenosis is associated with vascular cognitive impairment no dementia independent of MRI markers. In Alzheimer's Disease and vascular dementia, this association is mediated by cerebrovascular disease. Future studies focusing on perfusion and functional markers are needed to determine the pathophysiological mechanism(s) linking intracranial stenosis and cognition so as to identify treatment strategies.

  14. Acute lesions that impair affective empathy

    Science.gov (United States)

    Oishi, Kenichi; Hsu, John; Lindquist, Martin; Gottesman, Rebecca F.; Jarso, Samson; Crainiceanu, Ciprian; Mori, Susumu

    2013-01-01

    Functional imaging studies of healthy participants and previous lesion studies have provided evidence that empathy involves dissociable cognitive functions that rely on at least partially distinct neural networks that can be individually impaired by brain damage. These studies converge in support of the proposal that affective empathy—making inferences about how another person feels—engages at least the following areas: prefrontal cortex, orbitofrontal gyrus, anterior insula, anterior cingulate cortex, temporal pole, amygdala and temporoparietal junction. We hypothesized that right-sided lesions to any one of these structures, except temporoparietal junction, would cause impaired affective empathy (whereas bilateral damage to temporoparietal junction would be required to disrupt empathy). We studied 27 patients with acute right hemisphere ischaemic stroke and 24 neurologically intact inpatients on a test of affective empathy. Acute impairment of affective empathy was associated with infarcts in the hypothesized network, particularly temporal pole and anterior insula. All patients with impaired affective empathy were also impaired in comprehension of affective prosody, but many patients with impairments in prosodic comprehension had spared affective empathy. Patients with impaired affective empathy were older, but showed no difference in performance on tests of hemispatial neglect, volume of infarct or sex distribution compared with patients with intact affective empathy. PMID:23824490

  15. Cognitive impairment in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Kutashov V.A.

    2016-06-01

    Full Text Available Aim: to identify the degree of cognitive impairment (CN and to optimize the treatment of patients with multiple sclerosis (MS. Material and methods. A total of 695 patients (278 men and 417 women were ranged from 18 to 63 years. The mean age was 30.2±0.7 years: women (417 28.5±0.5 years, while for men (278 31.8±0.7 years. Relaps-ing-remitting type (RT of MS was established in 520 patients (74.8%, secondary progressive type (VPT MS in 132 patients (18.9% and primary progressive type (PPT MS in 10 patients (1.5%. Clinically isolated syndrome (CIS was detected in 33 patients (4.8%. The diagnosis of MS 662 patients according to the criteria McDonald etal. (2005. Score of neurologic deficit was carried out on an extended scale of disability (Expanded Disability Status Scale — EDSS. CN were evaluated by conventional tests. To estimate the orientation in time, assessment of short-term and long-term memory, attention and concentration, as well as executive functions, memory, language, evaluation of optical-spatial activities, conceptual thinking, the account used by the Montreal Cognitive Assessment Scale (MoCA. For the screening of dementia with a primary lesion of the frontal lobes and subcortical cerebral structures used battery frontal test to assess frontal dysfunction. Results. The ratio of male (265 and female (397 was 1:1.5. The severity of the condition patients EDSS scale ranged from 1.5 to 8.0 points, and the average score was 3.5±1.2. In the group of patients with RT RS average score EDSS was more than a half (2.5±1.1, than in the group of patients with MS VAC (5.5±1.2 and POS PC (6.5±1.2. In the study of history, it was found that the development of the RS (662 patients was preceded by the following conditions: a viral infection in 277 patients (41.84%; fatigue in 147 patients (22.21%; transferred psycho-emotional load from 218 (32.93%; after pregnancy and childbirth in 20 patients (3.02%. Conclusion. Among the patients with MS

  16. Aspirin Inhibits Colon Cancer Cell and Tumor Growth and Downregulates Specificity Protein (Sp) Transcription Factors

    Science.gov (United States)

    Pathi, Satya; Jutooru, Indira; Chadalapaka, Gayathri; Nair, Vijayalekshmi; Lee, Syng-Ook; Safe, Stephen

    2012-01-01

    Acetylsalicylic acid (aspirin) is highly effective for treating colon cancer patients postdiagnosis; however, the mechanisms of action of aspirin in colon cancer are not well defined. Aspirin and its major metabolite sodium salicylate induced apoptosis and decreased colon cancer cell growth and the sodium salt of aspirin also inhibited tumor growth in an athymic nude mouse xenograft model. Colon cancer cell growth inhibition was accompanied by downregulation of Sp1, Sp3 and Sp4 proteins and decreased expression of Sp-regulated gene products including bcl-2, survivin, VEGF, VEGFR1, cyclin D1, c-MET and p65 (NFκB). Moreover, we also showed by RNA interference that β-catenin, an important target of aspirin in some studies, is an Sp-regulated gene. Aspirin induced nuclear caspase-dependent cleavage of Sp1, Sp3 and Sp4 proteins and this response was related to sequestration of zinc ions since addition of zinc sulfate blocked aspirin-mediated apoptosis and repression of Sp proteins. The results demonstrate an important underlying mechanism of action of aspirin as an anticancer agent and, based on the rapid metabolism of aspirin to salicylate in humans and the high salicylate/aspirin ratios in serum, it is likely that the anticancer activity of aspirin is also due to the salicylate metabolite. PMID:23110215

  17. Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia

    Directory of Open Access Journals (Sweden)

    Meng-Chuan Chen

    2015-07-01

    Full Text Available Activation of hypoxia-induced hypoxia-inducible factors-1 (HIF-1 plays a critical role in promoting tumor angiogenesis, growth and metastasis. Low molecular weight fucoidan (LMWF is prepared from brown algae, and exhibits anticancer activity. However, whether LMWF attenuates hypoxia-induced angiogenesis in bladder cancer cells and the molecular mechanisms involved remain unclear. This is the first study to demonstrate that LMWF can inhibit hypoxia-stimulated H2O2 formation, HIF-1 accumulation and transcriptional activity vascular endothelial growth factor (VEGF secretion, and the migration and invasion in hypoxic human bladder cancer cells (T24 cells. LMWF also downregulated hypoxia-activated phosphorylation of PI3K/AKT/mTOR/p70S6K/4EBP-1 signaling in T24 cells. Blocking PI3K/AKT or mTOR activity strongly diminished hypoxia-induced HIF-1α expression and VEGF secretion in T24 cells, supporting the involvement of PI3K/AKT/mTOR in the induction of HIF-1α and VEGF. Additionally, LMWF significantly attenuated angiogenesis in vitro and in vivo evidenced by reduction of tube formation of hypoxic human umbilical vascular endothelial cells and blood capillary generation in the tumor. Similarly, administration of LMWF also inhibited the HIF-1α and VEGF expression in vivo, accompanied by a reduction of tumor growth. In summary, under hypoxia conditions, the antiangiogenic activity of LMWF in bladder cancer may be associated with suppressing HIF-1/VEGF-regulated signaling pathway.

  18. Downregulation of tumor suppressor QKI in gastric cancer and its implication in cancer prognosis

    International Nuclear Information System (INIS)

    Bian, Yongqian; Wang, Li; Lu, Huanyu; Yang, Guodong; Zhang, Zhang; Fu, Haiyan; Lu, Xiaozhao; Wei, Mengying; Sun, Jianyong; Zhao, Qingchuan; Dong, Guanglong; Lu, Zifan

    2012-01-01

    Highlights: ► QKI expression is decreased in gastric cancer samples. ► Promoter hyper methylation contributes to the downregulation of QKI. ► QKI inhibits the growth of gastric cancer cells. ► Decreased QKI expression predicts poor survival. -- Abstract: Gastric cancer (GC) is the fourth most common cancer and second leading cause of cancer-related death worldwide. RNA-binding protein Quaking (QKI) is a newly identified tumor suppressor in multiple cancers, while its role in GC is largely unknown. Our study here aimed to clarify the relationship between QKI expression with the clinicopathologic characteristics and the prognosis of GC. In the 222 GC patients’ specimens, QKI expression was found to be significantly decreased in most of the GC tissues, which was largely due to promoter hypermethylation. QKI overexpression reduced the proliferation ability of GC cell line in vitro study. In addition, the reduced QKI expression correlated well with poor differentiation status, depth of invasion, gastric lymph node metastasis, distant metastasis, advanced TNM stage, and poor survival. Multivariate analysis showed QKI expression was an independent prognostic factor for patient survival.

  19. FSHD myoblasts fail to downregulate intermediate filament protein vimentin during myogenic differentiation.

    Directory of Open Access Journals (Sweden)

    Lipinski M.

    2011-10-01

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal dominant hereditary neuromuscular disorder. The clinical features of FSHD include weakness of the facial and shoulder girdle muscles followed by wasting of skeletal muscles of the pelvic girdle and lower extremities. Although FSHD myoblasts grown in vitro can be induced to differentiate into myotubes by serum starvation, the resulting FSHD myotubes have been shown previously to be morphologically abnormal. Aim. In order to find the cause of morphological anomalies of FSHD myotubes we compared in vitro myogenic differentiation of normal and FSHD myoblasts at the protein level. Methods. We induced myogenic differentiation of normal and FSHD myoblasts by serum starvation. We then compared protein extracts from proliferating myoblasts and differentiated myotubes using SDS-PAGE followed by mass spectrometry identification of differentially expressed proteins. Results. We demonstrated that the expression of vimentin was elevated at the protein and mRNA levels in FSHD myotubes as compared to normal myotubes. Conclusions. We demonstrate for the first time that in contrast to normal myoblasts, FSHD myoblasts fail to downregulate vimentin after induction of in vitro myogenic differentiation. We suggest that vimentin could be an easily detectable marker of FSHD myotubes

  20. Downregulation of the Na/K-ATPase pump by leptospiral glycolipoprotein activates the NLRP3 inflammasome.

    Science.gov (United States)

    Lacroix-Lamandé, Sonia; d'Andon, Martine Fanton; Michel, Eric; Ratet, Gwenn; Philpott, Dana J; Girardin, Stephen E; Boneca, Ivo G; Vandewalle, Alain; Werts, Catherine

    2012-03-15

    Leptospira interrogans is responsible for a zoonotic disease known to induce severe kidney dysfunction and inflammation. In this work, we demonstrate that L. interrogans induces NLRP3 inflammasome-dependent secretion of IL-1β through the alteration of potassium transport in bone marrow-derived macrophages. Lysosome destabilization also contributed to the IL-1β production upon stimulation with live, but not dead, bacteria. Using bone marrow-derived macrophages from various TLRs and nucleotide-binding oligomerization domain-deficient mice, we further determined that IL-1β production was dependent on TLR2 and TLR4, suggesting a participation of the leptospiral LPS to this process. Hypokaliemia in leptospirosis has been linked to the presence of glycolipoprotein, a cell wall component of L. interrogans that is known to inhibit the expression and functions of the Na/K-ATPase pump. We show in this study that glycolipoprotein activates the inflammasome and synergizes with leptospiral LPS to produce IL-1β, mimicking the effect of whole bacteria. These results were confirmed in vivo, as wild-type mice expressed more IL-1β in the kidney than TLR2/4-deficient mice 3 d postinfection with L. interrogans. Collectively, these findings provide the first characterization, to our knowledge, of bacteria-induced activation of the NLRP3 inflammasome through the downregulation of a specific host potassium transporter.

  1. B-cell translocation gene 1 is downregulated by promoter methylation in ovarian carcinoma.

    Science.gov (United States)

    Kim, Ji-Ye; Do, Sung-Im; Bae, Go Eun; Kim, Hyun-Soo

    2017-01-01

    A better understanding of tumor biology is important in the identification of molecules that are downregulated in malignancy and in determining their role in tumor suppression. B-cell translocation gene 1 (BTG1) has been shown to act as a tumor suppressor in several types of human malignancy. In this study, we analyzed BTG1 expression in ovarian carcinoma cell lines, and we investigated the mechanism underlying the observed alterations. The methylation status of the BTG1 promoter region was determined by methylation-specific polymerase chain reaction, and the effect of demethylation on BTG1 expression was analyzed. BTG1 protein expression in ovarian high-grade serous carcinoma tissue samples was evaluated using immunohistochemistry. BTG1 mRNA and protein expression were reduced in ovarian carcinoma cells. In BTG1-silenced ovarian cancer cells, the BTG1 promoter was highly methylated. Treatment with 5-aza-deoxycytidine significantly elevated BTG1 mRNA and protein expression. Immunostaining demonstrated that BTG1 expression was significantly lower in ovarian carcinoma tissue samples than nonpathological ovaries and fallopian tubes. We demonstrated that BTG1 silencing in ovarian carcinoma occurs through epigenetic repression and is involved in the ovarian carcinogenesis. Our data suggest that BTG1 is a potential therapeutic target for patients with ovarian carcinoma.

  2. Akt regulates drug-induced cell death through Bcl-w downregulation.

    Directory of Open Access Journals (Sweden)

    Michela Garofalo

    Full Text Available Akt is a serine threonine kinase with a major role in transducing survival signals and regulating proteins involved in apoptosis. To find new interactors of Akt involved in cell survival, we performed a two-hybrid screening in yeast using human full-length Akt c-DNA as bait and a murine c-DNA library as prey. Among the 80 clones obtained, two were identified as Bcl-w. Bcl-w is a member of the Bcl-2 family that is essential for the regulation of cellular survival, and that is up-regulated in different human tumors, such as gastric and colorectal carcinomas. Direct interaction of Bcl-w with Akt was confirmed by immunoprecipitation assays. Subsequently, we addressed the function of this interaction: by interfering with the activity or amount of Akt, we have demonstrated that Akt modulates the amount of Bcl-w protein. We have found that inhibition of Akt activity may promote apoptosis through the downregulation of Bcl-w protein and the consequential reduction in interaction of Bcl-w with pro-apoptotic members of the Bcl-2 family. Our data provide evidence that Bcl-w is a new member of the Akt pathway and that Akt may induce anti-apoptotic signals at least in part through the regulation of the amount and activity of Bcl-w.

  3. Akt regulates drug-induced cell death through Bcl-w downregulation.

    Science.gov (United States)

    Garofalo, Michela; Quintavalle, Cristina; Zanca, Ciro; De Rienzo, Assunta; Romano, Giulia; Acunzo, Mario; Puca, Loredana; Incoronato, Mariarosaria; Croce, Carlo M; Condorelli, Gerolama

    2008-01-01

    Akt is a serine threonine kinase with a major role in transducing survival signals and regulating proteins involved in apoptosis. To find new interactors of Akt involved in cell survival, we performed a two-hybrid screening in yeast using human full-length Akt c-DNA as bait and a murine c-DNA library as prey. Among the 80 clones obtained, two were identified as Bcl-w. Bcl-w is a member of the Bcl-2 family that is essential for the regulation of cellular survival, and that is up-regulated in different human tumors, such as gastric and colorectal carcinomas. Direct interaction of Bcl-w with Akt was confirmed by immunoprecipitation assays. Subsequently, we addressed the function of this interaction: by interfering with the activity or amount of Akt, we have demonstrated that Akt modulates the amount of Bcl-w protein. We have found that inhibition of Akt activity may promote apoptosis through the downregulation of Bcl-w protein and the consequential reduction in interaction of Bcl-w with pro-apoptotic members of the Bcl-2 family. Our data provide evidence that Bcl-w is a new member of the Akt pathway and that Akt may induce anti-apoptotic signals at least in part through the regulation of the amount and activity of Bcl-w.

  4. Down-regulation of BRCA1 in chronic pancreatitis and sporadic pancreatic adenocarcinoma.

    Science.gov (United States)

    Beger, Carmela; Ramadani, Marco; Meyer, Stephan; Leder, Gerd; Krüger, Martin; Welte, Karl; Gansauge, Frank; Beger, Hans G

    2004-06-01

    BRCA1 and BRCA2 are considered to be breast cancer susceptibility genes that may also contribute to pancreatic cancer development because family studies revealed mutation carriers to have an increased risk of developing pancreatic cancer. However, as demonstrated for breast and ovarian cancer, inactivation of BRCA in sporadic diseases is based on alteration in gene expression or functional alteration. To study a potential correlation of BRCA1 and BRCA2 to chronic pancreatitis and development of sporadic pancreatic adenocarcinoma, we have analyzed the expression of these genes by quantitative PCR and performed immunohistochemical analyses in normal pancreatic tissues, chronic pancreatitis, and pancreatic cancer specimens. BRCA1 expression was down-regulated in chronic alcoholic pancreatitis, in particular on the RNA level. Furthermore, our data indicate suppressed BRCA1 expression in pancreatic cancer on both the RNA and protein levels. Quantitative analysis of BRCA1 protein expression demonstrated regular staining in 50% of tumor specimens tested and reduced staining in 50% of tumor specimens tested. Correlation with the clinical outcome revealed a significantly better 1-year overall survival for patients with BRCA1-regular as compared with BRCA1-reduced or BRCA1-absent tumors. In contrast, no substantial differences in BRCA2 expression were found in chronic pancreatitis and pancreatic cancer samples. Our data demonstrate alteration of BRCA1 expression in chronic pancreatitis and sporadic pancreatic adenocarcinoma. We, for the first time, provide evidence for a role of BRCA1 in pancreatic carcinogenesis of noninherited tumors and for clinical outcome.

  5. The Long Noncoding RNA MEG3 Is Downregulated and Inversely Associated with VEGF Levels in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Wei Su

    2015-01-01

    Full Text Available Osteoarthritis (OA is becoming a major public health problem in China, especially considering the increase in average life expectancy of the population. Thus, enhanced understanding of the molecular changes associated with OA is urgently needed to develop more effective strategies for the diagnosis and treatment of this debilitating disease. LncRNAs play an important role in the processes of bone and cartilage development. Maternally expressed gene 3 (MEG3 is a maternally expressed lncRNA and may function as a tumor suppressor by inhibiting angiogenesis. OA is closely associated with angiogenesis and the inhibition of angiogenesis presents a novel therapeutic approach to reduce inflammation and pain in OA. In this study, we detected the mRNA expression of MEG3 and VEGF in articular cartilage samples from 20 OA patients and 10 healthy volunteers by real-time RT-PCR. VEGF protein is detected by ELISA in cartilage samples. The results show that human MEG3 is significantly downregulated in OA patients compared to normal cartilage samples. However, higher levels of VEGF mRNA and protein are found in OA compared to the control. Moreover, MEG3 levels are inversely associated with VEGF levels, suggesting that MEG3 may be involved in OA development through the regulation of angiogenesis.

  6. Downregulation of TRAF2 mediates NIK-induced pancreatic cancer cell proliferation and tumorigenicity.

    Directory of Open Access Journals (Sweden)

    Heike Döppler

    Full Text Available BACKGROUND: Increased levels of NF-κB are hallmarks of pancreatic ductal adenocarcinoma (PDAC and both classical and alternative NF-κB activation pathways have been implicated. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that activation of the alternative pathway is a source for the high basal NF-κB activity in PDAC cell lines. Increased activity of the p52/RelB NF-κB complex is mediated through stabilization and activation of NF-κB-inducing kinase (NIK. We identify proteasomal downregulation of TNF receptor-associated factor 2 (TRAF2 as a mechanism by which levels of active NIK are increased in PDAC cell lines. Such upregulation of NIK expression and activity levels relays to increased proliferation and anchorage-independent growth, but not migration or survival of PDAC cells. CONCLUSIONS/SIGNIFICANCE: Rapid growth is one characteristic of pancreatic cancer. Our data indicates that the TRAF2/NIK/NF-κB2 pathway regulates PDAC cell tumorigenicity and could be a valuable target for therapy of this cancer.

  7. MicroRNA-184 downregulates nuclear receptor corepressor 2 in mouse spermatogenesis.

    Science.gov (United States)

    Wu, Jingwen; Bao, Jianqiang; Wang, Li; Hu, Yanqin; Xu, Chen

    2011-10-24

    There have been increasing attentions on the role of small RNAs, especially microRNAs in post-transcriptional gene regulation during spermatogenesis. MicroRNA-184 (miR-184) has been shown to be mainly expressed in the testis and brain, and that its expression levels are by far the highest in the testis. However, the role of miR-184 in mammalian spermatogenesis remains unclear. In this study, we demonstrated that miR-184 levels were increased during mouse postnatal testis development. Specifically, miR-184 expression was restricted to the germ cells from spermatogonia to round spermatids. Overexpression of miR-184 promoted the proliferation of a germ cell line, GC-1spg. Moreover, miR-184 downregulated nuclear receptor corepressor 2 (Ncor2) by targeting its 3' untranslated region through inhibiting NCOR2 protein translation. MiR-184 may be involved in the post-transcription regulation of mRNAs such as Ncor2 in mammalian spermatogenesis.

  8. Leptin Downregulates LPS-Induced Lung Injury: Role of Corticosterone and Insulin

    Directory of Open Access Journals (Sweden)

    Maristella A. Landgraf

    2014-03-01

    Full Text Available Background/Aims: We investigated the effects of leptin in the development of lipopolysaccharide (LPS-induced acute lung inflammation (ALI in lean mice. Methods: Mice were administered leptin (1.0µg/g or leptin (1.0µg/g followed by LPS (1.5µg/g intranasally. Additionally, some animals were given LPS (1.5µg/g or saline intranasally alone, as a control. Tissue samples and fluids were collected six hours after instillation. Results: We demonstrated that leptin alone did not induce any injury. Local LPS exposure resulted in significant acute lung inflammation, characterized by a substantial increase in total cells, mainly neutrophils, in bronchoalveolar lavages (BAL. We also observed a significant lymphocyte influx into the lungs associated with enhanced lung expression of chemokines and cytokines (KC, RANTES, TNF-α, IFN-γ, GM-CSF and VEGF. LPS-induced ALI was characterized by the enhanced expression of ICAM-1 and iNOS in the lungs. Mice that received LPS showed an increase in insulin levels. Leptin, when administered prior to LPS instillation, abolished all of these effects. LPS induced an increase in corticosterone levels, and leptin potentiated this event. Conclusion: These data suggest that exogenous leptin may promote protection during sepsis, and downregulation of the insulin levels and upregulation of corticosterone may be important mechanisms in the amelioration of LPS-induced ALI.

  9. Downregulation of human paraoxonase 1 (PON1) by organophosphate pesticides in HepG2 cells.

    Science.gov (United States)

    Medina-Díaz, Irma Martha; Ponce-Ruiz, Néstor; Ramírez-Chávez, Bryana; Rojas-García, Aurora Elizabeth; Barrón-Vivanco, Briscia S; Elizondo, Guillermo; Bernal-Hernández, Yael Y

    2017-02-01

    Paraoxonase 1 (PON1) is a calcium-dependent esterase synthesized primarily in the liver and secreted into the plasma where it is associated with high-density lipoproteins (HDL). PON1 hydrolyzes and detoxifies some toxic metabolites of organophosphorus compounds (OPs) such as methyl parathion and chlorpyrifos. Thus, PON1 activity and expression levels are important for determining susceptibility against OPs poisoning. Some studies have demonstrated that OPs can modulate gene expression through interactions with nuclear receptors. In this study, we evaluated the effects of methyl parathion and chlorpyrifos on the modulation of PON1 in Human Hepatocellular Carcinoma (HepG2) cells by real-time PCR, PON1 activity assay, and western blot. The results showed that the treatments with methyl parathion and chlorpyrifos decreased PON1 mRNA and immunoreactive protein and increased inflammatory cytokines in HepG2 cells. The effects of methyl parathion and chlorpyrifos on the downregulation of PON1 gene expression in HepG2 cells may provide evidence of OPs cytotoxicity related to oxidative stress and an inflammatory response. A decrease in the expression of the PON1 gene may increase the susceptibility to OPs intoxication and the risk of diseases related to inflammation and oxidative stress. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 490-500, 2017. © 2016 Wiley Periodicals, Inc.

  10. Down-regulation of Risa improves insulin sensitivity by enhancing autophagy.

    Science.gov (United States)

    Wang, Yuangao; Hu, Yanan; Sun, Chenxia; Zhuo, Shu; He, Zhishui; Wang, Hui; Yan, Menghong; Liu, Jun; Luan, Yi; Dai, Changgui; Yang, Yonggang; Huang, Rui; Zhou, Ben; Zhang, Fang; Zhai, Qiwei

    2016-09-01

    It has been reported that some small noncoding RNAs are involved in the regulation of insulin sensitivity. However, whether long noncoding RNAs also participate in the regulation of insulin sensitivity is still largely unknown. We identified and characterized a long noncoding RNA, regulator of insulin sensitivity and autophagy (Risa), which is a poly(A)(+) cytoplasmic RNA. Overexpression of Risa in mouse primary hepatocytes or C2C12 myotubes attenuated insulin-stimulated phosphorylation of insulin receptor, Akt, and Gsk3β, and knockdown of Risa alleviated insulin resistance. Further studies showed that overexpression of Risa in hepatocytes or myotubes decreased autophagy, and knockdown of Risa up-regulated autophagy. Moreover, knockdown of Atg7 or -5 significantly inhibited the effect of knockdown of Risa on insulin resistance, suggesting that knockdown of Risa alleviated insulin resistance via enhancing autophagy. In addition, tail vein injection of adenovirus to knock down Risa enhanced insulin sensitivity and hepatic autophagy in both C57BL/6 and ob/ob mice. Taken together, the data demonstrate that Risa regulates insulin sensitivity by affecting autophagy and suggest that Risa is a potential target for treating insulin-resistance-related diseases.-Wang, Y., Hu, Y., Sun, C., Zhuo, S., He, Z., Wang, H., Yan, M., Liu, J., Luan, Y., Dai, C., Yang, Y., Huang, R., Zhou, B., Zhang, F., Zhai, Q. Down-regulation of Risa improves insulin sensitivity by enhancing autophagy. © FASEB.

  11. Mechanical stress downregulates MHC class I expression on human cancer cell membrane.

    Directory of Open Access Journals (Sweden)

    Rosanna La Rocca

    Full Text Available In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal, depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700-1800 cm(-1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK cells cytotoxic recognition.

  12. Dioscin enhances methotrexate absorption by down-regulating MDR1 in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan, E-mail: jlwang1979@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Wang, Changyuan, E-mail: wangcyuan@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Peng, Jinyong, E-mail: jinyongpeng2005@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Liu, Qi, E-mail: llaqii@yahoo.com.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Meng, Qiang, E-mail: mengq531@yahoo.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Sun, Huijun, E-mail: sunhuijun@hotmail.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Huo, Xiaokui, E-mail: huoxiaokui@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); and others

    2014-06-01

    The purpose of this study was to investigate the enhancing effect of dioscin on the absorption of methotrexate (MTX) and clarify the molecular mechanism involved in vivo and in vitro. Dioscin increased MTX chemosensitivity and transepithelial flux in the absorptive direction, significantly inhibiting multidrug resistance 1 (MDR1) mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activities in Caco-2 cells. Moreover, inhibitor κB-α (IκB-α) degradation was inhibited by dioscin. Dioscin enhanced the intracellular concentration of MTX by down-regulating MDR1 expression through a mechanism that involves NF-κB signaling pathway inhibition in Caco-2 cells. Dioscin strengthened MTX absorption by inhibiting MDR1 expression in rat intestine. In addition, even though MTX is absorbed into the enterocytes, there was no increase in toxicity observed, and that, in fact, decreased toxicity was seen. - Highlights: • Dioscin raised MTX concentration by inhibiting MDR1 in Caco-2 cells. • Dioscin suppresses MDR1 by inhibiting NF-κB signaling pathway in Caco-2 cells. • Dioscin can enhance MTX absorption via inhibiting MDR1 in vivo and in vitro. • Dioscin did not increase MTX-induced gastrointestinal mucosal toxicity.

  13. Xuebijing Ameliorates Sepsis-Induced Lung Injury by Downregulating HMGB1 and RAGE Expressions in Mice

    Directory of Open Access Journals (Sweden)

    Qiao Wang

    2015-01-01

    Full Text Available Xuebijing (XBJ injection, a traditional Chinese medicine, has been reported as a promising approach in the treatment of sepsis in China. However, its actual molecular mechanisms in sepsis-induced lung injury are yet unknown. Therefore, this study aimed to investigate the beneficial effects of XBJ on inflammation and the underlying mechanisms in a model of caecal ligation and puncture-(CLP- induced lung injury. The mice were divided into CLP group, CLP+XBJ group (XBJ, 4 mL/kg per 12 hours, and sham group. The molecular and histological examinations were performed on the lung, serum, and bronchoalveolar lavage (BAL fluid samples of mice at the points of 6, 24, and 48 hours after CLP. The results show that XBJ reduces morphological destruction and neutrophil infiltration in the alveolar space and lung wet/dry weight ratio, which improves mortality of CLP-induced lung injury. Meanwhile, XBJ treatment downregulates high mobility group box protein 1 (HMGB1 and the receptor for advanced glycation end products (RAGE expression, as well as neutrophil counts, production of IL-1β, IL-6, and TNF-α in the BAL fluids. In conclusion, these results indicate that XBJ may reduce the mortality through inhibiting proinflammatory cytokines secretion mediated by HMGB1/RAGE axis.

  14. MCPIP1 down-regulates IL-2 expression through an ARE-independent pathway.

    Directory of Open Access Journals (Sweden)

    Min Li

    Full Text Available IL-2 plays a key role in the survival and proliferation of immune cells, especially T lymphocytes. Its expression is precisely regulated at transcriptional and posttranscriptional level. IL-2 is known to be regulated by RNA binding proteins, such as tristetraprolin (TTP, via an AU-rich element (ARE in the 3'-untranslated region (3'UTR to influence the stability of mRNA. MCPIP1, identified as a novel RNase, can degrade IL-6, IL-12 and TNF-α mRNA by an ARE-independent pathway in the activation of macrophages. Here, we reported that MCPIP1 was induced in the activation of T lymphocytes and negatively regulated IL-2 gene expression in both mouse and human primary T lymphocytes through destabilizing its mRNA. A set of Luciferase reporter assay demonstrated that a non-ARE conserved element in IL-2 3'UTR, which formed a stem-loop structure, responded to MCPIP1 activity.RNA immunoprecipitation and Biotin pulldown experiments further suggested that MCPIP1 could modestly bind to IL-2 mRNA. Taken together, these data demonstrate that MCPIP1 down-regulates IL-2 via an ARE-independent pathway.

  15. Diphlorethohydroxycarmalol from Ishige okamurae Suppresses Osteoclast Differentiation by Downregulating the NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Hye Jung Ihn

    2017-12-01

    Full Text Available Marine algae possess a variety of beneficial effects on human health. In this study, we investigated whether diphlorethohydroxycarmalol (DPHC, isolated from Ishige okamurae, a brown alga, suppresses receptor activator of nuclear factor-κB ligand (RANKL-induced osteoclast differentiation. DPHC significantly suppressed RANKL-induced osteoclast differentiation and macrophage-colony stimulating factor (M-CSF expression in a dose-dependent manner. In addition, it significantly inhibited actin ring formation, the expression of osteoclast marker genes, such as tartrate-resistant acid phosphatase (TRAP, nuclear factor of activated T-cells cytoplasmic 1 (Nfatc1, cathepsin K (Ctsk, and dendritic cell-specific transmembrane protein (Dcstamp, and osteoclast-induced bone resorption. Analysis of the RANKL-mediated signaling pathway showed that the phosphorylation of both IκB and p65 was specifically inhibited by DPHC. These results suggest that DPHC substantially suppresses osteoclastogenesis by downregulating the RANK-NF-κB signaling pathway. Thus, it holds significant potential for the treatment of skeletal diseases associated with an enhanced osteoclast activity.

  16. Down-regulation of osteoprotegerin expression as a novel biomarker for colorectal carcinoma.

    Science.gov (United States)

    Kim, Hyun-Soo; Yoon, Gun; Do, Sung-Im; Kim, Sung-Joo; Kim, Youn-Wha

    2016-03-22

    A better understanding of tumor biology is important in the identification of molecules that are down-regulated in malignancy and in determining their role in tumor suppression. The aim of this study was to analyze osteoprotegerin (OPG) expression in colorectal carcinoma (CRC) and to investigate the underlying mechanism for changes in the expression of OPG. OPG expression was assessed in CRC tissue samples and cell lines. The methylation status of the OPG promoter region was determined, and the effects of demethylation on OPG expression were analyzed. The effects of recombinant OPG (rOPG) administration on cellular functions were also investigated. Clinical and prognostic implications of OPG protein expression in CRC patients were analyzed. The CRC tissues and cells showed significantly lower OPG expression. Pyrosequencing of OPG-silenced CRC cells revealed that the OPG gene promoter was highly methylated. Treatment with demethylating agent significantly elevated OPG mRNA and protein expression. rOPG significantly decreased cell viability and MMP-2 and VEGF-A production in CRC cells. Reduced OPG immunoreactivity was associated with aggressive oncogenic behavior in CRC. Also, OPG expression was found to be an independent predictor of recurrent hepatic metastasis and independent prognostic factor for worse survival rates. We demonstrated that OPG silencing in CRC occurs through epigenetic repression, and is involved in the development and progression of CRC. Our data suggest that OPG is a novel prognostic biomarker and a new therapeutic target for the treatment of patients with CRC.

  17. Downregulation of osteoprotegerin expression in metastatic colorectal carcinoma predicts recurrent metastasis and poor prognosis.

    Science.gov (United States)

    Moon, Ahrim; Do, Sung-Im; Kim, Hyun-Soo; Kim, Youn-Wha

    2016-11-29

    We recently reported the downregulation of osteoprotegerin expression in primary colorectal carcinoma and its significant association with aggressive oncogenic behavior, which suggest that this process contributes to colorectal carcinoma development and progression. In this study, we used immunohistochemical staining to evaluate osteoprotegerin expression in 81 colorectal liver metastasis tissue samples and investigated its possible association with the clinicopathological characteristics and outcomes of patients with colorectal liver metastasis. These tissues exhibited significantly reduced expression of osteoprotegerin compared to primary colorectal carcinomas and normal colorectal mucosa. This reduced expression was significantly associated with the extent of colorectal liver metastasis, including multiplicity of metastatic tumors, involvement of the bilateral hepatic lobes, and higher histological grade. In addition, reduced osteoprotegerin expression was an independent significant predictor of recurrent liver metastasis and prognostic factor for reduced patient survival. These findings suggest that osteoprotegerin expression may be a novel predictor of recurrent liver metastasis and a prognostic biomarker in patients with colorectal liver metastasis. Patients harboring colorectal liver metastasis with reduced osteoprotegerin expression should be carefully monitored after hepatic resection for colorectal liver metastasis to enable early detection of potentially resectable metastatic recurrences.

  18. Downregulation of RWA genes in hybrid aspen affects xylan acetylation and wood saccharification.

    Science.gov (United States)

    Pawar, Prashant Mohan-Anupama; Ratke, Christine; Balasubramanian, Vimal K; Chong, Sun-Li; Gandla, Madhavi Latha; Adriasola, Mathilda; Sparrman, Tobias; Hedenström, Mattias; Szwaj, Klaudia; Derba-Maceluch, Marta; Gaertner, Cyril; Mouille, Gregory; Ezcurra, Ines; Tenkanen, Maija; Jönsson, Leif J; Mellerowicz, Ewa J

    2017-06-01

    High acetylation of angiosperm wood hinders its conversion to sugars by glycoside hydrolases, subsequent ethanol fermentation and (hence) its use for biofuel production. We studied the REDUCED WALL ACETYLATION (RWA) gene family of the hardwood model Populus to evaluate its potential for improving saccharification. The family has two clades, AB and CD, containing two genes each. All four genes are expressed in developing wood but only RWA-A and -B are activated by master switches of the secondary cell wall PtNST1 and PtMYB21. Histochemical analysis of promoter::GUS lines in hybrid aspen (Populus tremula × tremuloides) showed activation of RWA-A and -B promoters in the secondary wall formation zone, while RWA-C and -D promoter activity was diffuse. Ectopic downregulation of either clade reduced wood xylan and xyloglucan acetylation. Suppressing both clades simultaneously using the wood-specific promoter reduced wood acetylation by 25% and decreased acetylation at position 2 of Xylp in the dimethyl sulfoxide-extracted xylan. This did not affect plant growth but decreased xylose and increased glucose contents in the noncellulosic monosaccharide fraction, and increased glucose and xylose yields of wood enzymatic hydrolysis without pretreatment. Both RWA clades regulate wood xylan acetylation in aspen and are promising targets to improve wood saccharification. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Inflammation Downregulates UCP1 Expression in Brown Adipocytes Potentially via SIRT1 and DBC1 Interaction

    Directory of Open Access Journals (Sweden)

    Mark K. Nøhr

    2017-05-01

    Full Text Available Brown adipose tissue thermogenesis at the cost of energy is not only important for the development of obesity, but also possesses great promise in anti-obesity treatment. Uncoupling protein 1 (UCP1 expression has been reported to be under control of the intracellular deacetylase SIRT1. Here, we investigated the effect and mechanism of inflammation and sirtuin-1 (SIRT1 activation on the induction of thermogenic genes in immortalized brown adipocytes incubated with LPS or IL1β and mice with elevated inflammatory tone. In vitro stimulation of brown adipocytes with dibutyryl cyclic adenosine monophosthate (dbcAMP reduced the expression of deleted in breast cancer-1 (Dbc1 (SIRT1 inhibitor and increased the Ucp1 expression. Silencing of SIRT1 attenuated dbcAMP induction of Ucp1. In contrast, IL1β increased the expression of Dbc1 and greatly reduced the induction of Ucp1. Similarly, in vivo studies revealed decreased expression of Ucp1 in brown adipose tissue (BAT in mice chronically infused with LPS. Resveratrol, a known SIRT1 activator, partly rescued the Ucp1 downregulation by inflammation in both the cell cultures and mice. Here, we describe how the expression of Ucp1 in BAT is controlled via SIRT1 and is reduced under inflammation and can be rescued by SIRT1 activation by resveratrol. We suggest the reduced UCP1 expression under inflammation is mediated by the increased expression of DBC1, which inhibits SIRT1 activity.

  20. Downregulation of the evolutionary capacitor Hsp90 is mediated by social cues.

    Science.gov (United States)

    Peuß, Robert; Eggert, Hendrik; Armitage, Sophie A O; Kurtz, Joachim

    2015-11-22

    The relationship between robustness and evolvability is a long-standing question in evolution. Heat shock protein 90 (HSP90), a molecular chaperone, has been identified as a potential capacitor for evolution, since it allows for the accumulation and release of cryptic genetic variation, and also for the regulation of novel genetic variation through transposon activity. However, to date, it is unknown whether Hsp90 expression is regulated upon demand (i.e. when the release of cryptic genetic variation is most needed). Here, we show that Hsp90 has reduced transcription under conditions where the mobilization of genetic variation could be advantageous. We designed a situation that indicates a stressful environment but avoids the direct effects of stress, by placing untreated (focal) red flour beetles, Tribolium castaneum, into groups together with wounded conspecifics, and found a consistent reduction in expression of two Hsp90 genes (Hsp83 and Hsp90) in focal beetles. We moreover observed a social transfer of immunity in this non-eusocial insect: there was increased activity of the phenoloxidase enzyme and downregulation of the immune regulator, imd. Our study poses the exciting question of whether evolvability might be regulated through the use of information derived from the social environment. © 2015 The Authors.

  1. p38 MAPK downregulates phosphorylation of Bad in doxorubicin-induced endothelial apoptosis

    International Nuclear Information System (INIS)

    Grethe, Simone; Coltella, Nadia; Di Renzo, Maria Flavia; Poern-Ares, M. Isabella

    2006-01-01

    Doxorubicin is the anthracycline with the widest spectrum of antitumor activity, and it has been shown that the antitumor activity is mediated in vivo by selective triggering of apoptosis in proliferating endothelial cells. We studied cultured human endothelial cells and observed that doxorubicin-induced apoptosis was mediated by p38 mitogen-activated protein kinase (MAPK). Doxorubicin-provoked apoptosis was significantly inhibited by expression of dominant negative p38 MAPK or pharmacological inhibition with SB203580. Furthermore, blocking phosphatidylinositol-3-kinase/Akt signaling significantly increased doxorubicin-induced caspase-3 activity and cell death, indicating that Akt is a survival factor in this system. Notably, we also found that doxorubicin-provoked apoptosis included p38 MAPK-mediated inhibition of Akt and Bad phosphorylation. Furthermore, doxorubicin-stimulated phosphorylation of Bad in cells expressing dominant negative p38 MAPK was impeded by the inhibition of PI3-K. In addition to the impact on Bad phosphorylation, doxorubicin-treatment caused p38 MAPK-dependent downregulation of Bcl-xL protein

  2. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Erica M. [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Niu, MengMeng; Bergholz, Johann [Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China); Jim Xiao, Zhi-Xiong, E-mail: jxiao@bu.edu [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China)

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  3. High phosphate-induced downregulation of PPARγ contributes to CKD-associated vascular calcification.

    Science.gov (United States)

    Liu, Liang; Liu, Yong; Zhang, Ying; Bi, Xianjin; Nie, Ling; Liu, Chi; Xiong, Jiachuan; He, Ting; Xu, Xinlin; Yu, Yanlin; Yang, Ke; Gu, Jun; Huang, Yunjian; Zhang, Jingbo; Zhang, Zhiren; Zhang, Bo; Zhao, Jinghong

    2018-01-01

    Medial arterial calcification associated with hyperphosphatemia is a main cause of cardiovascular mortality in patients with chronic kidney disease (CKD), but the mechanisms underlying high phosphate-induced vascular calcification remain largely unknown. Here, we observed a significant decrease in the expression of peroxisome proliferator-activated receptor-gamma (PPARγ) in calcified arteries both in CKD patients and in a mouse model of CKD with hyperphosphatemia. In vitro, high phosphate treatment led to a decreased expression of PPARγ in mouse vascular smooth muscle cells (VMSCs), accompanied by apparent osteogenic differentiation and calcification. Pretreatment with PPARγ agonist rosiglitazone significantly reversed high phosphate-induced VSMCs calcification. Further investigation showed that methyl-CpG binding protein 2 (Mecp2)-mediated epigenetic repression was involved in high phosphate-induced PPARγ downregulation. Moreover, the expression of Klotho that has the ability to inhibit vascular calcification by regulating phosphate uptake decreased with the PPARγ reduction in VSMCs after high phosphate treatment, and rosiglitazone failed to inhibit high phosphate-induced calcification in VSMCs with knockdown of Klotho or in aortic rings from Klotho-deficient (kl/kl) mice. Finally, an in vivo study demonstrated that oral administration of rosiglitazone could increase Klotho expression and protect against high phosphate-induced vascular calcification in CKD mice. These findings suggest that the inhibition of PPARγ expression may contribute to the pathogenesis of high phosphate-induced vascular calcification, which may provide a new therapeutic target for vascular calcification in CKD patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Extracellular Vesicles from Adipose-Derived Mesenchymal Stem Cells Downregulate Senescence Features in Osteoarthritic Osteoblasts

    Directory of Open Access Journals (Sweden)

    Miguel Tofiño-Vian

    2017-01-01

    Full Text Available Osteoarthritis (OA affects all articular tissues leading to pain and disability. The dysregulation of bone metabolism may contribute to the progression of this condition. Adipose-derived mesenchymal stem cells (ASC are attractive candidates in the search of novel strategies for OA treatment and exert anti-inflammatory and cytoprotective effects on cartilage. Chronic inflammation in OA is a relevant factor in the development of cellular senescence and joint degradation. In this study, we extend our previous observations of ASC paracrine effects to study the influence of conditioned medium and extracellular vesicles from ASC on senescence induced by inflammatory stress in OA osteoblasts. Our results in cells stimulated with interleukin- (IL- 1β indicate that conditioned medium, microvesicles, and exosomes from ASC downregulate senescence-associated β-galactosidase activity and the accumulation of γH2AX foci. In addition, they reduced the production of inflammatory mediators, with the highest effect on IL-6 and prostaglandin E2. The control of mitochondrial membrane alterations and oxidative stress may provide a mechanism for the protective effects of ASC in OA osteoblasts. We have also shown that microvesicles and exosomes mediate the paracrine effects of ASC. Our study suggests that correction of abnormal osteoblast metabolism by ASC products may contribute to their protective effects.

  5. miR-18a induces myotubes atrophy by down-regulating IgfI.

    Science.gov (United States)

    Liu, Chuncheng; Wang, Meng; Chen, Min; Zhang, Kuo; Gu, Lijie; Li, Qiuyan; Yu, Zhengquan; Li, Ning; Meng, Qingyong

    2017-09-01

    Muscle atrophy occurs when there is a net loss of muscle mass, leading to a change in the balance between protein synthesis and protein degradation. Igf1 is important for protein synthesis in muscle cells and can induce local skeletal muscle hypertrophy and attenuate age-related skeletal muscle atrophy via the PI3K/Akt pathway in mice, consequently restoring and improving muscle mass and strength. In this study, we show that miR-18a expression is down-regulated during C2C12 myoblast differentiation and mouse tibialis anterior muscle postnatal development. Functional studies show that forced expression of miR-18a induces myotubes atrophy and increases the expression of MuRF1, Atrogin-1 and CTSL. miR-18a also decreases the phosphorylation of both Akt and FoxO3, and an inhibitor of the PI3K/Akt pathway blocks the function of miR-18a. An analysis of miR-18a targets reveals that Igf1 is regulated by miR-18a. miR-18a suppresses the expression of Igf1 in a 3'UTR-dependent manner. These findings strongly support the idea that miR-18a has a functional role in muscle physiology and suggest that miR-18a is a potential novel therapeutic target for skeletal muscle atrophy. Copyright © 2017. Published by Elsevier Ltd.

  6. PTEN downregulates p75NTR expression by decreasing DNA-binding activity of Sp1

    International Nuclear Information System (INIS)

    Rankin, Sherri L.; Guy, Clifford S.; Mearow, Karen M.

    2009-01-01

    p75NTR is expressed throughout the nervous system and its dysregulation is associated with pathological conditions. We have recently demonstrated a signalling cascade initiated by laminin (LN), which upregulates PTEN and downregulates p75NTR. Here we investigate the mechanism by which PTEN modulates p75NTR. Studies using PTEN mutants show that its protein phosphatase activity directly modulates p75NTR protein expression. Nuclear relocalization of PTEN subsequent to LN stimulation suggests transcriptional control of p75NTR expression, which was confirmed following EMSA and ChIP analysis of Sp1 transcription factor binding activity. LN and PTEN independently decrease the DNA-binding ability of PTEN to the p75NTR promoter. Sp1 regulation of p75NTR occurs via dephosphorylation of Sp1, thus reducing p75NTR transcription and protein expression. This mechanism represents a novel regulatory pathway which controls the expression level of a receptor with broad implications not only for the development of the nervous system but also for progression of pathological conditions.

  7. CCR5 down-regulates osteoclast function in orthodontic tooth movement.

    Science.gov (United States)

    Andrade, I; Taddei, S R A; Garlet, G P; Garlet, T P; Teixeira, A L; Silva, T A; Teixeira, M M

    2009-11-01

    During orthodontic tooth movement, there is local production of chemokines and an influx of leukocytes into the periodontium. CCL5 plays an important role in osteoclast recruitment and activation. This study aimed to investigate whether the CCR5-receptor influences these events and, consequently, orthodontic tooth movement. An orthodontic appliance was placed in wild-type mice (WT) and CCR5-deficient mice (CCR5(-/-)). The expression of mediators involved in bone remodeling was evaluated in periodontal tissues by Real-time PCR. The number of TRAP-positive osteoclasts and the expression of cathepsin K, RANKL, and MMP13 were significantly higher in CCR5(-/-). Meanwhile, the expression of two osteoblastic differentiation markers, RUNX2 and osteocalcin, and that of bone resorption regulators, IL-10 and OPG, were lower in CCR5(-/-). Analysis of the data also showed that CCR5(-/-) exhibited a greater amount of tooth movement after 7 days of mechanical loading. The results suggested that CCR5 might be a down-regulator of alveolar bone resorption during orthodontic movement.

  8. MicroRNA-143 Downregulates Interleukin-13 Receptor Alpha1 in Human Mast Cells

    Directory of Open Access Journals (Sweden)

    Jianqiu Cheng

    2013-08-01

    Full Text Available MicroRNA-143 (miR-143 was found to be downregulated in allergic rhinitis, and bioinformatics analysis predicted that IL-13Rα1 was a target gene of miR-143. To understand the molecular mechanisms of miR-143 involved in the pathogenesis of allergic inflammation, recombinant miR-143 plasmid vectors were constructed, and human mast cell-1(HMC-1 cells which play a central role in the allergic response were used for study. The plasmids were transfected into HMC-1 cells using a lentiviral vector. Expression of IL-13Rα1 mRNA was then detected by reverse transcriptase polymerase chain reaction (RT-PCR and Western Blotting. The miR-143 lentiviral vector was successfully stably transfected in HMC-1 cells for target gene expression. Compared to the control, the target gene IL-13Rα1 was less expressed in HMC-1 transfected with miR-143 as determined by RT-PCR and Western Blotting (p < 0.05; this difference in expression was statistically significant and the inhibition efficiency was 71%. It indicates that miR-143 directly targets IL-13Rα1 and suppresses IL-13Rα1 expression in HMC-1 cells. Therefore, miR-143 may be associated with allergic reaction in human mast cells.

  9. TNRC9 downregulates BRCA1 expression and promotes breast cancer aggressiveness.

    Science.gov (United States)

    Shan, Jingxuan; Dsouza, Shoba P; Bakhru, Sasha; Al-Azwani, Eman K; Ascierto, Maria L; Sastry, Konduru S; Bedri, Shahinaz; Kizhakayil, Dhanya; Aigha, Idil I; Malek, Joel; Al-Bozom, Issam; Gehani, Salah; Furtado, Stacia; Mathiowitz, Edith; Wang, Ena; Marincola, Francesco M; Chouchane, Lotfi

    2013-05-01

    Although the linkage between germline mutations of BRCA1 and hereditary breast/ovarian cancers is well established, recent evidence suggests that altered expression of wild-type BRCA1 might contribute to the sporadic forms of breast cancer. The breast cancer gene trinucleotide-repeat-containing 9 (TNRC9; TOX3) has been associated with disease susceptibility but its function is undetermined. Here, we report that TNRC9 is often amplified and overexpressed in breast cancer, particularly in advanced breast cancer. Gene amplification was associated with reduced disease-free and metastasis-free survival rates. Ectopic expression of TNRC9 increased breast cancer cell proliferation, migration, and survival after exposure to apoptotic stimuli. These phenotypes were associated with tumor progression in a mouse model of breast cancer. Gene expression profiling, protein analysis, and in silico assays of large datasets of breast and ovarian cancer samples suggested that TNRC9 and BRCA1 expression were inversely correlated. Notably, we found that TNRC9 bound to both the BRCA1 promoter and the cAMP-responsive element-binding protein (CREB) complex, a regulator of BRCA1 transcription. In support of this connection, expression of TNRC9 downregulated expression of BRCA1 by altering the methylation status of its promoter. Our studies unveil a function for TNRC9 in breast cancer that highlights a new paradigm in BRCA1 regulation.

  10. Overexpression and small molecule-triggered downregulation of CIP2A in lung cancer.

    Directory of Open Access Journals (Sweden)

    Liang Ma

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide, with a five-year overall survival rate of only 15%. Cancerous inhibitor of PP2A (CIP2A is a human oncoprotein inhibiting PP2A in many human malignancies. However, whether CIP2A can be a new drug target for lung cancer is largely unclear.Normal and malignant lung tissues were derived from 60 lung cancer patients from southern China. RT-PCR, Western blotting and immunohistochemistry were used to evaluate the expression of CIP2A. We found that among the 60 patients, CIP2A was undetectable or very low in paratumor normal tissues, but was dramatically elevated in tumor samples in 38 (63.3% patients. CIP2A overexpression was associated with cigarette smoking. Silencing CIP2A by siRNA inhibited the proliferation and clonogenic activity of lung cancer cells. Intriguingly, we found a natural compound, rabdocoetsin B which is extracted from a Traditional Chinese Medicinal herb Rabdosia coetsa, could induce down-regulation of CIP2A and inactivation of Akt pathway, and inhibit proliferation and induce apoptosis in a variety of lung cancer cells.Our findings strongly indicate that CIP2A could be an effective target for lung cancer drug development, and the therapeutic potentials of CIP2A-targeting agents warrant further investigation.

  11. Oxidative Stress Induces Endothelial Cell Senescence via Downregulation of Sirt6

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2014-01-01

    Full Text Available Accumulating evidence has shown that diabetes accelerates aging and endothelial cell senescence is involved in the pathogenesis of diabetic vascular complications, including diabetic retinopathy. Oxidative stress is recognized as a key factor in the induction of endothelial senescence and diabetic retinopathy. However, specific mechanisms involved in oxidative stress-induced endothelial senescence have not been elucidated. We hypothesized that Sirt6, which is a nuclear, chromatin-bound protein critically involved in many pathophysiologic processes such as aging and inflammation, may have a role in oxidative stress-induced vascular cell senescence. Measurement of Sirt6 expression in human endothelial cells revealed that H2O2 treatment significantly reduced Sirt6 protein. The loss of Sirt6 was associated with an induction of a senescence phenotype in endothelial cells, including decreased cell growth, proliferation and angiogenic ability, and increased expression of senescence-associated β-galactosidase activity. Additionally, H2O2 treatment reduced eNOS expression, enhanced p21 expression, and dephosphorylated (activated retinoblastoma (Rb protein. All of these alternations were attenuated by overexpression of Sirt6, while partial knockdown of Sirt6 expression by siRNA mimicked the effect of H2O2. In conclusion, these results suggest that Sirt6 is a critical regulator of endothelial senescence and oxidative stress-induced downregulation of Sirt6 is likely involved in the pathogenesis of diabetic retinopathy.

  12. MicroRNA-200b is downregulated in colon cancer budding cells

    DEFF Research Database (Denmark)

    Knudsen, Kirsten Nguyen; Lindebjerg, Jan; Nielsen, Boye Schnack

    2017-01-01

    , and molecular similarities to EMT indicate that these cells may reflect ongoing EMT. The aim of this study was to investigate the expression of miR-200b in budding cells of colon cancer and the relationship with the EMT-markers E-cadherin, β-catenin and laminin-5γ2. MATERIAL & METHODS: MiR-200b was investigated...... by in situ hybridization in 58 cases of stage II (n = 36) and III colon (n = 22) cancers with tumor budding. Expression of E-cadherin, β-catenin and laminin-5γ2 was examined by immunohistochemistry. A multiplex fluorescence assay combining miR-200b with cytokeratin and laminin-5γ2 was employed on a subset...... fluorescence. Fourteen out of fifteen cases showed a decrease in miR-200b expression in the majority of the TBC, but no obvious relationship between miR-200b and laminin-5γ2 expression was observed. Conclusion: The findings support the assumption of a miR-200b related downregulation in colon cancer budding...

  13. Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression.

    Science.gov (United States)

    Lim, Eun Jin; Heo, Jeonghoon; Kim, Young-Ho

    2015-08-01

    Tunicamycin (TN), one of the endoplasmic reticulum stress inducers, has been reported to inhibit tumor cell growth and exhibit anticarcinogenic activity. However, the mechanism by which TN initiates apoptosis remains poorly understood. In the present study, we investigated the effect of TN on the apoptotic pathway in U937 cells. We show that TN induces apoptosis in association with caspase-3 activation, generation of reactive oxygen species (ROS), and downregulation of survivin expression. P38 MAPK (mitogen-activated protein kinase) and the generation of ROS signaling pathway play crucial roles in TN-induced apoptosis in U937 cells. We hypothesized that TN-induced activation of p38 MAPK signaling pathway is responsible for cell death. To test this hypothesis, we selectively inhibited MAPK during treatment with TN. Our data demonstrated that inhibitor of p38 (SB), but not ERK (PD) or JNK (SP), partially maintained apoptosis during treatment with TN. Pre-treatment with NAC and GSH markedly prevented cell death, suggesting a role for ROS in this process. Ectopic expression of survivin in U937 cells attenuated TN-induced apoptosis by suppression of caspase-3 cleavage, mitochondrial membrane potential, and cytochrome c release in U937 cells. Taken together, our results show that TN modulates multiple components of the apoptotic response of human leukemia cells and raise the possibility of a novel therapeutic strategy for hematological malignancies.

  14. Breviscapine prevents downregulation of renal water and sodium transport proteins in response to unilateral ureteral obstruction

    Directory of Open Access Journals (Sweden)

    Yang Mei

    2016-05-01

    Full Text Available Objective(s:Our recent report indicates that breviscapine play a protective role of the kidney by down-regulating transforming growth factor-β1(TGF-β1, α-smooth muscle actin (α-SMA and alleviating interstitial fibrosis following unilateral ureteral obstruction (UUO. In this study, we investigate the effect of breviscapine on changes of renal water and sodium transport proteins in response to UUO. Materials and Methods: Male Sprague-Dawley rats were divided into 3 groups, sham group, UUO group and UUO treat with breviscapine. After 4, 7 and 14 days, histologic changes and interstitial collagen were determined microscopically following hematoxylin and eosin (H&E and Masson's trichrome staining. The expression of Aquaporins (AQP-2 and γ-epithelial sodium channel (γ-ENaC were investigated using immunohistochemistry and Western blot in each group. Results:Breviscapine treatment decrease the tubular injury index and the degree of interstitial collagen deposition significantly compared with the UUO group (P

  15. Imperatorin acts as a cisplatin sensitizer via downregulating Mcl-1 expression in HCC chemotherapy.

    Science.gov (United States)

    Hu, Jianjian; Xu, Changlong; Cheng, Bihuan; Jin, Lingxiang; Li, Jie; Gong, Yuqiang; Lin, Wei; Pan, Zhenzhen; Pan, Chenwei

    2016-01-01

    Acquisition of cisplatin resistance is the common and critical limitation for hepatocellular carcinoma (HCC) therapy. Our study was aimed to determine whether there were conditions under which the addition of imperatorin would reverse the resistance of HCC cells to cisplatin-based therapy. In this study, we found that addition of imperatorin significantly enhanced the cytotoxicity of cisplatin to HCC cells. Since the Mcl-1 was overexpressed in HCC cell lines (HepG2, HepG3B, PLC, Huh7) compared with normal liver cell line (L-O2), we found that the Mcl-1 expression was downregulated by imperatorin but not influenced by cisplatin in HCC cells. In addition, our results showed the combination of imperatorin and cisplatin induced apoptosis and ∆Ψm collapse more significantly compared with treatment of imperatorin or cisplatin alone. Furthermore, the imperatorin-induced sensitization for cisplatin-cytotoxicity to HCC cells was abolished by the transfection of Mcl-1 expression plasmid. Finally, we found that the addition of imperatorin significantly reversed the resistance to cisplatin in cisplatin-resistant HCC cells, which was Mcl-1 dependent. In summary, our study revealed that combination with imperatorin could enhance the antitumor activity of cisplatin via targeting Mcl-1 and reverse the resistance to cisplatin in HCC.

  16. [Down-regulation of GRP78 Enhances Chemotherapy Sensitivity to VP-16 in Lung Adenocarcinoma.].

    Science.gov (United States)

    Jiang, Li; Zhang, Lichuan; Wang, Qi; Wang, Siyan

    2009-11-20

    GRP78, a member of GRPs, plays a critical role in chemotherapy resistance in some cancers. To investigate the relationship between the expression of GRP78 and resistance to anti-cancer drug VP-16 in vitro in lung adenocarcinoma SPCA-1 cell line. SPCA-1 cells were divided into three groups: BAPTA-AM-treated group, A23187-treated group and the control group. RT-PCR and immunofluorescence were used to analyze the expression of GRP78 at both mRNA and protein levels, respectively. Cell apoptosis was analyzed by flow cytometry in order to evaluate the therapeutic sensitivity to VP-16. The expression of GRP78 at both protein and mRNA levels in the BAPTA-AM-treated cells dramatically decreased as compared to that of both A23187-treated and control groups. After treatment by VP-16, the percentages of apoptotic cells were 10.84+/-0.86, 6.85+/-0.20, 4.95+/-0.19 in BAPTA-M-treated group, the control group and A23187-treated group, respectively. BAPTA-AM is highly effective in the inhibition of GRP78, down-regulation of GRP78 can significantly increase the sensitivity of adenocacinoma lung cancer to VP-16. All these suggest that inhibition of the expression of GRP78 by chemicals such as BAPTA-AM or anti-sense RNA may be a new therapeutic strategies to lung cancer.

  17. Recombinant luteinizing hormone priming in multiple follicular stimulation for in-vitro fertilization in downregulated patients.

    Science.gov (United States)

    Lisi, F; Caserta, D; Montanino, M; Berlinghieri, V; Bielli, W; Carfagna, P; Carra, M C; Costantino, A; Lisi, R; Poverini, R; Ciardo, F; Rago, R; Marci, R; Moscarini, M

    2012-09-01

    Follicle development is controlled amongst other factors by pituitary gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) that act in synergy in completing follicle maturation. Exogenous gonadotropins, combined with gonadotropin-releasing hormone agonists, have been successfully used in patients with ovulatory disorders undergoing assisted reproduction. There is some evidence of a beneficial role of androgens or LH administration before FSH stimulation. This study was designed to verify whether the addition of LH in the early follicular phase, in downregulated patients undergoing follicular stimulation for assisted reproduction, would add benefits in terms of general outcomes and pregnancy rates. We compared two groups of patients one of which was treated with recombinant FSH (rFSH) alone and the other with rFSH plus recombinant LH (rLH), in the early follicular phase only. The number of eggs recovered was higher in the group treated with FSH only; however, the number of embryos available at transfer was similar in the two groups and, more importantly, the number of Grades I and II embryos was higher in the group pretreated with LH. Similarly, although biochemical pregnancy rate and clinical pregnancy rates were similar in both groups, a beneficial role of LH priming was demonstrated by the higher implantation rate achieved in these patients.

  18. Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export.

    Science.gov (United States)

    Vinciguerra, Patrizia; Iglesias, Nahid; Camblong, Jurgi; Zenklusen, Daniel; Stutz, Françoise

    2005-02-23

    The mRNA export adaptor Yra1p/REF contributes to nascent mRNP assembly and recruitment of the export receptor Mex67p. yra1 mutants exhibit mRNA export defects and a decrease in LacZ reporter and certain endogenous transcripts. The loss of Mlp1p/Mlp2p, two TPR-like proteins attached to nuclear pores, rescues LacZ mRNA levels and increases their appearance in the cytoplasm, without restoring bulk poly(A)+ RNA export. Chromatin immunoprecipitation, FISH and pulse-chase experiments indicate that Mlps downregulate LacZ mRNA synthesis in a yra1 mutant strain. Microarray analyses reveal that Mlp2p also reduces a subset of cellular transcripts in the yra1 mutant. Finally, we show that Yra1p genetically interacts with the shuttling mRNA-binding protein Nab2p and that loss of Mlps rescues the growth defect of yra1 and nab2 but not other mRNA export mutants. We propose that Nab2p and Yra1p are required for proper mRNP docking to the Mlp platform. Defects in Yra1p prevent mRNPs from crossing the Mlp gate and this block negatively feeds back on the transcription of a subset of genes, suggesting that Mlps link mRNA transcription and export.

  19. Epigenetic-Mediated Downregulation of μ-Protocadherin in Colorectal Tumours

    Science.gov (United States)

    Mateusz, Bujko; Paulina, Kober; Małgorzata, Statkiewicz; Michal, Mikula; Marcin, Ligaj; Lech, Zwierzchowski; Jerzy, Ostrowski; Aleksander, Siedlecki Janusz

    2015-01-01

    Carcinogenesis involves altered cellular interaction and tissue morphology that partly arise from aberrant expression of cadherins. Mucin-like protocadherin is implicated in intercellular adhesion and its expression was found decreased in colorectal cancer (CRC). This study has compared MUPCDH (CDHR5) expression in three key types of colorectal tissue samples, for normal mucosa, adenoma, and carcinoma. A gradual decrease of mRNA levels and protein expression was observed in progressive stages of colorectal carcinogenesis which are consistent with reports of increasing MUPCDH 5′ promoter region DNA methylation. High MUPCDH methylation was also observed in HCT116 and SW480 CRC cell lines that revealed low gene expression levels compared to COLO205 and HT29 cell lines which lack DNA methylation at the MUPCDH locus. Furthermore, HCT116 and SW480 showed lower levels of RNA polymerase II and histone H3 lysine 4 trimethylation (H3K4me3) as well as higher levels of H3K27 trimethylation at the MUPCDH promoter. MUPCDH expression was however restored in HCT116 and SW480 cells in the presence of 5-Aza-2′-deoxycytidine (DNA methyltransferase inhibitor). Results indicate that μ-protocadherin downregulation occurs during early stages of tumourigenesis and progression into the adenoma-carcinoma sequence. Epigenetic mechanisms are involved in this silencing. PMID:25972897

  20. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    KAUST Repository

    La Rocca, Rosanna

    2014-12-26

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700–1800 cm−1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition.

  1. Beclin 1 overexpression inhibits chondrocyte apoptosis and downregulates extracellular matrix metabolism in osteoarthritis.

    Science.gov (United States)

    Song, Bin; Song, Hong; Wang, Weiguo; Wang, Hongru; Peng, Hanyuan; Cui, Jing; Wang, Rong; Huang, Hua; Wang, Wei; Wang, Lili

    2017-10-01

    In the present study, the expression of Beclin 1 in osteoarthritis (OA) cartilage tissue was investigated, and also its role in proliferation, apoptosis and expression of matrix metalloproteinases (MMPs) in chondrocytes obtained from patients with OA. Beclin 1 expression in cartilage tissue from OA patients, and in the age- and sex-matched controls, was detected by immunohistochemistry, semi-quantitative polymerase chain reaction and western blotting. Chondrocytes were divided into control and Beclin 1-overexpressed groups. After transfection for 48, 72 and 96 h, cell viability, apoptosis, the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway and MMPs were examined. The mRNA and protein expression levels of Beclin 1 were significantly decreased in cartilage tissue from OA patients compared with the sex- and age-matched controls (Poverexpression significantly increased cell viability (Poverexpression additionally decreased the degree of apoptosis, as demonstrated by Hoechst staining and flow cytometric analysis. B-cell lymphoma-2 (Bcl-2) was upregulated, and Bcl-2 associated X was downregulated, following Beclin 1 overexpression (Poverexpression (Poverexpression (Poverexpression increased cell viability, inhibited apoptosis and MMPs, likely via the PI3K/Akt/mTOR signaling pathway.

  2. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    International Nuclear Information System (INIS)

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-01-01

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma

  3. Down-Regulation of Gene Expression by RNA-Induced Gene Silencing

    Science.gov (United States)

    Travella, Silvia; Keller, Beat

    Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.

  4. Downregulated Ku70 and ATM associated to poor prognosis in colorectal cancer among Chinese patients

    Directory of Open Access Journals (Sweden)

    Lu YF

    2014-10-01

    Full Text Available Yuanfang Lu,1,2 Jingyan Gao,1,3 Yuanming Lu,1 1Department of Toxicology, School of Public Health, Guilin Medical University, Guangxi, People's Republic of China; 2Department of Clinical Research Center, Affiliated 2nd Hospital of Nanjing Medical University, Nanjing, People's Republic of China; 3Department of Human Anatomy and Histo-Embryology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China Background: Double-strand DNA breaks (DSBs are a key factor in carcinogenesis. The necessary repair of DSBs is pivotal in maintaining normal cell division. To address the relationship between altered expression of DSB repair of proteins Ku70 and ataxia-telangiectasia mutated (ATM in colorectal cancer (CRC, we examined the expression levels and patterns of Ku70 and ATM in CRC samples. Methods: Expression and coexpression of Ku70 and ATM were investigated by using real-time quantitative polymerase chain reaction assays and confirmed further with fluorescent immunohistochemistry in CRC and pericancerous samples from 112 Chinese patients. Results: Downexpression patterns for both Ku70 and ATM were found in the CRC samples and were significantly associated with advanced tumor node metastasis stage and decreased 5-year overall survival rate. Conclusion: Downregulated Ku70 and ATM were associated with poor disease-free survival. Loss of Ku70 and ATM expression might act as a biomarker to predict poor prognosis in patients with CRC. Keywords: DNA double-strand breaks, ataxia-telangiectasia mutated, Ku70, colorectal cancer

  5. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases

    Science.gov (United States)

    Dragin, Nadine; Bismuth, Jacky; Cizeron-Clairac, Géraldine; Biferi, Maria Grazia; Berthault, Claire; Serraf, Alain; Nottin, Rémi; Klatzmann, David; Cumano, Ana; Barkats, Martine; Le Panse, Rozen

    2016-01-01

    Autoimmune diseases affect 5% to 8% of the population, and females are more susceptible to these diseases than males. Here, we analyzed human thymic transcriptome and revealed sex-associated differences in the expression of tissue-specific antigens that are controlled by the autoimmune regulator (AIRE), a key factor in central tolerance. We hypothesized that the level of AIRE is linked to sexual dimorphism susceptibility to autoimmune diseases. In human and mouse thymus, females expressed less AIRE (mRNA and protein) than males after puberty. These results were confirmed in purified murine thymic epithelial cells (TECs). We also demonstrated that AIRE expression is related to sexual hormones, as male castration decreased AIRE thymic expression and estrogen receptor α–deficient mice did not show a sex disparity for AIRE expression. Moreover, estrogen treatment resulted in downregulation of AIRE expression in cultured human TECs, human thymic tissue grafted to immunodeficient mice, and murine fetal thymus organ cultures. AIRE levels in human thymus grafted in immunodeficient mice depended upon the sex of the recipient. Estrogen also upregulated the number of methylated CpG sites in the AIRE promoter. Together, our results indicate that in females, estrogen induces epigenetic changes in the AIRE gene, leading to reduced AIRE expression under a threshold that increases female susceptibility to autoimmune diseases. PMID:26999605

  6. Phosphorylation of FOXP3 by LCK downregulates MMP9 expression and represses cell invasion.

    Directory of Open Access Journals (Sweden)

    Kumiko Nakahira

    Full Text Available Forkhead Box P3 (FOXP3 is a member of the forkhead/winged helix family of the transcription factors and plays an important role not only as a master gene in T-regulatory cells, but also as a tumor suppressor. In this study, we identified lymphocyte-specific protein tyrosine kinase (LCK, which correlates with cancer malignancy, as a binding partner of FOXP3. FOXP3 downregulated LCK-induced MMP9, SKP2, and VEGF-A expression. We observed that LCK phosphorylated Tyr-342 of FOXP3 by immunoprecipitation and in vitro kinase assay, and the replacement of Tyr-342 with phenylalanine (Y342F abolished the ability to suppress MMP9 expression. Although FOXP3 decreased the invasive ability induced by LCK in MCF-7 cells, Y342F mutation in FOXP3 diminished this suppressive effect. Thus we demonstrate for the first time that LCK upregulates FOXP3 by tyrosine phosphorylation, resulting in decreased MMP9, SKP2, and VEGF-A expression, and suppressed cellular invasion. We consider that further clarification of transcriptional mechanism of FOXP3 may facilitate the development of novel therapeutic approaches to suppress cancer malignancy.

  7. Selective down-regulation of nuclear poly(ADP-ribose glycohydrolase.

    Directory of Open Access Journals (Sweden)

    David M Burns

    Full Text Available The formation of ADP-ribose polymers on target proteins by poly(ADP-ribose polymerases serves a variety of cell signaling functions. In addition, extensive activation of poly(ADP-ribose polymerase-1 (PARP-1 is a dominant cause of cell death in ischemia-reperfusion, trauma, and other conditions. Poly(ADP-ribose glycohydrolase (PARG degrades the ADP-ribose polymers formed on acceptor proteins by PARP-1 and other PARP family members. PARG exists as multiple isoforms with differing subcellular localizations, but the functional significance of these isoforms is uncertain.Primary mouse astrocytes were treated with an antisense phosphorodiamidate morpholino oligonucleotide (PMO targeted to exon 1 of full-length PARG to suppress expression of this nuclear-specific PARG isoform. The antisense-treated cells showed down-regulation of both nuclear PARG immunoreactivity and nuclear PARG enzymatic activity, without significant alteration in cytoplasmic PARG activity. When treated with the genotoxic agent MNNG to induced PARP-1 activation, the antisense-treated cells showed a delayed rate of nuclear PAR degradation, reduced nuclear condensation, and reduced cell death.These results support a preferentially nuclear localization for full-length PARG, and suggest a key role for this isoform in the PARP-1 cell death pathway.

  8. Aging, mobility impairments and subjective wellbeing.

    Science.gov (United States)

    Freedman, Vicki A; Carr, Deborah; Cornman, Jennifer C; Lucas, Richard E

    2017-10-01

    Wellbeing is often described as U-shaped over the life course, suggesting an apparent paradox that wellbeing remains high at older ages despite increases in impairments. We explore associations among age, lower body impairments-one of the most common late-life impairments-and three measures of wellbeing: life satisfaction, emotional wellbeing and somatic wellbeing. We hypothesize that age effects are positive, become stronger once lower body impairments are controlled, and are concentrated among those who have maintained their mobility. Net of confounding factors, we hypothesize that lower body impairments are associated with worse wellbeing and these effects diminish with advancing age. We analyze the 2013 Disability and Use of Time supplement to the Panel Study of Income Dynamics (N = 1607 adults ages 60 and older). We estimate nested regression models that include age, severity of lower body impairments and confounding demographic, psychological, and socioeconomic factors and activities; test age-impairment interactions; and estimate age- and impairment-stratified models. Positive age effects were observed after controlling for lower body impairments for life satisfaction (β = 0.90; p wellbeing, adjusted age effects were negative (β = -0.05; p wellbeing in adjusted models. These effects were strongest for somatic wellbeing, especially for 65-74 year olds. Our study challenges the notion that wellbeing is U-shaped throughout the life course and underscores the critical role of mobility across wellbeing domains in later life. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Propofol prevents electroconvulsive-shock-induced memory impairment through regulation of hippocampal synaptic plasticity in a rat model of depression

    Directory of Open Access Journals (Sweden)

    Luo J

    2014-09-01

    Full Text Available Jie Luo, Su Min, Ke Wei, Jun Cao, Bin Wang, Ping Li, Jun Dong, Yuanyuan Liu Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China Background: Although a rapid and efficient psychiatric treatment, electroconvulsive therapy (ECT induces memory impairment. Modified ECT requires anesthesia for safety purposes. Although traditionally found to exert amnesic effects in general anesthesia, which is an inherent part of modified ECT, some anesthetics have been found to protect against ECT-induced cognitive impairment. However, the mechanisms remain unclear. We investigated the effects of propofol (2,6-diisopropylphenol on memory in depressed rats undergoing electroconvulsive shock (ECS, the analog of ECT in animals, under anesthesia as well as its mechanisms.Methods: Chronic unpredictable mild stresses were adopted to reproduce depression in a rodent model. Rats underwent ECS (or sham ECS with anesthesia with propofol or normal saline. Behavior was assessed in sucrose preference, open field and Morris water maze tests. Hippocampal long-term potentiation (LTP was measured using electrophysiological techniques. PSD-95, CREB, and p-CREB protein expression was assayed with western blotting.Results: Depression induced memory damage, and downregulated LTP, PSD-95, CREB, and p-CREB; these effects were exacerbated in depressed rats by ECS; propofol did not reverse the depression-induced changes, but when administered in modified ECS, propofol improved memory and reversed the downregulation of LTP and the proteins. Conclusion: These findings suggest that propofol prevents ECS-induced memory impairment, and modified ECS under anesthesia with propofol improves memory in depressed rats, possibly by reversing the excessive changes in hippocampal synaptic plasticity. These observations provide a novel insight into potential targets for optimizing the clinical use of ECT for psychiatric

  10. Regular Marijuana Users May Have Impaired Brain Reward Centers

    Science.gov (United States)

    ... users may have impaired brain reward centers Regular marijuana users may have impaired brain reward centers Email ... July 30, 2014 New research shows that regular marijuana users show impairments in the brain’s ability to ...

  11. Relative clause reading in hearing impairment: Different profiles of syntactic impairment

    Directory of Open Access Journals (Sweden)

    Ronit eSzterman

    2014-11-01

    Full Text Available Children with hearing impairment show difficulties in sentences derived by Wh-movement, such as relative clauses and Wh-questions. This study examines the nature of this deficit in 48 hearing impaired children aged 9-12 years and 38 hearing controls. The task involved reading aloud and paraphrasing of object relatives that include a noun-verb heterophonic homograph. The correct pronunciation of the homograph in these sentences depended upon the correct construction of the syntactic structure of the sentence. An analysis of the reading and paraphrasing of each participant exposed two different patterns of syntactic impairment. Some hearing-impaired children paraphrased the object relatives incorrectly but could still read the homograph, indicating impaired assignment of thematic roles alongside good syntactic structure building; other hearing-impaired children could neither read the homograph nor paraphrase the sentence, indicating a structural deficit in the syntactic tree. Further testing of these children confirmed the different impairments: some are impaired only in Wh-movement, whereas others have CP impairment. The syntactic impairment correlated with whether or not a hearing device was fitted by the age of one year, but not with the type of hearing device or the depth of hearing loss: children who had a hearing device fitted during the first year of life had better syntactic abilities than children whose hearing devices were fitted later.

  12. TOR signaling downregulation increases resistance to the cereal killer Fusarium graminearum.

    Science.gov (United States)

    Aznar, Néstor R; Consolo, V Fabiana; Salerno, Graciela L; Martínez-Noël, Giselle M A

    2018-02-01

    TOR is the master regulator of growth and development that senses energy availability. Biotic stress perturbs metabolic and energy homeostasis, making TOR a good candidate to participate in the plant response. Fusarium graminearum (Fusarium) produces important losses in many crops all over the world. To date, the role of TOR in Fusarium infection has remained unexplored. Here, we show that the resistance to the pathogen increases in different Arabidopsis mutants impaired in TOR complex or in wild-type plants treated with a TOR inhibitor. We conclude that TOR signaling is involved in plant defense against Fusarium.

  13. CTG repeat-targeting oligonucleotides for down-regulating Huntingtin expression

    DEFF Research Database (Denmark)

    Zaghloul, Eman M; Gissberg, Olof; Moreno, Pedro M D

    2017-01-01

    Huntington's disease (HD) is a fatal, neurodegenerative disorder in which patients suffer from mobility, psychological and cognitive impairments. Existing therapeutics are only symptomatic and do not significantly alter the disease progression or increase life expectancy. HD is caused by expansion....... Thus, reduction of both muHTT mRNA and protein levels would ideally be the most useful therapeutic option. We herein present a novel strategy for HD treatment using oligonucleotides (ONs) directly targeting the HTT trinucleotide repeat DNA. A partial, but significant and potentially long-term, HTT...

  14. Ca2+-clock-dependent pacemaking in the sinus node is impaired in mice with a cardiac specific reduction in SERCA2 abundance

    Directory of Open Access Journals (Sweden)

    Sunil Jit Ramamoorthy Jeewanlal Logantha

    2016-06-01

    Full Text Available Background: The sarcoplasmic reticulum Ca2+-ATPase (SERCA2 pump is an important component of the Ca2+-clock pacemaker mechanism that provides robustness and flexibility to sinus node pacemaking. We have developed transgenic mice with reduced cardiac SERCA2 abundance (Serca2 KO as a model for investigating SERCA2’s role in sinus node pacemaking.Methods and Results: In Serca2 KO mice, ventricular SERCA2a protein content measured by Western blotting was 75% (P70% Serca2 downregulation.Conclusions: Serca2 KO mice show a disrupted Ca2+-clock-dependent pacemaker mechanism contributing to impaired sinus node and atrioventricular node function.

  15. Impaired reproduction after exposure to ADHD drugs

    DEFF Research Database (Denmark)

    Danborg, Pia Brandt; Simonsen, Anders Lykkemark; Gøtzsche, Peter C

    2017-01-01

    BACKGROUND: Few studies have reported on long-term harms caused by ADHD drugs but they are known to impair growth. OBJECTIVE: To assess whether ADHD drugs impair reproduction in mammals. METHODS: Systematic review of reproduction in studies of animals treated with ADHD drugs. DATA SOURCES: Pub...... difference was 4.0 days, 95% CI 2.5 to 5.6, and number of estrous cycles was halved; in the other, the minimum delay was 6 days), while in two other studies no difference occurred. Generally, the impairments improved after a drug-free period and were less pronounced when treatment started later in life....... CONCLUSION: ADHD drugs impair the reproduction in animals....

  16. Methamphetamine Alters Brain Structures, Impairs Mental Flexibility

    Science.gov (United States)

    ... Methamphetamine Alters Brain Structures, Impairs Mental Flexibility Email Facebook Twitter March 20, 2014 A new study adds to the copious existing evidence that chronic exposure to addictive drugs alters the brain in ways that make ...

  17. State Alcohol-Impaired-Driving Estimates

    Science.gov (United States)

    ... 2012 Data DOT HS 812 017 May 2014 State Alcohol-Impaired-Driving Estimates This fact sheet contains ... alcohol involvement in fatal crashes for the United States and individually for the 50 States, the District ...

  18. Some Sleep Drugs Can Impair Driving

    Science.gov (United States)

    ... For Consumers Home For Consumers Consumer Updates Some Sleep Drugs Can Impair Driving Share Tweet Linkedin Pin ... over-the-counter (OTC) drugs. Most Widely Used Sleep Drug Zolpidem—which has been on the market ...

  19. Osteogenesis imperfecta in childhood: impairment and disability

    NARCIS (Netherlands)

    Engelbert, R. H.; van der Graaf, Y.; van Empelen, R.; Beemer, F. A.; Helders, P. J.

    1997-01-01

    To determine clinical characteristics in children with osteogenesis imperfecta (OI) regarding impairment (range of joint motion and muscle strength) and disability (functional skills) in relation to the different types of the disease, and to study the correlation between characteristics of

  20. Dual sensory impairment in older age.

    Science.gov (United States)

    Schneider, Julie M; Gopinath, Bamini; McMahon, Catherine M; Leeder, Stephen R; Mitchell, Paul; Wang, Jie Jin

    2011-12-01

    Hearing and visual impairments are commonly viewed separately in research and service provision, but they often occur together as dual sensory impairment or DSI in older populations. This article examines the frequency and effects of DSI in older age and notes limitations in the evidence. Search of electronic databases of published papers. DSI diminishes communication and well-being and can cause social isolation, depression, reduced independence, mortality, and cognitive impairment. Although intuitively DSI may be expected to have additional impacts over single sensory impairment, research findings are inconclusive. Services and supports required by people with DSI are simply a combination of those required by people with single vision and hearing loss, taking account of the unique communication difficulties posed by DSI.

  1. Hearing impairment in genotyped Wolfram syndrome patients.

    NARCIS (Netherlands)

    Plantinga, R.F.; Pennings, R.J.E.; Huygen, P.L.M.; Bruno, R.; Eller, P.; Barrett, T.G.; Vialettes, B.; Paquis-Fluklinger, V.; Lombardo, F.; Cremers, C.W.R.J.

    2008-01-01

    OBJECTIVES: Wolfram syndrome is a progressive neurodegenerative syndrome characterized by the features "DIDMOAD" (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). We sought to study the audiometric data of genotyped Wolfram syndrome patients with sensorineural hearing impairment.

  2. Impaired decision making among morbidly obese adults.

    LENUS (Irish Health Repository)

    Brogan, Amy

    2011-02-01

    The Iowa Gambling Task (IGT) measures affective decision making and has revealed decision making impairments across a wide range of eating disorders. This study aimed to investigate affective decision making in severely obese individuals.

  3. Decreased Hippocampal Neuroplasticity and Behavioral Impairment in an Animal Model of Inhalant Abuse

    Directory of Open Access Journals (Sweden)

    Hanaa Malloul

    2018-02-01

    Full Text Available Thinners are highly toxic chemicals widely employed as organic solvents in industrial and domestic use. They have psychoactive properties when inhaled, and their chronic abuse as inhalants is associated with severe long-term health effects, including brain damage and cognitive-behavioral alterations. Yet, the sites and mechanisms of action of these compounds on the brain are far from being fully understood. Here, we investigated the consequences of paint thinner inhalation in adult male mice. Depression-like behaviors and an anxiolytic effect were found following repeated exposure in chronic treatments lasting 12 weeks. Both subchronic (6 weeks and chronic treatments impaired learning and memory functions, while no changes were observed after acute treatment. To investigate possible molecular/structural alterations underlying such behavioral changes, we focused on the hippocampus. Notably, prolonged, but not acute thinner inhalation strongly affected adult neurogenesis in the dentate gyrus (DG, reducing progenitor cell proliferation after chronic treatments and impairing the survival of newborn neurons following both chronic and subchronic treatments. Furthermore, a down-regulation in the expression of BDNF and NMDA receptor subunits as well as a reduction in CREB expression/phosphorylation were found in the hippocampi of chronically treated mice. Our findings demonstrate for the first time significant structural and molecular changes in the adult hippocampus after prolonged paint thinner inhalation, indicating reduced hippocampal neuroplasticity and strongly supporting its implication in the behavioral dysfunctions associated to inhalant abuse.

  4. Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling

    Science.gov (United States)

    Yang, Hongwei; Tang, Ya-ping; Sun, Hao; Song, Yunping; Chen, Chu

    2013-01-01

    SUMMARY Marijuana has been used for thousands of years as a treatment for medical conditions. However, untoward side effects limit its medical value. Here we show that synaptic and cognitive impairments following repeated exposure to Δ9-tetrahydrocannabinol (Δ9-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids, in the brain. COX-2 induction by Δ9-THC is mediated via CB1 receptor-coupled G-protein βγ subunits. Pharmacological or genetic inhibition of COX-2 blocks down-regulation and internalization of glutamate receptor subunits and alterations of the dendritic spine density of hippocampal neurons induced by repeated Δ9-THC exposures. Ablation of COX-2 also eliminates Δ9-THC-impaired hippocampal long-term synaptic plasticity, spatial, and fear memories. Importantly, the beneficial effects of decreasing β-amyloid plaques and neurodegeneration by Δ9-THC in Alzheimer’s disease animals are retained in the presence of COX-2 inhibition. These results suggest that the applicability of medical marijuana would be broadened by concurrent inhibition of COX-2. PMID:24267894

  5. DNA Adenine Methyltransferase (Dam Overexpression Impairs Photorhabdus luminescens Motility and Virulence

    Directory of Open Access Journals (Sweden)

    Amaury Payelleville

    2017-09-01

    Full Text Available Dam, the most described bacterial DNA-methyltransferase, is widespread in gamma-proteobacteria. Dam DNA methylation can play a role in various genes expression and is involved in pathogenicity of several bacterial species. The purpose of this study was to determine the role played by the dam ortholog identified in the entomopathogenic bacterium Photorhabdus luminescens. Complementation assays of an Escherichia coli dam mutant showed the restoration of the DNA methylation state of the parental strain. Overexpression of dam in P. luminescens did not impair growth ability in vitro. In contrast, compared to a control strain harboring an empty plasmid, a significant decrease in motility was observed in the dam-overexpressing strain. A transcriptome analysis revealed the differential expression of 208 genes between the two strains. In particular, the downregulation of flagellar genes was observed in the dam-overexpressing strain. In the closely related bacterium Xenorhabdus nematophila, dam overexpression also impaired motility. In addition, the dam-overexpressing P. luminescens strain showed a delayed virulence compared to that of the control strain after injection in larvae of the lepidopteran Spodoptera littoralis. These results reveal that Dam plays a major role during P. luminescens insect infection.

  6. Castration radiosensitizes prostate cancer tissue by impairing DNA double-strand break repair.

    Science.gov (United States)

    Tarish, Firas L; Schultz, Niklas; Tanoglidi, Anna; Hamberg, Hans; Letocha, Henry; Karaszi, Katalin; Hamdy, Freddie C; Granfors, Torvald; Helleday, Thomas

    2015-11-04

    Chemical castration improves responses to radiotherapy in prostate cancer, but the mechanism is unknown. We hypothesized that this radiosensitization is caused by castration-mediated down-regulation of nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs). To test this, we enrolled 48 patients with localized prostate cancer in two arms of the study: either radiotherapy first or radiotherapy after neoadjuvant castration treatment. We biopsied patients at diagnosis and before and after castration and radiotherapy treatments to monitor androgen receptor, NHEJ, and DSB repair in verified cancer tissue. We show that patients receiving neoadjuvant castration treatment before radiotherapy had reduced amounts of the NHEJ protein Ku70, impaired radiotherapy-induced NHEJ activity, and higher amounts of unrepaired DSBs, measured by γ-H2AX foci in cancer tissues. This study demonstrates that chemical castration impairs NHEJ activity in prostate cancer tissue, explaining the improved response of patients with prostate cancer to radiotherapy after chemical castration. Copyright © 2015, American Association for the Advancement of Science.

  7. Brown adipose tissue transplantation ameliorates male fertility impairment caused by diet-induced obesity.

    Science.gov (United States)

    Liu, Hui; Liu, Xiaomeng; Wang, Li; Sheng, Nan

    Populations with obesity or overweight have a high incidence of infertility. We hypothesised that brown adipose tissue (BAT) transplantation can attenuate the impairment of male fertility caused by diet-induced obesity. BATs were transplanted from male donor mice into age and sex matched recipient mice fed high-fat diets (HFD). Sperm motility experiment was conducted after surgical procedure. X-ray computed tomography scanning, biochemical assay, real-time PCR and western blot analysis were performed. BAT transplantation reduced body fat and epididymal fat mass, as well as triglycerides (TG) content in testis and epididymis and total cholesterol (TCHO) contents in epididymis compared with the HFD group. Sperm motility and progressiveness were recovered and mRNA and protein levels of genes related to sperm motility such as cullin 3 (Cul3), peroxisome proliferator activated receptor alpha (PPARα) and its down-stream genes were significantly down-regulated post BAT transplantation. BAT transplantation partially ameliorated impairment of male fertility caused by diet-induced obesity. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  8. Navigation of blind and visually impaired people

    OpenAIRE

    Axer, Steffen; Belz, Jörg; Leske, Kathrin; Friedrich, Bernhard; Hesse, Tobias; Vollrath, Mark

    2015-01-01

    The mobility of the blind and visually impaired is associated with many barriers and risks. To secure crossings, signalized intersections are partially equipped with acoustic or tactile indicators. However, environmental conditions might interfere with the acoustic identification of the green time. Furthermore, information such as intersection topology, bicycle traffic or the curb structure is not accessible to visually impaired road users. Therefore, most trips are limited to trained routes....

  9. Dosing of Enoxaparin in Renal Impairment.

    Science.gov (United States)

    Shaikh, Suhail A; Regal, Randolph E

    2017-04-01

    To review enoxaparin treatment dosing, pharmacokinetics, and clinical outcomes data in patients with renal impairment and to examine the current two-tiered dosing regimen approved by the Food and Drug Administration (FDA). A literature search of PubMed (1990-2016) was performed using the search terms low-molecular-weight heparin, unfractionated heparin, bleeding, enoxaparin, renal impairment, pharmacokinetics, and hemodialysis. All studies assessing the pharmacokinetic properties of enoxaparin in patients with renal impairment were evaluated. In addition, all retrospective and prospective studies assessing the safety and efficacy of enoxaparin treatment in this population were evaluated. Five pharmacokinetic studies evaluated changes in the pharmacokinetics of enoxaparin in patients with renal impairment. In these studies, enoxaparin clearance was reduced by 17% to 44% in patients with mild and moderate renal impairment. Six retrospective studies evaluated the safety of enoxaparin in patients with renal impairment. In one study, patients with moderate renal impairment were at increased risk of bleeding when using the current FDA-approved two-tiered scheme (odds ratio, 4.7; 95% confidence interval, 1.7-13.0; P = 0.002). Another study demonstrated that individualized enoxaparin dosing, when compared to FDA-approved dosing, resulted in a decreased risk of bleeding. Two retrospective studies evaluated efficacy. One of these studies compared reduced-dose enoxaparin with unfractionated heparin; there was a trend toward lower incidences of thromboembolism and 30-day mortality with reduced-dose enoxaparin. Hospital length of stay also decreased with reduced-dosed enoxaparin. This paper highlights the differences in the pharmacokinetic properties and safety and efficacy outcomes in multiple degrees of renal impairment when using treatment-dose enoxaparin. Given the literature highlighted in this review, a more multitiered enoxaparin renal dosing strategy-perhaps shifting

  10. Communication difficulties in teenagers with health impairments

    Directory of Open Access Journals (Sweden)

    Samokhvalova, Anna G.

    2016-09-01

    Full Text Available Contemporary psychological and pedagogical studies pay special attention to the socialization of physically impaired children, inclusive education and methods of providing such children with a safe environment to assist in their development. However, difficulties in interpersonal communication experienced by children with health impairments have remained beyond the research scope. The authors conducted a comparative analysis of communication difficulties in typically developed teenagers aged 12-13 years (n = 100 and the problems faced by their peers with visual (n = 30, auditory (n = 30, speech (n = 25 and motor (n = 15 impairments. Actual communication difficulties in teenagers were studied in two ways: the subjective component of impaired communication was registered through a content analysis of a sentence completion test and the objective manifestations of impaired communication were identified through expert evaluation of children’s communicative behavior (educators and psychologists who had been in close contact with the teenagers acted as experts. First, the authors identified typical standard communication problems that were characteristic of teenagers aged 12-13 years, that is, problems with aggression, tolerance, the ability to admit wrongdoing and make concessions, empathy, self-control, self-analysis and self-expression in communication. Second, typical communication difficulties characteristic of physically impaired children were revealed: failure to understand meaning; feelings of awkwardness and shame of oneself; expectations of a negative attitude toward oneself; gelotophobia; and manifestations of despotism, petulance and egotism as defensive reactions in situations of impaired communication. Third, the authors described specific communication difficulties in teenagers with auditory, visual, speech and motor impairments.

  11. Astronomy for the Blind and Visually Impaired

    Science.gov (United States)

    Kraus, S.

    2016-12-01

    This article presents a number of ways of communicating astronomy topics, ranging from classical astronomy to modern astrophysics, to the blind and visually impaired. A major aim of these projects is to provide access which goes beyond the use of the tactile sense to improve knowledge transfer for blind and visually impaired students. The models presented here are especially suitable for young people of secondary school age.

  12. Cargo distributions differentiate pathological axonal transport impairments.

    Science.gov (United States)

    Mitchell, Cassie S; Lee, Robert H

    2012-05-07

    Axonal transport is an essential process in neurons, analogous to shipping goods, by which energetic and cellular building supplies are carried downstream (anterogradely) and wastes are carried upstream (retrogradely) by molecular motors, which act as cargo porters. Impairments in axonal transport have been linked to devastating and often lethal neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis, Huntington's, and Alzheimer's. Axonal transport impairment types include a decrease in available motors for cargo transport (motor depletion), the presence of defective or non-functional motors (motor dilution), and the presence of increased or larger cargos (protein aggregation). An impediment to potential treatment identification has been the inability to determine what type(s) of axonal transport impairment candidates that could be present in a given disease. In this study, we utilize a computational model and common axonal transport experimental metrics to reveal the axonal transport impairment general characteristics or "signatures" that result from three general defect types of motor depletion, motor dilution, and protein aggregation. Our results not only provide a means to discern these general impairments types, they also reveal key dynamic and emergent features of axonal transport, which potentially underlie multiple impairment types. The identified characteristics, as well as the analytical method, can be used to help elucidate the axonal transport impairments observed in experimental and clinical data. For example, using the model-predicted defect signatures, we identify the defect candidates, which are most likely to be responsible for the axonal transport impairments in the G93A SOD1 mouse model of ALS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades

    International Nuclear Information System (INIS)

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang; Li, Haowei; Ouyang, Zhengxiao; Wu, Chuanlong; Liu, Guangwang; Fan, Qiming; Tang, Tingting; Qin, An; Dai, Kerong

    2014-01-01

    Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases

  14. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang; Li, Haowei [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Ouyang, Zhengxiao [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Department of Orthopaedics, Hunan Provincial Tumor Hospital and Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha (China); Wu, Chuanlong [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Liu, Guangwang [Department of Orthopaedic Surgery, The Central Hospital of Xuzhou, Affiliated Hospital of Medical Collage of Southeast University, Xuzhou (China); Fan, Qiming; Tang, Tingting [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Qin, An, E-mail: dr.qinan@gmail.com [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Dai, Kerong, E-mail: krdai@163.com [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2014-01-10

    Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases.

  15. Transnationalising Disability Studies: Rights, Justice and Impairment

    Directory of Open Access Journals (Sweden)

    Karen Soldatic

    2014-03-01

    Full Text Available In this paper we aim to explore the realm of impairment in terms of its politicization under transnational claims for justice. The realm of disability rights and justice has been a central theme in disability analytical inquiry and by disability movement actors engaged in struggles of disability affirmative politics. Within this frame, there has been an increasing amount of disability scholarship and activism at the transnational sphere. In fact, since the ratification of the UNCRPD (2006 greater transnational alliances have become a central feature to advancing disability affirmative claims for rights and justice.  While welcomed, we argue that within the transnational realm, the focus on disability alone critically marginalizes those groups engaging in repertories of action within the logos of impairment as transnational claims for disability justice tend to naturalise impairment and negate the production of impairment under global structural processes of violence. To address this issue, we suggest that the growing scholarship on transnational theorizing and activism within disability needs to respond to these claims for justice and rights. To conclude we argue that transnational theorizing and praxis is in fact, a double move