WorldWideScience

Sample records for synchrotron-based high lateral-resolution

  1. Synchrotron-Based High Angle Resolution and High Lateral Resolution X-ray Diffraction: Revealing Lead White Pigment Qualities in Old Masters Paintings.

    Science.gov (United States)

    Gonzalez, V; Wallez, G; Calligaro, T; Cotte, M; De Nolf, W; Eveno, M; Ravaud, E; Menu, M

    2017-12-19

    Microsamples collected on 27 major paintings by Old European Masters dating from the 14th to the late 19th centuries were analyzed using synchrotron-based X-ray diffraction. Two complementary analytical configurations were used at beamlines ID22 (high angle resolution) and ID21 (high lateral resolution), in order to highlight markers of the different grades of the lead white pigments (mixture of cerussite PbCO 3 and hydrocerussite Pb 3 (CO 3 ) 2 (OH) 2 ). Rietveld analysis and crystalline phases mapping at the microscale revealed the composition and microstructure of the pigments, shedding light on the preparation recipes and pigment choices of the artists through History.

  2. High lateral resolution, quantitative SIMS analysis of boron-10 in rat brain tissue

    International Nuclear Information System (INIS)

    Oyedepo, A.C.; Heard, P.J.; Allen, G.C.; Brooke, S.L.; Patel, H.

    2000-01-01

    A SIMS (Secondary Ion Mass Spectroscopy) instrument providing high-resolution imaging has been used to examine the relative amounts of boron-10 ( 10 B) taken up in tumour and normal areas of rat brain tissue. It was possible to identify regions of low and high 10 B concentrations. The information is useful to the advancement of BNCT (Boron Neutron Capture Therapy) clinical trials. (author)

  3. High-speed nuclear quality pulse height analyzer for synchrotron-based applications

    International Nuclear Information System (INIS)

    Beche, Jean-Francois; Bucher, Jerome J.; Fabris, Lorenzo; Riot, Vincent J.

    2001-01-01

    A high throughput Pulse Height Analyzer system for synchrotron-based applications requiring high resolution, high processing speed and low dead time has been developed. The system is comprised of a 120ns 12-bit nuclear quality Analog to Digital converter with a self-adaptive fast peak detector-stretcher and a custom-made fast histogramming memory module that records and processes the digitized data. The histogramming module is packaged in a VME or VXI compatible interface. Data is transferred through a fast optical link from the memory interface to a computer. A dedicated data acquisition program matches the hardware characteristics of the histogramming memory module. The data acquisition system allows for two data collection modes: ''standard'' data acquisition mode where the data is accumulated and read in synchronization with an external trigger and ''live'' data acquisition mode where the system operates as a standard Pulse Height Analyzer. The acquisition, standard or live, can be performed on several channels simultaneously. A two-channel prototype has been demonstrated at the Stanford Synchrotron Radiation Laboratory accelerator in conjunction with an X-ray Fluorescence Absorption Spectroscopy experiment. A detailed description of the entire system is given and experimental data is shown

  4. High resolution X-ray detector for synchrotron-based microtomography

    CERN Document Server

    Stampanoni, M; Wyss, P; Abela, R; Patterson, B; Hunt, S; Vermeulen, D; Rueegsegger, P

    2002-01-01

    Synchrotron-based microtomographic devices are powerful, non-destructive, high-resolution research tools. Highly brilliant and coherent X-rays extend the traditional absorption imaging techniques and enable edge-enhanced and phase-sensitive measurements. At the Materials Science Beamline MS of the Swiss Light Source (SLS), the X-ray microtomographic device is now operative. A high performance detector based on a scintillating screen optically coupled to a CCD camera has been developed and tested. Different configurations are available, covering a field of view ranging from 715x715 mu m sup 2 to 7.15x7.15 mm sup 2 with magnifications from 4x to 40x. With the highest magnification 480 lp/mm had been achieved at 10% modulation transfer function which corresponds to a spatial resolution of 1.04 mu m. A low-noise fast-readout CCD camera transfers 2048x2048 pixels within 100-250 ms at a dynamic range of 12-14 bit to the file server. A user-friendly graphical interface gives access to the main parameters needed for ...

  5. Laser-induced local activation of Mg-doped GaN with a high lateral resolution for high power vertical devices

    Directory of Open Access Journals (Sweden)

    Noriko Kurose

    2018-01-01

    Full Text Available A method for laser-induced local p-type activation of an as-grown Mg-doped GaN sample with a high lateral resolution is developed for realizing high power vertical devices for the first time. As-grown Mg-doped GaN is converted to p-type GaN in a confined local area. The transition from an insulating to a p-type area is realized to take place within about 1–2 μm fine resolution. The results show that the technique can be applied in fabricating the devices such as vertical field effect transistors, vertical bipolar transistors and vertical Schottkey diode so on with a current confinement region using a p-type carrier-blocking layer formed by this technique.

  6. Laser-induced local activation of Mg-doped GaN with a high lateral resolution for high power vertical devices

    Science.gov (United States)

    Kurose, Noriko; Matsumoto, Kota; Yamada, Fumihiko; Roffi, Teuku Muhammad; Kamiya, Itaru; Iwata, Naotaka; Aoyagi, Yoshinobu

    2018-01-01

    A method for laser-induced local p-type activation of an as-grown Mg-doped GaN sample with a high lateral resolution is developed for realizing high power vertical devices for the first time. As-grown Mg-doped GaN is converted to p-type GaN in a confined local area. The transition from an insulating to a p-type area is realized to take place within about 1-2 μm fine resolution. The results show that the technique can be applied in fabricating the devices such as vertical field effect transistors, vertical bipolar transistors and vertical Schottkey diode so on with a current confinement region using a p-type carrier-blocking layer formed by this technique.

  7. The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power.

    Science.gov (United States)

    Passarelli, Melissa K; Pirkl, Alexander; Moellers, Rudolf; Grinfeld, Dmitry; Kollmer, Felix; Havelund, Rasmus; Newman, Carla F; Marshall, Peter S; Arlinghaus, Henrik; Alexander, Morgan R; West, Andy; Horning, Stevan; Niehuis, Ewald; Makarov, Alexander; Dollery, Colin T; Gilmore, Ian S

    2017-12-01

    We report the development of a 3D OrbiSIMS instrument for label-free biomedical imaging. It combines the high spatial resolution of secondary ion mass spectrometry (SIMS; under 200 nm for inorganic species and under 2 μm for biomolecules) with the high mass-resolving power of an Orbitrap (>240,000 at m/z 200). This allows exogenous and endogenous metabolites to be visualized in 3D with subcellular resolution. We imaged the distribution of neurotransmitters-gamma-aminobutyric acid, dopamine and serotonin-with high spectroscopic confidence in the mouse hippocampus. We also putatively annotated and mapped the subcellular localization of 29 sulfoglycosphingolipids and 45 glycerophospholipids, and we confirmed lipid identities with tandem mass spectrometry. We demonstrated single-cell metabolomic profiling using rat alveolar macrophage cells incubated with different concentrations of the drug amiodarone, and we observed that the upregulation of phospholipid species and cholesterol is correlated with the accumulation of amiodarone.

  8. High-resolution non-invasive 3D imaging of paint microstructure by synchrotron-based X-ray laminography

    International Nuclear Information System (INIS)

    Reischig, Peter; Helfen, Lukas; Wallert, Arie; Baumbach, Tilo; Dik, Joris

    2013-01-01

    The characterisation of the microstructure and micromechanical behaviour of paint is key to a range of problems related to the conservation or technical art history of paintings. Synchrotron-based X-ray laminography is demonstrated in this paper to image the local sub-surface microstructure in paintings in a non-invasive and non-destructive way. Based on absorption and phase contrast, the method can provide high-resolution 3D maps of the paint stratigraphy, including the substrate, and visualise small features, such as pigment particles, voids, cracks, wood cells, canvas fibres etc. Reconstructions may be indicative of local density or chemical composition due to increased attenuation of X-rays by elements of higher atomic number. The paint layers and their interfaces can be distinguished via variations in morphology or composition. Results of feasibility tests on a painting mockup (oak panel, chalk ground, vermilion and lead white paint) are shown, where lateral and depth resolution of up to a few micrometres is demonstrated. The method is well adapted to study the temporal evolution of the stratigraphy in test specimens and offers an alternative to destructive sampling of original works of art. (orig.)

  9. High-throughput full-automatic synchrotron-based tomographic microscopy

    International Nuclear Information System (INIS)

    Mader, Kevin; Marone, Federica; Hintermueller, Christoph; Mikuljan, Gordan; Isenegger, Andreas; Stampanoni, Marco

    2011-01-01

    At the TOMCAT (TOmographic Microscopy and Coherent rAdiology experimenTs) beamline of the Swiss Light Source with an energy range of 8-45 keV and voxel size from 0.37 (micro)m to 7.4 (micro)m, full tomographic datasets are typically acquired in 5 to 10 min. To exploit the speed of the system and enable high-throughput studies to be performed in a fully automatic manner, a package of automation tools has been developed. The samples are automatically exchanged, aligned, moved to the correct region of interest, and scanned. This task is accomplished through the coordination of Python scripts, a robot-based sample-exchange system, sample positioning motors and a CCD camera. The tools are suited for any samples that can be mounted on a standard SEM stub, and require no specific environmental conditions. Up to 60 samples can be analyzed at a time without user intervention. The throughput of the system is dependent on resolution, energy and sample size, but rates of four samples per hour have been achieved with 0.74 (micro)m voxel size at 17.5 keV. The maximum intervention-free scanning time is theoretically unlimited, and in practice experiments have been running unattended as long as 53 h (the average beam time allocation at TOMCAT is 48 h per user). The system is the first fully automated high-throughput tomography station: mounting samples, finding regions of interest, scanning and reconstructing can be performed without user intervention. The system also includes many features which accelerate and simplify the process of tomographic microscopy.

  10. 'Applications of stable isotopes in life sciences'. Lead and strontium stable isotope measurements by using a high lateral resolution secondary ion mass spectrometer (NanoSIMS)

    International Nuclear Information System (INIS)

    Sano, Yuji

    2008-01-01

    The method of Pb and Sr isotope measurements at about 5 μm resolution was developed by using a high lateral resolution secondary ion mass spectrometer (NanoSIMS NS50). Since the both elements have radiogenic nuclides such as 206 Pb, 207 Pb, and 87 Sr, natural variations of isotopic ratios are large. It is possible to detect a meaningful variation in a terrestrial sample, even though the experimental error is relatively large. In the case of monazite U-Pb dating, a 4 nA O - primary beam was used to sputter the sample and secondary positive ions were extracted for mass analysis using a Mattauch-Herzog geometry. The multi-collector system was modified to detect 140 Ce + , 204 Pb + , 206 Pb + , 238 U 16 O + , and 238 U 16 O 2 + ions simultaneously. Based on the monazite standard from North-Central Madagascar, we have determined the 206 Pb/ 238 U ratios of samples. 207 Pb/ 206 Pb ratios were measured by a magnet scanning with a single collector mode. 44 monazite grains extracted from a sedimentary rock in Taiwan were analyzed. Observed ages were consistent with the U-Th-Pb chemical ages by EPMA. Then NanoSIMS has been used to measure 87 Sr/ 86 Sr ratios in natural calcium carbonate samples. Multi-collector system was adjusted to detect 43 Ca + , 80 Ca 2 + , 86 Sr + , and 87 Sr + ions at the same time. Magnetic field was scanning for the EM no.4 counter to detect 85 Rb + , 86 Sr + and 87 Sr + , while the EM no.4b can measure 86 Sr + , 87 Sr + , and 88 Sr + , respectively. Repeated analyses of a coral skeleton standard (JCp-1) show that 87 Sr/ 86 Sr ratio agrees well with the seawater signature, after the series of corrections such as Ca dimer, 87 Rb, and a mass bias estimated by 88 Sr/ 86 Sr ratio. The method is applied to an otolith from ayu (Pleco-glossus altivelis altivelis) collected from the Yodo river, Japan. The spatial variation of 87 Sr/ 86 Sr ratios was consistent with amphidromous migration of the fish, namely, born in the lake and grown in the coastal sea

  11. Low voltage EPMA: experiments on a new frontier in microanalysis - analytical lateral resolution

    International Nuclear Information System (INIS)

    Fournelle, J; Cathey, H; Pinard, P T; Richter, S

    2016-01-01

    Field emission (FE) electron gun sources provide new capabilities for high lateral resolution EPMA. The determination of analytical lateral resolution is not as straightforward as that for electron microscopy imaging. Results from two sets of experiments to determine the actual lateral resolution for accurate EPMA are presented for Kα X-ray lines of Si and Al and La of Fe at 5 and 7 keV in a silicate glass. These results are compared to theoretical predictions and Monte Carlo simulations of analytical lateral resolution. The experiments suggest little is gained in lateral resolution by dropping from 7 to 5 keV in EPMA of this silicate glass. (paper)

  12. High temperature in-situ synchrotron-based XRD study on the crystal structure evolution of C/C composite impregnated by FLiNaK molten salt.

    Science.gov (United States)

    Feng, Shanglei; Yang, Yingguo; Li, Li; Zhang, Dongsheng; Yang, Xinmei; Xia, Huihao; Yan, Long; Tsang, Derek K L; Huai, Ping; Zhou, Xingtai

    2017-09-06

    An in-situ real-time synchrotron-based grazing incidence X-ray diffraction was systematically used to investigate the crystal structural evolution of carbon fiber reinforced carbon matrix (C/C) composite impregnated with FLiNaK molten salt during the heat-treatment process. It was found that the crystallographic thermal expansion and contraction rate of interlayer spacing d 002 in C/C composite with FLiNaK salt impregnation is smaller than that in the virgin sample, indicating the suppression on interlayer spacing from FLiNaK salt impregnated. Meanwhile the crystallite size L C002 of C/C composite with FLiNaK salt impregnation is larger than the virgin one after whole heat treatment process, indicating that FLiNaK salt impregnation could facilitate the crystallization of C/C composite after heat treatment process. This improved crystallization in C/C composite with FLiNaK salt impregnation suggests the synthetic action of the salt squeeze effect on crooked carbon layer and the release of internal residual stress after heating-cooling process. Thus, the present study not only contribute to reveal the interaction mechanism between C/C composite and FLiNaK salt in high temperature environment, but also promote the design of safer and more reliable C/C composite materials for the next generation molten salt reactor.

  13. Synchrotron-Based Techniques Shed Light on Mechanisms of Plant Sensitivity and Tolerance to High Manganese in the Root Environment

    Science.gov (United States)

    Plant species differ in response to high available manganese (Mn), but the mechanisms of sensitivity and tolerance are poorly understood. In solution culture, greater than or equal to 30 µM Mn decreased the growth of soybean (Glycine max), but white lupin (Lupinus albu...

  14. Inkjet Printing of Conductive Inks with High Lateral Resolution on Omniphobic “R F Paper” for Paper-Based Electronics and MEMS

    OpenAIRE

    Lessing, Joshua; Glavan, Ana C; Walker, S. Brett; Keplinger, Christoph; Lewis, Jennifer; Whitesides, George McClelland

    2014-01-01

    The use of omniphobic “fluoroalkylated paper” as a substrate for inkjet printing of aqueous inks that are the precursors of electrically conductive patterns is described. By controlling the surface chemistry of the paper, it is possible to print high resolution, conductive patterns that remain conductive after folding and exposure to common solvents.

  15. Synchrotron-based photoelectron microscopy

    International Nuclear Information System (INIS)

    Barinov, Alexei; Dudin, Pavel; Gregoratti, Luca; Locatelli, Andrea; Onur Mentes, Tevfik; Angel Nino, Miquel; Kiskinova, Maya

    2009-01-01

    The paper is a brief overview of the operation principles and the potentials of the scanning photoelectron microscopes (SPEM) and X-ray photoemission electron microscopes (XPEEM) operating at synchrotron facilities. Selected results will illustrate the impact of high spatial resolution for micro-characterization of the surface composition and electronic structure, a key issue for analysis of technologically relevant materials and for fundamental understanding of many unexplored surface phenomena.

  16. Patterned thin metal film for the lateral resolution measurement of photoacoustic tomography

    Directory of Open Access Journals (Sweden)

    Kim Do-Hyun

    2012-07-01

    Full Text Available Abstract Background Image quality assessment method of photoacoustic tomography has not been completely standardized yet. Due to the combined nature of photonic signal generation and ultrasonic signal transmission in biological tissue, neither optical nor ultrasonic traditional methods can be used without modification. An optical resolution measurement technique was investigated for its feasibility for resolution measurement of photoacoustic tomography. Methods A patterned thin metal film deposited on silica glass provides high contrast in optical imaging due to high reflectivity from the metal film and high transmission from the glass. It provides high contrast when it is used for photoacoustic tomography because thin metal film can absorb pulsed laser energy. An US Air Force 1951 resolution target was used to generate patterned photoacoustic signal to measure the lateral resolution. Transducer with 2.25 MHz bandwidth and a sample submerged in water and gelatinous block were tested for lateral resolution measurement. Results Photoacoustic signal generated from a thin metal film deposited on a glass can propagate along the surface or through the surrounding medium. First, a series of experiments with tilted sample confirmed that the measured photoacoustic signal is what is propagating through the medium. Lateral resolution of the photoacoustic tomography system was successfully measured for water and gelatinous block as media: 0.33 mm and 0.35 mm in water and gelatinous material, respectively, when 2.25 MHz transducer was used. Chicken embryo was tested for biomedical applications. Conclusions A patterned thin metal film sample was tested for its feasibility of measuring lateral resolution of a photoacoustic tomography system. Lateral resolutions in water and gelatinous material were successfully measured using the proposed method. Measured resolutions agreed well with theoretical values.

  17. Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward.

    Science.gov (United States)

    Cotte, Marine; Susini, Jean; Dik, Joris; Janssens, Koen

    2010-06-15

    A variety of analytical techniques augmented by the use of synchrotron radiation (SR), such as X-ray fluorescence (SR-XRF) and X-ray diffraction (SR-XRD), are now readily available, and they differ little, conceptually, from their common laboratory counterparts. Because of numerous advantages afforded by SR-based techniques over benchtop versions, however, SR methods have become popular with archaeologists, art historians, curators, and other researchers in the field of cultural heritage (CH). Although the CH community now commonly uses both SR-XRF and SR-XRD, the use of synchrotron-based X-ray absorption spectroscopy (SR-XAS) techniques remains marginal, mostly because CH specialists rarely interact with SR physicists. In this Account, we examine the basic principles and capabilities of XAS techniques in art preservation. XAS techniques offer a combination of features particularly well-suited for the chemical analysis of works of art. The methods are noninvasive, have low detection limits, afford high lateral resolution, and provide exceptional chemical sensitivity. These characteristics are highly desirable for the chemical characterization of precious, heterogeneous, and complex materials. In particular, the chemical mapping capability, with high spatial resolution that provides information about local composition and chemical states, even for trace elements, is a unique asset. The chemistry involved in both the object's history (that is, during fabrication) and future (that is, during preservation and restoration treatments) can be addressed by XAS. On the one hand, many studies seek to explain optical effects occurring in historical glasses or ceramics by probing the molecular environment of relevant chromophores. Hence, XAS can provide insight into craft skills that were mastered years, decades, or centuries ago but were lost over the course of time. On the other hand, XAS can also be used to characterize unwanted reactions, which are then considered

  18. Round robin: Quantitative lateral resolution of PHI XPS microprobes Quantum 2000/Quantera SXM

    International Nuclear Information System (INIS)

    Scheithauer, Uwe; Kolb, Max; Kip, Gerard A.M.; Naburgh, Emile; Snijders, J.H.M.

    2016-01-01

    Highlights: • The quantitative lateral resolution of 7 PHI XPS microprobes has been estimated in a round robin. • An ellipsoidally shaped quartz crystal monochromatizes the Alkα radiation and refocuses it from the Al anode to the sample surface. • The long tail contributions of the X-ray beam intensity distribution were measured using a new and innovative approach. • This quantitative lateral resolution has a significantly larger value than the nominal X-ray beam diameter. • The quantitative lateral resolution follows a trend in time: The newer the monochromator so much the better the quantitative lateral resolution. - Abstract: The quantitative lateral resolution is a reliable measure for the quality of an XPS microprobe equipped with a focused X-ray beam. It describes the long tail contributions of the X-ray beam intensity distribution. The knowledge of these long tail contributions is essential when judging on the origin of signals of XPS spectra recorded on small-sized features. In this round robin test the quantitative lateral resolution of 7 PHI XPS microprobes has been estimated. As expected, the quantitative lateral resolution has significantly larger values than the nominal X-ray beam diameter. The estimated values of the quantitative lateral resolution follow a trend in time: the newer the monochromator of an XPS microprobe so much the better the quantitative lateral resolution.

  19. Round robin: Quantitative lateral resolution of PHI XPS microprobes Quantum 2000/Quantera SXM

    Energy Technology Data Exchange (ETDEWEB)

    Scheithauer, Uwe, E-mail: scht.uhg@googlemail.com [82008 Unterhaching (Germany); Kolb, Max, E-mail: max.kolb@airbus.com [Airbus Group Innovations, TX2, 81663 Munich (Germany); Kip, Gerard A.M., E-mail: G.A.M.Kip@utwente.nl [Universiteit Twente, MESA+ Nanolab, Postbus 217, 7500AE Enschede (Netherlands); Naburgh, Emile, E-mail: e.p.naburgh@philips.com [Materials Analysis, Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Snijders, J.H.M., E-mail: j.h.m.snijders@philips.com [Materials Analysis, Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven (Netherlands)

    2016-07-15

    Highlights: • The quantitative lateral resolution of 7 PHI XPS microprobes has been estimated in a round robin. • An ellipsoidally shaped quartz crystal monochromatizes the Alkα radiation and refocuses it from the Al anode to the sample surface. • The long tail contributions of the X-ray beam intensity distribution were measured using a new and innovative approach. • This quantitative lateral resolution has a significantly larger value than the nominal X-ray beam diameter. • The quantitative lateral resolution follows a trend in time: The newer the monochromator so much the better the quantitative lateral resolution. - Abstract: The quantitative lateral resolution is a reliable measure for the quality of an XPS microprobe equipped with a focused X-ray beam. It describes the long tail contributions of the X-ray beam intensity distribution. The knowledge of these long tail contributions is essential when judging on the origin of signals of XPS spectra recorded on small-sized features. In this round robin test the quantitative lateral resolution of 7 PHI XPS microprobes has been estimated. As expected, the quantitative lateral resolution has significantly larger values than the nominal X-ray beam diameter. The estimated values of the quantitative lateral resolution follow a trend in time: the newer the monochromator of an XPS microprobe so much the better the quantitative lateral resolution.

  20. [Synchrotron-based characterization methods applied to ancient materials (I)].

    Science.gov (United States)

    Anheim, Étienne; Thoury, Mathieu; Bertrand, Loïc

    2015-12-01

    This article aims at presenting the first results of a transdisciplinary research programme in heritage sciences. Based on the growing use and on the potentialities of micro- and nano-characterization synchrotron-based methods to study ancient materials (archaeology, palaeontology, cultural heritage, past environments), this contribution will identify and test conceptual and methodological elements of convergence between physicochemical and historical sciences.

  1. Digital adaptive optics for achieving space-invariant lateral resolution in optical coherence tomography

    International Nuclear Information System (INIS)

    Kumar, A.

    2015-01-01

    Optical coherence tomography (OCT) is a non-invasive optical interferometric imaging technique that provides reflectivity profiles of the sample structures with high axial resolution. The high axial resolution is due to the use of low coherence (broad-band) light source. However, the lateral resolution in OCT depends on the numerical aperture (NA) of the focusing/imaging optics and it is affected by defocus and other higher order optical aberrations induced by the imperfect optics, or by the sample itself.Hardware based adaptive optics (AO) has been successfully combined with OCT to achieve high lateral resolution in combination with high axial resolution provided by OCT. AO, which conventionally uses Shack-Hartmann wavefront sensor (SH WFS) and deformable mirror for wavefront sensing and correction respectively, can compensate for optical aberration and can enable diffraction-limited resolution in OCT. Visualization of cone photoreceptors in 3-D has been successfully demonstrated using AO-OCT. However, OCT being an interferometric imaging technique can provide access to phase information.This phase information can be exploited by digital adaptive optics (DAO) techniques to correct optical aberration in the post-processing step to obtain diffraction-limited space invariant lateral resolution throughout the image volume. Thus, the need for hardware based AO can be eliminated, which in turn can reduce the system complexity and economical cost. In the first paper of this thesis, a novel DAO method based on sub-aperture correlation is presented which is the digital equivalent of SH WFS. The advantage of this method is that it is non-iterative in nature and it does not require a priori knowledge of any system parameters such wavelength, focal length, NA or detector pixel size. For experimental proof, a FF SS OCT system was used and the sample consisted of resolution test target and a plastic plate that introduced random optical aberration. Experimental results show that

  2. Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials.

    Science.gov (United States)

    Zhu, Ying; Cai, Xiaoqing; Li, Jiang; Zhong, Zengtao; Huang, Qing; Fan, Chunhai

    2014-04-01

    There have been increasing interests in studying biological effects of nanomaterials, which are nevertheless faced up with many challenges due to the nanoscale dimensions and unique chemical properties of nanomaterials. Synchrotron-based X-ray microscopy, an advanced imaging technology with high spatial resolution and excellent elemental specificity, provides a new platform for studying interactions between nanomaterials and living systems. In this article, we review the recent progress of X-ray microscopic studies on bioeffects of nanomaterials in several living systems including cells, model organisms, animals and plants. We aim to provide an overview of the state of the art, and the advantages of using synchrotron-based X-ray microscopy for characterizing in vitro and in vivo behaviors and biodistribution of nanomaterials. We also expect that the use of a combination of new synchrotron techniques should offer unprecedented opportunities for better understanding complex interactions at the nano-biological interface and accounting for unique bioeffects of nanomaterials. Synchrotron-based X-ray microscopy is a non-destructive imaging technique that enables high resolution spatial mapping of metals with elemental level detection methods. This review summarizes the current use and perspectives of this novel technique in studying the biology and tissue interactions of nanomaterials. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Synchrotron-based intravenous cerebral angiography in a small animal model

    International Nuclear Information System (INIS)

    Kelly, Michael E; Schueltke, Elisabeth; Fiedler, Stephan; Nemoz, Christian; Guzman, Raphael; Corde, Stephanie; Esteve, Francois; LeDuc, Geraldine; Juurlink, Bernhard H J; Meguro, Kotoo

    2007-01-01

    K-edge digital subtraction angiography (KEDSA), a recently developed synchrotron-based technique, utilizes monochromatic radiation and allows acquisition of high-quality angiography images after intravenous administration of contrast agent. We tested KEDSA for its suitability for intravenous cerebral angiography in an animal model. Adult male New Zealand rabbits were subjected to either angiography with conventional x-ray equipment or synchrotron-based intravenous KEDSA, using an iodine-based contrast agent. Angiography with conventional x-ray equipment after intra-arterial administration of contrast agent demonstrated the major intracranial vessels but no smaller branches. KEDSA was able to visualize the major intracranial vessels as well as smaller branches in both radiography mode (planar images) and tomography mode. Visualization was achieved with as little as 0.5 ml kg -1 of iodinated contrast material. We were able to obtain excellent visualization of the cerebral vasculature in an animal model using intravenous injection of contrast material, using synchrotron-based KEDSA

  4. Numerical study of the lateral resolution in electrostatic force microscopy for dielectric samples

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, C; AlegrIa, A; Colmenero, J [Departamento de Fisica de Materiales UPV/EHU, Facultad de Quimica, Apartado 1072, 20080 San Sebastian (Spain); Schwartz, G A [Centro de Fisica de Materiales CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastian (Spain); Saenz, J J, E-mail: riedel@ies.univ-montp2.fr [Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastian (Spain)

    2011-07-15

    We present a study of the lateral resolution in electrostatic force microscopy for dielectric samples in both force and gradient modes. Whereas previous studies have reported expressions for metallic surfaces having potential heterogeneities (Kelvin probe force microscopy), in this work we take into account the presence of a dielectric medium. We introduce a definition of the lateral resolution based on the force due to a test particle being either a point charge or a polarizable particle on the dielectric surface. The behaviour has been studied over a wide range of typical experimental parameters: tip-sample distance (1-20) nm, sample thickness (0-5) {mu}m and dielectric constant (1-20), using the numerical simulation of the equivalent charge method. For potential heterogeneities on metallic surfaces expressions are in agreement with the bibliography. The lateral resolution of samples having a dielectric constant of more than 10 tends to metallic behaviour. We found a characteristic thickness of 100 nm, above which the lateral resolution measured on the dielectric surface is close to that of an infinite medium. As previously reported, the lateral resolution is better in the gradient mode than in the force mode. Finally, we showed that for the same experimental conditions, the lateral resolution is better for a polarizable particle than for a charge, i.e. dielectric heterogeneities should always look 'sharper' (better resolved) than inhomogeneous charge distributions. This fact should be taken into account when interpreting images of heterogeneous samples.

  5. ROV seafloor surveys combining 5-cm lateral resolution multibeam bathymetry with color stereo photographic imagery

    Science.gov (United States)

    Caress, D. W.; Hobson, B.; Thomas, H. J.; Henthorn, R.; Martin, E. J.; Bird, L.; Rock, S. M.; Risi, M.; Padial, J. A.

    2013-12-01

    at three sites in the deep Monterey Canyon axis. The surveys lines were spaced 1.5-m and were flown at speeds of 0.1-0.2-m/s while the sonars pinged at 3 Hz and the cameras operated at 0.5 Hz. All three low-altitude surveys are at ~2850 m depth and lie within the 1-m lateral resolution bathymetry of a 2009, 50-m altitude MBARI Mapping AUV survey. Site 1 has the greatest topography, being centered on a 15 m diameter, 7 m high flat boulder surrounded by an 80 m diameter, 6 m deep scour pit. Site 2 is located within a field of ~3-m high apparent sediment waves with ~80-m wavelengths. Site 0 is flat and includes chemosynthetic clam communities. At a 2 m altitude, the multibeam bathymetry swath is more than 7 m wide and the camera images are 4 m wide. Following navigation adjustment to match features in overlapping bathymetry swaths, we achieve 5-cm lateral resolution topography overlain with ~1-mm scale photographic imagery.

  6. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials.

    Science.gov (United States)

    Wu, Peiwen; Yu, Yang; McGhee, Claire E; Tan, Li Huey; Lu, Yi

    2014-12-10

    In this review, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. csiLSFM combines light-sheet fluorescence microscopy and coherent structured illumination for a lateral resolution below 100 nm.

    Science.gov (United States)

    Chang, Bo-Jui; Perez Meza, Victor Didier; Stelzer, Ernst H K

    2017-05-09

    Light-sheet-based fluorescence microscopy (LSFM) features optical sectioning in the excitation process. It minimizes fluorophore bleaching as well as phototoxic effects and provides a true axial resolution. The detection path resembles properties of conventional fluorescence microscopy. Structured illumination microscopy (SIM) is attractive for superresolution because of its moderate excitation intensity, high acquisition speed, and compatibility with all fluorophores. We introduce SIM to LSFM because the combination pushes the lateral resolution to the physical limit of linear SIM. The instrument requires three objective lenses and relies on methods to control two counterpropagating coherent light sheets that generate excitation patterns in the focal plane of the detection lens. SIM patterns with the finest line spacing in the far field become available along multiple orientations. Flexible control of rotation, frequency, and phase shift of the perfectly modulated light sheet are demonstrated. Images of beads prove a near-isotropic lateral resolution of sub-100 nm. Images of yeast endoplasmic reticulum show that coherent structured illumination (csi) LSFM performs with physiologically relevant specimens.

  8. Non-destructive evaluation of teeth restored with different composite resins using synchrotron based micro-imaging.

    Science.gov (United States)

    Fatima, A; Kulkarni, V K; Banda, N R; Agrawal, A K; Singh, B; Sarkar, P S; Tripathi, S; Shripathi, T; Kashyap, Y; Sinha, A

    2016-01-01

    Application of high resolution synchrotron micro-imaging in microdefects studies of restored dental samples. The purpose of this study was to identify and compare the defects in restorations done by two different resin systems on teeth samples using synchrotron based micro-imaging techniques namely Phase Contrast Imaging (PCI) and micro-computed tomography (MCT). With this aim acquired image quality was also compared with routinely used RVG (Radiovisiograph). Crowns of human teeth samples were fractured mechanically involving only enamel and dentin, without exposure of pulp chamber and were divided into two groups depending on the restorative composite materials used. Group A samples were restored using a submicron Hybrid composite material and Group B samples were restored using a Nano-Hybrid restorative composite material. Synchrotron based PCI and MCT was performed with the aim of visualization of tooth structure, composite resin and their interface. The quantitative and qualitative comparison of phase contrast and absorption contrast images along with MCT on the restored teeth samples shows comparatively large number of voids in Group A samples. Quality assessment of dental restorations using synchrotron based micro-imaging suggests Nano-Hybrid resin restorations (Group B) are better than Group A.

  9. Depth profiling the solid electrolyte interphase on lithium titanate (Li4Ti5O12) using synchrotron-based photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nordh, Tim; Younesi, Reza; Brandell, Daniel

    2015-01-01

    The presence of a surface layer on lithium titanate (Li4Ti5O12, LTO) anodes, which has been a topic of debate in scientific literature, is here investigated with tunable high surface sensitive synchrotron-based photoelectron spectroscopy (PES) to obtain a reliable depth profile of the interphase...

  10. Exploring the Limits of Lateral Resolution and Anomaly Precision of Marine Gravimeter Data

    Science.gov (United States)

    Scheirer, D. S.; Kinsey, J. C.; Childs, J. R.

    2011-12-01

    horizontal velocity and course-over-ground, are often noisier at periods shorter than a few minutes than are smoothed total-gravity estimates; this introduces noise into Eotvos-corrected gravity anomalies. We investigate a number of filtering approaches to minimize this introduced noise. Applying lever-arm corrections to GPS positions that are offset from the BGM3 sensor is one straightforward method to improve the navigation, and hence Eotvos correction, of the gravimeter data. In September 2011, we collected BGM3 data from a small boat throughout Puget Sound, where density contrasts are much shallower and hence gravity gradients are steeper than in typical deep-water marine gravity surveys. By conducting surveys in narrow inlets surrounded by high-quality land gravity stations, we have an ideal BGM3 data set to evaluate the lateral resolution and anomaly precision of this type of marine gravimeter and to investigate the effect of GPS vertical-motion estimates and offset corrections.

  11. IMPROVING VERTICAL AND LATERAL RESOLUTION BY STRETCH-FREE, HORIZON-ORIENTED IMAGING

    Directory of Open Access Journals (Sweden)

    Pérez Gabriel

    2006-12-01

    Full Text Available The pre-stack Kirchhoff migration is implemented for delivering wavelet stretch-free imaged data, if the migration is (ideally limited to the wavelet corresponding to a target horizon. Avoiding wavelet stretch provides long-offset imaged data, far beyond what is reached in conventional migration and results in images from the target with improved vertical and lateral resolution and angular illumination. Increasing the range of imaged offsets also increases the sensitivity to event-crossing, velocity errors and anisotropy. These issues must be addressed to fully achieve the greatest potential of this technique. These ideas are further illustrated with a land survey seismic data application in Texas, U.S.

  12. Use of synchrotron-based diffraction-enhanced imaging for visualization of soft tissues in invertebrates

    International Nuclear Information System (INIS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Zhong, Zhong; Akatsuka, Takao; Yuasa, Tetsuya; Takeda, Tohoru; Gigante, Giovanni E.

    2010-01-01

    Images of terrestrial and marine invertebrates (snails and bivalves) have been obtained by using an X-ray phase-contrast imaging technique, namely, synchrotron-based diffraction-enhanced imaging. Synchrotron X-rays of 20, 30 and 40 keV were used, which penetrate deep enough into animal soft tissues. The phase of X-ray photons shifts slightly as they traverse an object, such as animal soft tissue, and interact with its atoms. Biological features, such as shell morphology and animal physiology, have been visualized. The contrast of the images obtained at 40 keV is the best. This optimum energy provided a clear view of the internal structural organization of the soft tissue with better contrast. The contrast is higher at edges of internal soft-tissue structures. The image improvements achieved with the diffraction-enhanced imaging technique are due to extinction, i.e., elimination of ultra-small-angle scattering. They enabled us to identify a few embedded internal shell features, such as the origin of the apex, which is the firmly attached region of the soft tissue connecting the umbilicus to the external morphology. Diffraction-enhanced imaging can provide high-quality images of soft tissues valuable for biology.

  13. Investigations of coupled biogeochemical processes affecting the transformation of U: Integration of synchrotron-based approaches

    International Nuclear Information System (INIS)

    Ken Kemner; Ed O'Loughlin

    2007-01-01

    The summary of this paper is that: (1) An improved understanding of fundamental coupled biogeochemical processes obviously is critical for decision making for environmental remediation and long-term stewardship. (2) Synchrotron x-ray radiation provides the most versatile and powerful approach for directly determining the chemical speciation of the radionuclide and heavy metal contaminants of concern to DOE. (3) Integration of synchrotron approaches with integrated multidisciplinary scientific investigations provides a powerful way of understanding coupled biogeochemical processes whereby the scientific question drives the development of new synchrotron-based technologies and the unique information provided by the synchrotron-based technology enables the development of new scientific hypotheses and insights

  14. Synchrotron-based micro and nanotomographic investigations of soil aggregate microbial and pore structure

    Science.gov (United States)

    Kemner, K. M.; O'Brien, S.; Whiteside, M. D.; Sholto-Douglas, D.; Antipova, O.; Bailey, V.; Boyanov, M.; Dohnalkova, A.; Gursoy, D.; Kovarik, L.; Lai, B.; Roehrig, C.; Vogt, S.

    2017-12-01

    Soil is a highly complex network of pore spaces, minerals, and organic matter (e.g., roots, fungi, and bacteria), making it physically heterogeneous over nano- to macro-scales. Such complexity arises from feedbacks between physical processes and biological activity that generate a dynamic, self-organizing 3D complex. Since we first demonstrated the utility of synchrotron-based transmission tomography to image internal soil aggregate structure [Kemner et al., 1998], we and many other researchers have made use of and have advanced the application of this technique. However, our understanding of how microbes and microbial metabolism are distributed throughout soil aggregates is limited, because no technique is available to image the soil pore network and the life that inhabits it. X-ray transmission microtomography can provide highly detailed 3D renderings of soil structure but cannot distinguish cells from other electron-light material such as air or water. However, the use of CdSe quantum dots (QDs) as a reporter of bacterial presence enables us to overcome this constraint, instilling bacterial cells with enough contrast to detect them and their metabolic functions in their opaque soil habitat, with hard x-rays capable of penetrating 3D soil structures at high resolution. Previous transmission tomographic imaging of soil aggregates with high energy synchrotron x-rays has demonstrated 700 nm3 voxel spatial resolution. These and recent results from nanotomographic x-ray transmission imaging of soil aggregates with 30 nm3 voxel resolution will be presented. In addition, results of submicron voxel-sized x-ray fluorescence 3D imaging to determine microbial distributions within soil aggregates and the critical role to be played by the upgrade of the Advanced Photon Source for 100-1000X increases in hard x-ray brilliance will also be presented. *Kemner, et al., SPIE 3449, 45-53, 1998

  15. Coherent Synchrotron-Based Micro-Imaging Employed for Studies of Micro-Gap Formation in Dental Implants

    International Nuclear Information System (INIS)

    Rack, T.; Stiller, M.; Nelson, K.; Zabler, S.; Rack, A.; Riesemeier, H.; Cecilia, A.

    2011-01-01

    Biocompatible materials such as titanium are regularly applied in oral surgery. Titanium-based implants for the replacement of missing teeth demand a high mechanical precision in order to minimize micro-bacterial leakage, especially when two-piece concepts are used. Synchrotron-based hard x-ray radiography, unlike conventional laboratory radiography, allows high spatial resolution in combination with high contrast even when micro-sized features in such highly attenuating objects are visualized. Therefore, micro-gap formation at interfaces in two-piece dental implants with the sample under different mechanical loads can be studied. We show the existence of micro-gaps in implants with conical connections and study the mechanical behavior of the mating zone of conical implants during loading. The micro-gap is a potential source of implant failure, i.e., bacterial leakage, which can be a stimulus for an inflammatory process.

  16. Coherent Synchrotron-Based Micro-Imaging Employed for Studies of Micro-Gap Formation in Dental Implants

    Science.gov (United States)

    Rack, T.; Zabler, S.; Rack, A.; Stiller, M.; Riesemeier, H.; Cecilia, A.; Nelson, K.

    2011-09-01

    Biocompatible materials such as titanium are regularly applied in oral surgery. Titanium-based implants for the replacement of missing teeth demand a high mechanical precision in order to minimize micro-bacterial leakage, especially when two-piece concepts are used. Synchrotron-based hard x-ray radiography, unlike conventional laboratory radiography, allows high spatial resolution in combination with high contrast even when micro-sized features in such highly attenuating objects are visualized. Therefore, micro-gap formation at interfaces in two-piece dental implants with the sample under different mechanical loads can be studied. We show the existence of micro-gaps in implants with conical connections and study the mechanical behavior of the mating zone of conical implants during loading. The micro-gap is a potential source of implant failure, i.e., bacterial leakage, which can be a stimulus for an inflammatory process.

  17. Synchrotron-based X-ray fluorescence, imaging and elemental ...

    Indian Academy of Sciences (India)

    In biolog- ical applications the maps may give a direct and clear observation of element occurrences in different regions of the sample. Elemental maps depicting the local concentration of a certain element have great potential in biomedical research, because of its low detection limit and its high spatial resolution.

  18. Towards a table-top synchrotron based on supercontinuum generation

    DEFF Research Database (Denmark)

    Petersen, Christian Rosenberg; Moselund, Peter M.; Huot, Laurent

    2018-01-01

    Recently, high brightness and broadband supercontinuum (SC) sources reaching far into the infrared (IR) have emerged with the potential to rival traditional broadband sources of IR radiation. Here, the brightness of these IR SC sources is compared with that of synchrotron IR beamlines and SiC the...

  19. Synchrotron-based FTIR spectromicroscopy: Cytotoxicity and heating considerations

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2002-12-13

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

  20. Synchrotron-based FTIR spectromicroscopy Cytotoxicity and heating considerations

    CERN Document Server

    Holman, H Y N; McKinney, W R

    2002-01-01

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

  1. Synchrotron-based valence shell photoionization of CH radical

    Energy Technology Data Exchange (ETDEWEB)

    Gans, B., E-mail: berenger.gans@u-psud.fr, E-mail: christian.alcaraz@u-psud.fr; Falvo, C. [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Holzmeier, F.; Röder, A. [Institut of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg (Germany); Krüger, J.; Garcia, G. A. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP 48, F-91192 Gif sur Yvette Cedex (France); Lopes, A.; Alcaraz, C., E-mail: berenger.gans@u-psud.fr, E-mail: christian.alcaraz@u-psud.fr [Laboratoire de Chimie Physique, UMR 8000 CNRS—Univ. Paris-Sud, Univ. Paris-Saclay, Bât. 350, Centre Universitaire Paris-Sud, F-91405 Orsay Cedex (France); Fittschen, C. [Université Lille, CNRS, UMR 8522–PC2A–Physicochimie des Processus de Combustion et de l’Atmosphère, F-59000 Lille (France); Loison, J.-C. [Institut des Sciences Moléculaires, UMR 5255 CNRS—Université de Bordeaux, Bât. A12, 351 cours de la Libération, F-33405 Talence Cedex (France)

    2016-05-28

    We report the first experimental observations of X{sup +} {sup 1}Σ{sup +}←X {sup 2}Π and a{sup +} {sup 3}Π←X {sup 2}Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg states of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.

  2. Torsional resonance mode magnetic force microscopy: enabling higher lateral resolution magnetic imaging without topography-related effects

    International Nuclear Information System (INIS)

    Kaidatzis, A; García-Martín, J M

    2013-01-01

    We present experimental work that reveals the benefits of performing magnetic force microscopy measurements employing the torsional resonance mode of cantilever oscillation. This approach provides two clear advantages: the ability of performing magnetic imaging without topography-related interference and the significant lateral resolution improvement (approximately 15%). We believe that this work demonstrates a significant improvement to a versatile magnetic imaging technique widely used in academia and in industry. (paper)

  3. Techniques for Handling and Removal of Spectral Channels in Fourier Transform Synchrotron-Based Spectra

    International Nuclear Information System (INIS)

    Ibrahim, Amr; Predoi-Cross, Adriana; Teillet, Philippe M.

    2010-01-01

    Channel spectra are a big problem for those attempting to use synchrotron-based Fourier transform spectra for spectral lineshape studies. Due to the layout of the optical system at the CLS far-infrared beamline, the synchrotron beam undergoes unavoidable multiple reflections on the steering mirrors, beam splitter, several sets of windows, and filters. We present a method for eliminating channel spectra and compare the results of our technique with other methods available in the literature.

  4. Efficiency of respiratory-gated delivery of synchrotron-based pulsed proton irradiation

    International Nuclear Information System (INIS)

    Tsunashima, Yoshikazu; Vedam, Sastry; Dong, Lei; Bues, Martin; Balter, Peter; Smith, Alfred; Mohan, Radhe; Umezawa, Masumi; Sakae, Takeji

    2008-01-01

    Significant differences exist in respiratory-gated proton beam delivery with a synchrotron-based accelerator system when compared to photon therapy with a conventional linear accelerator. Delivery of protons with a synchrotron accelerator is governed by a magnet excitation cycle pattern. Optimal synchronization of the magnet excitation cycle pattern with the respiratory motion pattern is critical to the efficiency of respiratory-gated proton delivery. There has been little systematic analysis to optimize the accelerator's operational parameters to improve gated treatment efficiency. The goal of this study was to estimate the overall efficiency of respiratory-gated synchrotron-based proton irradiation through realistic simulation. Using 62 respiratory motion traces from 38 patients, we simulated respiratory gating for duty cycles of 30%, 20% and 10% around peak exhalation for various fixed and variable magnet excitation patterns. In each case, the time required to deliver 100 monitor units in both non-gated and gated irradiation scenarios was determined. Based on results from this study, the minimum time required to deliver 100 MU was 1.1 min for non-gated irradiation. For respiratory-gated delivery at a 30% duty cycle around peak exhalation, corresponding average delivery times were typically three times longer with a fixed magnet excitation cycle pattern. However, when a variable excitation cycle was allowed in synchrony with the patient's respiratory cycle, the treatment time only doubled. Thus, respiratory-gated delivery of synchrotron-based pulsed proton irradiation is feasible and more efficient when a variable magnet excitation cycle pattern is used

  5. In vitro synchrotron-based radiography of micro-gap formation at the implant–abutment interface of two-piece dental implants

    International Nuclear Information System (INIS)

    Rack, A.; Rack, T.; Stiller, M.; Riesemeier, H.; Zabler, S.; Nelson, K.

    2010-01-01

    Micro-radiography using hard X-ray synchrotron radiation is the first potential tool to allow an evaluation of the mechanical behavior of the dental implant–abutment complex during force application, thus enabling the enhancement of the design of dental implants which has been based on theoretical analysis to date. Micro-gap formation at the implant–abutment interface of two-piece dental implants was investigated in vitro using high-resolution radiography in combination with hard X-ray synchrotron radiation. Images were taken with the specimen under different mechanical loads of up to 100 N. The aim of this investigation was to prove the existence of micro-gaps for implants with conical connections as well as to study the mechanical behavior of the mating zone of conical implants during loading. Synchrotron-based radiography in comparison with classical laboratory radiography yields high spatial resolution in combination with high contrast even when exploiting micro-sized features in highly attenuating objects. The first illustration of a micro-gap which was previously indistinguishable by laboratory methods underlines that the complex micro-mechanical behavior of implants requires further in vitro investigations where synchrotron-based micro-imaging is one of the prerequisites

  6. In vitro synchrotron-based radiography of micro-gap formation at the implant–abutment interface of two-piece dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Rack, A., E-mail: arack@snafu.de [European Synchrotron Radiation Facility, Grenoble (France); Rack, T. [Charité, Department of Oral and Maxillofacial Surgery, Clinical Navigation and Robotics, Berlin (Germany); Stiller, M. [Charité, Department of Maxillofacial and Facial-Plastic Surgery, Division of Oral Medicine, Radiology and Surgery, Berlin (Germany); Riesemeier, H. [Bundesanstalt für Materialforschung und -prüfung, Division Structure Analysis, Polymer Analysis, Berlin (Germany); Zabler, S. [Technical University of Berlin, Institute for Materials Engineering (Germany); Nelson, K. [Charité, Department of Oral and Maxillofacial Surgery, Clinical Navigation and Robotics, Berlin (Germany)

    2010-03-01

    Micro-radiography using hard X-ray synchrotron radiation is the first potential tool to allow an evaluation of the mechanical behavior of the dental implant–abutment complex during force application, thus enabling the enhancement of the design of dental implants which has been based on theoretical analysis to date. Micro-gap formation at the implant–abutment interface of two-piece dental implants was investigated in vitro using high-resolution radiography in combination with hard X-ray synchrotron radiation. Images were taken with the specimen under different mechanical loads of up to 100 N. The aim of this investigation was to prove the existence of micro-gaps for implants with conical connections as well as to study the mechanical behavior of the mating zone of conical implants during loading. Synchrotron-based radiography in comparison with classical laboratory radiography yields high spatial resolution in combination with high contrast even when exploiting micro-sized features in highly attenuating objects. The first illustration of a micro-gap which was previously indistinguishable by laboratory methods underlines that the complex micro-mechanical behavior of implants requires further in vitro investigations where synchrotron-based micro-imaging is one of the prerequisites.

  7. Nickel speciation in several serpentine (ultramafic) topsoils via bulk synchrotron-based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Siebecker, Matthew G.; Chaney, Rufus L.; Sparks, Donald L.

    2017-07-01

    Serpentine soils have elevated concentrations of trace metals including nickel, cobalt, and chromium compared to non-serpentine soils. Identifying the nickel bearing minerals allows for prediction of potential mobility of nickel. Synchrotron-based techniques can identify the solid-phase chemical forms of nickel with minimal sample treatment. Element concentrations are known to vary among soil particle sizes in serpentine soils. Sonication is a useful method to physically disperse sand, silt and clay particles in soils. Synchrotron-based techniques and sonication were employed to identify nickel species in discrete particle size fractions in several serpentine (ultramafic) topsoils to better understand solid-phase nickel geochemistry. Nickel commonly resided in primary serpentine parent material such as layered-phyllosilicate and chain-inosilicate minerals and was associated with iron oxides. In the clay fractions, nickel was associated with iron oxides and primary serpentine minerals, such as lizardite. Linear combination fitting (LCF) was used to characterize nickel species. Total metal concentration did not correlate with nickel speciation and is not an indicator of the major nickel species in the soil. Differences in soil texture were related to different nickel speciation for several particle size fractionated samples. A discussion on LCF illustrates the importance of choosing standards based not only on statistical methods such as Target Transformation but also on sample mineralogy and particle size. Results from the F-test (Hamilton test), which is an underutilized tool in the literature for LCF in soils, highlight its usefulness to determine the appropriate number of standards to for LCF. EXAFS shell fitting illustrates that destructive interference commonly found for light and heavy elements in layered double hydroxides and in phyllosilicates also can occur in inosilicate minerals, causing similar structural features and leading to false positive results in

  8. Ex vivo and in vitro synchrotron-based micro-imaging of biocompatible materials applied in dental surgery

    Science.gov (United States)

    Rack, A.; Stiller, M.; Nelson, K.; Knabe, C.; Rack, T.; Zabler, S.; Dalügge, O.; Riesemeier, H.; Cecilia, A.; Goebbels, J.

    2010-09-01

    Biocompatible materials such as porous bioactive calcium phosphate ceramics or titanium are regularly applied in dental surgery: ceramics are used to support the local bone regeneration in a given defect, afterwards titanium implants replace lost teeth. The current gold standard for bone reconstruction in implant dentistry is the use of autogenous bone grafts. But the concept of guided bone regeneration (GBR) has become a predictable and well documented surgical approach using biomaterials (bioactive calcium phosphate ceramics) which qualify as bone substitutes for this kind of application as well. We applied high resolution synchrotron microtomography and subsequent 3d image analysis in order to investigate bone formation and degradation of the bone substitute material in a three-dimensional manner, extending the knowledge beyond the limits of classical histology. Following the bone regeneration, titanium-based implants to replace lost teeth call for high mechanical precision, especially when two-piece concepts are used in order to guaranty leak tightness. Here, synchrotron-based radiography in comparison with classical laboratory radiography yields high spatial resolution in combination with high contrast even when exploiting micro-sized features in these kind of highly attenuating objects. Therefore, we could study micro-gap formation at interfaces in two-piece dental implants with the specimen under different mechanical load. We could prove the existence of micro-gaps for implants with conical connections as well as to study the micromechanical behavior of the mating zone of conical implants during loading. The micro-gap is a potential issue of failure, i. e. bacterial leakage which can induce an inflammatory process.

  9. Structure and acidity of individual Fluid Catalytic Cracking catalyst particles studied by synchrotron-based infrared micro-spectroscopy

    NARCIS (Netherlands)

    Buurmans, I.L.C.|info:eu-repo/dai/nl/31406592X; Soulimani, F.|info:eu-repo/dai/nl/313889449; Ruiz Martinez, J.|info:eu-repo/dai/nl/341386405; van der Bij, H.E.|info:eu-repo/dai/nl/328201294; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2013-01-01

    A synchrotron-based infrared micro-spectroscopy study has been conducted to investigate the structure as well as the Brønsted and Lewis acidity of Fluid Catalytic Cracking (FCC) catalyst particles at the individual particle level. Both fresh and laboratory-deactivated catalyst particles have been

  10. Synchrotron-based investigations of the nature and impact of ironcontamination in multicrystalline silicon solar cell materials

    Energy Technology Data Exchange (ETDEWEB)

    Buonassisi, Tonio; Istratov, Andrei A.; Heuer, Matthias; Marcus,Matthew A.; Jonczyk, Ralf; Lai, Barry; Cai, Zhonghou; Heald, Steven; Warta, Wilhelm; Isenberg, Joerg; Schindler, Roland; Weber, Eicke R.

    2004-11-08

    Synchrotron-based microprobe techniques were used to obtain precise and systematic information about the size distribution, spatial distribution, shape, electrical activity, and chemical states of iron-rich impurity clusters in multicrystalline silicon materials used for cost-effective solar cells. These experimentally observed properties of iron-rich clusters allow one to derive conclusions about the origins of iron contamination, the mechanisms for incorporating large amounts of Fe into mc-Si, quantitative information about the distribution of Fe in mc-Si and the impacts of such contamination on solar cell performance. Two distinct groups of iron-rich clusters have been identified in both materials: (a) the occasional large (diameter greater than or equal to 1 mu-m) particles, either oxidized and/or present with multiple other metal species reminiscent of stainless steels or ceramics, which are believed to originate from a foreign source such as the growth surfaces, production equipment, or feedstock, and (b) the more numerous, homogeneously distributed, and smaller iron silicide precipitates (dia. less than or equal to 800 nm, often < 100 nm), originating from a variety of possible formation mechanisms involving atomically dissolved iron in the melt or in the crystal. It was found that iron silicide nanoprecipitates account for bulk Fe concentrations as high as 1014-15cm-3 and can have a large negative impact on device performance because of their homogeneous distribution along structural defects. The large (dia. greater than or equal to 1 mu-m) particles, while containing elevated amounts of metals, are low in spatial density and thus deemed to have a low direct impact on device performance, although they may have a large indirect impact via the dissolution of Fe, thus assisting the formation of iron silicide nanoprecipitates. These results demonstrate that it is not necessarily the total Fe content that limits mc-Si device performance, but the distribution of

  11. Synchrotron-based photoemission study of electronic structure of the Cs/GaN ultrathin interface

    Science.gov (United States)

    Benemanskaya, G. V.; Kukushkin, S. A.; Dementev, P. A.; Lapushkin, M. N.; Timoshnev, S. N.; Smirnov, D. V.

    2018-03-01

    Electronic structure of the Cs/n-GaN nano-interface has been studied in situ via synchrotron-based photoelectron spectroscopy by excitation in the energy range of 70-400 eV. The GaN sample was grown by an original method of epitaxy of low-defect unstressed nanoscaled films on AlGaN/SiC/Si substrate. Changes in the surface state spectra and in the Ga 3d, Cs 4d, Cs 5p, N 1s core level spectra have been revealed under different cesium coverages. The intrinsic surface states for the clean GaN surface at binding energies of ∼5.0 eV and ∼7.0 eV are attenuated during Cs adsorption. Simultaneously three Cs induced surface states are found to arise. Drastic changes in the surface state spectrum were ascertained and shown to be originated from the local interacting Ga dangling bonds and adsorbed Cs atoms initiating the electron redistribution effect with formation of the semiconductor-like Cs/n-GaN interface.

  12. Synchrotron-based measurements of the electronic structure of the organic semiconductor copper phthalocyanine

    International Nuclear Information System (INIS)

    Downes, J.E.

    2004-01-01

    Full text: Copper phthalocyanine (CuPc) is a prototypical molecular organic semiconductor that is currently used in the construction of many organic electronic devices such as organic light emitting diodes (OLEDs). Although the material is currently being used, and despite many experimental and theoretical studies, it's detailed electronic structure is still not completely understood. This is likely due to two key factors. Firstly, the interaction of the Cu 3d and phthalocyanine ligand 2p electrons leads to the formation of a complex arrangement of localized and delocalized states near the Fermi level. Secondly, thin films of the material are subject to damage by the photon beam used to make measurements of their electronic structure. Using the synchrotron-based techniques of soft x-ray emission spectroscopy (XES) and x-ray photoemission spectroscopy (XPS), we have measured the detailed electronic structure of in-situ grown thin film samples of CuPc. Beam damage was minimized by continuous translation of the sample during data acquisition. The results obtained differ significantly from previous XES and ultraviolet photoemission measurements, but are in excellent agreement with recent density functional calculations. The reasons for these discrepancies will be explained, and their implications for future measurements on similar materials will be explored

  13. Metastable precursor for oxygen dissociation on Si(001) 2x1 resolved by high lateral resolution work function measurements

    NARCIS (Netherlands)

    Sturm, Jacobus Marinus; Croes, G.O.; Wormeester, Herbert; Poelsema, Bene

    2007-01-01

    The development of contact potential difference (CPD) inhomogeneities on oxide-covered silicon samples was investigated by monitoring the CPD of a clean Si(0 0 1) 2 × 1 surface during exposure to molecular oxygen with Kelvin Probe Force Microscopy. A steady fluctuation level is reached within the

  14. Synchrotron-based FTIR microspectroscopy for the mapping of photo-oxidation and additives in acrylonitrile-butadiene-styrene model samples and historical objects.

    Science.gov (United States)

    Saviello, Daniela; Pouyet, Emeline; Toniolo, Lucia; Cotte, Marine; Nevin, Austin

    2014-09-16

    Synchrotron-based Fourier transform infrared micro-spectroscopy (SR-μFTIR) was used to map photo-oxidative degradation of acrylonitrile-butadiene-styrene (ABS) and to investigate the presence and the migration of additives in historical samples from important Italian design objects. High resolution (3×3 μm(2)) molecular maps were obtained by FTIR microspectroscopy in transmission mode, using a new method for the preparation of polymer thin sections. The depth of photo-oxidation in samples was evaluated and accompanied by the formation of ketones, aldehydes, esters, and unsaturated carbonyl compounds. This study demonstrates selective surface oxidation and a probable passivation of material against further degradation. In polymer fragments from design objects made of ABS from the 1960s, UV-stabilizers were detected and mapped, and microscopic inclusions of proteinaceous material were identified and mapped for the first time. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Improving the lateral resolution of quartz tuning fork-based sensors in liquid by integrating commercial AFM tips into the fiber end.

    Science.gov (United States)

    Gonzalez, Laura; Martínez-Martín, David; Otero, Jorge; de Pablo, Pedro José; Puig-Vidal, Manel; Gómez-Herrero, Julio

    2015-01-14

    The use of quartz tuning fork sensors as probes for scanning probe microscopy is growing in popularity. Working in shear mode, some methods achieve a lateral resolution comparable with that obtained with standard cantilevered probes, but only in experiments conducted in air or vacuum. Here, we report a method to produce and use commercial AFM tips in electrically driven quartz tuning fork sensors operating in shear mode in a liquid environment. The process is based on attaching a standard AFM tip to the end of a fiber probe which has previously been sharpened. Only the end of the probe is immersed in the buffer solution during imaging. The lateral resolution achieved is about 6 times higher than that of the etched microfiber on its own.

  16. In situ analyses of Ag speciation in tissues of cucumber and wheat using synchrotron-based X-ray absorption spectroscopy

    Data.gov (United States)

    U.S. Environmental Protection Agency — In situ analyses of Ag speciation in tissues of cucumber and wheat using synchrotron-based X-ray absorption spectroscopy showing spectral fitting and linear...

  17. Characterization of the Microchemical Structure of Seed Endosperm within a Cellular Dimension among Six Barley Varieties with Distinct Degradation Kinetics, Using Ultraspatially Resolved Synchrotron-Based Infrared Synchrotron-Based Infrared

    Energy Technology Data Exchange (ETDEWEB)

    Liu, N.; Yu, P

    2010-01-01

    Barley varieties have similar chemical composition but exhibit different rumen degradation kinetics and nutrient availability. These biological differences may be related to molecular, structural, and chemical makeup among the seed endosperm tissue. No detailed study was carried out. The objectives of this study were: (1) to use a molecular spectroscopy technique, synchrotron-based Fourier transform infrared microspectroscopy (SFTIRM), to determine the microchemical-structural features in seed endosperm tissue of six developed barley varieties; (2) to study the relationship among molecular-structural characteristics, degradation kinetics, and nutrient availability in six genotypes of barley. The results showed that inherent microchemical-structural differences in the endosperm among the six barley varieties were detected by the synchrotron-based analytical technique, SFTIRM, with the univariate molecular spectral analysis. The SFTIRM spectral profiles differed (P < 0.05) among the barley samples in terms of the peak ratio and peak area and height intensities of amides I (ca. 1650 cm{sup -1}) and II (ca. 1550 cm{sup -1}), cellulosic compounds (ca. 1240 cm{sup -1}), CHO component peaks (the first peak at the region ca. 1184-1132 cm{sup -1}, the second peak at ca. 1132-1066 cm{sup -1}, and the third peak at ca. 1066-950 cm{sup -1}). With the SFTIRM technique, the structural characteristics of the cereal seeds were illuminated among different cultivars at an ultraspatial resolution. The structural differences of barley seeds may be one reason for the various digestive behaviors and nutritive values in ruminants. The results show weak correlations between the functional groups spectral data (peak area, height intensities, and ratios) and rumen biodegradation kinetics (rate and extent of nutrient degradation). Weak correlations may indicate that limited variations of these six barley varieties might not be sufficient to interpret the relationship between spectroscopic

  18. Spatial imaging and speciation of Cu in rice (Oryza sativa L.) roots using synchrotron-based X-ray microfluorescence and X-ray absorption spectroscopy.

    Science.gov (United States)

    Lu, Lingli; Xie, Ruohan; Liu, Ting; Wang, Haixing; Hou, Dandi; Du, Yonghua; He, Zhenli; Yang, Xiaoe; Sun, Hui; Tian, Shengke

    2017-05-01

    Knowledge of elemental localization and speciation in rice (Oryza sativa L.) roots is crucial for elucidating the mechanisms of Cu accumulation so as to facilitate the development of strategies to inhibit Cu accumulation in rice grain grown in contaminated soils. Using synchrotron-based X-ray microfluorescence and X-ray absorption spectroscopy, we investigated the distribution patterns and speciation of Cu in rice roots treated with 50 μM Cu for 7 days. A clear preferential localization of Cu in the meristematic zone was observed in root tips as compared with the elongation zone. Investigation of Cu in the root cross sections revealed that the intensity of Cu in the vascular bundles was more than 10-fold higher than that in the other scanned sites (epidermis and cortex) in rice roots. The dominant chemical form of Cu (79.1%) in rice roots was similar to that in the Cu-cell wall compounds. These results suggest that although Cu can be easily transported into the vascular tissues in rice roots, most of the metal absorbed by plants is retained in the roots owing to its high binding to the cell wall compounds, thus preventing metal translocation to the aerial parts of the plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Investigation of the Distribution of Elements in Snail Shell With the use of Synchrotron-Based, Micro-Beam X-ray Fluorescence Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D.; Swapna, M; Cesareo, R; Brunetti, A; Akatsuka, T; Yuasa, T; Takeda, T; Tromba, G; Gigante, G

    2009-01-01

    In this study, synchrotron-based micro-beam was utilized for elemental mapping of a small animal shell. A thin X-ray spot of the order of {approx}10 em was focused on the sample. With this spatial resolution and high flux throughput, the X-ray fluorescent intensities for Ca, Mn, Fe, Ni, Zn, Cr and Cu were measured using a liquid-nitrogen-cooled 13-element energy-dispersive HpGe detector. The sample is scanned in a estep-and-repeat' mode for fast elemental mapping and generated elemental maps at 8, 10 and 12 keV. All images are of 10 em resolution and the measurement time was 1 s per point. The accumulation of trace elements was investigated from the soft-tissue in small areas. Analysis of the small areas will be better suited to establish the physiology of metals in specific structures like small animal shell and the distribution of other trace elements.

  20. The interaction of asbestos and iron in lung tissue revealed by synchrotron-based scanning X-ray microscopy

    Science.gov (United States)

    Pascolo, Lorella; Gianoncelli, Alessandra; Schneider, Giulia; Salomé, Murielle; Schneider, Manuela; Calligaro, Carla; Kiskinova, Maya; Melato, Mauro; Rizzardi, Clara

    2013-01-01

    Asbestos is a potent carcinogen associated with malignant mesothelioma and lung cancer but its carcinogenic mechanisms are still poorly understood. Asbestos toxicity is ascribed to its particular physico-chemical characteristics, and one of them is the presence of and ability to adsorb iron, which may cause an alteration of iron homeostasis in the tissue. This observational study reports a combination of advanced synchrotron-based X-ray imaging and micro-spectroscopic methods that provide correlative morphological and chemical information for shedding light on iron mobilization features during asbestos permanence in lung tissue. The results show that the processes responsible for the unusual distribution of iron at different stages of interaction with the fibres also involve calcium, phosphorus and magnesium. It has been confirmed that the dominant iron form present in asbestos bodies is ferritin, while the concurrent presence of haematite suggests alteration of iron chemistry during asbestos body permanence. PMID:23350030

  1. Synchrotron-based X-ray Fluorescence Microscopy in Conjunction with Nanoindentation to Study Molecular-Scale Interactions of Phenol–Formaldehyde in Wood Cell Walls

    Science.gov (United States)

    Joseph E. Jakes; Christopher G. Hunt; Daniel J. Yelle; Linda Lorenz; Kolby Hirth; Sophie-Charlotte Gleber; Stefan Vogt; Warren Grigsby; Charles R. Frihart

    2015-01-01

    Understanding and controlling molecular-scale interactions between adhesives and wood polymers are critical to accelerate the development of improved adhesives for advanced wood-based materials. The submicrometer resolution of synchrotron-based X-ray fluorescence microscopy (XFM) was found capable of mapping and quantifying infiltration of Br-labeled phenol−...

  2. Visualizing and Quantifying Bioaccessible Pores in Field-Aged Petroleum Hydrocarbon-Contaminated Clay Soils Using Synchrotron-based X-ray Computed Tomography

    Science.gov (United States)

    Chang, W.; Kim, J.; Zhu, N.; McBeth, J. M.

    2015-12-01

    Microbial hydrocarbon degradation is environmentally significant and applicable to contaminated site remediation practices only when hydrocarbons (substrates) are physically bioaccessible to bacteria in soil matrices. Powerful X-rays are produced by synchrotron radiation, allowing for bioaccessible pores in soil (larger than 4 microns), where bacteria can be accommodated, colonize and remain active, can be visualized at a much higher resolution. This study visualized and quantified such bioaccessible pores in intact field-aged, oil-contaminated unsaturated soil fractions, and examined the relationship between the abundance of bioaccessible pores and hydrocarbon biodegradation. Using synchrotron-based X-ray Computed Tomography (CT) at the Canadian Light Source, a large dataset of soil particle characteristics, such as pore volumes, surface areas, number of pores and pore size distribution, was generated. Duplicate samples of five different soil fractions with different soil aggregate sizes and water contents (13, 18 and 25%) were examined. The method for calculating the number and distribution of bioaccessible pores using CT images was validated using the known porosity of Ottawa sand. This study indicated that the distribution of bioaccessible pore sizes in soil fractions are very closely related to microbial enhancement. A follow-up aerobic biodegradation experiment for the soils at 17 °C (average site temperature) over 90 days confirmed that a notable decrease in hydrocarbon concentrations occurred in soils fractions with abundant bioaccessible pores and with a larger number of pores between 10 and 100 μm. The hydrocarbon degradation in bioactive soil fractions was extended to relatively high-molecular-weight hydrocarbons (C16-C34). This study provides quantitative information about how internal soil pore characteristics can influence bioremediation performance.

  3. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  4. Speciation And Distribution Of Phosphorus In A Fertilized Soil: A Synchrotron-Based Investigation

    Science.gov (United States)

    Phosphorus availability is often a limiting factor for crop production around the world. The efficiency of P fertilizers in calcareous soils is limited by reactions that decrease P availability; however, fluid fertilizers have recently been shown, in highly calcareous soils of s...

  5. P3HT/PCBM polymer thin films studied by synchrotron-based grazing incidence X-ray diffraction

    International Nuclear Information System (INIS)

    Yang Yingguo; Zhengguan Haojie; Ji Gengwu; Feng Shanglei; Li Xiaolong; Gao Xingyu

    2014-01-01

    Background: The microstructures of P3HT (poly(3-hexyl-thiophene)) in P3HT/PCBM ([6, 6]-phenyl C61-butyric acid methyl ester) thin films play a key role in governing the performance of organic solar cells (OSCs) based on these films. Purpose: We aim to study the self-organization of P3HT in the P3HT/PCBM thin films annealed at different temperatures. Methods: Using different incidence angles, information about the microstructures of P3HT at different depths in these films was obtained by synchrotron based grazing incidence X-ray diffraction (GIXRD). Results: It is shown that the crystalline structure of P3HT has been substantially improved by thermal annealing. One dimensional GIXRD clearly indicates that P3HT edge-on structures in the inner layers have been improved with their number increased in comparison with those at the surface and the interface layers. In addition, thermal annealing also helps the formation of P3HT face-on structures in the films, as evidenced by 2 dimensional GIXRD. Conclusion: The improved structures in these films lead to more charge transport channels formed to improve the carrier mobility, which in turn helps the improvement of OSCs. Thus, the present GIXRD results will improve the understanding of annealing effects at different depths of the P3HT/PCBM thin films for enhanced OSCs devices. (authors)

  6. Estimating and correcting mie scattering in synchrotron-based microscopic fourier transform infrared spectra by extended multiplicative signal correction.

    Science.gov (United States)

    Kohler, A; Sulé-Suso, J; Sockalingum, G D; Tobin, M; Bahrami, F; Yang, Y; Pijanka, J; Dumas, P; Cotte, M; van Pittius, D G; Parkes, G; Martens, H

    2008-03-01

    We present an approach for estimating and correcting Mie scattering occurring in infrared spectra of single cells, at diffraction limited probe size, as in synchrotron based microscopy. The Mie scattering is modeled by extended multiplicative signal correction (EMSC) and subtracted from the vibrational absorption. Because the Mie scattering depends non-linearly on alpha, the product of the radius and the refractive index of the medium/sphere causing it, a new method was developed for estimating the Mie scattering by EMSC for unknown radius and refractive index of the Mie scatterer. The theoretically expected Mie contributions for a range of different alpha values were computed according to the formulae developed by Van de Hulst (1957). The many simulated spectra were then summarized by a six-dimensional subspace model by principal component analysis (PCA). This subspace model was used in EMSC to estimate and correct for Mie scattering, as well as other additive and multiplicative interference effects. The approach was applied to a set of Fourier transform infrared (FT-IR) absorbance spectra measured for individual lung cancer cells in order to remove unwanted interferences and to estimate ranges of important alpha values for each spectrum. The results indicate that several cell components may contribute to the Mie scattering.

  7. Adsorption of ethylene carbonate on lithium cobalt oxide thin films: A synchrotron-based spectroscopic study of the surface chemistry

    Science.gov (United States)

    Fingerle, Mathias; Späth, Thomas; Schulz, Natalia; Hausbrand, René

    2017-11-01

    The surface chemistry of cathodic lithium cobalt oxide (LiCoO2) in contact with the Li-ion battery solvent ethylene carbonate (EC) was studied via synchrotron based soft X-ray photoelectron spectroscopy (SXPS). By stepwise in-situ adsorption of EC onto an rf-magnetron sputtered LiCoO2 thin film and consecutive recording of SXPS spectra, the chemical and electronic properties of the interface were determined. EC partially decomposes and forms a predominantly organic adlayer. Prolonged exposure results in the formation of a condensed EC layer, demonstrating that the decomposition layer has passivating properties. Lithium ions deintercalate from the electrode and are dissolved in the adsorbate phase, without forming a large amount of Li-containing reaction products, indicating that electrolyte reduction remains limited. Due to a large offset between the LiCoO2 valence band and the EC HOMO, oxidation of EC molecules is unlikely, and should require energy level shifts due to interaction or double layer effects for real systems.

  8. Extraction of pore-morphology and capillary pressure curves of porous media from synchrotron-based tomography data.

    Science.gov (United States)

    Yang, Feifei; Hingerl, Ferdinand F; Xiao, Xianghui; Liu, Yijin; Wu, Ziyu; Benson, Sally M; Toney, Michael F

    2015-06-03

    The elevated level of atmospheric carbon dioxide (CO2) has caused serious concern of the progression of global warming. Geological sequestration is considered as one of the most promising techniques for mitigating the damaging effect of global climate change. Investigations over wide range of length-scales are important for systematic evaluation of the underground formations from prospective CO2 reservoir. Understanding the relationship between the micro morphology and the observed macro phenomena is even more crucial. Here we show Synchrotron based X-ray micro tomographic study of the morphological buildup of Sandstones. We present a numerical method to extract the pore sizes distribution of the porous structure directly, without approximation or complex calculation. We have also demonstrated its capability in predicting the capillary pressure curve in a mercury intrusion porosimetry (MIP) measurement. The method presented in this work can be directly applied to the morphological studies of heterogeneous systems in various research fields, ranging from Carbon Capture and Storage, and Enhanced Oil Recovery to environmental remediation in the vadose zone.

  9. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams

    Directory of Open Access Journals (Sweden)

    Rahman WN

    2014-05-01

    Full Text Available Wan Nordiana Rahman,1,2 Stéphanie Corde,3,4 Naoto Yagi,5 Siti Aishah Abdul Aziz,1 Nathan Annabell,2 Moshi Geso21School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia; 2Division of Medical Radiation, School of Medical Sciences, Royal Melbourne Institute of Technology, Bundoora, VIC, 3Radiation Oncology, Prince of Wales Hospital, High Street, Randwick, 4Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia; 5Japanese Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, JapanAbstract: Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30–100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3

  10. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams.

    Science.gov (United States)

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects

  11. Spatial resolution limits for synchrotron-based spectromicroscopy in the mid- and near-infrared

    International Nuclear Information System (INIS)

    Levenson, Erika; Lerch, Philippe; Martin, Michael C.

    2008-01-01

    Spatial resolution tests were performed on beamline 1.4.4 at the Advanced Light Source in Berkeley, CA, USA, a third-generation synchrotron light source. This beamline couples the high-brightness synchrotron source to a Thermo-Electron Continuum XL infrared microscope. Two types of resolution tests were performed in both the mid-IR and near-IR. The results are compared with a diffraction-limited spot size theory. At shorter near-IR wavelengths the experimental results begin to deviate from diffraction-limited so a combined diffraction-limit and electron-beam-source-size model is employed. This description shows how the physical electron beam size of the synchrotron source begins to dominate the focused spot size at higher energies. The transition from diffraction-limited to electron-beam-size-limited performance is a function of storage-ring parameters and the optical demagnification within the beamline and microscope optics. The discussion includes how different facilities, beamlines and microscopes will affect the achievable spatial resolution. As synchrotron light sources and other next-generation accelerators such as energy-recovery LINACs and free-electron lasers achieve smaller beam emittances, beta-functions and/or energy spreads, diffraction-limited performance can continue to higher-energy beams, perhaps ultimately into the extreme ultraviolet

  12. Calcium micro-depositions in jugular truncular venous malformations revealed by Synchrotron-based XRF imaging.

    Science.gov (United States)

    Pascolo, Lorella; Gianoncelli, Alessandra; Rizzardi, Clara; Tisato, Veronica; Salomé, Murielle; Calligaro, Carla; Salvi, Fabrizio; Paterson, David; Zamboni, Paolo

    2014-10-07

    It has been recently demonstrated that the internal jugular vein may exhibit abnormalities classified as truncular venous malformations (TVMs). The investigation of possible morphological and biochemical anomalies at jugular tissue level could help to better understand the link between brain venous drainage and neurodegenerative disorders, recently found associated with jugular TVMs. To this end we performed sequential X-ray Fluorescence (XRF) analyses on jugular tissue samples from two TVM patients and two control subjects, using complementary energies at three different synchrotrons. This investigation, coupled with conventional histological analyses, revealed anomalous micro-formations in the pathological tissues and allowed the determination of their elemental composition. Rapid XRF analyses on large tissue areas at 12.74 keV showed an increased Ca presence in the pathological samples, mainly localized in tunica adventitia microvessels. Investigations at lower energy demonstrated that the high Ca level corresponded to micro-calcifications, also containing P and Mg. We suggest that advanced synchrotron XRF micro-spectroscopy is an important analytical tool in revealing biochemical changes, which cannot be accessed by conventional investigations. Further research on a larger number of samples is needed to understand the pathogenic significance of Ca micro-depositions detected on the intramural vessels of vein walls affected by TVMs.

  13. Spatial resolution limits for synchrotron-based spectromicroscopy in the mid- and near-infrared.

    Science.gov (United States)

    Levenson, Erika; Lerch, Philippe; Martin, Michael C

    2008-07-01

    Spatial resolution tests were performed on beamline 1.4.4 at the Advanced Light Source in Berkeley, CA, USA, a third-generation synchrotron light source. This beamline couples the high-brightness synchrotron source to a Thermo-Electron Continumicrom XL infrared microscope. Two types of resolution tests were performed in both the mid-IR and near-IR. The results are compared with a diffraction-limited spot size theory. At shorter near-IR wavelengths the experimental results begin to deviate from diffraction-limited so a combined diffraction-limit and electron-beam-source-size model is employed. This description shows how the physical electron beam size of the synchrotron source begins to dominate the focused spot size at higher energies. The transition from diffraction-limited to electron-beam-size-limited performance is a function of storage-ring parameters and the optical demagnification within the beamline and microscope optics. The discussion includes how different facilities, beamlines and microscopes will affect the achievable spatial resolution. As synchrotron light sources and other next-generation accelerators such as energy-recovery LINACs and free-electron lasers achieve smaller beam emittances, beta-functions and/or energy spreads, diffraction-limited performance can continue to higher-energy beams, perhaps ultimately into the extreme ultraviolet.

  14. Synchrotron based mass spectrometry to investigate the molecular properties of mineral-organic associations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Suet Yi; Kleber, Markus; Takahashi, Lynelle K.; Nico, Peter; Keiluweit, Marco; Ahmed, Musahid

    2013-04-01

    Soil organic matter (OM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser Desorption Synchrotron Postionization (synchrotron-LDPI) mass spectrometry is introduced as a novel analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that when combined with Secondary Ion Mass Spectrometry (SIMS), can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions, verifies the consistency of our results with bulk analytical techniques. We further demonstrate that by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.

  15. Recent research in flaxseed (oil seed) on molecular structure and metabolic characteristics of protein, heat processing-induced effect and nutrition with advanced synchrotron-based molecular techniques.

    Science.gov (United States)

    Doiron, Kevin J; Yu, Peiqiang

    2017-01-02

    Advanced synchrotron radiation-based infrared microspectroscopy is able to reveal feed and food structure feature at cellular and molecular levels and simultaneously provides composition, structure, environment, and chemistry within intact tissue. However, to date, this advanced synchrotron-based technique is still seldom known to food and feed scientists. This article aims to provide detailed background for flaxseed (oil seed) protein research and then review recent progress and development in flaxseed research in ruminant nutrition in the areas of (1) dietary inclusion of flaxseed in rations; (2) heat processing effect; (3) assessing dietary protein; (4) synchrotron-based Fourier transform infrared microspectroscopy as a tool of nutritive evaluation within cellular and subcellular dimensions; (5) recent synchrotron applications in flaxseed research on a molecular basis. The information described in this paper gives better insight in flaxseed research progress and update.

  16. Characterization of the Microchemical Structure of Seed Endosperm within a Cellular Dimension among Six Barley Varieties with Distinct Degradation Kinetics, Using Ultraspatially Resolved Synchrotron-Based Infrared Microspectroscopy

    Science.gov (United States)

    Liu, Na; Yu, Peiqiang

    2013-01-01

    Barley varieties have similar chemical composition but exhibit different rumen degradation kinetics and nutrient availability. These biological differences may be related to molecular, structural, and chemical makeup among the seed endosperm tissue. No detailed study was carried out. The objectives of this study were: (1) to use a molecular spectroscopy technique, synchrotron-based Fourier transform infrared microspectroscopy (SFTIRM), to determine the microchemical–structural features in seed endosperm tissue of six developed barley varieties; (2) to study the relationship among molecular–structural characteristics, degradation kinetics, and nutrient availability in six genotypes of barley. The results showed that inherent microchemical–structural differences in the endosperm among the six barley varieties were detected by the synchrotron-based analytical technique, SFTIRM, with the univariate molecular spectral analysis. The SFTIRM spectral profiles differed (P makeup within cellular and subcellular dimensions without destruction of the inherent structure of cereal grain tissue. PMID:20524612

  17. Nano-Scale Spatial Assessment of Calcium Distribution in Coccolithophores Using Synchrotron-Based Nano-CT and STXM-NEXAFS

    Directory of Open Access Journals (Sweden)

    Shiyong Sun

    2014-12-01

    Full Text Available Calcified coccolithophores generate calcium carbonate scales around their cell surface. In light of predicted climate change and the global carbon cycle, the biomineralization ability of coccoliths has received growing interest. However, the underlying biomineralization mechanism is not yet well understood; the lack of non-invasive characterizing tools to obtain molecular level information involving biogenic processes and biomineral components remain significant challenges. In the present study, synchrotron-based Nano-computed Tomography (Nano-CT and Scanning Transmission X-ray Microscopy-Near-edge X-ray Absorption Fine Structure Spectromicroscopy (STXM-NEXAFS techniques were employed to identify Ca spatial distribution and investigate the compositional chemistry and distinctive features of the association between biomacromolecules and mineral components of calcite present in coccoliths. The Nano-CT results show that the coccolith scale vesicle is similar as a continuous single channel. The mature coccoliths were intracellularly distributed and immediately ejected and located at the exterior surface to form a coccoshpere. The NEXAFS spectromicroscopy results of the Ca L edge clearly demonstrate the existence of two levels of gradients spatially, indicating two distinctive forms of Ca in coccoliths: a crystalline-poor layer surrounded by a relatively crystalline-rich layer. The results show that Sr is absorbed by the coccoliths and that Sr/Ca substitution is rather homogeneous within the coccoliths. Our findings indicate that synchrotron-based STXM-NEXAFS and Nano-CT are excellent tools for the study of biominerals and provide information to clarify biomineralization mechanism.

  18. Recent Research and Progress in Food, Feed and Nutrition with Advanced Synchrotron-based SR-IMS and DRIFT Molecular Spectroscopy.

    Science.gov (United States)

    Liu, Na; Yu, Peiqiang

    2016-01-01

    Ultraspatially resolved synchrotron radiation based infrared microspectroscopy is able to detect the structure features of a food or feed tissue at cellular and molecular levels. However, to date, this advanced synchrotron-based technique is almost unknown to food and feed scientists. The objective of this article was to introduce this novel analytical technology, ultra-spatially resolved synchrotron radiation based infrared microspectroscopy (SR-IMS) to food, feed, conventional nutrition, and molecular nutrition scientists. The emphasis of this review focused on the following areas: (1) Principles of molecular spectroscopy for food and feed structure research, such as protein molecular structure, carbohydrate conformation, heating induced protein structure changes, and effect of gene-transformation on food and feed structure; (2) Molecular spectral analysis methodology; (3) Biological applications of synchrotron SR-IMS and DRIFT spectroscopy; and (4) Recent progress in food, feed and nutrition research program. The information described in this article gives better insight in food structure research progress and update.

  19. Plant-based food and feed protein structure changes induced by gene-transformation, heating and bio-ethanol processing: a synchrotron-based molecular structure and nutrition research program.

    Science.gov (United States)

    Yu, Peiqiang

    2010-11-01

    Unlike traditional "wet" analytical methods which during processing for analysis often result in destruction or alteration of the intrinsic protein structures, advanced synchrotron radiation-based Fourier transform infrared microspectroscopy has been developed as a rapid and nondestructive and bioanalytical technique. This cutting-edge synchrotron-based bioanalytical technology, taking advantages of synchrotron light brightness (million times brighter than sun), is capable of exploring the molecular chemistry or structure of a biological tissue without destruction inherent structures at ultra-spatial resolutions. In this article, a novel approach is introduced to show the potential of the advanced synchrotron-based analytical technology, which can be used to study plant-based food or feed protein molecular structure in relation to nutrient utilization and availability. Recent progress was reported on using synchrotron-based bioanalytical technique synchrotron radiation-based Fourier transform infrared microspectroscopy and diffused reflectance infrared Fourier transform spectroscopy to detect the effects of gene-transformation (Application 1), autoclaving (Application 2), and bio-ethanol processing (Application 3) on plant-based food and feed protein structure changes on a molecular basis. The synchrotron-based technology provides a new approach for plant-based protein structure research at ultra-spatial resolutions at cellular and molecular levels.

  20. Reveal Protein Molecular Structural-Chemical Differences Between Two Types of Winterfat (Forage) Seeds with Physiological Differences in Low Temperature Tolerance Using Synchrotron-Based Fourier Transform Infrared Microspectroscopy

    International Nuclear Information System (INIS)

    Yu, P.; Wang, R.; Bai, Y.

    2005-01-01

    Winterfat (Krascheninnikovia lanata) (forage seed) is a long-lived native shrub with superior forage quality for livestock and wildlife. The objectives of this study were to use advanced synchrotron technology [S-Fourier transform infrared microspectroscopy (FTIR)] as a novel approach to reveal protein molecular structural-chemical differences in terms of protein secondary structures between the two types of winterfat (forage) seeds, which show physiological differences in low-temperature tolerances. This experiment was performed at beamline U10B at the National Synchrotron Light Source NSLS in Brookhaven National Laboratory BNL, U.S. Department of Energy (NSLS-BNL, New York). The results showed that with the synchrotron analytical technique (S-FTIR), the molecular structural-chemical makeup and characteristics of the winterfat seed tissues could be imaged and revealed. The protein secondary structures differed between the large and the small seed tissues. By using the multicomponent peaks modeling method, the results show that the large seeds contained no significant differences (P > 0.05) in percentage of β-sheet (average 37.0%) and α-helix (average 24.1%). However, the large seeds contained a lower (P < 0.05) percentage of β-turns (18.1 vs. 20.1%) and a lower (P < 0.05) ratio of β-turns to α-helices (0.8 vs. 0.9) and β-turns to β-sheets (0.5 vs. 0.6). Our results demonstrate the potential of highly spatially resolved synchrotron-based FTIR microspectroscopy to reveal differences of structural molecular chemistry and protein secondary structures, which are associated with seed size variation and may affect germination behaviors

  1. Molecular toxicity of triclosan and carbamazepine to green algae Chlorococcum sp.: A single cell view using synchrotron-based Fourier transform infrared spectromicroscopy.

    Science.gov (United States)

    Xin, Xiaying; Huang, Guohe; Liu, Xia; An, Chunjiang; Yao, Yao; Weger, Harold; Zhang, Peng; Chen, Xiujuan

    2017-07-01

    Although pharmaceuticals and personal care products have been used and introduced into the environment in large quantities, little information on potential ecological risks is currently available considering their effects on living organisms. We verified the feasibility of using synchrotron-based Fourier Transform Infrared (SR-FTIR) spectromicroscopy to explore in vivo toxic effects on single living Chlorococcum sp. cells. The study provided important information to achieve a better understanding of the toxic mechanism of triclosan and carbamazepine on living algae Chlorococcum sp.. Triclosan and carbamazepine had distinctive toxic effects on unicellular living algae. Most strikingly, triclosan had more dramatic toxic effects on biochemical components than carbamazepine. Triclosan can affect algae primarily by inhibiting fatty acid synthesis and causing protein aggregation. The toxicity response was irreversible at higher concentration (100.000 μM), but attenuated at lower concentration (0.391 μM) as time extended. Carbamazepine can produce hydrophobic interactions to affect the phospholipid bilayer and work on specific proteins to disfunction the cell membrane. Carbamazepine-exposed cells developed a resistance while extending exposure time. This is the first demonstration from an ecological standpoint that SR-FTIR can provide an innovative approach to reveal the toxicity of emerging pollutants in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A structural study of bone changes in knee osteoarthritis by synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy techniques

    Science.gov (United States)

    Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit

    2017-10-01

    Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.

  3. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography.

    Science.gov (United States)

    Zhu, Feng; Liao, Jiaxin; Xue, Shengguo; Hartley, William; Zou, Qi; Wu, Hao

    2016-12-15

    Bauxite residue often has poor physical conditions which impede plant growth. Native plant encroachment on a bauxite residue disposal area in Central China reveals that natural regeneration may improve its physicochemical properties. Residue samples collected from three different disposal ages were assessed to evaluate residue micromorphology and three-dimensional (3D) aggregate microstructure under natural regeneration. The residue aggregates in different disposal ages were divided in two sections: macro-aggregate (2-1mm) and micro-aggregate (0.25-0.05mm). Residue aggregate micromorphology was determined by scanning electron microscope and energy dispersive X-ray spectroscopy, and the residue aggregate microstructure was determined by synchrotron-based X-ray micro-computed tomography (SR-μCT) and image analysis techniques. Natural regeneration may improve residue aggregate stability and form a stable aggregate structure. Calcium content increased whilst sodium content decreased significantly on the surface of residue aggregates. Under natural soil-forming processes bauxite residue porosity, specific surface area, average length of paths, and average tortuosity of paths all significantly increased. This demonstrated that natural regeneration may stimulate the formation of stable aggregate structure in residues. Further understanding should focus on particle interaction forces and agglomeration mechanisms with the addition of external ameliorations. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Using synchrotron-based FT-IR microspectroscopy to study erucamide migration in 50-micron-thick bilayer linear low-density polyethylene and polyolefin plastomer films.

    Science.gov (United States)

    Sankhe, Shilpa Y; Hirt, Douglas E

    2003-01-01

    The diffusion of additives in thick (approximately 500 microns) single layer and multilayer films has been characterized using FT-IR microspectroscopy. The objective of this research was to investigate additive migration and concentration profiles in coextruded multilayer films of industrially relevant thicknesses. In particular, the investigation focused on the migration of an erucamide slip agent in 50-micron-thick coextruded bilayer films of linear low-density polyethylene (LLDPE) and a polyolefin plastomer (POP). Erucamide concentration profiles were successfully mapped using synchrotron-based FT-IR microspectroscopy. The synchrotron radiation helped to achieve a higher spatial resolution for the thin films. Meticulous sample preparation was needed to map the thin film samples. Results with FT-IR microspectroscopy showed that the additive-concentration profiles were relatively uniform across the multilayer-film thickness irrespective of the intended initial additive distribution. For example, a bilayer planned for 1 wt % erucamide in an LLDPE layer and no erucamide in a POP layer showed significant additive migration into the POP layer at the extrusion rates used. FT-IR microspectroscopy results also showed that more erucamide migrated to the surface of a POP layer than an LLDPE layer. Attenuated total reflectance (ATR) FT-IR spectroscopy was used to confirm the time-dependent increase of erucamide surface concentration and that the increase was more pronounced at the surface of the POP layers.

  5. Label-free cellular structure imaging with 82 nm lateral resolution using an electron-beam excitation-assisted optical microscope.

    Science.gov (United States)

    Fukuta, Masahiro; Masuda, Yuriko; Inami, Wataru; Kawata, Yoshimasa

    2016-07-25

    We present label-free and high spatial-resolution imaging for specific cellular structures using an electron-beam excitation-assisted optical microscope (EXA microscope). Images of the actin filament and mitochondria of stained HeLa cells, obtained by fluorescence and EXA microscopy, were compared to identify cellular structures. Based on these results, we demonstrated the feasibility of identifying label-free cellular structures at a spatial resolution of 82 nm. Using numerical analysis, we calculated the imaging depth region and determined the spot size of a cathodoluminescent (CL) light source to be 83 nm at the membrane surface.

  6. Synchrotron-based intra-venous K-edge digital subtraction angiography in a pig model: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Schueltke, Elisabeth [Departments of Surgery, University of Saskatchewan, Saskatoon, SK (Canada); Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK (Canada); Department of Neurological Sciences, Walton Medical Centre, University of Liverpool, Liverpool L97 LJ (United Kingdom)], E-mail: e.schultke@usask.ca; Fiedler, Stefan [European Molecular Biology Laboratory (EMBL), Nottkestrasse 85, 22603 Hamburg (Germany); Nemoz, Christian [European Synchrotron Radiation Facility (ESRF), 6 rue Horowitz, 38043 Grenoble (France); Ogieglo, Lissa [Departments of Surgery, University of Saskatchewan, Saskatoon, SK (Canada); Kelly, Michael E. [Departments of Surgery, University of Saskatchewan, Saskatoon, SK (Canada); Department of Neurosurgery, Section of Cerebrovascular and Endovascular Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH (United States); Crawford, Paul [Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herfordshire AL9 7TA (United Kingdom); Esteve, Francois [INSERM U836-ESRF, 6 rue Horowitz, 38043 Grenoble (France); Brochard, Thierry; Renier, Michel; Requardt, Herwig; Le Duc, Geraldine [European Synchrotron Radiation Facility (ESRF), 6 rue Horowitz, 38043 Grenoble (France); Juurlink, Bernhard [Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK (Canada); Meguro, Kotoo [Departments of Surgery, University of Saskatchewan, Saskatoon, SK (Canada)

    2010-03-15

    Background: K-edge digital subtraction angiography (KEDSA) combined with the tunability of synchrotron beam yields an imaging technique that is highly sensitive to low concentrations of contrast agents. Thus, contrast agent can be administered intravenously, obviating the need for insertion of a guided catheter to deliver a bolus of contrast agent close to the target tissue. With the high-resolution detectors used at synchrotron facilities, images can be acquired at high spatial resolution. Thus, the KEDSA appears particularly suited for studies of neurovascular pathology in animal models, where the vascular diameters are significantly smaller than in human patients. Materials and methods: This feasibility study was designed to test the suitability of KEDSA after intravenous injection of iodine-based contrast agent for use in a pig model. Four adult male pigs were used for our experiments. Neurovascular angiographic images were acquired using KEDSA with a solid state Germanium (Ge) detector at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Results: After intravenous injection of 0.9 ml/kg iodinated contrast agent (Xenetix), the peak iodine concentrations in the internal carotid and middle cerebral arteries reached 35 mg/ml. KEDSA images in radiography mode allowed the visualization of intracranial arteries of less than 1.5 mm diameter.

  7. SU-F-T-156: Monte Carlo Simulation Using TOPAS for Synchrotron Based Proton Discrete Spot Scanning System

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, V; Pirlepesov, F; Tsiamas, P; Axente, M; Lukose, R; Zhao, L; Farr, J [St. Jude Children’s Hospital, Memphis, TN (United States); Shin, J [Massachusetts General Hospital, Brookline, MA (United States)

    2016-06-15

    Purpose: This study provides an overview of the design and commissioning of the Monte Carlo (MC) model of the spot-scanning proton therapy nozzle and its implementation for the patient plan simulation. Methods: The Hitachi PROBEAT V scanning nozzle was simulated based on vendor specifications using the TOPAS extension of Geant4 code. FLUKA MC simulation was also utilized to provide supporting data for the main simulation. Validation of the MC model was performed using vendor provided data and measurements collected during acceptance/commissioning of the proton therapy machine. Actual patient plans using CT based treatment geometry were simulated and compared to the dose distributions produced by the treatment planning system (Varian Eclipse 13.6), and patient quality assurance measurements. In-house MATLAB scripts are used for converting DICOM data into TOPAS input files. Results: Comparison analysis of integrated depth doses (IDDs), therapeutic ranges (R90), and spot shape/sizes at different distances from the isocenter, indicate good agreement between MC and measurements. R90 agreement is within 0.15 mm across all energy tunes. IDDs and spot shapes/sizes differences are within statistical error of simulation (less than 1.5%). The MC simulated data, validated with physical measurements, were used for the commissioning of the treatment planning system. Patient geometry simulations were conducted based on the Eclipse produced DICOM plans. Conclusion: The treatment nozzle and standard option beam model were implemented in the TOPAS framework to simulate a highly conformal discrete spot-scanning proton beam system.

  8. Laser interference lithography with highly accurate interferometric alignment

    NARCIS (Netherlands)

    van Soest, Frank J.; van Wolferen, Hendricus A.G.M.; Hoekstra, Hugo; de Ridder, R.M.; Worhoff, Kerstin; Lambeck, Paul

    It is shown experimentally that in laser interference lithography, by using a reference grating, respective grating layers can be positioned with high relative accuracy. A 0.001 degree angular and a few nanometers lateral resolution have been demonstrated.

  9. Laser interference lithography with highly accurate interferometric alignment

    NARCIS (Netherlands)

    van Soest, Frank J.; van Wolferen, Hendricus A.G.M.; Hoekstra, Hugo; de Ridder, R.M.; Worhoff, Kerstin; Lambeck, Paul

    It is shown experimentally that in laser interference lithography, by using a reference grating, respective grating layers can be positioned with high relative accuracy. A 0.001 angular and a few nanometers lateral resolution have been demonstrated.

  10. Optimization and evaluation of multiple gating beam delivery in a synchrotron-based proton beam scanning system using a real-time imaging technique.

    Science.gov (United States)

    Yamada, Takahiro; Miyamoto, Naoki; Matsuura, Taeko; Takao, Seishin; Fujii, Yusuke; Matsuzaki, Yuka; Koyano, Hidenori; Umezawa, Masumi; Nihongi, Hideaki; Shimizu, Shinichi; Shirato, Hiroki; Umegaki, Kikuo

    2016-07-01

    To find the optimum parameter of a new beam control function installed in a synchrotron-based proton therapy system. A function enabling multiple gated irradiation in the flat top phase has been installed in a real-time-image gated proton beam therapy (RGPT) system. This function is realized by a waiting timer that monitors the elapsed time from the last gate-off signal in the flat top phase. The gated irradiation efficiency depends on the timer value, Tw. To find the optimum Tw value, gated irradiation efficiency was evaluated for each configurable Tw value. 271 gate signal data sets from 58 patients were used for the simulation. The highest mean efficiency 0.52 was obtained in TW=0.2s. The irradiation efficiency was approximately 21% higher than at TW=0s, which corresponds to ordinary synchrotron operation. The irradiation efficiency was improved in 154 (57%) of the 271 cases. The irradiation efficiency was reduced in 117 cases because the TW value was insufficient or the function introduced an unutilized wait time for the next gate-on signal in the flat top phase. In the actual treatment of a patient with a hepatic tumor at Tw=0.2s, 4.48GyE irradiation was completed within 250s. In contrast, the treatment time of ordinary synchrotron operation was estimated to be 420s. The results suggest that the multiple gated-irradiation function has potential to improve the gated irradiation efficiency and to reduce the treatment time. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Synchrotron-based microspectroscopic study on the effects of heat treatments on cotyledon tissues in yellow-type canola (Brassica) seeds.

    Science.gov (United States)

    Yu, Peiqiang; Theodoridou, Katerina; Xin, Hangshu; Huang, Pei-Yu; Lee, Yao-Chang; Wood, Bayden R

    2013-07-31

    Synchrotron-based infrared (IR) microspectroscopy is able to reveal structural features of biomaterials within intact tissue at both cellular and molecular levels. Heat-related treatments have been used to improve nutrient availability of canola seeds and meal. However, hitherto, there has been no study on the sensitivity and response of each layer in canola seeds to heat-related treatments. It is not known which layer (epiderm/mucllage, spermoderm, endosperm, or cotyledon) is the most sensitive to heat when heat treatment is applied to the seeds. Traditional wet chemical analysis is unable to answer such questions. The objective of this study is to use synchrotron IR microspectroscopy with multivariate molecular spectral analyses as a research tool to study heat treatment effects in a fast way on the structural changes in cotyledon tissues of yellow-type canola (Brassica) seeds among raw (treatment code "A"), wet heating (autoclaving at 121 °C for 60 min, treatment code "B"), and dry heating (dry roasting at 120 °C for 60 min, treatment code "C"). The hypothesis of this study was that different heat treatments have different heat penetration abilities on cotyledon tissues in yellow-type canola seeds. The multivariate analytical tools principal component analysis (PCA) and agglomerative hierarchal cluster analysis (AHCA) were applied to investigate variance and groupings within the spectral data set [whole spectral range of ca. 4000-650 cm(-1), spectral range of ca. 1300-900 cm(-1) (cellulose or saccarides), spectral range of ca. 1800-1500 cm(-1) (secondary structures of protein) and spectral range of ca. 1500-1300 cm(-1) (bending motion of methylene and methyl group; this change is consistent with the change in the range of ca. 3000-2800 cm(-1))]. The results showed that there were no clear cluster and groups formed in the cotyledon tissues among the three treatments (A, B, and C). There were no clear distinguished responses of the cotyledon tissues to different

  12. Comparison of two methods for minimizing the effect of delayed charge on the dose delivered with a synchrotron based discrete spot scanning proton beam

    International Nuclear Information System (INIS)

    Whitaker, Thomas J.; Beltran, Chris; Tryggestad, Erik; Kruse, Jon J.; Remmes, Nicholas B.; Tasson, Alexandria; Herman, Michael G.; Bues, Martin

    2014-01-01

    Purpose: Delayed charge is a small amount of charge that is delivered to the patient after the planned irradiation is halted, which may degrade the quality of the treatment by delivering unwarranted dose to the patient. This study compares two methods for minimizing the effect of delayed charge on the dose delivered with a synchrotron based discrete spot scanning proton beam. Methods: The delivery of several treatment plans was simulated by applying a normally distributed value of delayed charge, with a mean of 0.001(SD 0.00025) MU, to each spot. Two correction methods were used to account for the delayed charge. Method one (CM1), which is in active clinical use, accounts for the delayed charge by adjusting the MU of the current spot based on the cumulative MU. Method two (CM2) in addition reduces the planned MU by a predicted value. Every fraction of a treatment was simulated using each method and then recomputed in the treatment planning system. The dose difference between the original plan and the sum of the simulated fractions was evaluated. Both methods were tested in a water phantom with a single beam and simple target geometry. Two separate phantom tests were performed. In one test the dose per fraction was varied from 0.5 to 2 Gy using 25 fractions per plan. In the other test the number fractions were varied from 1 to 25, using 2 Gy per fraction. Three patient plans were used to determine the effect of delayed charge on the delivered dose under realistic clinical conditions. The order of spot delivery using CM1 was investigated by randomly selecting the starting spot for each layer, and by alternating per layer the starting spot from first to last. Only discrete spot scanning was considered in this study. Results: Using the phantom setup and varying the dose per fraction, the maximum dose difference for each plan of 25 fractions was 0.37–0.39 Gy and 0.03–0.05 Gy for CM1 and CM2, respectively. While varying the total number of fractions, the maximum dose

  13. Orientation-dependent tensile deformation and damage of a T700 carbon fiber/epoxy composite: A synchrotron-based study

    Energy Technology Data Exchange (ETDEWEB)

    Bie, B. X.; Huang, J. Y.; Fan, D.; Sun, T.; Fezzaa, K.; Xiao, X. H.; Qi, M. L.; Luo, S. N.

    2017-09-01

    Uniaxial tensile experiments are conducted on a T700 carbon fiber/epoxy composite along various offaxis angles. Stressestrain curves are measured along with strain fields mapped via synchrotron x-ray digital image correlation, as well as computerized tomography. Elastic modulus and tensile strength decrease with increasing off-axis angles, while fracture strain exhibits a nonmonotonic trend as a combined result of tensile strength decrease and fracture mode transition. At high off-axis angles, strain field mapping demonstrates distinct tensile and shear strain localizations and deformation bands approximately along the fiber directions, while deformation is mainly achieved via continuous growth of tensile strain at low off-axis angles. Roughness of fracture planes decreases exponentially as the off-axis angle increases. The stressestrain curves, strain fields, tomography and fractographs show consistent features, and reveal a fracture mode transition from mainly tension (fiber fracture) to in-plane shear (interface debonding).

  14. Visualizing the 17th century underpainting in Portrait of an Old Man by Rembrandt van Rijn using synchrotron-based scanning macro-XRF

    Energy Technology Data Exchange (ETDEWEB)

    Alfeld, Matthias; Janssens, Koen [University of Antwerp, Department of Chemistry, Antwerpen (Belgium); Siddons, D.P. [Brookhaven National Laboratory, National Synchrotron Light Source, Upton, NY (United States); Dik, Joris [Delft University of Technology, Department of Materials Science, Delft (Netherlands); Woll, Arthur [Cornell University, Cornell High Energy Synchrotron Source, Ithaca, NY (United States); Kirkham, Robin [CSIRO, Materials Science and Engineering, Clayton, VIC (Australia); Wetering, Ernst van de [Rembrandt Research Project, Amsterdam (Netherlands)

    2013-04-15

    In 17th century Old Master Paintings, the underpainting generally refers to the first sketch of a composition. The underpainting is applied to a prepared ground using a monochrome, brown oil paint to roughly indicate light, shade and contours. So far, methods to visualize the underpainting - other than in localized cross-sections - have been very limited. Neither infrared reflectography nor neutron induced autoradiography have proven to be practical, adequate visualization tools. Thus, although of fundamental interest in the understanding of a painting's genesis, the underpainting has virtually escaped all imaging efforts. In this contribution we will show that 17th century underpainting may consist of a highly heterogeneous mixture of pigments, including copper pigments. We suggest that this brown pigment mixture is actually the recycled left-over of a palette scraping. With copper as the heaviest exclusive elemental component, we will hence show in a case study on a Portrait of an Old Man attributed to Rembrandt van Rijn how scanning macro-XRF can be used to efficiently visualize the underpainting below the surface painting and how this information can contribute to the discussion of the painting's authenticity. (orig.)

  15. Visualizing the 17th century underpainting in Portrait of an Old Man by Rembrandt van Rijn using synchrotron-based scanning macro-XRF

    International Nuclear Information System (INIS)

    Alfeld, Matthias; Janssens, Koen; Siddons, D.P.; Dik, Joris; Woll, Arthur; Kirkham, Robin; Wetering, Ernst van de

    2013-01-01

    In 17th century Old Master Paintings, the underpainting generally refers to the first sketch of a composition. The underpainting is applied to a prepared ground using a monochrome, brown oil paint to roughly indicate light, shade and contours. So far, methods to visualize the underpainting - other than in localized cross-sections - have been very limited. Neither infrared reflectography nor neutron induced autoradiography have proven to be practical, adequate visualization tools. Thus, although of fundamental interest in the understanding of a painting's genesis, the underpainting has virtually escaped all imaging efforts. In this contribution we will show that 17th century underpainting may consist of a highly heterogeneous mixture of pigments, including copper pigments. We suggest that this brown pigment mixture is actually the recycled left-over of a palette scraping. With copper as the heaviest exclusive elemental component, we will hence show in a case study on a Portrait of an Old Man attributed to Rembrandt van Rijn how scanning macro-XRF can be used to efficiently visualize the underpainting below the surface painting and how this information can contribute to the discussion of the painting's authenticity. (orig.)

  16. Mineralogy and geochemistry of Zn-rich mine-drainage precipitates from an MgO passive treatment system by synchrotron-based X-ray analysis.

    Science.gov (United States)

    Pérez-López, Rafael; Macías, Francisco; Caraballo, Manuel A; Nieto, José Miguel; Román-Ross, Gabriela; Tucoulou, Rémi; Ayora, Carlos

    2011-09-15

    Synchrotron radiation-induced micro-X-ray analysis were applied to characterize the newly formed phases that precipitate in a passive treatment system using magnesium oxide to remove high concentrations of zinc (ca. 440 mg/L) and other minor metals from neutral pretreated waters in the Iberian Pyrite Belt (SW Iberian Peninsula). Micro-X-ray fluorescence (μ-XRF) maps of polished samples were used to find spatial correlations among metals, pinpointing zones of interest where micro-X-ray diffraction (μ-XRD) data were exploited to identify the mineral phases responsible for metal retention. This coupled technique identified hydrozincite (Zn(5)(CO(3))(2)(OH)(6)) and minor loseyite ((Mn,Zn)(7)(CO(3))(2)(OH)(10)) as the mineral sinks for Zn and also other potentially toxic elements such as Co and Ni. Although hydrozincite retains traces of Mn, this metal is mainly retained by precipitation of loseyite. The precipitation of zinc hydroxy-carbonates and their ability to uptake other metals (Mn, Co, and Ni) is hence of potential interest not only for the treatment of contaminated waters but also for the generation of a solid waste that could be exploited as a new Zn economic resource.

  17. In situ analysis of foliar zinc absorption and short-distance movement in fresh and hydrated leaves of tomato and citrus using synchrotron-based X-ray fluorescence microscopy

    Science.gov (United States)

    Du, Yumei; Kopittke, Peter M.; Noller, Barry N.; James, Simon A.; Harris, Hugh H.; Xu, Zhi Ping; Li, Peng; Mulligan, David R.; Huang, Longbin

    2015-01-01

    Background and Aims Globally, zinc deficiency is one of the most important nutritional factors limiting crop yield and quality. Despite widespread use of foliar-applied zinc fertilizers, much remains unknown regarding the movement of zinc from the foliar surface into the vascular structure for translocation into other tissues and the key factors affecting this diffusion. Methods Using synchrotron-based X-ray fluorescence microscopy (µ-XRF), absorption of foliar-applied zinc nitrate or zinc hydroxide nitrate was examined in fresh leaves of tomato (Solanum lycopersicum) and citrus (Citrus reticulatus). Key Results The foliar absorption of zinc increased concentrations in the underlying tissues by up to 600-fold in tomato but only up to 5-fold in citrus. The magnitude of this absorption was influenced by the form of zinc applied, the zinc status of the treated leaf and the leaf surface to which it was applied (abaxial or adaxial). Once the zinc had moved through the leaf surface it appeared to bind strongly, with limited further redistribution. Regardless of this, in these underlying tissues zinc moved into the lower-order veins, with concentrations 2- to 10-fold higher than in the adjacent tissues. However, even once in higher-order veins, the movement of zinc was still comparatively limited, with concentrations decreasing to levels similar to the background within 1–10 mm. Conclusions The results advance our understanding of the factors that influence the efficacy of foliar zinc fertilizers and demonstrate the merits of an innovative methodology for studying foliar zinc translocation mechanisms. PMID:25399024

  18. Lateral resolution in NALDI MSI: back to the future

    Czech Academy of Sciences Publication Activity Database

    Krásný, Lukáš; Benada, Oldřich; Strnadová, Marcela; Lemr, Karel; Havlíček, Vladimír

    2015-01-01

    Roč. 407, č. 8 (2015), s. 2141-2147 ISSN 1618-2642 R&D Projects: GA ČR(CZ) GAP206/12/1150 Institutional support: RVO:61388971 Keywords : Mass spectrometry * Imaging * NALDI Subject RIV: CE - Biochemistry Impact factor: 3.125, year: 2015

  19. Local mechanical spectroscopy with nanometer-scale lateral resolution

    Science.gov (United States)

    Oulevey, F.; Gremaud, G.; Sémoroz, A.; Kulik, A. J.; Burnham, N. A.; Dupas, E.; Gourdon, D.

    1998-05-01

    A new technique has been developed to probe the viscoelastic and anelastic properties of submicron phases of inhomogeneous materials. The measurement gives information related to the internal friction and to the variations of the dynamic modulus of nanometer-sized volumes. It is then the nanoscale equivalent to mechanical spectroscopy, a well-known macroscopic technique for materials studies, also sometimes called dynamic mechanical (thermal) analysis. The technique is based on a scanning force microscope, using the principle of scanning local-acceleration microscopy (SLAM), and allows the sample temperature to be changed. It is called variable-temperature SLAM, abbreviated T-SLAM. According to a recent proposition to systematize names of scanning probe microscope based methods, this technique should be included in the family of "mechanothermal analysis with scanning microscopy." It is suited for studying defect dynamics in nanomaterials and composites by locating the dissipative mechanisms in submicron phases. The primary and secondary relaxations, as well as the viscoplasticity, were observed in bulk PVC. The wide range of phenomena demonstrate the versatility of the technique. A still unexplained increase of the stiffness with increasing temperature was observed just below the glass transition. All of these observations, although their interpretation in terms of physical events is still tentative, are in agreement with global studies. This technique also permits one to image the variations of the local elasticity or of the local damping at a fixed temperature. This enables the study of, for instance, the homogeneity of phase transitions in multiphased materials, or of the interface morphologies and properties. As an illustration, the homogeneity of the glass transition temperature of PVC in a 50/50 wt % PVC/PB polymer blend has been demonstrated. Due to the small size of the probed volume, T-SLAM gives information on the mechanical properties of the near-surface, which may differ from bulk properties.

  20. Charge Localization in the Lithium Iron Phosphate Li3Fe2(PO4)3at High Voltages in Lithium-Ion Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Christiansen, Ane Sælland; Loftager, Simon

    2015-01-01

    Possible changes in the oxidation state of the oxygen ion in the lithium iron phosphate Li3Fe2(PO4)3 at high voltages in lithium-ion (Li-ion) batteries are studied using experimental and computational analysis. Results obtained from synchrotron-based hard X-ray photoelectron spectroscopy and dens...

  1. [Effect of Long-Term Fertilization on Organic Nitrogen Functional Groups in Black Soil as Revealed by Synchrotron-Based X-Ray Absorption Near-Edge Structure Spectroscopy].

    Science.gov (United States)

    Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong

    2015-07-01

    Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest

  2. Spallation neutron source and other high intensity froton sources

    International Nuclear Information System (INIS)

    Weiren Chou

    2003-01-01

    This lecture is an introduction to the design of a spallation neutron source and other high intensity proton sources. It discusses two different approaches: linac-based and synchrotron-based. The requirements and design concepts of each approach are presented. The advantages and disadvantages are compared. A brief review of existing machines and those under construction and proposed is also given. An R and D program is included in an appendix

  3. High energy ion microprobes

    International Nuclear Information System (INIS)

    Nobiling, R.

    1983-01-01

    Analysis with high energy ion beams can be applied to microscopic samples or substructures of complex specimens by using nuclear or proton microprobes. Focusing of high energy ion beams requires specially designed collimators and lens systems. At present, beam diameters of 1 μm are obtained. The lateral resolution of the instruments, however, is not limited to this 1 μm. Consequently microprobe analysis with ion beams in favourable cases can provide better analytical possibilities and lateral resolution as compared with electron microprobes. Due to aberrations an improvement of beam diameters to less than 0.5-1 μm requires compensation of at least the chromatic aberration. The most important fields of application are mineralogy, materials science and biology. With nuclear reactions and PIXE (particle induced X-ray emission) the whole periodic table can be measured with detection limits down to the ppm level (weight fraction). The virtual lack of beam broadening by scattering in samples of a few μm thickness makes a kind of microscopic chemical tomography possible. (orig.)

  4. Applications of high lateral and energy resolution imaging XPS with a double hemispherical analyser based spectromicroscope

    International Nuclear Information System (INIS)

    Escher, M.; Winkler, K.; Renault, O.; Barrett, N.

    2010-01-01

    The design and applications of an instrument for imaging X-ray photoelectron spectroscopy (XPS) are reviewed. The instrument is based on a photoelectron microscope and a double hemispherical analyser whose symmetric configuration avoids the spherical aberration (α 2 -term) inherent for standard analysers. The analyser allows high transmission imaging without sacrificing the lateral and energy resolution of the instrument. The importance of high transmission, especially for highest resolution imaging XPS with monochromated laboratory X-ray sources, is outlined and the close interrelation of energy resolution, lateral resolution and analyser transmission is illustrated. Chemical imaging applications using a monochromatic laboratory Al Kα-source are shown, with a lateral resolution of 610 nm. Examples of measurements made using synchrotron and laboratory ultra-violet light show the broad field of applications from imaging of core level electrons with chemical shift identification, high resolution threshold photoelectron emission microscopy (PEEM), work function imaging and band structure imaging.

  5. High-resolution, air-coupled ultrasonic imaging of thin materials.

    Science.gov (United States)

    Gan, Tat-Hean; Hutchins, David A; Billson, Duncan R; Schindel, David W

    2003-11-01

    This paper describes the use of a focused air-coupled capacitance transducer combined with pulse compression techniques to form high-resolution images of thin materials in air. The focusing of the device is achieved by using an off-axis parabolic mirror. The lateral resolution of the focused transducer, operating over a bandwidth of 1.2 MHz, was found to be less than 0.5 mm. A combination of the focused transducer as a source and a planar receiver in through-transmission mode has been developed for the measurement of different features in paper products, with a lateral resolution in through-transmission imaging of approximately 0.4 mm. Images in air of thin samples such as bank notes, high-quality writing paper, stamps, and sealed joints were obtained without contact to the sample.

  6. Programmable high crystallinity carbon patterns

    Science.gov (United States)

    Wang, Xuewen; Wang, Hong; Gu, Yang; Fu, Wei; Zheng, Lu; Liu, Guowei; He, Yongmin; Long, Yi; Zhao, Wu; Zhang, Jie; Zhang, Ting; Liu, Zheng

    2017-06-01

    Carbon nanomaterials such as carbon nanotube and graphene are promising candidates for next-generation flexible electronics. However, the practical application of carbon electronics requires controlled fabrication of those materials with micro-patterned structures on flexible substrate at wafer-scale and low cost. Inspiring from the conventional photolithography process and pyrolysis of photoresist, herein, we demonstrate the synthesis of high-quality micro-patterned high crystallinity carbon. The method employed pre-patterned pyrolyzed photoresist as carbon precursors, in order to minimize the mobility of carbon during the high temperature growth, which results into high quality carbon patterns with a lateral resolution up to ~2 µm. The flexible carbon electronics are demonstrated by transferring the as-patterned high crystallinity carbon patterns to the flexible substrate, and showing asymmetric tensile-compressive response with high output resolution. These results will pave the way to the next-generation carbon-based flexible electronics and mechanical sensors.

  7. Synchrotron-based far-infrared spectroscopy of nickel tungstate

    International Nuclear Information System (INIS)

    Kalinko, A.; Kuzmin, A.; Roy, P.; Evarestov, R.A.

    2016-01-01

    Monoclinic antiferromagnetic NiWO 4 was studied by far-infrared (30-600 cm -1 ) absorption spectroscopy in the temperature range of 5-300 K using the synchrotron radiation from SOLEIL source. Two isomorphous CoWO 4 and ZnWO 4 tungstates were investigated for comparison. The phonon contributions in the far-infrared range of tungstates were interpreted using the first-principles spin-polarized linear combination of atomic orbital calculations. No contributions from magnetic excitations were found in NiWO 4 and CoWO 4 below their Neel temperatures down to 5 K.

  8. Synchrotron Based Phase Contrast Tomography of Hyper cholesteromic Rat Liver

    Directory of Open Access Journals (Sweden)

    Fatima A

    2017-05-01

    Full Text Available X-ray phase contrast imaging technique has been applied for the study of morphological variations in soft tissues. The effect of an antioxidant, α-lipoic acid in reducing hypercholesterolemia in rats is investigated. The experiment was conducted to measure serum lipid profile and diameter of vessels in rat liver, as liver is the most vital organ in hypolipidemic activity studies. Methods: Four groups of male Wistar rats, control (Group I, hyperlipidemic (Group II, positive control (Group III and treated Group IV were studied for serum lipid profile and liver vessels with synchrotron X-ray phase tomography. The Group I rats received chow diet, in Group II rats, administration of 20% butter rich diet induced hyperlipidemia. Group III, treated rats received hypolipidemic drug Atorvastatin and Group IV animals received a potent antioxidant DL-α-Lipoic acid. The excised liver tissue immersed in 10% formalin. X-ray phase contrast tomography was performed for comparison of diameter of liver vessels. Results: Among the four group of animals, the diameter of liver vessels was much larger in hypercholesterolemic rat (Group II. The liver vessel diameter comparison with X-ray phase contrast tomography and the lipid profile shows reduction in serum lipids and lipoproteins by ALA treatment.

  9. Synchrotron-based X-ray fluorescence, imaging and elemental ...

    Indian Academy of Sciences (India)

    ... Department of Physics, Sri Durga Malleswari Siddhartha Mahila Kalasala, Bunder Road, Vijayawada 520 010, India; Istituto di Matematica e Fisica, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; Department of Bio-System Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Japan ...

  10. High resolution SAW elastography for ex-vivo porcine skin specimen

    Science.gov (United States)

    Zhou, Kanheng; Feng, Kairui; Wang, Mingkai; Jamera, Tanatswa; Li, Chunhui; Huang, Zhihong

    2018-02-01

    Surface acoustic wave (SAW) elastography has been proven to be a non-invasive, non-destructive method for accurately characterizing tissue elastic properties. Current SAW elastography technique tracks generated surface acoustic wave impulse point by point which are a few millimeters away. Thus, reconstructed elastography has low lateral resolution. To improve the lateral resolution of current SAW elastography, a new method was proposed in this research. A M-B scan mode, high spatial resolution phase sensitive optical coherence tomography (PhS-OCT) system was employed to track the ultrasonically induced SAW impulse. Ex-vivo porcine skin specimen was tested using this proposed method. A 2D fast Fourier transform based algorithm was applied to process the acquired data for estimating the surface acoustic wave dispersion curve and its corresponding penetration depth. Then, the ex-vivo porcine skin elastogram was established by relating the surface acoustic wave dispersion curve and its corresponding penetration depth. The result from the proposed method shows higher lateral resolution than that from current SAW elastography technique, and the approximated skin elastogram could also distinguish the different layers in the skin specimen, i.e. epidermis, dermis and fat layer. This proposed SAW elastography technique may have a large potential to be widely applied in clinical use for skin disease diagnosis and treatment monitoring.

  11. A miniature high repetition rate shock tube

    Science.gov (United States)

    Tranter, R. S.; Lynch, P. T.

    2013-09-01

    A miniature high repetition rate shock tube with excellent reproducibility has been constructed to facilitate high temperature, high pressure, gas phase experiments at facilities such as synchrotron light sources where space is limited and many experiments need to be averaged to obtain adequate signal levels. The shock tube is designed to generate reaction conditions of T > 600 K, P < 100 bars at a cycle rate of up to 4 Hz. The design of the apparatus is discussed in detail, and data are presented to demonstrate that well-formed shock waves with predictable characteristics are created, repeatably. Two synchrotron-based experiments using this apparatus are also briefly described here, demonstrating the potential of the shock tube for research at synchrotron light sources.

  12. A superconducting detector endstation for high-resolution energy-dispersive SR-XRF

    CERN Document Server

    Friedrich, S; Drury, O B; Cunningham, M F; Berg, M L; Ullom, J N; Loshak, A; Funk, T; Cramer, S P; Batteux, J D; See, E; Frank, M; Labov, S E

    2001-01-01

    We have built a two-stage adiabatic demagnetization refrigerator (ADR) to operate cryogenic high-resolution X-ray detectors in synchrotron-based fluorescence applications. The detector is held at the end of a 40 cm cold finger that extends into a UHV sample chamber. The ADR attains a base temperature below 100 mK with about 20 h hold time below 400 mK, and does not require pumping on the liquid He bath. We will discuss cryostat design and performance.

  13. High accuracy flatness metrology within the European Metrology Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael, E-mail: Michael.Schulz@ptb.de [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Ehret, Gerd [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Křen, Petr [Czech Metrology Institute (CMI), V Botanice 4, CZ-150 00 Praha (Czech Republic)

    2013-05-11

    Recently, a project within the European Metrology Research Program (EMRP) started with the aim of improving the form metrology of optical surfaces. Within this project, in a work package on high accuracy flatness metrology, the National Metrology Institutes of the Czech Republic (CMI) and Germany (PTB) are involved. In the following, this EMRP project, the capabilities of CMI and PTB and the aims of the project will be presented. The new developments in flatness metrology cover the reduction of uncertainty, the enhancement of lateral resolution of deflectometric methods and the test of capacitive sensors for flatness metrology.

  14. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    Science.gov (United States)

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  15. Full-field parallel interferometry coherence probe microscope for high-speed optical metrology.

    Science.gov (United States)

    Safrani, A; Abdulhalim, I

    2015-06-01

    Parallel detection of several achromatic phase-shifted images is used to obtain a high-speed, high-resolution, full-field, optical coherence probe tomography system based on polarization interferometry. The high enface imaging speed, short coherence gate, and high lateral resolution provided by the system are exploited to determine microbump height uniformity in an integrated semiconductor chip at 50 frames per second. The technique is demonstrated using the Linnik microscope, although it can be implemented on any polarization-based interference microscopy system.

  16. The Probe Profile and Lateral Resolution of Scanning Transmission Electron Microscopy of Thick Specimens

    Science.gov (United States)

    Demers, Hendrix; Ramachandra, Ranjan; Drouin, Dominique; de Jonge, Niels

    2012-01-01

    Lateral profiles of the electron probe of scanning transmission electron microscopy (STEM) were simulated at different vertical positions in a micrometers-thick carbon sample. The simulations were carried out using the Monte Carlo method in the CASINO software. A model was developed to fit the probe profiles. The model consisted of the sum of a Gaussian function describing the central peak of the profile, and two exponential decay functions describing the tail of the profile. Calculations were performed to investigate the fraction of unscattered electrons as function of the vertical position of the probe in the sample. Line scans were also simulated over gold nanoparticles at the bottom of a carbon film to calculate the achievable resolution as function of the sample thickness and the number of electrons. The resolution was shown to be noise limited for film thicknesses less than 1 μm. Probe broadening limited the resolution for thicker films. The validity of the simulation method was verified by comparing simulated data with experimental data. The simulation method can be used as quantitative method to predict STEM performance or to interpret STEM images of thick specimens. PMID:22564444

  17. High speed fabrication of aluminum nanostructures with 10 nm spatial resolution by electrochemical replication.

    Science.gov (United States)

    Biring, Sajal; Tsai, Kun-Tong; Sur, Ujjal Kumar; Wang, Yuh-Lin

    2008-09-03

    A high fidelity electrochemical replication technique for the rapid fabrication of Al nanostructures with 10 nm lateral resolution has been successfully demonstrated. Aluminum is electrodeposited onto a lithographically patterned Si master using a non-aqueous organic hydride bath of aluminum chloride and lithium aluminum hydride at room temperature. Chemical pretreatment of the Si surface allows a clean detachment of the replicated Al foil from the master, permitting its repetitive use for mass replication. This high throughput technique opens up new possibilities in the fabrication of Al-related nanostructures, including the growth of long range ordered anodic alumina nanochannel arrays.

  18. High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Oliver; Weinhardt, L.; Blum, M.; Welgand, M.; Umbach, E.; Bar, M.; Heske, C.; Denlinger, J.; Chuang, Y.-D.; McKinney, W.; Hussain, Z.; Gullikson, E.; Jones, M.; Batson, P.; Nelles, B.; Follath, R.

    2009-06-11

    We present a variable line-space grating spectrometer for soft s-rays that coverst the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite is slitless design, such a resolving power can be achieved for a source spot as large as (30 x 3000) micrometers squared, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scatters (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken with 10 min.

  19. Elastic-properties measurement at high temperatures through contact resonance atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Marinello, Francesco, E-mail: francesco.marinello@unipd.it; Pezzuolo, Andrea; Sartori, Luigi; Cavalli, Raffaele [University of Padova, Department of Land, Environment, Agriculture and Forestry, Viale dell’Università 16, 35020 Legnaro, Padova (Italy); Carmignato, Simone [University of Padova, Department of Management and Engineering, Stradella San Nicola 3, 36100 Vicenza (Italy); Savio, Enrico [University of Padova, Department of Industrial Engineering, Via Venezia 1, 35131 Padova (Italy); De Chiffre, Leonardo [Technical University of Denmark, Department of Mechanical Engineering, Produktionstorvet 425, 2800 Kgs. Lyngby (Denmark)

    2015-06-23

    Miniaturization of products and need for further improvement of machines performance introduce new serious challenges in materials characterization. In particular non-destructive mechanical testing in the sub-micrometer scale is needed to better understand and improve micro-manufacturing operations. To this regard, some open issues are of particular interest: low depth of penetration, high lateral resolution and measurements at elevated temperatures. An interesting solution is given by acoustic microscopy techniques, which can be successfully implemented for advanced research in surface elasticity, allowing fast direct and non-destructive measurement of Young’s modulus and related surface parameters. In this work an instrument set up for Contact Resonance Atomic Force Microscopy is proposed, where the sample with is coupled to a heating stage and a piezoelectric transducer directly vibrate the cantilever during scanning, in order to allow exploitation of high resolution measurements at relatively high temperatures. Such instrument set up was undergone a set of calibration experiments in order to allow not only qualitative but also quantitative characterization of surfaces. The work was completed with a feasibility study with mechanical and topography measurements at temperatures as high as 150°C, with lateral resolution lower than 100 nm.

  20. THz holography in reflection using a high resolution microbolometer array.

    Science.gov (United States)

    Zolliker, Peter; Hack, Erwin

    2015-05-04

    We demonstrate a digital holographic setup for Terahertz imaging of surfaces in reflection. The set-up is based on a high-power continuous wave (CW) THz laser and a high-resolution (640 × 480 pixel) bolometer detector array. Wave propagation to non-parallel planes is used to reconstruct the object surface that is rotated relative to the detector plane. In addition we implement synthetic aperture methods for resolution enhancement and compare Fourier transform phase retrieval to phase stepping methods. A lateral resolution of 200 μm and a relative phase sensitivity of about 0.4 rad corresponding to a depth resolution of 6 μm are estimated from reconstructed images of two specially prepared test targets, respectively. We highlight the use of digital THz holography for surface profilometry as well as its potential for video-rate imaging.

  1. Structural characterization of nanoscale intermetallic precipitates in highly neutron irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Sprouster, D.J.; Sinsheimer, J.; Dooryhee, E.; Ghose, S.K.; Wells, P.; Stan, T.; Almirall, N.; Odette, G.R.; Ecker, L.E.

    2016-01-01

    Massive, thick-walled pressure vessels are permanent nuclear reactor structures that are exposed to a damaging flux of neutrons from the adjacent core. The neutrons cause embrittlement of the vessel steel that grows with dose (fluence), as manifested by an increasing ductile-to-brittle fracture transition temperature. Extending reactor life requires demonstrating that large safety margins against brittle fracture are maintained at the higher neutron fluence associated with beyond 60 years of service. Here synchrotron-based x-ray diffraction and small angle x-ray scattering measurements are used to characterize highly embrittling nm-scale Mn–Ni–Si precipitates that develop in the irradiated steels at high fluence. These precipitates lead to severe embrittlement that is not accounted for in current regulatory models. Application of the complementary techniques has, for the very first time, successfully identified the crystal structures of the nanoprecipitates, while also yielding self-consistent compositions, volume fractions and size distributions.

  2. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lohmiller, Jochen [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany); Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Spolenak, Ralph [Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Gruber, Patric A., E-mail: patric.gruber@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2014-02-10

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility.

  3. High-rate production of functional nanostructured films and devices by coupling flame spray pyrolysis with supersonic expansion

    Science.gov (United States)

    Wegner, K.; Vinati, S.; Piseri, P.; Antonini, A.; Zelioli, A.; Barborini, E.; Ducati, C.; Milani, P.

    2012-05-01

    The fabrication of functional thin films and devices by direct deposition of nanoparticles from the gas phase is a promising approach enabling, for instance, the integration of complex analytical and sensing capabilities on microfabricated platforms. Aerosol-based techniques ensure large-scale nanoparticle production and they are potentially suited for this goal. However, they are not adequate in terms of fine control over the lateral resolution of the coatings, mild processing conditions (avoiding high temperature and aggressive chemicals), low contamination and compatibility with microfabrication processes. Here we report the high-rate and efficient production of functional nanostructured films by nanoparticle assembling obtained by the combination of flame spray pyrolysis and supersonic expansion. Our approach merges the advantages of flame spray pyrolysis for bulk nanopowders such as process stability and wide material library availability with those of supersonic cluster beam deposition in terms of lateral resolution and of direct integration of nanomaterials on devices. We efficiently produced nanostructured films and devices (such as gas sensors) using metal oxide, pure noble metal and oxide-supported noble metal nanoparticles.

  4. Analysis of the Interphase on Carbon Black Formed in High Voltage Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Christiansen, Ane Sælland; Scipioni, Roberto

    2015-01-01

    Carbon black (CB) additives commonly used to increase the electrical conductivity of electrodes in Li-ion batteries are generally believed to be electrochemically inert additives in cathodes. Decomposition of electrolyte in the surface region of CB in Li-ion cells at high voltages up to 4.9 V...... is here studied using electrochemical measurements as well as structural and surface characterizations. LiPF6 and LiClO4 dissolved in ethylene carbonate:diethylene carbonate (1:1) were used as the electrolyte to study irreversible charge capacity of CB cathodes when cycled between 4.9 V and 2.5 V....... Synchrotron-based soft X-ray photoelectron spectroscopy (SOXPES) results revealed spontaneous partial decomposition of the electrolytes on the CB electrode, without applying external current or voltage. Depth profile analysis of the electrolyte/cathode interphase indicated that the concentration of decomposed...

  5. Multi-beam synchrotron infrared chemical imaging with high spatial resolution: Beamline realization and first reports on image restoration

    Energy Technology Data Exchange (ETDEWEB)

    Nasse, Michael J. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Synchrotron Radiation Center, University of Wisconsin-Madison, Stoughton, WI 53589 (United States); Mattson, Eric C. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Reininger, Ruben [Scientific Answers and Solutions, 77 Constantine Way, Mount Sinai, NY 11766 (United States); Kubala, Tim; Janowski, Sebastian [Synchrotron Radiation Center, University of Wisconsin-Madison, Stoughton, WI 53589 (United States); El-Bayyari, Zuheir [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Department of Basic Sciences and Mathematics, Faculty of Science, Philadelphia University, P.O. Box 1, 19392 Aein Albasha, Jordan. (Jordan); Hirschmugl, Carol J., E-mail: cjhirsch@uwm.edu [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States)

    2011-09-01

    Table-top Fourier transform infrared (FT-IR) imaging using focal plane array (FPA) multi-element detectors is an increasingly popular chemical microscopy technique because it can provide microspectroscopic images of large sample areas in short times at moderate spatial resolution. The novel IR beamline IRENI at the Synchrotron Radiation Center (Wisconsin, USA), the first dedicated multi-beam synchrotron-based FT-IR imaging system, offers, within minutes, high quality chemical images at the highest available spatial resolution (diffraction-limited at all mid-IR wavelengths) with a pixel size of 0.54x0.54 {mu}m{sup 2} for transmission measurements. Due to this very high spatial sampling, mathematical image enhancement algorithms such as deconvolution and total variation (TV) reconstruction can be implemented to improve image contrast and thus spatial resolution. This is demonstrated for US Air force (USAF) targets, micron-sized aluminum beads, and a single living algal cell.

  6. Lateral resolution of desorption nanoelectrospray: a nanospray tip without nebulizing gas as a source of primary charged droplets

    Czech Academy of Sciences Publication Activity Database

    Hartmanová, L.; Lorencová, I.; Volný, M.; Fryčák, P.; Havlíček, Vladimír; Chmelíčková, Hana; Ingr, T.; Lemr, K.

    2016-01-01

    Roč. 141, č. 7 (2016), s. 2150-2154 ISSN 0003-2654 R&D Projects: GA ČR(CZ) GAP206/12/1150 Institutional support: RVO:61388971 ; RVO:68378271 Keywords : IONIZATION MASS-SPECTROMETRY * ELECTROSPRAY-IONIZATION * AMBIENT CONDITIONS Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 3.885, year: 2016

  7. Quantitative assessment of rat corneal thickness and morphology during stem cell therapy by high-speed optical coherence tomography

    Science.gov (United States)

    Lal, Cerine; McGrath, James; Subhash, Hrebesh; Rani, Sweta; Ritter, Thomas; Leahy, Martin

    2016-03-01

    Optical Coherence Tomography (OCT) is a non-invasive 3 dimensional optical imaging modality that enables high resolution cross sectional imaging in biological tissues and materials. Its high axial and lateral resolution combined with high sensitivity, imaging depth and wide field of view makes it suitable for wide variety of high resolution medical imaging applications at clinically relevant speed. With the advent of swept source lasers, the imaging speed of OCT has increased considerably in recent years. OCT has been used in ophthalmology to study dynamic changes occurring in the cornea and iris, thereby providing physiological and pathological changes that occur within the anterior segment structures such as in glaucoma, during refractive surgery, lamellar keratoplasty and corneal diseases. In this study, we assess the changes in corneal thickness in the anterior segment of the eye during wound healing process in a rat corneal burn model following stem cell therapy using high speed swept source OCT.

  8. Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator.

    Science.gov (United States)

    Förster, Ronny; Lu-Walther, Hui-Wen; Jost, Aurélie; Kielhorn, Martin; Wicker, Kai; Heintzmann, Rainer

    2014-08-25

    We describe a two-beam interference structured illumination fluorescence microscope. The novelty of the presented system lies in its simplicity. A programmable spatial light modulator (ferroelectric LCoS) in an intermediate image plane enables precise and rapid control of the excitation pattern in the specimen. The contrast of the projected light pattern is strongly influenced by the polarization state of the light entering the high NA objective. To achieve high contrast, we use a segmented polarizer. Furthermore, a mask with six holes blocks unwanted components in the spatial frequency spectrum of the illumination grating. Both these passive components serve their purpose in a simpler and almost as efficient way as active components. We demonstrate a lateral resolution of 114.2 ± 9.5 nm at a frame rate of 7.6 fps per reconstructed 2D slice.

  9. High-definition optical coherence tomography enables visualization of individual cells in healthy skin

    DEFF Research Database (Denmark)

    Boone, Marc; Jemec, Gregor B E; Del Marmol, Véronique

    2012-01-01

    shafts with pilosebaceous units can be observed depending on skin site. HD-OCT provides morphological imaging with sufficient resolution and penetration depth to permit visualization of individual cells at up to 570 μm in depth offering the possibility of additional structural information complementary......High-definition OCT (HD-OCT) is an innovative technique based on the principle of conventional OCT. Our objective was to test the resolution and image quality of HD-OCT in comparison with reflectance confocal microscopy (RCM) of healthy skin. Firstly, images have been made of a ultra......-high-resolution line-pair phantome with both systems. Secondly, we investigated 21 healthy volunteers of different phototypes with HD-OCT and RCM on volar forearm and compared the generated images. HD-OCT displays also differences depending on the skin phototype and anatomical site. The 3-μm lateral resolution...

  10. Iron overload of human colon adenocarcinoma cells studied by synchrotron-based X-ray techniques

    NARCIS (Netherlands)

    Mihucz, Victor G.; Meirer, Florian; Polgári, Zsófia; Réti, Andrea; Pepponi, Giancarlo; Ingerle, Dieter; Szoboszlai, Norbert; Streli, Christina

    2016-01-01

    Fast- and slow-proliferating human adenocarcinoma colorectal cells, HT-29 and HCA-7, respectively, overloaded with transferrin (Tf), Fe(III) citrate, Fe(III) chloride and Fe(II) sulfate were studied by synchrotron radiation total-reflection X-ray spectrometry (TXRF), TXRF-X-ray absorption near edge

  11. Synchrotron based measurements of the soft x-ray performance of thin film multilayer structures

    International Nuclear Information System (INIS)

    Kania, D.R.; Bartlett, R.J.; Trela, W.J.

    1985-01-01

    Using synchrotron radiation, measuring system has been developed to test the performance of layered synthetic microstructures (LSMs) from 50 to 500 eV. The measurement techniques are reviewed, and results are compared to theoretical predictions of LSM performance

  12. Quantitative analysis of flow processes in a sand using synchrotron-based X-ray microtomography

    DEFF Research Database (Denmark)

    Wildenschild, Dorthe; Hopmans, J.W.; Rivers, M.L.

    2005-01-01

    Pore-scale multiphase flow experiments were developed to nondestructively visualize water flow in a sample of porous material using X-ray microtomography. The samples were exposed to similar boundary conditions as in a previous investigation, which examined the effect of initial flow rate...... by qualitative comparison and quantitative analysis in the form of a nearest neighbor analysis, that the dynamic effects seen in previous experiments are likely due to the fast and preferential drainage of large pores in the sample. Once a continuous drained path has been established through the sample, further...... drainage of the remaining pores, which have been disconnected from the main flowing water continuum, is prevented....

  13. Corrosion of metals in treated wood examined by synchrotron based xanes and XFM

    Science.gov (United States)

    Samuel L. Zelinka; Joseph E. Jakes; Grant T. Kirker; Leandro Passarini; Barry Lai

    2016-01-01

    Copper based waterborne wood preservatives are frequently used to extend the service life of wood products used in outdoor environments. While these copper based treatments protect the wood from fungal decay and insect attack, they increase the corrosion of metals embedded or in contact with the treated wood. Over the past ten years, several studies have looked at the...

  14. A bent Laue-Laue monochromator for a synchrotron-based computed tomography system

    International Nuclear Information System (INIS)

    Ren, B.; Dilmanian, F.A.; Chapman, L.D.; Ivanov, I.; Wu, X.Y.; Zhong, Z.; Huang, X.

    1999-01-01

    We designed and tested a two-crystal bent Laue-Laue monochromator for wide, fan-shaped synchrotron X-ray beams for the program multiple energy computed tomography (MECT) at the National Synchrotron Light Source (NSLS). MECT employs monochromatic X-ray beams from the NSLS's X17B superconducting wiggler beamline for computed tomography (CT) with an improved image quality. MECT uses a fixed horizontal fan-shaped beam with the subject's apparatus rotating around a vertical axis. The new monochromator uses two Czochralski-grown Si crystals, 0.7 and 1.4 mm thick, respectively, and with thick ribs on their upper and lower ends. The crystals are bent cylindrically, with the axis of the cylinder parallel to the fan beam, using 4-rod benders with two fixed rods and two movable ones. The bent-crystal feature of the monochromator resolved the difficulties we had had with the flat Laue-Laue design previously used in MECT, which included (a) inadequate beam intensity, (b) excessive fluctuations in beam intensity, and (c) instability of the shape of the beam's horizontal profile. Compared with that earlier monochromator, the bent Laue-Laue device tested at 42 and 108 keV showed about a 10-fold larger beam flux, about 5 times better beam stability, 10-fold less harmonic contamination, and a smaller energy bandwidth at certain bending radii. The present work gave us better understanding of the basis for the beam-smiling effect in bent-crystal monochromators, and allowed us to refine the theoretical method of estimating the beam-harmonic contamination in bent-crystal monochromators

  15. Optimizing a synchrotron based x-ray lithography system for IC manufacturing

    Science.gov (United States)

    Kovacs, Stephen; Speiser, Kenneth; Thaw, Winston; Heese, Richard N.

    1990-05-01

    The electron storage ring is a realistic solution as a radiation source for production grade, industrial X-ray lithography system. Today several large scale plans are in motion to design and implement synchrotron storage rings of different types for this purpose in the USA and abroad. Most of the scientific and technological problems related to the physics, design and manufacturing engineering, and commissioning of these systems for microlithography have been resolved or are under extensive study. However, investigation on issues connected to application of Synchrotron Orbit Radiation (SOR ) in chip production environment has been somewhat neglected. In this paper we have filled this gap pointing out direct effects of some basic synchrotron design parameters and associated subsystems (injector, X-ray beam line) on the operation and cost of lithography in production. The following factors were considered: synchrotron configuration, injection energy, beam intensity variability, number of beam lines and wafer exposure concept. A cost model has been worked out and applied to three different X-ray Lithography Source (XLS) systems. The results of these applications are compared and conclusions drawn.

  16. Determining the Structure of Biomaterials Interfaces using Synchrotron-based X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    McBride, M

    2002-01-24

    The purpose of this project is to explore the feasibility of using surface X-ray diffraction (SXRD) to determine the structure of biomineral surfaces in electrolyte solutions and of the adsorbed layer of acidic amino acids that are believed to play a central role in the control of biomineral formation and function. The work is a critical component in the development of an integrated picture of the physical and chemical basis for deposition and dissolution at solid-liquid interfaces in biological systems, and brings a new and very powerful surface-sensitive capability to LLNL. We have chosen as our model systems calcium carbonate and calcium phosphate in aspartic and glutamic acid-bearing solutions. The calcium compounds are ubiquitous among biomineral structures, both those that are beneficial such as bones and teeth, and those that are pathological such as kidney stones, while the two acidic amino acids--both as simple and poly-amino acids--are the dominant constituents of protein mixtures implicated in the control of biomineralization. The goals of the work are: (1) to determine the surface structure of pure calcium phosphate and calcium carbonate surfaces in aqueous solution using SXRD; (2) to determine how those surfaces are modified by the presence of aspartic and glutamic acid, both as the simple amino acids and as poly-aspartate and poly-glutamate and (3) to model the interactions of acidic amino acids with calcite.

  17. Characterization of mercury based Indian herbomineral drug by radioisotope induced EDXRF and synchrotron based EXAFS

    International Nuclear Information System (INIS)

    Joseph, Daisy; Saxena, A.; Joseph, Rajeeta; Rajput, P.; Nayak, C.; Bhattacharya, D.; Jha, S.N.; Natrajan, V.

    2014-01-01

    An Indian herbomineral drug was characterized for its trace elements by radioisotope induced EDXRF. The drug contains minerals like mercury, sulfur and arsenic disulfide, along with herbs such as dhaturra, bhrami, vacha etc. All the above ingredients were processed together in a step wise manner (6 steps). Hence the motive was to expect some change in the drug molecule at every step of processing it. The 6 samples are the samples collected at every step of drug preparation. These 6 samples which are collected as intermediatary samples would be then evaluated for its role in various neuropsychological (psychosis, depression etc) disorders in experimental animals such as rats/mice. Hence it was required to find the elements/trace elements composition, details of chemical components present in the drug samples. It was seen that using EDXRF it was possible to determine As and Hg. The EXAFS results also showed the presence of As in their sulphide form. (author)

  18. Investigation of the imaging quality of synchrotron-based phase-contrast mammographic tomography

    International Nuclear Information System (INIS)

    Gureyev, T E; Mayo, S C; Nesterets, Ya I; Mohammadi, S; Menk, R H; Arfelli, F; Tromba, G; Lockie, D; Pavlov, K M; Kitchen, M J; Zanconati, F; Dullin, C

    2014-01-01

    We report the results of a systematic study of phase-contrast x-ray computed tomography in the propagation-based and analyser-based modes using specially designed phantoms and excised breast tissue samples. The study is aimed at the quantitative evaluation and subsequent optimization, with respect to detection of small tumours in breast tissue, of the effects of phase contrast and phase retrieval on key imaging parameters, such as spatial resolution, contrast-to-noise ratio, x-ray dose and a recently proposed ‘intrinsic quality’ characteristic which combines the image noise with the spatial resolution. We demonstrate that some of the methods evaluated in this work lead to substantial (more than 20-fold) improvement in the contrast-to-noise and intrinsic quality of the reconstructed tomographic images compared with conventional techniques, with the measured characteristics being in good agreement with the corresponding theoretical estimations. This improvement also corresponds to an approximately 400-fold reduction in the x-ray dose, compared with conventional absorption-based tomography, without a loss in the imaging quality. The results of this study confirm and quantify the significant potential benefits achievable in three-dimensional mammography using x-ray phase-contrast imaging and phase-retrieval techniques. (paper)

  19. Iron overload of human colon adenocarcinoma cells studied by synchrotron-based X-ray techniques.

    Science.gov (United States)

    Mihucz, Victor G; Meirer, Florian; Polgári, Zsófia; Réti, Andrea; Pepponi, Giancarlo; Ingerle, Dieter; Szoboszlai, Norbert; Streli, Christina

    2016-04-01

    Fast- and slow-proliferating human adenocarcinoma colorectal cells, HT-29 and HCA-7, respectively, overloaded with transferrin (Tf), Fe(III) citrate, Fe(III) chloride and Fe(II) sulfate were studied by synchrotron radiation total-reflection X-ray spectrometry (TXRF), TXRF-X-ray absorption near edge structure (TXRF-XANES), and micro-X-ray fluorescence imaging to obtain information on the intracellular storage of overloaded iron (Fe). The determined TfR1 mRNA expression for the investigated cells correlated with their proliferation rate. In all cases, the Fe XANES of cells overloaded with inorganic Fe was found to be similar to that of deliquescent Fe(III) sulfate characterized by a distorted octahedral geometry. A fitting model using a linear combination of the XANES of Tf and deliquescent Fe(III) sulfate allowed to explain the near edge structure recorded for HT-29 cells indicating that cellular overload with inorganic Fe results in a non-ferritin-like fast Fe storage. Hierarchical cluster analysis of XANES spectra recorded for Fe overloaded HT-29 and HCA-7 cells was able to distinguish between Fe treatments performed with different Fe species with a 95% hit rate, indicating clear differences in the Fe storage system. Micro-X-ray fluorescence imaging of Fe overloaded HT-29 cells revealed that Fe is primarily located in the cytosol of the cells. By characterizing the cellular Fe uptake, Fe/S content ratios were calculated based on the X-ray fluorescence signals of the analytes. These Fe/S ratios were dramatically lower for HCA-7 treated with organic Fe(III) treatments suggesting dissimilarities from the Tf-like Fe uptake.

  20. Pressure-driven high-to-low spin transition in the bimetallic quantum magnet [Ru2(O2CMe)4]3[Cr(CN)6

    Science.gov (United States)

    O'Neal, K. R.; Liu, Z.; Miller, Joel S.; Fishman, R. S.; Musfeldt, J. L.

    2014-09-01

    Synchrotron-based infrared and Raman spectroscopies were brought together with diamond anvil cell techniques and an analysis of the magnetic properties to investigate the pressure-induced high → low spin transition in [Ru2(O2CMe)4]3[Cr(CN)6]. The extended nature of the diruthenium wave function combined with coupling to chromium-related local lattice distortions changes the relative energies of the π* and δ* orbitals and drives the high → low spin transition on the mixed-valence diruthenium complex. This is a rare example of an externally controlled metamagnetic transition in which both spin-orbit and spin-lattice interactions contribute to the mechanism.

  1. Real-time observation of Zn electro-deposition with high-resolution microradiology

    CERN Document Server

    Tsai, W L; Hwu, Y; Chen, C H; Chang, L W; Je, J H; Margaritondo, G

    2003-01-01

    We used phase contrast radiography to study the electro-deposition of Zn in real time and with high lateral resolution. Using unmonochromatic synchrotron X-rays and an optics-less imaging setup, we were able to obtain real-time radiographs of the electro-deposition in situ with mu m resolution. A detailed analysis of the microstructure evolution relates the different growth parameters - such as the electric current density, the voltage bias, the pH value and the ion concentration - to very different growth morphology, ranging from film, porous, whisker and dendrite deposition. This link is both global and local. Local variations of the metal ion concentration in the electrolyte were also successfully imaged and the density profile is used to compare with the standard theory to explain the phenomenon of metal ion depletion near the electrode. The potential application of this technique to study growth with micropatterned electrodes and pulsed electric current is evaluated.

  2. High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, O.; Weinhardt, L.; Blum, M.; Weigand, M.; Umbach, E. [Universitaet Wuerzburg, Experimentelle Physik II, Am Hubland, 97074 Wuerzburg (Germany); Baer, M.; Heske, C. [Department of Chemistry, University of Nevada, 4505 Maryland Pkwy., Las Vegas, Nevada 89154-4003 (United States); Denlinger, J.; Chuang, Y.-D.; McKinney, W.; Hussain, Z. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Gullikson, E.; Jones, M.; Batson, P. [Center for X-Ray Optics, Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Nelles, B. [Carl Zeiss Laser Optics GmbH, Carl-Zeiss-Str. 22, 73447 Oberkochen (Germany); Follath, R. [Berliner Elektronenspeicherring-Gesellschaft fuer Synchrotronstrahlung m.b.H., Albert-Einstein-Str. 15, 12489 Berlin (Germany)

    2009-06-15

    We present a variable line-space grating spectrometer for soft x-rays that covers the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite its slitless design, such a resolving power can be achieved for a source spot as large as (30x3000) {mu}m{sup 2}, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scattering (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken within 10 min.

  3. Enhanced Crystalline Phase Purity of CH3NH3PbI3-xClx Film for High-Efficiency Hysteresis-Free Perovskite Solar Cells.

    Science.gov (United States)

    Yang, Yingguo; Feng, Shanglei; Xu, Weidong; Li, Meng; Li, Li; Zhang, Xingmin; Ji, Gengwu; Zhang, Xiaonan; Wang, Zhaokui; Xiong, Yimin; Cao, Liang; Sun, Baoquan; Gao, Xingyu

    2017-07-12

    Despite rapid successful developments toward promising perovskite solar cells (PSCs) efficiency, they often suffer significant hysteresis effects. Using synchrotron-based grazing incidence X-ray diffraction (GIXRD) with different probing depths by varying the incident angle, we found that the perovskite films consist of dual phases with a parent phase dominant in the interior and a child phase with a smaller (110) interplanar space (d (110) ) after rapid thermal annealing (RTA), which is a widely used post treatment to improve the crystallization of solution-processed perovskite films for high-performance planar PSCs. In particular, the child phase composition gradually increases with decreasing depth till it becomes the majority on the surface, which might be one of the key factors related to hysteresis in fabricated PSCs. We further improve the crystalline phase purity of the solution-processed CH 3 NH 3 PbI 3-x Cl x perovskite film (referred as g-perovskite) by using a facile gradient thermal annealing (GTA), which shows a uniformly distributed phase structure in pinhole-free morphology with less undercoordinated Pb and I ions determined by synchrotron-based GIXRD, grazing incidence small-angle X-ray scattering, scanning electron microscopy, and X-ray photoelectron spectroscopy. Regardless of device structures (conventional and inverted types), the planar heterojunction PSCs employing CH 3 NH 3 PbI 3-x Cl x g-perovskite films exhibit negligible hysteresis with a champion power conversion efficiency of 17.04% for TiO 2 -based conventional planar PSCs and 14.83% for poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate) (PEDOT:PSS)-based inverted planar PSCs. Our results indicate that the crystalline phase purity in CH 3 NH 3 PbI 3-x Cl x perovskite film, especially in the surface region, plays a crucial role in determining the hysteresis effect and device performance.

  4. Stochastic Virtual Tests for High-Temperature Ceramic Matrix Composites

    Science.gov (United States)

    Cox, Brian N.; Bale, Hrishikesh A.; Begley, Matthew; Blacklock, Matthew; Do, Bao-Chan; Fast, Tony; Naderi, Mehdi; Novak, Mark; Rajan, Varun P.; Rinaldi, Renaud G.; Ritchie, Robert O.; Rossol, Michael N.; Shaw, John H.; Sudre, Olivier; Yang, Qingda; Zok, Frank W.; Marshall, David B.

    2014-07-01

    We review the development of virtual tests for high-temperature ceramic matrix composites with textile reinforcement. Success hinges on understanding the relationship between the microstructure of continuous-fiber composites, including its stochastic variability, and the evolution of damage events leading to failure. The virtual tests combine advanced experiments and theories to address physical, mathematical, and engineering aspects of material definition and failure prediction. Key new experiments include surface image correlation methods and synchrotron-based, micrometer-resolution 3D imaging, both executed at temperatures exceeding 1,500°C. Computational methods include new probabilistic algorithms for generating stochastic virtual specimens, as well as a new augmented finite element method that deals efficiently with arbitrary systems of crack initiation, bifurcation, and coalescence in heterogeneous materials. Conceptual advances include the use of topology to characterize stochastic microstructures. We discuss the challenge of predicting the probability of an extreme failure event in a computationally tractable manner while retaining the necessary physical detail.

  5. Rapid and noncontact photoacoustic tomography imaging system using an interferometer with high-speed phase modulation technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun [School of Physics and Telecom Engineering, South China Normal University, Guangzhou 510006 (China); Tang, Zhilie; Wu, Yongbo [School of Physics and Telecom Engineering, South China Normal University, Guangzhou 510006 (China); GuangDong Province Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, IMOT, Guangzhou 510006 (China); Wang, Yi [School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China)

    2015-04-15

    We designed, fabricated, and tested a rapid and noncontact photoacoustic tomography (PAT) imaging system using a low-coherence interferometer with high-speed phase modulation technique. Such a rapid and noncontact probing system can greatly decrease the time of imaging. The proposed PAT imaging system is experimentally verified by capturing images of a simulated tissue sample and the blood vessels within the ear flap of a mouse (pinna) in vivo. The axial and lateral resolutions of the system are evaluated at 45 and ∼15 μm, respectively. The imaging depth of the system is 1 mm in a special phantom. Our results show that the proposed system opens a promising way to realize noncontact, real-time PAT.

  6. Phosphorene Co-catalyst Advancing Highly Efficient Visible-Light Photocatalytic Hydrogen Production.

    Science.gov (United States)

    Ran, Jingrun; Zhu, Bicheng; Qiao, Shi-Zhang

    2017-08-21

    Transitional metals are widely used as co-catalysts boosting photocatalytic H 2 production. However, metal-based co-catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal-free co-catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high-efficiency metal-free co-catalyst for CdS, Zn 0.8 Cd 0.2 S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron-based X-ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly-active, cheap and green photocatalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Phase transition of intermetallic TbPt at high temperature and high pressure

    Science.gov (United States)

    Qin, Fei; Wu, Xiang; Yang, Ke; Qin, Shan

    2018-04-01

    Here we present synchrotron-based x-ray diffraction experiments combined with diamond anvil cell and laser heating techniques on the intermetallic rare earth compound TbPt (Pnma and Z  =  4) up to 32.5 GPa and ~1800 K. The lattice parameters of TbPt exhibit continuous compression behavior up to 18.2 GPa without any evidence of phase transformation. Pressure-volume data were fitted to a third-order Birch-Murnaghan equation of state with V 0  =  175.5(2) Å3, {{K}{{T0}}}   =  110(5) GPa and K{{T0}}\\prime   =  3.8(7). TbPt exhibits anisotropic compression with β a   >  β b   >  β c and the ratio of axial compressibility is 2.50:1.26:1.00. A new monoclinic phase of TbPt assigned to the Pc or P2/c space group was observed at 32.5 GPa after laser heating at ~1800 K. This new phase is stable at high pressure and presented a quenchable property on decompression to ambient conditions. The pressure-volume relationship is well described by the second-order Birch-Murnaghan equation of state, which yields V 0  =  672(4) Å3, {{K}{{T0}}}   =  123(6) GPa, which is about ~14% more compressible than the orthorhombic TbPt. Our results provide more information on the structure and elastic property view, and thus a better understanding of the physical properties related to magnetic structure in some intermetallic rare earth alloys.

  8. Generation of a high-brightness pulsed positron beam for the Munich scanning positron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Piochacz, Christian

    2009-11-20

    Within the present work the prerequisites for the operation of the Munich scanning positron microscope (SPM) at the high intense neutron induced positron source Munich (NEPOMUC) were established. This was accomplished in two steps: Firstly, a re-moderation device was installed at the positron beam facility NEPOMUC, which enhances the brightness of the positron beam for all connected experiments. The second step was the design, set up and initial operation of the SPM interface for the high efficient conversion of the continuous beam into a bunched beam. The in-pile positron source NEPOMUC creates a positron beam with a diameter of typically 7 mm, a kinetic energy of 1 keV and an energy spread of 50 eV. The NEPOMUC re-moderator generates from this beam a low energy positron beam (20 - 200 eV) with a diameter of less than 2 mm and an energy spread well below 2.5 eV. This was achieved with an excellent total efficiency of 6.55{+-}0.25 %. The re-moderator was not only the rst step to implement the SPM at NEPOMUc, it enables also the operation of the pulsed low energy positron beam system (PLEPS). Within the present work, at this spectrometer rst positron lifetime measurements were performed, which revealed the defect types of an ion irradiated uranium molybdenum alloy. Moreover, the instruments which were already connected to the positron beam facility bene ts considerably of the high brightness enhancement. In the new SPM interface an additional re-moderation stage enhances the brightness of the beam even more and will enable positron lifetime measurements at the SPM with a lateral resolution below 1 {mu}m. The efficiency of the re-moderation process in this second stage was 24.5{+-}4.5 %. In order to convert high efficiently the continuous positron beam into a pulsed beam with a repetition rate of 50 MHz and a pulse duration of less than 50 ps, a sub-harmonic pre-bucher was combined with two sine wave bunchers. Furthermore, the additional re-moderation stage of the

  9. Generation of a high-brightness pulsed positron beam for the Munich scanning positron microscope

    International Nuclear Information System (INIS)

    Piochacz, Christian

    2009-01-01

    Within the present work the prerequisites for the operation of the Munich scanning positron microscope (SPM) at the high intense neutron induced positron source Munich (NEPOMUC) were established. This was accomplished in two steps: Firstly, a re-moderation device was installed at the positron beam facility NEPOMUC, which enhances the brightness of the positron beam for all connected experiments. The second step was the design, set up and initial operation of the SPM interface for the high efficient conversion of the continuous beam into a bunched beam. The in-pile positron source NEPOMUC creates a positron beam with a diameter of typically 7 mm, a kinetic energy of 1 keV and an energy spread of 50 eV. The NEPOMUC re-moderator generates from this beam a low energy positron beam (20 - 200 eV) with a diameter of less than 2 mm and an energy spread well below 2.5 eV. This was achieved with an excellent total efficiency of 6.55±0.25 %. The re-moderator was not only the rst step to implement the SPM at NEPOMUc, it enables also the operation of the pulsed low energy positron beam system (PLEPS). Within the present work, at this spectrometer rst positron lifetime measurements were performed, which revealed the defect types of an ion irradiated uranium molybdenum alloy. Moreover, the instruments which were already connected to the positron beam facility bene ts considerably of the high brightness enhancement. In the new SPM interface an additional re-moderation stage enhances the brightness of the beam even more and will enable positron lifetime measurements at the SPM with a lateral resolution below 1 μm. The efficiency of the re-moderation process in this second stage was 24.5±4.5 %. In order to convert high efficiently the continuous positron beam into a pulsed beam with a repetition rate of 50 MHz and a pulse duration of less than 50 ps, a sub-harmonic pre-bucher was combined with two sine wave bunchers. Furthermore, the additional re-moderation stage of the SPM

  10. Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells

    KAUST Repository

    Crumlin, Ethan J.

    2012-01-01

    Perovskite oxides have high catalytic activities for oxygen electrocatalysis competitive to platinum at elevated temperatures. However, little is known about the oxide surface chemistry that influences the activity near ambient oxygen partial pressures, which hampers the design of highly active catalysts for many clean-energy technologies such as solid oxide fuel cells. Using in situ synchrotron-based, ambient pressure X-ray photoelectron spectroscopy to study the surface chemistry changes, we show that the coverage of surface secondary phases on a (001)-oriented La 0.8Sr 0.2CoO 3-δ (LSC) film becomes smaller than that on an LSC powder pellet at elevated temperatures. In addition, strontium (Sr) in the perovskite structure enriches towards the film surface in contrast to the pellet having no detectable changes with increasing temperature. We propose that the ability to reduce surface secondary phases and develop Sr-enriched perovskite surfaces of the LSC film contributes to its enhanced activity for O 2 electrocatalysis relative to LSC powder-based electrodes. © 2012 The Royal Society of Chemistry.

  11. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser.

    Science.gov (United States)

    He, Yu; Vishik, Inna M; Yi, Ming; Yang, Shuolong; Liu, Zhongkai; Lee, James J; Chen, Sudi; Rebec, Slavko N; Leuenberger, Dominik; Zong, Alfred; Jefferson, C Michael; Moore, Robert G; Kirchmann, Patrick S; Merriam, Andrew J; Shen, Zhi-Xun

    2016-01-01

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 10(12) photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å(-1), respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å(-1), granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors.

  12. High precision stress measurements in semiconductor structures by Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, Benjamin

    2009-07-01

    Stress in silicon structures plays an essential role in modern semiconductor technology. This stress has to be measured and due to the ongoing miniaturization in today's semiconductor industry, the measuring method has to meet certain requirements. The present thesis deals with the question how Raman spectroscopy can be used to measure the state of stress in semiconductor structures. In the first chapter the relation between Raman peakshift and stress in the material is explained. It is shown that detailed stress maps with a spatial resolution close to the diffraction limit can be obtained in structured semiconductor samples. Furthermore a novel procedure, the so called Stokes-AntiStokes-Difference method is introduced. With this method, topography, tool or drift effects can be distinguished from stress related influences in the sample. In the next chapter Tip-enhanced Raman Scattering (TERS) and its application for an improvement in lateral resolution is discussed. For this, a study is presented, which shows the influence of metal particles on the intensity and localization of the Raman signal. A method to attach metal particles to scannable tips is successfully applied. First TERS scans are shown and their impact on and challenges for high resolution stress measurements on semiconductor structures is explained. (orig.)

  13. High resolution spectroscopy of six SOCl2 isotopologues from the microwave to the far-infrared

    Science.gov (United States)

    Martin-Drumel, M. A.; Roucou, A.; Brown, G. G.; Thorwirth, S.; Pirali, O.; Mouret, G.; Hindle, F.; McCarthy, M. C.; Cuisset, A.

    2016-02-01

    Despite its potential role as an atmospheric pollutant, thionyl chloride, SOCl2, remains poorly characterized in the gas phase. In this study, the pure rotational and ro-vibrational spectra of six isotopologues of this molecule, all detected in natural abundance, have been extensively studied from the cm-wave band to the far-infrared region by means of three complementary techniques: chirped-pulse Fourier transform microwave spectroscopy, sub-millimeter-wave spectroscopy using frequency multiplier chain, and synchrotron-based far-infrared spectroscopy. Owing to the complex line pattern which results from two nuclei with non-zero spins, new, high-level quantum-chemical calculations of the hyperfine structure played a crucial role in the spectroscopic analysis. From the combined experimental and theoretical work, an accurate semi-experimental equilibrium structure (reSE) of SOCl2 has been derived. With the present data, spectroscopy-based methods can now be applied with confidence to detect and monitor this species, either by remote sensing or in situ.

  14. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation

    KAUST Repository

    Niu, Tianqi

    2018-03-12

    The trap states at grain boundaries (GBs) within polycrystalline perovskite films deteriorate their optoelectronic properties, making GB engineering particularly important for stable high-performance optoelectronic devices. It is demonstrated that trap states within bulk films can be effectively passivated by semiconducting molecules with Lewis acid or base functional groups. The perovskite crystallization kinetics are studied using in situ synchrotron-based grazing-incidence X-ray scattering to explore the film formation mechanism. A model of the passivation mechanism is proposed to understand how the molecules simultaneously passivate the Pb-I antisite defects and vacancies created by under-coordinated Pb atoms. In addition, it also explains how the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits are translated into significant enhancements of the power conversion efficiencies to 19.3%, as well as improved environmental and thermal stability of solar cells. The passivated devices without encapsulation degrade only by ≈13% after 40 d of exposure in 50% relative humidity at room temperature, and only ≈10% after 24 h at 80 °C in controlled environment.

  15. Structure/Processing Relationships of Highly Ordered Lead Salt Nanocrystal Superlattices

    KAUST Repository

    Hanrath, Tobias

    2009-10-27

    We investigated the influence of processing conditions, nanocrystal/substrate interactions and solvent evaporation rate on the ordering of strongly interacting nanocrystals by synergistically combining electron microscopy and synchrotron-based small-angle X-ray scattering analysis. Spin-cast PbSe nanocrystal films exhibited submicrometer-sized supracrystals with face-centered cubic symmetry and (001)s planes aligned parallel to the substrate. The ordering of drop-cast lead salt nanocrystal films was sensitive to the nature of the substrate and solvent evaporation dynamics. Nanocrystal films drop-cast on rough indium tin oxide substrates were polycrystalline with small grain size and low degree of orientation with respect to the substrate, whereas films drop-cast on flat Si substrates formed highly ordered face-centered cubic supracrystals with close-packed (111)s planes parallel to the substrate. The spatial coherence of nanocrystal films drop-cast in the presence of saturated solvent vapor was significantly improved compared to films drop-cast in a dry environment. Solvent vapor annealing was demonstrated as a postdeposition technique to modify the ordering of nanocrystals in the thin film. Octane vapor significantly improved the long-range order and degree of orientation of initially disordered or polycrystalline nanocrystal assemblies. Exposure to 1,2-ethanedithiol vapor caused partial displacement of surface bound oleic acid ligands and drastically degraded the degree of order in the nanocrystal assembly. © 2009 American Chemical Society.

  16. Unravelling the origin of irreversible capacity loss in NaNiO 2 for high voltage sodium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liguang; Wang, Jiajun; Zhang, Xiaoyi; Ren, Yang; Zuo, Pengjian; Yin, Geping; Wang, Jun

    2017-04-01

    Layered transition metal compounds have attracted much attention due to their high theoretical capacity and energy density for sodium ion batteries. However, this kind of material suffers from serious irreversible capacity decay during the charge and discharge process. Here, using synchrotron-based operando transmission X-ray microscopy and high-energy X-ray diffraction combined with electrochemical measurements, the visualization of the dissymmetric phase transformation and structure evolution mechanism of layered NaNiO2 material during initial charge and discharge cycles are clarified. Phase transformation and deformation of NaNiO2 during the voltage range of below 3.0 V and over 4.0 V are responsible for the irreversible capacity loss during the first cycling, which is also confirmed by the evolution of reaction kinetics behavior obtained by the galvanostatic intermittent titration technique. These findings reveal the origin of the irreversibility of NaNiO2 and offer valuable insight into the phase transformation mechanism, which will provide underlying guidance for further development of high-performance sodium ion batteries.

  17. Tracking the transformation and transport of arsenic sulfide pigments in paints: synchrotron-based X-ray micro-analyses

    NARCIS (Netherlands)

    Keune, K.; Mass, J.; Meirer, F.; Pottasch, C.; van Loon, A.; Hull, A.; Church, J.; Pouyet, E.; Cotte, M.; Mehta, A.

    2015-01-01

    Realgar and orpiment, arsenic sulfide pigments used in historic paints, degrade under the influence of light, resulting in transparent, whitish, friable and/or crumbling paints. So far, para-realgar and arsenic trioxide have been identified as the main oxidation products of arsenic sulfide pigments.

  18. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    Science.gov (United States)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  19. Synchrotron based x-ray fluorescence microscopy confirms copper in the corrosion products of metals in contact with treated wood

    Science.gov (United States)

    Samuel L. Zelinka; Joseph E. Jakes; Grant T. Kirker; David Vine; Stefan Vogt

    2017-01-01

    Copper based waterborne wood preservatives are frequently used to extend the service life of wood products when subjected to frequent moisture exposure. While these copper based treatments protect the wood from fungal decay and insect attack, they increase the corrosion of metals embedded or in contact with the treated wood. Previous research has shown the most...

  20. Synchrotron-based X-ray fluorescence microscopy enables multiscale spatial visualization of ions involved in fungal lignocellulose deconstruction

    Science.gov (United States)

    Grant T. Kirker; Samuel Zelinka; Sophie-Charlotte Gleber; David Vine; Lydia Finney; Si Chen; Young Pyo Hong; Omar Uyarte; Stefan Vogt; Jody Jellison; Barry Goodell; Joseph E. Jakes

    2017-01-01

    The role of ions in the fungal decay process of lignocellulose biomaterials, and more broadly fungal metabolism, has implications for diverse research disciplines ranging from plant pathology and forest ecology, to carbon sequestration. Despite the importance of ions in fungal decay mechanisms, the spatial distribution and quantification of ions in lignocellulosic cell...

  1. A note on medieval microfabrication : The visualization of a prayer nut by synchrotron-based computer X-ray tomography

    NARCIS (Netherlands)

    Reischig, P.; Blaas, J.; Botha, C.; Bravin, A.; Porra, L.; Nemoz, C.; Wallert, A.; Dik, J.

    2009-01-01

    One of the most fascinating objects in the Rijksmuseum (Amsterdam, The Netherlands) is an early 16th century prayer nut. This spherical wooden object measures 4 cm in diameter and consists of two hemispheres connected with a small hinge so that it can be opened. The interior of the nut holds wood

  2. Size-dependent structural disorder in nanocrystalline Cu probed by synchrotron-based X-ray techniques

    International Nuclear Information System (INIS)

    Johannessen, B.; Kluth, P.; Cookson, D.J.; Foran, G.J.; Ridgway, M.C.

    2006-01-01

    Elemental Cu nanocrystals were synthesized in thin film SiO 2 by ion implantation and thermal annealing. The local atomic structure and nanocrystal size distribution were investigated by means of extended X-ray absorption fine structure (EXAFS) spectroscopy and small angle X-ray scattering (SAXS), respectively. We quantify the bondlength contraction and increased structural disorder in the nanocrystals as compared to a bulk Cu reference. Both are proportional to the inverse of the nanocrystal diameter, which in turn is proportional to the surface-area-to-volume ratio. In particular we show that a simple liquid-drop model can explain the bondlength contraction and estimate the surface tension of nanocrystalline Cu to be 3.8 ± 0.4 J/m 2

  3. Analyses of the mouthpart kinematics in Periplaneta americana (Blattodea, Blattidae) using synchrotron-based X-ray cineradiography.

    Science.gov (United States)

    Schmitt, Christian; Rack, Alexander; Betz, Oliver

    2014-09-01

    The kinematics of the biting and chewing mouthparts of insects is a complex interaction of various components forming multiple jointed chains. The non-invasive technique of in vivo cineradiography by means of synchrotron radiation was employed to elucidate the motion cycles of the mouthparts in the cockroach Periplaneta americana. Digital X-ray footage sequences were used in order to calculate pre-defined angles and distances, each representing characteristic aspects of the movement pattern. We were able to analyze the interactions of the mouthpart components and to generate a functional model of maxillary movement by integrating kinematic results, morphological dissections and fluorescence microscopy. During the opening and closing cycles, which take about 450-500 ms on average, we found strong correlations between the measured maxillary and mandibular angles, indicating a strong neural coordination of these movements. This is manifested by strong antiphasic courses of the maxillae and the mandibles, antiphasic patterns of the rotation of the cardo about its basic articulation at the head and by the deflection between the cardo and stipes. In our functional model of the maxilla, its movement pattern is explained by the antagonistic activity of four adductor-promotor muscles and two abductor-remotor muscles. However, beyond the observed intersegmental and bilateral stereotypy, certain amounts of variation across subsequent cycles within a sequence were observed with respect to the degree of correlation between the various mouthparts, the maximum, minimum and time course of the angular movements. Although generally correlated with the movement pattern of the mandibles and the maxillary cardo-stipes complex, such plastic behaviour was especially observed in the maxillary palpi and the labium. © 2014. Published by The Company of Biologists Ltd.

  4. Designed Materials for Enhanced Oxygen Reduction Electrocatalysis in PEM Fuel Cells: Novel Materials and Next Generation Synchrotron Based in Situ

    Science.gov (United States)

    2005-11-15

    fonnation at the electrocatalyst- ionomer interface in a PEM fuel cell context is especially important from the perspective ofattempts to develop alternative...Reduction in a Fully Hydrated Proton Exchange Membrane Interface : Problems and Prospects’, S. Mukerjee. Keynote speaker at International Fuel Cells , May 15th...Synchrotron XAS Investigation’S. Mukerjee, invited speaker at the Workshop on Theory and Surface Measurement of Fuel Cell Catalysts , Magleas Conference

  5. Tracking the transformation and transport of arsenic sulfide pigments in paints : synchrotron-based X-ray micro-analyses

    NARCIS (Netherlands)

    Keune, Katrien; Mass, Jennifer; Meirer, Florian; Pottasch, Carol; van Loon, Annelies; Hull, Alyssa; Church, Jonathan; Pouyet, Emeline; Cotte, Marine; Mehta, Apurva

    2015-01-01

    Realgar and orpiment, arsenic sulfide pigments used in historic paints, degrade under the influence of light, resulting in transparent, whitish, friable and/or crumbling paints. So far, para-realgar and arsenic trioxide have been identified as the main oxidation products of arsenic sulfide pigments.

  6. A Synchrotron-Based Hydroxyl Radical Footprinting Analysis of Amyloid Fibrils and Prefibrillar Intermediates with Residue-Specific Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Klinger, Alexandra L. [Univ. of Pennsylvania, Philadelphia, PA (United States); Kiselar, Janna [Case Western Reserve Univ., Cleveland, OH (United States); Ilchenko, Serguei [Case Western Reserve Univ., Cleveland, OH (United States); Komatsu, Hiroaki [Univ. of Pennsylvania, Philadelphia, PA (United States); Chance, Mark R. [Case Western Reserve Univ., Cleveland, OH (United States); Axelsen, Paul H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2014-11-09

    The structural models of the fibrils formed by the 40-residue amyloid-β (Aβ40) peptide in Alzheimer’s disease typically consist of linear polypeptide segments, oriented approximately perpendicular to the long axis of the fibril, and joined together as parallel in-register β-sheets to form filaments. However, various models differ in the number of filaments that run the length of a fibril, and in the topological arrangement of these filaments. In addition to questions about the structure of Aβ40 monomers in fibrils, there are important unanswered questions about their structure in prefibrillar intermediates, which are of interest because they may represent the most neurotoxic form of Aβ40. To assess different models of fibril structure and to gain insight into the structure of prefibrillar intermediates, the relative solvent accessibility of amino acid residue side chains in fibrillar and prefibrillar Aβ40 preparations was characterized in solution by hydroxyl radical footprinting and structural mass spectrometry. A key to the application of this technology was the development of hydroxyl radical reactivity measures for individual side chains of Aβ40. When we combined mass-per-length measurements performed by dark-field electron microscopy, we determined that the results of our study were consistent with the core filament structure represented by two- and three-filament solid state nuclear magnetic resonance-based models of the Aβ40 fibril (such as 2LMN, 2LMO, 2LMP, and 2LMQ), with minor refinements, but they are inconsistent with the more recently proposed 2M4J model. Our results also demonstrate that individual Aβ40 fibrils exhibit structural heterogeneity or polymorphism, where regions of two-filament structure alternate with regions of three-filament structure. The footprinting approach utilized in this study will be valuable for characterizing various fibrillar and nonfibrillar forms of the Aβ peptide.

  7. Hydration kinetics and morphology of cement pastes with pozzolanic volcanic ash studied via synchrotron-based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kupwade-Patil, Kunal; Chin, Stephanie; Ilavsky, Jan; Andrews, Ross N.; Bumajdad, Ali; Büyüköztürk, Oral

    2017-10-13

    This study investigates the early ages of hydration behavior when basaltic volcanic ash was used as a partial substitute to ordinary Portland cement using ultra-small-angle X-ray scattering and wide-angle X-ray scattering (WAXS). The mix design consisted of 10, 30 and 50% substitution of Portland cement with two different-sized volcanic ashes. The data showed that substitution of volcanic ash above 30% results in excess unreacted volcanic ash, rather than additional pozzolanic reactions along longer length scales. WAXS studies revealed that addition of finely ground volcanic ash facilitated calcium-silicate-hydrate related phases, whereas inclusion of coarser volcanic ash caused domination by calcium-aluminum-silicate-hydrate and unreacted MgO phases, suggesting some volcanic ash remained unreacted throughout the hydration process. Addition of more than 30% volcanic ash leads to coarser morphology along with decreased surface area and higher intensity of scattering at early-age hydration. This suggests an abrupt dissolution indicated by changes in surface area due to the retarding gel formation that can have implication on early-age setting influencing the mechanical properties of the resulting cementitious matrix. The findings from this work show that the concentration of volcanic ash influences the specific surface area and morphology of hydration products during the early age of hydration. Hence, natural pozzolanic volcanic ashes can be a viable substitute to Portland cement by providing environmental benefits in terms of lower-carbon footprint along with long-term durability.

  8. Clinical combination of multiphoton tomography and high frequency ultrasound imaging for evaluation of skin diseases

    Science.gov (United States)

    König, K.; Speicher, M.; Koehler, M. J.; Scharenberg, R.; Elsner, P.; Kaatz, M.

    2010-02-01

    For the first time, high frequency ultrasound imaging, multiphoton tomography, and dermoscopy were combined in a clinical study. Different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond-laser multiphoton tomograph DermaInspectTM and (iii) dermoscopes. Dermoscopy provides two-dimensional color imaging of the skin surface with a magnification up to 70x. Ultrasound images are generated from reflections of the emitted ultrasound signal, based on inhomogeneities of the tissue. These echoes are converted to electrical signals. Depending on the ultrasound frequency the penetration depth varies from about 1 mm to 16 mm in dermatological application. The 100-MHz-ultrasound system provided an axial resolution down to 16 μm and a lateral resolution down to 32 μm. In contrast to the wide-field ultrasound images, multiphoton tomography provided horizontal optical sections of 0.36×0.36 mm2 down to 200 μm tissue depth with submicron resolution. The autofluorescence of mitochondrial coenzymes, melanin, and elastin as well as the secondharmonic- generation signal of the collagen network were imaged. The combination of ultrasound and multiphoton tomography provides a novel opportunity for diagnostics of skin disorders.

  9. Progress in the fabrication of high aspect ratio zone plates by soft x-ray lithography

    International Nuclear Information System (INIS)

    Divan, R.; Mancini, D. C.; Moldovan, N. A.; Lai, B.; Assoufid, L.; Leondard, Q.; Cerrina, F.

    2002-01-01

    Fabrication of Fresnel zone plates for the hard x-ray spectral region combines the challenge of high lateral resolution (∼100 nm) with a large thickness requirement for the phase-shifting material (0.5-3 (micro)m). For achieving a high resolution, the initial mask was fabricated by e-beam lithography and gold electroforming. To prevent the collapse of the structures between the developing and electroforming processes, drying was completely eliminated. Fabrication errors, such as nonuniform gold electroplating and collapse of structures, were systematically analyzed and largely eliminated. We optimized the exposure and developing processes for 950k and 2200k polymethylmethacrylate of different thicknesses and various adhesion promoters. We discuss the effects of these fabrication steps on the zone plate's resolution and aspect ratio. Fresnel zone plates with 110 nm outermost zone width, 150 (micro)m diameter, and 1.3 (micro)m gold thickness were fabricated. Preliminary evaluation of the FZPs was done by scanning electron microscopy and atomic force microscopy. The FZP focusing performance was characterized at the Advanced Photon Source at Argonne National Laboratory

  10. APS 6BM-B Large Volume High Pressure Beamline: A Workhorse for Rock and Mineral Physics

    Science.gov (United States)

    Chen, H.; Whitaker, M. L.; Baldwin, K. J.; Huebsch, W. R.; Vaughan, M. T.; Weidner, D. J.

    2017-12-01

    With the inheritance of decades of technical innovations at the NSLS X17B2 Beamline, APS 6BM-B Beamline was established in 2015 and is a dedicated beamline for synchrotron-based large volume high pressure research in earth sciences, especially rock and mineral physics. Currently a 250-ton hydraulic press equipped with a D-DIA module is installed and a Rotational Drickamer Apparatus from Yale University is hosted every cycle, covering a pressure range from crust to lower mantle. 6BM-B operates in white beam mode with an effective energy range of 20-100 keV. Energy dispersive X-ray diffraction data is collected using a 10-element solid state Ge array detector arranged in a circular geometry to allow for the real time assessment of stress. Direct radiographic imaging using Prosillica CCD camera and scintillating YAG crystals yields sample strain and strain rate. In addition to applications in phase transitions, equation of states measurements, sound velocity measurements, this setup is ideal for studies of steady state and dynamic deformation process. In this presentation, technical features and strengths of 6BM-B will be discussed. Most recent progress and science highlights of our user community will be showcased.

  11. Evaluation of effects of pharmaceutical processing on structural disorders of active pharmaceutical ingredient crystals using nanoindentation and high-resolution total scattering pair distribution function analysis.

    Science.gov (United States)

    Chen, Shuang; Sheikh, Ahmad Y; Ho, Raimundo

    2014-12-01

    Pharmaceutical unit operations such as milling and compaction can often generate disordered regions in crystals of active pharmaceutical ingredients (APIs). This may lead to changes in a number of important pharmaceutical properties including dissolution, stability, hygroscopicity, and so on. It is therefore important for pharmaceutical industry to evaluate the effects of pharmaceutical processing on API structural orders, and to investigate and develop analytical tools that are capable of accurately detecting and assessing subtle process-induced structural disorders in pharmaceutical crystals. In this study, nanoindentation was first used to determine the intrinsic mechanical properties including hardness and Young's modulus of two API crystals, compounds 1 and 2. These crystals of different mechanical properties were then milled and compacted under various conditions. The resulting structural disorders in these crystals were subsequently evaluated using synchrotron-based high-resolution total scattering pair distribution function (TS-PDF) analysis. Furthermore, principal component analysis was applied to the PDF data to assess the relative extents of disorders in the API crystals, which showed a good correlation with the process conditions. The study demonstrates that high-resolution TS-PDF analysis coupled with nanoindentation measurement is a valuable and effective tool for detecting and assessing process-induced subtle structural disorders in API crystals. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Femtosecond laser-induced breakdown spectroscopy: Elemental imaging of thin films with high spatial resolution

    Science.gov (United States)

    Ahamer, Christoph M.; Riepl, Kevin M.; Huber, Norbert; Pedarnig, Johannes D.

    2017-10-01

    We investigate femtosecond laser-induced breakdown spectroscopy (fs-LIBS) for the spectrochemical imaging of thin films with high spatial resolution. Chemical images are obtained by recording LIBS spectra at each site of 2D raster-scans across the samples employing one fs-laser pulse per site. The diffraction images of the Echelle spectrometer are binned to reduce the read-out time of the intensified CCD detector and to increase the stability of the emission signals against peak drifts in the echellograms. For copper thin films on glass the intensities of Cu I emission lines and the size of ablation craters vary non-monotonously with the film thickness hCu = 5-500 nm. The emission efficiency, defined as the Cu I line intensity per ablated volume, strongly decreases for films thicker than the optical penetration depth. The Na I line intensity from glass increases exponentially with decreasing Cu film thickness. For yttrium barium copper oxide (YBCO) thin films on MgO various atomic and molecular emission lines of the laser-induced plasma are measured (film thickness hYBCO = 200-1000 nm). The obtained element (Y, Ba, Cu, Mg) and molecular (Y-O) fs-LIBS images match the structure of the micro-patterned YBCO films very well. The achieved lateral resolution δr = 6 μm is among the best values reported for spectrochemical LIBS imaging.

  13. High resolution profile of inorganic aqueous geochemistry and key redox zones in an arsenic bearing aquifer in Cambodia.

    Science.gov (United States)

    Richards, Laura A; Magnone, Daniel; Sovann, Chansopheaktra; Kong, Chivuth; Uhlemann, Sebastian; Kuras, Oliver; van Dongen, Bart E; Ballentine, Christopher J; Polya, David A

    2017-07-15

    Arsenic contamination of groundwaters in South and Southeast Asia is a major threat to public health. In order to better understand the geochemical controls on the mobility of arsenic in a heavily arsenic-affected aquifer in northern Kandal Province, Cambodia, key changes in inorganic aqueous geochemistry have been monitored at high vertical and lateral resolution along dominant groundwater flow paths along two distinct transects. The two transects are characterized by differing geochemical, hydrological and lithological conditions. Arsenic concentrations in groundwater are highly heterogenous, and are broadly positively associated with iron and negatively associated with sulfate and dissolved oxygen. The observed correlations are generally consistent with arsenic mobilization by reductive-dissolution of iron (hydr)oxides. Key redox zones, as identified using groupings of the PHREEQC model equilibrium electron activity of major redox couples (notably ammonium/nitrite; ammonium/nitrate; nitrite/nitrate; dissolved oxygen/water) have been identified and vary with depth, site and season. Mineral saturation is also characterized. Seasonal changes in groundwater chemistry were observed in areas which were (i) sandy and of high permeability; (ii) in close proximity to rivers; and/or (iii) in close proximity to ponds. Such changes are attributed to monsoonal-driven surface-groundwater interactions and are consistent with the separate provenance of recharge sources as identified using stable isotope mixing models. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Reconstruction of Axial Tomographic High Resolution Data from Confocal Fluorescence Microscopy: A Method for Improving 3D FISH Images

    Directory of Open Access Journals (Sweden)

    R. Heintzmann

    2000-01-01

    Full Text Available Fluorescent confocal laser scanning microscopy allows an improved imaging of microscopic objects in three dimensions. However, the resolution along the axial direction is three times worse than the resolution in lateral directions. A method to overcome this axial limitation is tilting the object under the microscope, in a way that the direction of the optical axis points into different directions relative to the sample. A new technique for a simultaneous reconstruction from a number of such axial tomographic confocal data sets was developed and used for high resolution reconstruction of 3D‐data both from experimental and virtual microscopic data sets. The reconstructed images have a highly improved 3D resolution, which is comparable to the lateral resolution of a single deconvolved data set. Axial tomographic imaging in combination with simultaneous data reconstruction also opens the possibility for a more precise quantification of 3D data. The color images of this publication can be accessed from http://www.esacp.org/acp/2000/20‐1/heintzmann.htm. At this web address an interactive 3D viewer is additionally provided for browsing the 3D data. This java applet displays three orthogonal slices of the data set which are dynamically updated by user mouse clicks or keystrokes.

  15. Fluorinated colloidal gold immunolabels for imaging select proteins in parallel with lipids using high-resolution secondary ion mass spectrometry.

    Science.gov (United States)

    Wilson, Robert L; Frisz, Jessica F; Hanafin, William P; Carpenter, Kevin J; Hutcheon, Ian D; Weber, Peter K; Kraft, Mary L

    2012-03-21

    The local abundance of specific lipid species near a membrane protein is hypothesized to influence the protein's activity. The ability to simultaneously image the distributions of specific protein and lipid species in the cell membrane would facilitate testing these hypotheses. Recent advances in imaging the distribution of cell membrane lipids with mass spectrometry have created the desire for membrane protein probes that can be simultaneously imaged with isotope labeled lipids. Such probes would enable conclusive tests to determine whether specific proteins colocalize with particular lipid species. Here, we describe the development of fluorine-functionalized colloidal gold immunolabels that facilitate the detection and imaging of specific proteins in parallel with lipids in the plasma membrane using high-resolution SIMS performed with a NanoSIMS. First, we developed a method to functionalize colloidal gold nanoparticles with a partially fluorinated mixed monolayer that permitted NanoSIMS detection and rendered the functionalized nanoparticles dispersible in aqueous buffer. Then, to allow for selective protein labeling, we attached the fluorinated colloidal gold nanoparticles to the nonbinding portion of antibodies. By combining these functionalized immunolabels with metabolic incorporation of stable isotopes, we demonstrate that influenza hemagglutinin and cellular lipids can be imaged in parallel using NanoSIMS. These labels enable a general approach to simultaneously imaging specific proteins and lipids with high sensitivity and lateral resolution, which may be used to evaluate predictions of protein colocalization with specific lipid species.

  16. Fluorinated colloidal gold immunolabels for imaging select proteins in parallel with lipids using high-resolution secondary ion mass spectrometry

    Science.gov (United States)

    Wilson, Robert L.; Frisz, Jessica F.; Hanafin, William P.; Carpenter, Kevin J.; Hutcheon, Ian D.; Weber, Peter K.; Kraft, Mary L.

    2014-01-01

    The local abundance of specific lipid species near a membrane protein is hypothesized to influence the protein’s activity. The ability to simultaneously image the distributions of specific protein and lipid species in the cell membrane would facilitate testing these hypotheses. Recent advances in imaging the distribution of cell membrane lipids with mass spectrometry have created the desire for membrane protein probes that can be simultaneously imaged with isotope labeled lipids. Such probes would enable conclusive tests of whether specific proteins co-localize with particular lipid species. Here, we describe the development of fluorine-functionalized colloidal gold immunolabels that facilitate the detection and imaging of specific proteins in parallel with lipids in the plasma membrane using high-resolution SIMS performed with a NanoSIMS. First, we developed a method to functionalize colloidal gold nanoparticles with a partially fluorinated mixed monolayer that permitted NanoSIMS detection and rendered the functionalized nanoparticles dispersible in aqueous buffer. Then, to allow for selective protein labeling, we attached the fluorinated colloidal gold nanoparticles to the nonbinding portion of antibodies. By combining these functionalized immunolabels with metabolic incorporation of stable isotopes, we demonstrate that influenza hemagglutinin and cellular lipids can be imaged in parallel using NanoSIMS. These labels enable a general approach to simultaneously imaging specific proteins and lipids with high sensitivity and lateral resolution, which may be used to evaluate predictions of protein co-localization with specific lipid species. PMID:22284327

  17. Structural studies coupling X-ray diffraction and high-energy X-ray scattering in the UO2(2+)-HBr(aq) system.

    Science.gov (United States)

    Wilson, Richard E; Skanthakumar, S; Cahill, C L; Soderholm, L

    2011-11-07

    The structural chemistry of uranium(VI) in concentrated aqueous hydrobromic acid solutions was investigated using both single crystal X-ray diffraction and synchrotron-based high-energy X-ray scattering (HEXS) to reveal the structure of the uranium(VI) complexes in solution prior to crystallization. The crystal structures of a series of uranyl tetrabromide salts are reported, including Cs(2)UO(2)Br(4), Rb(2)UO(2)Br(4)·2H(2)O, K(2)UO(2)Br(4)·2H(2)O, and (NH(4))(2)UO(2)Br(4)·2H(2)O, as well as a molecular dimer of uranium(VI), (UO(2))(2)(OH)(2)Br(2)(H(2)O)(4). Limited correspondence exists between the structures observed in the solid state and those in solution. Quantitative analysis of the HEXS data show an average U-Br coordination number of 1.9(2) in solution, in contrast to the U-Br coordination number of 4 in the solid salts. © 2011 American Chemical Society

  18. Generation of sub-two-cycle millijoule infrared pulses in an optical parametric chirped-pulse amplifier and their application to soft x-ray absorption spectroscopy with high-flux high harmonics

    Science.gov (United States)

    Ishii, Nobuhisa; Kaneshima, Keisuke; Kanai, Teruto; Watanabe, Shuntaro; Itatani, Jiro

    2018-01-01

    An optical parametric chirped-pulse amplifier (OPCPA) based on bismuth triborate (BiB3O6, BIBO) crystals has been developed to deliver 1.5 mJ, 10.1 fs optical pulses around 1.6 μm with a repetition rate of 1 kHz and a stable carrier-envelope phase. The seed and pump pulses of the BIBO-based OPCPA are provided from two Ti:sapphire chirped-pulse amplification (CPA) systems. In both CPA systems, transmission gratings are used in the stretchers and compressors that result in a high throughput and robust operation without causing any thermal problem and optical damage. The seed pulses of the OPCPA are generated by intrapulse frequency mixing of a spectrally broadened continuum, temporally stretched to approximately 5 ps then, and amplified to more than 1.5 mJ. The amplified pulses are compressed in a fused silica block down to 10.1 fs. This BIBO-based OPCPA has been applied to high-flux high harmonic generation beyond the carbon K edge at 284 eV. The high-flux soft-x-ray continuum allows measuring the x-ray absorption near-edge structure of the carbon K edge within 2 min, which is shorter than a typical measurement time using synchrotron-based light sources. This laser-based table-top soft-x-ray source is a promising candidate for ultrafast soft x-ray spectroscopy with femtosecond to attosecond time resolution.

  19. An autonomous multisensor in situ metrology system for enabling high dynamic range measurement of 3D surfaces on precision machine tools

    International Nuclear Information System (INIS)

    Liu, Samuel M Y; Cheung, Benny C F; Cheng, Ching-Hsiang; Whitehouse, David

    2016-01-01

    An in situ measurement is of prime importance when trying to maintain the position of the workpiece for further compensation processes in order to improve the accuracy and efficiency of the precision machining of three dimensional (3D) surfaces. However, the coordinates of most of the machine tools with closed machine interfaces and control system are not accessible for users, which make it difficult to use the motion axes of the machine tool for in situ measurements. This paper presents an autonomous multisensor in situ metrology system for enabling high dynamic range measurement of 3D surfaces on precision machine tools. It makes use of a designed tool path and an additional motion sensor to assist the registration of time-space data for the position estimation of a 2D laser scanner which measures the surface with a high lateral resolution and large area without the need to interface with the machine tool system. A prototype system was built and integrated into an ultra-precision polishing machine. Experimental results show that it measures the 3D surfaces with high resolution, high repeatability, and large measurement range. The system not only improves the efficiency and accuracy of the precision machining process but also extends the capability of machine tools. (paper)

  20. High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor-acceptor dyads.

    Science.gov (United States)

    Grévin, Benjamin; Schwartz, Pierre-Olivier; Biniek, Laure; Brinkmann, Martin; Leclerc, Nicolas; Zaborova, Elena; Méry, Stéphane

    2016-01-01

    Self-assembled donor-acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD) images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM) experiments. After in situ annealing, it is shown that the dyads with longer donor blocks essentially lead to standing acceptor-donor lamellae, where the acceptor and donor groups are π-stacked in an edge-on configuration. The existence of strong CPD and surface photo-voltage (SPV) contrasts shows that structural variations occur within the bulk of the edge-on stacks. SPV images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor-acceptor supramolecular architectures down to the elementary building block level.

  1. Lithium intercalation mechanism into FeF3·0.5H2O as a highly stable composite cathode material

    Science.gov (United States)

    Ali, Ghulam; Lee, Ji–Hoon; Chang, Wonyoung; Cho, Byung-Won; Jung, Hun-Gi; Nam, Kyung-Wan; Chung, Kyung Yoon

    2017-02-01

    The growing demand for lithium-ion batteries (LIBs) requires investigation of high-performance electrode materials with the advantages of being environmentally friendly and cost-effective. In this study, a nanocomposite of open-pyrochlore-structured FeF3·0.5H2O and reduced graphene oxide (RGO) is synthesized for use as a high-performance cathode in LIBs, where RGO provides high electrical conductivity to the composite material. The morphology of the composite shows that FeF3·0.5H2O spheres are embedded into RGO layers and high-resolution TEM image shows that those spheres are composed of primary nanoparticles with a size of ~5 nm. The cycling performance indicates that the composite electrode delivers an initial high discharge capacity of 223 mAh g-1 at 0.05 C, a rate capability up to a high C-rate of 10 C (47 mAh g-1) and stable cycle performance at 0.05 C (145 mAh g-1 after 100 cycles) and 0.2 C (93 mAh g-1 after 100 cycles) while maintaining high electrochemical reversibility. Furthermore, the responsible electrochemical reaction is investigated using in-situ XRD and synchrotron-based X-ray absorption spectroscopy (XAS), and the XRD results show that FeF3·0.5H2O transitions to an amorphous-like phase through a lithiation process. However, a reversible oxidation change of Fe3+ ↔ Fe2+ is identified by the XAS results.

  2. Development and beam-shape analysis of an integrated fiber-optic confocal probe for high-precision central thickness measurement of small-radius lenses.

    Science.gov (United States)

    Sutapun, Boonsong; Somboonkaew, Armote; Amarit, Ratthasart; Chanhorm, Sataporn

    2015-04-13

    This work describes a new design of a fiber-optic confocal probe suitable for measuring the central thicknesses of small-radius optical lenses or similar objects. The proposed confocal probe utilizes an integrated camera that functions as a shape-encoded position-sensing device. The confocal signal for thickness measurement and beam-shape data for off-axis measurement can be simultaneously acquired using the proposed probe. Placing the probe's focal point off-center relative to a sample's vertex produces a non-circular image at the camera's image plane that closely resembles an ellipse for small displacements. We were able to precisely position the confocal probe's focal point relative to the vertex point of a ball lens with a radius of 2.5 mm, with a lateral resolution of 1.2 µm. The reflected beam shape based on partial blocking by an aperture was analyzed and verified experimentally. The proposed confocal probe offers a low-cost, high-precision technique, an alternative to a high-cost three-dimensional surface profiler, for tight quality control of small optical lenses during the manufacturing process.

  3. Development and Beam-Shape Analysis of an Integrated Fiber-Optic Confocal Probe for High-Precision Central Thickness Measurement of Small-Radius Lenses

    Directory of Open Access Journals (Sweden)

    Boonsong Sutapun

    2015-04-01

    Full Text Available This work describes a new design of a fiber-optic confocal probe suitable for measuring the central thicknesses of small-radius optical lenses or similar objects. The proposed confocal probe utilizes an integrated camera that functions as a shape-encoded position-sensing device. The confocal signal for thickness measurement and beam-shape data for off-axis measurement can be simultaneously acquired using the proposed probe. Placing the probe’s focal point off-center relative to a sample’s vertex produces a non-circular image at the camera’s image plane that closely resembles an ellipse for small displacements. We were able to precisely position the confocal probe’s focal point relative to the vertex point of a ball lens with a radius of 2.5 mm, with a lateral resolution of 1.2 µm. The reflected beam shape based on partial blocking by an aperture was analyzed and verified experimentally. The proposed confocal probe offers a low-cost, high-precision technique, an alternative to a high-cost three-dimensional surface profiler, for tight quality control of small optical lenses during the manufacturing process.

  4. High-energy X-ray powder diffraction and atomic-pair distribution-function studies of charged/discharged structures in carbon-hybridized Li2MnSiO4 nanoparticles as a cathode material for lithiumion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Maki; Miyahara, Masahiko; Hokazono, Mana; Sasaki, Hirokazu; Nemoto, Atsushi; Katayama, Shingo; Akimoto, Yuji; Hirano, Shin-ichi; Ren, Yang

    2014-10-01

    The stable cycling performance with a high discharge capacity of similar to 190 mAh g(-1) in a carbon-hybridized Li2MnSiO4 nanostructured powder has prompted an experimental investigation of the charged/discharged structures using synchrotron-based and laboratory-based X-rays and atomic-pair distributionfunction (PDF) analyses. A novel method of in-situ spray pyrolysis of a precursor solution with glucose as a carbon source enabled the successful synthesis of the carbon-hybridized Li2(M)nSiO(4) nanoparticles. The XRD patters of the discharged (lithiated) samples exhibit a long-range ordered structure characteristic of the (beta) Li2MnSiO4 crystalline phase (space group Pmn2(1)) which dissipates in the charged (delithiated) samples. However, upon discharging the long-range ordered structure recovers in each cycle. The disordered structure, according to the PDF analysis, is mainly due to local distortions of the MnO4 tetrahedra which show a mean Mn-O nearest neighbor distance shorter than that of the long-range ordered phase. These results corroborate the notion of the smaller Mn3+/Mn4+ ionic radii in the Li extracted phase versus the larger Mn2+ ionic radius in Li inserted phase. Thus Li extraction/insertion drives the fluctuation between the disordered and the long-range ordered structures. (C) 2014 Elsevier B.V. All rights reserved.

  5. Confocal Raman microscopy as a tool to describe different mineral and organic phases at high spatial resolution within marine biogenic carbonates: case study on Nerita undata (Gastropoda, Neritopsina)

    Science.gov (United States)

    Nehrke, G.; Nouet, J.

    2011-06-01

    Marine biogenic carbonates formed by invertebrates (e.g. corals and mollusk shells) represent complex composites of one or more mineral phases and organic molecules. This complexity ranges from the macroscopic structures observed with the naked eye down to sub micrometric structures only revealed by micro analytical techniques. Understanding to what extent and how organisms can control the formation of these structures requires that the mineral and organic phases can be identified and their spatial distribution related. Here we demonstrate the capability of confocal Raman microscopy applied to cross sections of a shell of Nerita undata to describe the distribution of calcite and aragonite including their crystallographic orientation with high lateral resolution (∼300 nm). Moreover, spatial distribution of functional groups of organic compounds can be simultaneously acquired, allowing to specifically relate them to the observed microstructures. The data presented in this case study highlights the possible new contributions of this method to the description of modalities of Nerita undata shell formation, and what could be expected of its application to other marine biogenic carbonates. Localization of areas of interest would also allow further investigations using more localized methods, such as TEM that would provide complementary information on the relation between organic molecules and crystallographic lattice.

  6. Highly-Ordered Magnetic Nanostructures on Self-Assembled α-Al2O3 and Diblock Copolymer Templates

    International Nuclear Information System (INIS)

    Erb, Denise

    2015-08-01

    This thesis shows the preparation of nanostructured systems with a high degree of morphological uniformity and regularity employing exclusively selfassembly processes, and documents the investigation of these systems by means of atomic force microscopy (AFM), grazing incidence small angle X-ray scattering (GISAXS), and nuclear resonant scattering of synchrotron radiation (NRS). Whenever possible, the X-ray scattering methods are applied in-situ and simultaneously in order to monitor and correlate the evolution of structural and magnetic properties of the nanostructured systems. The following systems are discussed, where highly-ordered magnetic nanostructures are grown on α-Al 2 O 3 substrates with topographical surface patterning and on diblock copolymer templates with chemical surface patterning: - Nanofaceted surfaces of α-Al 2 O 3 - Magnetic nanostructures on nanofaceted α-Al 2 O 3 substrates - Thin films of microphase separated diblock copolymers - Magnetic nanostructures on diblock copolymer thin film templates The fact that the underlying self-assembly processes can be steered by external factors is utilized to optimize the degree of structural order in the nanostructured systems. The highly-ordered systems are well-suited for investigations with X-ray scattering methods, since due to their uniformity the inherently averaged scattered signal of a sample yields meaningful information on the properties of the contained nanostructures: By means of an in-situ GISAXS experiment at temperatures above 1000 C, details on the facet formation on α-Al 2 O 3 surfaces are determined. A novel method, merging in-situ GISAXS and NRS, shows the evolution of magnetic states in a system with correlated structural and magnetic inhomogeneity with lateral resolution. The temperature-dependence of the shape of Fe nanodots growing on diblock copolymer templates is revealed by in-situ GISAXS during sputter deposition of Fe. Combining in-situ GISAXS and NRS, the magnetization

  7. Molecular chemistry of plant protein structure at a cellular level by synchrotron-based FTIR spectroscopy: Comparison of yellow ( Brassica rapa) and Brown ( Brassica napus) canola seed tissues

    Science.gov (United States)

    Yu, Peiqiang

    2008-05-01

    The objective of this study was to use synchrotron light sourced FTIR microspectroscopy as a novel approach to characterize protein molecular structure of plant tissue: compared yellow and brown Brassica canola seed within cellular dimensions. Differences in the molecular chemistry and the structural-chemical characteristics were identified between two type of plant tissues. The yellow canola seeds contained a relatively lower (P < 0.05) percentage of model-fitted α-helices (33 vs. 37), a higher (P < 0.05) relative percentage of model-fitted β-sheets (27 vs. 21) and a lower (P < 0.05) ratio of α-helices to β-sheets (1.3 vs. 1.9) than the brown seeds. These results may indicate that the protein value of the yellow canola seeds as food or feed was different from that of the brown canola seeds. The cluster analysis and principal component analysis did not show clear differences between the yellow and brown canola seed tissues in terms of protein amide I structures, indicating they are related to each other. Both yellow and brown canola seeds contain the same proteins but in different ratios.

  8. Synchrotron-based phase contrast-enhanced micro-computed tomography reveals delaminations and material tearing in water-expandable root fillings ex vivo

    NARCIS (Netherlands)

    Moinzadeh, A.T.; Farack, L.; Wilde, F.; Shemesh, H.; Zaslansky, P.

    2016-01-01

    Introduction: This study evaluated the integrity of calcium silicate sealer–based fillings made with hygro-expandable cones (HEC) that are commercially known as CPoint or Smartpoint. Methods: Fourteen human canines were prepared according to a standardized, conventional endodontic treatment protocol

  9. Quantitative analyses of pore-scale multi-phase flow processes: An application of synchrotron-based micro-imaging in the environmental sciences

    Science.gov (United States)

    Wildenschild, D.; Christensen, B. S.; Culligan, K. A.; Rivers, M. L.; Hopmans, J. W.; Kent, A. J.; Gray, W. G.

    2002-12-01

    Our current understanding of groundwater flow and contaminant transport in the subsurface is, to a large degree, limited by existing measurement techniques. To correctly describe transport of contaminant species, it is essential to understand the interplay of advection, mechanical dispersion, and diffusion and their dependency on soil water distribution, degree of saturation, as well as gas-liquid phase contact characteristics. However, these pore-scale mechanisms cannot be measured with traditional experimental techniques. X-ray computerized microtomography provides non-invasive pore-scale observation of variables such as changing fluid phase content and distribution, as well as interfacial area and curvatures. We present results obtained at the microtomography facility at GSECARS (sector 13) at the Advanced Photon Source, Argonne National Laboratory. Samples of 6-7 mm diameter sand or glass bead packs were scanned at different stages of drainage and imbibition and with varying boundary conditions. We observed significant differences in fluid saturation and phase distribution for different boundary conditions, clearly showing preferential flow and a dependence on the applied flow rate. Individual pores, water/air interfaces and their curvatures as a function of pore-water pressure were resolved and the interfacial areas quantified using image analysis techniques. We plan to use this detailed information to verify existing pore-scale numerical models and to aid development of new modeling approaches dealing with contaminant flow and transport in the subsurface. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. W-31-109-Eng-38.

  10. Synchrotron-based ν-XRF mapping and μ-FTIR microscopy enable to look into the fate and effects of tattoo pigments in human skin.

    Science.gov (United States)

    Schreiver, Ines; Hesse, Bernhard; Seim, Christian; Castillo-Michel, Hiram; Villanova, Julie; Laux, Peter; Dreiack, Nadine; Penning, Randolf; Tucoulou, Remi; Cotte, Marine; Luch, Andreas

    2017-09-12

    The increasing prevalence of tattoos provoked safety concerns with respect to particle distribution and effects inside the human body. We used skin and lymphatic tissues from human corpses to address local biokinetics by means of synchrotron X-ray fluorescence (XRF) techniques at both the micro (μ) and nano (ν) scale. Additional advanced mass spectrometry-based methodology enabled to demonstrate simultaneous transport of organic pigments, heavy metals and titanium dioxide from skin to regional lymph nodes. Among these compounds, organic pigments displayed the broadest size range with smallest species preferentially reaching the lymph nodes. Using synchrotron μ-FTIR analysis we were also able to detect ultrastructural changes of the tissue adjacent to tattoo particles through altered amide I α-helix to β-sheet protein ratios and elevated lipid contents. Altogether we report strong evidence for both migration and long-term deposition of toxic elements and tattoo pigments as well as for conformational alterations of biomolecules that likely contribute to cutaneous inflammation and other adversities upon tattooing.

  11. Synchrotron Based Structural Investigations of Mass-Selected PtxGd Nanoparticles and a Gd/Pt(111) Single Crystal for Electrochemical Oxygen Reduction

    DEFF Research Database (Denmark)

    Pedersen, Anders Filsøe; Velazquez-Palenzuela, Amado Andres; Masini, Federico

    2015-01-01

    The sluggish kinetics of the oxygen reduction reaction (ORR) hinders the commercialization of proton exchange membrane fuel cells (PEMFC). The ORR activity is enhanced by alloying Pt with late transition 3d metals (i.e. Fe, Co, Ni, and Cu)1. However, these compounds tend to degrade in a fuel cell....... In this work, we present the experimental results of mass-selected PtxGd nanoparticles synthesized by gas aggregation after sputtering of an alloy target in an ultrahigh vacuum (UHV)3. PtxGd nanoparticles with nominal sizes of 3, 5, 7, and 9 nm were selected using time-of-flight mass filtering and deposited...... is separated from the Pt5Gd alloy, and the analysis of both diffraction patterns are presented. By investigating such well-defined structures, we gain valuable scientific insight into the relationship between their structure and functionality. On the basis of this insight, we can develop even better catalysts...

  12. Room temperature atomic layer deposited Al2O3 on CH3NH3PbI3 characterized by synchrotron-based X-ray photoelectron spectroscopy

    Science.gov (United States)

    Kot, Małgorzata; Das, Chittaranjan; Henkel, Karsten; Wojciechowski, Konrad; Snaith, Henry J.; Schmeisser, Dieter

    2017-11-01

    An ultrathin Al2O3 film deposited on methylammonium lead triiodide (CH3NH3PbI3) perovskite has the capability to suppress the carrier recombination process and improve the perovskite solar cells efficiency and stability. However, annealing at temperatures higher than 85 °C degrades the CH3NH3PbI3 perovskite film. The X-ray photoelectron spectroscopy study performed in this work indicates that it is possible to grow Al2O3 by atomic layer deposition on the perovskite at room temperature, however, besides pure Al2O3 some OH groups are found and the creation of lead and iodine oxides at the Al2O3/CH3NH3PbI3 interface takes place.

  13. Factors influencing real time internal structural visualization and dynamic process monitoring in plants using synchrotron-based phase contrast X-ray imaging.

    Science.gov (United States)

    Karunakaran, Chithra; Lahlali, Rachid; Zhu, Ning; Webb, Adam M; Schmidt, Marina; Fransishyn, Kyle; Belev, George; Wysokinski, Tomasz; Olson, Jeremy; Cooper, David M L; Hallin, Emil

    2015-07-17

    Minimally invasive investigation of plant parts (root, stem, leaves, and flower) has good potential to elucidate the dynamics of plant growth, morphology, physiology, and root-rhizosphere interactions. Laboratory based absorption X-ray imaging and computed tomography (CT) systems are extensively used for in situ feasibility studies of plants grown in natural and artificial soil. These techniques have challenges such as low contrast between soil pore space and roots, long X-ray imaging time, and low spatial resolution. In this study, the use of synchrotron (SR) based phase contrast X-ray imaging (PCI) has been demonstrated as a minimally invasive technique for imaging plants. Above ground plant parts and roots of 10 day old canola and wheat seedlings grown in sandy clay loam soil were successfully scanned and reconstructed. Results confirmed that SR-PCI can deliver good quality images to study dynamic and real time processes such as cavitation and water-refilling in plants. The advantages of SR-PCI, effect of X-ray energy, and effective pixel size to study plant samples have been demonstrated. The use of contrast agents to monitor physiological processes in plants was also investigated and discussed.

  14. Synchrotron-based Infrared and X-ray Imaging Shows Focalized Accumulation of Cu and Zn Co-localized With Beta-amyloid Deposits in Alzheimer's Disease

    International Nuclear Information System (INIS)

    Miller, L.; Wang, Q.; Telivala, T.; Smith, R.; Lanzirotti, A.; Miklossy, J.

    2006-01-01

    Alzheimer's disease (AD) is characterized by the misfolding and plaque-like accumulation of a naturally occurring peptide in the brain called amyloid beta (Abeta). Recently, this process has been associated with the binding of metal ions such as iron (Fe), copper (Cu), and zinc (Zn). It is thought that metal dyshomeostasis is involved in protein misfolding and may lead to oxidative stress and neuronal damage. However, the exact role of the misfolded proteins and metal ions in the degenerative process of AD is not yet clear. In this study, we used synchrotron Fourier transform infrared micro-spectroscopy (FTIRM) to image the in situ secondary structure of the amyloid plaques in brain tissue of AD patients. These results were spatially correlated with metal ion accumulation in the same tissue sample using synchrotron X-ray fluorescence (SXRF) microprobe. For both techniques, a spatial resolution of 5-10 microm was achieved. FTIRM results showed that the amyloid plaques have elevated beta-sheet content, as demonstrated by a strong amide I absorbance at 1625cm(-1). Using SXRF microprobe, we find that AD tissue also contains 'hot spots' of accumulated metal ions, specifically Cu and Zn, with a strong spatial correlation between these two ions. The 'hot spots' of accumulated Zn and Cu were co-localized with beta-amyloid plaques. Thus for the first time, a strong spatial correlation has been observed between elevated beta-sheet content in Abeta plaques and accumulated Cu and Zn ions, emphasizing an association of metal ions with amyloid formation in AD

  15. Using high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature.

    Science.gov (United States)

    McElrone, Andrew J; Choat, Brendan; Parkinson, Dilworth Y; MacDowell, Alastair A; Brodersen, Craig R

    2013-04-05

    High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D) (e.g. Brodersen et al. 2010; 2011; 2012a,b). HRCT imaging is based on the same principles as medical CT systems, but a high intensity synchrotron x-ray source results in higher spatial resolution and decreased image acquisition time. Here, we demonstrate in detail how synchrotron-based HRCT (performed at the Advanced Light Source-LBNL Berkeley, CA, USA) in combination with Avizo software (VSG Inc., Burlington, MA, USA) is being used to explore plant xylem in excised tissue and living plants. This new imaging tool allows users to move beyond traditional static, 2D light or electron micrographs and study samples using virtual serial sections in any plane. An infinite number of slices in any orientation can be made on the same sample, a feature that is physically impossible using traditional microscopy methods. Results demonstrate that HRCT can be applied to both herbaceous and woody plant species, and a range of plant organs (i.e. leaves, petioles, stems, trunks, roots). Figures presented here help demonstrate both a range of representative plant vascular anatomy and the type of detail extracted from HRCT datasets, including scans for coast redwood (Sequoia sempervirens), walnut (Juglans spp.), oak (Quercus spp.), and maple (Acer spp.) tree saplings to sunflowers (Helianthus annuus), grapevines (Vitis spp.), and ferns (Pteridium aquilinum and Woodwardia fimbriata). Excised and dried samples from woody species are easiest to scan and typically yield the best images. However, recent improvements (i.e. more rapid scans and sample stabilization) have made it possible to use this visualization technique on green tissues (e.g. petioles) and in living plants. On occasion some shrinkage of hydrated green plant tissues will cause

  16. Using High Resolution Computed Tomography to Visualize the Three Dimensional Structure and Function of Plant Vasculature

    Science.gov (United States)

    McElrone, Andrew J.; Choat, Brendan; Parkinson, Dilworth Y.; MacDowell, Alastair A.; Brodersen, Craig R.

    2013-01-01

    High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D) (e.g. Brodersen et al. 2010; 2011; 2012a,b). HRCT imaging is based on the same principles as medical CT systems, but a high intensity synchrotron x-ray source results in higher spatial resolution and decreased image acquisition time. Here, we demonstrate in detail how synchrotron-based HRCT (performed at the Advanced Light Source-LBNL Berkeley, CA, USA) in combination with Avizo software (VSG Inc., Burlington, MA, USA) is being used to explore plant xylem in excised tissue and living plants. This new imaging tool allows users to move beyond traditional static, 2D light or electron micrographs and study samples using virtual serial sections in any plane. An infinite number of slices in any orientation can be made on the same sample, a feature that is physically impossible using traditional microscopy methods. Results demonstrate that HRCT can be applied to both herbaceous and woody plant species, and a range of plant organs (i.e. leaves, petioles, stems, trunks, roots). Figures presented here help demonstrate both a range of representative plant vascular anatomy and the type of detail extracted from HRCT datasets, including scans for coast redwood (Sequoia sempervirens), walnut (Juglans spp.), oak (Quercus spp.), and maple (Acer spp.) tree saplings to sunflowers (Helianthus annuus), grapevines (Vitis spp.), and ferns (Pteridium aquilinum and Woodwardia fimbriata). Excised and dried samples from woody species are easiest to scan and typically yield the best images. However, recent improvements (i.e. more rapid scans and sample stabilization) have made it possible to use this visualization technique on green tissues (e.g. petioles) and in living plants. On occasion some shrinkage of hydrated green plant tissues will cause

  17. Confocal Raman microscope mapping as a tool to describe different mineral and organic phases at high spatial resolution within marine biogenic carbonates: case study on Nerita undata (Gastropoda, Neritopsina

    Directory of Open Access Journals (Sweden)

    J. Nouet

    2011-12-01

    Full Text Available Marine biogenic carbonates formed by invertebrates (e.g. corals and mollusks represent complex composites of one or more mineral phases and organic molecules. This complexity ranges from the macroscopic structures observed with the naked eye down to sub micrometric structures only revealed by micro analytical techniques. Understanding to what extent and how organisms can control the formation of these structures requires that the mineral and organic phases can be identified and their spatial distribution related. Here we demonstrate the capability of confocal Raman microscopy applied to cross sections of a shell of Nerita undata to describe the distribution of calcite and aragonite including their crystallographic orientation with high lateral resolution (~300 nm. Moreover, spatial distribution of functional groups of organic compounds can be simultaneously acquired, allowing to specifically relate them to the observed microstructures. The data presented in this case study highlights the possible new contributions of this method to the description of modalities of Nerita undata shell formation, and what could be expected of its application to other marine biogenic carbonates. Localization of areas of interest would also allow further investigations using more localized methods, such as TEM that would provide complementary information on the relation between organic molecules and crystal lattice.

  18. Confocal Raman microscope mapping as a tool to describe different mineral and organic phases at high spatial resolution within marine biogenic carbonates: case study on Nerita undata (Gastropoda, Neritopsina)

    Science.gov (United States)

    Nehrke, G.; Nouet, J.

    2011-12-01

    Marine biogenic carbonates formed by invertebrates (e.g. corals and mollusks) represent complex composites of one or more mineral phases and organic molecules. This complexity ranges from the macroscopic structures observed with the naked eye down to sub micrometric structures only revealed by micro analytical techniques. Understanding to what extent and how organisms can control the formation of these structures requires that the mineral and organic phases can be identified and their spatial distribution related. Here we demonstrate the capability of confocal Raman microscopy applied to cross sections of a shell of Nerita undata to describe the distribution of calcite and aragonite including their crystallographic orientation with high lateral resolution (~300 nm). Moreover, spatial distribution of functional groups of organic compounds can be simultaneously acquired, allowing to specifically relate them to the observed microstructures. The data presented in this case study highlights the possible new contributions of this method to the description of modalities of Nerita undata shell formation, and what could be expected of its application to other marine biogenic carbonates. Localization of areas of interest would also allow further investigations using more localized methods, such as TEM that would provide complementary information on the relation between organic molecules and crystal lattice.

  19. High arch

    Science.gov (United States)

    ... pes cavus. High arch is the opposite of flat feet . ... High foot arches are much less common than flat feet. They are more likely to be caused by a bone (orthopedic) or nerve (neurological) condition. Unlike ...

  20. In Situ XRD Studies of ZnO/GaN Mixtures at High Pressure and High Temperature: Synthesis of Zn-Rich (Ga1-xZnx)(N1-xOx) Photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.A.; Chen, H.; Wang, L.; Bai, J.; Hanson, J.C.; Warren, J.B.; Muckerman, J.T.; Fujita, E.

    2010-02-04

    The high-pressure, high-temperature conditions for the synthesis of Zn-rich (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions from mixtures of ZnO/GaN were explored using synchrotron-based in situ time-resolved X-ray diffraction (XRD). Following a new synthetic path, (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions with a Zn content up to 75% were prepared for the first time. The structures of the (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions were characterized by XRD and X-ray absorption fine structure (XAFS) analyses and were in excellent agreement with the predictions of density functional calculations. These materials adopt a wurtzite crystal structure with metal-N or metal-O bond distances in the range of 1.95-1.98 {angstrom}. Although the (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions seem to be stable over the full range of compositions, no ideal solid solution formation was observed. In all cases, the lattice parameters were larger than those of ideal solid solutions. The variation of the lattice parameter c showed an upward double bowing curve, as was predicted by theoretical calculations. Also, no ideal behavior was observed in the electronic properties of the (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions. X-ray absorption spectra at the Zn and Ga K-edges of the (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) systems showed significant electronic perturbations with respect to ZnO and GaN. The synthesized (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solution with a Zn content of 50% displayed the ability to absorb visible light well above 500 nm. This material has a great potential for splitting water under visible light irradiation. The availability of (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions with a high Zn content opens the door to fully explore the application of these materials in photocatalysis.

  1. In Situ XRD Studies of ZnO/GaN Mixtures at High Pressure and High Temperature: Synthesis of Zn-Rich (Ga1-xZnx)(N1-xOx) Photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Wang, L; Bai, J; Hanson, J; Warren, J; Muckerman, J; Fujita, E; Rodriguez, J

    2010-01-01

    The high-pressure, high-temperature conditions for the synthesis of Zn-rich (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions from mixtures of ZnO/GaN were explored using synchrotron-based in situ time-resolved X-ray diffraction (XRD). Following a new synthetic path, (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions with a Zn content up to {approx}75% were prepared for the first time. The structures of the (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions were characterized by XRD and X-ray absorption fine structure (XAFS) analyses and were in excellent agreement with the predictions of density functional calculations. These materials adopt a wurtzite crystal structure with metal-N or metal-O bond distances in the range of 1.95-1.98 {angstrom}. Although the (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions seem to be stable over the full range of compositions, no ideal solid solution formation was observed. In all cases, the lattice parameters were larger than those of ideal solid solutions. The variation of the lattice parameter c showed an upward double bowing curve, as was predicted by theoretical calculations. Also, no ideal behavior was observed in the electronic properties of the (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions. X-ray absorption spectra at the Zn and Ga K-edges of the (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) systems showed significant electronic perturbations with respect to ZnO and GaN. The synthesized (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solution with a Zn content of 50% displayed the ability to absorb visible light well above 500 nm. This material has a great potential for splitting water under visible light irradiation. The availability of (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions with a high Zn content opens the door to fully explore the application of these materials in photocatalysis.

  2. A High-Pressure Study of Manganese Metal and its Reactions with CO2 at 6, 23, and 44 GPa

    Science.gov (United States)

    Sawchuk, K. L. S.; McGuire, C. P.; Greenburg, A.; Makhluf, A.; Kavner, A.

    2017-12-01

    The free energies of formation of oxides and carbonates at the extreme pressures and temperatures of Earth's interior provides some of the thermodynamic constrains for models of mantle/core formation and subsequent chemical evolution. The broad goal of our research program is to measure the pressure- and temperature-dependence of free energies of formation of transition metal oxides and carbonates. This requires measurements of the phase stability, density, and thermoelastic properties of metals, oxides, and carbonates at deep-Earth and planetary conditions. Manganese is of interest because it is one of the most abundant transition metal geochemical tracers, it readily forms a carbonate at ambient pressure, and its high-pressure carbonate and oxide densities and equation of state parameters are relatively unknown. Here we report new data on the pressure/volume equation of state and structure of manganese metal as well as its reactions with CO2. These measurements were made using a laser heated diamond anvil cell in conjunction with synchrotron-based X-ray diffraction at beamline 12.2.2 at the Advanced Light Source. Three samples of manganese metal were gas-loaded in a CO2 pressure medium and pressurized to 6, 23, and 44 GPa. Upon laser heating, the CO2 reacted with the Mn metal generating new phases. To analyze the diffraction patterns, we we use a python-based program developed in-house for extracting high resolution 2-dimensional diffraction peak position and intensity information from two-dimensional X-ray diffraction patterns. At each pressure step, the structure and density of the quenched Mn metal phase was determined. At 6 GPa, Mn metal adopts a BCC structure, and at 23 GPa a tetragonal distortion is observed in the lattice. The measured equation of state is in good agreement with an existing meaurement by Fujihisa and Takemura (1995). MnCO3 rhodochrosite is observed in the sample quenched after heating at 6 GPa. Additional high pressure phases are evident

  3. High Line

    DEFF Research Database (Denmark)

    Kiib, Hans

    2015-01-01

    . The High Line project has been carried out as part of an open conversion strategy. The result is a remarkable urban architectural project, which works as a catalyst for the urban development of Western Manhattan. The greater project includes the restoration and reuse of many old industrial buildings......At just over 10 meters above street level, the High Line extends three kilometers through three districts of Southwestern Manhattan in New York. It consists of simple steel construction, and previously served as an elevated rail line connection between Penn Station on 34th Street and the many...... in close proximity to the park bridge and new projects being added to fit the context. The outcome is a conglomeration of non-contemporary urban activities along the High Line, where mechanical workshops, small wholesale stores. etc. mix with new exclusive residential buildings, eminent cafés...

  4. High Turbulence

    CERN Multimedia

    EuHIT, Collaboration

    2015-01-01

    As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.

  5. High Class

    Science.gov (United States)

    Waldecker, Mark

    2005-01-01

    Education administrators make buying decisions for furniture based on many factors. Cost, durability, functionality, safety and aesthetics represent just a few. Those issues always will be important, but gaining greater recognition in recent years has been the role furniture plays in creating positive, high-performance learning environments. The…

  6. Highly dominating, highly authoritarian personalities.

    Science.gov (United States)

    Altemeyer, Bob

    2004-08-01

    The author considered the small part of the population whose members score highly on both the Social Dominance Orientation scale and the Right-Wing Authoritarianism scale. Studies of these High SDO-High RWAs, culled from samples of nearly 4000 Canadian university students and over 2600 of their parents and reported in the present article, reveal that these dominating authoritarians are among the most prejudiced persons in society. Furthermore, they seem to combine the worst elements of each kind of personality, being power-hungry, unsupportive of equality, manipulative, and amoral, as social dominators are in general, while also being religiously ethnocentric and dogmatic, as right-wing authoritarians tend to be. The author suggested that, although they are small in number, such persons can have considerable impact on society because they are well-positioned to become the leaders of prejudiced right-wing political movements.

  7. Deflectometric analysis of high volume injection molds for production of occupational eye wear.

    Science.gov (United States)

    Speck, Alexis; Zelzer, Benedikt; Speich, Marco; Börret, Rainer; Langenbucher, Achim; Eppig, Timo

    2013-12-01

    Most of the protective eye wear devices currently on the market are manufactured on simple polycarbonate shields, produced by injection molding techniques. Despite high importance of optical quality, injection molds are rarely inspected for surface quality before or during the manufacturing process. Quality degradation is mainly monitored by optical testing of the molded parts. The purpose of this work was to validate a non-contact deflectometric measurement technique for surface and shape analysis of injection molds to facilitate deterministic surface quality control and to monitor minor conformity of the injection mold with the design data. The system is based on phase-measuring deflectometry with a operating measurement field of 80×80 mm(2) (±18° slope), a lateral resolution of 60μm and a local sensitivity of some nanometers. The calibration was tested with a calibration normal and a reference sphere. The results were crosschecked against a measurement of the same object with a tactile coordinate measuring machine. Eight injection molds for production of safety goggles with radii of +58mm (convex) and -60mm (concave) were measured in this study. The molds were separated into two groups (cavity 1 and 2 of the tool with different polishing techniques) and measured to test whether the measurement tool could extract differences. The analysis was performed on difference height between the measured surface and the spherical model. The device could derive the surface change due to polishing and discriminate between both polishing techniques, on the basis of the measured data. The concave nozzle sides of the first group (cavity 1) showed good shape conformity. In comparison, the nozzle sides of the second group (cavity 2) showed local deviations from design data up to 14.4μm. Local form variations of about 5μm occurred in the field of view. All convex ejector sides of both groups (cavity 1 and 2) showed rotational symmetric errors and the molds were measured in

  8. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...... electrolysis using SOECs is competitive to H-2 production from fossil fuels at electricity prices below 0.02-0.03 is an element of per kWh. Though promising SOEC results on H-2 production have been reported a substantial R&D is still required to obtain inexpensive, high performing and long-term stable...

  9. High Energy $\

    CERN Multimedia

    2002-01-01

    This experiment is a high statistics exposure of BEBC filled with hydrogen to both @n and &bar.@n beams. The principal physics aims are : \\item a) The study of the production of charmed mesons and baryons using fully constrained events. \\end{enumerate} b) The study of neutral current interactions on the free proton. \\item c) Measurement of the cross-sections for production of exclusive final state N* and @D resonances. \\item d) Studies of hadronic final states in charged and neutral current reactions. \\item e) Measurement of inclusive charged current cross-sections and structure functions. \\end{enumerate}\\\\ \\\\ The neutrino flux is determined by monitoring the flux of muons in the neutrino shield. The Internal Picket Fence and External Muon Identifier of BEBC are essential parts of the experiment. High resolution cameras are used to search for visible decays of short-lived particles.

  10. High energy

    International Nuclear Information System (INIS)

    Bonner, B.E.; Roberts, J.B. Jr.

    1993-01-01

    We report here on progress made for the period from December 1, 1992 (the date of submission of our latest progress report) to November 30, 1993 for DOE Grant No. DE-FG05-92ER40717. The new results from the SMC experiment have generated a buzz of theoretical activity. Our involvement with the D0 experiment and the upgrade has increased substantially during the past two years so that we now have six people heavily committed and making what can only be described as a large and disproportionate impact on D0 physics output. Some of the new developments made here at Rice in Neural Network and Probability Density Estimation techniques for data analysis promise to have applications both in D0 and beyond. We report a load of new results from our high-p t jet photoproduction experiment. In addition we have been working on KTeV, albeit without having adequate funding for this work. Progress on the theoretical front has been nothing short of amazing, as is reported herein. In a grand lecture tour during this sabbatical year, Paul Stevenson has already reported his breakthroughs at ten institutions, including CERN, Oxford, Cambridge, Rutherford Lab, Imperial College, and Durham University. The group at Rice University has had an exceptionally productive year and we are justifiably proud of the progress which is reported here

  11. High resolution modelling of soil moisture patterns with TerrSysMP: A comparison with sensor network data

    Science.gov (United States)

    Gebler, S.; Hendricks Franssen, H.-J.; Kollet, S. J.; Qu, W.; Vereecken, H.

    2017-04-01

    The prediction of the spatial and temporal variability of land surface states and fluxes with land surface models at high spatial resolution is still a challenge. This study compares simulation results using TerrSysMP including a 3D variably saturated groundwater flow model (ParFlow) coupled to the Community Land Model (CLM) of a 38 ha managed grassland head-water catchment in the Eifel (Germany), with soil water content (SWC) measurements from a wireless sensor network, actual evapotranspiration recorded by lysimeters and eddy covariance stations and discharge observations. TerrSysMP was discretized with a 10 × 10 m lateral resolution, variable vertical resolution (0.025-0.575 m), and the following parameterization strategies of the subsurface soil hydraulic parameters: (i) completely homogeneous, (ii) homogeneous parameters for different soil horizons, (iii) different parameters for each soil unit and soil horizon and (iv) heterogeneous stochastic realizations. Hydraulic conductivity and Mualem-Van Genuchten parameters in these simulations were sampled from probability density functions, constructed from either (i) soil texture measurements and Rosetta pedotransfer functions (ROS), or (ii) estimated soil hydraulic parameters by 1D inverse modelling using shuffle complex evolution (SCE). The results indicate that the spatial variability of SWC at the scale of a small headwater catchment is dominated by topography and spatially heterogeneous soil hydraulic parameters. The spatial variability of the soil water content thereby increases as a function of heterogeneity of soil hydraulic parameters. For lower levels of complexity, spatial variability of the SWC was underrepresented in particular for the ROS-simulations. Whereas all model simulations were able to reproduce the seasonal evapotranspiration variability, the poor discharge simulations with high model bias are likely related to short-term ET dynamics and the lack of information about bedrock characteristics

  12. The 2006 Pingtung Earthquake Doublet Triggered Seafloor Liquefaction: Revisiting the Evidence with Ultra-High-Resolution Seafloor Mapping

    Science.gov (United States)

    Su, C. C.; Chen, T. T.; Paull, C. K.; Gwiazda, R.; Chen, Y. H.; Lundsten, E. M.; Caress, D. W.; Hsu, H. H.; Liu, C. S.

    2017-12-01

    Since Heezen and Ewing's (1952) classic work on the 1929 Grand Banks earthquake, the damage of submarine cables have provided critical information on the nature of seafloor mass movements or sediment density flows. However, the understanding of the local conditions that lead to particular seafloor failures earthquakes trigger is still unclear. The Decemeber 26, 2006 Pingtung earthquake doublet which occurred offshore of Fangliao Township, southwestern Taiwan damaged 14 submarine cables between Gaoping slope to the northern terminus of the Manila Trench. Local fisherman reported disturbed waters at the head of the Fangliao submarine canyon, which lead to conjectures that eruptions of mud volcanoes which are common off the southwestern Taiwan. Geophysical survey were conducted to evaluate this area which revealed a series of faults, liquefied strata, pockmarks and acoustically transparent sediments with doming structures which may relate to the submarine groundwater discharge. Moreover, shipboard multi-beam bathymetric survey which was conducted at the east of Fangliao submarine canyon head shows over 10 km2 area with maximum depth around 40 m of seafloor subsidence after Pingtung earthquake. The north end of the subsidence is connected to the Fangliao submarine canyon where the first cable failed after Pingtung earthquake. The evidences suggests the earthquake triggered widespeard liquefaction and generated debris flows within Fangliao submarine canyon. In May 2017, an IONTU-MBARI Joint Survey Cruise (OR1-1163) was conducted on using MBARI Mapping AUV and miniROV to revisit the area where the cable damaged after Pingtung earthquake. From newly collected ultra-high-resolution (1-m lateral resolution) bathymetry data, the stair-stepped morphology is observed at the edge of canyon. The comet-shaped depressions are located along the main headwall of the seafloor failure. The new detailed bathymetry reveal details which suggest Fangliao submarine canyon head is

  13. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  14. The strain-dependent spatial evolution of garnet in a high- P ductile shear zone from the Western Gneiss Region (Norway): a synchrotron X-ray microtomography study

    Energy Technology Data Exchange (ETDEWEB)

    Macente, A. [School of Geosciences, University of Edinburgh, The King' s Building James Hutton Road Edinburgh EH9 3FE UK; Fusseis, F. [School of Geosciences, University of Edinburgh, The King' s Building James Hutton Road Edinburgh EH9 3FE UK; Menegon, L. [School of Geography, Earth and Environmental Sciences, Faculty of Science and Engineering, Plymouth University, Fitzroy Drake Circus Plymouth Devon PL4 8AA UK; Xianghui, X. [Argonne National Laboratory, 9700 S. Cass Ave Building 431-B003 Argonne IL USA; John, T. [Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74-100 12249 Berlin Germany

    2017-03-27

    Reaction and deformation microfabrics provide key information to understand the thermodynamic and kinetic controls of tectono-metamorphic processes, however they are usually analysed in two dimensions, omitting important information regarding the third spatial dimension. We applied synchrotron-based X-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in four dimensions, where the 4th dimension is represented by the degree of strain. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets with increasing strain. Our microtomographic data allowed quantification of garnet volume, shape and spatial arrangement evolution with increasing strain. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analysis to correlate mineral composition and orientation data with the X-ray absorption signal of the same mineral grains. With increasing deformation, the garnet volume almost triples. In the low strain domain, garnets form a well interconnected large garnet aggregate that develops throughout the entire Page 1 of 52 sample. We also observed that garnet coronas in the gabbros never completely encapsulate olivine grains. In the most highly deformed eclogites, the oblate shapes of garnet clusters reflect a deformational origin of the microfabrics. We interpret the aligned garnet aggregates to direct synkinematic fluid flow and consequently influence the transport of dissolved chemical components. EBSD analyses reveal that garnet show a near-random crystal preferred orientation that testifies no evidence for crystal plasticity. There is, however evidence for minor fracturing, neo-nucleation and overgrowth. Microprobe chemical analysis

  15. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has high ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  16. Transmission in situ and operando high temperature X-ray powder diffraction in variable gaseous environments

    Science.gov (United States)

    Schlicker, Lukas; Doran, Andrew; Schneppmüller, Peter; Gili, Albert; Czasny, Mathias; Penner, Simon; Gurlo, Aleksander

    2018-03-01

    This work describes a device for time-resolved synchrotron-based in situ and operando X-ray powder diffraction measurements at elevated temperatures under controllable gaseous environments. The respective gaseous sample environment is realized via a gas-tight capillary-in-capillary design, where the gas flow is achieved through an open-end 0.5 mm capillary located inside a 0.7 mm capillary filled with a sample powder. Thermal mass flow controllers provide appropriate gas flows and computer-controlled on-the-fly gas mixing capabilities. The capillary system is centered inside an infrared heated, proportional integral differential-controlled capillary furnace allowing access to temperatures up to 1000 °C.

  17. Reveal protein molecular structural-chemical differences between two types of winterfat (forage) seeds with physiological differences in low temperature tolerance using synchrotron-based Fourier transform infrared microspectroscopy.

    Science.gov (United States)

    Yu, P; Wang, R; Bai, Y

    2005-11-30

    Winterfat (Krascheninnikovia lanata) (forage seed) is a long-lived native shrub with superior forage quality for livestock and wildlife. The objectives of this study were to use advanced synchrotron technology [S-Fourier transform infrared microspectroscopy (FTIR)] as a novel approach to reveal protein molecular structural-chemical differences in terms of protein secondary structures between the two types of winterfat (forage) seeds, which show physiological differences in low-temperature tolerances. This experiment was performed at beamline U10B at the National Synchrotron Light Source (NSLS) in Brookhaven National Laboratory (BNL), U.S. Department of Energy (NSLS-BNL, New York). The results showed that with the synchrotron analytical technique (S-FTIR), the molecular structural-chemical makeup and characteristics of the winterfat seed tissues could be imaged and revealed. The protein secondary structures differed between the large and the small seed tissues. By using the multicomponent peaks modeling method, the results show that the large seeds contained no significant differences (P > 0.05) in percentage of beta-sheet (average 37.0%) and alpha-helix (average 24.1%). However, the large seeds contained a lower (P seed size variation and may affect germination behaviors.

  18. High Performance Networks for High Impact Science

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  19. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical term for high blood glucose (blood sugar). High ... We Are Research Leaders We Support Your Doctor Student Resources Patient Access to Research Research Resources Practice ...

  20. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical term for high blood glucose (blood sugar). High ... Type 2 Diabetes program to get help and support during your first year. Featured Book Type 2 ...

  1. High Blood Cholesterol

    Science.gov (United States)

    ... To Health Topics / High Blood Cholesterol High Blood Cholesterol Also known as Hypercholesterolemia High blood cholesterol is ... Lipid panel tests to check for healthy blood cholesterol levels Doctors use lipid panels to check whether ...

  2. High Blood Pressure Facts

    Science.gov (United States)

    ... Stroke Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN High Blood Pressure Facts Recommend on Facebook Tweet Share Compartir On ... Top of Page CDC Fact Sheets Related to High Blood Pressure High Blood Pressure Pulmonary Hypertension Heart Disease Signs ...

  3. High Blood Pressure

    Science.gov (United States)

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  4. Development of high strength, high temperature ceramics

    Science.gov (United States)

    Hall, W. B.

    1982-01-01

    Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.

  5. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  6. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Diagnosing Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood ...

  7. High-resolution photoacoustic imaging of ocular tissues.

    Science.gov (United States)

    Silverman, Ronald H; Kong, Fanting; Chen, Y C; Lloyd, Harriet O; Kim, Hyung Ham; Cannata, Jonathan M; Shung, K Kirk; Coleman, D Jackson

    2010-05-01

    Optical coherence tomography (OCT) and ultrasound (US) are methods widely used for diagnostic imaging of the eye. These techniques detect discontinuities in optical refractive index and acoustic impedance, respectively. Because these both relate to variations in tissue density or composition, OCT and US images share a qualitatively similar appearance. In photoacoustic imaging (PAI), short light pulses are directed at tissues, pressure is generated due to a rapid energy deposition in the tissue volume and thermoelastic expansion results in generation of broadband US. PAI thus depicts optical absorption, which is independent of the tissue characteristics imaged by OCT or US. Our aim was to demonstrate the application of PAI in ocular tissues and to do so with lateral resolution comparable to OCT. We developed two PAI assemblies, both of which used single-element US transducers and lasers sharing a common focus. The first assembly had optical and 35-MHz US axes offset by a 30 degrees angle. The second assembly consisted of a 20-MHz ring transducer with a coaxial optics. The laser emitted 5-ns pulses at either 532 nm or 1064 nm, with spot sizes at the focus of 35 microm for the angled probe and 20 microm for the coaxial probe. We compared lateral resolution by scanning 12.5 microm diameter wire targets with pulse/echo US and PAI at each wavelength. We then imaged the anterior segment in whole ex vivo pig eyes and the choroid and ciliary body region in sectioned eyes. PAI data obtained at 1064 nm in the near infrared had higher penetration but reduced signal amplitude compared to that obtained using the 532 nm green wavelength. Images were obtained of the iris, choroid and ciliary processes. The zonules and anterior cornea and lens surfaces were seen at 532 nm. Because the laser spot size was significantly smaller than the US beamwidth at the focus, PAI images had superior resolution than those obtained using conventional US. Copyright 2010 World Federation for

  8. X-ray microscopes at BESSY II

    International Nuclear Information System (INIS)

    Guttmann, P.; Niemann, B.; Thieme, J.; Wiesemann, U.; Rudolph, D.; Schmahl, G.

    2000-01-01

    The undulator U41 at BESSY II will be used as source for X-ray microscopes. An overview of the X-ray microscopy area is presented. After finishing the construction phase a transmission X-ray microscope, a scanning transmission X-ray microscope and an X-ray test chamber will be available. The transmission X-ray microscope will allow investigations with high lateral resolution at moderate energy resolution while the scanning transmission X-ray microscope will allow high energy resolution at moderate lateral resolution of the same specimen

  9. Bumball: Highly Engaging, Highly Inclusive, and Highly Entertaining

    Science.gov (United States)

    Hall, Amber; Barney, David; Wilkinson, Carol

    2014-01-01

    Physical educators are always looking for new and exciting games and activities in which students can participate. This article describes Bumball, a high-intensity game that provides the opportunity for students to use many common game skills, such as hand-eye coordination, passing to a target, running, playing defense, and getting to an open…

  10. Why high energy physics

    International Nuclear Information System (INIS)

    Diddens, A.N.; Van de Walle, R.T.

    1981-01-01

    An argument is presented for high energy physics from the point of view of the practitioners. Three different angles are presented: The cultural consequence and scientific significance of practising high energy physics, the potential application of the results and the discovery of high energy physics, and the technical spin-offs from the techniques and methods used in high energy physics. (C.F.)

  11. High performance pulse generator

    Science.gov (United States)

    Grothaus, Michael G.; Moran, Stuart L.; Hardesty, Leonard W.

    1992-06-01

    The device is a compact Marx-type generator capable of producing a high-voltage burst of pulses having risetimes less than 10 nanoseconds at repetition rates up to 10 kHz. High-pressure hydrogen switches are used as the switching elements to achieve high rep-rate. A small coaxial design provides low inductance and a fast risetime. The device may be used as a high-rep-rate high-voltage trigger generator, or as a high-voltage pulse source capable of producing up to 1 MV pulses at high repetition rates.

  12. High Temperature, High Power Piezoelectric Composite Transducers

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2014-08-01

    Full Text Available Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  13. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  14. Highly Accreting Quasars at High Redshift

    Directory of Open Access Journals (Sweden)

    Mary L. Martínez-Aldama

    2018-01-01

    Full Text Available We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (L/LEdd ~ 1.0 at high redshift, z ~2–3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as Aliiiλ1860, Siiii]λ1892 and Ciii]λ1909. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  15. High temperature, high power piezoelectric composite transducers.

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  16. Self-sensing cantilevers with integrated conductive coaxial tips for high-resolution electrical scanning probe metrology

    Energy Technology Data Exchange (ETDEWEB)

    Haemmerli, Alexandre J.; Pruitt, Beth L., E-mail: pruitt@stanford.edu [Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, North Carolina 94305 (United States); Harjee, Nahid [Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, North Carolina 94305 (United States); Koenig, Markus; Garcia, Andrei G. F.; Goldhaber-Gordon, David [Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, North Carolina 94305 (United States)

    2015-07-21

    The lateral resolution of many electrical scanning probe techniques is limited by the spatial extent of the electrostatic potential profiles produced by their probes. Conventional unshielded conductive atomic force microscopy probes produce broad potential profiles. Shielded probes could offer higher resolution and easier data interpretation in the study of nanostructures. Electrical scanning probe techniques require a method of locating structures of interest, often by mapping surface topography. As the samples studied with these techniques are often photosensitive, the typical laser measurement of cantilever deflection can excite the sample, causing undesirable changes electrical properties. In this work, we present the design, fabrication, and characterization of probes that integrate coaxial tips for spatially sharp potential profiles with piezoresistors for self-contained, electrical displacement sensing. With the apex 100 nm above the sample surface, the electrostatic potential profile produced by our coaxial tips is more than 2 times narrower than that of unshielded tips with no long tails. In a scan bandwidth of 1 Hz–10 kHz, our probes have a displacement resolution of 2.9 Å at 293 K and 79 Å at 2 K, where the low-temperature performance is limited by amplifier noise. We show scanning gate microscopy images of a quantum point contact obtained with our probes, highlighting the improvement to lateral resolution resulting from the coaxial tip.

  17. High concentration agglomerate dynamics at high temperatures.

    Science.gov (United States)

    Heine, M C; Pratsinis, S E

    2006-11-21

    The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.

  18. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day Diabetes Basics Home Symptoms Diagnosis America's Diabetes Challenge Type ...

  19. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day Diabetes Basics Home Symptoms Diagnosis America's ...

  20. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Day in the Life of Diabetes Famous People Working to Stop Diabetes Common Terms Diabetes Statistics Infographics ...

  1. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... to Give Close Are You at Risk? Home Prevention Diagnosing Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ...

  2. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To ... Started Safely Get And Stay Fit Types of Activity Weight Loss Assess Your Lifestyle Getting Started Food ...

  3. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day Diabetes Basics Home Symptoms Diagnosis America's Diabetes Challenge Type 1 Type 2 Facts About Type 2 Enroll ...

  4. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood ... For Parents & Kids Safe at School Everyday Life Children and Type 2 Diabetes Know Your Rights Employment ...

  5. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High ... What Can I Drink? Fruit Dairy Food Tips Eating Out Quick Meal Ideas Snacks Nutrient Content Claims ...

  6. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day ...

  7. High blood pressure medications

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007484.htm High blood pressure medicines To use the sharing features on this page, please enable JavaScript. Treating high blood pressure will help prevent problems such as heart disease, ...

  8. High blood pressure - children

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007696.htm High blood pressure - children To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  9. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools ... Find Your Local Office Find your local diabetes education program Calendar of Events Wellness Lives Here Awareness ...

  10. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Clinical Practice Guidelines Patient Education Materials Scientific Sessions Journals for Professionals Professional Books Patient Access to Research ...

  11. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools ...

  12. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor ... Quick Meal Ideas Snacks Nutrient Content Claims Understanding Carbohydrates Types of Carbohydrates Carbohydrate Counting Make Your Carbs ...

  13. Preventing High Blood Pressure

    Science.gov (United States)

    ... Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN Preventing High Blood Pressure: Healthy Living Habits Recommend on Facebook Tweet Share ... meal and snack options can help you avoid high blood pressure and its complications. Be sure to eat plenty ...

  14. High blood pressure - infants

    Science.gov (United States)

    Hypertension - infants ... and blood vessels The health of the kidneys High blood pressure in infants may be due to kidney or ... blood vessel of the kidney) In newborn babies, high blood pressure is often caused by a blood clot in ...

  15. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Diagnosing Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor ...

  16. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health ...

  17. High speed data acquisition

    International Nuclear Information System (INIS)

    Cooper, P.S.

    1997-07-01

    A general introduction to high speed data acquisition system techniques in modern particle physics experiments is given. Examples are drawn from the SELEX(E78 1) high statistics charmed baryon production and decay experiment now taking data at Fermilab

  18. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... symptoms include the following: High blood glucose High levels of sugar in the urine Frequent urination Increased ... you should check and what your blood glucose levels should be. Checking your blood and then treating ...

  19. High current and high power superconducting rectifiers

    NARCIS (Netherlands)

    ten Kate, Herman H.J.; Bunk, P.B.; Britton, R.B.; van de Klundert, L.J.M.

    1981-01-01

    Results on three experimental superconducting rectifiers are reported. Two of them are 1 kA low frequency flux pumps, one thermally and magnetically switched. The third is a low-current high-frequency magnetically switched rectifier which can use the mains directly.

  20. New high performances fluoroelastomers

    Energy Technology Data Exchange (ETDEWEB)

    Arcella, Vincenzo; Brinati, Giulio; Apostolo, Marco [Ausimont R and D, Bollate (Italy)

    1997-03-01

    Fluoroelastomers are amorphous polymers designed for high demanding applications in hostile environments. The presence of fluorine in the polymer backbone imparts to the structure the ability to withstand very high temperatures and, at the same time, high resistance to chemical attack. However, the presence of fluorine is also a source of drawbacks, such as high chain stiffness and difficulties to obtain permanent networks. In the present paper recent Ausimont developments in the field of fluoroelastomers are presented.

  1. High-pressure microbiology

    National Research Council Canada - National Science Library

    Michiels, Chris; Bartlett, Douglas Hoyt; Aertsen, Abram

    2008-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology * Filip Meersman and Karel Heremans . . . . . . . . . . . . 2. Effects...

  2. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  3. Tunable high pressure lasers

    Science.gov (United States)

    Hess, R. V.

    1976-01-01

    Atmospheric transmission of high energy CO2 lasers is considerably improved by high pressure operation which, due to pressure broadening, permits tuning the laser lines off atmospheric absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers and for vertical transmission through the entire atmosphere. Applications of tunable high pressure CO2 lasers to energy transmission and to remote sensing are discussed along with initial efforts in tuning high pressure CO2 lasers.

  4. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  5. Early College High Schools

    Science.gov (United States)

    Dessoff, Alan

    2011-01-01

    For at-risk students who stand little chance of going to college, or even finishing high school, a growing number of districts have found a solution: Give them an early start in college while they still are in high school. The early college high school (ECHS) movement that began with funding from the Bill and Melinda Gates Foundation 10 years ago…

  6. High performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, M.B. [comp.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  7. High brilliance multicusp ion source for hydrogen microscopy at SNAKE

    Energy Technology Data Exchange (ETDEWEB)

    Moser, M., E-mail: marcus.moser@unibw.de [Universitaet der Bundeswehr Muenchen, Institut fuer Angewandte Physik und Messtechnik, LRT2, Department fuer Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Reichart, P. [Universitaet der Bundeswehr Muenchen, Institut fuer Angewandte Physik und Messtechnik, LRT2, Department fuer Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Carli, W. [Maier-Leibniz-Laboraturium der LMU und TU Muenchen, 85478 Garching (Germany); Greubel, C.; Peeper, K. [Universitaet der Bundeswehr Muenchen, Institut fuer Angewandte Physik und Messtechnik, LRT2, Department fuer Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Hartung, P. [Maier-Leibniz-Laboraturium der LMU und TU Muenchen, 85478 Garching (Germany); Dollinger, G. [Universitaet der Bundeswehr Muenchen, Institut fuer Angewandte Physik und Messtechnik, LRT2, Department fuer Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany)

    2012-02-15

    In order to improve the lateral resolution of the 3D hydrogen microscopy by proton-proton scattering at the Munich microprobe SNAKE, we have installed a new multicusp ion source for negative hydrogen ions manufactured by HVEE at the Munich 14 MV tandem accelerator that boosts the proton beam brilliance with the potential to reduce the beam diameter at the focal plane of SNAKE. We measured a beam brilliance B = 27 A m{sup -2} rad{sup -2} eV{sup -1} directly behind the ion source that is at the space charge limit for conventional ion sources. After preacceleration to in total 180 keV beam energy we measure a slightly reduced beam brilliance of B = 10 {mu}A mm{sup -2} mrad{sup -2} MeV{sup -1}. For injection into the tandem accelerator, the extracted H{sup -}-current of the multicusp source of 1 mA is reduced to about 10 {mu}A because of radiation safety regulations and heating problems at the object slits of SNAKE. Due to beam oscillations and influences of the terminal stripper of the tandem we measured a reduced beam brilliance of 0.8 {mu}A mm{sup -2} mrad{sup -2} MeV{sup -1} in front of SNAKE at 25 MeV but still being nearly 10 times larger than measured with any other ion source.

  8. High pressure and high temperature apparatus

    Science.gov (United States)

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  9. Ex-situ tracking solid oxide cell electrode microstructural evolution in a redox cycle by high resolution ptychographic nanotomography

    DEFF Research Database (Denmark)

    De Angelis, Salvatore; Jørgensen, Peter Stanley; Esposito, Vincenzo

    2017-01-01

    For solid oxide fuel and electrolysis cells, precise tracking of 3D microstructural change in the electrodes during operation is considered critical to understand the complex relationship between electrode microstructure and performance. Here, for the first time, we report a significant step...... towards this aim by visualizing a complete redox cycle in a solid oxide cell (SOC) electrode. The experiment demonstrates synchrotron-based ptychography as a method of imaging SOC electrodes, providing an unprecedented combination of 3D image quality and spatial resolution among non-destructive imaging...... techniques. Spatially registered 3D reconstructions of the same location in the electrode clearly show the evolution of the microstructure from the pristine state to the oxidized state and to the reduced state. A complete mechanical destruction of the zirconia backbone is observed via grain boundary fracture...

  10. High frequency, high power capacitor development

    Science.gov (United States)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  11. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur....... Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  12. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  13. High Redshift GRBs

    Science.gov (United States)

    Gehrels, Neil; Cannizzo, John K.

    2012-01-01

    The Swift mission has opened a new, high redshift window on the universe. In this review we provide an overview of gamma-ray burst (GRB) science, describe the Swift mission, discuss high-z GRBs and tools for high-z studies, and look forward at future capabilities. A new mission concept - Lobster - is described that would monitor the X-ray sky at order of magnitude higher sensitivity than current missions.

  14. High-Temperature Superconductivity

    Science.gov (United States)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  15. High temperature refrigerator

    Science.gov (United States)

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  16. High enthalpy gas dynamics

    CERN Document Server

    Rathakrishnan, Ethirajan

    2014-01-01

    This is an introductory level textbook which explains the elements of high temperature and high-speed gas dynamics. written in a clear and easy to follow style, the author covers all the latest developments in the field including basic thermodynamic principles, compressible flow regimes and waves propagation in one volume covers theoretical modeling of High Enthalpy Flows, with particular focus on problems in internal and external gas-dynamic flows, of interest in the fields of rockets propulsion and hypersonic aerodynamics High enthalpy gas dynamics is a compulsory course for aerospace engine

  17. High blood cholesterol levels

    Science.gov (United States)

    Cholesterol - high; Lipid disorders; Hyperlipoproteinemia; Hyperlipidemia; Dyslipidemia; Hypercholesterolemia ... There are many types of cholesterol. The ones talked about most are: ... lipoprotein (HDL) cholesterol -- often called "good" cholesterol ...

  18. Athletes at High Altitude.

    Science.gov (United States)

    Khodaee, Morteza; Grothe, Heather L; Seyfert, Jonathan H; VanBaak, Karin

    2016-01-01

    Athletes at different skill levels perform strenuous physical activity at high altitude for a variety of reasons. Multiple team and endurance events are held at high altitude and may place athletes at increased risk for developing acute high altitude illness (AHAI). Training at high altitude has been a routine part of preparation for some of the high level athletes for a long time. There is a general belief that altitude training improves athletic performance for competitive and recreational athletes. A review of relevant publications between 1980 and 2015 was completed using PubMed and Google Scholar. Clinical review. Level 3. AHAI is a relatively uncommon and potentially serious condition among travelers to altitudes above 2500 m. The broad term AHAI includes several syndromes such as acute mountain sickness (AMS), high altitude pulmonary edema (HAPE), and high altitude cerebral edema (HACE). Athletes may be at higher risk for developing AHAI due to faster ascent and more vigorous exertion compared with nonathletes. Evidence regarding the effects of altitude training on athletic performance is weak. The natural live high, train low altitude training strategy may provide the best protocol for enhancing endurance performance in elite and subelite athletes. High altitude sports are generally safe for recreational athletes, but they should be aware of their individual risks. Individualized and appropriate acclimatization is an essential component of injury and illness prevention.

  19. High voltage engineering

    CERN Document Server

    Rizk, Farouk AM

    2014-01-01

    Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selec

  20. Local structure and lattice dynamics study of low dimensional materials using atomic pair distribution function and high energy resolution inelastic x-ray scattering

    Science.gov (United States)

    Shi, Chenyang

    Structure and dynamics lie at the heart of the materials science. A detailed knowledge of both subjects would be foundational in understanding the materials' properties and predicting their potential applications. However, the task becomes increasingly dicult as the particle size is reduced to the nanometer scale. For nanostructured materials their laboratory x-ray scattering patterns are overlapped and broadened, making structure determination impossible. Atomic pair distribution function technique based on either synchrotron x-ray or neutron scattering data is known as the tool of choice for probing local structures. However, to solve the "structure problem" in low-dimensional materials with PDF is still challenging. For example for 2D materials of interest in this thesis the crystallographic modeling approach often yields unphysical thermal factors along stacking direction where new chemical intuitions about their actual structures and new modeling methodology/program are needed. Beyond this, lattice dynamical investigations on nanosized particles are extremely dicult. Laboratory tools such as Raman and infra-red only probe phonons at Brillouin zone center. Although in literature there are a great number of theoretical studies of their vibrational properties based on either empirical force elds or density functional theory, various approximations made in theories make the theoretical predictions less reliable. Also, there lacks the direct experiment result to validate the theory against. In this thesis, we studied the structure and dynamics of a wide variety of technologically relevant low-dimensional materials through synchrotron based x-ray PDF and high energy resolution inelastic x-ray scattering (HERIX) techniques. By collecting PDF data and employing advanced modeling program such as DiPy-CMI, we successfully determined the atomic structures of (i) emerging Ti3C2, Nb4C3 MXenes (transition metal carbides and/or nitrides) that are promising for energy storage

  1. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... A A A Listen En Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical term for high ... function (data) { $('#survey-errors').remove(); $('.survey-form .form-group .survey-alert-wrap').remove(); if (data.submitSurveyResponse.success == ' ...

  2. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... other risk factors, like diabetes, you may need treatment. How does high blood pressure affect pregnant women? A few women will get ... HIV, Birth Control Heart Health for Women Pregnancy Menopause More Women's Health ... High Blood Pressure--Medicines to Help You Women and Diabetes Heart ...

  3. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Diagnosing Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day Diabetes Basics ...

  4. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Research & Practice Ways to Give Close Are You at Risk? Home Prevention Diagnosing Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ...

  5. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs

  6. Proxmox high availability

    CERN Document Server

    Cheng, Simon MC

    2014-01-01

    If you want to know the secrets of virtualization and how to implement high availability on your services, this is the book for you. For those of you who are already using Proxmox, this book offers you the chance to build a high availability cluster with a distributed filesystem to further protect your system from failure.

  7. High coking value pitch

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

    2014-06-10

    A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

  8. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... around 4:00 a.m. to 5:00 a.m.). What are the Symptoms of Hyperglycemia? The signs and symptoms include the following: High blood glucose High levels of sugar in the urine Frequent urination Increased ...

  9. High Productivity Aluminum Manufacturing

    Science.gov (United States)

    2013-07-01

    recommended not to continue this program to the planned second year, Phase 2 tasks. 15. SUBJECT TERMS butt welding, LCS, high deposition , GMAW...10 Figure 1B High Deposition GMAW...and length of the “stem of wine glass” for each weld condition

  10. High-Conflict Divorce.

    Science.gov (United States)

    Johnston, Janet R.

    1994-01-01

    Reviews available research studies of high-conflict divorce and its effects on children. Factors believed to contribute to high-conflict divorce are explored, and a model of their interrelationships is proposed. Dispute resolution, intervention, and prevention programs are discussed, and implications for social policy are outlined. (SLD)

  11. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... You at Risk? Home Prevention Diagnosing Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day Diabetes Basics ...

  12. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know ... We Support Your Doctor Clinical Practice Guidelines Patient Education Materials Scientific ... for School Projects How to Reference Our Site Diabetes Basics ...

  13. Inexpensive high vacuum feedthroughs.

    Science.gov (United States)

    Gerber, S.; Post, D.

    1973-01-01

    Description of the use of rigid coaxial cable in the construction of high vacuum coaxial and coaxial push-pull rotary motion feedthroughs. This type of feedthroughs is shown to be extremely cheap and simple to make and modify. It can be used for moderately high voltages and provides a continuous, well shielded, low-noise feedthrough cable in any desired configuration.

  14. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High ... Holiday Meal Planning What Can I Eat? Making Healthy Food Choices Diabetes ... Tips Eating Out Quick Meal Ideas Snacks Nutrient Content Claims ...

  15. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Your Carbs Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely Get And Stay Fit Types ... the following: High blood glucose High levels of sugar in the ... Part of managing your diabetes is checking your blood glucose often. Ask your ...

  16. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  17. High potassium level

    Science.gov (United States)

    ... level URL of this page: //medlineplus.gov/ency/article/001179.htm High potassium level To use the sharing features on this page, ... There are often no symptoms with a high level of potassium. When symptoms do occur, they may include: Nausea Slow, weak, or irregular pulse Sudden collapse, when ...

  18. High temperature sensor

    Science.gov (United States)

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  19. High-pressure crystallography

    Science.gov (United States)

    Katrusiak, A.

    2008-01-01

    The history and development of high-pressure crystallography are briefly described and examples of structural transformations in compressed compounds are given. The review is focused on the diamond-anvil cell, celebrating its 50th anniversary this year, the principles of its operation and the impact it has had on high-pressure X-ray diffraction.

  20. High assurance services computing

    CERN Document Server

    2009-01-01

    Covers service-oriented technologies in different domains including high assurance systemsAssists software engineers from industry and government laboratories who develop mission-critical software, and simultaneously provides academia with a practitioner's outlook on the problems of high-assurance software development

  1. Chemistry of high energies

    International Nuclear Information System (INIS)

    Bugaenko, L.T.; Kuz'min, M.G.; Polak, L.S.

    1988-01-01

    An attempt was made to integrate plasma chemistry, radiation chemistry and photochemistry under the name of ''Chemistry of high energies''. Theoretical background of these disciplines, as well as principles of their technology (methods of energy supply, methods of absorbed energy determination, apparatus and processes) are considered. Application of processes of high energy chemistry in engineering is discussed. 464 refs.; 85 figs.; 59 tabs

  2. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  3. High current high accuracy IGBT pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 μF capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles

  4. High redshift quasars and high metallicities

    Science.gov (United States)

    Ferland, Gary J.

    1997-01-01

    A large-scale code called Cloudy was designed to simulate non-equilibrium plasmas and predict their spectra. The goal was to apply it to studies of galactic and extragalactic emission line objects in order to reliably deduce abundances and luminosities. Quasars are of particular interest because they are the most luminous objects in the universe and the highest redshift objects that can be observed spectroscopically, and their emission lines can reveal the composition of the interstellar medium (ISM) of the universe when it was well under a billion years old. The lines are produced by warm (approximately 10(sup 4)K) gas with moderate to low density (n less than or equal to 10(sup 12) cm(sup -3)). Cloudy has been extended to include approximately 10(sup 4) resonance lines from the 495 possible stages of ionization of the lightest 30 elements, an extension that required several steps. The charge transfer database was expanded to complete the needed reactions between hydrogen and the first four ions and fit all reactions with a common approximation. Radiative recombination rate coefficients were derived for recombination from all closed shells, where this process should dominate. Analytical fits to Opacity Project (OP) and other recent photoionization cross sections were produced. Finally, rescaled OP oscillator strengths were used to compile a complete set of data for 5971 resonance lines. The major discovery has been that high redshift quasars have very high metallicities and there is strong evidence that the quasar phenomenon is associated with the birth of massive elliptical galaxies.

  5. High-pressure microfluidics

    Science.gov (United States)

    Hjort, K.

    2015-03-01

    When using appropriate materials and microfabrication techniques, with the small dimensions the mechanical stability of microstructured devices allows for processes at high pressures without loss in safety. The largest area of applications has been demonstrated in green chemistry and bioprocesses, where extraction, synthesis and analyses often excel at high densities and high temperatures. This is accessible through high pressures. Capillary chemistry has been used since long but, just like in low-pressure applications, there are several potential advantages in using microfluidic platforms, e.g., planar isothermal set-ups, large local variations in geometries, dense form factors, small dead volumes and precisely positioned microstructures for control of reactions, catalysis, mixing and separation. Other potential applications are in, e.g., microhydraulics, exploration, gas driven vehicles, and high-pressure science. From a review of the state-of-art and frontiers of high pressure microfluidics, the focus will be on different solutions demonstrated for microfluidic handling at high pressures and challenges that remain.

  6. High power VME system

    International Nuclear Information System (INIS)

    Murakami, T.

    1990-01-01

    While the power consumption of CAMAC and VME modules is less than 40 watts per module and that of TKO and FASTBUS is much more, the former group consumes twice as much power per unit surface area as the latter group. The area occupied by components amounts to 60 percent of the total board area in TKO Super Controller Head Module and to 83 percent in VME Memory Partner module. Such a high packing density results in a high power density, and cooling of such modules becomes difficult. Despite these, such electronics systems with very high packing density are expected to become popular. The present report summarizes studies on various aspects of high power systems. The studies cover the cooling, routing power, and resistance to fire. A forced air cooling unit for TKO is developed. It serves to achieve a very high air flow rate for cooling, but high power systems would require better temperature compensation than other systems since one cannot expect a uniform ambient temperature distribution to be achieved over the board surface. It might even prohibit high resolution circuits to function to full capacity. Another study is made on a backplane that can supply much more current than conventional ones. A special power connector is developed which can supply currents up to 50 ampere. (N.K.)

  7. High current ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.

    1989-06-01

    The concept of high current ion source is both relative and evolutionary. Within the domain of one particular kind of ion source technology a current of microamperers might be 'high', while in another area a current of 10 Amperes could 'low'. Even within the domain of a single ion source type, what is considered high current performance today is routinely eclipsed by better performance and higher current output within a short period of time. Within their fields of application, there is a large number of kinds of ion sources that can justifiably be called high current. Thus, as a very limited example only, PIGs, Freemen sources, ECR sources, duoplasmatrons, field emission sources, and a great many more all have their high current variants. High current ion beams of gaseous and metallic species can be generated in a number of different ways. Ion sources of the kind developed at various laboratories around the world for the production of intense neutral beams for controlled fusion experiments are used to form large area proton deuteron beams of may tens of Amperes, and this technology can be used for other applications also. There has been significant progress in recent years in the use of microwave ion sources for high current ion beam generation, and this method is likely to find wide application in various different field application. Finally, high current beams of metal ions can be produced using metal vapor vacuum arc ion source technology. After a brief consideration of high current ion source design concepts, these three particular methods are reviewed in this paper

  8. High flying physics

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Cosmic ray physicists have always had to aim high. In the constant search for interactions produced as close as possible to the immensely high primary particles entering the earth's atmosphere from outer space, they have installed experiments on high mountain peaks and flown detectors aloft in balloons. In these studies, there have been periodic sightings of remarkable configurations of secondary particles. These events, many of which bear exotic names like Centauro, Andromeda, Texas Lone Star, etc., frequently defy explanation in terms of conventional physics ideas and give a glimpse of what may lie beyond the behaviour seen so far under laboratory conditions

  9. High voltage test techniques

    CERN Document Server

    Kind, Dieter

    2001-01-01

    The second edition of High Voltage Test Techniques has been completely revised. The present revision takes into account the latest international developments in High Voltage and Measurement technology, making it an essential reference for engineers in the testing field.High Voltage Technology belongs to the traditional area of Electrical Engineering. However, this is not to say that the area has stood still. New insulating materials, computing methods and voltage levels repeatedly pose new problems or open up methods of solution; electromagnetic compatibility (EMC) or components and systems al

  10. High-density lipoprotein cholesterol: How High

    Directory of Open Access Journals (Sweden)

    G Rajagopal

    2012-01-01

    Full Text Available The high-density lipoprotein cholesterol (HDL-C is considered anti-atherogenic good cholesterol. It is involved in reverse transport of lipids. Epidemiological studies have found inverse relationship of HDL-C and coronary heart disease (CHD risk. When grouped according to HDL-C, subjects having HDL-C more than 60 mg/dL had lesser risk of CHD than those having HDL-C of 40-60 mg/dL, who in turn had lesser risk than those who had HDL-C less than 40 mg/dL. No upper limit for beneficial effect of HDL-C on CHD risk has been identified. The goals of treating patients with low HDL-C have not been firmly established. Though many drugs are known to improve HDL-C concentration, statins are proven to improve CHD risk and mortality. Cholesteryl ester transfer protein (CETP is involved in metabolism of HDL-C and its inhibitors are actively being screened for clinical utility. However, final answer is still awaited on CETP-inhibitors.

  11. High-tech entrepreneurship

    DEFF Research Database (Denmark)

    Bernasconi, Michel; Harris, Simon; Mønsted, Mette

    planning models, and also means that the management skills used in this area must be more responsive to issues of risk, uncertainty and evaluation than in conventional business opportunities. Whilst entrepreneurial courses do reflect the importance of high-tech businesses, they often lack the resources......; entrepreneurial finance; marketing technological innovations; and high-tech incubation management. Including case studies to give practical insights into genuine business examples, this comprehensive book has a distinctly 'real-world' focus throughout.Edited by a multi-national team, this comprehensive book...... focuses on the blend of theory and practice needed to inform advanced entrepreneurship students of the specifics of high-tech start-ups. Key topics covered include: uncertainty and innovation; entrepreneurial finance; marketing technological innovations; and high-tech incubation management...

  12. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... your blood and then treating high blood glucose early will help you avoid problems associated with hyperglycemia. ... to detect hyperglycemia so you can treat it early — before it gets worse. If you're new ...

  13. High-Speed Photography

    International Nuclear Information System (INIS)

    Paisley, D.L.; Schelev, M.Y.

    1998-01-01

    The applications of high-speed photography to a diverse set of subjects including inertial confinement fusion, laser surgical procedures, communications, automotive airbags, lightning etc. are briefly discussed. (AIP) copyright 1998 Society of Photo-Optical Instrumentation Engineers

  14. High Performance Macromolecular Material

    National Research Council Canada - National Science Library

    Forest, M

    2002-01-01

    .... In essence, most commercial high-performance polymers are processed through fiber spinning, following Nature and spider silk, which is still pound-for-pound the toughest liquid crystalline polymer...

  15. High Performance Macromolecular Materials

    National Research Council Canada - National Science Library

    Forest, M. G; Choate, Eric; Zheng, Xiaoyu; Zhou, Ruhai; Cui, Zhenlu; Zhou, Hong

    2006-01-01

    ... property characterization. The materials considered are nano-rods and nano-clays in aqueous and polymeric solvents, which are flight technology targets for high performance properties ranging from electrical, thermal...

  16. Responsive design high performance

    CERN Document Server

    Els, Dewald

    2015-01-01

    This book is ideal for developers who have experience in developing websites or possess minor knowledge of how responsive websites work. No experience of high-level website development or performance tweaking is required.

  17. High energy astrophysics

    International Nuclear Information System (INIS)

    Engel, A.R.

    1979-01-01

    High energy astrophysical research carried out at the Blackett Laboratory, Imperial College, London is reviewed. Work considered includes cosmic ray particle detection, x-ray astronomy, gamma-ray astronomy, gamma and x-ray bursts. (U.K.)

  18. High-tech entrepreneurship

    DEFF Research Database (Denmark)

    Bernasconi, Michel; Harris, Simon; Mønsted, Mette

    ; entrepreneurial finance; marketing technological innovations; and high-tech incubation management. Including case studies to give practical insights into genuine business examples, this comprehensive book has a distinctly 'real-world' focus throughout.Edited by a multi-national team, this comprehensive book......High-tech businesses form a crucial part of entrepreneurial activity - in some ways representing very typical examples of entrepreneurship, yet in some ways representing quite different challenges. The uncertainty in innovation and advanced technology makes it difficult to use conventional economic...... focuses on the blend of theory and practice needed to inform advanced entrepreneurship students of the specifics of high-tech start-ups. Key topics covered include: uncertainty and innovation; entrepreneurial finance; marketing technological innovations; and high-tech incubation management...

  19. Physics and high technology

    International Nuclear Information System (INIS)

    Shao Liqin; Ma Junru.

    1992-01-01

    At present, the development of high technology has opened a new chapter in world's history of science and technology. This review describes the great impact of physics on high technology in six different fields (energy technology, new materials, information technology, biotechnology, space technology, and Ocean technology). It is shown that the new concepts and new methods created in physics and the special conditions and measurements established for physics researches not only deepen human's knowledge about nature but also point out new directions for engineering and technology. The achievements in physics have been more and more applied to high technology, while the development of high technology has explored some new research areas and raised many novel, important projects for physics. Therefore, it is important for us to strengthen the research on these major problems in physics

  20. High Velocity Gas Gun

    Science.gov (United States)

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  1. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High ... You at Risk? Diagnosis Lower Your Risk Risk Test Alert Day Prediabetes My Health Advisor Tools to ...

  2. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ Are You ... m.). What are the Symptoms of Hyperglycemia? The signs and symptoms include the following: High blood glucose ...

  3. High Plains Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — These digital maps contain information on the altitude of the base, the extent, and the 1991 potentiometric surface (i.e. altitude of the water table) of the High...

  4. High Blood Pressure

    Science.gov (United States)

    ... can help you control high blood pressure. These habits include: Healthy eating Being physically active Maintaining a healthy weight Limiting alcohol intake Managing and coping with stress To help make lifelong lifestyle changes, try making ...

  5. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... and eAG Hypoglycemia (Low blood glucose) Hyperglycemia (High blood glucose) Dawn Phenomenon Checking for Ketones Tight Diabetes Control donate en -- A Future Without Diabetes - a-future- ...

  6. Very high multiplicity physics

    CERN Document Server

    Mandjavidze, I D

    2001-01-01

    The status of the programme of studying processes with high multiplicity, when inelasticity is close to unity, is considered. The definition of the processes under study is given, and the motivation of investigations and the experimentally observed predictions are discussed

  7. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day ... DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing ...

  8. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  9. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Add less salt to your food and avoid fast food and other foods that are high in salt. Know your blood pressure and have it ... a Health Problem Cholesterol Smart Snacking Yoga for Stress Relief ...

  10. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... such as family conflicts or school or dating problems. You may have experienced the dawn phenomenon (a ... high blood glucose early will help you avoid problems associated with hyperglycemia. How Do I Treat Hyperglycemia? ...

  11. HIGH-ALTITUDE ILLNESS

    Directory of Open Access Journals (Sweden)

    Dwitya Elvira

    2015-05-01

    Full Text Available AbstrakHigh-altitude illness (HAI merupakan sekumpulan gejala paru dan otak yang terjadi pada orang yang baru pertama kali mendaki ke ketinggian. HAI terdiri dari acute mountain sickness (AMS, high-altitude cerebral edema (HACE dan high-altitude pulmonary edema (HAPE. Tujuan tinjauan pustaka ini adalah agar dokter dan wisatawan memahami risiko, tanda, gejala, dan pengobatan high-altitude illness. Perhatian banyak diberikan terhadap penyakit ini seiring dengan meningkatnya popularitas olahraga ekstrim (mendaki gunung tinggi, ski dan snowboarding dan adanya kemudahan serta ketersediaan perjalanan sehingga jutaan orang dapat terpapar bahaya HAI. Di Pherice, Nepal (ketinggian 4343 m, 43% pendaki mengalami gejala AMS. Pada studi yang dilakukan pada tempat wisata di resort ski Colorado, Honigman menggambarkan kejadian AMS 22% pada ketinggian 1850 m sampai 2750 m, sementara Dean menunjukkan 42% memiliki gejala pada ketinggian 3000 m. Aklimatisasi merupakan salah satu tindakan pencegahan yang dapat dilakukan sebelum pendakian, selain beberapa pengobatan seperti asetazolamid, dexamethasone, phosopodiestrase inhibitor, dan ginko biloba.Kata kunci: high-altitude illness, acute mountain sickness, edema cerebral, pulmonary edema AbstractHigh-altitude illness (HAI is symptoms of lung and brain that occurs in people who first climb to altitude. HAI includes acute mountain sickness (AMS, high-altitude cerebral edema (HACE and high altitude pulmonary edema (HAPE. The objective of this review was to understand the risks, signs, symptoms, and treatment of high-altitude illness. The attention was given to this disease due to the rising popularity of extreme sports (high mountain climbing, skiing and snowboarding and the ease and availability of the current travelling, almost each year, millions of people could be exposed to the danger of HAI. In Pherice, Nepal (altitude 4343 m, 43% of climbers have symptoms of AMS. Furthermore, in a study conducted at sites in

  12. High-pressure tritium

    International Nuclear Information System (INIS)

    Coffin, D.O.

    1976-01-01

    Some solutions to problems of compressing and containing tritium gas to 200 MPa at 700 0 K are discussed. The principal emphasis is on commercial compressors and high-pressure equipment that can be easily modified by the researcher for safe use with tritium. Experience with metal bellows and diaphragm compressors has been favorable. Selection of materials, fittings, and gauges for high-pressure tritium work is also reviewed briefly

  13. High speed heterostructure devices

    CERN Document Server

    Beer, Albert C; Willardson, R K; Kiehl, Richard A; Sollner, T C L Gerhard

    1994-01-01

    Volume 41 includes an in-depth review of the most important, high-speed switches made with heterojunction technology. This volume is aimed at the graduate student or working researcher who needs a broad overview andan introduction to current literature. Key Features * The first complete review of InP-based HFETs and complementary HFETs, which promise very low power and high speed * Offers a complete, three-chapter review of resonant tunneling * Provides an emphasis on circuits as well as devices.

  14. High performance polymeric foams

    International Nuclear Information System (INIS)

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-01-01

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy

  15. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  16. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  17. High-temperature sensor

    Science.gov (United States)

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  18. High temperature pressure gauge

    Science.gov (United States)

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  19. Aspirated High Pressure Compressor

    Science.gov (United States)

    2006-08-01

    suggested by the General Electric Company based on an advanced military engine concept intended for high speed flight. The resultant high flight...section, consisting of the two rotors, each on an computed points. The peak pressure ratio is 3.08 and the peak independent, electric motor-driven...instrumentation along Moto . .. ,oto2 with the test error analysis were given by Onnee [14). SFlywheel 2 BLOWDOWN OPERATION T--’..Exit-t-rottle

  20. High Caloric Diet for ALS Patients: High Fat, High Carbohydrate or High Protein

    Directory of Open Access Journals (Sweden)

    Sarvin Sanaie

    2015-01-01

    Full Text Available ALS is a fatal motor neurodegenerative disease characterized by muscle atrophy and weakness, dysarthria, and dysphagia. The mean survival of ALS patients is three to five years, with 50% of those diagnosed dying within three years of onset (1. A multidisciplinary approach is crucial to set an appropriate plan for metabolic and nutritional support in ALS. Nutritional management incorporates a continuous assessment and implementation of dietary modifications throughout the duration of the disease. The nutritional and metabolic approaches to ALS should start when the diagnosis of ALS is made and should become an integral part of the continuous care to the patient, including nutritional surveillance, dietary counseling, management of dysphagia, and enteral nutrition when needed. Malnutrition and lean body mass loss are frequent findings in ALS patients necessitating comprehensive energy requirement assessment for these patients. Malnutrition is an independent prognostic factor for survival in ALS with a 7.7 fold increase in risk of death. Malnutrition is estimated to develop in one quarter to half of people with ALS (2. Adequate calorie and protein provision would diminish muscle loss in this vulnerable group of patients. Although appropriate amount of energy to be administered is yet to be established, high calorie diet is expected to be effective for potential improvement of survival; ALS patients do not normally receive adequate  intake of energy. A growing number of clinicians suspect that a high calorie diet implemented early in their disease may help people with ALS meet their increased energy needs and extend their survival. Certain high calorie supplements appear to be safe and well tolerated by people with ALS according to studies led by Universitäts klinikum Ulm's and, appear to stabilize body weight within 3 months. In a recent study by Wills et al., intake of high-carbohydrate low-fat supplements has been recommended in ALS patients (3

  1. High availability using virtualization

    International Nuclear Information System (INIS)

    Calzolari, Federico; Arezzini, Silvia; Ciampa, Alberto; Mazzoni, Enrico; Domenici, Andrea; Vaglini, Gigliola

    2010-01-01

    High availability has always been one of the main problems for a data center. Till now high availability was achieved by host per host redundancy, a highly expensive method in terms of hardware and human costs. A new approach to the problem can be offered by virtualization. Using virtualization, it is possible to achieve a redundancy system for all the services running on a data center. This new approach to high availability allows the running virtual machines to be distributed over a small number of servers, by exploiting the features of the virtualization layer: start, stop and move virtual machines between physical hosts. The 3RC system is based on a finite state machine, providing the possibility to restart each virtual machine over any physical host, or reinstall it from scratch. A complete infrastructure has been developed to install operating system and middleware in a few minutes. To virtualize the main servers of a data center, a new procedure has been developed to migrate physical to virtual hosts. The whole Grid data center SNS-PISA is running at the moment in virtual environment under the high availability system.

  2. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  3. High availability using virtualization

    Science.gov (United States)

    Calzolari, Federico

    2009-10-01

    High availability has always been one of the main problems for a data center. Till now high availability was achieved by host per host redundancy, a highly expensive method in terms of hardware and human costs. A new approach to the problem can be offered by virtualization. Using virtualization, it is possible to achieve a redundancy system for all the services running on a data center. This new approach to high availability allows to share the running virtual machines over the servers up and running, by exploiting the features of the virtualization layer: start, stop and move virtual machines between physical hosts. The system (3RC) is based on a finite state machine with hysteresis, providing the possibility to restart each virtual machine over any physical host, or reinstall it from scratch. A complete infrastructure has been developed to install operating system and middleware in a few minutes. To virtualize the main servers of a data center, a new procedure has been developed to migrate physical to virtual hosts. The whole Grid data center SNS-PISA is running at the moment in virtual environment under the high availability system. As extension of the 3RC architecture, several storage solutions have been tested to store and centralize all the virtual disks, from NAS to SAN, to grant data safety and access from everywhere. Exploiting virtualization and ability to automatically reinstall a host, we provide a sort of host on-demand, where the action on a virtual machine is performed only when a disaster occurs.

  4. High Altitude and Heart

    Directory of Open Access Journals (Sweden)

    Murat Yalcin

    2011-04-01

    Full Text Available Nowadays, situations associated with high altitude such as mountaineering, aviation increasingly draw the attention of people. Gas pressure decreases and hypoxia is encountered when climbing higher. Physiological and pathological responses of human body to different heights are different. Therefore, physiological and pathological changes that may occur together with height and to know the clinical outcomes of these are important . Acute mountain sickness caused by high altitude and high altitude cerebral edema are preventable diseases with appropriate precautions. Atmospheric oxygen decreasing with height, initiates many adaptive mechanisms. These adaptation mechanisms and acclimatization vary widely among individuals because of reasons such as environmental factors, exercise and cold. High altitude causes different changes in the cardiovascular system with various mechanisms. Although normal individuals easily adapt to these changes, this situation can lead to undesirable results in people with heart disease. For this reason, it should be known the effective evaluation of the people with known heart disease before traveling to high altitude and the complications due to the changes with height and the recommendations can be made to these patients. [TAF Prev Med Bull 2011; 10(2.000: 211-222

  5. Clustering high dimensional data

    DEFF Research Database (Denmark)

    Assent, Ira

    2012-01-01

    for clustering are required. Consequently, recent research has focused on developing techniques and clustering algorithms specifically for high-dimensional data. Still, open research issues remain. Clustering is a data mining task devoted to the automatic grouping of data based on mutual similarity. Each cluster......High-dimensional data, i.e., data described by a large number of attributes, pose specific challenges to clustering. The so-called ‘curse of dimensionality’, coined originally to describe the general increase in complexity of various computational problems as dimensionality increases, is known...... that provide different cluster models and different algorithmic approaches for cluster detection. Common to all approaches is the fact that they require some underlying assessment of similarity between data objects. In this article, we provide an overview of the effects of high-dimensional spaces...

  6. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  7. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1993-01-01

    Brief reports are given on the work of several professors. The following areas are included: quantum chromodynamics calculations using numerical lattice gauge theory and a high-speed parallel computer; the ''spin wave'' description of bosonic particles moving on a lattice with same-site exclusion; a high-temperature expansion to 13th order for the O(4)-symmetric φ 4 model on a four-dimensional F 4 lattice; spin waves and lattice bosons; superconductivity of C 60 ; meson-meson interferometry in heavy-ion collisions; baryon number violation in the Standard Model in high-energy collisions; hard thermal loops in QCD; electromagnetic interactions of anyons; the relation between Bose-Einstein and BCS condensations; Euclidean wormholes with topology S 1 x S 2 x R; vacuum decay and symmetry breaking by radiative corrections; inflationary solutions to the cosmological horizon and flatness problems; and magnetically charged black holes

  8. High resolution data acquisition

    Science.gov (United States)

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  9. High voltage power supply

    Science.gov (United States)

    Ruitberg, A. P.; Young, K. M. (Inventor)

    1985-01-01

    A high voltage power supply is formed by three discrete circuits energized by a battery to provide a plurality of concurrent output signals floating at a high output voltage on the order of several tens of kilovolts. In the first two circuits, the regulator stages are pulse width modulated and include adjustable ressistances for varying the duty cycles of pulse trains provided to corresponding oscillator stages while the third regulator stage includes an adjustable resistance for varying the amplitude of a steady signal provided to a third oscillator stage. In the first circuit, the oscillator, formed by a constant current drive network and a tuned resonant network included a step up transformer, is coupled to a second step up transformer which, in turn, supplies an amplified sinusoidal signal to a parallel pair of complementary poled rectifying, voltage multiplier stages to generate the high output voltage.

  10. High brightness electron accelerator

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of accelerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity. 5 figs

  11. High-tech entrepreneurship

    DEFF Research Database (Denmark)

    Bernasconi, Michel; Harris, Simon; Mønsted, Mette

    High-tech businesses form a crucial part of entrepreneurial activity - in some ways representing very typical examples of entrepreneurship, yet in some ways representing quite different challenges. The uncertainty in innovation and advanced technology makes it difficult to use conventional economic......; entrepreneurial finance; marketing technological innovations; and high-tech incubation management. Including case studies to give practical insights into genuine business examples, this comprehensive book has a distinctly 'real-world' focus throughout.Edited by a multi-national team, this comprehensive book...... planning models, and also means that the management skills used in this area must be more responsive to issues of risk, uncertainty and evaluation than in conventional business opportunities. Whilst entrepreneurial courses do reflect the importance of high-tech businesses, they often lack the resources...

  12. High-pressure crystallography.

    Science.gov (United States)

    McMahon, Malcolm I

    2012-01-01

    The ability of pressure to change inter-atomic distances strongly leads to a wide range of pressure-induced phenomena at high pressures: for example metallisation, amorphisation, superconductivity and polymerisation. Key to understanding these phenomena is the determination of the crystal structure using x-ray or neutron diffraction. The tools necessary to compress matter above 1 million atmospheres (1 Megabar or 100 GPa) were established by the mid 1970s, but it is only since the early 1990s that we have been able to determine the detailed crystal structures of materials at such pressures. In this chapter I briefly review the history of high-pressure crystallography, and describe the techniques used to obtain and study materials at high pressure. Recent crystallographic studies of elements are then used to illustrate what is now possible using modern detectors and synchrotron sources. Finally, I speculate as to what crystallographic studies might become possible over the next decade.

  13. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur....... Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...... efficient to operate and valuable for building communities. Herein discussed are two successful examples of low energy prefabricated housing projects built in Copenhagen Denmark, which embraced both the constraints and possibilities offered by prefabrication....

  14. High energy radiation detector

    International Nuclear Information System (INIS)

    Vosburgh, K.G.

    1975-01-01

    The high energy radiation detector described comprises a set of closely spaced wedge reflectors. Each wedge reflector is composed of three sides forming identical isoceles triangles with a common apex and an open base forming an equilateral triangle. The length of one side of the base is less than the thickness of the coat of material sensitive to high energy radiation. The wedge reflectors reflect the light photons spreading to the rear of the coat in such a way that each reflected track is parallel to the incident track of the light photon spreading rearwards. The angle of the three isosceles triangles with a common apex is between 85 and 95 deg. The first main surface of the coat of high energy radiation sensitive material is in contact with the projecting edges of the surface of the wedge reflectors of the reflecting element [fr

  15. Micromachined Chip Scale Thermal Sensor for Thermal Imaging.

    Science.gov (United States)

    Shekhawat, Gajendra S; Ramachandran, Srinivasan; Jiryaei Sharahi, Hossein; Sarkar, Souravi; Hujsak, Karl; Li, Yuan; Hagglund, Karl; Kim, Seonghwan; Aden, Gary; Chand, Ami; Dravid, Vinayak P

    2018-02-27

    The lateral resolution of scanning thermal microscopy (SThM) has hitherto never approached that of mainstream atomic force microscopy, mainly due to poor performance of the thermal sensor. Herein, we report a nanomechanical system-based thermal sensor (thermocouple) that enables high lateral resolution that is often required in nanoscale thermal characterization in a wide range of applications. This thermocouple-based probe technology delivers excellent lateral resolution (∼20 nm), extended high-temperature measurements >700 °C without cantilever bending, and thermal sensitivity (∼0.04 °C). The origin of significantly improved figures-of-merit lies in the probe design that consists of a hollow silicon tip integrated with a vertically oriented thermocouple sensor at the apex (low thermal mass) which interacts with the sample through a metallic nanowire (50 nm diameter), thereby achieving high lateral resolution. The efficacy of this approach to SThM is demonstrated by imaging embedded metallic nanostructures in silica core-shell, metal nanostructures coated with polymer films, and metal-polymer interconnect structures. The nanoscale pitch and extremely small thermal mass of the probe promise significant improvements over existing methods and wide range of applications in several fields including semiconductor industry, biomedical imaging, and data storage.

  16. JUNOS High Availability

    CERN Document Server

    Sonderegger, James; Milne, Kieran; Palislamovic, Senad

    2009-01-01

    Whether your network is a complex carrier or just a few machines supporting a small enterprise, JUNOS High Availability will help you build reliable and resilient networks that include Juniper Networks devices. With this book's valuable advice on software upgrades, scalability, remote network monitoring and management, high-availability protocols such as VRRP, and more, you'll have your network uptime at the five, six, or even seven nines -- or 99.99999% of the time. Rather than focus on "greenfield" designs, the authors explain how to intelligently modify multi-vendor networks. You'll learn

  17. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  18. High availability IT services

    CERN Document Server

    Critchley, Terry

    2014-01-01

    This book starts with the basic premise that a service is comprised of the 3Ps-products, processes, and people. Moreover, these entities and their sub-entities interlink to support the services that end users require to run and support a business. This widens the scope of any availability design far beyond hardware and software. It also increases the potential for service failure for reasons beyond just hardware and software; the concept of logical outages. High Availability IT Services details the considerations for designing and running highly available ""services"" and not just the systems

  19. High-level verification

    CERN Document Server

    Lerner, Sorin; Kundu, Sudipta

    2011-01-01

    Given the growing size and heterogeneity of Systems on Chip (SOC), the design process from initial specification to chip fabrication has become increasingly complex. This growing complexity provides incentive for designers to use high-level languages such as C, SystemC, and SystemVerilog for system-level design. While a major goal of these high-level languages is to enable verification at a higher level of abstraction, allowing early exploration of system-level designs, the focus so far for validation purposes has been on traditional testing techniques such as random testing and scenario-based

  20. High loading uranium plate

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process

  1. High-pressure apparatus

    OpenAIRE

    Schepdael, van, L.J.M.; Bartels, P.V.; Berg, van den, R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which are oriented in the peripheral direction and are embedded in a matrix of epoxy resin or polyurethane. By applying the axial prestress to the pressure vessel (3), the tangential stress is distribut...

  2. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1991-01-01

    This report discusses theoretical research in high energy physics at Columbia University. Some of the research topics discussed are: quantum chromodynamics with dynamical fermions; lattice gauge theory; scattering of neutrinos by photons; atomic physics constraints on the properties of ultralight-ultraweak gauge bosons; black holes; Chern- Simons physics; S-channel theory of superconductivity; charged boson system; gluon-gluon interactions; high energy scattering in the presence of instantons; anyon physics; causality constraints on primordial magnetic manopoles; charged black holes with scalar hair; properties of Chern-Aimona-Higgs solitons; and extended inflationary universe

  3. High School Principals and the High School Journalism Program.

    Science.gov (United States)

    Peterson, Jane W.

    A study asked selected high school principals to respond to statements about the value of high school journalism to the high school student and about the rights and responsibilities of the high school journalist. These responses were then checked against such information as whether or not the high school principal had worked on a high school…

  4. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1992-01-01

    This progress report discusses research by Columbia University staff in high energy physics. Some of the topics discussed are as follows: lattice gauge theory; quantum chromodynamics; parity doublets; solitons; baryon number violation; black holes; magnetic monopoles; gluon plasma; Chern-Simons theory; and the inflationary universe

  5. High surface area calcite

    Science.gov (United States)

    Schultz, L. N.; Andersson, M. P.; Dalby, K. N.; Müter, D.; Okhrimenko, D. V.; Fordsmand, H.; Stipp, S. L. S.

    2013-05-01

    Calcite (CaCO3) is important in many fields—in nature, because it is a component of aquifers, oil reservoirs and prospective CO2 storage sites, and in industry, where it is used in products as diverse as paper, toothpaste, paint, plastic and aspirin. It is difficult to obtain high purity calcite with a high surface area but such material is necessary for industrial applications and for fundamental calcite research. Commercial powder is nearly always contaminated with growth inhibitors such as sugars, citrate or pectin and most laboratory synthesis methods deliver large precipitates, often containing vaterite or aragonite. To address this problem, we (i) adapted the method of carbonating a Ca(OH)2 slurry with CO2 gas to develop the first simple, cheap, safe and reproducible procedure using common laboratory equipment, to obtain calcite that reproducibly had a surface area of 14-17 m2/g and (ii) conducted a thorough characterization of the product. Scanning electron microscopy (SEM) revealed nanometer scale, rhombohedral crystals. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR) confirmed highly crystalline, pure calcite that more closely resembles the dimensions of the biogenic calcite produced by algae in coccoliths than other methods for synthesizing calcite. We suggest that this calcite is useful when purity and high surface area are important.

  6. High Density Matter

    Directory of Open Access Journals (Sweden)

    Stone J.R.

    2013-12-01

    Full Text Available The microscopic composition and properties of matter at super-saturation densities have been the subject of intense investigation for decades. The scarcity of experimental and observational data has led to the necessary reliance on theoretical models. There remains great uncertainty in these models which, of necessity, have to go beyond the over-simple assumption that high density matter consists only of nucleons and leptons. Heavy strange baryons, mesons and quark matter in different forms and phases have to be included to fulfil basic requirements of fundamental laws of physics. In this contribution latest developments in construction of the Equation of State (EoS of high-density matter at zero and finite temperature assuming different composition of matter will be discussed. Critical comparison of model EoS with available experimental data from heavy ion collisions and observations on neutron stars, including gravitational mass, radii and cooling patterns and data on X-ray burst sources and low mass X-ray binaries are made. Fundamental differences between the EoS of low-density, high temperature matter, such as is created in heavy ion collisions and of high-density, low temperature compact objects is discussed.

  7. High voltage electrical injuries

    International Nuclear Information System (INIS)

    Janjua, S.A.

    2002-01-01

    Objective: To highlight the devastating nature and consequences of high voltage electrical injuries and to stress the need for its prevention. Design: It was a retrospective study. Place and duration of study: The study was conducted at Army Burn Centre, Combined Military Hospital Kharian Cantonment, between January 1,1998 to December 31, 2000. Subjects and Methods: All the patients reporting to Army Burn Centre with high voltage electrical injuries were included in the study. The epidemiology of these injuries were studied along with the pattern of their management and outcome in terms of mortality and morbidity. Results: Of all the patients admitted to the Army Burn Center, 5.94% were affected with electrical injuries. They were predominantly males in a ratio of 9.75:1 and mostly in the 3rd and 4th decades of their lives. Seventy percent of these injuries were injuries were work-related and 75% had associated surface burns. There was significant mortality rate of 18.6% and a limb amputation rate of 80% along with professional disability rate of 91% rendering it a highly morbid condition. Conclusion: This study stresses the necessity to educate the general public with regard to the devastating nature of high voltage electrical injury and highlight the importance of prevention. (author)

  8. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Monthly In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online ... Print Page Text Size: A A A Listen En Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the ...

  9. High Energy Materials

    Indian Academy of Sciences (India)

    IAS Admin

    Propellants used in rockets, pyrotechnics used in festivities, explosives used for military purposes, blasting chemicals used in construction activities, etc., are high energy materials. There is a lot of fascinating chemistry and interesting history behind them. This article gives an overview of these aspects, with somewhat more ...

  10. High speed preprocessing system

    Indian Academy of Sciences (India)

    system. The hardware used came in three PCBs of standard double Euro card of size of. 233.4 mm 220 mm excluding the motherboard. The system has passed all MIL-STD qualification tests as below: * Low temperature test: À30 C for duration 16 h and last one hour operational. * High temperature test: ‡55 C for duration ...

  11. High Energy Materials

    Indian Academy of Sciences (India)

    IAS Admin

    Propellants used in rockets, pyrotechnics used in festivities, explosives used for ... working of rockets, and the chemistry of fireworks. 1. Introduction. High energy materials are compounds which store chemical energy. They are either single compounds like trinitrotoluene. (TNT) containing .... ets stabilized by bamboo sticks.

  12. Fascination at high pressures

    International Nuclear Information System (INIS)

    Chidambaram, R.

    1992-01-01

    Research at high pressures has developed into an interdisciplinary area which has important implications for and applications in the areas of physics, chemistry, materials sciences, planetary sciences, biology, engineering sciences and technology. The state of-the-art in this field is reviewed and future directions are indicated. (M.G.B.)

  13. Investing in High School

    Science.gov (United States)

    Green, Daniel G.

    2012-01-01

    Strapped for cash, a Massachusetts high school creates its own venture capital fund to incentivize teachers to create programs that improve student learning. The result has been higher test scores and higher job satisfaction. One important program is credited with helping close the achievement gap at the school, while others have helped ambitious…

  14. CSTI High Capacity Power

    International Nuclear Information System (INIS)

    Winter, J.M.

    1989-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed

  15. high-poverty schools

    African Journals Online (AJOL)

    leadership in high-poverty schools? Investigations conducted at six successful ..... (not only motivate) others, to build team spirit and pride, and to seek and explore every possible opportunity, source and ..... The key ingredients of school success appear to'be the principal's passion for upliftment, the teachers' commitment ...

  16. Danish High Performance Concretes

    DEFF Research Database (Denmark)

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...

  17. Ghana's high forests

    NARCIS (Netherlands)

    Oduro, K.A.

    2016-01-01

    Deforestation and forest degradation in the tropics have been receiving both scientific and political attention in recent decades due to its impacts on the environment and on human livelihoods. In Ghana, the continuous decline of forest resources and the high demand for timber have raised

  18. High Brightness OLED Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, Jeffrey [OLEDWorks LLC; Kondakova, Marina [OLEDWorks LLC; Boroson, Michael [OLEDWorks LLC; Hamer, John [OLEDWorks LLC

    2016-05-25

    In this work we describe the technology developments behind our current and future generations of high brightness OLED lighting panels. We have developed white and amber OLEDs with excellent performance based on the stacking approach. Current products achieve 40-60 lm/W, while future developments focus on achieving 80 lm/W or higher.

  19. Highly Skilled Migrants

    DEFF Research Database (Denmark)

    Hvidt, Martin

    2016-01-01

    . It is pointed out that while the system facilitated speedy entry to the job market, the lack of inclusion in the Gulf economies of the migrants, the lack of long-term prospects of residing in the countries and the highly asymmetric power balance between sponsor and migrant, provides few incentives...

  20. High-Sensitivity Spectrophotometry.

    Science.gov (United States)

    Harris, T. D.

    1982-01-01

    Selected high-sensitivity spectrophotometric methods are examined, and comparisons are made of their relative strengths and weaknesses and the circumstances for which each can best be applied. Methods include long path cells, noise reduction, laser intracavity absorption, thermocouple calorimetry, photoacoustic methods, and thermo-optical methods.…

  1. Life at High Temperatures

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 9. Life at High Temperatures. Ramesh Maheshwari. General Article Volume 10 Issue 9 September 2005 pp 23-36. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/010/09/0023-0036. Keywords.

  2. Ghana's high forests

    NARCIS (Netherlands)

    Oduro, K.A.

    2016-01-01

    Deforestation and forest degradation in the tropics have been receiving both scientific and political attention in recent decades due to its impacts on the environment and on human livelihoods. In Ghana, the continuous decline of forest resources and the high demand for timber have raised

  3. High School Book Fairs

    Science.gov (United States)

    Fitzgerald, Marianne

    2006-01-01

    Many secondary students have given up the joy of reading. When asked why they don't read for pleasure, students came up with many different reasons, the first being lack of time. High school students are busy with after school jobs, sports, homework, etc. With the growing number of students enrolled in AP classes, not only is there not much time…

  4. High luminosity particle colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-03-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  5. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  6. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online Community ... Page Text Size: A A A Listen En Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical ...

  7. High-resolution echocardiography

    Science.gov (United States)

    Nathan, R.

    1979-01-01

    High resolution computer aided ultrasound system provides two-and three-dimensional images of beating heart from many angles. System provides means for determining whether small blood vessels around the heart are blocked or if heart wall is moving normally without interference of dead and noncontracting muscle tissue.

  8. High temperature superconductivity: Proceedings

    International Nuclear Information System (INIS)

    Bedell, K.S.; Coffey, D.; Meltzer, D.E.; Pines, D.; Schrieffer, J.R.

    1990-01-01

    This book is the result of a symposium at Los Alamos in 1989 on High Temperature Superconductivity. The topics covered include: phenomenology, quantum spin liquids, spin space fluctuations in the insulating and metallic phases, normal state properties, and numerical studies and simulations. (JF)

  9. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also i...

  10. Rocky Mountain High.

    Science.gov (United States)

    Hill, David

    2001-01-01

    Describes Colorado's Eagle Rock School, which offers troubled teens a fresh start by transporting them to a tuition- free campus high in the mountains. The program encourages spiritual development as well as academic growth. The atmosphere is warm, loving, structured, and nonthreatening. The article profiles several students' experiences at the…

  11. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  12. High Blood Pressure

    Science.gov (United States)

    ... effects on blood pressure. Finding out what genetic patterns contribute to high blood pressure risk. NHLBI-funded researchers identified dozens of ... whether a low-sodium and low-calorie eating pattern, along with aerobic exercise, can improve blood pressure in patients who do not respond to ...

  13. Nuclei in high forms

    International Nuclear Information System (INIS)

    Szymanski, Z.; Berger, J.F.; Heenen, P.H.; Heyde, K.; Haas, B.; Janssens, R.; Paya, D.; Gogny, D.; Huber, G.; Bjoernholm, S.; Brack, M.

    1991-01-01

    The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters

  14. High Selectivity Oxygen Delignification

    Energy Technology Data Exchange (ETDEWEB)

    Arthur J. Ragauskas

    2005-09-30

    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in

  15. High population increase rates.

    Science.gov (United States)

    1991-09-01

    In addition to its economic and ethnic difficulties, the USSR faces several pressing demographic problems, including high population increase rates in several of its constituent republics. It has now become clear that although the country's rigid centralized planning succeeded in covering the basic needs of people, it did not lead to welfare growth. Since the 1970s, the Soviet economy has remained sluggish, which as led to increase in the death and birth rates. Furthermore, the ideology that held that demography could be entirely controlled by the country's political and economic system is contradicted by current Soviet reality, which shows that religion and ethnicity also play a significant role in demographic dynamics. Currently, Soviet republics fall under 2 categories--areas with high or low natural population increase rates. Republics with low rates consist of Christian populations (Armenia, Moldavia, Georgia, Byelorussia, Russia, Lithuania, Estonia, Latvia, Ukraine), while republics with high rates are Muslim (Tadzhikistan, Uzbekistan, Turkmenistan, Kirgizia, Azerbaijan Kazakhstan). The later group has natural increase rates as high as 3.3%. Although the USSR as a whole is not considered a developing country, the later group of republics fit the description of the UNFPA's priority list. Another serious demographic issue facing the USSR is its extremely high rate of abortion. This is especially true in the republics of low birth rates, where up to 60% of all pregnancies are terminated by induced abortions. Up to 1/5 of the USSR's annual health care budget is spent on clinical abortions -- money which could be better spent on the production of contraceptives. Along with the recent political and economic changes, the USSR is now eager to deal with its demographic problems.

  16. High voltage pulse generator

    Science.gov (United States)

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  17. High Voltage Seismic Generator

    Science.gov (United States)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  18. Optical coherence tomography. A new high-resolution imaging technology to study cardiac development in chick embryos

    DEFF Research Database (Denmark)

    Yelbuz, T.M.; Choma, M.A.; Thrane, L.

    2002-01-01

    Background-Optical coherence tomography (OCT) is a depth-resolved, noninvasive, non-destructive imaging modality, the use of which has yet to be fully realized in developmental biology. Methods and Results-We visualized embryonic chick hearts at looping stages using an OCT system with a 22 mum...... axial and 27 mum lateral resolution and an acquisition rate of 4000 A-scans per second. Normal chick embryos from stages 14 to 22 and sham-operated and cardiac neural crest-ablated embryos from stages 15 and 18 were scanned by OCT. Three-dimensional data sets were acquired and processed to create...... volumetric reconstructions and short video clips. The OCT-scanned embryos (2 in each group) were photographed after histological sectioning in comparable planes to those visualized by OCT. The optical and histological results showing cardiovascular microstructures such as myocardium, the cardiac jelly...

  19. High energy photon response

    International Nuclear Information System (INIS)

    Cummings, F.M.; Yoder, R.C.; Endres, G.W.R.; Kathren, R.L.

    1981-01-01

    This study examines the response of the Hanford 4-chip and 5-chip dosimeter to high energy photons. The dose response of the Hanford Multipurpose Personnel Diometer (HMPD) to photons with energies greater than 0.65 MeV has been evaluated relative to the dose produced by photons from a 60 Co. source. The penetrating dose determined with the HMPD is compared to the 1 cm depth dose in tissue measured with an extrapolation chamber. The results of the study indicate that the HMPD can be used to estimate the 1 cm depth dose in tissue from photons with energies between 0.65 MeV and 3.0 MeV to within an accuracy of 15%. However, the 1 cm depth dose is underestimated by 38% when the dosimeter is irradiated in a beam of very high energy photons produced by bombarding a tungsten target with 25 MeV electrons

  20. Melt Cast High Explosives

    Directory of Open Access Journals (Sweden)

    Stanisław Cudziło

    2014-12-01

    Full Text Available [b]Abstract[/b]. This paper reviews the current state and future developments of melt-cast high explosives. First the compositions, properties and methods of preparation of trinitrotoluene based (TNT conventional mixtures with aluminum, hexogen (RDX or octogen (HMX are described. In the newer, less sensitive explosive formulations, TNT is replaced with dinitroanisole (DNANDNANDNAN and nitrotriazolone (NTONTONTO, nitroguanidine (NG or ammonium perchlorate (AP are the replacement for RDRDX and HMX. Plasticized wax or polymer-based binder systems for melt castable explosives are also included. Hydroxyl terminated polybutadiene (HPTB is the binder of choice, but polyethylene glycol, and polycaprolactone with energetic plasticizers are also used. The most advanced melt-cast explosives are compositions containing energetic thermoplastic elastomers and novel highly energetic compounds (including nitrogen rich molecules in whose particles are nanosized and practically defect-less.[b]Keywords[/b]: melt-cast explosives, detonation parameters

  1. Timetabling at High Schools

    DEFF Research Database (Denmark)

    Sørensen, Matias

    High school institutions face a number of important planning problems during each schoolyear. This Ph.D. thesis considers two of these planning problems: The High School Timetabling Problem (HSTP) and the Consultation Timetabling Problem (CTP). Furthermore a framework for handling various planning...... problems is considered, known as the Generalized Meeting Planning Problem (GMPP). The view taken on these problems is that they are mathematical optimization problems, where the goal is to _nd the optimal solution (from the set of all feasible solutions). This view allows state-of-the-art methods from....... The second part contains the main scienti_c papers composed during the Ph.D. study. The third part of the thesis also contains scienti_c papers, but these are included as an appendix. In the HSTP, the goal is to obtain a timetable for the forthcoming school-year. A timetable consists of lectures scheduled...

  2. High-Performance Networking

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    The series will start with an historical introduction about what people saw as high performance message communication in their time and how that developed to the now to day known "standard computer network communication". It will be followed by a far more technical part that uses the High Performance Computer Network standards of the 90's, with 1 Gbit/sec systems as introduction for an in depth explanation of the three new 10 Gbit/s network and interconnect technology standards that exist already or emerge. If necessary for a good understanding some sidesteps will be included to explain important protocols as well as some necessary details of concerned Wide Area Network (WAN) standards details including some basics of wavelength multiplexing (DWDM). Some remarks will be made concerning the rapid expanding applications of networked storage.

  3. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  4. High temperature probe

    Science.gov (United States)

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  5. High energy nuclear physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1988-01-01

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π 0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed [fr

  6. High thermal load component

    International Nuclear Information System (INIS)

    Fuse, Toshiaki; Tachikawa, Nobuo.

    1996-01-01

    A cooling tube made of a pure copper is connected to the inner portion of an armour (heat resistant member) made of an anisotropic carbon/carbon composite (CFC) material. The CFC material has a high heat conductivity in longitudinal direction of fibers and has low conductivity in perpendicular thereto. Fibers extending in the armour from a heat receiving surface just above the cooling tube are directly connected to the cooling tube. A portion of the fibers extending from a heat receiving surface other than portions not just above the cooling tube is directly bonded to the cooling tube. Remaining fibers are disposed so as to surround the cooling tube. The armour and the cooling tube are soldered using an active metal flux. With such procedures, high thermal load components for use in a thermonuclear reactor are formed, which are excellent in a heat removing characteristic and hardly causes defects such as crackings and peeling. (I.N.)

  7. High temperature measuring device

    Science.gov (United States)

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  8. High field electron linacs

    International Nuclear Information System (INIS)

    Le Duff, J.

    1985-12-01

    High field electron linacs are considered as potential candidates to provide very high energies beyond LEP. Since almost twenty years not much improvement has been made on linac technologies as they have been mostly kept at low and medium energies to be used as injectors for storage rings. Today, both their efficiency and their performances are being reconsidered, and for instance the pulse compression sheme developed at SLAC and introduced to upgrade the energy of that linac is a first step towards a new generation of linear accelerators. However this is not enough in terms of power consumption and more development is needed to improve both the efficiency of accelerating structures and the performances of RF power sources

  9. Prospects at high energies

    International Nuclear Information System (INIS)

    Quigg, C.

    1988-11-01

    I discuss some possibilities for neutrino experiments in the fixed-target environment of the SPS, Tevatron, and UNK, with their primary proton beams of 0.4, 0.9, and 3.0 TeV. The emphasis is on unfinished business: issues that have been recognized for some time, but not yet resolved. Then I turn to prospects for proton-proton colliders to explore the 1-TeV scale. I review the motivation for new physics in the neighborhood of 1 TeV and mention some discovery possibilities for high-energy, high-luminosity hadron colliders and the implications they would have for neutrino physics. I raise the possibility of the direct study of neutrino interactions in hadron colliders. I close with a report on the status of the SSC project. 38 refs., 17 figs

  10. High altitude organic gold

    DEFF Research Database (Denmark)

    Pouliot, Mariève; Pyakurel, Dipesh; Smith-Hall, Carsten

    2018-01-01

    . Heightened demand in China over the past 15 years, coupled with limited production, has led to a price hike and increased economic importance of harvests to rural households throughout the species’ range. There is, however, limited knowledge on the actors and profit distribution in the O. sinensis production...... by collectors, limited value enhancement, and a high degree of network and territorial embeddedness. Conclusions O. sinensis income is of major economic importance for rural households at the margin of its distribution range in Nepal. Production networks operated by informal actors establishing trust......Ethnopharmacological relevance Ophiocordyceps sinensis (Berk.) G.H.Sung, J.M.Sung, Hywel-Jones & Spatafora, a high altitude Himalayan fungus-caterpillar product found in alpine meadows in China, Bhutan, Nepal, and India, has been used in the Traditional Chinese Medicine system for over 2000 years...

  11. High resolution (transformers.

    Science.gov (United States)

    Garcia-Souto, Jose A; Lamela-Rivera, Horacio

    2006-10-16

    A novel fiber-optic interferometric sensor is presented for vibrations measurements and analysis. In this approach, it is shown applied to the vibrations of electrical structures within power transformers. A main feature of the sensor is that an unambiguous optical phase measurement is performed using the direct detection of the interferometer output, without external modulation, for a more compact and stable implementation. High resolution of the interferometric measurement is obtained with this technique (transformers are also highlighted.

  12. High Solids Coating System

    Science.gov (United States)

    1979-04-01

    SITATEMENT rot tho ahatrai .nti,,ed in IfllorM 0, It diIIIorenl Itroft I.port) 15L %UPPLEMENTARY NOTES 19, KEY WORDS (Continiou on roveaou oido It...yji1 :𔃻ppeŽ r prt rni j Lr ,, [VQ I urt, her eL ve.Luprnent into high solids coating systems. The Acryloid AU-568 hns many of the desirable properties

  13. High Nitrogen Stainless Steel

    Science.gov (United States)

    2011-07-19

    crack growth (FCG) test (ASTM E 647-95a) - square bar specimen of 0.4x0.4x2.8 in. in L-orientation with a Charpy notch at the mid- length for SCC...Hydrogen Embrittlement in Steel by the Increment Loading Technique. Fractography: After the stress-life fatigue tests , the fracture surface morphology...NAWCADPAX/TR-2011/162 HIGH NITROGEN STAINLESS STEEL by E. U. Lee R. Taylor 19 July 2011 Approved for

  14. Highly Concurrent Scalar Processing.

    Science.gov (United States)

    1986-01-01

    rearrangement arise from data dependencies between instructions, hence it is critical that artificial - dependencies are eliminated whenever possible...An important class of artificial depen- *. dencies arise due to register reuse. In the following example, no parallelism can be • . exploited in the...specific procedure call site. The use of inteligent procedure expansion techniques is expected to be crucial to the achievement of high performance

  15. High voltage generator

    Science.gov (United States)

    Schwemin, A. J.

    1959-03-17

    A generator for producing relatively large currents at high voltages is described. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The above-noted circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  16. High Speed Compressor Study

    Science.gov (United States)

    2011-12-21

    requirement for a high velocity and low force, and in this case the limit is typically the maximum stroke capability as determined by the springs...In a gas spring, hopefully there will be very little work done (if the losses are small), and the “P-V ” loop will be a thin “ sausage ...thickness). In this case the component, as designed for lower frequency operation, may still have plenty of ‘margin’ at higher frequencies

  17. High Resolution Spectral Analysis

    Science.gov (United States)

    2006-10-25

    liable methods for high resolution spectral analysis of multivariable processes, as well as to distance measures for quantitative assessment of...called "modern nonlinear spectral analysis methods " [27]. An alternative way to reconstruct /„(#), based on Tn, is the periodogram/correlogram f{6...eie). A homotopy method was proposed in [8, 9] leading to a differential equation for A(T) in a homotopy variable r. If the statistics are consistent

  18. Probability in High Dimension

    Science.gov (United States)

    2014-06-30

    set of methods, many of which have their origin in probability in Banach spaces , that arise across a broad range of contemporary problems in di↵erent...salesman problem, . . . • Probability in Banach spaces : probabilistic limit theorems for Banach - valued random variables, empirical processes, local...theory of Banach spaces , geometric functional analysis, convex geometry. • Mixing times and other phenomena in high-dimensional Markov chains. At

  19. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  20. Highly Autonomous Systems Workshop

    OpenAIRE

    Doyle, Richard; Rasmussen, Robert; Man, Guy; Patel, Keyur

    1998-01-01

    Researchers and technology developers from the National Aeronautics and Space Administration (NASA), other government agencies, academia, and industry recently met in Pasadena, California, to take stock of past and current work and future challenges in the application of AI to highly autonomous systems. The meeting was catalyzed by new opportunities in developing autonomous spacecraft for NASA and was in part a celebration of the fictional birth year of the HAL-9000 computer.

  1. High energy medical accelerators

    International Nuclear Information System (INIS)

    Mandrillon, P.

    1990-01-01

    The treatment of tumours with charged particles, ranging from protons to 'light ions' (carbon, oxygen, neon), has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. These high energy medical accelerators are presented in this paper. (author) 15 refs.; 14 figs.; 8 tabs

  2. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1990-05-01

    This report discusses progress on theoretical high energy physics at Columbia University in New York City. Some of the topics covered are: Chern-Simons gauge field theories; dynamical fermion QCD calculations; lattice gauge theory; the standard model of weak and electromagnetic interactions; Boson-fermion model of cuprate superconductors; S-channel theory of superconductivity and axial anomaly and its relation to spin in the parton model

  3. High voltage pulse conditioning

    International Nuclear Information System (INIS)

    Springfield, R.M.; Wheat, R.M.

    1990-01-01

    This patent describes an apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close

  4. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L

    2006-01-01

    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  5. High altitude dermatology

    Directory of Open Access Journals (Sweden)

    G K Singh

    2017-01-01

    Full Text Available Approximately, 140 million people worldwide live permanently at high altitudes (HAs and approximately another 40 million people travel to HA area (HAA every year for reasons of occupation, sports or recreation. In India, whole of Ladakh region, part of Northwest Kashmir, Northern part of Sikkim and Tenga valley of Arunachal are considered inhabited areas of HAA. The low quantity of oxygen, high exposure of ultraviolet (UV light, very low humidity, extreme subzero temperature in winter, high wind velocity, make this region difficult for lowlanders as well as for tourists. Acute mountain sickness, HA pulmonary edema, HA cerebral edema, and thromboembolic conditions are known to occur in HA. However, enough knowledge has not been shared on dermatoses peculiar to this region. Xerosis, UV-related skin disorders (tanning, photomelanosis, acute and chronic sunburn, polymorphic light eruption, chronic actinic dermatitis, actinic cheilitis, etc., cold injuries (frostbite, chilblains, acrocyanosis, erythrocyanosis, etc. nail changes (koilonychias, airborne contact dermatitis, insect bite reaction, and skin carcinoma (basal cell carcinomas, squamous cell carcinomas, and also rarely malignant melanoma are the dermatoses seen in HAAs. Early diagnosis and knowledge of HA dermatoses may prevent serious consequences of disease and improve the quality of life for the visitors as well as for native of the place.

  6. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1985-05-01

    The conclusions are relatively simple, but represent a considerable challenge to the machine builder. High luminosity is essential. We may in the future discover some new kind of high cross section physics, but all we know now indicates that the luminosity has to increase as the square of the center of mass energy. A reasonable luminosity to scale from for electron machines would be 10 33 cm -2 s -1 at a center of mass energy of 3 TeV. The required emittances in very high energy machines are small. It will be a real challenge to produce these small emittances and to maintain them during acceleration. The small emittances probably make acceleration by laser techniques easier, if such techniques will be practical at all. The beam spot sizes are very small indeed. It will be a challenge to design beam transport systems with the necessary freedom from aberration required for these small spot sizes. It would of course help if the beta functions at the collision points could be reduced. Beam power will be large - to paraphrase the old saying, ''power is money'' - and efficient acceleration systems will be required

  7. High performance data transfer

    Science.gov (United States)

    Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.

    2017-10-01

    The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.

  8. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb - 1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989

  9. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  10. HIGH EFFICIENCY SYNGAS GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested

  11. Superconductivity under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, K.; Shimizu, K.; Takeda, K.; Tateiwa, N.; Muramatsu, T.; Ishizuka, M.; Kobayashi, T.C

    2003-05-01

    In part 1, we review techniques developed in our laboratory for producing the complex extreme condition of very low temperature and ultra-high pressure and those for measuring electrical resistance and magnetization of the sample confined in the extremely small space of the used pressure cell. In part 2, we review our experimental results in search for pressure-induced superconductivity, which have been obtained by the use of developed techniques. Typical examples are shown in the case of simple inorganic and organic molecular crystals, ionic crystals, and magnetic metals.

  12. High pressure induced superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, K.; Shimizu, K

    2003-10-15

    We have developed complex extreme condition of very low temperature down to 30 mK and ultra high pressure exceeding 200 GPa by assembling compact diamond anvil cell (DAC) on a powerful {sup 3}He/{sup 4}He dilution refrigerator. We have also developed measuring techniques of electrical resistance, magnetization and optical measurement for the sample confined in the sample space of the DAC. Using the newly developed apparatus and techniques, we have searched for superconductivity in various materials under pressure. In this paper, we will shortly review our newly developed experimental apparatus and techniques and discuss a few examples of pressure induced superconductivity which were observed recently.

  13. High energy neutrinos

    OpenAIRE

    Masip, M.

    2018-01-01

    We describe several components in the diffuse flux of high energy neutrinos reaching the Earth and discuss whether they could explain IceCube's observations. Then we focus on TeV neutrinos from the Sun. We show that this solar neutrino flux is correlated with the cosmic-ray shadow of the Sun measured by HAWC, and we find that it is much larger than the flux of atmospheric neutrinos. Stars like our Sun provide neutrinos with a very steep spectrum and no associated gammas. We argue that this is...

  14. Knees Lifted High

    Centers for Disease Control (CDC) Podcasts

    2008-08-04

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Knees Lifted High gives children fun ideas for active outdoor play.  Created: 8/4/2008 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 8/5/2008.

  15. High Energy Halogen Chemistry.

    Science.gov (United States)

    1976-01-01

    WPIilPiPPW*PKiS>WW!!lipi»ra«35WTT’^ ! m ESPORT NO. OKR 1-5 (Annual) PERIOD COVERED: 1 DBCEM^SR 1971* THROUGH 1 DECEMBER 1975 f £ HIGH ENERGY...the 3-chloro- 2-butyl perchlorate thus prepared from cis-2-butene oxide was identical with that obtained from cis-2-butene and dichlorine heptoxide...and that from trans- 2-butene oxide was identical with the trans-2-butene product. Thus, the forma- tion of 3-chloro-2-butyl perchlorate from 2

  16. High Power Vanadate lasers

    CSIR Research Space (South Africa)

    Strauss, HJ

    2006-07-01

    Full Text Available ) Poor thermal contact between crystal and mount barb2right stronger thermal lenses and thermal stress barb2right bad beams and / or crystal damage. 2) Nd:GdVO4 spectrally very close to Nd:YVO4. Much uncertainty about the thermal properties barb2... properties during lasing can be made at two important wavelengths. 3) Pi-polarisation barb2rightWeakest thermal lens barb2right Ideal for high output power levels Future Work • Determine the thermal lens focal lengths over a wider range of pump powers...

  17. High energy physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1991-01-01

    This progress report presents a review of research done over the past five years by the Duke High Energy Physics Group. This research has been centered at Fermilab where we have had a continuing involvement with both the Tevatron collider and fixed-target programs. In 1988 we began extensive detector R ampersand D for the SSC through its Major Subsystem Program. Duke has been an active member of the Solenoidal Detector Collaboration (SDC) since its formation. These last five years has also been used to finish the analysis of data from a series of hybrid bubble chamber experiments which formed the core of Duke's research program in the early 1980's

  18. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  19. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  20. High temperature reaction kinetics

    International Nuclear Information System (INIS)

    Jonah, C.D.; Beno, M.F.; Mulac, W.A.; Bartels, D.

    1985-01-01

    During the last year the dependence of the apparent rate of OD + CO on water pressure was measured at 305, 570, 865 and 1223 K. An explanation was found and tested for the H 2 O dependence of the apparent rate of OH(OD) + CO at high temperatures. The isotope effect for OH(D) with CO was determined over the temperature range 330 K to 1225 K. The reason for the water dependence of the rate of OH(OD) + CO near room temperatures has been investigated but no clear explanation has been found. 1 figure

  1. Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  2. High-multiplicity processes

    International Nuclear Information System (INIS)

    Shelkov, G.; Sisakyan, A.; Mandzhavidze, I.

    1999-01-01

    We wish to demonstrate that investigation of asymptotically high multiplicity (AHM) hadron reactions may solve, or at least clear up, a number of problems unsolvable by other ways. We would lean upon the idea: (i) the reactions final state entropy is proportional to multiplicity and, by this reason, just in the AHM domain one may expect the equilibrium final state and (ii) the AHM final state is cold because of the energy-momentum conservation laws. This means that the collective phenomena may become important in the AHM domain. The possibility of hard processes dominance is considered also

  3. Highly excited atoms

    International Nuclear Information System (INIS)

    Kleppner, D.; Littman, M.G.; Zimmerman, M.L.

    1981-01-01

    Highly excited atoms are often called Rydberg atoms. These atoms have a wealth of exotic properties which are discussed. Of special interest, are the effects of electric and magnetic fields on Rydberg atoms. Ordinary atoms are scarcely affected by an applied electric or magnetic field; Rydberg atoms can be strongly distorted and even pulled apart by a relatively weak electric field, and they can be squeezed into unexpected shapes by a magnetic field. Studies of the structure of Rydberg atoms in electric and magnetic fields have revealed dramatic atomic phenomena that had not been observed before

  4. High-power electronics

    CERN Document Server

    Kapitsa, Petr Leonidovich

    1966-01-01

    High-Power Electronics, Volume 2 presents the electronic processes in devices of the magnetron type and electromagnetic oscillations in different systems. This book explores the problems of electronic energetics.Organized into 11 chapters, this volume begins with an overview of the motion of electrons in a flat model of the magnetron, taking into account the in-phase wave and the reverse wave. This text then examines the processes of transmission of electromagnetic waves of various polarization and the wave reflection from grids made of periodically distributed infinite metal conductors. Other

  5. ALICE High Level Trigger

    CERN Multimedia

    Alt, T

    2013-01-01

    The ALICE High Level Trigger (HLT) is a computing farm designed and build for the real-time, online processing of the raw data produced by the ALICE detectors. Events are fully reconstructed from the raw data, analyzed and compressed. The analysis summary together with the compressed data and a trigger decision is sent to the DAQ. In addition the reconstruction of the events allows for on-line monitoring of physical observables and this information is provided to the Data Quality Monitor (DQM). The HLT can process event rates of up to 2 kHz for proton-proton and 200 Hz for Pb-Pb central collisions.

  6. Clojure high performance programming

    CERN Document Server

    Kumar, Shantanu

    2013-01-01

    This is a short, practical guide that will teach you everything you need to know to start writing high performance Clojure code.This book is ideal for intermediate Clojure developers who are looking to get a good grip on how to achieve optimum performance. You should already have some experience with Clojure and it would help if you already know a little bit of Java. Knowledge of performance analysis and engineering is not required. For hands-on practice, you should have access to Clojure REPL with Leiningen.

  7. High resolution backscattering instruments

    International Nuclear Information System (INIS)

    Coldea, R.

    2001-01-01

    The principle of operation of indirect-geometry time-of-flight spectrometers are presented, including the IRIS at the ISIS spallation neutron source. The key features that make those types of spectrometers ideally suited for low-energy spectroscopy are: high energy resolution over a wide dynamic range, and simultaneous measurement over a large momentum transfer range provided by the wide angular detector coverage. To exemplify these features are discussed of single-crystal experiments of the spin dynamics in the two-dimensional frustrated quantum magnet Cs 2 CuCl 4 . (R.P.)

  8. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  9. High dimensional entanglement

    CSIR Research Space (South Africa)

    Mc

    2012-07-01

    Full Text Available stream_source_info McLaren_2012.pdf.txt stream_content_type text/plain stream_size 2190 Content-Encoding ISO-8859-1 stream_name McLaren_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 High dimensional... entanglement M. McLAREN1,2, F.S. ROUX1 & A. FORBES1,2,3 1. CSIR National Laser Centre, PO Box 395, Pretoria 0001 2. School of Physics, University of the Stellenbosch, Private Bag X1, 7602, Matieland 3. School of Physics, University of Kwazulu...

  10. High gradient superconducting quadrupoles

    International Nuclear Information System (INIS)

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed

  11. High performance AC drives

    CERN Document Server

    Ahmad, Mukhtar

    2010-01-01

    This book presents a comprehensive view of high performance ac drives. It may be considered as both a text book for graduate students and as an up-to-date monograph. It may also be used by R & D professionals involved in the improvement of performance of drives in the industries. The book will also be beneficial to the researchers pursuing work on multiphase drives as well as sensorless and direct torque control of electric drives since up-to date references in these topics are provided. It will also provide few examples of modeling, analysis and control of electric drives using MATLAB/SIMULIN

  12. High Test Peroxide High Sealing Conical Seal, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — High Test Peroxide (HTP) Highly Compatible High Sealing Conical Seals are necessary for ground test operations and space based applications. Current conical seals...

  13. DURIP95/Ultra High Precision Diagnostic High Temperature Laboratory

    National Research Council Canada - National Science Library

    Newaz, Golam M

    1997-01-01

    The DURIP grant was used to develop an efficient high temperature laboratory with high precision instruments to make deformation and load measurements in high temperature materials including advanced composites...

  14. High Performance Window Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Desjarlais, Andre Omer [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2∙ F∙h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  15. High energy magnetic spectroscopy

    International Nuclear Information System (INIS)

    Loewenhaupt, M.

    1984-01-01

    The purpose of this paper is twofold: (i) to elucidate the possibilities and limitations of neutron scattering experiments with high energy transfers at low momentum transfers from the view point of the kinematical conditions of the scattering process and (ii) to discuss some examples of high energy magnetic excitations in the field of 4f- and 5f- magnetism. The outcome of point (i) will determine the range of possible energy transfer i.e. will give a reasonable upper bound of 0.5 to leV of energy transfer for momentum transfers around 2 to 5 A -1 . This extends the available omega-range by roughly a factor of 10 compared to the conventional magnetic scattering at reactors. Any further, significant increase in energy transfer, however, is not very likely even with very powerful future spallation sources. Thus it is sufficient to restrict the discussion of possible magnetic experiments to energy transfer up to 0.5 or 1 eV

  16. Giant high occipital encephalocele

    Directory of Open Access Journals (Sweden)

    Agrawal Amit

    2016-03-01

    Full Text Available Encephaloceles are rare embryological mesenchymal developmental anomalies resulting from inappropriate ossification in skull through with herniation of intracranial contents of the sac. Encephaloceles are classified based on location of the osseous defect and contents of sac. Convexity encephalocele with osseous defect in occipital bone is called occipital encephalocele. Giant occipital encephaloceles can be sometimes larger than the size of baby skull itself and they pose a great surgical challenge. Occipital encephaloceles (OE are further classified as high OE when defect is only in occipital bone above the foramen magnum, low OE when involving occipital bone and foramen magnum and occipito-cervical when there involvement of occipital bone, foramen magnum and posterior upper neural arches. Chiari III malformation can be associated with high or low occipital encephaloceles. Pre-operatively, it is essential to know the size of the sac, contents of the sac, relation to the adjacent structures, presence or absence of venous sinuses/vascular structures and osseous defect size. Sometimes it becomes imperative to perform both CT and MRI for the necessary information. Volume rendered CT images can depict the relation of osseous defect to foramen magnum and provide information about upper neural arches which is necessary in classifying these lesions.

  17. High temperature thermometric phosphors

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  18. Real-time in situ probing of high-temperature quantum dots solution synthesis.

    Science.gov (United States)

    Abécassis, Benjamin; Bouet, Cécile; Garnero, Cyril; Constantin, Doru; Lequeux, Nicolas; Ithurria, Sandrine; Dubertret, Benoit; Pauw, Brian Richard; Pontoni, Diego

    2015-04-08

    Understanding the formation mechanism of colloidal nanocrystals is of paramount importance in order to design new nanostructures and synthesize them in a predictive fashion. However, reliable data on the pathways leading from molecular precursors to nanocrystals are not available yet. We used synchrotron-based time-resolved in situ small and wide-angle X-ray scattering to experimentally monitor the formation of CdSe quantum dots synthesized in solution through the heating up of precursors in octadecene at 240 °C. Our experiment yields a complete movie of the structure of the solution from the self-assembly of the precursors to the formation of the quantum dots. We show that the initial cadmium precursor lamellar structure melts into small micelles at 100 °C and that the first CdSe nuclei appear at 218.7 °C. The size distributions and concentration in nanocrystals are measured in a quantitative fashion as a function of time. We show that a short nucleation burst lasting 30 s is followed by a slow decrease of nanoparticle concentration. The rate-limiting process of the quantum dot formation is found to be the thermal activation of selenium.

  19. MANAGING HIGH-END, HIGH-VOLUME INNOVATIVE PRODUCTS

    Directory of Open Access Journals (Sweden)

    Gembong Baskoro

    2008-01-01

    Full Text Available This paper discuses the concept of managing high-end, high-volume innovative products. High-end, high-volume consumer products are products that have considerable influence to the way of life. Characteristic of High-end, high-volume consumer products are (1 short cycle time, (2 quick obsolete time, and (3 rapid price erosion. Beside the disadvantages that they are high risk for manufacturers, if manufacturers are able to understand precisely the consumer needs then they have the potential benefit or success to be the market leader. High innovation implies to high utilization of the user, therefore these products can influence indirectly to the way of people life. The objective of managing them is to achieve sustainability of the products development and innovation. This paper observes the behavior of these products in companies operated in high-end, high-volume consumer product.

  20. High energy astrophysical techniques

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.

  1. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R&D on silicon microstrip tracking devices for the SSC. High statistics studies of Z{sup 0} decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka`s program includes a detailed investigation of the magnetic-flip approach to the solar neutrino.

  2. High brightness electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, R.L.

    1995-07-01

    High energy physics accelerators and free electron lasers put increased demands on the electron beam sources. This paper describes the present research on attaining intense bright electron beams using photoinjectors. Recent results from the experimental programs will be given. The performance advantages and difficulties presently faced by researchers will be discussed, and the following topics will be covered. Progress has been made in photocathode materials, both in lifetime and quantum efficiency. Cesium telluride has demonstrated significantly longer lifetimes than cesium antimonide at 10{sup {minus}8} torr. However, the laser system is more difficult because cesium telluride requires quadrupled YLF instead of the doubled YLF required for cesium antimonide. The difficulty in using photoinjectors is primarily the drive laser, in particular the amplitude stability. Finally, emittance measurements of photoinjector systems can be complicated by the non-thermal nature of the electron beam. An example of the difficulty in measuring beam emittance is given.

  3. High Antibiotic Consumption

    DEFF Research Database (Denmark)

    Malo, Sara; José Rabanaque, María; Feja, Cristina

    2014-01-01

    as their exposure to antibiotics. Data on outpatient prescribing of antimicrobials (ATC J01) in 2010 were obtained from a prescription database covering Aragón (northeastern Spain). The antimicrobial consumption at the individual level was analysed both according to the volume of DDD and the number of packages...... purchased per year. Heavy antibiotic users were identified according to Lorenz curves and characterized by age, gender, and their antimicrobial prescription profile. Lorenz curves demonstrated substantial differences in the individual use of antimicrobials. Heavy antibiotic users (5% of individuals...... with highest consumption) were responsible for 21% of the total DDD consumed and received ≥6 packages per year. Elderly adults (≥60 years) and small children (0-9 years) were those exposed to the highest volume of antibiotics and with the most frequent exposure, respectively. Heavy users received a high...

  4. High Time Resolution Astrophysics

    CERN Document Server

    Phelan, Don; Shearer, Andrew

    2008-01-01

    High Time Resolution Astrophysics (HTRA) is an important new window to the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. This importance is demonstrated in this volume with the description of a number of topics in astrophysics, including quantum optics, cataclysmic variables, pulsars, X-ray binaries and stellar pulsations to name a few. Underlining this science foundation, technological developments in both instrumentation and detectors are described. These instruments and detectors combined cover a wide range of timescales and can measure fluxes, spectra and polarisation. These advances make it possible for HTRA to make a big contribution to our understanding of the Universe in the next decade.

  5. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  6. ULTRA HIGH VACUUM VALVE

    Science.gov (United States)

    Fry, W.A.

    1962-05-29

    A valve for high vacuum applications such as the CStellarator where chamber pressures as low as 2 x 10/sup -10/ mm Hg are necessary is designed with a line-of-sight path through the valve for visual inspection of the contents of reactants in such chambers. The valve comprises a turnable resilient metal ball having an aperture therethrough, means for selectively turning the ball to rotate the axis of its line-of-sight path, and soft, deformable opposing orifices that are movable relatively toward said ball to seal with opposite ball surfaces upon said movement of said axis of said line-of-sight path. The valve also includes a bellows seal connected between said orifices and internal actuating means that eliminates the requirement for gasketed turnable valve closing stems. (AEC)

  7. Highly resolving computerized tomography

    International Nuclear Information System (INIS)

    Kurtz, B.; Petersen, D.; Walter, E.

    1984-01-01

    With the development of highly-resolving devices for computerized tomography, CT diagnosis of the lumbar vertebral column has gained increasing importance. As an ambulatory, non-invasive method it has proved in comparative studies to be at least equivalent to myelography in the detection of dislocations of inter-vertebral disks (4,6,7,15). Because with modern devices not alone the bones, but especially the spinal soft part structures are clearly and precisely presented with a resolution of distinctly below 1 mm, a further improvement of the results is expected as experience will increase. The authors report on the diagnosis of the lumbar vertebral column with the aid of a modern device for computerized tomography and wish to draw particular attention to the possibility of doing this investigation as a routine, and to the diagnostic value of secondary reconstructions. (BWU) [de

  8. Superstructure high efficiency photovoltaics

    Science.gov (United States)

    Wagner, M.; So, L. C.; Leburton, J. P.

    1987-01-01

    A novel class of photovoltaic cascade structures is introduced which features multijunction upper subcells. These superstructure high efficiency photovoltaics (SHEP's) exhibit enhanced upper subcell spectral response because of the additional junctions which serve to reduce bulk recombination losses by decreasing the mean collection distance for photogenerated minority carriers. Two possible electrical configurations were studied and compared: a three-terminal scheme that allows both subcells to be operated at their individual maximum power points and a two-terminal configuration with an intercell ohmic contact for series interconnection. The three-terminal devices were found to be superior both in terms of beginning-of-life expectancy and radiation tolerance. Realistic simulations of three-terminal AlGaAs/GaAs SHEP's show that one sun AMO efficiencies in excess of 26 percent are possible.

  9. High level nuclear wastes

    International Nuclear Information System (INIS)

    Lopez Perez, B.

    1987-01-01

    The transformations involved in the nuclear fuels during the burn-up at the power nuclear reactors for burn-up levels of 33.000 MWd/th are considered. Graphs and data on the radioactivity variation with the cooling time and heat power of the irradiated fuel are presented. Likewise, the cycle of the fuel in light water reactors is presented and the alternatives for the nuclear waste management are discussed. A brief description of the management of the spent fuel as a high level nuclear waste is shown, explaining the reprocessing and giving data about the fission products and their radioactivities, which must be considered on the vitrification processes. On the final storage of the nuclear waste into depth geological burials, both alternatives are coincident. The countries supporting the reprocessing are indicated and the Spanish programm defined in the Plan Energetico Nacional (PEN) is shortly reviewed. (author) 8 figs., 4 tabs

  10. High Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    AC Bryan

    1996-01-01

    Full Text Available High frequency oscillatory (HFO ventilation using low tidal volume and peak airway pressures is extremely efficient at eliminating carbon dioxide and raising pH in the newborn infant with acute respiratory failure. Improvement in oxygenation requires a strategy of sustained or repetitive inflations to 25 to 30 cm H2O in order to place the lung on the deflation limb of the pressure-volume curve. This strategy has also been shown to decrease the amount of secondary lung injury in animal models. Experience of the use of HFO ventilation as a rescue therapy as well as several published controlled trials have shown improved outcomes and a decrease in the use of extracorporeal membrane oxygenation when it has been used in newborns.

  11. High temperature metallic recuperator

    Science.gov (United States)

    Ward, M. E.; Solmon, N. G.; Smeltzer, C. E.

    1981-06-01

    An industrial 4.5 MM Btu/hr axial counterflow recuperator, fabricated to deliver 1600 F combustion air, was designed to handle rapid cyclic loading, a long life, acceptable costs, and a low maintenance requirement. A cost benefit anlysis of a high temperature waste heat recovery system utilizing the recurperator and components capable of 1600 F combustion air preheat shows that this system would have a payback period of less than two years. Fifteen companies and industrial associations were interviewed and expressed great interest in recuperation in large energy consuming industries. Determination of long term environmental effects on candidate recuperator tubing alloys was completed. Alloys found to be acceptable in the 2200 F flue gas environment of a steel billet reheat furnace, were identified.

  12. High pressure mechanical seal

    Science.gov (United States)

    Babel, Henry W. (Inventor); Anderson, Raymond H. (Inventor)

    1996-01-01

    A relatively impervious mechanical seal is formed between the outer surface of a tube and the inside surface of a mechanical fitting of a high pressure fluid or hydraulic system by applying a very thin soft metal layer onto the outer surface of the hard metal tube and/or inner surface of the hard metal fitting. The thickness of such thin metal layer is independent of the size of the tube and/or fittings. Many metals and alloys of those metals exhibit the requisite softness, including silver, gold, tin, platinum, indium, rhodium and cadmium. Suitably, the coating is about 0.0025 millimeters (0.10 mils) in thickness. After compression, the tube and fitting combination exhibits very low leak rates on the order or 10.sup.-8 cubic centimeters per second or less as measured using the Helium leak test.

  13. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R ampersand D on silicon microstrip tracking devices for the SSC. High statistics studies of Z 0 decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka's program includes a detailed investigation of the magnetic-flip approach to the solar neutrino

  14. High resolution ultrasonic densitometer

    International Nuclear Information System (INIS)

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks

  15. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  16. Galaxies at High Redshift

    Science.gov (United States)

    Bauer, F. E.

    2014-10-01

    Recent years have seen tremendous progress in finding and charactering star-forming galaxies at high redshifts across the electromagnetic spectrum, giving us a more complete picture of how galaxies evolve, both in terms of their stellar and gas content, as well as the growth of their central supermassive black holes. A wealth of studies now demonstrate that star formation peaked at roughly half the age of the Universe and drops precariously as we look back to very early times, and that their central monsters apparently growth with them. At the highest-redshifts, we are pushing the boundaries via deep surveys at optical, X-ray, radio wavelengths, and more recently using gamma-ray bursts. I will review some of our accomplishments and failures. Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 - 8 seems to be much lower than at z = 2 - 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).

  17. High Purity Smelting Technology for Ultra-high Strength Steels

    Directory of Open Access Journals (Sweden)

    JIANG Zhouhua

    2017-12-01

    Full Text Available Ultra-high strength steel with high tensile strength, good toughness, high specific strength, modulus and other characteristics are widely used in aviation, aerospace and national defense and other fields. Ultra-high strength steel is preferred material for aircraft and aero-engines and other aviation equipments. The application of ultra-high strength steel represents a country's highest level of steel research and production, and it is also an important symbol of the development of national science and technology and national defense industry. The development and application of high purity smelting technology for manufacture of ultra-high strength steels at domestic and overseas is briefly reviewed in the paper, and then the control ability about the impurity elements such as S, P, O and N in typical ultra-high strength steels, and the research status and development trend of non-metallic inclusions control are discussed. The progress in research work of high purity smelting technology for ultra-high strength steels carried out by the authors in recent years has been introduced, it shows that the control level of impurity elements and non-metallic inclusion has been greatly improved, and it also creates a new route for China to manufacture the ultra-high strength steel with high alloy, especially with high purity for ultra-high strength stainless steel, bearing steel and gear steel. Finally, the development direction of high purity smelting technology of ultra-high strength steel in China is pointed out.

  18. FSU High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Prosper, Harrison B. [Florida State Univ., Tallahassee, FL (United States); Adams, Todd [Florida State Univ., Tallahassee, FL (United States); Askew, Andrew [Florida State Univ., Tallahassee, FL (United States); Berg, Bernd [Florida State Univ., Tallahassee, FL (United States); Blessing, Susan K. [Florida State Univ., Tallahassee, FL (United States); Okui, Takemichi [Florida State Univ., Tallahassee, FL (United States); Owens, Joseph F. [Florida State Univ., Tallahassee, FL (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Wahl, Horst D. [Florida State Univ., Tallahassee, FL (United States)

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  19. Neutron diffraction under high pressure and high temperature

    International Nuclear Information System (INIS)

    Komatsu, Kazuki

    2010-01-01

    Neutron diffraction study under high pressure and high temperature is reviewed from the technical point of view. Particularly, cell assembly for the high-PT neutron diffraction using a Paris-Edinburgh cell with the temperature calibration by neutron resonance spectroscopy is introduced. Notes on the errors relevant to high pressure and high temperature experiments in both monochromatic angle dispersive and time-of-flight methods are also discussed. (author)

  20. Developing V-Xanes Oxybarometry for Probing Materials Formed in Reducing Environments in the Early Solar Disk

    Science.gov (United States)

    Butterworth, A. L.; Gainsforth, Z.; Jilly-Rehak, C. E.; Righter, K.; Westphal, A. J.

    2017-01-01

    Vanadium exhibits four oxidation states (V(sup 2+), V(sup 3+), V(sup 4+) and V(sup 5+)) that have been shown to preferentially partition between melt phases dependent on redox conditions, spanning oxygen fugacity across more than 10 log units. We are developing synchrotron-based x-ray absorption spectroscopy of low-fugacity standards for the determination of V oxidation state in highly reducing conditions relevant to the early solar nebula.

  1. Highly Anisotropic Conductors.

    Science.gov (United States)

    Wan, Jiayu; Song, Jianwei; Yang, Zhi; Kirsch, Dylan; Jia, Chao; Xu, Rui; Dai, Jiaqi; Zhu, Mingwei; Xu, Lisha; Chen, Chaoji; Wang, Yanbin; Wang, Yilin; Hitz, Emily; Lacey, Steven D; Li, Yongfeng; Yang, Bao; Hu, Liangbing

    2017-11-01

    Composite materials with ordered microstructures often lead to enhanced functionalities that a single material can hardly achieve. Many biomaterials with unusual microstructures can be found in nature; among them, many possess anisotropic and even directional physical and chemical properties. With inspiration from nature, artificial composite materials can be rationally designed to achieve this anisotropic behavior with desired properties. Here, a metallic wood with metal continuously filling the wood vessels is developed, which demonstrates excellent anisotropic electrical, thermal, and mechanical properties. The well-aligned metal rods are confined and separated by the wood vessels, which deliver directional electron transport parallel to the alignment direction. Thus, the novel metallic wood composite boasts an extraordinary anisotropic electrical conductivity (σ || /σ ⊥ ) in the order of 10 11 , and anisotropic thermal conductivity (κ || /κ ⊥ ) of 18. These values exceed the highest reported values in existing anisotropic composite materials. The anisotropic functionality of the metallic wood enables it to be used for thermal management applications, such as thermal insulation and thermal dissipation. The highly anisotropic metallic wood serves as an example for further anisotropic materials design; other composite materials with different biotemplates/hosts and fillers can achieve even higher anisotropic ratios, allowing them to be implemented in a variety of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Chaos at High School

    Directory of Open Access Journals (Sweden)

    Tamás Meszéna

    2017-04-01

    Full Text Available We are faced with chaotic processes in many segments of our life: meteorology, environmental pollution, financial and economic processes, sociology, mechanics, electronics, biology, chemistry. The spreading of high-performance computers and the development of simulation methods made the examination of these processes easily available. Regular, periodic motions (pendulum, harmonic oscillatory motion, bouncing ball, as taught at secondary level, become chaotic even due minor changes. If it is true that the most considerable achievements of twentieth century physics were the theory of relativity, quantum mechanics and chaos theory, then it is presumably time to think about, examine and test how and to what extent chaos can be presented to the students. Here I would like to introduce a 12 lesson long facultative curriculum framework on chaos designed for students aged seventeen. The investigation of chaos phenomenon in this work is based on a freeware, “Dynamics Solver”. This software, with some assistance from the teacher, is suitable for classroom use at secondary level.

  3. HIGH TEMPERATURE VACUUM MIXER

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2015-01-01

    Full Text Available The work is devoted to the creation of a new type of mixer to produce homogeneous mixtures of dissimilar materials applied to recycling of housing and communal services waste. The article describes the design of a dual-chamber device of the original high-temperature vacuum mixer, there investigated the processes occurring in the chambers of such devices. The results of theoretical and experimental research of the process of mixing recycled polyethylene with a mixture of "grinded food waste – Eco wool” are presented. The problem of the optimum choice of bending the curvilinear blades in the working volume of the seal, which is achieved by setting their profile in the form of involute arc of several circles of different radii, is examined . The dependences, allowing to define the limits of the changes of the main mode parameters the angular velocity of rotation of the working body of the mixer using two ways of setting the profile of the curvilinear blade mixer are obtained. Represented design of the mixer is proposed to use for a wide range of tasks associated with the mixing of the components with a strongly pronounced difference of physic al chemical properties and, in particular, in the production of composites out of housing and communal services waste.

  4. Flexible high speed CODEC

    Science.gov (United States)

    Wernlund, James V.

    1993-01-01

    HARRIS, under contract with NASA Lewis, has developed a hard decision BCH (Bose-Chaudhuri-Hocquenghem) triple error correcting block CODEC ASIC, that can be used in either a bursted or continuous mode. the ASIC contains both encoder and decoder functions, programmable lock thresholds, and PSK related functions. The CODEC provides up to 4 dB of coding gain for data rates up to 300 Mbps. The overhead is selectable from 7/8 to 15/16 resulting in minimal band spreading, for a given BER. Many of the internal calculations are brought out enabling the CODEC to be incorporated in more complex designs. The ASIC has been tested in BPSK, QPSK and 16-ary PSK link simulators and found to perform to within 0.1 dB of theory for BER's of 10(exp -2) to 10(exp -9). The ASIC itself, being a hard decision CODEC, is not limited to PSK modulation formats. Unlike most hard decision CODEC's, the HARRIS CODEC doesn't upgrade BER performance significantly at high BER's but rather becomes transparent.

  5. High Speed Ice Friction

    Science.gov (United States)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben

    2014-05-01

    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  6. High Power Coax Window

    International Nuclear Information System (INIS)

    Neubauer, M.L.; Dudas, A.; Sah, R.; Elliott, T.S.; Rimmer, R.A.; Stirbet, M.

    2010-01-01

    A superconducting RF (SRF) power coupler capable of handling 500 kW CW RF power is required for present and future storage rings and linacs. There are over 35 coupler designs for SRF cavities ranging in frequency from 325 to 1500 MHz. Coupler windows vary from cylinders to cones to disks, and RF power couplers are limited by the ability of ceramic windows to withstand the stresses due to heating and mechanical flexure. We propose a novel robust co-axial SRF coupler design which uses compressed window technology. This technology will allow the use of highly thermally conductive materials for cryogenic windows. Using compressed window techniques on disk co-axial windows will make significant improvements in the power handling of SRF couplers. We present the bench test results of two window assemblies back to back, as well as individual window VSWR in EIA3.125 coax. A vacuum test assembly was made and the windows baked out at 155C. The processes used to build windows is scalable to larger diameter coax and to higher power levels.

  7. High-Rise Zhivago

    Directory of Open Access Journals (Sweden)

    Elena Siemens

    2016-02-01

    Full Text Available This paper discusses the Taganka Theatre’s production of Pasternak’s Doctor Zhivago, staged in a remote Moscow suburb. Performed in a Soviet-built palace of culture, the show radically reinterpretsZhivago, transforming it from an intensely personal to a collective narrative. Drawing on a chapter from my book Theatre in Passing: A Moscow Photo-Diary (Intellect 2011, the paper refers to Marvin Carlson, who argues that theatre buildings and their locations greatly impact the overall meaning of a show. Citing evidence provided by cultural theorists, architectural critics, as well as authors and artists, I expand on my earlier discussion of suburbs – a fertile subject attracting a wealth of contradictory opinions. I illustrate my discussion with images of high-rises inspired by the avant-garde photographer Alexander Rodchenko, and pictures of soup cans and cases of Coca-Cola – my tribute to Andy Warhol, who, like Rodchenko, rejected the old in favour of the new. I conclude with a nostalgic shot of a single-family dwelling, reminiscent of the spaces depicted in Pasternak.

  8. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics Program at the University of California, Riverside. In 1990, we will concentrate on analysis of LEP data from the OPAL detector. We expect to record 10 5 Z's by the end of 1989 and 10 6 in 1990. This data will be used to measure the number of quark-lepton families in the universe. In the second half of 1990 we will also be occupied with the installation of the D-Zero detector in the Tevatron Collider and the preparation of software for the 1991 run. A new initiative made possible by generous university support is a laboratory for detector development at UCR. The focus will be on silicon strip tracking detectors both for the D-Zero upgrade and for SSC physics. The theory program will pursue further various mass-generating radiative mechanisms for understanding small quark and lepton masses as well as some novel phenomenological aspects of supersymmetry

  9. Thermostating highly confined fluids.

    Science.gov (United States)

    Bernardi, Stefano; Todd, B D; Searles, Debra J

    2010-06-28

    In this work we show how different use of thermostating devices and modeling of walls influence the mechanical and dynamical properties of confined nanofluids. We consider a two dimensional fluid undergoing Couette flow using nonequilibrium molecular dynamics simulations. Because the system is highly inhomogeneous, the density shows strong fluctuations across the channel. We compare the dynamics produced by applying a thermostating device directly to the fluid with that obtained when the wall is thermostated, considering also the effects of using rigid walls. This comparison involves an analysis of the chaoticity of the fluid and evaluation of mechanical properties across the channel. We look at two thermostating devices with either rigid or vibrating atomic walls and compare them with a system only thermostated by conduction through vibrating atomic walls. Sensitive changes are observed in the xy component of the pressure tensor, streaming velocity, and density across the pore and the Lyapunov localization of the fluid. We also find that the fluid slip can be significantly reduced by rigid walls. Our results suggest caution in interpreting the results of systems in which fluid atoms are thermostated and/or wall atoms are constrained to be rigid, such as, for example, water inside carbon nanotubes.

  10. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... are two main types of high blood pressure: primary and secondary high blood pressure. Primary High Blood Pressure Primary, ... plan based on whether you were diagnosed with primary or secondary high blood pressure and if there is a ...

  11. High density matter at RHIC

    Indian Academy of Sciences (India)

    ken. Color-superconducting and other phases may exist at high baryon density and low temperature [3], whereas at high temperature the quarks and gluons are de- confined and chiral symmetry is restored. The early universe descended from high. T at extremely small μB. Neutron star cores have high μB and very low T.

  12. High-efficiency CARM

    Energy Technology Data Exchange (ETDEWEB)

    Bratman, V.L.; Kol`chugin, B.D.; Samsonov, S.V.; Volkov, A.B. [Institute of Applied Physics, Nizhny Novgorod (Russian Federation)

    1995-12-31

    The Cyclotron Autoresonance Maser (CARM) is a well-known variety of FEMs. Unlike the ubitron in which electrons move in a periodical undulator field, in the CARM the particles move along helical trajectories in a uniform magnetic field. Since it is much simpler to generate strong homogeneous magnetic fields than periodical ones for a relatively low electron energy ({Brit_pounds}{le}1-3 MeV) the period of particles` trajectories in the CARM can be sufficiently smaller than in the undulator in which, moreover, the field decreases rapidly in the transverse direction. In spite of this evident advantage, the number of papers on CARM is an order less than on ubitron, which is apparently caused by the low (not more than 10 %) CARM efficiency in experiments. At the same time, ubitrons operating in two rather complicated regimes-trapping and adiabatic deceleration of particles and combined undulator and reversed guiding fields - yielded efficiencies of 34 % and 27 %, respectively. The aim of this work is to demonstrate that high efficiency can be reached even for a simplest version of the CARM. In order to reduce sensitivity to an axial velocity spread of particles, a short interaction length where electrons underwent only 4-5 cyclotron oscillations was used in this work. Like experiments, a narrow anode outlet of a field-emission electron gun cut out the {open_quotes}most rectilinear{close_quotes} near-axis part of the electron beam. Additionally, magnetic field of a small correcting coil compensated spurious electron oscillations pumped by the anode aperture. A kicker in the form of a sloping to the axis frame with current provided a control value of rotary velocity at a small additional velocity spread. A simple cavity consisting of a cylindrical waveguide section restricted by a cut-off waveguide on the cathode side and by a Bragg reflector on the collector side was used as the CARM-oscillator microwave system.

  13. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  14. High Ra, high Pr convection with viscosity gradients

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. High Ra, high Pr convection with viscosity gradients. Weak upward flow through mesh. Top fluid more viscous. Unstable layer Instability Convection.

  15. High regression rate, high density hybrid fuels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR program will investigate high energy density novel nanofuels combined with high density binders for use with an N2O oxidizer. Terves has developed...

  16. Highly Accurate Sensor for High-Purity Oxygen Determination Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this STTR effort, Los Gatos Research (LGR) and the University of Wisconsin (UW) propose to develop a highly-accurate sensor for high-purity oxygen determination....

  17. Turning High-Poverty Schools into High-Performing Schools

    Science.gov (United States)

    Parrett, William H.; Budge, Kathleen

    2012-01-01

    If some schools can overcome the powerful and pervasive effects of poverty to become high performing, shouldn't any school be able to do the same? Shouldn't we be compelled to learn from those schools? Although schools alone will never systemically eliminate poverty, high-poverty, high-performing (HP/HP) schools take control of what they can to…

  18. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  19. Ultra high vacuum broad band high power microwave window

    Science.gov (United States)

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  20. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often...