WorldWideScience

Sample records for synchrotron x-ray microscopy

  1. Soft X-ray microscopy and lithography with synchrotron radiation

    International Nuclear Information System (INIS)

    Gudat, W.

    1977-12-01

    Considerable progress in the technique microscopy with soft X-ray radiation has been achieved in particular through the application of synchrotron radiation. Various methods which are currently being studied theoretically or already being used practically will be described briefly. Attention is focussed on the method of contact microscopy. Various biological specimens have been investigated by this method with a resolution as good as 100 A. X-ray lithography which in the technical procedure is very similar to contact microscopy gives promise for the fabrication of high quality submicron structures in electronic device production. Important factors limiting the resolution and determining the performance of contact microscopy and X-ray lithography will be discussed. (orig.) [de

  2. Calcified-tissue investigations using synchrotron x-ray microscopy

    International Nuclear Information System (INIS)

    Jones, K.W.; Spanne, P.; Schidlovsky, G.; Dejun, X.; Bockman, R.S.; Hammond, P.B.; Bornschein, R.L.; Hoeltzel, D.A.

    1990-10-01

    Synchrotron x-ray microscopy (SXRM) in both emission and absorption modes has been used to examine elemental distributions in specimens of rat tibia, human deciduous teeth, and an orthopedic implant phantom. The work was performed with a spatial resolution of 8 μm for the emission work and 25 μm for the absorption work. The results illustrate the usefulness of SXRM for measurements of different types of calcified tissue. 3 figs

  3. Synchrotron X-ray tomographic microscopy of fossil embryos.

    Science.gov (United States)

    Donoghue, Philip C J; Bengtson, Stefan; Dong, Xi-ping; Gostling, Neil J; Huldtgren, Therese; Cunningham, John A; Yin, Chongyu; Yue, Zhao; Peng, Fan; Stampanoni, Marco

    2006-08-10

    Fossilized embryos from the late Neoproterozoic and earliest Phanerozoic have caused much excitement because they preserve the earliest stages of embryology of animals that represent the initial diversification of metazoans. However, the potential of this material has not been fully realized because of reliance on traditional, non-destructive methods that allow analysis of exposed surfaces only, and destructive methods that preserve only a single two-dimensional view of the interior of the specimen. Here, we have applied synchrotron-radiation X-ray tomographic microscopy (SRXTM), obtaining complete three-dimensional recordings at submicrometre resolution. The embryos are preserved by early diagenetic impregnation and encrustation with calcium phosphate, and differences in X-ray attenuation provide information about the distribution of these two diagenetic phases. Three-dimensional visualization of blastomere arrangement and diagenetic cement in cleavage embryos resolves outstanding questions about their nature, including the identity of the columnar blastomeres. The anterior and posterior anatomy of embryos of the bilaterian worm-like Markuelia confirms its position as a scalidophoran, providing new insights into body-plan assembly among constituent phyla. The structure of the developing germ band in another bilaterian, Pseudooides, indicates a unique mode of germ-band development. SRXTM provides a method of non-invasive analysis that rivals the resolution achieved even by destructive methods, probing the very limits of fossilization and providing insight into embryology during the emergence of metazoan phyla.

  4. Application of X-ray synchrotron microscopy instrumentation in biology

    Energy Technology Data Exchange (ETDEWEB)

    Gasperini, F. M. [Medical Science Program, Fluminense Federal Univ., Niteroi (Brazil); Pereira, G. R. [Dept. of Metallurgical and Materials Engineering, Federal Univ. of Rio de Janeiro (Brazil); Granjeiro, J. M. [Molecular and Cell Biology Dept., Fluminense Federal Univ., Niteroi, Rio de Janeiro (Brazil); Calasans-Maia, M. D. [Oral Surgery Dept., Fluminense Federal Univ., Niteroi, Rio de Janeiro (Brazil); Rossi, A. M. [Biomaterials Laboratory, Brazilian Center of Physics Research, Rio de Janeiro (Brazil); Perez, C. A. [Brazilian Synchrotron Laboratory, Campinas, Sao Paulo (Brazil); Lopes, R. T.; Lima, I. [Nuclear Engineering Laboratory, Federal Univ. of Rio de Janeiro (Brazil)

    2011-07-01

    X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazil working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)

  5. Microbial biofilm study by synchrotron X-ray microscopy

    International Nuclear Information System (INIS)

    Pennafirme, S.; Lima, I.; Bitencourt, J.A.; Crapez, M.A.C.; Lopes, R.T.

    2015-01-01

    Microbial biofilm has already being used to remove metals and other pollutants from wastewater. In this sense, our proposal was to isolate and cultivate bacteria consortia from mangrove’s sediment resistant to Zn (II) and Cu (II) at 50 mg L −1 and to observe, through synchrotron X-ray fluorescence microscopy (microXRF), whether the biofilm sequestered the metal. The biofilm area analyzed was 1 mm 2 and a 2D map was generated (pixel size 20×20 μm 2 , counting time 5 s/point). The biofilm formation and retention followed the sequence Zn>Cu. Bacterial consortium zinc resistant formed dense biofilm and retained 63.83% of zinc, while the bacterial consortium copper resistant retained 3.21% of copper, with lower biofilm formation. Dehydrogenase activity of Zn resistant bacterial consortium was not negatively affect by 50 mg ml −1 zinc input, whereas copper resistant bacterial consortium showed a significant decrease on dehydrogenase activity (50 mg mL −1 of Cu input). In conclusion, biofilm may protect bacterial cells, acting as barrier against metal toxicity. The bacterial consortia Zn resistant, composed by Nitratireductor spp. and Pseudomonas spp formed dense biofilm and sequestered metal from water, decreasing the metal bioavailability. These bacterial consortia can be used in bioreactors and in bioremediation programs. - Highlights: • We studied bacterial bioremediation by microXRF. • Dense biofilm may act sequestering metal while protecting bacterial metabolism. • Nitratireductor spp. and Pseudomonas spp decreased seawater metal bioavailability. • Bacterial consortia from polluted areas may be used in bioremediation programs.

  6. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy.

    Science.gov (United States)

    Withers, P J

    2015-03-06

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored.

  7. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography. The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source. 8 refs., 5 figs

  8. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source

    International Nuclear Information System (INIS)

    Woll, A.R.; Huang, R.; Mass, J.; Bisulca, C.; Bilderback, D.H.; Gruner, S.; Gao, N.

    2006-01-01

    A confocal X-ray fluorescence microscope was built at the Cornell High Energy Synchrotron Source (CHESS) to obtain compositional depth profiles of historic paintings. The microscope consists of a single-bounce, borosilicate monocapillary optic to focus the incident beam onto the painting and a commercial borosilicate polycapillary lens to collect the fluorescent X-rays. The resolution of the microscope was measured by scanning a variety of thin metal films through this confocal volume while monitoring the fluorescence signal. The capabilities of the technique were then probed using test paint microstructures with up to four distinct layers, each having a thickness in the range of 10-80 microns. Results from confocal XRF were compared with those from stand-alone XRF and visible light microscopy of the paint cross-sections. A large area, high-resolution scanner is currently being built to perform 3D scans on moderately sized paintings. (orig.)

  9. Microscopy and elemental analysis in tissue samples using computed microtomography with synchrotron x-rays

    International Nuclear Information System (INIS)

    Spanne, P.; Rivers, M.L.

    1988-01-01

    The initial development shows that CMT using synchrotron x-rays can be developed to μm spatial resolution and perhaps even better. This creates a new microscopy technique which is of special interest in morphological studies of tissues, since no chemical preparation or slicing of the sample is necessary. The combination of CMT with spatial resolution in the μm range and elemental mapping with sensitivity in the ppM range results in a new tool for elemental mapping at the cellular level. 7 refs., 1 fig

  10. Scanning soft x-ray microscopy with a fresnel zoneplate at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Kenney, J.M.; Kirz, J.; Rarback, H.; Feder, R.; Sayre, D.; Howells, M.

    1983-01-01

    We have built a scanning transmission soft x-ray microscope located at the National Synchrotron Light Source (NSLS). Images of biological specimens have been formed with submicron resolution. A Fresnel zoneplate serves as the focusing element

  11. Probing platinum degradation in polymer electrolyte membrane fuel cells by synchrotron X-ray microscopy.

    Science.gov (United States)

    Berejnov, Viatcheslav; Martin, Zulima; West, Marcia; Kundu, Sumit; Bessarabov, Dmitri; Stumper, Jürgen; Susac, Darija; Hitchcock, Adam P

    2012-04-14

    Synchrotron-based scanning transmission X-ray spectromicroscopy (STXM) was used to characterize the local chemical environment at and around the platinum particles in the membrane (PTIM) which form in operationally tested (end-of-life, EOL) catalyst coated membranes (CCMs) of polymer electrolyte membrane fuel cells (PEM-FC). The band of metallic Pt particles in operationally tested CCM membranes was imaged using transmission electron microscopy (TEM). The cathode catalyst layer in the beginning-of-life (BOL) CCMs was fabricated using commercially available catalysts created from Pt precursors with and without nitrogen containing ligands. The surface composition of these catalyst powders was measured by X-ray Photoelectron Spectroscopy (XPS). The local chemical environment of the PTIM in EOL CCMs was found to be directly related to the Pt precursor used in CCM fabrication. STXM chemical mapping at the N 1s edge revealed a characteristic spectrum at and around the dendritic Pt particles in CCMs fabricated with nitrogen containing Pt-precursors. This N 1s spectrum was identical to that of the cathode and different from the membrane. For CCM samples fabricated without nitrogen containing Pt-precursors the N 1s spectrum at the Pt particles was indistinguishable from that of the adjacent membrane. We interpret these observations to indicate that nitrogenous ligands in the nitrogen containing precursors, or decomposition product(s) from that source, are transported together with the dissolved Pt from the cathode into the membrane as a result of the catalyst degradation process. This places constraints on possible mechanisms for the PTIM band formation process.

  12. Detection of genetically altered copper levels in Drosophila tissues by synchrotron x-ray fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Jessica C Lye

    Full Text Available Tissue-specific manipulation of known copper transport genes in Drosophila tissues results in phenotypes that are presumably due to an alteration in copper levels in the targeted cells. However direct confirmation of this has to date been technically challenging. Measures of cellular copper content such as expression levels of copper-responsive genes or cuproenzyme activity levels, while useful, are indirect. First-generation copper-sensitive fluorophores show promise but currently lack the sensitivity required to detect subtle changes in copper levels. Moreover such techniques do not provide information regarding other relevant biometals such as zinc or iron. Traditional techniques for measuring elemental composition such as inductively coupled plasma mass spectroscopy are not sensitive enough for use with the small tissue amounts available in Drosophila research. Here we present synchrotron x-ray fluorescence microscopy analysis of two different Drosophila tissues, the larval wing imaginal disc, and sectioned adult fly heads and show that this technique can be used to detect changes in tissue copper levels caused by targeted manipulation of known copper homeostasis genes.

  13. X-ray intravital microscopy for functional imaging in rat hearts using synchrotron radiation coronary microangiography.

    Science.gov (United States)

    Umetani, K; Fukushima, K

    2013-03-01

    An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 μm, yielding sharp images of small arteries. The exposure time has been shortened to around 2 ms using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 μm diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 μm was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct

  14. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Soo In; George, Graham N.; Lawrence, John R.; Kaminskyj, Susan G. W.; Dynes, James J.; Lai, Barry; Pickering, Ingrid J.

    2016-10-04

    Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to the same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se0). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se0 using the Se LIII edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50–700 nm, suggesting Se0 nanoparticles. The intimate association of Se0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.

  15. Investigation of mineral distribution in bone by synchrotron X-ray fluorescence microscopy after tibolone therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lima, I. [Rio de Janeiro State Univ., Nova Friburgo, RJ (Brazil). Dept. of Mechanical Engineering and Energy; Federal Univ. of Rio de Janeiro, RJ (Brazil). Nuclear Instrumentation Lab. - COPPE; Carvalho, A.C.B.; Henriques, H.N.; Guzman-Silva, M.A. [Fluminense Federal Univ., Niteroi, RJ (Brazil). Lab. of Experimental Pathology; Sales, E.; Lopes, R.T. [Federal Univ. of Rio de Janeiro, RJ (Brazil). Nuclear Instrumentation Lab. - COPPE; Granjeiro, J.M. [Fluminense Federal Univ., Niteroi, RJ (Brazil). Dept. of Cellular and Molecular Biology

    2011-07-01

    Tibolone is a synthetic steroid with estrogenic, androgenic, and progestagenic properties used for the prevention of postmenopausal osteoporosis and treatment of climacteric symptoms. Tibolone shows almost no action on breast and endometrium, which are target-organs for estrogens and progesterone activity. The aim of this work was to investigate the spatial distribution of calcium and zinc minerals in the femoral head of ovariectomized rat in order to evaluate the effects of the long-term administration of tibolone. For that purpose X-ray microfluorescence was used with synchrotron radiation imaging technique which was performed at Brazilian Light Synchrotron Laboratory, Campinas, SP. Minerals were not homogeneously distributed in trabecular bone areas; a higher concentration of calcium in the trabecular regions at femoral heads was found in ovariectomized and tibolone-treated rats compared to ovariectomized and control groups. (orig.)

  16. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy?

    International Nuclear Information System (INIS)

    Janssens, K.; Adams, F.

    1992-01-01

    Synchrotron Radiation induced X-ray micro Fluorescence analysis (μ-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed

  17. Nanoscale examination of microdamage in sheep cortical bone using synchrotron radiation transmission x-ray microscopy.

    Directory of Open Access Journals (Sweden)

    Garry R Brock

    Full Text Available Microdamage occurs in bone through repeated and excessive loading. Accumulation of microdamage weakens bone, leading to a loss of strength, stiffness and energy dissipation in the tissue. Imaging techniques used to examine microdamage have typically been limited to the microscale. In the current study microdamage was examined at the nanoscale using transmission x-ray microscopy with an x-ray negative stain, lead-uranyl acetate. Microdamage was generated in notched and unnotched beams of sheep cortical bone (2×2×20 mm, with monotonic and fatigue loading. Bulk sections were removed from beams and stained with lead-uranyl acetate to identify microdamage. Samples were sectioned to 50 microns and imaged using transmission x-ray microscopy producing projection images of microdamage with nanoscale resolution. Staining indicated microdamage occurred in both the tensile and compressive regions. A comparison between monotonic and fatigue loading indicated a statistically significant greater amount of stain present in fatigue loaded sections. Microdamage occurred in three forms: staining to existing bone structures, cross hatch damage and a single crack extending from the notch tip. Comparison to microcomputed tomography demonstrated differences in damage morphology and total damage between the microscale and nanoscale. This method has future applications for understanding the underlying mechanisms for microdamage formation as well as three-dimensional nanoscale examination of microdamage.

  18. X-ray tomographic and laminographic microscopy (XTM, XLM) using synchrotron radiation

    International Nuclear Information System (INIS)

    Wyss, P.; Obrist, A.; Hofmann, J.; Luethi, T.; Sennhauser, U.; Thurner, P.; Stampanoni, M.; Abela, R.; Patterson, B.; Mueller, R.

    2003-01-01

    Inner structures of composite materials, components or tissues have to be characterised with micrometer and even submicrometer resolution. It is often highly desirable that specimens stay unchanged after a first characterization to allow meaningful subsequent tests. This justifies major efforts for an ongoing improvement of nondestructive radiographical and tomographical methods for morphological characterization. Radiography and tomography as well as laminography can fulfill these requirements. X-ray sources and detectors have been improved. This applies for synchrotron-beamline systems as well as for tube based systems. A novel detector concept has been implemented in the XTM station at the SLS of the PSI in Villigen, Switzerland. This microtomography station at the SLS has started its operation in spring 2002. A selection of results related to industrial and scientific applications is presented in this contribution. Special emphasis will be given to first results of tomography with limited numbers of projections which is comparable to laminography. This method allows to characterise e.g. ribbons of tissue under load

  19. X-ray fluorescence with synchrotron radiation

    International Nuclear Information System (INIS)

    Raman, S.; Sparks, C.J. Jr.

    1978-01-01

    An experimental set-up for x-ray fluorescence analysis with synchrotron radiation was built and installed at the Stanford Synchrotron Radiation Project. X-ray spectra were taken from numerous and varied samples in order to assess the potential of synchrotron radiation as an excitation source for multielement x-ray fluorescence analysis. For many applications, the synchrotron radiation technique is shown to be superior to other x-ray fluorescence methods, especially those employing electrons and protons as excitation sources

  20. Workshop on the coupling of synchrotron radiation IR and X-rays with tip based scanning probe microscopies X-TIP

    Energy Technology Data Exchange (ETDEWEB)

    Comin, F.; Martinez-Criado, G.; Mundboth, K.; Susini, J. [European Synchrotron Radiation Facility (ESRF), 38 - Grenoble (France); Purans, J.; Sammelselg, V. [Tartu Univ. (Estonia); Chevrier, J.; Huant, S. [Universite Joseph-Fourier, Grenoble I, LEPES, 38 (France); Hamilton, B. [School of Electrical Engineering and Electronics, Manchester (United Kingdom); Saito, A. [Osaka Univ., RIKEN/SPring8 (Japan); Dhez, O. [OGG, INFM/CNR, 38 - Grenoble (France); Brocklesby, W.S. [Southampton Univ., Optoelectronics Research Centre (United Kingdom); Alvarez-Prado, L.M. [Ovieado, Dept. de Fisica (Spain); Kuzmin, A. [Institute of Solid State Physics - Riga (Latvia); Pailharey, D. [CRMC-N - CNRS, 13 - Marseille (France); Tonneau, D. [CRMCN - Faculte des sciences de Luminy, 13 - Marseille (France); Chretien, P. [Laboratoire de Genie Electrique de Paris, 75 - Paris (France); Cricenti, A. [ISM-CNR, Rome (Italy); DeWilde, Y. [ESPCI, 75 - Paris (France)

    2005-07-01

    The coupling of scanning probe microscopy (SPM) with synchrotron radiation is attracting increasing attention from nano-science community. By combining these 2 tools one can visualize, for example, the sample nano-structure prior to any X-ray characterization. Coupled with focusing devices or independently, SPM can provide spatial resolution below the optical limits. Furthermore, the possibility of employing SPM to manipulate nano-objects under X-ray beams is another exciting perspective. This document gathers the transparencies of 6 of the presentations made at the workshop: 1) the combination of atomic force microscopy and X-ray beam - experimental set-up and objectives; 2) the combination of scanning probe microscope and X-rays for detection of electrons; 3) towards soft X-ray scanning microscopy using tapered capillaries and laser-based high harmonic sources; 4) near-field magneto-optical microscopy; 5) near-field scanning optical microscopy - a brief overview -; and 6) from aperture-less near-field optical microscopy to infra-red near-field night vision. 4 posters entitled: 1) development of laboratory setup for X-ray/AFM experiments, 2) towards X-ray diffraction on single islands, 3) nano-XEOL using near-field detection, and 4) local collection with a STM tip of photoelectrons emitted by a surface irradiated by visible of UV laser beam, are included in the document.

  1. A comparative study of X-ray tomographic microscopy on shales at different synchrotron facilities: ALS, APS and SLS

    Energy Technology Data Exchange (ETDEWEB)

    Kanitpanyacharoen, Waruntorn [University of California, Berkeley, CA 94720 (United States); Parkinson, Dilworth Y. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); De Carlo, Francesco [Argonne National Laboratory, IL 60439 (United States); Marone, Federica [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Stampanoni, Marco [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); University and ETH Zürich, CH-8092 Zürich (Switzerland); Mokso, Rajmund [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); MacDowell, Alastair [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Wenk, Hans-Rudolf, E-mail: wenk@berkeley.edu [University of California, Berkeley, CA 94720 (United States)

    2013-01-01

    The 3D microstructure of shales is important to assess elastic anisotropic characteristics. In this study, microporosity and mineral components in two shale samples were investigated with X-ray tomographic microscopy at three synchrotron facilities: ALS, APS and SLS, and excellent agreement was observed. Synchrotron radiation X-ray tomographic microscopy (SRXTM) was used to characterize the three-dimensional microstructure, geometry and distribution of different phases in two shale samples obtained from the North Sea (sample N1) and the Upper Barnett Formation in Texas (sample B1). Shale is a challenging material because of its multiphase composition, small grain size, low but significant amount of porosity, as well as strong shape- and lattice-preferred orientation. The goals of this round-robin project were to (i) characterize microstructures and porosity on the micrometer scale, (ii) compare results measured at three synchrotron facilities, and (iii) identify optimal experimental conditions of high-resolution SRXTM for fine-grained materials. SRXTM data of these shales were acquired under similar conditions at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory, USA, the Advanced Photon Source (APS) of Argonne National Laboratory, USA, and the Swiss Light Source (SLS) of the Paul Scherrer Institut, Switzerland. The data reconstruction of all datasets was handled under the same procedures in order to compare the data quality and determine phase proportions and microstructures. With a 10× objective lens the spatial resolution is approximately 2 µm. The sharpness of phase boundaries in the reconstructed data collected from the APS and SLS was comparable and slightly more refined than in the data obtained from the ALS. Important internal features, such as pyrite (high-absorbing), and low-density features, including pores, fractures and organic matter or kerogen (low-absorbing), were adequately segmented on the same basis. The average volume

  2. Non-invasive airway health measurement using synchrotron x-ray microscopy of high refractive index glass microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Donnelley, Martin, E-mail: martin.donnelley@adelaide.edu.au; Farrow, Nigel; Parsons, David [Respiratory & Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, South Australia (Australia); Robinson Research Institute, University of Adelaide, South Australia (Australia); School of Paediatrics and Reproductive Health, University of Adelaide, South Australia (Australia); Morgan, Kaye; Siu, Karen [School of Physics, Monash University, Victoria (Australia)

    2016-01-28

    Cystic fibrosis (CF) is caused by a gene defect that compromises the ability of the mucociliary transit (MCT) system to clear the airways of debris and pathogens. To directly characterise airway health and the effects of treatments we have developed a synchrotron X-ray microscopy method that non-invasively measures the local rate and patterns of MCT behaviour. Although the nasal airways of CF mice exhibit the CF pathophysiology, there is evidence that nasal MCT is not altered in CF mice1. The aim of this experiment was to determine if our non-invasive local airway health assessment method could identify differences in nasal MCT rate between normal and CF mice, information that is potentially lost in bulk MCT measurements. Experiments were performed on the BL20XU beamline at the SPring-8 Synchrotron in Japan. Mice were anaesthetized, a small quantity of micron-sized marker particles were delivered to the nose, and images of the nasal airways were acquired for 15 minutes. The nasal airways were treated with hypertonic saline or mannitol to increase surface hydration and MCT. Custom software was used to locate and track particles and calculate individual and bulk MCT rates. No statistically significant differences in MCT rate were found between normal and CF mouse nasal airways or between treatments. However, we hope that the improved sensitivity provided by this technique will accelerate the ability to identify useful CF lung disease-modifying interventions in small animal models, and enhance the development and efficacy of proposed new therapies.

  3. Synchrotron-based X-ray Fluorescence Microscopy in Conjunction with Nanoindentation to Study Molecular-Scale Interactions of Phenol–Formaldehyde in Wood Cell Walls

    Science.gov (United States)

    Joseph E. Jakes; Christopher G. Hunt; Daniel J. Yelle; Linda Lorenz; Kolby Hirth; Sophie-Charlotte Gleber; Stefan Vogt; Warren Grigsby; Charles R. Frihart

    2015-01-01

    Understanding and controlling molecular-scale interactions between adhesives and wood polymers are critical to accelerate the development of improved adhesives for advanced wood-based materials. The submicrometer resolution of synchrotron-based X-ray fluorescence microscopy (XFM) was found capable of mapping and quantifying infiltration of Br-labeled phenol−...

  4. Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry

    KAUST Repository

    Kyriacou, Bianca

    2014-03-01

    Cereal crops accumulate low levels of iron (Fe) of which only a small fraction (5-10%) is bioavailable in human diets. Extensive co-localization of Fe in outer grain tissues with phytic acid, a strong chelator of metal ions, results in the formation of insoluble complexes that cannot be digested by humans. Here we describe the use of synchrotron X-ray fluorescence microscopy (XFM) and high resolution secondary ion mass spectrometry (NanoSIMS) to map the distribution of Fe, zinc (Zn), phosphorus (P) and other elements in the aleurone and subaleurone layers of mature grain from wild-type and an Fe-enriched line of rice (Oryza sativa L.). The results obtained from both XFM and NanoSIMS indicated that most Fe was co-localized with P (indicative of phytic acid) in the aleurone layer but that a small amount of Fe, often present as "hotspots", extended further into the subaleurone and outer endosperm in a pattern that was not co-localized with P. We hypothesize that Fe in subaleurone and outer endosperm layers of rice grain could be bound to low molecular weight chelators such as nicotianamine and/or deoxymugineic acid. © 2014.

  5. Exceptionally preserved Cambrian trilobite digestive system revealed in 3D by synchrotron-radiation X-ray tomographic microscopy.

    Directory of Open Access Journals (Sweden)

    Mats E Eriksson

    Full Text Available The Cambrian 'Orsten' fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish 'Orsten' fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the 'Orsten' fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome.

  6. Characterisation of corrosion processes of using electron micro-probe, scanning probe microscopy and synchrotron-generated x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Neufeld, A.K.; Cole, I.S.; Furman, S.A.; Isaacs, H.S.

    2002-01-01

    Full text: With recent advances in computerized technology, the study of chemical reactions can now be visualized as they occur in real time and has resulted in analytical techniques with orders of magnitude greater sensitivity and resolution. This ability offers the corrosion scientist a unique opportunity to study the processes relevant to degradation science which could only be theoretically considered. Neufeld el al (1,2) have attempted to explain in great detail the mechanism of corrosion initiation of zinc by using X-ray micro-probe, Scanning Kelvin probe, and more recently by using synchrotron-generated X-rays and X-ray fluorescence imaging. New results are presented from the synchrotron studies where the transport of ions in-situ has been investigated. The synthesis of information from the techniques will also be discussed in its relevance to atmospheric corrosion processes. Copyright (2002) Australian Society for Electron Microscopy Inc

  7. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    Science.gov (United States)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  8. A comparative study of X-ray tomographic microscopy on shales at different synchrotron facilities: ALS, APS and SLS

    OpenAIRE

    Kanitpanyacharoen, Waruntorn; Parkinson, Dilworth Y.; De Carlo, Francesco; Marone, Federica; Stampanoni, Marco; Mokso, Rajmund; MacDowell, Alastair; Wenk, Hans-Rudolf

    2012-01-01

    Synchrotron radiation X-ray tomographic microscopy (SRXTM) was used to characterize the three-dimensional microstructure, geometry and distribution of different phases in two shale samples obtained from the North Sea (sample N1) and the Upper Barnett Formation in Texas (sample B1). Shale is a challenging material because of its multiphase composition, small grain size, low but significant amount of porosity, as well as strong shape- and lattice-preferred orientation. The goals of this round-r...

  9. Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump-optical probe.

    Science.gov (United States)

    Jeon, Jae Kun; Han, Sung Mi; Kim, Jong Ki

    2016-09-01

    penetration by nanoradiators. In conclusion, the combined use of a synchrotron X-ray microbeam-irradiated three-dimensional ROS gel and confocal laser scanning fluorescence microscopy provides a simple dosimetry method for track analysis of X-ray photoelectric nanoradiator radiation, suggesting extensive cellular damage with dose-enhancement beyond a single cell containing IONs.

  10. The interaction of asbestos and iron in lung tissue revealed by synchrotron-based scanning X-ray microscopy

    Science.gov (United States)

    Pascolo, Lorella; Gianoncelli, Alessandra; Schneider, Giulia; Salomé, Murielle; Schneider, Manuela; Calligaro, Carla; Kiskinova, Maya; Melato, Mauro; Rizzardi, Clara

    2013-01-01

    Asbestos is a potent carcinogen associated with malignant mesothelioma and lung cancer but its carcinogenic mechanisms are still poorly understood. Asbestos toxicity is ascribed to its particular physico-chemical characteristics, and one of them is the presence of and ability to adsorb iron, which may cause an alteration of iron homeostasis in the tissue. This observational study reports a combination of advanced synchrotron-based X-ray imaging and micro-spectroscopic methods that provide correlative morphological and chemical information for shedding light on iron mobilization features during asbestos permanence in lung tissue. The results show that the processes responsible for the unusual distribution of iron at different stages of interaction with the fibres also involve calcium, phosphorus and magnesium. It has been confirmed that the dominant iron form present in asbestos bodies is ferritin, while the concurrent presence of haematite suggests alteration of iron chemistry during asbestos body permanence. PMID:23350030

  11. Synchrotron X-ray magnetic scattering

    CERN Document Server

    Stirling, W G

    2003-01-01

    Research on magnetic materials constitutes an increasingly important part of the programmes of most major synchrotron radiation centres. The extremely high brilliance and small spot size of advanced synchrotron beamlines, combined with element-specific resonant effects at certain absorption edges, provide a powerful probe of magnetic structures and phase transitions, with excellent wavevector resolution. Over the last decade a variety of experimental techniques have been developed, exploiting these effects for the study of thin film, multilayer and bulk magnetic materials. In this paper the basic concepts of X-ray magnetic scattering will be introduced, followed by recent examples taken from work at Daresbury Laboratory (UK), the European Synchrotron Radiation Facility (Grenoble, France) and the National Synchrotron Light Source (Brookhaven National Laboratory, USA). Investigations of domain patterns in thin magnetic films employing X-ray resonant magnetic scattering (XRMS) will be described, followed by a se...

  12. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  13. X-ray microscopy in Aarhus

    International Nuclear Information System (INIS)

    Uggerhoej, Erik; Abraham-Peskir, Joanna V.

    2000-01-01

    The Aarhus imaging soft X-ray microscope is now a busy multi-user facility. The optical set-up will be described and project highlights discussed. a) Metal-induced structural changes in whole cells in solution. The effects of aluminum, copper, nickel and zinc on protozoa investigated by using a combination of light microscopy, confocal scanning laser microscopy and X-ray microscopy. b) Botanical studies by X-ray microscopy used to compliment electron microscopy studies. c) Sludge morphology and iron precipitation in Danish freshwater plants by combining X-ray, scanning electron and transmission electron microscopy

  14. Techniques for materials research with synchrotron radiation x-rays

    International Nuclear Information System (INIS)

    Bowen, D.K.

    1983-01-01

    A brief introductory survey is presented of the properties and generation of synchrotron radiation and the main techniques developed so far for its application to materials problems. Headings are:synchrotron radiation; X-ray techniques in synchrotron radiation (powder diffraction; X-ray scattering; EXAFS (Extended X-ray Absorption Fine Structure); X-ray fluorescent analysis; microradiography; white radiation topography; double crystal topography); future developments. (U.K.)

  15. Synchrotron radiation X-ray microfluorescence techniques

    Indian Academy of Sciences (India)

    Synchrotron X-ray imaging systems with fluorescence techniques was developed for biomedical researches in Brazilian Synchrotron Laboratory. An X-ray fluorescence microtomography system was implemented to analyse human prostate and breast samples and an X-ray microfluorescence system was implemented to ...

  16. Synchrotron radiation X-ray microfluorescence techniques and ...

    Indian Academy of Sciences (India)

    Synchrotron X-ray imaging systems with fluorescence techniques was developed for biomedical researches in Brazilian Synchrotron Laboratory. An X-ray fluorescence microtomography system was implemented to analyse human prostate and breast samples and an X-ray microfluorescence system was implemented to ...

  17. Glancing angle synchrotron X-ray diffraction

    International Nuclear Information System (INIS)

    Cernik, R.J.

    1996-01-01

    This paper describes in basic detail some of the techniques that can be used to study thin films and surfaces. These are all in the X-ray region and cover reflectivity, diffraction form polycrystalline films, textured films and single crystal films. Other effects such as fluorescence and diffuse scattering are mentioned but not discussed in detail. Two examples of the reflectivity from multilayers and the diffraction from iron oxide films are discussed. The advantages of the synchrotron for these studies is stressed and the experimental geometries that can be employed are described i detail. A brief bibliography is provided at the end to accompany this part of the 1996 Frascati school

  18. Glancing angle synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cernik, R.J. [Daresbury Lab., Warrington, WA (United States)

    1996-09-01

    This paper describes in basic detail some of the techniques that can be used to study thin films and surfaces. These are all in the X-ray region and cover reflectivity, diffraction form polycrystalline films, textured films and single crystal films. Other effects such as fluorescence and diffuse scattering are mentioned but not discussed in detail. Two examples of the reflectivity from multilayers and the diffraction from iron oxide films are discussed. The advantages of the synchrotron for these studies is stressed and the experimental geometries that can be employed are described i detail. A brief bibliography is provided at the end to accompany this part of the 1996 Frascati school.

  19. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues

    Directory of Open Access Journals (Sweden)

    Polentarutti Maurizio

    2011-02-01

    Full Text Available Abstract Background Occupational or environmental exposure to asbestos fibres is associated with pleural and parenchymal lung diseases. A histopathologic hallmark of exposure to asbestos is the presence in lung parenchyma of the so-called asbestos bodies. They are the final product of biomineralization processes resulting in deposition of endogenous iron and organic matter (mainly proteins around the inhaled asbestos fibres. For shedding light on the formation mechanisms of asbestos bodies it is of fundamental importance to characterize at the same length scales not only their structural morphology and chemical composition but also to correlate them to the possible alterations in the local composition of the surrounding tissues. Here we report the first correlative morphological and chemical characterization of untreated paraffinated histological lung tissue samples with asbestos bodies by means of soft X-ray imaging and X-Ray Fluorescence (XRF microscopy, which reveals new features in the elemental lateral distribution. Results The X-ray absorption and phase contrast images and the simultaneously monitored XRF maps of tissue samples have revealed the location, distribution and elemental composition of asbestos bodies and associated nanometric structures. The observed specific morphology and differences in the local Si, Fe, O and Mg content provide distinct fingerprints characteristic for the core asbestos fibre and the ferruginous body. The highest Si content is found in the asbestos fibre, while the shell and ferruginous bodies are characterized by strongly increased content of Mg, Fe and O compared to the adjacent tissue. The XRF and SEM-EDX analyses of the extracted asbestos bodies confirmed an enhanced Mg deposition in the organic asbestos coating. Conclusions The present report demonstrates the potential of the advanced synchrotron-based X-ray imaging and microspectroscopy techniques for studying the response of the lung tissue to the

  20. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues.

    Science.gov (United States)

    Pascolo, Lorella; Gianoncelli, Alessandra; Kaulich, Burkhard; Rizzardi, Clara; Schneider, Manuela; Bottin, Cristina; Polentarutti, Maurizio; Kiskinova, Maya; Longoni, Antonio; Melato, Mauro

    2011-02-07

    Occupational or environmental exposure to asbestos fibres is associated with pleural and parenchymal lung diseases. A histopathologic hallmark of exposure to asbestos is the presence in lung parenchyma of the so-called asbestos bodies. They are the final product of biomineralization processes resulting in deposition of endogenous iron and organic matter (mainly proteins) around the inhaled asbestos fibres. For shedding light on the formation mechanisms of asbestos bodies it is of fundamental importance to characterize at the same length scales not only their structural morphology and chemical composition but also to correlate them to the possible alterations in the local composition of the surrounding tissues. Here we report the first correlative morphological and chemical characterization of untreated paraffinated histological lung tissue samples with asbestos bodies by means of soft X-ray imaging and X-Ray Fluorescence (XRF) microscopy, which reveals new features in the elemental lateral distribution. The X-ray absorption and phase contrast images and the simultaneously monitored XRF maps of tissue samples have revealed the location, distribution and elemental composition of asbestos bodies and associated nanometric structures. The observed specific morphology and differences in the local Si, Fe, O and Mg content provide distinct fingerprints characteristic for the core asbestos fibre and the ferruginous body. The highest Si content is found in the asbestos fibre, while the shell and ferruginous bodies are characterized by strongly increased content of Mg, Fe and O compared to the adjacent tissue. The XRF and SEM-EDX analyses of the extracted asbestos bodies confirmed an enhanced Mg deposition in the organic asbestos coating. The present report demonstrates the potential of the advanced synchrotron-based X-ray imaging and microspectroscopy techniques for studying the response of the lung tissue to the presence of asbestos fibres. The new results obtained by

  1. Synchrotron x-ray microbeam characteristics for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Iida, Atsuo; Noma, Takashi

    1995-01-01

    X-ray fluorescence analysis using a synchrotron x-ray microprobe has become an indispensable technique for non-destructive micro-analysis. One of the most important parameters that characterize the x-ray microbeam system for x-ray fluorescence analysis is the beam size. For practical analysis, however, the photon flux, the energy resolution and the available energy range are also crucial. Three types of x-ray microbeam systems, including monochromatic and continuum excitation systems, were compared with reference to the sensitivity, the minimum detection limit and the applicability to various types of x-ray spectroscopic analysis. 16 refs., 5 figs

  2. Interfacial reaction pathways and kinetics during annealing of 111-textured Al/TiN bilayers: A synchrotron x-ray diffraction and transmission electron microscopy study

    International Nuclear Information System (INIS)

    Chun, J.-S.; Desjardins, P.; Lavoie, C.; Petrov, I.; Cabral, C. Jr.; Greene, J. E.

    2001-01-01

    Growth of TiN layers in most diffusion-barrier applications is limited to deposition temperatures T s s =450 deg. C on SiO 2 by ultrahigh vacuum reactive magnetron sputter deposition in pure N 2 . Al overlayers, 160 nm thick with inherited 111 preferred orientation, were then deposited at T s =100 deg. C without breaking vacuum. The as-deposited TiN layer is underdense due to the low deposition temperature (T s /T m ≅0.23 in which T m is the melting point) resulting in kinetically limited adatom mobilities leading to atomic shadowing which, in turn, results in a columnar microstructure with both inter- and intracolumnar voids. The Al overlayer is fully dense. Synchrotron x-ray diffraction was used to follow interfacial reaction kinetics during postdeposition annealing of the 111-textured Al/TiN bilayers as a function of time (t a =12-1200 s) and temperature (T a =440-550 deg. C). Changes in bilayer microstructure and microchemistry were investigated using transmission electron microscopy (TEM) and scanning TEM to obtain compositional maps of plan-view and cross-sectional specimens. Interfacial reaction during annealing is initiated at the Al/TiN interface. Al diffuses rapidly into TiN voids during anneals at temperatures ∼ 3 Ti at the interface. Al 3 Ti exhibits a relatively planar growth front extending toward the Al free surface. Analyses of time-dependent x-ray diffraction peak intensities during isothermal annealing as a function of temperature show that Al 3 Ti growth kinetics are, for the entire temperature range investigated, diffusion limited with an activation energy of 1.5±0.2 eV

  3. The nature of ancient Egyptian copper-containing carbon inks is revealed by synchrotron radiation based X-ray microscopy

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Cotte, Marine; Loredo-Portales, René

    2017-01-01

    throughout Egypt for a period spanning at least 300 years. It is argued that the black pigment material (soot) for these inks was obtained as by-products of technical metallurgy. The copper (Cu) can be correlated with the following three main components: cuprite (Cu2O), azurite (Cu3[CO3]2[OH]2) and malachite...... (XANES) at the European Synchrotron Radiation Facility (ESRF). The composition of the copper-containing carbon inks showed no significant differences that could be related to time periods or the geographical locations. This renders it probable that the same technology for ink production was used...

  4. Deflection gating for time-resolved x-ray magnetic circular dichroism-photoemission electron microscopy using synchrotron radiation

    Science.gov (United States)

    Wiemann, C.; Kaiser, A. M.; Cramm, S.; Schneider, C. M.

    2012-06-01

    In this paper, we present a newly developed gating technique for a time-resolving photoemission microscope. The technique makes use of an electrostatic deflector within the microscope's electron optical system for fast switching between two electron-optical paths, one of which is used for imaging, while the other is blocked by an aperture stop. The system can be operated with a switching time of 20 ns and shows superior dark current rejection. We report on the application of this new gating technique to exploit the time structure in the injection bunch pattern of the synchrotron radiation source BESSY II at Helmholtz-Zentrum Berlin for time-resolved measurements in the picosecond regime.

  5. The X-ray microscopy project at saga SLS

    International Nuclear Information System (INIS)

    Yasumoto, M.; Ishiguro, E.; Takemoto, K.; Kihara, H.; Kamijo, N.; Tomimasu, T.; Tsurushima, T.; Takahara, A.; Hara, K.; Chikaura, Y.

    2002-01-01

    A new high resolution X-ray microscopy project has been proposed at Saga synchrotron light source, which is a third generation synchrotron light facility in Japan. Two microscopy beamlines are planned for this project. One is a scanning microscope in the water window region, and the other is a full-field imaging microscope in the multi-keV X-ray energy region. To demonstrate the feasibility of the project, the optical layout of the scanning microscope was designed. The beamline mainly consists of a 3.5 cm periodical undulator, a varied line-spacing plane grating monochromator (600 lines/mm) and an end-station including a zone plate. Thus, the calculated X-ray properties focused on the sample position are as follows: the spot size is ∼ 70 nm, the monochromaticity is ∼2000, and the photon flux is 10 9 ∼ 10 10 photons/sec. (authors)

  6. Oxides neutron and synchrotron X-ray diffraction studies

    CERN Document Server

    Sosnowska, I M

    1999-01-01

    We review some results from several areas of oxide science in which neutron scattering and X-ray synchrotron scattering exercise a complementary role to high-resolution transmission electron microscopy. The very high-resolution time-of-flight neutron diffraction technique and its role in studies of the magnetic structure of oxides is especially reviewed. The selected topics of structural studies for the chosen oxides are: crystal and magnetic structure of the so-called cellular random systems, magnetic structure and phase transitions in ferrites and the behaviour of water in non-stoichiometric protonic conductors and in the opal silica-water system. (40 refs).

  7. Duodenal crypt health following exposure to Cr(VI): Micronucleus scoring, γ-H2AX immunostaining, and synchrotron X-ray fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Chad M.; Wolf, Jeffrey C.; Elbekai, Reem H.; Paranjpe, Madhav G.; Seiter, Jennifer M.; Chappell, Mark A.; Tappero, Ryan V.; Suh, Mina; Proctor, Deborah M.; Bichteler, Anne; Haws, Laurie C.; Harris, Mark A.

    2015-08-01

    Lifetime exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water results in intestinal damage and an increase in duodenal tumors in B6C3F1 mice. To assess whether these tumors could be the result of a direct mutagenic or genotoxic mode of action, we conducted a GLP-compliant 7-day drinking water study to assess crypt health along the entire length of the duodenum. Mice were exposed to water (vehicle control), 1.4, 21, or 180 ppm Cr(VI) via drinking water for 7 consecutive days. Crypt enterocytes in Swiss roll sections were scored as normal, mitotic, apoptotic, karyorrhectic, or as having micronuclei. A single oral gavage of 50 mg/kg cyclophosphamide served as a positive control for micronucleus induction. Exposure to 21 and 180 ppm Cr(VI) significantly increased the number of crypt enterocytes. Micronuclei and γ-H2AX immunostaining were not elevated in the crypts of Cr(VI)-treated mice. In contrast, treatment with cyclophosphamide significantly increased numbers of crypt micronuclei and qualitatively increased γ-H2AX immunostaining. Synchrotron-based X-ray fluorescence (XRF) microscopy revealed the presence of strong Cr fluorescence in duodenal villi, but negligible Cr fluorescence in the crypt compartment. Together, these data indicate that Cr(VI) does not adversely effect the crypt compartment where intestinal stem cells reside, and provide additional evidence that the mode of action for Cr(VI)-induced intestinal cancer in B6C3F1 mice involves chronic villous wounding resulting in compensatory crypt enterocyte hyperplasia.

  8. Optoelectronic Picosecond Detection of Synchrotron X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Stephen M. [Purdue Univ., West Lafayette, IN (United States)

    2017-08-04

    The goal of this research program was to develop a detector that would measure x-ray time profiles with picosecond resolution. This was specifically aimed for use at x-ray synchrotrons, where x-ray pulse profiles have Gaussian time spreads of 50-100 ps (FWHM), so the successful development of such a detector with picosecond resolution would permit x-ray synchrotron studies to break through the pulse width barrier. That is, synchrotron time-resolved studies are currently limited to pump-probe studies that cannot reveal dynamics faster than ~50 ps, whereas the proposed detector would push this into the physically important 1 ps domain. The results of this research effort, described in detail below, are twofold: 1) the original plan to rely on converting electronic signals from a semiconductor sensor into an optical signal proved to be insufficient for generating signals with the necessary time resolution and sensitivity to be widely applicable; and 2) an all-optical method was discovered whereby the x-rays are directly absorbed in an optoelectronic material, lithium tantalate, which can then be probed by laser pulses with the desired picosecond sensitivity for detection of synchrotron x-rays. This research program has also produced new fundamental understanding of the interaction of x-rays and optical lasers in materials that has now created a viable path for true picosecond detection of synchrotron x-rays.

  9. A comparative study of X-ray tomographic microscopy on shales at different synchrotron facilities: ALS, APS and SLS.

    Science.gov (United States)

    Kanitpanyacharoen, Waruntorn; Parkinson, Dilworth Y; De Carlo, Francesco; Marone, Federica; Stampanoni, Marco; Mokso, Rajmund; MacDowell, Alastair; Wenk, Hans Rudolf

    2013-01-01

    Synchrotron radiation X-ray tomographic microscopy (SRXTM) was used to characterize the three-dimensional microstructure, geometry and distribution of different phases in two shale samples obtained from the North Sea (sample N1) and the Upper Barnett Formation in Texas (sample B1). Shale is a challenging material because of its multiphase composition, small grain size, low but significant amount of porosity, as well as strong shape- and lattice-preferred orientation. The goals of this round-robin project were to (i) characterize microstructures and porosity on the micrometer scale, (ii) compare results measured at three synchrotron facilities, and (iii) identify optimal experimental conditions of high-resolution SRXTM for fine-grained materials. SRXTM data of these shales were acquired under similar conditions at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory, USA, the Advanced Photon Source (APS) of Argonne National Laboratory, USA, and the Swiss Light Source (SLS) of the Paul Scherrer Institut, Switzerland. The data reconstruction of all datasets was handled under the same procedures in order to compare the data quality and determine phase proportions and microstructures. With a 10× objective lens the spatial resolution is approximately 2 µm. The sharpness of phase boundaries in the reconstructed data collected from the APS and SLS was comparable and slightly more refined than in the data obtained from the ALS. Important internal features, such as pyrite (high-absorbing), and low-density features, including pores, fractures and organic matter or kerogen (low-absorbing), were adequately segmented on the same basis. The average volume fractions of low-density features for sample N1 and B1 were estimated at 6.3 (6)% and 4.5 (4)%, while those of pyrite were calculated to be 5.6 (6)% and 2.0 (3)%, respectively. The discrepancy of data quality and volume fractions were mainly due to different types of optical instruments and

  10. Contact microscopy with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs.

  11. Dark field X-ray microscopy for studies of recrystallization

    DEFF Research Database (Denmark)

    Ahl, Sonja Rosenlund; Simons, Hugh; Jakobsen, Anders Clemen

    2015-01-01

    We present the recently developed technique of Dark Field X-Ray Microscopy that utilizes the diffraction of hard X-rays from individual grains or subgrains at the (sub)micrometre- scale embedded within mm-sized samples. By magnifying the diffracted signal, 3D mapping of orientations and strains...... inside the selected grain is performed with an angular resolution of 0:005o and a spatial resolution of 200 nm. Furthermore, the speed of the measurements at high- intensity synchrotron facilities allows for fast non-destructive in situ determination of structural changes induced by annealing or other...

  12. Magnetic X-Ray Scattering with Synchrotron Radiation

    DEFF Research Database (Denmark)

    Moncton, D. E.; Gibbs, D.; Bohr, Jakob

    1986-01-01

    With the availability of high-brilliance synchrotron radiation from multiple wigglers, magnetic X-ray scattering has become a powerful new probe of magnetic structure and phase transitions. Similar to the well-established magnetic neutron scattering technique, magnetic X-ray scattering methods have...

  13. X-ray microscopy of human malaria

    International Nuclear Information System (INIS)

    Magowan, C.; Brown, J.T.; Mohandas, N.; Meyer-Ilse, W.

    1997-01-01

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in a way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease

  14. X-ray microscopy of human malaria

    Energy Technology Data Exchange (ETDEWEB)

    Magowan, C.; Brown, J.T.; Mohandas, N.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in a way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease.

  15. Recent developments in X-ray projection microscopy and X-ray microtomography applied to materials science

    International Nuclear Information System (INIS)

    Cazaux, J.; Erre, D.; Mouze, D.; Patat, J.M.; Rondot, S.; Sasov, A.; Trebbia, P.; Zolfaghari, A.

    1993-01-01

    After a long period of sleeping, there is recently a spectacular revival of X-ray microscopy due to the progress in X-ray sources (synchrotron radiation), X-ray optics, and X-ray detectors. However most of the attempts in this field concern the use of soft X-rays to observe, with an improved resolution, biological specimens in their wet environment. In opposition to these trends, we try to demonstrate in this paper the interest of using X-ray microscopy to materials science by applying the old principle of shadow microscopy (but with modern detectors such as CCD cameras) with harder X-rays. The excellent linearity, speed of acquisition and large dynamic of CCD cameras combined to the intrinsic advantage of X-rays ''to see'' inside thick specimens allows one to obtain digital images (for quantification), to follow dynamic processes (such as solid / solid diffusion) and to perform 3 - dimensional reconstruction of the object by X-ray microtomography. The performance of this renewed technique is indicated and illustrated by various examples. (orig.)

  16. Synchrotron X-Ray Radiation and Deformation Studies

    DEFF Research Database (Denmark)

    Fæster Nielsen, Søren

    In the present thesis two different synchrotron X-ray diffraction techniques capable of producing non-destructive information from the bulk of samples, have been investigated. Traditionally depth resolu-tion in diffraction experiments is obtained by inserting pinholes in both the incoming...... machining. The conical slit has six 25µm thick conically shaped openings matching six of the Debye-Scherrer cones from a fcc powder. By combining the conical slit with a micro-focused incoming beam of hard X-rays an embedded gauge volume is defined. Using a 2D detector, fast and complete information can...... boundary morphology. Another X-ray diffraction technique was applied on the three-dimensional X-ray diffraction (3DXRD) microscope at the ESRF synchrotron. The microscope uses a new technique based on ray tracing of diffracted high energy X-rays, providing a fast and non-destructive scheme for mapping...

  17. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  18. A synchrotron radiation facility for x-ray astronomy

    DEFF Research Database (Denmark)

    Hall, C.J.; Lewis, R.A.; Christensen, Finn Erland

    1997-01-01

    A proposal for an x-ray optics test facility based at a synchrotron radiation source is presented. The facility would incorporate a clean preparation area, and a large evacuable test area. The advantages of using a synchrotron as the source of the test radiation are discussed. These include the a...

  19. Applications of Hard X-ray Full-Field Transmission X-ray Microscopy at SSRL

    Science.gov (United States)

    Liu, Y.; Andrews, J. C.; Meirer, F.; Mehta, A.; Gil, S. Carrasco; Sciau, P.; Mester, Z.; Pianetta, P.

    2011-09-01

    State-of-the-art hard x-ray full-field transmission x-ray microscopy (TXM) at beamline 6-2C of Stanford Synchrotron Radiation Lightsource has been applied to various research fields including biological, environmental, and material studies. With the capability of imaging a 32-micron field-of-view at 30-nm resolution using both absorption mode and Zernike phase contrast, the 3D morphology of yeast cells grown in gold-rich media was investigated. Quantitative evaluation of the absorption coefficient was performed for mercury nanoparticles in alfalfa roots exposed to mercury. Combining XANES and TXM, we also performed XANES-imaging on an ancient pottery sample from the Roman pottery workshop at LaGraufesenque (Aveyron).

  20. Synchrotron X-ray induced solution precipitation of nanoparticles

    CERN Document Server

    Lee, H J; Hwu, Y; Tsai, W L

    2003-01-01

    By irradiating a solution in electroless Ni deposition using synchrotron X-rays, Ni composite was found to nucleate homogeneously and eventually precipitate in the form of nanoparticles. The size of the nanoparticles precipitated is rather uniform (100-300 nm depending on the applied temperature). By the addition of an organic acid, well-dispersed nanoparticles could be effectively deposited on glass substrate. The hydrated electrons (e sub a sub q sup -), products of radiolysis of water molecules by synchrotron X-rays, may be responsible for the effective reduction of the metal ions, resulting in homogeneous nucleation and nanoparticle formation. Our results suggest that synchrotron X-ray can be used to induce solution precipitation of nanoparticles and therefore lead to a new method of producing nanostructured particles and coating.

  1. Micromirror-based manipulation of synchrotron x-ray beams

    Science.gov (United States)

    Walko, D. A.; Chen, Pice; Jung, I. W.; Lopez, D.; Schwartz, C. P.; Shenoy, G. K.; Wang, Jin

    2017-08-01

    Synchrotron beamlines typically use macroscopic, quasi-static optics to manipulate x-ray beams. We present the use of dynamic microelectromechanical systems-based optics (MEMS) to temporally modulate synchrotron x-ray beams. We demonstrate this concept using single-crystal torsional MEMS micromirrors oscillating at frequencies of 75 kHz. Such a MEMS micromirror, with lateral dimensions of a few hundred micrometers, can interact with x rays by operating in grazing-incidence reflection geometry; x rays are deflected only when an x-ray pulse is incident on the rotating micromirror under appropriate conditions, i.e., at an angle less than the critical angle for reflectivity. The time window for such deflections depends on the frequency and amplitude of the MEMS rotation. We demonstrate that reflection geometry can produce a time window of a few microseconds. We further demonstrate that MEMS optics can isolate x rays from a selected synchrotron bunch or group of bunches. With ray-trace simulations we explain the currently achievable time windows and suggest a path toward improvements.

  2. Noninvasive 3D Structural Analysis of Arthropod by Synchrotron X-Ray Phase Contrast Tomography

    Directory of Open Access Journals (Sweden)

    Shengkun Yao

    2015-01-01

    Full Text Available X-ray imaging techniques significantly advanced our understanding of materials and biology, among which phase contrast X-ray microscopy has obvious advantages in imaging biological specimens which have low contrast by conventional absorption contrast microscopy. In this paper, three-dimensional microstructure of arthropod with high contrast has been demonstrated by synchrotron X-ray in-line phase contrast tomography. The external morphology and internal structures of an earthworm were analyzed based upon tomographic reconstructions with and without phase retrieval. We also identified and characterized various fine structural details such as the musculature system, the digestive system, the nervous system, and the circulatory system. This work exhibited the high efficiency, high precision, and wide potential applications of synchrotron X-ray phase contrast tomography in nondestructive investigation of low-density materials and biology.

  3. Noninvasive 3D Structural Analysis of Arthropod by Synchrotron X-Ray Phase Contrast Tomography

    International Nuclear Information System (INIS)

    Yao, S.; Zong, Y.; Fan, J.; Sun, Z.; Jiang, H.

    2015-01-01

    X-ray imaging techniques significantly advanced our understanding of materials and biology, among which phase contrast X-ray microscopy has obvious advantages in imaging biological specimens which have low contrast by conventional absorption contrast microscopy. In this paper, three-dimensional microstructure of arthropod with high contrast has been demonstrated by synchrotron X-ray in-line phase contrast tomography. The external morphology and internal structures of an earthworm were analyzed based upon tomographic reconstructions with and without phase retrieval. We also identified and characterized various fine structural details such as the musculature system, the digestive system, the nervous system, and the circulatory system. This work exhibited the high efficiency, high precision, and wide potential applications of synchrotron X-ray phase contrast tomography in nondestructive investigation of low-density materials and biology.

  4. Light source for synchrotron radiation x-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL)

    International Nuclear Information System (INIS)

    Zhao Jiyong; Jiang Jianhua; Tian Yulian

    1992-01-01

    Characteristics of the synchrotron radiation source for X-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL) is described, local geometrical resolution of topographies is discussed, and the diffracting intensities of white beam topography is given

  5. [Clinical applications of synchrotron radiation X-ray].

    Science.gov (United States)

    Uyama, C

    1994-09-01

    Synchrotron Radiation X-ray (SR X-ray) is an extremely strong X-ray source with a photon number more than 10(4) compared with that of the current X-ray tube. X-rays obtained by monochromatizing SR X-ray have been applied to new techniques for medical diagnosis. Several studies are now being conducted at the beam site for medical use at the Accumulation Ring of the High Energy Physics Research Institute, Tsukuba. Applications being studied include (1) energy subtraction coronary angiography. (2) microdetection of metas in samples excised from subjects. (3) monochromatic X-ray computed tomography and so on. Energy subtraction coronary angiography might have a safety advantage over the current selective coronary angiography. Microdetection of mandatory metals and poisonous heavy metals in in vivo samples contributes to the development of pathologic knowledge and clinical treatment of cancer and heavy metal toxications. Monochromatic X-ray CT is expected to detect diseases in the early stage due to increased accuracy in CT values.

  6. Quantitative X-ray microtomography with synchrotron radiation

    International Nuclear Information System (INIS)

    Donath, T.

    2007-01-01

    Synchrotron-radiation-based computed microtomography (SR μ CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR μ CT measurements have been further improved by enhancements that were made to the SR μ CT apparatus and to the reconstruction chain. For high-resolution SR μ CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR μ CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  7. X-ray diffraction microtomography using synchrotron radiation

    CERN Document Server

    Barroso, R C; Jesus, E F O; Oliveira, L F

    2001-01-01

    The X-ray diffraction computed tomography technique is based on the interference phenomena of the coherent scatter. For low-momentum transfer, it is most probable that the scattering interaction will be coherent. A selective discrimination of a given element in a scanned specimen can be realized by fixing the Bragg angle which produces an interference peak and then, to carry out the computed tomography in the standard mode. The image reconstructed exalts the presence of this element with respect to other ones in a sample. This work reports the feasibility of a non-destructive synchrotron radiation X-ray diffraction imaging technique. This research was performed at the X-ray Diffraction beam line of the National Synchrotron Light Laboratory (LNLS) in Brazil. The coherent scattering properties of different tissue and bone substitute materials were evaluated. Furthermore, diffraction patterns of some polycrystalline solids were studied due to industrial and environmental human exposure to these metals. The obtai...

  8. Low dose hard x-ray contact microscopy assisted by a photoelectric conversion layer

    Directory of Open Access Journals (Sweden)

    Andrew Gomella

    2013-04-01

    Full Text Available Hard x-ray contact microscopy provides images of dense samples at resolutions of tens of nanometers. However, the required beam intensity can only be delivered by synchrotron sources. We report on the use of a gold photoelectric conversion layer to lower the exposure dose by a factor of 40 to 50, allowing hard x-ray contact microscopy to be performed with a compact x-ray tube. We demonstrate the method in imaging the transmission pattern of a type of hard x-ray grating that cannot be fitted into conventional x-ray microscopes due to its size and shape. Generally the method is easy to implement and can record images of samples in the hard x-ray region over a large area in a single exposure, without some of the geometric constraints associated with x-ray microscopes based on zone-plate or other magnifying optics.

  9. Hard X-ray Sources for the Mexican Synchrotron Project

    Science.gov (United States)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  10. An X-ray microprobe facility using synchrotron radiation

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jones, K.W.; Hanson, A.L.; Pounds, J.G.; Rivers, M.L.; Sutton, S.R.; Spanne, P.

    1990-01-01

    An X-ray microprobe for trace elemental analysis at micrometer spatial resolutions, using synchrotron radiation (SR), is under development. The facility consists of two beamlines, one including a 1:1 focusing mirror and the other an 8:1 ellipsoidal mirror. At present, open-quotes white lightclose quotes is used for excitation of the characteristic X-ray fluorescence lines. Sensitivities in thin biological samples are in the range of 2-20 fg in 100 μm 2 areas in 5 min irradiation times. Scanning techniques, as well as microtomography and chemical speciation, are discussed. Application to a specific biomedical study is included

  11. Cryotomography x-ray microscopy state

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  12. Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials.

    Science.gov (United States)

    Zhu, Ying; Cai, Xiaoqing; Li, Jiang; Zhong, Zengtao; Huang, Qing; Fan, Chunhai

    2014-04-01

    There have been increasing interests in studying biological effects of nanomaterials, which are nevertheless faced up with many challenges due to the nanoscale dimensions and unique chemical properties of nanomaterials. Synchrotron-based X-ray microscopy, an advanced imaging technology with high spatial resolution and excellent elemental specificity, provides a new platform for studying interactions between nanomaterials and living systems. In this article, we review the recent progress of X-ray microscopic studies on bioeffects of nanomaterials in several living systems including cells, model organisms, animals and plants. We aim to provide an overview of the state of the art, and the advantages of using synchrotron-based X-ray microscopy for characterizing in vitro and in vivo behaviors and biodistribution of nanomaterials. We also expect that the use of a combination of new synchrotron techniques should offer unprecedented opportunities for better understanding complex interactions at the nano-biological interface and accounting for unique bioeffects of nanomaterials. Synchrotron-based X-ray microscopy is a non-destructive imaging technique that enables high resolution spatial mapping of metals with elemental level detection methods. This review summarizes the current use and perspectives of this novel technique in studying the biology and tissue interactions of nanomaterials. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Synchrotron x-ray reflectivity study of oxidation/passivation of copper and silicon.

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Y.; Nagy, Z.; Parkhutik, V.; You, H.

    1999-07-21

    Synchrotron x-ray-scattering technique studies of copper and silicon electrochemical interfaces are reported. These two examples illustrate the application of synchrotron x-ray techniques for oxidation, passivation, and dissolution of metals and semiconductors.

  14. Diamond detectors for synchrotron radiation X-ray applications

    International Nuclear Information System (INIS)

    De Sio, A.; Pace, E.; Cinque, G.; Marcelli, A.; Achard, J.; Tallaire, A.

    2007-01-01

    Due to its unique physical properties, diamond is a very appealing material for the development of electronic devices and sensors. Its wide band gap (5.5 eV) endows diamond based devices with low thermal noise, low dark current levels and, in the case of radiation detectors, high visible-to-X-ray signal discrimination (visible blindness) as well as high sensitivity to energies greater than the band gap. Furthermore, due to its radiation hardness diamond is very interesting for applications in extreme environments, or as monitor of high fluency radiation beams. In this work the use of diamond based detectors for X-ray sensing is discussed. On purpose, some photo-conductors based on different diamond types have been tested at the DAFNE-L synchrotron radiation laboratory at Frascati. X-ray sensitivity spectra, linearity and stability of the response of these diamond devices have been measured in order to evidence the promising performance of such devices

  15. Quantitative X-ray microtomography with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Donath, T. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2007-07-01

    Synchrotron-radiation-based computed microtomography (SR{sub {mu}}CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR{sub {mu}}CT measurements have been further improved by enhancements that were made to the SR{sub {mu}}CT apparatus and to the reconstruction chain. For high-resolution SR{sub {mu}}CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR{sub {mu}}CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  16. Applications of synchrotron X-rays in microelectronics industry research

    International Nuclear Information System (INIS)

    Jordan-Sweet, Jean L.; Detavernier, Christophe; Lavoie, Christian; Mooney, Patricia M.; Toney, Michael F.

    2005-01-01

    The high flux and density of X-rays produced at synchrotrons provide the microelectronics industry with a powerful probe of the structure and behavior of a wide array of solid materials that are being developed for use in devices of the future. They also are of great use in determining why currently-used materials and processes sometimes fail. This paper describes the X20 X-ray beamline facility operated by IBM at the National Synchrotron Light Source, and presents a series of three industry challenges and results that illustrate the variety of techniques used and problems addressed. The value of this research ranges from solving short-term, technically specific problems to increasing our academic understanding of materials in general. Techniques discussed include high-resolution diffraction, time-resolved diffraction, texture measurements, and grazing-incidence diffraction

  17. Chemical crystallography with pulsed neutrons and synchrotron x-rays

    International Nuclear Information System (INIS)

    Carrondo, M.A.; Jeffrey, G.A.

    1988-01-01

    Solid-state chemists and physicists, crystallographers and molecular biologists who are using or who plan to use the special properties of pulsed neutron spallation and synchrotron X-ray sources will find this book invaluable. Those scientists who have not yet gained experience in working with such sources will find the basic physics of the radiations, their production and their scattering properties explained, together with descriptions of the different types of diffraction experiments which use them

  18. Optical systems for synchrotron radiation: lecture 4. Soft x-ray imaging systems

    International Nuclear Information System (INIS)

    Howells, M.R.

    1986-04-01

    The history and present techniques of soft x-ray imaging are reviewed briefly. The physics of x-ray imaging is described, including the temporal and spatial coherence of x-ray sources. Particular technologies described are: contact x-ray microscopy, zone plate imaging, scanned image zone plate microscopy, scanned image reflection microscopy, and soft x-ray holography and diffraction

  19. Prospects of x-ray microscopy and x-ray microtomography for interface studies

    International Nuclear Information System (INIS)

    Erre, D.; Thomas, X.; Mouze, D.; Patat, J.M.; Trebbia, P.; Cazaux, J.

    1992-01-01

    Microfocal x-ray projection microscopy allows the non-destructive investigation of thick specimens with a lateral resolution in the micrometre range. The minimum detectable thickness lies below 100 nm for strongly absorbing materials. For further investigation, x-ray microtomography leads to three-dimensional reconstruction of the specimen. Some applications of x-ray microscopy are connected with the localization and imaging of solid/solid interfaces deeply buried in a matrix. In the future, solid/liquid interfaces and their motion will be of interest. The performance of x-ray microscopy is discussed and x-ray projection images obtained with a simple modified scanning electron microscope are shown. (author)

  20. Development of X-ray excitable luminescent probes for scanning X-ray microscopy

    International Nuclear Information System (INIS)

    Moronne, M.M.

    1999-01-01

    Transmission soft X-ray microscopy is now capable of achieving resolutions that are typically 5 times better than the best-visible light microscopes. With expected improvements in zone plate optics, an additional factor of two may be realized within the next few years. Despite the high resolution now available with X-ray microscopes and the high X-ray contrast provided by biological molecules in the soft X-ray region (λ=2-5 nm), molecular probes for localizing specific biological targets have been lacking. To circumvent this problem, X-ray excitable molecular probes are needed that can target unique biological features. In this paper we report our initial results on the development of lanthanide-based fluorescent probes for biological labeling. Using scanning luminescence X-ray microscopy (SLXM, Jacobsen et al., J. Microscopy 172 (1993) 121-129), we show that lanthanide organo-polychelate complexes are sufficiently bright and radiation resistant to be the basis of a new class of X-ray excitable molecular probes capable of providing at least a fivefold improvement in resolution over visible light microscopy. Lanthanide probes, able to bind 80-100 metal ions per molecule, were found to give strong luminescent signals with X-ray doses exceeding 10 8 Gy, and were used to label actin stress fibers and in vitro preparations of polymerized tubulin. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. K-Edge Subtraction Angiography with Synchrotron X-Rays

    CERN Document Server

    Giacomini, J C

    1996-01-01

    The purpose of this project was to utilize dual energy, monochromatic X-rays produced from synchrotrons radiation in order to obtain noninvasive medical imaging. The application of synchrotrons radiation to medical imaging is based on the principle of iodine dichromography, first described by Bertil Jacobson of the Karolinska Institute in 1953. Medical imaging using synchrotrons radiation and K-edge dichromography was pioneered at Stanford University under the leadership of Dr. Ed Rubenstein, and the late Nobel Laureate in Physics, Dr. Robert Hofstadter. With progressive refinements in hardware, clinical-quality images were obtained of human coronary arteries utilizing peripheral injections of iodinated contrast agent. These images even now are far superior to those being presented by investigators using MRI as an imaging tool for coronary arteries. However, new supplies and instruments in the cardiac catheterization laboratory have served to transform coronary angiography into an outpatient procedure, with r...

  2. A multiple CCD X-ray detector and its first operation with synchrotron radiation X-ray beam

    International Nuclear Information System (INIS)

    Suzuki, Masayo; Yamamoto, Masaki; Kumasaka, Takashi; Sato, Kazumichi; Toyokawa, Hidenori; Aries, Ian F.; Jerram, Paul A.; Ueki, Tatzuo

    1999-01-01

    A 4x4 array structure of 16 identical CCD X-ray detector modules, called the multiple CCD X-ray detector system (MCCDX), was submitted to its first synchrotron radiation experiment at the protein crystallography station of the RIKEN beamline (BL45XU) at the SPring-8 facility. An X-ray diffraction pattern of cholesterol powder was specifically taken in order to investigate the overall system performance

  3. A multiple CCD X-ray detector and its first operation with synchrotron radiation X-ray beam

    CERN Document Server

    Suzuki, M; Kumasaka, T; Sato, K; Toyokawa, H; Aries, I F; Jerram, P A; Ueki, T

    1999-01-01

    A 4x4 array structure of 16 identical CCD X-ray detector modules, called the multiple CCD X-ray detector system (MCCDX), was submitted to its first synchrotron radiation experiment at the protein crystallography station of the RIKEN beamline (BL45XU) at the SPring-8 facility. An X-ray diffraction pattern of cholesterol powder was specifically taken in order to investigate the overall system performance.

  4. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics.

    Science.gov (United States)

    Sowa, Katarzyna M; Last, Arndt; Korecki, Paweł

    2017-03-21

    Polycapillary devices focus X-rays by means of multiple reflections of X-rays in arrays of bent glass capillaries. The size of the focal spot (typically 10-100 μm) limits the resolution of scanning, absorption and phase-contrast X-ray imaging using these devices. At the expense of a moderate resolution, polycapillary elements provide high intensity and are frequently used for X-ray micro-imaging with both synchrotrons and X-ray tubes. Recent studies have shown that the internal microstructure of such an optics can be used as a coded aperture that encodes high-resolution information about objects located inside the focal spot. However, further improvements to this variant of X-ray microscopy will require the challenging fabrication of tailored devices with a well-defined capillary microstructure. Here, we show that submicron coded aperture microscopy can be realized using a periodic grid that is placed at the output surface of a polycapillary optics. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics does not rely on the specific microstructure of the optics but rather takes advantage only of its focusing properties. Hence, submicron X-ray imaging can be realized with standard polycapillary devices and existing set-ups for micro X-ray fluorescence spectroscopy.

  5. Study of moire fringes using synchrotron X-rays

    International Nuclear Information System (INIS)

    Yoshimura, Jun-ichi

    1992-01-01

    It has recently been shown that X-ray moire fringes are not exactly the projection of the intensity distribution of the wave field on the exit surface of the crystal, but do oscillate along the beam path behind the crystal. Such nonprojectiveness of moire fringes is inexplicable by the conventional understanding of moire fringes, and therefore is of interest from a fundamental viewpoint as well as practical one. In this paper the phenomena of the nonprojectiveness are described on the basis of the latest experimental data obtained by synchrotron radiation. (author)

  6. Synchrotron X-ray diffraction using triple-axis spectrometry

    International Nuclear Information System (INIS)

    Als-Nielsen, J.

    1980-12-01

    High resolution X-ray diffraction studies of (i) monolayers of the noble gases Kr and Ar physiosorbed on graphite (ii) smectic A fluctuations in the nematic and the smectic A phases of liquid crystals are described. The apparatus used is a triple axis spectrometer situated at the storage ring DORIS at Hasylab, DESY, Hamburg. A monochromatic, well collimated beam is extracted from the synchrotron radiation spectrum by Bragg reflection from perfect Si or Ge crystals. The direction of the beam scattered from the sample is determined by Bragg reflection from a perfect Si or Ge crystal. High intensities even with resolution extending beyond the wavelength of visible light can be obtained. (Auth.)

  7. Precise stress measurements with white synchrotron x rays

    International Nuclear Information System (INIS)

    Weidner, Donald J.; Vaughan, Michael T.; Wang Liping; Long, Hongbo; Li Li; Dixon, Nathaniel A.; Durham, William B.

    2010-01-01

    In situ measurement of stress in polycrystalline samples forms the basis for studies of the mechanical properties of materials with very broad earth science and materials science applications. Synchrotron x rays have been used to define the local elastic strain in these samples, which in turn define stress. Experimental work to date has been carried out on a prototype detection system that provided a strain measurement precision >10 -4 , which corresponds to a stress resolution >50 MPa for silicate minerals. Here we report operation of a new, permanent, energy dispersive detection system for white radiation, which has been developed at the National Synchrotron Light Source. The new system provides differential strain measurements with a precision of 3x10 -5 for volumes that are 50x50x500 μm 3 . This gives a stress precision of about 10 MPa for silicate minerals.

  8. Preparation of tissue samples for X-ray fluorescence microscopy

    International Nuclear Information System (INIS)

    Chwiej, Joanna; Szczerbowska-Boruchowska, Magdalena; Lankosz, Marek; Wojcik, Slawomir; Falkenberg, Gerald; Stegowski, Zdzislaw; Setkowicz, Zuzanna

    2005-01-01

    As is well-known, trace elements, especially metals, play an important role in the pathogenesis of many disorders. The topographic and quantitative elemental analysis of pathologically changed tissues may shed some new light on processes leading to the degeneration of cells in the case of selected diseases. An ideal and powerful tool for such purpose is the Synchrotron Microbeam X-ray Fluorescence technique. It enables the carrying out of investigations of the elemental composition of tissues even at the single cell level. The tissue samples for histopathological investigations are routinely fixed and embedded in paraffin. The authors try to verify the usefulness of such prepared tissue sections for elemental analysis with the use of X-ray fluorescence microscopy. Studies were performed on rat brain samples. Changes in elemental composition caused by fixation in formalin or paraformaldehyde and embedding in paraffin were examined. Measurements were carried out at the bending magnet beamline L of the Hamburger Synchrotronstrahlungslabor HASYLAB in Hamburg. The decrease in mass per unit area of K, Br and the increase in P, S, Fe, Cu and Zn in the tissue were observed as a result of the fixation. For the samples embedded in paraffin, a lower level of most elements was observed. Additionally, for these samples, changes in the composition of some elements were not uniform for different analyzed areas of rat brain

  9. Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review

    KAUST Repository

    Chae, Sejung R.

    2013-05-22

    We report various synchrotron radiation laboratory based techniques used to characterize cement based materials in nanometer scale. High resolution X-ray transmission imaging combined with a rotational axis allows for rendering of samples in three dimensions revealing volumetric details. Scanning transmission X-ray microscope combines high spatial resolution imaging with high spectral resolution of the incident beam to reveal X-ray absorption near edge structure variations in the material nanostructure. Microdiffraction scans the surface of a sample to map its high order reflection or crystallographic variations with a micron-sized incident beam. High pressure X-ray diffraction measures compressibility of pure phase materials. Unique results of studies using the above tools are discussed-a study of pores, connectivity, and morphology of a 2,000 year old concrete using nanotomography; detection of localized and varying silicate chain depolymerization in Al-substituted tobermorite, and quantification of monosulfate distribution in tricalcium aluminate hydration using scanning transmission X-ray microscopy; detection and mapping of hydration products in high volume fly ash paste using microdiffraction; and determination of mechanical properties of various AFm phases using high pressure X-ray diffraction. © 2013 The Author(s).

  10. Application of X-rays and Synchrotron X Rays to Residual Stress Evaluation Near Surfaces

    International Nuclear Information System (INIS)

    Pyzalla, Anke

    1999-01-01

    A nondestructive residual stress analysis can be performed using diffraction methods. The easiest accessible radiation is characteristic X radiation that has a penetration depth of ∼10 microm suitable for the determination of the residual stresses in near-surface layers. Special techniques have been developed, e.g., with respect to in situ analyses of the stress state in oxide layers and the residual stress analysis in coarse grained zones of steel welds or annealed Ni-base alloys. Depending on the size of the gauge volume, neutron diffraction can provide information at depths of tens of millimetres of steel and many tens of millimetres of Al. An alternative to the use of the characteristic synchrotron radiation is the use of a high-energy polychromatic beam in an energy dispersive arrangement, which gives access to higher penetration depths at still gauge volumes as small as 100 microm x 100 microm x 1 mm in steel rods of 15-mm diameter. The combination of neutrons with conventional X rays and monochromatic and polychromatic synchrotron radiation allows for a comprehensive investigation of the phase composition, the texture, and the residual stresses

  11. Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries.

    Science.gov (United States)

    Lin, Feng; Liu, Yijin; Yu, Xiqian; Cheng, Lei; Singer, Andrej; Shpyrko, Oleg G; Xin, Huolin L; Tamura, Nobumichi; Tian, Chixia; Weng, Tsu-Chien; Yang, Xiao-Qing; Meng, Ying Shirley; Nordlund, Dennis; Yang, Wanli; Doeff, Marca M

    2017-11-08

    Rechargeable battery technologies have ignited major breakthroughs in contemporary society, including but not limited to revolutions in transportation, electronics, and grid energy storage. The remarkable development of rechargeable batteries is largely attributed to in-depth efforts to improve battery electrode and electrolyte materials. There are, however, still intimidating challenges of lower cost, longer cycle and calendar life, higher energy density, and better safety for large scale energy storage and vehicular applications. Further progress with rechargeable batteries may require new chemistries (lithium ion batteries and beyond) and better understanding of materials electrochemistry in the various battery technologies. In the past decade, advancement of battery materials has been complemented by new analytical techniques that are capable of probing battery chemistries at various length and time scales. Synchrotron X-ray techniques stand out as one of the most effective methods that allow for nearly nondestructive probing of materials characteristics such as electronic and geometric structures with various depth sensitivities through spectroscopy, scattering, and imaging capabilities. This article begins with the discussion of various rechargeable batteries and associated important scientific questions in the field, followed by a review of synchrotron X-ray based analytical tools (scattering, spectroscopy, and imaging) and their successful applications (ex situ, in situ, and in operando) in gaining fundamental insights into these scientific questions. Furthermore, electron microscopy and spectroscopy complement the detection length scales of synchrotron X-ray tools and are also discussed toward the end. We highlight the importance of studying battery materials by combining analytical techniques with complementary length sensitivities, such as the combination of X-ray absorption spectroscopy and electron spectroscopy with spatial resolution, because a sole

  12. Hard X-ray Microscopy with Elemental, Chemical and Structural Contrast

    International Nuclear Information System (INIS)

    Schroer, C.G.; Boye, P.; Feldkamp, J.P.

    2010-01-01

    We review hard X-ray microscopy techniques with a focus on scanning microscopy with synchrotron radiation. Its strength compared to other microscopies is the large penetration depth of hard x rays in matter that allows one to investigate the interior of an object without destructive sample preparation. In combination with tomography, local information from inside of a specimen can be obtained, even from inside special non-ambient sample environments. Different X-ray analytical techniques can be used to produce contrast, such as X-ray absorption, fluorescence, and diffraction, to yield chemical, elemental, and structural information about the sample, respectively. This makes X-ray microscopy attractive to many fields of science, ranging from physics and chemistry to materials, geo-, and environmental science, biomedicine, and nanotechnology. Our scanning microscope based on nanofocusing refractive X-ray lenses has a routine spatial resolution of about 100 nm and supports the contrast mechanisms mentioned above. In combination with coherent X-ray diffraction imaging, the spatial resolution can be improved to the 10 nm range. The current state-of-the-art of this technique is illustrated by several examples, and future prospects of the technique are given. (author)

  13. Final Report on Small Particle Speciation for Forensics Analysis by Soft X-ray Scanning Transmission X-ray Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pacold, J. I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Altman, A. B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Donald, S B [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dai, Z. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Davisson, M. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Holliday, K S [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knight, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kristo, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Minasian, S. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nelson, A J [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tyliszczak, T [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Booth, C. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shuh, D. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-09-30

    Materials of interest for nuclear forensic science are often highly heterogeneous, containing complex mixtures of actinide compounds in a wide variety of matrices. Scanning transmission X-ray microscopy (STXM) is ideally suited to study such materials, as it can be used to chemically image specimens by acquiring X-ray absorption near-edge spectroscopy (XANES) data with 25 nm spatial resolution. In particular, STXM in the soft X-ray synchrotron radiation regime (approximately 120 – 2000 eV) can collect spectroscopic information from the actinides and light elements in a single experiment. Thus, STXM combines the chemical sensitivity of X-ray absorption spectroscopy with high spatial resolution in a single non-destructive characterization method. This report describes the application of STXM to a broad range of nuclear materials. Where possible, the spectroscopic images obtained by STXM are compared with information derived from other analytical methods, and used to make inferences about the process history of each material. STXM measurements can yield information including the morphology of a sample, “elemental maps” showing the spatial distribution of major chemical constituents, and XANES spectra from localized regions of a sample, which may show spatial variations in chemical composition.

  14. Microfocussing of synchrotron X-rays using X-ray refractive lens ...

    Indian Academy of Sciences (India)

    2014-07-02

    Jul 2, 2014 ... ring (black) is fixed from polyimide side and (g) finally the metal substrate is etched to prepare the X-ray mask. standardized for the present X-ray lithography beamline. X-ray exposures are carried out in 3–10 keV region selected using two X-ray mirrors kept at grazing incidence angles. The total power ...

  15. Microfocussing of synchrotron X-rays using X-ray refractive lens

    Indian Academy of Sciences (India)

    X-ray lenses are fabricated in polymethyl methacrylate using deep X-ray lithography beamline of Indus-2. The focussing performance of these lenses is evaluated using Indus-2 and Diamond Light Source Ltd. The process steps for the fabrication of X-ray lenses and microfocussing at 10 keV at moderate and low emittance ...

  16. Microfocussing of synchrotron X-rays using X-ray refractive lens ...

    Indian Academy of Sciences (India)

    2014-07-02

    Jul 2, 2014 ... Abstract. X-ray lenses are fabricated in polymethyl methacrylate using deep X-ray lithography beamline of Indus-2. The focussing performance of these lenses is evaluated using Indus-2 and Dia- mond Light Source Ltd. The process steps for the fabrication of X-ray lenses and microfocussing at 10 keV at ...

  17. Microfocussing of synchrotron X-rays using X-ray refractive lens ...

    Indian Academy of Sciences (India)

    X-ray lenses are fabricated in polymethyl methacrylate using deep X-ray lithography beamline of Indus-2. The focussing performance of these lenses is evaluated using Indus-2 and Diamond Light Source Ltd. The process steps for the fabrication of X-ray lenses and microfocussing at 10 keV at moderate and low emittance ...

  18. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, D. (Purdue Univ., Lafayette, IN (USA)); Anderson, S. (Michigan State Univ., East Lansing, MI (USA)); Mattigod, S. (Pacific Northwest Lab., Richland, WA (USA))

    1990-07-01

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography.

  19. X-ray and synchrotron methods in studies of cultural heritage sites

    Science.gov (United States)

    Koval'chuk, M. V.; Yatsishina, E. B.; Blagov, A. E.; Tereshchenko, E. Yu.; Prosekov, P. A.; Dyakova, Yu. A.

    2016-09-01

    X-ray and synchrotron methods that are most widely used in studies of cultural heritage objects (including archaeological sites)—X-ray diffraction analysis, X-ray spectroscopy, and visualization techniques— have been considered. The reported examples show high efficiency and informativeness of natural science studies when solving most diverse problems of archaeology, history, the study of art, museology, etc.

  20. X-ray and synchrotron methods in studies of cultural heritage sites

    International Nuclear Information System (INIS)

    Koval’chuk, M. V.; Yatsishina, E. B.; Blagov, A. E.; Tereshchenko, E. Yu.; Prosekov, P. A.; Dyakova, Yu. A.

    2016-01-01

    X-ray and synchrotron methods that are most widely used in studies of cultural heritage objects (including archaeological sites)—X-ray diffraction analysis, X-ray spectroscopy, and visualization techniques— have been considered. The reported examples show high efficiency and informativeness of natural science studies when solving most diverse problems of archaeology, history, the study of art, museology, etc.

  1. X-ray and synchrotron methods in studies of cultural heritage sites

    Energy Technology Data Exchange (ETDEWEB)

    Koval’chuk, M. V.; Yatsishina, E. B.; Blagov, A. E.; Tereshchenko, E. Yu., E-mail: elenatereschenko@yandex.ru; Prosekov, P. A.; Dyakova, Yu. A. [National Research Centre “Kurchatov Institute” (Russian Federation)

    2016-09-15

    X-ray and synchrotron methods that are most widely used in studies of cultural heritage objects (including archaeological sites)—X-ray diffraction analysis, X-ray spectroscopy, and visualization techniques— have been considered. The reported examples show high efficiency and informativeness of natural science studies when solving most diverse problems of archaeology, history, the study of art, museology, etc.

  2. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    International Nuclear Information System (INIS)

    Schulze, D.; Anderson, S.; Mattigod, S.

    1990-07-01

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography

  3. White Beam, X-Ray, Energy-Dispersive Diffractometry using Synchrotron Radiation

    DEFF Research Database (Denmark)

    Gerward, Leif; Buras, B.; Olsen, J. Staun

    1978-01-01

    The special features of left double quote white right double quote beam X-ray energy-dispersive diffractometry using synchrotron radiation are discussed on the basis of experiments performed at the Deutsches Electronen-Synchrotron, DESY.......The special features of left double quote white right double quote beam X-ray energy-dispersive diffractometry using synchrotron radiation are discussed on the basis of experiments performed at the Deutsches Electronen-Synchrotron, DESY....

  4. Utilization of synchrotron radiation in analytical chemistry. Soft X-ray emission and absorption spectroscopy

    International Nuclear Information System (INIS)

    Muramatsu, Yasuji

    2015-01-01

    Synchrotron soft X-ray spectroscopy includes three major types of spectroscopy such as X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES), and X-ray photoelectron spectroscopy (XPS). This paper takes up XAS and XES of soft X-rays, and briefly describes the principle. XAS is roughly classified into XANES (X-ray absorption near-edge structure) and EXAFS (extended X-ray absorption fine structure), and XANES is mainly used in the analysis based on XAS of soft X-rays. As the examples of the latest soft X-ray analyses, the following are introduced: (1) bandgap of boron implantation diamond and the local structure of boron, (2) catalytic sites in solid fuel cell carbon electrode, and (3) soft X-ray analysis under atmospheric pressure. (A.O.)

  5. Actinide science with soft x-ray synchrotron radiation

    International Nuclear Information System (INIS)

    Shuh, D.

    2002-01-01

    Several workshops, some dating back more than fifteen years, recognised both the potential scientific impact and opportunities that would be made available by the capability to investigate actinide materials in the vacuum ultraviolet (VUV)/soft X-ray region of the synchrotron radiation (SR) spectrum. This spectral region revolutionized the approach to surface materials chemistry and physics nearly two decades ego. The actinide science community was unable to capitalize on these SR methodologies for the study of actinide materials until recently because of radiological safety concerns. ,The Advanced Light Source (ALS) at LBNL is a third-generation light source providing state-of-the-art performance in the VUV/soft X-ray region. Along with corresponding improvements in detector and vacuum technology, the ALS has rendered experiments with small amounts of actinide materials possible. In particular, it has been the emergence and development of micro-spectroscopic techniques that have enabled investigations of actinide materials at the ALS. The primary methods for the experimental investigation of actinide materials in the VUV/soft X-ray region are the complementary photoelectron spectroscopies, near-edge X-ray absorption fine structure (NEXAFS) and X-ray emission spectroscopy (XES) techniques. Resonant photo-emission is capable of resolving the 5f electron contributions to actinide bonding and can be used to characterise the electronic structure of actinide materials. This technique is clearly a most important methodology afforded by the tunable SR source. Core level and valence band photoelectron spectroscopies are valuable for the characterisation of the electronic properties of actinide materials, as well as for general analytical purposes. High-resolution core-level photo-emission and resonant photo-emission measurements from the a (monoclinic) and δ (FCC) allotropic phases of plutonium metal have been collected on beam line 7.0 at the ALS and the spectra show

  6. X-ray microscopy and spectromicroscopy - tools for environmental studies

    International Nuclear Information System (INIS)

    Thieme, J.

    2002-01-01

    Full text: X-ray microscopy achieves a much higher resolution than light microscopy. This is due to the much shorter wavelength of X-rays compared to visible light. The smallest structures that can be seen in an X-ray microscope at present are about 20 nm in size. X-ray microscopy is also capable of imaging specimens directly in aqueous media. By choosing the wavelength of the X-radiation appropriately, it is possible to perform spectromicroscopy studies. Comprising, it is a tool very well suited to study colloidal structures in the environment. X-ray microscopy can be performed with two types of instruments. An X-ray microscope quickly takes high-resolution images of objects to be studied, whereas a scanning X-ray microscope is an analytical instrument for spectromicroscopy. Here, an object can be imaged using energies above and below the absorption edge of an element. Dividing both images gives rise to a map of the distribution of this element in the sample. Using near-edge resonances it is possible to conduct NEXAFS studies. As the X-ray energy is raised to match the absorption edge resonances are found, that reflect the chemical bonding state of the element. Therefore, it is possible with X-ray microscopy to combine high spatial resolution with high spectral resolution for studies of colloidal structures. The Institute of X-ray physics builds up an X-ray microscopy beamline at the electron storage ring BESSY II with both, an X-ray microscope and a scanning X-ray microscope. The status of this beamline will be presented in this talk. Colloidal structures play an important role in the environment. Due to their surface activity they are involved in various processes. Substances can be bound and immobilized or transported, colloids can attach to microorganisms building up microhabitats, and organic substances as humics can flocculate due the interaction with metals. A great variety of colloidal structures from the environment have been studied using X-ray

  7. X-ray projection microscopy in the SEM

    International Nuclear Information System (INIS)

    Miller, P.

    2003-01-01

    Full text: The projection method for X-ray microscopy is very simple in principle, X-rays from the point-like source pass through the sample to form a projected image at the detector. Magnification is varied by moving the sample position between the source and the detector with magnification given by (R1+R2)/R1 where Rl is the distance from the source to the sample and R1+R2 is the distance from the source to the detector. The projection X-ray microscope is capable of providing high magnification over a wide range of X-ray energies. Point projection X-ray microscopy was first used in the early 1930s. Resolution of the point projection X-ray microscope is limited in part by the size of the X-ray source. Performance was improved in the late 1950s when magnetic lenses were used to focus an electron beam to form a sub-micron X-ray source (see Cosslett and Nixon 1960). In 1978 Horn and Waltinger developed an X-ray microscope using a scanning electron microscope to produce a fine X-ray source. However, the low current density of electron sources at that time resulted in low X-ray intensities and this combined with poor detection efficiency meant that very long exposure times were needed. The subsequent development of high-brightness field-emission gun-based SEMs, CCD X-ray detectors with much better detection efficiency, new phase retrieval algorithms, automation of SEM operation and the ready availability of powerful desktop computers has allowed the development of a very much more capable laboratory-based X-ray microscope. XRT Limited has produced the X-ray ultraMicroscope (XuM) based on original research and development undertaken by the X-ray Science and Instrumentation Group led by Dr Steve Wilkins at CSIRO Manufacturing and Infrastructure Technology. Figure 2 compares SEM and XuM images of a multi-layer fuel pellet. The SEM image shows only the surface while the XuM image reveals the internal structure of the pellet. The XuM allows X-ray images to be recorded with

  8. Trace element characterization using a synchrotron radiation X-ray microprobe

    OpenAIRE

    早川, 慎二郎

    1996-01-01

    A scanning X-ray microprobe using synchrotron radiation was developed employing an X-ray focusing system with total reflection mirrors. Utilizing a Wolter mirror system, a hard X-ray microbeam was first realized. With an energy tunable X-ray microprobe, sensitivity in X-ray fluorescence (XRF) analysis can be optimized for the element of interest at less than 1 ppm in relative concentration. Moreover, small area X-ray absorption fine structure (XAFS) measurements with XRF detection can provide...

  9. Multiscale 3D characterization with dark-field x-ray microscopy

    DEFF Research Database (Denmark)

    Simons, Hugh; Jakobsen, Anders Clemen; Ahl, Sonja Rosenlund

    2016-01-01

    Dark-field x-ray microscopy is a new way to three-dimensionally map lattice strain and orientation in crystalline matter. It is analogous to dark-field electron microscopy in that an objective lens magnifies diffracting features of the sample; however, the use of high-energy synchrotron x......, multiscale phenomena in situ is a key step toward formulating and validating multiscale models that account for the entire heterogeneity of materials....

  10. Geoscience Applications of Synchrotron X-ray Computed Microtomography

    Science.gov (United States)

    Rivers, M. L.

    2009-05-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution approaching one micron - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa - High speed radiography, with 100 microsecond temporal resolution - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x- ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The formation of frost flowers on Arctic sea-ice, which is important in controlling the atmospheric chemistry of mercury. - The distribution of

  11. K-Edge Subtraction Angiography with Synchrotron X-Rays

    International Nuclear Information System (INIS)

    Giacomini, John C.

    1996-01-01

    The purpose of this project was to utilize dual energy, monochromatic X-rays produced from synchrotrons radiation in order to obtain noninvasive medical imaging. The application of synchrotrons radiation to medical imaging is based on the principle of iodine dichromography, first described by Bertil Jacobson of the Karolinska Institute in 1953. Medical imaging using synchrotrons radiation and K-edge dichromography was pioneered at Stanford University under the leadership of Dr. Ed Rubenstein, and the late Nobel Laureate in Physics, Dr. Robert Hofstadter. With progressive refinements in hardware, clinical-quality images were obtained of human coronary arteries utilizing peripheral injections of iodinated contrast agent. These images even now are far superior to those being presented by investigators using MRI as an imaging tool for coronary arteries. However, new supplies and instruments in the cardiac catheterization laboratory have served to transform coronary angiography into an outpatient procedure, with relatively little morbidity. We extended the principles learned with coronary angiography to noninvasive imaging of the human bronchial tree. For these images, we utilized xenon as the contrast agent, as it has a K-edge very similar to that of iodine. In this case, there is no true competing diagnostic test, and pulmonary neoplasm is an enormous public health concern. In early experiments, we demonstrated remarkably clear images of the human bronchial tree. These images have been shown internationally; however, funding difficulties primarily with the Department of Energy have not allowed for progression of this promising avenue of research. One potential criticism of the project is that in order to obtain these images, we utilized national laboratories. Some have questioned whether this would lead to a practical imaging modality. However, we have shown that the technology exists to allow for construction of a miniature storage ring, with a superconducting

  12. In situ analysis of foliar zinc absorption and short-distance movement in fresh and hydrated leaves of tomato and citrus using synchrotron-based X-ray fluorescence microscopy

    Science.gov (United States)

    Du, Yumei; Kopittke, Peter M.; Noller, Barry N.; James, Simon A.; Harris, Hugh H.; Xu, Zhi Ping; Li, Peng; Mulligan, David R.; Huang, Longbin

    2015-01-01

    Background and Aims Globally, zinc deficiency is one of the most important nutritional factors limiting crop yield and quality. Despite widespread use of foliar-applied zinc fertilizers, much remains unknown regarding the movement of zinc from the foliar surface into the vascular structure for translocation into other tissues and the key factors affecting this diffusion. Methods Using synchrotron-based X-ray fluorescence microscopy (µ-XRF), absorption of foliar-applied zinc nitrate or zinc hydroxide nitrate was examined in fresh leaves of tomato (Solanum lycopersicum) and citrus (Citrus reticulatus). Key Results The foliar absorption of zinc increased concentrations in the underlying tissues by up to 600-fold in tomato but only up to 5-fold in citrus. The magnitude of this absorption was influenced by the form of zinc applied, the zinc status of the treated leaf and the leaf surface to which it was applied (abaxial or adaxial). Once the zinc had moved through the leaf surface it appeared to bind strongly, with limited further redistribution. Regardless of this, in these underlying tissues zinc moved into the lower-order veins, with concentrations 2- to 10-fold higher than in the adjacent tissues. However, even once in higher-order veins, the movement of zinc was still comparatively limited, with concentrations decreasing to levels similar to the background within 1–10 mm. Conclusions The results advance our understanding of the factors that influence the efficacy of foliar zinc fertilizers and demonstrate the merits of an innovative methodology for studying foliar zinc translocation mechanisms. PMID:25399024

  13. PREFACE: 9th International Conference on X-Ray Microscopy

    Science.gov (United States)

    Quitmann, Christoph; David, Christian; Nolting, Frithjof; Pfeiffer, Franz; Stampanoni, Marco

    2009-09-01

    Conference logo This volume compiles the contributions to the International Conference on X-Ray Microscopy (XRM2008) held on 20-25 July 2008 in Zurich, Switzerland. The conference was the ninth in a series which started in Göttingen in 1984. Over the years the XRM conference series has served as a forum bringing together all relevant players working on the development of methods, building instrumentation, and applying x-ray microscopy to challenging issues in materials science, condensed matter research, environmental science and biology. XRM2008 was attended by about 300 participants who followed 44 oral presentations and presented 220 posters. Conference photograph Figure 1: Participants of the XRM2008 conference gathered in front of the main building of the ETH-Zurich. The conference showed that x-ray microscopy has become a mature field resting on three pillars. The first are workhorse instruments available even to non-specialist users. These exist at synchrotron sources world-wide as well as in laboratories. They allow the application of established microscopy methods to solve scientific projects in areas as diverse as soil science, the investigation of cometary dust particles, magnetic materials, and the analysis of ancient parchments. Examples of all of these projects can be found in this volume. These instruments have become so well understood that now they are also commercially available. The second pillar is the continued development of methods. Methods like stroboscopic imaging, wet cells or high and low temperature environments add versatility to the experiments. Methods like phase retrieval and ptychographic imaging allow the retrieval of information which hitero was thought to be inaccessible. The third pillar is the extension of such instruments and methods to new photon sources. With x-ray free electron lasers on the horizon the XRM community is working to transfer their know-how to these novel sources which will offer unprecedented brightness and

  14. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  15. Soft X-ray diffractometer for synchrotron radiation

    CERN Document Server

    Gau, T S; Liu, K Y; Chung, C H; Chen, C K; Lai, S C; Shu, C H; Huang, Y S; Chao, C H; Lee, Y R; Chen, C T; Chang, S L

    2001-01-01

    An ultra-high vacuum soft X-ray diffractometer has been constructed and commissioned at the Synchrotron Radiation Research Center (SRRC) to investigate materials structures in mesoscale. The diffractometer, housed in a UHV tank, consists of a 6-circle goniometer, together with the systems for beam-collimation, signal detection, vacuum, and control panels. The kappa-phi (cursive,open) Greek-psi goniostat is adopted for the sample orientation. Crystal samples can be rotated along a given reciprocal lattice vector by using psi scan. Two orthogonal axes, gamma (or 2 theta) and delta, are used to move the detector. The detector is a semiconductor pin diode, which can be used in UHV ambient. This 6-circle goniometer allows for sample scanning of a wide range in the momentum space. The motors used for goniometer rotation and slit selection are UHV compatible. The UHV tank is placed on an XYZ table capable of positioning the center of the goniometer onto the incident beam. Test experiments have been carried on the 1-...

  16. Developments in contact X-ray microscopy in biomedical research

    International Nuclear Information System (INIS)

    Davies, R.L.; Flores, N.A.; Pye, J.K.

    1985-01-01

    Contact X-ray microscopy (microradiography) is a method of studying the microstructure of biological tissue. These techniques have been used to study the historadiological details of human breast tissue and sections of human ear ossicles. X-ray microscopy can also be used to demonstrate variations in structural densities seen in histological specimens including the detection of microcalcification. A modification of existing apparatus is described which has resulted in improved image-contrast and detail. The ability of X-rays to penetrate relatively thick sections of tissue makes it an ideal method for studying the morphology of biological structures, particularly in calcified tissue. The tissues may be further examined by conventional histology, elemental analysis, etc. The technique has a complementary role to alternative methods of tissue microscopy. (author)

  17. Synchrotron radiation X-ray powder diffraction techniques applied in hydrogen storage materials - A review

    OpenAIRE

    Honghui Cheng; Chen Lu; Jingjing Liu; Yongke Yan; Xingbo Han; Huiming Jin; Yu Wang; Yi Liu; Changle Wu

    2017-01-01

    Synchrotron radiation is an advanced collimated light source with high intensity. It has particular advantages in structural characterization of materials on the atomic or molecular scale. Synchrotron radiation X-ray powder diffraction (SR-XRPD) has been successfully exploited to various areas of hydrogen storage materials. In the paper, we will give a brief introduction on hydrogen storage materials, X-ray powder diffraction (XRPD), and synchrotron radiation light source. The applications of...

  18. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    Energy Technology Data Exchange (ETDEWEB)

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    2011-01-20

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

  19. High spatial resolution soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  20. Zernike phase contrast in scanning microscopy with X-rays

    Science.gov (United States)

    Holzner, Christian; Feser, Michael; Vogt, Stefan; Hornberger, Benjamin; Baines, Stephen B.; Jacobsen, Chris

    2010-11-01

    Scanning X-ray microscopy focuses radiation to a small spot and probes the sample by raster scanning. It allows information to be obtained from secondary signals such as X-ray fluorescence, which yields an elemental mapping of the sample not available in full-field imaging. The analysis and interpretation from these secondary signals can be considerably enhanced if these data are coupled with structural information from transmission imaging. However, absorption often is negligible and phase contrast has not been easily available. Originally introduced with visible light, Zernike phase contrast is a well-established technique in full-field X-ray microscopes for visualization of weakly absorbing samples. On the basis of reciprocity, we demonstrate the implementation of Zernike phase contrast in scanning X-ray microscopy, revealing structural detail simultaneously with hard-X-ray trace-element measurements. The method is straightforward to implement without significant influence on the resolution of the fluorescence images and delivers complementary information. We show images of biological specimens that clearly demonstrate the advantage of correlating morphology with elemental information.

  1. Scanning electron microscopy-energy dispersive X-ray spectrometer ...

    African Journals Online (AJOL)

    Results suggest that the SEM-EDX is one of the potential tools for rapid detection of metals, namely, As and Cd in himematsutake. Key words: Arsenic (As), cadmium (Cd), scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDX), coupled plasma-mass spectrometer (ICP-MS), himematsutake.

  2. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    Science.gov (United States)

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  3. Recent trends of X-ray detectors in synchrotron radiation science

    CERN Document Server

    Suzuki, M

    2003-01-01

    This article attempts to describe the recent trends of X-ray detectors in synchrotron radiation science in the light of not only the advance but also the stagnation of which are seriously dependent upon the current semiconductor technology. (author)

  4. Time-resolved materials science opportunities using synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by ∼tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities

  5. Report of the workshop on transferring X-ray Lithography Synchrotron (XLS) technology to industry

    Energy Technology Data Exchange (ETDEWEB)

    Marcuse, W.

    1987-01-01

    This paper reports on plans to develop an x-ray synchrotron for use in lithography. The primary concern of the present paper is technology transfer from national laboratories to private industry. (JDH)

  6. Iron overload of human colon adenocarcinoma cells studied by synchrotron-based X-ray techniques

    NARCIS (Netherlands)

    Mihucz, Victor G.; Meirer, Florian; Polgári, Zsófia; Réti, Andrea; Pepponi, Giancarlo; Ingerle, Dieter; Szoboszlai, Norbert; Streli, Christina

    2016-01-01

    Fast- and slow-proliferating human adenocarcinoma colorectal cells, HT-29 and HCA-7, respectively, overloaded with transferrin (Tf), Fe(III) citrate, Fe(III) chloride and Fe(II) sulfate were studied by synchrotron radiation total-reflection X-ray spectrometry (TXRF), TXRF-X-ray absorption near edge

  7. Antiferroelectric surface layers in a liquid crystal as observed by synchrotron x-ray scattering

    DEFF Research Database (Denmark)

    Gramsbergen, E. F.; de Jeu, W. H.; Als-Nielsen, Jens Aage

    1986-01-01

    The X-ray reflectivity form the surface of a liquid crystal with terminally polar (cyano substituted) molecules has been studied using a high-resolution triple-axis X-ray spectrometer in combination with a synchrotron source. It is demonstrated that at the surface of the smectic Al phase a few...

  8. Soft X-ray scanning transmission x-ray microscopy (STXM) of actinide materials

    International Nuclear Information System (INIS)

    Shuh, D.K.; Nilsson, H.J.; Wilson, R.E.; Tyliszczak, T.; Nico, P.S.; Werme, L.; Nilsson, H.J.; Werme, L.

    2007-01-01

    Full text of publication follows: Scanning transmission X-ray microscopy (STXM) spectro-microscopy at the Advanced Light Source Molecular Environmental Science (ALS-MES) Beamline 11.0.2 has been utilized to investigate actinide materials, particulates, and actinide-related materials. The ALS-MES STXM utilizes near-edge X-ray absorption fine structure (NEXAFS) at the actinide 4d core level edges (700 eV to 900 eV) to obtain direct spectroscopic information from actinide materials and is capable of imaging particles in several modes, both with a spatial resolution better than 30 nm. An important characteristic of the ALS-MES STXM is the capability to directly probe light clement K-edges by NEXAFS, such as the oxygen and nitrogen K-edges, that are frequently key constituents of actinide materials. The safety precautions for STXM investigations of actinides require sealed encapsulation of the actinide materials between two thin silicon nitride windows. This practical level of experimental safety makes STXM an efficient method for collecting NEXAFS spectra from radioactive materials. The results from early studies of model, light actinide oxides will be presented, demonstrating the experimental capabilities and limitations of soft X-ray STXM spectro-microscopy for investigations of actinide materials. The spectroscopic results from recent transuranic STXM investigations, along with their light element constituents, will be presented. The imaging capabilities of STXM provide a means to observe the morphology actinide-containing particulates, even when fully-hydrated, at a level that approaches the nano-scale. The results from actinide, radionuclide, and lanthanide (used as a surrogate or for a direct comparison to actinide behaviour) experiments including those focused on elucidating fundamental bonding characteristics and of environmental interests, will also be highlighted. However, there are drawbacks and the need to work at the actinide 4d edges imposes cross

  9. X-ray spectrometry with synchrotron radiation; Roentgenspektrometrie mit Synchrotronstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Matthias [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany). Arbeitsgruppe ' Roentgen- und IR-Spektrometrie' ; Gerlach, Martin; Holfelder, Ina; Hoenicke, Philipp; Lubeck, Janin; Nutsch, Andreas; Pollakowski, Beatrix; Streeck, Cornelia; Unterumsberger, Rainer; Weser, Jan; Beckhoff, Burkhard

    2014-12-15

    The X-ray spectrometry of the PTB at the BESSY II storage ring with radiation in the range from 78 eV to 10.5 keV is described. After a description of the instrumentation development reference-sample free X-ray fluorescence analysis, the determination of fundamental atomic parameters, X-ray fluorescence analysis under glance-angle incidence, highly-resolving absorption spectrometry, and emission spectrometry are considered. Finally liquid cells and in-situ measurement techniques are described. (HSI)

  10. Synchrotron x-ray diffraction study of liquid surfaces

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Pershan, P.S.

    1983-01-01

    A spectrometer for X-ray diffraction and refraction studies of horizontal, free surfaces of liquids is described. As an illustration smetic-A layering at the surface of a liquid crystal is presented.......A spectrometer for X-ray diffraction and refraction studies of horizontal, free surfaces of liquids is described. As an illustration smetic-A layering at the surface of a liquid crystal is presented....

  11. Synchrotron radiation sources: their properties and applications for VUV and X-ray spectroscopy

    International Nuclear Information System (INIS)

    Koch, E.E.

    1976-09-01

    Synchrotron radiation from accelerators and storage rings offers far reaching possibilities for many fields of basic and applied physics. The properties of synchrotron radiation, existing and planned synchrotron radiation facilities, as well as instrumental aspects are discussed. In order to illustrate the usefulness of the synchrotron radiation sources a few highlights from atomic, molelucar, and solid state spectroscopy are presented and examples from x-ray experiments and from the field of applied physics are given. (orig.) [de

  12. Data and videos for ultrafast synchrotron X-ray imaging studies of metal solidification under ultrasound

    Directory of Open Access Journals (Sweden)

    Bing Wang

    2018-04-01

    Full Text Available The data presented in this article are related to the paper entitled ‘Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound’ [Wang et al., Acta Mater. 144 (2018 505-515]. This data article provides further supporting information and analytical methods, including the data from both experimental and numerical simulation, as well as the Matlab code for processing the X-ray images. Six videos constructed from the processed synchrotron X-ray images are also provided.

  13. Total reflection X-ray fluorescence analysis of light elements with synchrotron radiation and special X-ray tubes

    International Nuclear Information System (INIS)

    Streli, C.; Wobrauschek, P.; Bauer, V.; Kregsamer, P.; Goergl, R.; Pianetta, P.; Ryon, R.; Pahlke, S.; Fabry, L.

    1997-01-01

    Total reflection X-ray fluorescence analysis (TXRF) of light elements, such as C, O and Al (atomic numbers 5-13) generally has poor sensitivity and detection limits due to poor excitation and low fluorescent yields. Special excitation sources are necessary to compensate for these physical limitations. Synchrotron radiation is the ideal source for TXRF due to its high intensity and wide spectral range extending into the low energy region required for light elements. For more routine use, special X-ray tubes can be constructed. Experiments have been performed at the Standford Synchrotron Radiation Laboratory (SSRL) using beamline III-4, which is specially designed for the sue of low energy photons. Light elements on Si wafers have been analyzed, leading to detection limits below 100 fg for Na, Mg and Al, which corresponds to about 10 9 atoms. A new vacuum chamber is introduced meeting the requirements of wafer handling without the risk of contamination and offering the possibility of scanning a certain area of the wafer. Boron was detected on a wafer with 10 14 atoms cm -2 implanted in the surface layer. A special windowless X-ray tube with Mo, Al and Si as anode materials was also tested. With the optimization of anode geometry, beam path and excitation conditions, a detection limit of 5 pg (corresponds to 10 11 atoms) for Al was achieved. (Author)

  14. Total reflection X-ray fluorescence analysis of light elements with synchrotron radiation and special X-ray tubes

    Energy Technology Data Exchange (ETDEWEB)

    Streli, C.; Wobrauschek, P.; Bauer, V.; Kregsamer, P.; Goergl, R. [Atominstitut der Oesterreichischen Universitaeten, Wien (Austria); Pianetta, P. [Stanford Synchrotron Radiation Lab. (Canada); Ryon, R. [Lawrence Livermore National Lab. CA (United States); Pahlke, S.; Fabry, L. [Wacker Siltronic AG, Burghausen (Germany)

    1997-06-20

    Total reflection X-ray fluorescence analysis (TXRF) of light elements, such as C, O and Al (atomic numbers 5-13) generally has poor sensitivity and detection limits due to poor excitation and low fluorescent yields. Special excitation sources are necessary to compensate for these physical limitations. Synchrotron radiation is the ideal source for TXRF due to its high intensity and wide spectral range extending into the low energy region required for light elements. For more routine use, special X-ray tubes can be constructed. Experiments have been performed at the Standford Synchrotron Radiation Laboratory (SSRL) using beamline III-4, which is specially designed for the sue of low energy photons. Light elements on Si wafers have been analyzed, leading to detection limits below 100 fg for Na, Mg and Al, which corresponds to about 10{sup 9}atoms. A new vacuum chamber is introduced meeting the requirements of wafer handling without the risk of contamination and offering the possibility of scanning a certain area of the wafer. Boron was detected on a wafer with 10{sup 14} atoms cm{sup -2} implanted in the surface layer. A special windowless X-ray tube with Mo, Al and Si as anode materials was also tested. With the optimization of anode geometry, beam path and excitation conditions, a detection limit of 5 pg (corresponds to 10{sup 11} atoms) for Al was achieved. (Author).

  15. Thermal management of next-generation contact-cooled synchrotron x-ray mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Khounsary, A.

    1999-10-29

    In the past decade, several third-generation synchrotrons x-ray sources have been constructed and commissioned around the world. Many of the major problems in the development and design of the optical components capable of handling the extremely high heat loads of the generated x-ray beams have been resolved. It is expected, however, that in the next few years even more powerful x-ray beams will be produced at these facilities, for example, by increasing the particle beam current. In this paper, the design of a next generation of synchrotron x-ray mirrors is discussed. The author shows that the design of contact-cooled mirrors capable of handing x-ray beam heat fluxes in excess of 500 W/mm{sup 2} - or more than three times the present level - is well within reach, and the limiting factor is the thermal stress rather then thermally induced slope error.

  16. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    International Nuclear Information System (INIS)

    Hitchcock, A. P.; Lee, V.; Wu, J.; Cooper, G.; West, M. M.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined

  17. Synchrotron X-ray studies of liquid-vapor interfaces

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1986-01-01

    The density profile ρ(z) across a liquid-vapor interface may be determined by the reflectivity R(θ) of X-rays at grazing angle incidence θ. The relation between R(θ) and ρ(z) is discussed, and experimental examples illustrating thermal roughness of simple liquids and smectic layering of liquid...

  18. Report on the fifth workshop on synchrotron x ray lithography

    Science.gov (United States)

    Williams, G. P.; Godel, J. B.; Brown, G. S.; Liebmann, W.

    Semiconductors comprise a greater part of the United States economy than the aircraft, steel, and automobile industries combined. In future the semiconductor manufacturing industry will be forced to switch away from present optical manufacturing methods in the early to mid 1990s. X ray lithography has emerged as the leading contender for continuing production below the 0.4 micron level. Brookhaven National Laboratory began a series of workshops on x ray lithography in 1986 to examine key issues and in particular to enable United States industry to take advantage of the technical base established in this field. Since accelerators provide the brightest sources for x ray lithography, most of the research and development to date has taken place at large accelerator-based research centers such as Brookhaven, the University of Wisconsin, and Stanford. The goals of this Fifth Brookhaven Workshop were to review progress and goals since the last workshop and to establish a blueprint for the future. The meeting focused on the exposure tool, that is, a term defined as the source plus beamline and stepper. In order to assess the appropriateness of schedules for the development of this tool, other aspects of the required technology such as masks, resists and inspection and repair were also reviewed. To accomplish this, two working groups were set up, one to review the overall aspects of x ray lithography and set a time frame, the other to focus on sources.

  19. Synchrotron radiation X-ray microfluorescence techniques and ...

    Indian Academy of Sciences (India)

    raphy system was implemented to analyse human prostate and breast samples and an X-ray mi- crofluorescence system was .... at the lumbar vertebral body of Wistar rat which are trabecular regions with dimensions smaller than those found in human femora, as can be seen in figure 4. Similar behaviour. (a). (b). Figure 5.

  20. Simulations of X-ray synchrotron beams using the EGS4 code system in medical applications

    International Nuclear Information System (INIS)

    Orion, I.; Henn, A.; Sagi, I.; Dilmanian, F.A.; Pena, L.; Rosenfeld, A.B.

    2001-01-01

    X-ray synchrotron beams are commonly used in biological and medical research. The availability of intense, polarized low-energy photons from the synchrotron beams provides a high dose transfer to biological materials. The EGS4 code system, which includes the photoelectron angular distribution, electron motion inside a magnetic field, and the LSCAT package, found to be the appropriate Monte Carlo code for synchrotron-produced X-ray simulations. The LSCAT package was developed in 1995 for the EGS4 code to contain the routines to simulate the linear polarization, the bound Compton, and the incoherent scattering functions. Three medical applications were demonstrated using the EGS4 Monte Carlo code as a proficient simulation code system for the synchrotron low-energy X-ray source. (orig.)

  1. Imaging bacterial spores by soft-x-ray microscopy

    International Nuclear Information System (INIS)

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-01-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark

  2. Imaging bacterial spores by soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Ford, T.W. [Univ. of London, Surrey (United Kingdom); Judge, J. [Unilever plc, Sharnbrook (United Kingdom)] [and others

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  3. Neutron and Synchrotron X-Ray Scattering Studies of Superconductors

    International Nuclear Information System (INIS)

    Tranquada, J.M.

    2008-01-01

    Superconductors hold the promise for a more stable and efficient electrical grid, but new isotropic, high-temperature superconductors are needed in order to reduce cable manufacturing costs. The effort to understand high-temperature superconductivity, especially in the layered cuprates, provides guidance to the search for new superconductors. Neutron scattering has long provided an important probe of the collective excitations that are involved in the pairing mechanism. For the cuprates, neutron and x-ray diffraction techniques also provide information on competing types of order, such as charge and spin stripes, that appear to be closely connected to the superconductivity. Recently, inelastic x-ray scattering has become competitive for studying phonons and may soon provide valuable information on electronic excitations. Examples of how these techniques contribute to our understanding of superconductivity are presented

  4. X-ray Synchrotron Radiation in a Plasma Wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

  5. Characterization of Polycrystalline Materials Using Synchrotron X-ray Imaging and Diffraction Techniques

    DEFF Research Database (Denmark)

    Ludwig, Wolfgang; King, A.; Herbig, M.

    2010-01-01

    propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray......The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using...... diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure...

  6. Characterization of Polycrystalline Materials Using Synchrotron X-ray Imaging and Diffraction Techniques

    DEFF Research Database (Denmark)

    Ludwig, Wolfgang; King, A.; Herbig, M.

    2010-01-01

    The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using...... propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X......-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure...

  7. Model experiment of in vivo synchrotron X-ray diffraction of human kidney stones

    Energy Technology Data Exchange (ETDEWEB)

    Ancharov, A.I. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, Novosibirsk (Russian Federation)]. E-mail: ancharov@mail.ru; Potapov, S.S. [Institute of Mineralogy UB RAS, Miass (Russian Federation); Moiseenko, T.N. [The State Regional Clinical Hospital, Novosibirsk (Russian Federation); Feofilov, I.V. [The State Regional Clinical Hospital, Novosibirsk (Russian Federation); Nizovskii, A.I. [Boreskov Institute of Catalysis SB RAS, Novosibirsk (Russian Federation)

    2007-05-21

    The diffraction of synchrotron radiation (SR) was used to explore the phase composition of kidney stones placed into a specific object phantom, which imitated the human body. As an imitation of the patient breath, the kidney stone was moved vertically and rotated to an angle of 15{sup o} during the recording of the X-ray pattern. It was shown that rotation and displacement did not distort the X-ray pattern.

  8. DEVELOPMENTS IN SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY AT THE NATIONAL SYNCHROTRON LIGHT SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    DOWD,B.A.

    1999-07-23

    Last year, the X27A beamline at the National Synchrotron Light Source (NSLS) became dedicated solely to X-Ray Computed Microtomography (XCMT). This is a third-generation instrument capable of producing tomographic volumes of 1-2 micron resolution over a 2-3mm field of view. Recent enhancements will be discussed. These have focused on two issues: the desire for real-time data acquisition and processing and the need for highly monochromatic beam (.1 % energy bandpass). The latter will permit k-edge subtraction studies and will provide improved image contrast from below the Cr (6 keV) up to the Cs (36 keV) k-edge. A range of applications that benefit from these improvements will be discussed as well. These two goals are somewhat counterproductive, however; higher monochromaticity yields a lower flux forcing longer data acquisition times. To balance the two, a more efficient scintillator for X-ray conversion is being developed. Some testing of a prototype scintillator has been performed; preliminary results will be presented here. In the meantime, data reconstruction times have been reduced, and the entire tomographic acquisition, reconstruction and volume rendering process streamlined to make efficient use of synchrotron beam time. A Fast Filtered Back Transform (FFBT) reconstruction program recently developed helped to reduce the time to reconstruct a volume of 150 x 150 x 250 pixels{sup 3} (over 5 million voxels) from the raw camera data to 1.5 minutes on a dual R10,000 CPU. With these improvements, one can now obtain a ''quick look'' of a small tomographic volume ({approximately}10{sup 6}voxels) in just over 15 minutes from the start of data acquisition.

  9. Report of the second workshop on synchrotron radiation sources for x-ray lithography

    Energy Technology Data Exchange (ETDEWEB)

    Barton, M.Q.; Craft, B.; Williams, G.P. (eds.)

    1986-01-01

    The reported workshop is part of an effort to implement a US-based x-ray lithography program. Presentations include designs for three storage rings (one superconducting and two conventional) and an overview of a complete lithography program. The background of the effort described, the need for synchrotron radiation, and the international competition in the area are discussed briefly. The technical feasibility of x-ray lithography is discussed, and synchrotron performance specifications and construction options are given, as well as a near-term plan. It is recommended that a prototype synchrotron source be built as soon as possible, and that a research and development plan on critical technologies which could improve cost effectiveness of the synchrotron source be established. It is further recommended that a small number of second generation prototype synchrotrons be distributed to IC manufacturing centers to expedite commercialization. (LEW)

  10. Report of the second workshop on synchrotron radiation sources for x-ray lithography

    International Nuclear Information System (INIS)

    Barton, M.Q.; Craft, B.; Williams, G.P.

    1986-01-01

    The reported workshop is part of an effort to implement a US-based x-ray lithography program. Presentations include designs for three storage rings (one superconducting and two conventional) and an overview of a complete lithography program. The background of the effort described, the need for synchrotron radiation, and the international competition in the area are discussed briefly. The technical feasibility of x-ray lithography is discussed, and synchrotron performance specifications and construction options are given, as well as a near-term plan. It is recommended that a prototype synchrotron source be built as soon as possible, and that a research and development plan on critical technologies which could improve cost effectiveness of the synchrotron source be established. It is further recommended that a small number of second generation prototype synchrotrons be distributed to IC manufacturing centers to expedite commercialization

  11. X-ray microscopy of soft and hard human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Bert, E-mail: bert.mueller@unibas.ch; Schulz, Georg, E-mail: georg.schulz@unibas.ch; Deyhle, Hans, E-mail: hans.deyhle@unibas.ch; Stalder, Anja K., E-mail: anja.stalder@unibas.ch; Ilgenstein, Bernd, E-mail: bernd.ilgenstein@unibas.ch; Holme, Margaret N., E-mail: m.holme@imperial.ac.uk; Hieber, Simone E., E-mail: simone.hieber@unibas.ch [Biomaterials Science Center (BMC), University of Basel, c/o University Hospital, 4031 Basel (Switzerland); Weitkamp, Timm, E-mail: weitkamp@synchrotron-soleil.fr [Beamline ANATOMIX, Synchrotron Soleil, L’Orme des Merisiers, Saint Aubin - B.P. 48, 91192 Gif sur Yvette (France); Beckmann, Felix, E-mail: felix.beckmann@hzg.de [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, c/o HZG at DESY, Notkestr. 85, 22607 Hamburg (Germany)

    2016-01-28

    The simultaneous post mortem visualization of soft and hard tissues using absorption-based CT remains a challenge. If the photon energy is optimized for the visualization of hard tissue, the surrounding soft tissue components are almost X-ray transparent. Therefore, the combination with other modalities such as phase-contrast CT, magnetic resonance microscopy, and histology is essential to detect the anatomical features. The combination of the 2D and 3D data sets using sophisticated segmentation and registration tools allows for conclusions about otherwise inaccessible anatomical features essential for improved patient treatments.

  12. Synchrotron X-ray PIV Technique for Measurement of Blood Flow Velocity

    International Nuclear Information System (INIS)

    Kim, Guk Bae; Lee, Sang Joon; Je, Jung Ho

    2007-01-01

    Synchrotron X-ray micro-imaging method has been used to observe internal structures of various organisms, industrial devices, and so on. However, it is not suitable to see internal flows inside a structure because tracers typically employed in conventional optical flow visualization methods cannot be detectable with the X-ray micro-imaging method. On the other hand, a PIV (particle image velocimetry) method which has recently been accepted as a reliable quantitative flow visualization technique can extract lots of flow information by applying digital image processing techniques However, it is not applicable to opaque fluids such as blood. In this study, we combined the PIV method and the synchrotron X-ray micro-imaging technique to compose a new X-ray PIV technique. Using the X-ray PIV technique, we investigated the optical characteristics of blood for a coherent synchrotron X-ray beam and quantitatively visualized real blood flows inside an opaque tube without any contrast media. The velocity field information acquired would be helpful for investigating hemorheologic characteristics of the blood flow

  13. X-Ray Microscopy Conference 2016 (XRM 2016)

    International Nuclear Information System (INIS)

    2017-01-01

    Preface On behalf of the Program Committee I would like to thank all the participants of the 13th International X-ray Microscopy Conference, XRM2016, for their contributions. The conference was hosted by the Diamond Light Source and took place in the nearby historic city of Oxford, United Kingdom from the 15th to the19th August, 2016. The goal of this biennial conference is to address the most recent advances in X-ray microscopy by bringing together experts in the development and the application of X-ray microscopes. The conference also explored the position of X-ray microscopy alongside related techniques and disciplines. The present proceedings contain over 60 contributions, providing a representative selection of the conference content. Overall there were more than 380 participants in this conference, with a total of 72 oral presentations and 250 posters contributed. In addition we had three sessions of early career flash talks, which were well received. The manuscripts submitted for these proceedings were reviewed by a large team of referees. I thank them for their rapid and thorough work on the manuscripts as well as the authors for their contributions. The conference contained ten different topics. They are categorized into four groups here for a better overview: - Bio-imaging, Multi-modal imaging, Environmental and geosciences - Elemental contrast and chemistry, Energy and materials - Diffraction imaging - New sources and facilities, Novel techniques and applications, Optics, detectors and instrumentation, Data processing. Following the tradition of the XRM conference series, the Werner Meyer-Ilse Memorial Award (WIMA) rewards young scientists for exceptional contributions to the advancement of X-ray microscopy. The WIMA committee awarded the prize to Junjing Deng (Northwestern University, USA) and Matias Kagias (ETH Zurich / PSI, Switzerland). The winners for the poster prizes, who presented their work during the early career flash talk sessions, were Burcu

  14. Effect of toroidal mirror on spatial coherence of synchrotron hard X-ray beams

    International Nuclear Information System (INIS)

    Wang Hua; Yan Shuai; Yan Fen; Mao Chengwen; Liang Dongxun; He Yan; Jiang Sheng; Li Aiguo; Yu Xiaohan

    2012-01-01

    The Gaussian Schell-model source theory is used to describe the hard X-ray micro focusing beamline with an undulator of the Shanghai Synchrotron Radiation Facility. Based on the model and general Huygens-Fresnel principle, propagation of cross-spectral density function in free space is studied. Equivalent source hypothesis is proposed and the effect of toroidal mirror on spatial coherence of the hard X-ray beams is studied. The theoretical results are consistent with the experimental results. Only divergence angles of the incident and outgoing X-rays are considered in the equivalent source hypothesis, hence an easy extension of the hypothesis to other beamline optical elements. (authors)

  15. A new miniature microchannel plate X-ray detector for synchrotron radiation

    International Nuclear Information System (INIS)

    Rosemeier, R.G.; Green, R.E. Jr.

    1982-01-01

    A state-of-the-art microchannel plate detector has been developed which allows real time X-ray imaging of X-ray diffraction as well as radiographic phenomenon. Advantages of the device include a 50 mm X-ray input, length less than 4'', and a weight of less than 1 lb. Since the use of synchrotron radiation is greatly facilitated by the capability of remote viewing of X-ray diffraction or radiographic images in real time, a prototype electro-optical system has been designed which couples the X-ray microchannel plate detector with a solid state television camera. Advantages of the miniature, lightweight, X-ray synchrotron camera include a large 50 mm X-ray input window, an output signal that is available in both analog format for display on a television monitor and in digital format for computer processing, and a completely modular design which allows all the components to be exchanged for other components optimally suited for the desired applications. (orig.)

  16. Possibilities and Challenges of Scanning Hard X-ray Spectro-microscopy Techniques in Material Sciences

    Directory of Open Access Journals (Sweden)

    Andrea Somogyi

    2015-06-01

    Full Text Available Scanning hard X-ray spectro-microscopic imaging opens unprecedented possibilities in the study of inhomogeneous samples at different length-scales. It gives insight into the spatial variation of the major and minor components, impurities and dopants of the sample, and their chemical and electronic states at micro- and nano-meter scales. Measuring, modelling and understanding novel properties of laterally confined structures are now attainable. The large penetration depth of hard X-rays (several keV to several 10 keV beam energy makes the study of layered and buried structures possible also in in situ and in operando conditions. The combination of different X-ray analytical techniques complementary to scanning spectro-microscopy, such as X-ray diffraction, X-ray excited optical luminescence, secondary ion mass spectrometry (SIMS and nano-SIMS, provides access to optical characteristics and strain and stress distributions. Complex sample environments (temperature, pressure, controlled atmosphere/vacuum, chemical environment are also possible and were demonstrated, and allow as well the combination with other analysis techniques (Raman spectroscopy, infrared imaging, mechanical tensile devices, etc. on precisely the very same area of the sample. The use of the coherence properties of X-rays from synchrotron sources is triggering emerging experimental imaging approaches with nanometer lateral resolution. New fast analytical possibilities pave the way towards statistically significant studies at multi- length-scales and three dimensional tomographic investigations. This paper gives an overview of these techniques and their recent achievements in the field of material sciences.

  17. Thermal, structural, and fabrication aspects of diamond windows for high power synchrotron x-ray beamlines

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Phillips, W.

    1992-01-01

    Recent advances in chemical vapor deposition (CVD) technology have made it possible to produce thin free-standing diamond foils that can be used as the window material in high heat load, synchrotron beamlines. Numerical simulations suggest that these windows can offer an attractive and at times the only altemative to beryllium windows for use in third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, as are the microstructure characteristics bearing on diamond's performance in this role. Analytic and numerical results are also presented to provide a basis for the design and testing of such windows

  18. A CCD-based area detector for X-ray crystallography using synchrotron and laboratory sources

    International Nuclear Information System (INIS)

    Phillips, W.C.; Li Youli; Stanton, M.; Xie Yuanhui; O'Mara, D.; Kalata, K.

    1993-01-01

    The design and characteristics of a CCD-based area detector suitable for X-ray crystallographic studies using both synchrotron and laboratory sources are described. The active area is 75 mm in diameter, the FWHM of the point response function is 0.20 mm, and for Bragg peaks the dynamic range is 900 and the DQE ∼0.3. The 1320x1035-pixel Kodak CCD is read out into an 8 Mbyte memory system in 0.14 s and digitized to 12 bits. X-ray crystallographic data collected at the NSLS synchrotron from cubic insulin crystals are presented. (orig.)

  19. Effects of synchrotron x-rays on PVD deposited and ion implanted α-Si

    International Nuclear Information System (INIS)

    Yu, K.M.; Wang, L.; Walukiewicz, W.; Muto, S.; McCormick, S.; Abelson, J.R.

    1997-01-01

    The authors have studied the effects of intense X-ray irradiation on the structure of amorphous Si films. The films were obtained by either physical vapor deposition or by implantation of high energy ions into crystalline Si. They were exposed to different total doses of synchrotron X-rays. From the EXAFS and EXELFS measurements they find that an exposure to X-rays increases the Si coordination number. Also in the PVD films a prolonged X-ray exposure enlarges, by about 2%, the Si-Si bond length. Raman spectroscopy shows that Si amorphized with high energy ions contains small residual amounts of crystalline material. Irradiation of such films with X-rays annihilates those crystallites resulting in homogeneously amorphous layer with a close to four-fold coordination of Si atoms. This rearrangement of the local structure has a pronounced effect on the crystallization process of the amorphous films. Thermal annealing of X-ray irradiated ion amorphized films leads to nearly defect free solid phase epitaxy at 500 C. Also they observe a delay in the onset of the crystallization process in X-ray irradiated PVD films. They associate this with a reduced concentration of nucleation centers in the x-ray treated materials

  20. X rays and condensed matter

    International Nuclear Information System (INIS)

    Daillant, J.

    1997-01-01

    After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques

  1. X-ray microscopy using grazing-incidence reflection optics

    International Nuclear Information System (INIS)

    Price, R.H.

    1981-01-01

    The Kirkpatrick-Baez microscopes are described along with their role as the workhorse of the x-ray imaging devices. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics

  2. Scanning photoemission microscopy with synchrotron radiation

    Science.gov (United States)

    Ade, Harald W.

    1992-08-01

    Progress in photoemission spectro-microscopy at various synchrotron radiation facilities is reviewed. Microprobe devices such as MAXIMUM at the SRC in Wisconsin, the X1-SPEM at the NSLS at BNL, as well as the ellipsoidal ring mirror microscope at DESY in Hamburg, recorded first images during the last few years. The present status of these devices which achieve their lateral resolution by focusing X-rays to a small spot is the primary focus of this paper, but work representing other approaches to spectro-microscopy is also discussed.

  3. Beryllium window flange for synchrotron radiation X-ray beamline fabricated by hot isostatic press method

    International Nuclear Information System (INIS)

    Asaoka, Seiji; Maezawa, Hideki; Nishida, Kiyotoshi; Sakamoto, Naoki.

    1995-01-01

    The synchrotron radiation experimental facilities in National Laboratory for High Energy Physics are the experimental facilities for joint utilization, that possess the positron storage ring of 2.5 GeV exclusively used for synchrotron radiation. Synchrotron radiation is led through a mainstay beam channel to the laboratory, and in the beam line of X-ray, it is used for experiment through the taking-out window made of beryllium. At this time, the function of the taking-out window is to shut off between the ultrahigh vacuum in the mainstay beam channel and the atmosphere, and to cut the low energy component of synchrotron radiation spectra. The experiment using X-ray is carried out mostly in the atmosphere. The design of the efficient cooling water channel which is compatible with the flange construction is important under the high thermal load of synchrotron radiation. The beryllium window flange for synchrotron radiation X-ray was made by HIP method, and the ultrahigh vacuum test, the high pressure water flow test and the actual machine test were carried out by heat cycle. The properties required for the window material, the requirement of the construction, the new development of HIP method, and the experiments for evaluating the manufactured beryllium window are described. (K.I.)

  4. High-energy synchrotron X-ray radiography of shock-compressed materials

    Science.gov (United States)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  5. Synchrotron radiation and free-electron lasers principles of coherent X-ray generation

    CERN Document Server

    Kim, Kwang-Je; Lindberg, Ryan

    2017-01-01

    Learn about the latest advances in high-brightness X-ray physics and technology with this authoritative text. Drawing upon the most recent theoretical developments, pre-eminent leaders in the field guide readers through the fundamental principles and techniques of high-brightness X-ray generation from both synchrotron and free-electron laser sources. A wide range of topics is covered, including high-brightness synchrotron radiation from undulators, self-amplified spontaneous emission, seeded high-gain amplifiers with harmonic generation, ultra-short pulses, tapering for higher power, free-electron laser oscillators, and X-ray oscillator and amplifier configuration. Novel mathematical approaches and numerous figures accompanied by intuitive explanations enable easy understanding of key concepts, whilst practical considerations of performance-improving techniques and discussion of recent experimental results provide the tools and knowledge needed to address current research problems in the field. This is a comp...

  6. On diamond windows for high power synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Kuzay, T.M.

    1991-01-01

    Recent advances in chemical vapor deposition (CVD) technology has made available thin, free-standing polycrystalline diamond foils that can be used as the window material on high heat load synchrotron x-ray beamlines. Diamond windows have many advantages that stem from the exceptionally attractive thermal, structural, and physical properties of diamond. Numerical simulations indicate that diamond windows can offer an attractive and at times the only alternative to beryllium windows for use on the third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, and analytical and numerical results are presented to provide a basis for the design and testing of such windows

  7. A microfocus X-ray fluorescence beamline at Indus-2 synchrotron radiation facility.

    Science.gov (United States)

    Tiwari, M K; Gupta, P; Sinha, A K; Kane, S R; Singh, A K; Garg, S R; Garg, C K; Lodha, G S; Deb, S K

    2013-03-01

    A microfocus X-ray fluorescence spectroscopy beamline (BL-16) at the Indian synchrotron radiation facility Indus-2 has been constructed with an experimental emphasis on environmental, archaeological, biomedical and material science applications involving heavy metal speciation and their localization. The beamline offers a combination of different analytical probes, e.g. X-ray fluorescence mapping, X-ray microspectroscopy and total-external-reflection fluorescence characterization. The beamline is installed on a bending-magnet source with a working X-ray energy range of 4-20 keV, enabling it to excite K-edges of all elements from S to Nb and L-edges from Ag to U. The optics of the beamline comprises of a double-crystal monochromator with Si(111) symmetric and asymmetric crystals and a pair of Kirkpatrick-Baez focusing mirrors. This paper describes the performance of the beamline and its capabilities with examples of measured results.

  8. Progress in X-ray synchrotron diffraction studies of muscle contraction. Ch. 19

    International Nuclear Information System (INIS)

    Wakabayashi, Katsuzo

    1991-01-01

    This chapter provides a review of applications of synchrotron radiation (SR) to X-ray diffraction studies on the dynamic aspects of muscle contraction and is, at the same time, a progress report on the technical developments specifically related to muscle research. The introduction of SR as an intense X-ray source and the development of high ability detectors have led to enormous improvement in the quality of data from time-resolved X-ray diffraction studies of muscle contraction. The X-ray diffraction pattern taken during contraction shows that the force generation of a muscle proceeds upon interaction of the incommensurate structures of the thin and thick filaments. In this framework a distinct intensity change of the weaker reflections from the thin filaments was detected. However, there was still no strong evidence of direct physical attachment of myosin heads to actin during contraction. (author). 170 refs.; 52 figs.; 3 tabs

  9. High counting rates of x-ray photon detection using APD detectors on synchrotron machines

    Energy Technology Data Exchange (ETDEWEB)

    Kakuno, E. M.; Giacomolli, B. A.; Scorzato, C. R. [Universidade Federal do Pampa - UNIPAMPA-Bage, 96413-170 (Brazil); Laboratorio Nacional de Luz Sincrotron - LNLS, 13086-100 (Brazil)

    2012-05-17

    In this work we show the results of 10 x 10 mm{sup 2} Si-APD detector's test with guard ring detecting x-rays. The result of mapping surface is also exhibited. We show and discuss the difficulty of single photon detection in high counting rate experiments in synchrotrons machines.

  10. Energy-dispersive X-ray diffraction beamline at Indus-2 synchrotron ...

    Indian Academy of Sciences (India)

    Abstract. An energy-dispersive X-ray diffraction beamline has been designed, developed and commissioned at BL-11 bending magnet port of the Indian synchrotron source, Indus-2. The performance of this beamline has been benchmarked by measuring diffraction patterns from var- ious elemental metals and standard ...

  11. High-pressure phases of uranium monophosphide studied by synchrotron x-ray diffraction

    DEFF Research Database (Denmark)

    Olsen, J. Staun; Gerward, Leif; Benedict, U.

    1988-01-01

    X-ray diffraction studies have been performed on UP powder for pressures up to 51 GPa using synchrotron radiation and a diamond-anvil cell. At ambient pressure UP has the rocksalt structure. The bulk modulus has been determined to B0=102(4) GPa and its pressure derivative to B0’=4.0(8). The cubic...

  12. A Spectrometer for X-Ray Energy-Dispersive Diffraction using Synchrotron Radiation

    DEFF Research Database (Denmark)

    Staun Olsen, Janus; Buras, B; Gerward, Leif

    1981-01-01

    Describes a white-beam X-ray energy-dispersive diffractometer built for Hasylab in Hamburg, FRG, using the synchrotron radiation from the electron storage ring DORIS. The following features of the instrument are discussed: horizontal or vertical scattering plane, collimators, sample environment, ...

  13. Energy-dispersive X-ray diffraction beamline at Indus-2 synchrotron ...

    Indian Academy of Sciences (India)

    An energy-dispersive X-ray diffraction beamline has been designed, developed and commissioned at BL-11 bending magnet port of the Indian synchrotron source, Indus-2. The performance of this beamline has been benchmarked by measuring diffraction patterns from various elemental metals and standard inorganic ...

  14. CCD [charge-coupled device] sensors in synchrotron x-ray detectors

    International Nuclear Information System (INIS)

    Strauss, M.G.; Naday, I.; Sherman, I.S.; Kraimer, M.R.; Westbrook, E.M.; Zaluzec, N.J.

    1987-01-01

    The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron x-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ∼1 CCD electron/x-ray photon, a peak saturation capacity of >10 6 x rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 x 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode x-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at the rate of ∼1 frame/s or a complete 3-dimensional data set from a single crystal in ∼2 min. 16 refs., 16 figs., 2 tabs

  15. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    International Nuclear Information System (INIS)

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms

  16. Fabrication of nested elliptical KB mirrors using profile coating for synchrotron radiation X-ray focusing

    International Nuclear Information System (INIS)

    Liu Chian; Ice, G.E.; Liu, W.; Assoufid, L.; Qian, J.; Shi, B.; Khachatryan, R.; Wieczorek, M.; Zschack, P.; Tischler, J.Z.

    2012-01-01

    This paper describes fabrication methods used to demonstrate the advantages of nested or Montel optics for micro/nanofocusing of synchrotron X-ray beams. A standard Kirkpatrick-Baez (KB) mirror system uses two separated elliptical mirrors at glancing angles to the X-ray beam and sequentially arranged at 90° to each other to focus X-rays successively in the vertical and horizontal directions. A nested KB mirror system has the two mirrors positioned perpendicular and side-by-side to each other. Compared to a standard KB mirror system, Montel optics can focus a larger divergence and the mirrors can have a shorter focal length. As a result, nested mirrors can be fabricated with improved demagnification factor and ultimately smaller focal spot, than with a standard KB arrangement. The nested system is also more compact with an increased working distance, and is more stable, with reduced complexity of mirror stages. However, although Montel optics is commercially available for laboratory X-ray sources, due to technical difficulties they have not been used to microfocus synchrotron radiation X-rays, where ultra-precise mirror surfaces are essential. The main challenge in adapting nested optics for synchrotron microfocusing is to fabricate mirrors with a precise elliptical surface profile at the very edge where the two mirrors meet and where X-rays scatter. For example, in our application to achieve a sub-micron focus with high efficiency, a surface figure root-mean-square (rms) error on the order of 1 nm is required in the useable area along the X-ray footprint with a ∼0.1 mm-diameter cross section. In this paper we describe promising ways to fabricate precise nested KB mirrors using our profile coating technique and inexpensive flat Si substrates.

  17. Quantitative biological imaging by ptychographic X-ray diffraction microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Giewekemeyer, Klaus; Kalbfleisch, Sebastian; Beerlink, Andre; Salditt, Tim [Institut fuer Roentgenphysik, Georg-August-Universitaet Goettingen (Germany); Thibault, Pierre; Dierolf, Martin; Pfeiffer, Franz [Department Physik (E17), Technische Universitaet Muenchen, Garching (Germany); Kewish, Cameron M. [Paul Scherrer Institut, Villigen PSI (Switzerland)

    2010-07-01

    Mesoscopic structures with specific functions are abundant in many cellular systems and have been well characterized by electron microscopy in the past. However, the quantitative study of the three-dimensional structure and density of subcellular components remains a difficult problem. In this contribution we show how these limitations could be overcome in the future by the application of recently introduced and now rapidly evolving coherent X-ray imaging techniques for quantitative biological imaging on the nanoscale. More specifically, we report on a recent scanning (ptychographic) diffraction experiment on unstained and unsliced freeze-dried cells of the bacterium Deinococcus radiourans using only a pinhole as beam defining optical element. As a result quantitative density projections well below optical resolution have been achieved.

  18. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    International Nuclear Information System (INIS)

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments. The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits)

  19. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G. [Imperial College London, London (United Kingdom); Drakopoulos, Michael [Diamond Light Source, I12 Joint Engineering, Environmental, Processing (JEEP) Beamline, Didcot, Oxfordshire (United Kingdom); Rack, Alexander [European Synchrotron Radiation Facility, Grenoble (France); Eakins, Daniel E., E-mail: d.eakins@imperial.ac.uk [Imperial College London, London (United Kingdom)

    2016-03-24

    Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments. The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits)

  20. Synchrotron radiation X-ray powder diffraction techniques applied in hydrogen storage materials - A review

    Directory of Open Access Journals (Sweden)

    Honghui Cheng

    2017-02-01

    Full Text Available Synchrotron radiation is an advanced collimated light source with high intensity. It has particular advantages in structural characterization of materials on the atomic or molecular scale. Synchrotron radiation X-ray powder diffraction (SR-XRPD has been successfully exploited to various areas of hydrogen storage materials. In the paper, we will give a brief introduction on hydrogen storage materials, X-ray powder diffraction (XRPD, and synchrotron radiation light source. The applications of ex situ and in situ time-resolved SR-XRPD in hydrogen storage materials, are reviewed in detail. Future trends and proposals in the applications of the advanced XRPD techniques in hydrogen storage materials are also discussed.

  1. Full-field hard x-ray microscopy with interdigitated silicon lenses

    DEFF Research Database (Denmark)

    Simons, Hugh; Stöhr, Frederik; Michael-Lindhard, Jonas

    2016-01-01

    Full-field x-ray microscopy using x-ray objectives has become a mainstay of the biological and materials sciences. However, the inefficiency of existing objectives at x-ray energies above 15 keV has limited the technique to weakly absorbing or two-dimensional (2D) samples. Here, we show that sign...

  2. Fresnel zone-plate based X-ray microscopy in Zernike phase contrast with sub-50 nm resolution at NSRL

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao [National Synchrotron Radiation Laboratory (China); Liu Yijin [School of Physics (China); Yue Zhengbo; Yu Hanqing [Laboratory of Environmental Engineering, School of Chemistry, University of Science and Technology of China, Hefei Anhui 230029 (China); Wang Chunru, E-mail: ychtian@ustc.edu.c [Institute of Chemistry, Chinese Academy of Sciences, Beijing 10060 (China)

    2009-09-01

    A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 {mu}m thickness and 4 {mu}m width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.

  3. Fresnel zone-plate based X-ray microscopy in Zernike phase contrast with sub-50 nm resolution at NSRL

    International Nuclear Information System (INIS)

    Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao; Liu Yijin; Yue Zhengbo; Yu Hanqing; Wang Chunru

    2009-01-01

    A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 μm thickness and 4 μm width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.

  4. A powerful flare from Sgr A* confirms the synchrotron nature of the X-ray emission

    Science.gov (United States)

    Ponti, G.; George, E.; Scaringi, S.; Zhang, S.; Jin, C.; Dexter, J.; Terrier, R.; Clavel, M.; Degenaar, N.; Eisenhauer, F.; Genzel, R.; Gillessen, S.; Goldwurm, A.; Habibi, M.; Haggard, D.; Hailey, C.; Harrison, F.; Merloni, A.; Mori, K.; Nandra, K.; Ott, T.; Pfuhl, O.; Plewa, P. M.; Waisberg, I.

    2017-06-01

    We present the first fully simultaneous fits to the near-infrared (NIR) and X-ray spectral slope (and its evolution) during a very bright flare from Sgr A*, the supermassive black hole at the Milky Way's centre. Our study arises from ambitious multiwavelength monitoring campaigns with XMM-Newton, NuSTAR and SINFONI. The average multiwavelength spectrum is well reproduced by a broken power law with ΓNIR = 1.7 ± 0.1 and ΓX = 2.27 ± 0.12. The difference in spectral slopes (ΔΓ = 0.57 ± 0.09) strongly supports synchrotron emission with a cooling break. The flare starts first in the NIR with a flat and bright NIR spectrum, while X-ray radiation is detected only after about 103 s, when a very steep X-ray spectrum (ΔΓ = 1.8 ± 0.4) is observed. These measurements are consistent with synchrotron emission with a cooling break and they suggest that the high-energy cut-off in the electron distribution (γmax) induces an initial cut-off in the optical-UV band that evolves slowly into the X-ray band. The temporal and spectral evolution observed in all bright X-ray flares are also in line with a slow evolution of γmax. We also observe hints for a variation of the cooling break that might be induced by an evolution of the magnetic field (from B ˜ 30 ± 8 G to B ˜ 4.8 ± 1.7 G at the X-ray peak). Such drop of the magnetic field at the flare peak would be expected if the acceleration mechanism is tapping energy from the magnetic field, such as in magnetic reconnection. We conclude that synchrotron emission with a cooling break is a viable process for Sgr A*'s flaring emission.

  5. On diamond windows for high power synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Kuzay, T.M.

    1992-01-01

    X-ray windows are often used on the front end of synchrotron beamlines to isolate the ultra high vacuum of the storage ring from the downstream environment. The windows are usually made of low atomic number materials, such as beryllium, for maximum x-ray transmission, and they must survive and remain vacuum tight during repeated thermal cycles. The intense x-ray beams generated by the wigglers and undulators at high energy storage rings can deposit substantial amounts of localized heat in the (actively cooled) windows leading to high temperatures, and vacuum or structural failure. Thermal filters upstream of the windows can be used to reduce the radiation absorbed in the windows. This solution has limitations, however, since a small amount of filtering may still leave an unacceptable amount of heat to be absorbed in the windows, while substantial filtering will absorb a large amount of the useful photons. Recent advances in chemical vapor deposition (CVD) technology has made available thin, free-standing polycrystalline diamond films that can be used as the window material on high heat load synchrotron x-ray beamlines. Diamond windows have many advantages that stem from the exceptional thermal, structural, and physical properties of diamond. Numerical simulation indicates that diamond windows offer an attractive alternative to beryllium windows for use on the third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, and analytical results are presented to provide a basis for design and testing of such windows

  6. X-ray phase contrast imaging: From synchrotrons to conventional sources

    International Nuclear Information System (INIS)

    Olivo, A.; Castelli, E.

    2014-01-01

    Phase-based approaches can revolutionize X-ray imaging and remove its main limitation: poor image contrast arising from low attenuation differences. They exploit the unit decrement of the real part of the refractive index, typically 1000 times larger than the imaginary part driving attenuation. This increases the contrast of all details, and enables the detection of features classically considered 'X-ray invisible'. Following pioneering experiments dating back to the mid-sixties, X-ray phase contrast imaging 'exploded' in the mid-nineties, when third generation synchrotron sources became more widely available. Applications were proposed in fields as diverse as material science, palaeontology, biology, food science, cultural heritage preservation, and many others. Among these applications, medicine has been constantly considered the most important; among medical applications, mammography is arguably the one that attracted most attention. Applications to mammography were pioneered by the SYRMEP (SYnchrotron Radiation for MEdical Physics) group in Trieste, which was already active in the area through a combination of innovative ways to do imaging at synchrotrons and development of novel X-ray detectors. This pioneering phase led to the only clinical experience of phase contrast mammography on human patients, and spawned a number of ideas as to how these advances could be translated into clinical practice.

  7. Synchrotron X-ray adaptative monochromator: study and realization of a prototype

    International Nuclear Information System (INIS)

    Dezoret, D.

    1995-01-01

    This work presents a study of a prototype of a synchrotron X-ray monochromator. The spectral qualities of this optic are sensitive to the heat loads which are particularly important on third synchrotron generation like ESRF. Indeed, powers generated by synchrotron beams can reach few kilowatts and power densities about a few tens watts per square millimeters. The mechanical deformations of the optical elements of the beamlines issue issue of the heat load can damage their spectral efficiencies. In order to compensate the deformations, wa have been studying the transposition of the adaptive astronomical optics technology to the x-ray field. First, we have considered the modifications of the spectral characteristics of a crystal induced by x-rays. We have established the specifications required to a technological realisation. Then, thermomechanical and technological studies have been required to transpose the astronomical technology to an x-ray technology. After these studies, we have begun the realisation of a prototype. This monochromator is composed by a crystal of silicon (111) bonded on a piezo-electric structure. The mechanical control is a loop system composed by a infrared light, a Shack-Hartmann CDD and wave front analyser. This system has to compensate the deformations of the crystal in the 5 kcV to 60 kcV energy range with a power density of 1 watt per square millimeters. (authors)

  8. Synchrotron-based photoelectron microscopy

    International Nuclear Information System (INIS)

    Barinov, Alexei; Dudin, Pavel; Gregoratti, Luca; Locatelli, Andrea; Onur Mentes, Tevfik; Angel Nino, Miquel; Kiskinova, Maya

    2009-01-01

    The paper is a brief overview of the operation principles and the potentials of the scanning photoelectron microscopes (SPEM) and X-ray photoemission electron microscopes (XPEEM) operating at synchrotron facilities. Selected results will illustrate the impact of high spatial resolution for micro-characterization of the surface composition and electronic structure, a key issue for analysis of technologically relevant materials and for fundamental understanding of many unexplored surface phenomena.

  9. Correlative cryo-fluorescence and cryo-soft X-ray tomography of adherent cells at European synchrotrons.

    Science.gov (United States)

    Carzaniga, Raffaella; Domart, Marie-Charlotte; Duke, Elizabeth; Collinson, Lucy M

    2014-01-01

    Cryo-soft X-ray tomography (cryo-SXT) is a synchrotron-hosted imaging technique used to analyze the ultrastructure of intact, cryo-prepared cells. Correlation of cryo-fluorescence microscopy and cryo-SXT can be used to localize fluorescent proteins to organelles preserved close to native state. Cryo-correlative light and X-ray microscopy (cryo-CLXM) is particularly useful for the study of organelles that are susceptible to chemical fixation artifacts during sample preparation for electron microscopy. In our recent work, we used cryo-CLXM to characterize GFP-LC3-positive early autophagosomes in nutrient-starved HEK293A cells (Duke et al., 2013). Cup-shaped omegasomes were found to form at "hot-spots" on the endoplasmic reticulum. Furthermore, cryo-SXT image stacks revealed the presence of large complex networks of tubulated mitochondria in the starved cells, which would be challenging to model at this scale and resolution using light or electron microscopy. In this chapter, we detail the cryo-CLXM workflow that we developed and optimized for studying adherent mammalian cells. We show examples of data collected at the three European synchrotrons that currently host cryo-SXT microscopes, and describe how raw cryo-SXT datasets are processed into tomoX stacks, modeled, and correlated with cryo-fluorescence data to identify structures of interest. © 2014 Elsevier Inc. All rights reserved.

  10. X-ray detectors for diffraction studies and their use with synchrotron radiation

    International Nuclear Information System (INIS)

    Milch, J.

    1976-02-01

    All techniques for X-ray diffraction studies on biological materials exhibit certain limitations. The characteristics of several X-ray detection systems, namely film, multiwire proportional counter and image intensified TV, are discussed and compared for application to specific biological studies. For the high count-rate situation existing at a synchrotron, it is shown that film is a good choice, but that the image intensified TV exhibits significant advantages. The details of such a system now being used at Princeton with a low intensity source are given and current results presented

  11. Antiferroelectric surface layers in a liquid crystal as observed by synchrotron x-ray scattering

    DEFF Research Database (Denmark)

    Gramsbergen, E. F.; de Jeu, W. H.; Als-Nielsen, Jens Aage

    1986-01-01

    The X-ray reflectivity form the surface of a liquid crystal with terminally polar (cyano substituted) molecules has been studied using a high-resolution triple-axis X-ray spectrometer in combination with a synchrotron source. It is demonstrated that at the surface of the smectic Al phase a few...... antiferroelectric double layers develop that can be distinguished from the bulk single layer structure. A model is developed that separates the electron density in a contribution from the molecular form factor, and from the structure factor of the mono- and the bilayers, respectively. It shows that (i) the first...

  12. A Furnace for Diffraction Studies using Synchrotron X-Ray Radiation

    DEFF Research Database (Denmark)

    Buras, B.; Lebech, Bente; Kofoed, W.

    1984-01-01

    A furnace for diffraction studies using synchrotron X-ray radiation is described. The furnace can be operated between ambient temperature and 1 800 °C with a temperature stability better than 5 °C for temperatures above 300 °C. Kapton windows allow almost 360° access for the X-ray beam in the hor...... in the horizontal scattering plane and the furnace may be used in both conventional monochromatic beam angle-dispersive and white-beam energy-dispersive diffraction experiments. Details of the furnace windows, heating element, thermometry and sample mount are given....

  13. Synchrotron X-ray and neutron diffraction studies in solid-state chemistry

    International Nuclear Information System (INIS)

    Cheetham, A.K.; Wilkinson, A.P.

    1992-01-01

    Since the scatterers are different - X-rays are scattered by the electrons of an atom, neutrons by the nuclei - the questions addressed by the two diffraction experiments have been complementary. For example, neighboring elements of the periodic table could be distinguished formerly only by neutron diffraction. Now, however, this is also partly possible with high-energy synchrotron radiation. This review describes recent applications of X-ray and neutron diffraction methods in solid-state chemistry and how the maximal information can be extracted by a combination of techniques. (orig.)

  14. X-ray fluorescence in Member States: Austria. Synchrotron radiation induced TXRF-XANES

    International Nuclear Information System (INIS)

    Meirer, Florian; Wobrauschek, Peter; Streli, Christina; Pepponi, Giancarlo

    2009-01-01

    X ray Absorption Near Edge Structure (XANES) analysis was used in combination with Total reflection X ray Fluorescence (TXRF) at different Synchrotron Radiation (SR) facilities to perform elemental analysis and speciation at trace levels. TXRF-XANES was used to perform analysis of contaminations on Silicon wafer surfaces and determine the oxidation state of Fe. Urban aerosols were sampled size fractioned and the oxidation state of Fe was determined for each impactor stage again using TXRF-XANES. The feasibility of XANES analysis at trace element levels using different SR-XRF setups was demonstrated. (author)

  15. Energy Dependence of Synchrotron X-Ray Rims in Tycho's Supernova Remnant

    Science.gov (United States)

    Tran, Aaron; Williams, Brian J.; Petre, Robert; Ressler, Sean M.; Reynolds, Stephen P.

    2015-01-01

    Several young supernova remnants exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's supernova remnant in 5 energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths approximately 1-5% of remnant radius and magnetic field strengths approximately 50-400 micron G assuming Bohm diffusion. X-ray rim widths are approximately 1% of remnant radius, somewhat smaller than inferred damping lengths. Electron energy losses are important in all models of X-ray rims, suggesting that the distinction between loss-limited and damped models is blurred in soft X-rays. All loss-limited and damping models require magnetic fields approximately greater than 20 micron G, arming the necessity of magnetic field amplification beyond simple compression.

  16. The prospects for soft x-ray contact microscopy using laser plasmas as an x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Page, A.M.; Ford, T.W. [Univ. of London, Egham (United Kingdom). School of Biological Sciences

    1995-12-31

    Since its invention, a major concern of those using a microscope has been to improve the resolution without the introduction of artifacts. While light microscopy carries little risk of the introduction of artifacts, because the preparative techniques are often minimal, the resolution is somewhat limited. The advent of the electron microscope offered greatly improved resolution but since biological specimens require extensive preparation, the possibility of causing structural damage to the specimen is also increased. The ideal technique for structural studies of biological specimens would enable hydrated material to be examined without any preparation and with a resolution equal to that of electron microscopy. Soft x-ray microscopy certainly enables living material to be examined and whilst the resolution does not equal that of electron microscopy it exceeds that attainable by light microscopy. This paper briefly reviews the limitations of light and electron microscopy for the biologist and considers the various ways that soft x-rays might be used to image hydrated biological material. Consideration is given to the different sources that have been used for soft x-ray microscopy and the relative merits of laser-plasma sources are discussed.

  17. Optimizing a synchrotron based x-ray lithography system for IC manufacturing

    Science.gov (United States)

    Kovacs, Stephen; Speiser, Kenneth; Thaw, Winston; Heese, Richard N.

    1990-05-01

    The electron storage ring is a realistic solution as a radiation source for production grade, industrial X-ray lithography system. Today several large scale plans are in motion to design and implement synchrotron storage rings of different types for this purpose in the USA and abroad. Most of the scientific and technological problems related to the physics, design and manufacturing engineering, and commissioning of these systems for microlithography have been resolved or are under extensive study. However, investigation on issues connected to application of Synchrotron Orbit Radiation (SOR ) in chip production environment has been somewhat neglected. In this paper we have filled this gap pointing out direct effects of some basic synchrotron design parameters and associated subsystems (injector, X-ray beam line) on the operation and cost of lithography in production. The following factors were considered: synchrotron configuration, injection energy, beam intensity variability, number of beam lines and wafer exposure concept. A cost model has been worked out and applied to three different X-ray Lithography Source (XLS) systems. The results of these applications are compared and conclusions drawn.

  18. Microfocussing of synchrotron X-rays using X-ray refractive lens developed at Indus-2 deep X-ray lithography beamline

    International Nuclear Information System (INIS)

    Dhamgaye, V.P.; Tiwari, M.K.; Lodha, G.S.; Sawhney, K.J.S.

    2014-01-01

    X-ray lenses are fabricated in polymethyl methacrylate using deep X-ray lithography beamline of Indus-2. The focussing performance of these lenses is evaluated using Indus-2 and Diamond Light Source Ltd. The process steps for the fabrication of X-ray lenses and microfocussing at 10 keV at moderate and low emittance sources are compared. (author)

  19. Phase-contrast computed microtomography with 50 keV synchrotron x-rays

    International Nuclear Information System (INIS)

    Raven, C.; Snigirev, A.; Snigireva, I.; Spanne, P.; Suvorov, A.

    1996-01-01

    The possibilities to determine the internal structure of low density materials by a simple microtomography setup with high energy synchrotron x-rays are demonstrated experimentally. The coherent properties of a 50 keV x-ray beam at the ESRF wiggler beamline are used to observe phase-contrast images of a boron fiber, which has negligible absorption in this energy range. Images of the boron fiber are recorded with a high-resolution x-ray film at various distances up to 2 m. For microtomography studies, 61 images are taken over an angular range of 180 degrees. In the reconstructed cross sections, the hollow, 15-mm-diameter core of the fiber is clearly visible. copyright 1996 American Institute of Physics

  20. Diamond monochromator for high heat flux synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Smither, R.K.; Davey, S.; Purohit, A.

    1992-12-01

    Single crystal silicon has been the material of choice for x-ray monochromators for the past several decades. However, the need for suitable monochromators to handle the high heat load of the next generation synchrotron x-ray beams on the one hand and the rapid and on-going advances in synthetic diamond technology on the other make a compelling case for the consideration of a diamond mollochromator system. In this Paper, we consider various aspects, advantage and disadvantages, and promises and pitfalls of such a system and evaluate the comparative an monochromator subjected to the high heat load of the most powerful x-ray beam that will become available in the next few years. The results of experiments performed to evaluate the diffraction properties of a currently available synthetic single crystal diamond are also presented. Fabrication of diamond-based monochromator is within present technical means

  1. Characterisation of microfocused beam for synchrotron powder diffraction using a new X-ray camera

    International Nuclear Information System (INIS)

    Thomas, C; Potter, J; Tang, C C; Lennie, A R

    2012-01-01

    The powder diffraction beamline I11, Diamond Light Source, is being continually upgraded as requirements of the user community evolve. Intensities of X-rays from the I11 in-vacuum electron undulator in the 3 GeV synchrotron fall off at higher energies. By focusing higher energy X-rays, we can overcome flux limitations, and open up new diffraction experiments. Here, we describe characterisation of microfocusing using compound refractive lenses (CRL). For a relatively modest outlay, we have developed an experimental setup and a novel X-ray camera with good sensitivity and a resolution specification suitable for characterising these focusing optics. We show that vertical oscillations in the focused beam compromise resolution of the source imaged by the CRL. Nevertheless, we have measured CRL focusing properties, and demonstrate the use of energy scanning to determine lens alignment. Real benefits of the intensity gain are illustrated.

  2. Synchrotron-Radiation X-Ray Investigation of Li+/Na+ Intercalation into Prussian Blue Analogues

    Directory of Open Access Journals (Sweden)

    Yutaka Moritomo

    2013-01-01

    Full Text Available Prussian blue analogies (PBAs are promising cathode materials for lithium ion (LIB and sodium ion (SIB secondary batteries, reflecting their covalent and nanoporous host structure. With use of synchrotron-radiation (SR X-ray source, we investigated the structural and electronic responses of the host framework of PBAs against Li+ and Na+ intercalation by means of the X-ray powder diffraction (XRD and X-ray absorption spectroscopy (XAS. The structural investigation reveals a robust nature of the host framework against Li+ and Na+ intercalation, which is advantageous for the stability and lifetime of the batteries. The spectroscopic investigation identifies the redox processes in respective plateaus in the discharge curves. We further compare these characteristics with those of the conventional cathode materials, such as, LiCoO2, LiFePO4, and LiMn2O4.

  3. Optimizing Monocapillary Optics for Synchrotron X-ray Diffraction, Fluorescence Imaging, and Spectroscopy Applications

    International Nuclear Information System (INIS)

    Bilderback, Donald H.; Kazimirov, Alexander; Gillilan, Richard; Cornaby, Sterling; Woll, Arthur; Zha, Chang-Sheng; Huang Rong

    2007-01-01

    A number of synchrotron x-ray applications such as powder diffraction in diamond anvil cells, microbeam protein crystallography, x-ray fluorescence imaging, etc. can benefit from using hollow glass monocapillary optics to improve the flux per square micron on a sample. We currently draw glass tubing into the desired elliptical shape so that only one-bounce under total reflection conditions is needed to bring the x-ray beam to a focus at a 25 to 50 mm distance beyond the capillary tip. For modest focal spot sizes of 10 to 20 microns, we can increase the intensity per square micron by factors of 10 to 1000. We show some of the results obtained at CHESS and Hasylab with capillaries focusing 5 to 40 keV radiation, their properties, and how even better the experimental results could be if more ideal capillaries were fabricated in the future

  4. PREFACE: 11th International Conference on X-ray Microscopy (XRM2012)

    Science.gov (United States)

    Xu, Hongjie; Wu, Ziyu; Tai, Renzhong

    2013-10-01

    The Eleventh International Conference on X-ray Microscopy (XRM2012) was held on 5-10 August 2012 at the Hope hotel in Shanghai. Historically, for the first time the XRM conference took place in China. The conference was jointly hosted by the Shanghai Synchrotron Radiation Facility (SSRF) and the National Synchrotron Radiation Laboratory (NSRL). The series of XRM conferences dates back to 1983 in Göttingen, Germany. Since the Zürich conference, XRM2008, it has been held every two years, showing its increasing popularity among the x-ray microscopy communities around the world. Research in the area of x-ray microscopy is advancing very fast with the development of synchrotron radiation techniques, especially the emergence of third generation light sources with low natural emittance which has significantly pushed forward the development of technologies and applications in this area. This has been fully demonstrated in presentations from this and previous XRM conferences. XRM2012 was attended by 295 people including 21 invited speakers, 53 contributing speakers, 55 students, and 13 industry exhibitors. Over 232 abstracts were submitted for oral or poster presentation and 56 original, peer-reviewed papers are published in these proceedings. The conference was sponsored by the Chinese Academy of Sciences (CAS) and the National Natural Science Foundation of China (11210301016/A0802), and three gold sponsors active in industrial and technological fields related to x-ray microscopy. An exhibition booth was offered free to Australia synchrotron, the host for XRM2014, to promote the next conference which will be held in Melbourne, Australia in 2014. An unforgettable memory for most conference participants might be the charming night cruise along Pujiang river which was part of the welcome reception on the first evening. The Werner Meyer-Ilse Award (WMIA) prize this year was awarded to Irene Zanette (TU-München) and Stephan Werner (HZB-Berlin), the former for her pioneering

  5. Beer analysis by synchrotron radiation total reflection X-ray fluorescence (SR-TXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br; Zucchi, Orgheda L.D.A. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas de Ribeirao Preto]. E-mail: olzucchi@fcfrp.usp.br

    2005-07-01

    In this work the concentrations of P, S, Cl, K, Ca, Mn, Fe, Zn and Br in twenty-nine brands of national and international beers were determined by Synchrotron Radiation Total Reflection X-Ray Fluorescence analysis (SR-TXRF). The results were compared with the limits established by the Brazilian Legislation and the nutritive values established by National Agricultural Library (NAL). The measurements were performed at the X-ray Fluorescence Beamline at Synchrotron Light Source Laboratory, in Campinas, Sao Paulo, Brazil, using a polychromatic beam for excitation. A small volume of 5 {mu}L of sample beers containing just an internal standard, used to correct geometry effects, were analyzed without any pre-treatment. The measuring time was 100 s and the detection limits obtained varied from 1{mu}g.L{sup -1} for Mn and Fe to 15{mu}g.L{sup -1} for P. (author)

  6. Beer analysis by synchrotron radiation total reflection X-ray fluorescence (SR-TXRF)

    International Nuclear Information System (INIS)

    Moreira, Silvana; Vives, Ana Elisa S. de; Nascimento Filho, Virgilio F.; Zucchi, Orgheda L.D.A.

    2005-01-01

    In this work the concentrations of P, S, Cl, K, Ca, Mn, Fe, Zn and Br in twenty-nine brands of national and international beers were determined by Synchrotron Radiation Total Reflection X-Ray Fluorescence analysis (SR-TXRF). The results were compared with the limits established by the Brazilian Legislation and the nutritive values established by National Agricultural Library (NAL). The measurements were performed at the X-ray Fluorescence Beamline at Synchrotron Light Source Laboratory, in Campinas, Sao Paulo, Brazil, using a polychromatic beam for excitation. A small volume of 5 μL of sample beers containing just an internal standard, used to correct geometry effects, were analyzed without any pre-treatment. The measuring time was 100 s and the detection limits obtained varied from 1μg.L -1 for Mn and Fe to 15μg.L -1 for P. (author)

  7. Analysis of beers from Brazil with synchrotron radiation total reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Moreira, S.; Vives, A.E.S.; Brienza, S.M.B.; Zucchi, O.L.A.D.; Jesus, E.F.O. de; Nascimento Filho, V.F.

    2006-01-01

    In this study the concentrations of P, S, Cl, K, Ca, Mn, Fe, Zn and Br in twenty-nine brands of national and international beers were determined by synchrotron radiation total reflection X-ray fluorescence analysis (SR-TXRF). The results were compared with the limits established by the Brazilian legislation and the nutritional values established by National Agricultural Library (NAL, USA). The measurements were performed at the X-Ray Fluorescence Beamline at Brazilian National Synchrotron Light Laboratory, in Campinas, Sao Paulo, Brazil, using a polychromatic beam for excitation. A small volume of 5 μl of beers containing an internal standard used to correct geometry effects was analyzed without pretreatment. The measuring time was 100 seconds and the detection limits obtained varied from 1 μg x l -1 for Mn and Fe to 15 μg x l -1 for P. (author)

  8. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    International Nuclear Information System (INIS)

    Gmuer, N.F.; White-DePace, S.M.

    1987-08-01

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS

  9. Nondestructive analysis of silver in gold foil using synchrotron radiation X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Kasamatsu, Masaaki; Suzuki, Yasuhiro; Suzuki, Shinichi; Nakanishi, Toshio; Shimoda, Osamu; Nishiwaki, Yoshinori; Miyamoto, Naoki

    2005-01-01

    Small particles of gold foil detached from an indoor decoration might be important evidence to associate a suspect with a crime scene. We have investigated the application of elemental analysis using synchrotron radiation X-ray fluorescence spectrometry to discriminate small particles of gold foil. Eight kinds of gold foil samples collected in Japan were used in the experiments. As a result of synchrotron radiation X-ray fluorescence spectrometry, only two elements, gold and silver, were detected from all gold foil samples. The intensity ratios of AgK α /AuL α showed good correlation with the content ratios of Ag/Au. The variation of intensity ratio within a same sample was sufficiently small compared with those of different samples. Therefore the comparison of this intensity ratio can be an effective method to discriminate small particles originating from different types of gold foil. (author)

  10. Synchrotron X-Ray Reciprocal Space Mapping, Topography and Diffraction Resolution Studies of Macromolecular Crystal Quality

    Science.gov (United States)

    Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.

    2000-01-01

    A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.

  11. Synchrotron X-ray CT of rose peduncles. Evaluation of tissue damage by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Herppich, Werner B. [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V., Potsdam (Germany). Abt. Technik im Gartenbau; Matsushima, Uzuki [Iwate Univ., Morioka (Japan). Faculty of Agriculture; Graf, Wolfgang [Association for Technology and Structures in Agriculture (KTBL), Darmstadt (Germany); Zabler, Simon [Fraunhofer-Institut fuer Integrierte Schaltungen (IIS), Wuerzburg (Germany). Project group NanoCT Systems (NCTS); Dawson, Martin [Salford Univ., Greater Manchester (United Kingdom); Choinka, Gerard; Manke, Ingo [Helmholtz Center Berlin for Materials and Energy (HZB), Berlin (Germany)

    2015-02-01

    ''Bent-neck'' syndrome, an important postharvest problem of cut roses, is probably caused by water supply limitations and/or the structural weakness of vascular bundles of the peduncle tissue. For this reason, advanced knowledge about the microstructures of rose peduncles and their cultivar specific variations may lead to a better understanding of the underlying mechanisms. Synchrotron X-ray computed tomography (SXCT), especially phase-based CT, is a highly suitable technique to nondestructively investigate plants' micro anatomy. SXCT with monochromatic X-ray beams of 30, 40 and 50 keV photon energy was used to evaluate the three-dimensional inner structures of the peduncles of 3 rose cultivars that differ greatly in their bent-neck susceptibility. Results indicated that this technique achieves sufficiently high spatial resolution to investigate complex tissues. However, further investigations with chlorophyll fluorescence analysis (CFA) and optical microscope imagery reveal different kinds of heavy damage of the irradiated regions induced by synchrotron X-rays; in a cultivar-specific manner, partial destruction of cell walls occurred a few hours after X-ray irradiation. Furthermore, a delayed inhibition of photosynthesis accompanied by the degradation of chlorophyll was obvious from CFA within hours and days after the end of CT measurements. Although SXCT is certainly well suited for three-dimensional anatomical analysis of rose peduncles, the applied technique is not nondestructive.

  12. Electron density measurement with dual-energy x-ray CT using synchrotron radiation

    International Nuclear Information System (INIS)

    Torikoshi, Masami; Tsunoo, Takanori; Sasaki, Makoto; Endo, Masahiro; Noda, Yutaka; Ohno, Yumiko; Kohno, Toshiyuki; Hyodo, Kazuyuki; Uesugi, Kentaro; Yagi, Naoto

    2003-01-01

    Monochromatic x-ray computed tomography (CT) at two different energies provides information about electron density of human tissue without ambiguity due to the beam hardening effect. This information makes the treatment planning for proton and heavy-ion radiotherapy more precise. We have started a feasibility study on dual energy x-ray CT by using synchrotron radiation. A translation-rotation scanning CT system was developed for quantitative measurement in order to clarify what precision in the measurement was achieved. Liquid samples of solutions of K 2 HPO 4 and solid samples of tissue equivalent materials were used to simulate human tissue. The experiments were carried out using monochromatic x-rays with energies of 40, 70 and 80 keV produced by monochromatizing synchrotron radiation. The solid samples were also measured in a complementary method using high-energy carbon beams to evaluate the electron densities. The measured electron densities were compared with the theoretical values or the values measured in the complementary method. It was found that these values were in agreement in 0.9% on average. Effective atomic numbers were obtained as well from dual-energy x-ray CT. The tomographic image based on each of the electron densities and the effective atomic number presents a different feature of the material, and its contrast drastically differs from that in a conventional CT image

  13. High resolution hard x-ray microscope on a second generation synchrotron source

    International Nuclear Information System (INIS)

    Tian Yangchao; Li Wenjie; Chen Jie; Liu Longhua; Liu Gang; Tian Jinping; Xiong Ying; Tkachuk, Andrei; Gelb, Jeff; Hsu, George; Yun Wenbing

    2008-01-01

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed.

  14. Unraveling the redox behavior of a CoMoS hydrodesulfurization catalyst : A scanning transmission X-ray microscopy study in the tender X-ray range

    NARCIS (Netherlands)

    Al Samarai, Mustafa; Meirer, Florian; Karunakaran, Chithra; Wang, Jian; Vogt, Eelco T C; Zandbergen, Henny W.; Weber, Thomas; Weckhuysen, Bert M.; De Groot, Frank M F

    2015-01-01

    We visualize the elemental zoning in an alumina-supported cobalt molybdenum sulfide (CoMoS) catalyst with scanning transmission X-ray microscopy (STXM). We use the Canadian Light Source beamline 10-ID's (SM) unique combination of soft X-ray and tender X-ray STXM to determine the spatial variation of

  15. Synchrotron X-ray Investigations of Mineral-Microbe-Metal Interactions

    International Nuclear Information System (INIS)

    Kemner, Kenneth M.; O'Loughlin, Edward J.; Kelly, Shelly D.; Boyanov, Maxim I.

    2005-01-01

    Interactions between microbes and minerals can play an important role in metal transformations (i.e. changes to an element's valence state, coordination chemistry, or both), which can ultimately affect that element's mobility. Mineralogy affects microbial metabolism and ecology in a system; microbes, in turn, can affect the system's mineralogy. Increasingly, synchrotron-based X-ray experiments are in routine use for determining an element's valence state and coordination chemistry, as well as for examining the role of microbes in metal transformations.

  16. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines

    International Nuclear Information System (INIS)

    Alcock, Simon G.; Nistea, Ioana; Sutter, John P.; Sawhney, Kawal; Fermé, Jean-Jacques; Thellièr, Christophe; Peverini, Luca

    2015-01-01

    A next-generation bimorph mirror with piezos bonded to the side faces of a monolithic substrate was created. When replacing a first-generation bimorph mirror suffering from the junction effect, the new type of mirror significantly improved the size and shape of the reflected synchrotron X-ray beam. No evidence of the junction effect was observed even after eight months of continuous beamline usage. Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the ‘junction effect’: a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts

  17. Synchrotron radiation phase-contrast X-ray CT imaging of acupuncture points

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongming; Yan, Xiaohui; Zhang, Xinyi [Fudan University, Synchrotron Radiation Research Center, State Key Laboratory of Surface Physics and Department of Physics, Shanghai (China); Liu, Chenglin [Physics Department of Yancheng Teachers' College, Yancheng (China); Dang, Ruishan [The Second Military Medical University, Shanghai (China); Xiao, Tiqiao [Chinese Academy of Sciences, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Shanghai (China); Zhu, Peiping [Chinese Academy of Sciences, Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing (China)

    2011-08-15

    Three-dimensional (3D) topographic structures of acupuncture points were investigated by using synchrotron radiation in-line X-ray phase contrast computerized tomography. Two acupuncture points, named Zhongji (RN3) and Zusanli (ST36), were studied. We found an accumulation of microvessels at each acupuncture point region. Images of the tissues surrounding the acupuncture points do not show such kinds of structure. This is the first time that 3D images have revealed the specific structures of acupuncture points. (orig.)

  18. Synchrotron radiation phase-contrast X-ray CT imaging of acupuncture points

    International Nuclear Information System (INIS)

    Zhang, Dongming; Yan, Xiaohui; Zhang, Xinyi; Liu, Chenglin; Dang, Ruishan; Xiao, Tiqiao; Zhu, Peiping

    2011-01-01

    Three-dimensional (3D) topographic structures of acupuncture points were investigated by using synchrotron radiation in-line X-ray phase contrast computerized tomography. Two acupuncture points, named Zhongji (RN3) and Zusanli (ST36), were studied. We found an accumulation of microvessels at each acupuncture point region. Images of the tissues surrounding the acupuncture points do not show such kinds of structure. This is the first time that 3D images have revealed the specific structures of acupuncture points. (orig.)

  19. Parallel beam microradiography of dental hard tissue using synchrotron radiation and X-ray image magnification

    International Nuclear Information System (INIS)

    Takagi, S.; Chow, L.C.; Brown, W.E.; Dobbyn, R.C.; Kuriyama, M.

    1984-01-01

    A novel technique utilizing a highly parallel beam of monochromatic synchrotron radiation combined with X-ray image magnification has been used to obtain microradiographs of caries lesions in relatively thick tooth sections. Preliminary results reveal structural features not previously reported. This technique holds the promise of allowing one to follow the structural changes accompanying the formation, destruction and chemical repair of mineralized tissue in real time. (orig.)

  20. A method for measuring the time structure of synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.

    1989-08-01

    We describe a method employing a plastic scintillator coupled to a fast photomultiplier tube to generate a timing pulse from the x-ray bursts emitted from a synchrotron radiation source. This technique is useful for performing synchrotron experiments where detailed knowledge of the timing distribution is necessary, such as time resolved spectroscopy or fluorescence lifetime experiments. By digitizing the time difference between the timing signal generated on one beam crossing with the timing signal generated on the next beam crossing, the time structure of a synchrotron beam can be analyzed. Using this technique, we have investigated the single bunch time structure at the National Synchrotron Light Source (NSLS) during pilot runs in January, 1989, and found that the majority of the beam (96%) is contained in one rf bucket, while the remainder of the beam (4%) is contained in satellite rf buckets preceeding and following the main rf bucket by 19 ns. 1 ref., 4 figs

  1. Versatile, reprogrammable area pixel array detector for time-resolved synchrotron x-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, Sol [Cornell Univ., Ithaca, NY (United States)

    2010-05-01

    The final technical report for DOE grant DE-SC0004079 is presented. The goal of the grant was to perform research, development and application of novel imaging x-ray detectors so as to effectively utilize the high intensity and brightness of the national synchrotron radiation facilities to enable previously unfeasible time-resolved x-ray research. The report summarizes the development of the resultant imaging x-ray detectors. Two types of detector platforms were developed: The first is a detector platform (called a Mixed-Mode Pixel Array Detector, or MM-PAD) that can image continuously at over a thousand images per second while maintaining high efficiency for wide dynamic range signals ranging from 1 to hundreds of millions of x-rays per pixel per image. Research on an even higher dynamic range variant is also described. The second detector platform (called the Keck Pixel Array Detector) is capable of acquiring a burst of x-ray images at a rate of millions of images per second.

  2. Halo suppression in full-field x-ray Zernike phase contrast microscopy.

    Science.gov (United States)

    Vartiainen, Ismo; Mokso, Rajmund; Stampanoni, Marco; David, Christian

    2014-03-15

    Visible light Zernike phase contrast (ZPC) microscopy is a well established method for imaging weakly absorbing samples. The method is also used with hard x-ray photon energies for structural evaluation of material science and biological applications. However, the method suffers from artifacts that are inherent for the Zernike image formation. In this Letter, we investigate their origin and experimentally show how to suppress them in x-ray full-field ZPC microscopy based on diffractive x-ray optics.

  3. Apparatus development for high-pressure X-ray diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Martinez, L.G.; Orlando, M.T.D.; Rossi, J.L.; Passamai Junior, J.L.; Melo, F.C.L.; Ferreira, F.F.

    2006-01-01

    Some phenomena in the field of condensed matter physics can be studied when the matter is submitted to extreme conditions of pressure, magnetic fields or temperatures. Once submitted to these conditions it is generally necessary to measure the properties of the matter in situ. The existence of a synchrotron light laboratory in Brazil opens up the chance of studying materials in extreme conditions by techniques like X-ray diffraction and absorption. However, when compared to high-energy synchrotrons accelerators, the Brazilian source offers a narrower energy range and lower flux. These facts impose limitation to perform diffraction experiments by energy dispersion and, consequently, the use of pressure cells with denser anvils like diamond. However, for a lower-pressure range, preliminary studies showed the viability of measurements in an angular dispersion configuration. This allows the use of silicon carbide anvils B 4C . In this work it is described the development of a hydrostatic pressure cell suitable for X-rays diffraction measurements in the Brazilian Synchrotron Light Laboratory using materials and technologies developed by the institutions and researchers involved in this project (IPEN, UFES, CTA and LNLS). This development can provide the scientific community with the possibility of performing X-ray diffraction measurements under hydrostatic pressure, initially up to 2 GPa, with possibilities of increasing the maximum pressure to higher values, with or without application of magnetic fields and high or low temperatures. (author)

  4. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines.

    Science.gov (United States)

    Alcock, Simon G; Nistea, Ioana; Sutter, John P; Sawhney, Kawal; Fermé, Jean Jacques; Thellièr, Christophe; Peverini, Luca

    2015-01-01

    Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the `junction effect': a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼ 0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts.

  5. Analytical X-ray microscopy using laboratory sources: Method and results

    International Nuclear Information System (INIS)

    Wulveryck, J.M.; Odof, S.; Patat, J.M.; Mouze, D.

    2000-01-01

    The implementation of X-ray imaging techniques (X-Ray Projection Microscopy or X-Ray Microtomography) for analytical purpose with laboratory equipment is not easily obtainable, due to the use of polychromatic X-ray sources. To overcome this drawback, we propose here a mathematical technique based upon the calculation of the X-ray emission spectra and the knowledge of the spectral response of the camera. For example, we show that the composition of a ternary sample can be deduced from two images measurements recorded from two primary radiation. The accuracy of the method is discussed

  6. Use of a synchrotron radiation x-ray microprobe for elemental analysis at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1980-01-01

    The National Synchrotron Light Source (NSLS) is a facility consisting of a 700 MeV and a 2.5 GeV electron storage ring and dedicated to providing synchrotron radiation in the energy range from the vacuum ultraviolet to high energy x rays. Some of the properties of synchrotron radiation that contribute to its usefulness for x-ray fluorescence are: a continuous, tunable energy spectrum, strong collimation in the horizontal plane, high polarization in the storage ring plane, and relatively low energy deposition. The highest priority is for the development of an x-ray microprobe beam line capable of trace analysis in the parts per million range with spatial resolution as low as one micrometer. An eventual capability for bulk sample analysis is also planned with sensitivities in the more favorable cases beings low as 50 parts per billion in dry biological tissue. The microprobe technique has application to a variety of fields including the geological, medical, materials and environmental sciences. Examples of investigations include multielemental trace analysis across grain boundaries for the study of diffusion and cooling processes in geological and materials sciences samples; in leukocytes and other types of individual cells for studying the relationship between trace element concentrations and disease or nutrition; and in individual particles in air pollution samples

  7. Laboratory cryo x-ray microscopy for 3D cell imaging.

    Science.gov (United States)

    Fogelqvist, Emelie; Kördel, Mikael; Carannante, Valentina; Önfelt, Björn; Hertz, Hans M

    2017-10-18

    Water-window x-ray microscopy allows two- and three-dimensional (2D and 3D) imaging of intact unstained cells in their cryofixed near-native state with unique contrast and high resolution. Present operational biological water-window microscopes are based at synchrotron facilities, which limits their accessibility and integration with complementary methods. Laboratory-source microscopes have had difficulty addressing relevant biological tasks with proper resolution and contrast due to long exposure times and limited up-time. Here we report on laboratory cryo x-ray microscopy with the exposure time, contrast, and reliability to allow for routine high-spatial resolution 3D imaging of intact cells and cell-cell interactions. Stabilization of the laser-plasma source combined with new optics and sample preparation provide high-resolution cell imaging, both in 2D with ten-second exposures and in 3D with twenty-minute tomography. Examples include monitoring of the distribution of carbon-dense vesicles in starving HEK293T cells and imaging the interaction between natural killer cells and target cells.

  8. Streaked x-ray microscopy of laser-fusion targets

    International Nuclear Information System (INIS)

    Price, R.H.; Campbell, E.M.; Rosen, M.D.; Auerbach, J.M.; Phillion, D.W.; Whitlock, R.R.; Obenshain, S.P.; McLean, E.A.; Ripin, B.H.

    1982-08-01

    An ultrafast soft x-ray streak camera has been coupled to a Wolter axisymmetric x-ray microscope. This system was used to observe the dynamics of laser fusion targets both in self emission and backlit by laser produced x-ray sources. Spatial resolution was 7 μm and temporal resolution was 20 ps. Data is presented showing the ablative acceleration of foils to velocities near 10 7 cm/sec and the collision of an accelerated foil with a second foil, observed using 3 keV streaked x-ray backlighting. Good agreement was found between hydrocode simulations, simple models of the ablative acceleration and the observed velocities of the carbon foils

  9. Contact microscopy with a soft x-ray laser

    International Nuclear Information System (INIS)

    DiCicco, D.S.; Kim, D.; Rosser, R.J.; Skinner, C.H.; Suckewer, S.; Gupta, A.P.; Hirschberg, J.G.

    1989-03-01

    A soft x-ray laser of output energy 1-3 mJ at 19.2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. We also present a Composite Optical X- ray Laser Microscope ''COXRALM'' of novel design. 14 refs., 8 figs., 1 tab

  10. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    International Nuclear Information System (INIS)

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.

    2016-01-01

    A high-speed pixel array detector for time-resolved X-ray imaging at synchrotrons has been developed. The ability to isolate single synchrotron bunches makes it ideal for time-resolved dynamical studies. A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed

  11. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    Science.gov (United States)

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  12. Synchrotron X-ray Scattering from Self-organized Soft Nanostructures in Clays

    Science.gov (United States)

    Fossum, J. O.

    2009-04-01

    In the general context of self-organization of nanoparticles (in our case clay particles), and transitions in such structures, we study interconnected universal complex physical phenomena such as: (i) spontaneous gravitationally induced phase separation and nematic self-organization in systems of anisotropic clay nanoparticles in aqueous suspension, including studies of isotropic to nematic transitions [1,2] (ii) transitions from biaxial to uniaxial nematics by application of external magnetic field to self-organized systems of the same anisotropic (diamagnetic) clay nanoparticle systems [3,4] (iii) guided self-organization into chainlike structures of the same anisotropic clay nanoparticles in oil suspension when subjected to external electrical fields (electrorheological structures of polarized nanoparticles), and the stability of, and transitions of, such structures, when subjected to external mechanical stress [5,6] The experimental techniques used by us include synchrotron X-ray scattering, neutron scattering, rheometry. microscopy and magnetic resonance. We have demonstrated that clays may be used as good model systems for studies of universal physical phenomena and transitions in self-organized nanostructured soft and complex matter. Self-organization and related transitions in clay systems in particular, may have practical relevance for nano-patterning, properties of nanocomposites, and macroscopically anisotropic gels, among many other applications [7]. The synchrotron experiments have been performed at LNLS-Brazil, PLS- Korea, BNL-USA and ESRF-France. Acknowledgments: Collaborators, postdocs and students at NTNU-Norway, UiO-Norway, IFE-Norway, BNL-USA, LNLS-Brazil, UFPE-Brazil, UnB-Brazil, Univ. Amsterdam-Netherlands, Univ.Paris 7-France and other places. This research has been supported by the Research Council of Norway (RCN), through the NANOMAT, SUP and FRINAT Programs. References 1. J.O. Fossum, E. Gudding, D.d.M. Fonseca, Y. Meheust, E. DiMasi, T

  13. Effects of synchrotron radiation spectrum energy on polymethyl methacrylate photosensitivity to deep x-ray lithography

    CERN Document Server

    Mekaru, H; Hattori, T

    2003-01-01

    Since X-ray lithography requires a high photon flux to achieve deep resist exposure, a synchrotron radiation beam, which is not monochromatized, is generally used as a light source. If the synchrotron radiation beam is monochromatized, photon flux will decrease rapidly. Because of this reason, the wavelength dependence of the resist sensitivity has not been investigated for deep X-ray lithography. Measuring the spectrum of a white beam with a Si solid-state detector (SSD) is difficult because a white beam has a high intensity and an SSD has a high sensitivity. We were able to measure the spectrum and the photocurrent of a white beam from a beam line used for deep X-ray lithography by keeping the ring current below 0.05 mA. We evaluated the characteristics of the output beam based on the measured spectrum and photocurrent, and used them to investigate the relationship between the total exposure energy and the dose-processing depth with polymethyl methacrylate (PMMA). We found that it is possible to guess the p...

  14. Conical geometry for sagittal focusing as applied to X rays from synchrotrons

    International Nuclear Information System (INIS)

    Ice, G.E.; Sparks, C.J.

    1993-06-01

    The authors describe a method for simultaneously focusing and monochromatization of X rays from a fan of radiation having up to 15 mrad divergence in one dimension. This geometry is well suited to synchrotron radiation sources at magnifications of one-fifth to two and is efficient for X-ray energies between 3 and 40 keV (0.48 and 6.4 fJ). The method uses crystals bent to part of a cone for sagittal focusing and allows for the collection of a larger divergence with less mixing of the horizontal into the vertical divergence than is possible with X-ray mirrors. They describe the geometry required to achieve the highest efficiency when a conical crystal follows a flat crystal in a nondispersive two-crystal monochromator. At a magnification of one-third, the geometry is identical to a cylindrical focusing design described previously. A simple theoretical calculation is shown to agree well with ray-tracing results. Minimum aberrations are observed at magnifications near one. Applications of the conical focusing geometry to existing and future synchrotron radiation facilities are discussed

  15. Heat transfer issues in high-heat-load synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Mills, D.M.

    1994-09-01

    In this paper, a short description of the synchrotron radiation x-ray sources and the associated power loads is given, followed by a brief description of typical synchrotron components and their heat load. It is emphasized that the design goals for most of these components is to limit (a) temperature, (b) stresses, or (c) strains in the system. Each design calls for a different geometry, material selection, and cooling scheme. Cooling schemes that have been utilized so far are primarily single phase and include simple macrochannel cooling, microchannel cooling, contact cooling, pin-post cooling, porous-flow cooling, jet cooling, etc. Water, liquid metals, and various cryogenic coolants have been used. Because the trend in x-ray beam development is towards brighter (i.e., more powerful) beams and assuming that no radical changes in the design of x-ray generating machines occurs in the next few years, it is fair to state that the utilization of various effective cooling schemes and, in particular, two-phase flow (e.g., subcooled boiling) warrants further investigation. This, however, requires a thorough examination of stability and reliability of two-phase flows for high-heat-flux components operating in ultrahigh vacuum with stringent reliability requirements

  16. Diffraction measurements of residual macrostress and microstress using x-rays, synchrotron and neutrons

    International Nuclear Information System (INIS)

    Tanaka, Keisuke; Akiniwa, Yoshiaki

    2004-01-01

    The present paper reviews some recent developments of the measurements of the macrostress and microstress by diffraction using X-rays, synchrotron and neutrons especially in Japan. These three methods are based on the same principle of the diffraction of crystals, and have different advantages. The conventional X-rays detect the stress very near the surface, while the neutron diffraction takes the stress in the interior of the materials. High-energy X-rays from synchrotron sources have the penetration depth in between and are suitable for the measurement of subsurface stresses. After describing the developments of the fundamentals of the methods, the paper covers the recent applications of the diffraction methods to the residual stress analysis in textured thin films, the nondestructive determination of the subsurface distribution of residual stress in shot-peened materials, local stress measurements near the crack tip, the stress measurements of single crystals, macrostress and microstress measurements in composites, and the determination of the internal distribution of the residual stress in welded joints. (author)

  17. Synthesis of nanoparticles through x-ray radiolysis using synchrotron radiation

    Science.gov (United States)

    Yamaguchi, A.; Okada, I.; Fukuoka, T.; Ishihara, M.; Sakurai, I.; Utsumi, Y.

    2016-09-01

    The synthesis and deposition of nanoparticles consisting of Cu and Au in a CuSO4 solution with some kinds of alcohol and electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The functional group of alcohol plays an important in nucleation, growth and aggregation process of copper and cupric oxide particles. We found that the laboratory X-ray source also enables us to synthesize the NPs from the metallic solution. As increasing X-ray exposure time, the full length at half width of particle size distribution is broader and higher-order nanostructure containing NPs clusters is formed. The surface-enhanced Raman scattering (SERS) of 4, 4'-bipyridine (4bpy) in aqueous solution was measured using higher-order nanostructure immobilized on silicon substrates under systematically-varied X-ray exposure. This demonstration provide a clue to develop a three-dimensional printing and sensor for environmental analyses and molecular detection through simple SERS measurements.

  18. X-ray absorption spectroscopy investigations on radioactive matter using MARS beamline at SOLEIL synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Llorens, Isabelle; Solari, Pier Lorenzo; Sitaud, Bruno [Synchrotron SOLEIL - l' Orme des Merisiers Saint Aubin, Gif-sur-Yvette (France); and others

    2014-07-01

    The MARS beamline at the SOLEIL synchrotron is dedicated to the characterization of radioactive material samples. One great advantage of the beamline is the possibility to characterize about 380 radionuclides by different X-ray techniques in the same place. This facility is unique in Europe. A wide energy range from around 3.5 keV to 36 keV K-edges from K to Cs, and L3 edges from Cd to Am and beyond can be used. The MARS beamline is optimized for X-ray absorption spectroscopy techniques (XANES/EXAFS), powder diffraction (XRD) but X-ray fluorescence (XRF) analysis, High Energy Resolution Fluorescence Detected-XAS (HERFD-XAS), X-ray Emission (XES) and μ-XAS/XRD are also possible. A description of the beamline as well as its performances are given in a first part. Then some scientific examples of XAS studies from users are presented which cover a wide variety of topics in radiochemistry and nuclear materials.

  19. Physical methods for studying minerals and solid materials: X-ray, electron and neutron diffraction; scanning and transmission electron microscopy; X-ray, electron and ion spectrometry

    International Nuclear Information System (INIS)

    Eberhart, J.-P.

    1976-01-01

    The following topics are discussed: theoretical aspects of radiation-matter interactions; production and measurement of radiations (X rays, electrons, neutrons); applications of radiation interactions to the study of crystalline materials. The following techniques are presented: X-ray and neutron diffraction, electron microscopy, electron diffraction, X-ray fluorescence analysis, electron probe microanalysis, surface analysis by electron emission spectrometry (ESCA and Auger electrons), scanning electron microscopy, secondary ion emission analysis [fr

  20. X-ray photoemission electron microscopy for the study of semiconductor materials

    International Nuclear Information System (INIS)

    Anders, Simone; Stammler, Thomas; Padmore, Howard A.; Terminello, Louis J.; Jankowski, Alan F.; Stoehr, Joachim; Diaz, Javier; Cossy-Favre, Aline; Singh, Sangeet

    1998-01-01

    Photoemission Electron Microscopy using X-rays (X-PEEM) is a novel combination of two established materials analysis techniques--PEEM using UV light, and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. This combination allows the study of elemental composition and bonding structure of the sample by NEXAFS spectroscopy with a high spatial resolution given by the microscope. A simple, two lens, 10 kV operation voltage PEEM has been used at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (ALS) in Berkeley to study various problems including materials of interest for the semiconductor industry. In the present paper we give a short overview over the method and the instrument which was used, and describe in detail a number of applications. These applications include the study of the different phases of titanium disilicide, various phases of boron nitride, and the analysis of small particles. A brief outlook is given on possible new fields of application of the PEEM technique, and the development of new PEEM instruments

  1. X-ray photoemission electron microscopy for the study of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Stammler, T.; Padmore, H. [Lawrence Berkeley National Lab., CA (United States). Advanced Light Source Div.; Terminello, L.J.; Jankowski, A.F. [Lawrence Livermore National Lab., CA (United States); Stohr, J. [IBM Almaden Research Center, San Jose, CA (United States); Diaz, J. [Univ. de Oviedo (Spain). Dept. de Fisica; Cossy-Gantner, A. [EMPA, Duebendorf (Germany)

    1998-03-01

    Photoemission Electron Microscopy (PEEM) using X-rays is a novel combination of two established materials analysis techniques--PEEM using UV light, and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. This combination allows the study of elemental composition and bonding structure of the sample by NEXAFS spectroscopy with a high spatial resolution given by the microscope. A simple, two lens, 10 kV operation voltage PEEM has been used at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (ALS) in Berkeley to study various problems including materials of interest for the semiconductor industry. In the present paper the authors give a short overview over the method and the instrument which was used, and describe in detail a number of applications. These applications include the study of the different phases of titanium disilicide, various phases of boron nitride, and the analysis of small particles. A brief outlook is given on possible new fields of application of the PEEM technique, and the development of new PEEM instruments.

  2. X-ray photoemission electron microscopy for the study of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Stammler, T.; Padmore, H.A. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Terminello, L.J.; Jankowski, A.F. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States); Stoehr, J. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Diaz, J. [Departamento de Fisic, Facultad de Ciencias, Universidad de Oviedo, Avda. Calvo Sotelo s/n, Oviedo, 33007 (Spain); Cossy-Favre, A. [EMPA, Duebendorf, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Singh, S. [Center for X-ray Lithography, University of Wisconsin-Madison, Stoughton, Wisconsin 53589 (United States)

    1998-11-01

    Photoemission Electron Microscopy using X-rays (X-PEEM) is a novel combination of two established materials analysis techniques{emdash}PEEM using UV light, and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. This combination allows the study of elemental composition and bonding structure of the sample by NEXAFS spectroscopy with a high spatial resolution given by the microscope. A simple, two lens, 10 kV operation voltage PEEM has been used at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (ALS) in Berkeley to study various problems including materials of interest for the semiconductor industry. In the present paper we give a short overview over the method and the instrument which was used, and describe in detail a number of applications. These applications include the study of the different phases of titanium disilicide, various phases of boron nitride, and the analysis of small particles. A brief outlook is given on possible new fields of application of the PEEM technique, and the development of new PEEM instruments. {copyright} {ital 1998 American Institute of Physics.}

  3. Source assemblage types for cratonic diamonds from X-ray synchrotron diffraction

    Science.gov (United States)

    Nestola, F.; Alvaro, M.; Casati, M. N.; Wilhelm, H.; Kleppe, A. K.; Jephcoat, A. P.; Domeneghetti, M. C.; Harris, J. W.

    2016-11-01

    Three single crystals of clinopyroxene trapped within three different gem-quality diamonds from the Udachnaya kimberlite (Siberia, Russia) were analysed in situ by single-crystal synchrotron X-ray diffraction in order to obtain information on their chemical composition and infer source assemblage type. A non-destructive approach was used with high-energy (≈ 60 keV; λ ≈ 0.206 Å) at I15, the extreme-conditions beamline at Diamond Light Source. A dedicated protocol was used to center the mineral inclusions located deep inside the diamonds in the X-ray beam. Our results reveal that two of the inclusions can be associated with peridotitic paragenesis whereas the third is eclogitic. This study also demonstrates that this non-destructive experimental approach is extremely efficient in evaluating the origin of minerals trapped in their diamond hosts.

  4. Synchrotron hard X-ray imaging of shock-compressed metal powders

    Science.gov (United States)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This poster will present the application of a new, high-energy (50 to 250 keV) synchrotron X-ray radiography technique to the study of shock-compressed granular materials. Following plate-impact loading, transmission radiography was used to quantitatively observe the compaction and release processes in a range of high-Z metal powders (e.g. Fe, Ni, Cu). By comparing the predictions of 3D numerical models initialized from X-ray tomograms-captured prior to loading-with experimental results, this research represents a new approach to refining mesoscopic compaction models. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  5. Metals determination in wood treated by synchrotron radiation X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vives, Ana Elisa Sirito de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Silva, Richard Maximiliano da Cunha [Centro de Energia Nuclear na Agricultura, Piracicaba, SP (Brazil)]. E-mail: maxcunha@cena.usp.br; Medeiros, Jean Gabriel da Silva; Tomazello Filho, Mario [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz]. E-mail: jeangm@esalq.usp.br; mtomazel@esalq.usp.br; Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mail: Silvana@fec.unicamp.br; Zucchi, Orgheda Luiza Araujo Domingues [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Barroso, Regina Cely [Universidade do Estado, Rio de Janeiro, RJ (Brazil)]. E-mail: cely@uerj.br

    2005-07-01

    The paper describes the use of X-Ray fluorescence analysis for distribution and quantification of metals in the hardwood (Eucalyptus sp) and softwood (Pinus sp) treated with CCA (copper-chromium-arsenic). The sapwood/heartwood for hardwood sample and the growth-rings for softwood sample were analyzed. The samples were scanned in 320 mm steps in the vertical direction. For excitation of the elements a white beam synchrotron radiation of {approx} 320 x 180 mm was employed and for the X-ray detection a Si(Li) semiconductor detector. The elements K, Ca, Cr, Mn, Cu, Zn and As were determined. Fundamental parameters were used to quantify the elements concentrations. (author)

  6. Metals determination in wood treated by synchrotron radiation X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Vives, Ana Elisa Sirito de; Medeiros, Jean Gabriel da Silva; Tomazello Filho, Mario

    2005-01-01

    The paper describes the use of X-Ray fluorescence analysis for distribution and quantification of metals in the hardwood (Eucalyptus sp) and softwood (Pinus sp) treated with CCA (copper-chromium-arsenic). The sapwood/heartwood for hardwood sample and the growth-rings for softwood sample were analyzed. The samples were scanned in 320 mm steps in the vertical direction. For excitation of the elements a white beam synchrotron radiation of ∼ 320 x 180 mm was employed and for the X-ray detection a Si(Li) semiconductor detector. The elements K, Ca, Cr, Mn, Cu, Zn and As were determined. Fundamental parameters were used to quantify the elements concentrations. (author)

  7. High-resolution X-ray scattering topography using synchrotron radiation microbeam

    International Nuclear Information System (INIS)

    Chikaura, Yoshinori; Suzuki, Yoshifumi; Kii, Hideki

    1994-01-01

    Although spatial resolution is the most essential factor determining the function of X-ray topography, it has not been improved in 30 years in spite of increasing requirements for highly-resolvable topography in materials science. X-ray scattering topography using a microbeam is a method capable of overcoming this resolution problem. Because the maximum resolution of an apparatus using a sealed-off tube is limited to 20μm, we designed and constructed scattering topography equipment using a synchrotron radiation microbeam. In the experiment, the slit system forms the microbeam 7 μm in diameter. We observed a cellulose distribution in bamboo as a testing material. When the scanning step was 2 μm, we attained spatial resolution less than 5 μm. (author)

  8. Optics for protein microcrystallography using synchrotron and laboratory X-ray sources

    International Nuclear Information System (INIS)

    Varghese, J.N.; Van Donkelaar, A.; Balaic, D.X.; Barnea, Z.

    2000-01-01

    Full text: For protein crystallography, a highly-intense focused beam overcomes a serious constraint in current biological research: the inability of many protein molecules to form crystals larger than a few tens of microns in size. High structure-resolution X-ray diffraction analysis of microcrystals is currently only being studied at synchrotron X-ray sources. We shall examine how this is being carried out, and also report the development of a novel tapered glass monocapillary toroidal-mirror optic, which achieves a high-intensity, low-divergence focused beam from a rotating-anode Xray generator. We have used this optic, which demonstrates an ∼28x intensity gain at the beam focus to solve the structure of a plant exoglucanse/inhibtor complex microcrystal to 2.8 Angstroms, with volume equivalent to a 30-micron-edge cube

  9. X-rays from synchrotron: A new challenge for neutron scattering

    International Nuclear Information System (INIS)

    Shirane, G.

    1983-01-01

    A brief review is given of current developments in X-ray scattering techniques at synchrotron radiation facilities. Highly collimated, intense sources of white radiation open up new areas of research in condensed matter physics and challenge the traditional domains of neutron scattering. These include energy dispersive scattering, the use of anomalous dispersion, magnetic diffraction and direct energy analysis by backscattering. The relative merits of X-ray and neutron scattering techniques will be discussed. The unique advantage of neutron scattering is the capability of performing polarization analysis. We will discuss in some detail the current developments at Brookhaven inelastic scattering of polarized neutrons. In addition, we will also discuss special technical problems associated with the search for phasons utilizing a high-resolution triple axis spectrometer. (orig.)

  10. Nanostructure of protective rust layer on weathering steel examined using synchrotron radiation x-rays

    International Nuclear Information System (INIS)

    Yamashita, Masato; Uchida, Hitoshi; Konishi, Hiroyuki; Mizuki, Jun'ichiro

    2004-01-01

    The X-ray absorption fine structure (XAFS) spectrum of pure goethite around the Fe K absorption edge and that of the protective rust layer formed on weathering steel exposed for 17 years in an atmospheric environment around the Cr K edge, have been examined using synchrotron radiation X-rays. It was found that the rust layer on the weathering steel mainly consisted of Cr-goethite. By examining the fine structure at the Cr K edge and the Fe K edge, we concluded that Cr 3+ in the rust layer is coordinated with O 2- and is positioned in the double chains of vacant sites in the network of FeO 3 (OH) 3 octahedra in the goethite crystal. This Cr 3+ site indicates that the protective effect of the rust layer is due to the dense aggregation of fine crystals of Cr-goethite with cation selectivity. (author)

  11. Low energy X-ray grating interferometry at the Brazilian Synchrotron

    Science.gov (United States)

    Koch, F. J.; O'Dowd, F. P.; Cardoso, M. B.; Da Silva, R. R.; Cavicchioli, M.; Ribeiro, S. J. L.; Schröter, T. J.; Faisal, A.; Meyer, P.; Kunka, D.; Mohr, J.

    2017-06-01

    Grating based X-ray differential phase contrast imaging has found a large variety of applications in the last decade. Different types of samples call for different imaging energies, and efforts have been made to establish the technique all over the spectrum used for conventional X-ray imaging. Here we present a two-grating interferometer working at 8.3 keV, implemented at the bending magnet source of the IMX beamline of the Brazilian Synchrotron Light Laboratory. The low design energy is made possible by gratings fabricated on polymer substrates, and makes the interferometer mainly suited to the investigation of light and thin samples. We investigate polymer microspheres filled with Fe2O3 nanoparticles, and find that these particles give rise to a significant visibility reduction due to small angle scattering.

  12. Hard x-ray microscopy and tomography at the ALS: Experiments and plans

    International Nuclear Information System (INIS)

    Yun, W.; Howells, M.R.; Feng, J.; Celestree, R.; MacDowell, A.A.; Padmore, H.A.; Chang, C.-H.; Spence, J.

    2000-01-01

    A hard x-ray imaging microscope with a spatial resolution of 0.12 μm was developed and tested using synchrotron radiation. The microscope can be operated in either dark-field or bright-field mode. Phase contrast is employed in the dark-field mode while absorption contrast is used in the bright-field mode. The objective of the x-ray microscope is a phase zone plate fabricated using a x-ray lithographic technique. We describe the hardware of the microscope and present the results obtained from the microscope. Its potential applications will also be discussed

  13. Progress and prospects in soft x-ray holographic microscopy

    International Nuclear Information System (INIS)

    Howells, M.R.; Jacobsen, C.; Kirz, J.; McQuaid, K.; Rothman, S.S.

    1987-12-01

    We report some of the latest developments in x-ray holography experiments and make some speculations about the limits of performance of the approaches currently in use. We also make some suggestions about where the technique can (and cannot) go in the future. 32 refs., 5 figs., 1 tab

  14. Soft X-ray contact microscopy of nematode Caenorhabditis elegans

    Czech Academy of Sciences Publication Activity Database

    Poletti, G.; Orsini, F.; Batani, D.; Bernadinello, A.; Desai, T.; Ullschmied, Jiří; Skála, Jiří; Králiková, Božena; Krouský, Eduard; Juha, Libor; Pfeifer, Miroslav; Kadlec, Christelle; Mocek, Tomáš; Präg R., Ansgar; Renner, Oldřich; Cotelli, F.; Lamia, C. L.; Zullini, A.

    2004-01-01

    Roč. 30, č. 2 (2004), s. 235-241 ISSN 1434-6060 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z2043910 Keywords : soft X-ray Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.692, year: 2004

  15. Development of a speckle-based portable device for in situ metrology of synchrotron X-ray mirrors.

    Science.gov (United States)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-09-01

    A portable device for in situ metrology of synchrotron X-ray mirrors based on the near-field speckle scanning technique has been developed. Ultra-high angular sensitivity is achieved by scanning a piece of abrasive paper or filter membrane in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that optimizing active X-ray mirrors is simple and fast. The functionality and feasibility of this device have been demonstrated by characterizing and optimizing X-ray mirrors.

  16. CCD-based detector for protein crystallography with synchrotron X-rays

    International Nuclear Information System (INIS)

    Strauss, M.G.; Westbrook, E.M.; Naday, I.; Coleman, T.A.; Westbrook, M.L.; Travis, D.J.; Sweet, R.M.; Pflugrath, J.W.; Stanton, M.

    1990-01-01

    A detector with a 114 mm aperture, based on a charge-coupled device (CCD), has been designed for X-ray diffraction studies in protein crystallography. The detector was tested at the National Synchrotron Light Source with a beam intensity, through a 0.3 mm collimator, of greater than 10 9 X-ray photons/s. A fiberoptic taper, an image intensifier, and a lens demagnify, intensity, and focus the image onto a CCD having 512x512 pixels. The statistical uncertainty in the detector output was evaluated as a function of conversion gain. From this, a detective quantum efficiency (DQE) of 0.36 was derived. The dynamic range of 4x4 pixel resolution element, comparable in size to a diffraction peak, was 10 4 . The point-spread function shows FWHM resolution of approximately 1 pixel, where a pixel is 160 μm on the detector face. A data set collected from a chicken egg-white lysozyme crystal, consisting of 495 0.1deg frames, was processed by the MADNES data reduction program. The symmetry R-factors for the data were 3.2-3.5%. In a separate experiment a complete lysozyme data set consisting of 45 1deg frames was obtained in just 36 s of X-ray exposure. Diffraction images from crystals of the myosin S1 head (a=275 A) were also recorded; the Bragg spots, only 5 pixels apart, were separated but not fully resolved. Changes in the detector design that will improve the DQE and spatial resolution are outlined. The overall performance showed that this type of detector is well suited for X-ray scattering investigations with synchrotron sources. (orig.)

  17. CCD-based detector for protein crystallography with synchrotron X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, M.G.; Westbrook, E.M.; Naday, I.; Coleman, T.A.; Westbrook, M.L.; Travis, D.J. (Argonne National Lab., IL (USA)); Sweet, R.M. (Brookhaven National Lab., Upton, NY (USA)); Pflugrath, J.W. (Cold Spring Harbor Lab., NY (USA)); Stanton, M. (Brandeis Univ., Waltham, MA (USA))

    1990-11-15

    A detector with a 114 mm aperture, based on a charge-coupled device (CCD), has been designed for X-ray diffraction studies in protein crystallography. The detector was tested at the National Synchrotron Light Source with a beam intensity, through a 0.3 mm collimator, of greater than 10{sup 9} X-ray photons/s. A fiberoptic taper, an image intensifier, and a lens demagnify, intensity, and focus the image onto a CCD having 512x512 pixels. The statistical uncertainty in the detector output was evaluated as a function of conversion gain. From this, a detective quantum efficiency (DQE) of 0.36 was derived. The dynamic range of 4x4 pixel resolution element, comparable in size to a diffraction peak, was 10{sup 4}. The point-spread function shows FWHM resolution of approximately 1 pixel, where a pixel is 160 {mu}m on the detector face. A data set collected from a chicken egg-white lysozyme crystal, consisting of 495 0.1deg frames, was processed by the MADNES data reduction program. The symmetry R-factors for the data were 3.2-3.5%. In a separate experiment a complete lysozyme data set consisting of 45 1deg frames was obtained in just 36 s of X-ray exposure. Diffraction images from crystals of the myosin S1 head (a=275 A) were also recorded; the Bragg spots, only 5 pixels apart, were separated but not fully resolved. Changes in the detector design that will improve the DQE and spatial resolution are outlined. The overall performance showed that this type of detector is well suited for X-ray scattering investigations with synchrotron sources. (orig.).

  18. CCD-based detector for protein crystallography with synchrotron X-rays

    Science.gov (United States)

    Strauss, M. G.; Westbrook, E. M.; Naday, I.; Coleman, T. A.; Westbrook, M. L.; Travis, D. J.; Sweet, R. M.; Pflugrath, J. W.; Stanton, M.

    1990-11-01

    A detector with a 114 mm aperture, based on a charge-coupled device (CCD), has been designed for X-ray diffraction studies in protein crystallography. The detector was tested at the National Synchrotron Light Source with a beam intensity, through a 0.3 mm collimator, of greater than 109 X-ray photons/s. A fiberoptic taper, an image intensifier, and a lens demagnify, intensify, and focus the image onto a CCD having 512×512 pixels. The statistical uncertainty in the detector output was evaluated as a function of conversion gain. From this, a detective quantum efficiency (DQE) of 0.36 was derived. The dynamic range of a 4×4 pixel resolution element, comparable in size to a diffraction peak, was 104. The point-spread function shows FWHM resolution of approximately 1 pixel, where a pixel is 160 μm on the detector face. A data set collected from a chicken egg-white lysozyme crystal, consisting of 495 0.1° frames, was processed by the MADNES data reduction program. The symmetry R-factors for the data were 3.2-3.5%. In a separate experiment a complete lysozyme data set consisting of 45 1° frames was obtained in just 36 s of X-ray exposure. Diffraction images from crystals of the myosin S1 head (a = 275 Å) were also recorded; the Bragg spots, only 5 pixels apart, were separated but not fully resolved. Changes in the detector design that will improve the DQE and spatial resolution are outlined. The overall performance showed that this type of detector is well suited for X-ray scattering investigations with synchrotron sources.

  19. Synchrotron x-ray methods in studies of thin organic film structure

    International Nuclear Information System (INIS)

    Gentle, I.

    2002-01-01

    Full text: In recent years, the study of the structures of organic films as thin as a single monolayer has been revolutionized by methods that take advantage of the characteristics of synchrotron radiation. In particular, the methods of grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity have led to a number of valuable insights into structural aspects of thin films at molecular resolution. Our group has been studying films formed at the air/water interface as insoluble monolayers and subsequently transferred to solid substrates using either the vertical (Langmuir-Blodgett) or horizontal (Langmuir-Schaeffer) methods. The main aim of these experiments is to exert control over film structure in the direction parallel to the substrate surface. This is highly desirable in order to design devices that exploit the optical and electrooptical properties of functional materials, but is difficult to do. By varying the chemical structure of the film materials and controlling deposition conditions a degree of control is possible, but only using synchrotron methods can it be easily verified. We have also developed a novel method of rapidly collecting data from GIXD measurements by the application of area detection (imaging plates), which has made possible measurements of dynamic processes such as in-situ annealing. Such measurements are not possible using traditional scanning methods. One area of current interest is films composed of porphyrins as functional materials, either alone or as mixed films with fatty acids. We have been investigating ways of assembling porphyrins in such a way as to overcome the tendency to aggregate, and to produce patterning and ordered structures in the plane of the interface. Examples will be given of how film composition and deposition method affects the final structure, and of how X-ray methods can be used to elucidate both the structures and the mechanisms. Copyright (2002) Australian X-ray Analytical Association Inc

  20. Role of the Template in Model Biomineralization: Synchrotron X-ray Scattering Experiments

    Science.gov (United States)

    Uysal, Ahmet

    Synthesis of functional nanoparticles in cheap and environment friendly ways is one of the big challenges we face today. Interestingly, many biological systems are already expert at this task. Living organisms can grow nanocrystals of inorganic minerals with certain orientations and shapes and use them together with organic material to build structures with properties superior to the sum of their components. This process is called biomineralization. It has been previously shown that floating monolayers of amphiphilic molecules (Langmuir monolayers) can be used to simulate this process. This project covers the study of three different minerals, calcium oxalate, hydroxyapatite and gold, in an attempt to understand the role of the organic template in the model biomineralization experiments. We used in situ synchrotron x-ray scattering techniques to monitor the organic-inorganic interface during nucleation and growth of inorganic crystals. We also used scanning and transmission electron microscopy to study the structure of mature crystals ex situ . Although kidney stones (mostly calcium oxalate) are pathological in humans and animals, their microscopic structures exhibit considerable orientation and order, probably caused by organic molecules. Our x-ray scattering experiments revealed, first time, that in the early stages of the crystallization calcium oxalate crystals adapt a structure different from their known bulk structures. In the later stages, the crystals relax back to the bulk structure while changing the organization of the organic molecules next to them. We developed a model that explains these interactions in terms of the organic-inorganic interface potential energy. Hydroxyapatite is the main inorganic constituent of the vertebrate bone. In spite of the vast literature about bone mineralization, there is little known about the organic-inorganic interactions at the molecular level. In this thesis, we report the first in situ x-ray scattering experiments

  1. DOE/DMS workshop on future synchrotron VUV and x-ray beam Lines

    International Nuclear Information System (INIS)

    Green, P.H.

    1992-03-01

    This document contains an overview of the participating DOE Laboratory beam line interests and the projected science to be addressed on these beam lines, both at new and existing synchrotron facilities. The scientific programs associated with present and planned synchrotron research by DOE Laboratories are discussed in chapters titled ''VUV and Soft X-Ray Research'' and ''Hard X-Ray Research.'' This research encompasses a broad range of the nation's scientific and technical research needs from fundamental to applied, in areas including environmental, biological, and physical sciences; new materials; and energy-related technologies. The projected cost of this proposed construction has been provided in tabular form using a uniform format so that anticipated DOE and outside funding agency contributions for construction and for research and development can be determined. The cost figures are, of course, subject to uncertainties of detailed design requirements and the availability of facility-designed generic components and outside vendors. The report also contains a compendium (as submitted by the beam line proposers) of the design capabilities, the anticipated costs, and the scientific programs of projected beam line construction at the four synchrotron facilities. A summary of the projected cost of these beam lines to be requested of DOE is compiled

  2. X-ray beam splitting design for concurrent imaging at hard X-ray FELs and synchrotron facilities

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Mokso, R.

    2013-01-01

    Roč. 729, NOV (2013), s. 85-89 ISSN 0168-9002 R&D Projects: GA MPO FR-TI1/412 Institutional research plan: CEZ:AV0Z10100522 Keywords : diffractive-refractive optics * hard X-ray FEL * X-ray imaging Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.316, year: 2013 http://www.sciencedirect.com/science/article/pii/S0168900213009613

  3. X-ray microscopy resource center at the Advanced Light Source

    International Nuclear Information System (INIS)

    Meyer-Ilse, W.; Koike, M.; Beguiristain, R.; Maser, J.; Attwood, D.

    1992-07-01

    An x-ray microscopy resource center for biological x-ray imaging vvill be built at the Advanced Light Source (ALS) in Berkeley. The unique high brightness of the ALS allows short exposure times and high image quality. Two microscopes, an x-ray microscope (XM) and a scanning x-ray microscope (SXM) are planned. These microscopes serve complementary needs. The XM gives images in parallel at comparable short exposure times, and the SXM is optimized for low radiation doses applied to the sample. The microscopes extend visible light microscopy towards significantly higher resolution and permit images of objects in an aqueous medium. High resolution is accomplished by the use of Fresnel zone plates. Design considerations to serve the needs of biological x-ray microscopy are given. Also the preliminary design of the microscopes is presented. Multiple wavelength and multiple view images will provide elemental contrast and some degree of 3D information

  4. 3D/4D analyses of damage and fracture behaviours in structural materials via synchrotron X-ray tomography.

    Science.gov (United States)

    Toda, Hiroyuki

    2014-11-01

    technique to the deformation behavior of a polycrystalline aluminium alloy will be demonstrated in the presentation [6].The synchrotron-based microtomography has been mainly utilized to light materials due to their good X-ray transmission. In the present talk, the application of the synchrotron-based microtomography to steels will be also introduced. Degradation of contrast and spatial resolution due to forward scattering could be avoided by selecting appropriate experimental conditions in order to obtain superior spatial resolution close to the physical limit even in ferrous materials [7]. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Iron overload of human colon adenocarcinoma cells studied by synchrotron-based X-ray techniques.

    Science.gov (United States)

    Mihucz, Victor G; Meirer, Florian; Polgári, Zsófia; Réti, Andrea; Pepponi, Giancarlo; Ingerle, Dieter; Szoboszlai, Norbert; Streli, Christina

    2016-04-01

    Fast- and slow-proliferating human adenocarcinoma colorectal cells, HT-29 and HCA-7, respectively, overloaded with transferrin (Tf), Fe(III) citrate, Fe(III) chloride and Fe(II) sulfate were studied by synchrotron radiation total-reflection X-ray spectrometry (TXRF), TXRF-X-ray absorption near edge structure (TXRF-XANES), and micro-X-ray fluorescence imaging to obtain information on the intracellular storage of overloaded iron (Fe). The determined TfR1 mRNA expression for the investigated cells correlated with their proliferation rate. In all cases, the Fe XANES of cells overloaded with inorganic Fe was found to be similar to that of deliquescent Fe(III) sulfate characterized by a distorted octahedral geometry. A fitting model using a linear combination of the XANES of Tf and deliquescent Fe(III) sulfate allowed to explain the near edge structure recorded for HT-29 cells indicating that cellular overload with inorganic Fe results in a non-ferritin-like fast Fe storage. Hierarchical cluster analysis of XANES spectra recorded for Fe overloaded HT-29 and HCA-7 cells was able to distinguish between Fe treatments performed with different Fe species with a 95% hit rate, indicating clear differences in the Fe storage system. Micro-X-ray fluorescence imaging of Fe overloaded HT-29 cells revealed that Fe is primarily located in the cytosol of the cells. By characterizing the cellular Fe uptake, Fe/S content ratios were calculated based on the X-ray fluorescence signals of the analytes. These Fe/S ratios were dramatically lower for HCA-7 treated with organic Fe(III) treatments suggesting dissimilarities from the Tf-like Fe uptake.

  6. Reference-free total reflection X-ray fluorescence analysis of semiconductor surfaces with synchrotron radiation.

    Science.gov (United States)

    Beckhoff, Burkhard; Fliegauf, Rolf; Kolbe, Michael; Müller, Matthias; Weser, Jan; Ulm, Gerhard

    2007-10-15

    Total reflection X-ray fluorescence (TXRF) analysis is a well-established method to monitor lowest level contamination on semiconductor surfaces. Even light elements on a wafer surface can be excited effectively when using high-flux synchrotron radiation in the soft X-ray range. To meet current industrial requirements in nondestructive semiconductor analysis, the Physikalisch-Technische Bundesanstalt (PTB) operates dedicated instrumentation for analyzing light element contamination on wafer pieces as well as on 200- and 300-mm silicon wafer surfaces. This instrumentation is also suited for grazing incidence X-ray fluorescence analysis and conventional energy-dispersive X-ray fluorescence analysis of buried and surface nanolayered structures, respectively. The most prominent features are a high-vacuum load-lock combined with an equipment front end module and a UHV irradiation chamber with an electrostatic chuck mounted on an eight-axis manipulator. Here, the entire surface of a 200- or a 300-mm wafer can be scanned by monochromatized radiation provided by the plane grating monochromator beamline for undulator radiation in the PTB laboratory at the electron storage ring BESSY II. This beamline provides high spectral purity and high photon flux in the range of 0.078-1.86 keV. In addition, absolutely calibrated photodiodes and Si(Li) detectors are used to monitor the exciting radiant power respectively the fluorescence radiation. Furthermore, the footprint of the excitation radiation at the wafer surface is well-known due to beam profile recordings by a CCD during special operation conditions at BESSY II that allow for drastically reduced electron beam currents. Thus, all the requirements of completely reference-free quantitation of TXRF analysis are fulfilled and are to be presented in the present work. The perspectives to arrange for reference-free quantitation using X-ray tube-based, table-top TXRF analysis are also addressed.

  7. Probing deformation substructure by synchrotron X-ray diffraction and dislocation dynamics modelling.

    Science.gov (United States)

    Korsunsky, Alexander M; Hofmann, Felix; Song, Xu; Eve, Sophie; Collins, Steve P

    2010-09-01

    Materials characterization at the nano-scale is motivated by the desire to resolve the structural aspects and deformation behavior at length scales relevant to those mechanisms that define the novel and unusual properties of nano-structured materials. A range of novel techniques has recently become accessible with the help of synchrotron X-ray beams that can be focused down to spot sizes of less than a few microns on the sample. The unique combination of tunability (energy selection), parallelism and brightness of synchrotron X-ray beams allows their use for high resolution diffraction (determination of crystal structure and transformations, analysis of dislocation sub-structures, orientation and texture analysis, strain mapping); small angle X-ray scattering (analysis of nano-scale voids and defects; orientation analysis) and imaging (radiography and tomography). After a brief review of the state-of-the-art capabilities for monochromatic and white beam synchrotron diffraction, we consider the usefulness of these techniques for the task of bridging the gap between experiment and modeling. Namely, we discuss how the experiments can be configured to provide information relevant to the validation and improvement of modeling approaches, and also how the results of various simulations can be post-processed to improve the possibility of (more or less) direct comparison with experiments. Using the example of some recent experiments carried out on beamline 116 at Diamond Light Source near Oxford, we discuss how such experimental results can be interpreted in view and in conjunction with numerical deformation models, particularly those incorporating dislocation effects, e.g., finite-element based pseudo-continuum strain gradient formulations, and discrete dislocation simulations. Post-processing of FE and discrete dislocation simulations is described, illustrating the kind of information that can be extracted from comparisons between modeling and experimental data.

  8. X-ray magnetic microscopy for correlations between magnetic domains and crystal structure

    International Nuclear Information System (INIS)

    Denbeaux, G.; Anderson, E.; Bates, B.; Chao, W.; Liddle, J.A.; Harteneck, B.; Pearson, A.; Salmassi, F.; Schneider, G.; Fischer, P.; Eimuller, T.; Taylor, S.; Chang, H.; Kusinski, G.J.

    2002-01-01

    Accurately determining the resolution of x-ray microscopes has been a challenge because good test patterns for x-ray microscopy have been hard to make. We report on a sputter-deposited multilayer imaged in cross section as a test pattern with small features and high aspect ratios. One application of high-resolution imaging is magnetic materials. Off-axis bend magnet radiation is known to have a component of circular polarization which can be used for x-ray magnetic circular dichroism. We calculate the integrated circular polarization collected by the illumination optics in the XM-1 full-field x-ray microscope. (authors)

  9. A simple methodology for obtaining X-ray color images in scanning electron microscopy

    International Nuclear Information System (INIS)

    Veiga, M.M. da; Pietroluongo, L.R.V.

    1985-01-01

    A simple methodology for obtaining at least 3 elements X-ray images in only one photography is described. The fluorescent X-ray image is obtained from scanning electron microscopy with energy dispersion analysis system. The change of detector analytic channels, color cellophane foils and color films are used sequentially. (M.C.K.) [pt

  10. Scanning tunneling microscopy studies of thin foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Besenbacher, Flemming; Garnaes, Jorgen

    1990-01-01

    In this paper scanning tunneling microscopy (STM) measurements of x-ray mirrors are presented. The x-ray mirrors are 0.3 mm thick dip-lacquered aluminum foils coated with gold by evaporation, as well as state-of-the-art polished surfaces coated with gold, platinum, or iridium. The measurements...

  11. Raphide crystal structure in agave tequilana determined by x-ray originating from synchrotron radiation

    International Nuclear Information System (INIS)

    Tadokoro, Makoto; Ozawa, Yoshiki; Mitsumi, Minoru; Toriumi, Kohshiro; Ogura, Tetsuya

    2005-01-01

    The first single crystal structure of small natural raphides in an agave plant is completely determined using an intense X-ray originating from a synchrotron radiation. The SEM image shows that the tip of the crystal is approximately hundreds of nanometer in width sharply grow to stick to the tissue of herbivorous vermin. Furthermore, the crystal develops cracks that propagate at an inclination of approximately 45deg towards the direction of crystal growth such that the crystal easily splits into small pieces in the tissue. (author)

  12. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    Science.gov (United States)

    Zou, C.; Marrow, T. J.; Reinhard, C.; Li, B.; Zhang, C.; Wang, S.

    2016-03-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a "node-bond" geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1~ 9.3% closed micropores.

  13. An x-ray fluorescence study of lake sediments from ancient Turkey using synchrotron radiation.

    Energy Technology Data Exchange (ETDEWEB)

    Alatas, A.; Alp, E. E.; Friedman, E. S.; Jennings, G.; Johnson, C. E.; Lai, B.; Mini, S. M.; Sato, Y.; Wilkinson, T. J.; Yener, K. A.

    1999-03-10

    Sediments from relic Lake Golbasi were analyzed by X-ray fluorescence with synchrotrons radiation to determine changes in element concentrations over time with selected elements serving as proxies for environmental change. Increases in Ca and Sr suggest soil formation during a dry period, from ca. 4500 BC to ca. 200 AD at which point K, Rb, Zr, Ti, and Y increase, indicating the return of a wet environment. Soil erosion, represented by Cr and Ni, increases ca. 7000 BC, probably as a consequence of environmental change, prior to suggested exploitation of natural resources by the newly urbanized society of the third millennium BC.

  14. Synchrotron total reflection X-ray fluorescence at BL-16 microfocus beamline of Indus-2

    Science.gov (United States)

    Tiwari, M. K.; Singh, A. K.; Das, Gangadhar; Chowdhury, Anupam; Lodha, G. S.

    2014-04-01

    Determination of ultra trace elements is important in many disciplines both in basic and applied sciences. Numerous applications show their importance in medical science, environmental science, materials science, food processing and semiconductor industries and in maintaining the quality control of ultra pure chemicals and reagents. We report commissioning of a synchrotron based total reflection x-ray fluorescence (TXRF) facility on the BL-16 microfocus beamline of Indus-2. This paper describes the performance of the BL-16 TXRF spectrometer and the detailed description of its capabilities through examples of measured results.

  15. Non-destructive synchrotron X-ray diffraction mapping of a Roman painting

    International Nuclear Information System (INIS)

    Dooryhee, E.; Anne, M.; Hodeau, J.-L.; Martinetto, P.; Rondot, S.; Bardies, I.; Salomon, J.; Walter, P.; Vaughan, G.B.M.

    2005-01-01

    The history and the properties of materials are deduced not only from their elemental and molecular signatures, but also from their exact phase compositions, and from the structures and the defects of their constituents. Here we implement a non-destructive synchrotron X-ray based method, which combines both the quantitative structural content of diffraction and the imaging mode. As a demonstration case, the pigments of a Roman wall painting are examined. The joined elemental and mineral maps mimic the major features of the painting. Different structural phases made of common atomic elements are differentiated. Textures and graininess are measured and related to the artist's know-how. (orig.)

  16. X-ray photoelectron spectroscopy study of synchrotron radiation irradiation of a polytetrafluoroethylene surface

    CERN Document Server

    Haruyama, Y; Matsui, S; Ideta, T; Ishigaki, H

    2003-01-01

    The effect of synchrotron radiation (SR) irradiation of a polytetrafluoroethylene (PTFE) surface was investigated using X-ray photoelectron spectroscopy (XPS). After the SR irradiation, the relative intensity of the F ls peak to the C ls peak decreased markedly. The chemical composition ratio to the F atoms to C atoms was estimated to be 0.29. From the curve fitting analysis of C ls and F ls XPS spectra, the chemical components and their intensity ratio were determined. The reason for the chemical composition change by the SR irradiation was discussed. (author)

  17. Electron multiplier as a detector for soft x rays from synchrotron and laser plasma sources

    Science.gov (United States)

    Buckley, Christopher J.; Dermody, Geraint; Khaleque, Naz I.; Michette, Alan G.; Pfauntsch, Slawka J.; Turcu, I. C. Edmond; Allott, Ric M.

    1998-11-01

    An electron-tubes-LTD 129EM electron multiplier tube has been modified to act as a detector of soft x-rays. the first dynode was coated with 100 nm of CsI and the assembly was mounted in a small vacuum chamber with 100 nm thick silicon nitride entrance window. Initial tests show the detector is linear up to an input flux of approximately 1MHz on a synchrotron source and has proved effective in providing pulse height discrimination when used on a pulsed laser plasma source.

  18. Synchrotron total reflection X-ray fluorescence at BL-16 microfocus beamline of Indus-2

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, M. K., E-mail: mktiwari@rrcat.gov.in; Singh, A. K., E-mail: mktiwari@rrcat.gov.in; Das, Gangadhar, E-mail: mktiwari@rrcat.gov.in; Chowdhury, Anupam, E-mail: mktiwari@rrcat.gov.in; Lodha, G. S., E-mail: mktiwari@rrcat.gov.in [Indus Synchrotrons Utilisation Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India)

    2014-04-24

    Determination of ultra trace elements is important in many disciplines both in basic and applied sciences. Numerous applications show their importance in medical science, environmental science, materials science, food processing and semiconductor industries and in maintaining the quality control of ultra pure chemicals and reagents. We report commissioning of a synchrotron based total reflection x-ray fluorescence (TXRF) facility on the BL-16 microfocus beamline of Indus-2. This paper describes the performance of the BL-16 TXRF spectrometer and the detailed description of its capabilities through examples of measured results.

  19. Comparison of the decameric structure of peroxiredoxin-II by transmission electron microscopy and X-ray crystallography

    DEFF Research Database (Denmark)

    Harris, J. Robin; Schröder, Ewald; Isupov, Michail N.

    2001-01-01

    Peroxiredoxin; Transmission electron microscopy; X-ray structure; Negative staining; angular reconstitution; Molecular fitting......Peroxiredoxin; Transmission electron microscopy; X-ray structure; Negative staining; angular reconstitution; Molecular fitting...

  20. Bulk sensitive hard x-ray photoemission electron microscopy.

    Science.gov (United States)

    Patt, M; Wiemann, C; Weber, N; Escher, M; Gloskovskii, A; Drube, W; Merkel, M; Schneider, C M

    2014-11-01

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. The high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO3 sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.

  1. WHOLE CELL TOMOGRAPHY/MOLECULAR BIOLOGY/STRUCTURAL BIOLOGY: Affordable x-ray microscopy with nanoscale resolution

    Energy Technology Data Exchange (ETDEWEB)

    Evans, James E.; Blackborow, Paul; Horne, Stephen J.; Gelb, Jeff

    2013-03-01

    Biological research spans 10 orders of magnitude from angstroms to meters. While electron microscopy can reveal structural details at most of these spatial length scales, transmission electron tomography only reliably reconstructs three-dimensional (3-D) volumes of cellular material with a spatial resolution between 1-5 nm from samples less than 500 nm thick1. Most biological cells are 2-30 times thicker than this threshold, which means that a cell must be cut into consecutive slices with each slice reconstructed individually in order to approximate the contextual information of the entire cell. Fortunately, due to a larger penetration depth2, X-ray computed tomography bypasses the need to physically section a cell and enables imaging of intact cells and tissues on the micrometer or larger scale with tens to hundreds of nanometer spatial resolution. While the technique of soft x-ray microscopy has been extensively developed in synchrotron facilities, advancements in laboratory x-ray source designs now increase its accessibility by supporting commercial systems suitable for a standard laboratory. In this paper, we highlight a new commercial compact cryogenic soft x-ray microscope designed for a standard laboratory setting and explore its capabilities for mesoscopic investigations of intact prokaryotic and eukaryotic cells.

  2. Total and available metal contents in sediments by synchrotron radiation total reflection X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Sobrinho, Gilmar A. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil]. E-mail: silvana@fecf.unicamp.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), SP (Brazil); Jesus, Edgar F.O. de; Lopes, Ricardo T. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    2002-07-01

    In this work the total and available contents of Al, Si, Cl, K, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Ba, Ce and Pb in sediments from river Atibaia were determined by Synchrotron Radiation Total Reflection X-Ray Fluorescence technique. The detection limits for K series varies from 200 ng.mL{sup -1} for Al to 2 ng.mL{sup -1} for Zn while for L series the value varies from 20 ng.mL{sup -1} for Ba to 10 ng.mL{sup -1} for Pb. The samples were submitted to two different processes, in order to obtain the total and biological available metal contents. The information about metal content is a important parameter for a correct evaluation about the hydrologic cycle in Piracicaba basin. All the measure were carried out at the National Synchrotron Light Laboratory, Campinas, SP, Brazil, using a white beam for excitation. (author)

  3. Extending the possibilities in phase space analysis of synchrotron radiation x-ray optics.

    Science.gov (United States)

    Ferrero, Claudio; Smilgies, Detlef-Matthias; Riekel, Christian; Gatta, Gilles; Daly, Peter

    2008-08-01

    A simple analytical approach to phase space analysis of the performance of x-ray optical setups (beamlines) combining several elements in position-angle-wavelength space is presented. The mathematical description of a large class of optical elements commonly used on synchrotron beamlines has been reviewed and extended with respect to the existing literature and is reported in a revised form. Novel features are introduced, in particular, the possibility to account for imperfections on mirror surfaces and to incorporate nanofocusing devices like refractive lenses in advanced beamline setups using the same analytical framework. Phase space analysis results of the simulation of an undulator beamline with focusing optics at the European Synchrotron Radiation Facility compare favorably with results obtained by geometric ray-tracing methods and, more importantly, with experimental measurements. This approach has been implemented into a simple and easy-to-use program toolkit for optical calculations based on the Mathematica software package.

  4. Multielemental analysis in Brazilian cigarettes using total reflection X-ray fluorescence with synchrotron radiation

    International Nuclear Information System (INIS)

    Serpa, Renata F.B.; Jesus, Edgar F.O. de; Lopes, Ricardo T.; Moreira, Silvana

    2005-01-01

    In order to identify major and trace elements in conventional and light Brazilian cigarettes, Total Reflection X-Ray Fluorescence with Synchrotron Radiation (SR-TXRF) was used. The fluorescence measurements were carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo. This technique enables detection limit is in the ngg -1 range, which is very useful in elemental tobacco smoke analysis, since it presents most of its elements at a trace level. The major elements identified in tobacco samples were: S, Cl, K, Ca, Mn, Fe and Cd, and the trace elements were: Ti, Cr, Ni, Cu, Zn, Br, Rb, Sr and Ba. However in tobacco smoke samples, there were only two major elements: K and Ca, the others were present a trace level. The rate transfer of tobacco to tobacco smoke was about 2.5 % for all elements studied. (author)

  5. Online monitoring the detector calibration process at a synchrotron X-ray source

    Science.gov (United States)

    Li, Huapng; Zhao, Yidong; Zheng, Lei; Tang, Kun; Liu, Shuhu; Zhao, Xiaoliang; Zhao, Yashuai; Li, Fan

    2017-12-01

    This paper describes an online noble gas monitor used for the detector calibration process with a cryogenic radiometer. The process is implemented under a high-flux synchrotron radiation X-ray source in the energy range from 2100 to 6000 eV at the Beijing Synchrotron Radiation Facility (BSRF). This online monitoring system aims to lower the uncertainty of the calibration results caused by electron beam decay in the storage ring during the detector calibration process. Because the calibration process is performed under the high vacuum condition, an ionization chamber with adjustable Kr gas pressure is chosen as the monitoring device. To decrease the electronic noise, a method for obtaining the signal by collecting the counts within a specified time has been applied. Under the properly controlled conditions, the uncertainty of the calibration results introduced by the online monitoring system is estimated to be better than 0.15%, which can meet the demands of various high-precision calibration processes.

  6. Synchrotron radiation based micro X-ray fluorescence analysis of the calibration samples used in surface sensitive total reflection and grazing emission X-ray fluorescence techniques

    Science.gov (United States)

    Kubala-Kukuś, A.; Banaś, D.; Pajek, M.; Szlachetko, J.; Jagodziński, P.; Susini, J.; Salomé, M.

    2013-12-01

    Total reflection X-ray fluorescence (TXRF) and grazing emission X-ray fluorescence (GEXRF) are surface sensitive techniques and can be used for detailed surface studies of different materials, including ultra-low concentration contamination or the lateral and depth distributions of elements. The calibration procedure typically used involves placing a micro-droplet (˜μl) of the standard solution onto a silicon wafer (or quartz backing). After evaporation of the solvent, the residual amount of elements is used as a reference standard. Knowledge of the distribution of residue material on the substrate surface is crucial for precise quantification. In the present work the investigation of the lateral distribution of elements in the multielemental calibrating samples, containing the 23 most commonly studied elements, by using the synchrotron radiation based micro X-ray fluorescence is presented. The goal of this project was the study of a uniformity of the elemental distributions and determination of the residual elements morphology depending on the temperature of the drying process. The X-ray images were compared with optical and SEM images. Paper presents in details the experimental setup, sample preparation procedures, measurements and results. In the analysis of the X-ray images of the sample dried in high temperature the censoring approach was applied improving the quality of statistical analysis. The information on the elements distribution in the calibrating samples can be useful for developing more accurate calibration procedures applied in quantitative analysis of surface sensitive TXRF and GEXRF techniques.

  7. STEADY X-RAY SYNCHROTRON EMISSION IN THE NORTHEASTERN LIMB OF SN 1006

    International Nuclear Information System (INIS)

    Katsuda, Satoru; Petre, Robert; Mori, Koji; Reynolds, Stephen P.; Long, Knox S.; Winkler, P. Frank; Tsunemi, Hiroshi

    2010-01-01

    We investigate time variations and detailed spatial structures of X-ray synchrotron emission in the northeastern limb of SN 1006, using two Chandra observations taken in 2000 and 2008. We extract spectra from a number of small (∼10'') regions. After taking account of proper motion and isolating the synchrotron from the thermal emission, we study time variations in the synchrotron emission in the small regions. We find that there are no regions showing strong flux variations. Our analysis shows an apparent flux decline in the overall synchrotron flux of ∼4% at high energies, but we suspect that this is mostly a calibration effect, and that flux is actually constant to ∼1%. This is much less than the variation found in other remnants where it was used to infer magnetic-field strengths up to 1 mG. We attribute the lack of variability to the smoothness of the synchrotron morphology, in contrast to the small-scale knots found to be variable in other remnants. The smoothness is to be expected for a Type Ia remnant encountering uniform material. Finally, we find a spatial correlation between the flux and the cutoff frequency in synchrotron emission. The simplest interpretation is that the cutoff frequency depends on the magnetic-field strength. This would require that the maximum energy of accelerated electrons is not limited by synchrotron losses, but by some other effect. Alternatively, the rate of particle injection and acceleration may vary due to some effect not yet accounted for, such as a dependence on shock obliquity.

  8. Advancements and Application of Microsecond Synchrotron X-ray Footprinting at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sayan; Celestre, Rich; Feng, Jun; Ralston, Corie

    2016-01-02

    The method of synchrotron X-ray protein footprinting (XF-MS) is used to determine protein conformational changes, folding, protein-protein and protein-ligand interactions, providing information which is often difficult to obtain using X-ray crystallography and other common structural biology methods [1 G. Xu and M.R. Chance, Chemical Reviews 107, 3514–3543 (2007). [CrossRef], [PubMed], [Web of Science ®], [Google Scholar] –3 V.N. Bavro, Biochem Soc Trans 43, 983–994 (2015). [CrossRef], [PubMed], [Web of Science ®], [Google Scholar] ]. The technique uses comparative in situ labeling of solvent-accessible side chains by highly reactive hydroxyl radicals (•OH) in buffered aqueous solution under different assay conditions. In regions where a protein is folded or binds a partner, these •OH susceptible sites are inaccessible to solvent, and therefore protected from labeling. The •OH are generated by the ionization of water using high-flux-density X-rays. High-flux density is a key factor for XF-MS labeling because obtaining an adequate steady-state concentration of hydroxyl radical within a short irradiation time is necessary to minimize radiation-induced secondary damage and also to overcome various scavenging reactions that reduce the yield of labeled side chains.

  9. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mirian L.A.F.; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (CT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray CT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumba (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based CT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  10. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    Science.gov (United States)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  11. Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite

    Science.gov (United States)

    Post, J. E.; Bish, D. L.; Heaney, P. J.

    2006-05-01

    Sepiolite is a hydrous Mg-silicate clay mineral with fibrous morphology that typically occurs as fine-grained, poorly crystalline masses. It occurs in a wide variety of geological environments and has been mined for centuries because of its many uses, e.g. in the pharmaceutical, fertilizer, and pesticide industries. Its versatile functionality derives from the large surface area and microporosity that are characteristic of the material. In recent years, sepiolite has received considerable attention with regard to the adsorption of organics, for use as a support for catalysts, as a molecular sieve, and as an inorganic membrane for ultrafiltration. Because of its fine-grained and poorly crystalline nature, it has not been possible to study sepiolite's crystal structure using single-crystal X-ray diffraction methods, and consequently many details of the structure are still not well known. In this study, Rietveld refinements using synchrotron powder X-ray diffraction data were used to investigate the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room- temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic water site. The RT structure under vacuum retained only ~1/8 of the zeolitic water and the volume decreased 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic water is lost by ~390 K, accompanied by a decrease in the a and c unit-cell parameters. Above ~600 K the sepiolite structure folds as one-half of the crystallographically bound water is lost. Rietveld refinements of the "anhydrous" sepiolite structure reveal that, in general, unit-cell parameters a, b, â and volume steadily decrease with increasing temperature; there is an obvious change in slope at ~820 K suggesting a phase

  12. Mapping Metal Elements of Shuangbai Dinosaur Fossil by Synchrotron X-ray Fluorescence Microprobe

    International Nuclear Information System (INIS)

    Wang, Y.; Qun, Y.; Ablett, J.

    2008-01-01

    The metal elements mapping of Shuangbai dinosaur fossil, was obtained by synchrotron x-ray fluorescence (SXRF). Eight elements, Ca, Mn, Fe, Cu, Zn, As, Y and Sr were determined. Elements As and Y were detected for the first time in the dinosaur fossil. The data indicated that metal elements are asymmetrical on fossil section. This is different from common minerals. Mapping metals showed that metal element As is few. The dinosaur most likely belongs to natural death. This is different from Zigong dinosaurs which were found dead from poisoning. This method has been used to find that metals Fe and Mn are accrete, and the same is true for Sr and Y. This study indicated that colloid granule Fe and Mn, as well as Sr and Y had opposite electric charges in lithification process of fossils. By this analysis, compound forms can be ascertained. Synchrotron light source x-ray fluorescence is a complementary method that shows mapping of metal elements at the dinosaur fossil, and is rapid, exact and intuitionist. This study shows that dinosaur fossil mineral imaging has a potential in reconstructing the paleoenvironment and ancient geology.

  13. Analysis of synchrotron X-ray diffraction patterns from fluorotic enamel samples

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Ana P.G.; Braz, Delson, E-mail: anapaulagalmeida@gmail.co [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Colaco, Marcos V.; Barroso, Regina C., E-mail: cely@uerj.b [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Fisica; Porto, Isabel M., E-mail: belporto@ig.com.b [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Faculdade de Odontologia; Gerlach, Raquel F., E-mail: rfgerlach@forp.usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Odontologia; Droppa Junior, Roosevelt, E-mail: rdroppa@lnls.b [Associacao Brasileira de Tecnologia de Luz Sincrotron (ABTLuS), Campinas, SP (Brazil)

    2009-07-01

    With the introduction of fluoride as the main anticaries agent used in preventive dentistry, and perhaps an increase in fluoride in our food chain, dental fluorosis has become an increasing world-wide problem. Visible signs of fluorosis begin to become obvious on the enamel surface as opacities, implying some porosity in the tissue. The mechanisms that conduct the formation of fluorotic enamel are unknown, but should involve modifications in the basics physical-chemistry reactions of demineralisation and remineralisation of the enamel of the teeth, which is the same reaction of formation of the enamel's hydroxyapatite (HAp) in the maturation phase. The increase of the amount of fluoride inside of the apatite will result in gradual increase of the lattice parameters. The hexagonal symmetry seems to work well with the powder diffraction data, and the crystal structure of HAp is usually described in space group P63/m. The aim of this work is to characterize the healthy and fluorotic enamel in human tooth using technique Synchrotron X-ray diffraction in order to determine the crystal structure and crystallinity of on fluoroapatite (FAp) crystal present in fluoritic enamel. All the scattering profile measurements was carried out at the X-ray diffraction beamline (XRD1) at the National Synchrotron Light Laboratory - LNLS, Campinas, Brazil. (author)

  14. Evaluation of osteoporotic bone structure through synchrotron radiation X-ray microfluorescence images

    Energy Technology Data Exchange (ETDEWEB)

    Lima, I. [Nuclear Engineering Program/COPPE/UFRJ, P.O. Box 68509, Av. Horacio Macedo 2030, Sala I-133, Cidade Universitaria, 21941-914 Rio de Janeiro, RJ (Brazil)], E-mail: inaya@lin.ufrj.br; Anjos, M.J. [Nuclear Engineering Program/COPPE/UFRJ, P.O. Box 68509, Av. Horacio Macedo 2030, Sala I-133, Cidade Universitaria, 21941-914 Rio de Janeiro, RJ (Brazil); Physics Institute, UERJ (Brazil); Farias, M.L.F. [University Hospital, UFRJ (Brazil); Pantaleao, T.U.; Correa da Costa, V.M. [Biophysics Institute, UFRJ (Brazil); Lopes, R.T. [Nuclear Engineering Program/COPPE/UFRJ, P.O. Box 68509, Av. Horacio Macedo 2030, Sala I-133, Cidade Universitaria, 21941-914 Rio de Janeiro, RJ (Brazil)

    2008-12-15

    The abnormal accumulation or deficiency of trace elements may theoretically impair the formation of bone and contribute to osteoporosis. In this context, the knowledge of major and trace elements is very important in order to clarify many issues regarding diseases of the bone, such as osteoporosis, that remain unresolved. Several kinds of imaging techniques can be useful to access morphology and the minerals present in osteoporotic bones. In this work, synchrotron radiation X-ray microfluorescence was used as an X-ray imaging technique to investigate bone structures. Therefore, this research aims to improve the knowledge about some aspects of bone quality. The measurements were carried out at the Brazilian Synchrotron Laboratory Light Laboratory, in Brazil. A white beam with an energy range of 4-23 keV, a 45 deg./45 deg. geometry and a capillary optics were used. It was demonstrated that bone quality can and must be evaluated not only by considering the architecture of bones but also by taking into account the concentration and the distribution of minerals. Our results showed that the elemental distributions in bone zones on a micron scale were very helpful to understand functions in those structures.

  15. ENDIX. A computer program to simulate energy dispersive X-ray and synchrotron powder diffraction diagrams

    International Nuclear Information System (INIS)

    Hovestreydt, E.; Karlsruhe Univ.; Parthe, E.; Benedict, U.

    1987-01-01

    A Fortran 77 computer program is described which allows the simulation of energy dispersive X-ray and synchrotron powder diffraction diagrams. The input consists of structural data (space group, unit cell dimensions, atomic positional and displacement parameters) and information on the experimental conditions (chosen Bragg angle, type of X-ray tube and applied voltage or operating power of synchrotron radiation source). The output consists of the normalized intensities of the diffraction lines, listed by increasing energy (in keV), and of an optional intensity-energy plot. The intensities are calculated with due consideration of the wave-length dependence of both the anomalous dispersion and the absorption coefficients. For a better agreement between observed and calculated spectra provision is made to optionally superimpose, on the calculated diffraction line spectrum, all additional lines such as fluorescence and emission lines and escape peaks. The different effects which have been considered in the simulation are discussed in some detail. A sample calculation of the energy dispersive powder diffraction pattern of UPt 3 (Ni 3 Sn structure type) is given. Warning: the user of ENDIX should be aware that for a successful application it is necessary to adapt the program to correspond to the actual experimental conditions. Even then, due to the only approximately known values of certain functions, the agreement between observed and calculated intensities will not be as good as for angle dispersive diffraction methods

  16. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients.

    Science.gov (United States)

    Siddiqui, Sanna F; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M; Bartsch, Marion; Raghavan, Seetha

    2013-08-01

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.

  17. Identification of cellulose fibres belonging to Spanish cultural heritage using synchrotron high resolution X-ray diffraction

    International Nuclear Information System (INIS)

    Herrera, L.K.; Justo, A.; Duran, A.; Haro, M.C.J. de; Franquelo, M.L.; Perez Rodriguez, J.L.

    2010-01-01

    A complete characterisation of fibres used in Spanish artwork is necessary to provide a complete knowledge of these natural fibres and their stage of degradation. Textile samples employed as painting supports on canvas and one sample of unprocessed plant material were chosen for this study. All the samples were investigated by synchrotron radiation X-ray diffraction (SR-XRD). Flax and cotton have the Cellulose I structure. The values of the crystalline index (CI) were calculated for both types of fibres. The structure of Cellulose IV was associated with the unprocessed plant material. The information obtained by SR-XRD was confirmed by laboratory techniques including scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). (orig.)

  18. X-ray diffraction studies on single and mixed confectionery fats using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    MacMillan, S.C.; Roberts, K.J.; Wells, M.; Polgreen, M.; Smith, I. [Heriot-Watt University, Edinburgh, (United Kingdom). Department of Mechanical and Chemical Engineering, Centre for Molecular and Interface Engineering

    1999-12-01

    and stirring rate (shear rate). The X-rays used are from a high intensity synchrotron radiation source, enabling polymorphic phase transformations for a variety of fat mixtures to observed. Copyright (1999) Australian X-ray Analytical Association Inc.

  19. X-ray diffraction studies on single and mixed confectionery fats using synchrotron radiation

    International Nuclear Information System (INIS)

    MacMillan, S.C.; Roberts, K.J.; Wells, M.; Polgreen, M.; Smith, I.

    1999-01-01

    and stirring rate (shear rate). The X-rays used are from a high intensity synchrotron radiation source, enabling polymorphic phase transformations for a variety of fat mixtures to observed. Copyright (1999) Australian X-ray Analytical Association Inc

  20. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Matthew D., E-mail: Matt.Wilson@stfc.ac.uk; Seller, Paul; Veale, Matthew C. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus,UK (United Kingdom); Connolley, Thomas [Diamond Light Source, I12 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal [Diamond Light Source, B16 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Grant, Patrick S.; Liotti, Enzo; Lui, Andrew [Department of Materials, University of Oxford Parks Road, Oxford (United Kingdom)

    2016-07-27

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm{sup 2} with one of the 80×80 pixels imaging an area equivalent to 13µm{sup 2}. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  1. Studying Nanoscale Magnetism and its Dynamics with Soft X-ray Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mccall, Monnikue M; Fischer, Peter

    2008-05-01

    Magnetic soft X-ray microscopy allows for imaging magnetic structures at a spatial resolution down to 15nm and a time resolution in the sub-100ps regime. Inherent elemental specificity can be used to image the magnetic response of individual components such as layers in multilayered systems. This review highlights current achievements and discusses the future potential of magnetic soft X-ray microscopy at fsec X-ray sources where snapshot images of ultrafast spin dynamics with a spatial resolution below 10nm will become feasible.

  2. Phase-Contrast and High-Resolution Optics for X-Ray Microscopy

    OpenAIRE

    von Hofsten, Olof

    2010-01-01

    X-ray microscopy is a well-established technique for nanoscale imaging. Zone plates are used as microscope objectives and provide high resolution, approaching 10 nm, currently limited by fabrication issues. This Thesis presents zone plate optics that achieve either high resolution or phase contrast in x-ray microscopy. The high-resolution optics use high orders of the zone plate, which alleviates the demands on fabrication, and the phase-contrast optics are single-element diffractive optical ...

  3. Development of quantitative x-ray microtomography

    International Nuclear Information System (INIS)

    Deckman, H.W.; Dunsmuir, J.A.; D'Amico, K.L.; Ferguson, S.R.; Flannery, B.P.

    1990-01-01

    The authors have developed several x-ray microtomography systems which function as quantitative three dimensional x-ray microscopes. In this paper the authors describe the evolutionary path followed from making the first high resolution experimental microscopes to later generations which can be routinely used for investigating materials. Developing the instrumentation for reliable quantitative x-ray microscopy using synchrotron and laboratory based x-ray sources has led to other imaging modalities for obtaining temporal and spatial two dimensional information

  4. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Ford, T.W.; Page, A.M. [Univ. of London (United Kingdom); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called {open_quotes}water window{close_quotes} area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examined the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition.

  5. A structural study of bone changes in knee osteoarthritis by synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy techniques

    Science.gov (United States)

    Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit

    2017-10-01

    Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.

  6. A compact dispersive refocusing Rowland circle X-ray emission spectrometer for laboratory, synchrotron, and XFEL applications

    Science.gov (United States)

    Holden, William M.; Hoidn, Oliver R.; Ditter, Alexander S.; Seidler, Gerald T.; Kas, Joshua; Stein, Jennifer L.; Cossairt, Brandi M.; Kozimor, Stosh A.; Guo, Jinghua; Ye, Yifan; Marcus, Matthew A.; Fakra, Sirine

    2017-07-01

    X-ray emission spectroscopy is emerging as an important complement to x-ray absorption fine structure spectroscopy, providing a characterization of the occupied electronic density of states local to the species of interest. Here, we present details of the design and performance of a compact x-ray emission spectrometer that uses a dispersive refocusing Rowland (DRR) circle geometry to achieve excellent performance for the 2-2.5 keV range, i.e., especially for the K-edge emission from sulfur and phosphorous. The DRR approach allows high energy resolution even for unfocused x-ray sources. This property enables high count rates in laboratory studies, approaching those of insertion-device beamlines at third-generation synchrotrons, despite use of only a low-powered, conventional x-ray tube. The spectrometer, whose overall scale is set by use of a 10-cm diameter Rowland circle and a new small-pixel complementary metal-oxide-semiconductor x-ray camera, is easily portable to synchrotron or x-ray free electron laser beamlines. Photometrics from measurements at the Advanced Light Source show excellent overall instrumental efficiency. In addition, the compact size of this instrument lends itself to future multiplexing to gain large factors in net collection efficiency or its implementation in controlled gas gloveboxes either in the lab or in an endstation.

  7. Observation of X-ray shadings in synchrotron radiation-total reflection X-ray fluorescence using a color X-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, Ursula Elisabeth Adriane, E-mail: ursula.fittschen@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Menzel, Magnus [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Scharf, Oliver [IfG Institute for Scientific Instruments GmbH, Berlin (Germany); Radtke, Martin; Reinholz, Uwe; Buzanich, Günther [BAM Federal Institute of Materials Research and Testing, Berlin (Germany); Lopez, Velma M.; McIntosh, Kathryn [Los Alamos National Laboratory, Los Alamos, NM (United States); Streli, Christina [Atominstitut, TU Wien, Vienna (Austria); Havrilla, George Joseph [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2014-09-01

    Absorption effects and the impact of specimen shape on TXRF analysis has been discussed intensively. Model calculations indicated that ring shaped specimens should give better results in terms of higher counts per mass signals than filled rectangle or circle shaped specimens. One major reason for the difference in signal is shading effects. Full field micro-XRF with a color X-ray camera (CXC) was used to investigate shading, which occurs when working with small angles of excitation as in TXRF. The device allows monitoring the illuminated parts of the sample and the shaded parts at the same time. It is expected that sample material hit first by the primary beam shade material behind it. Using the CXC shading could be directly visualized for the high concentration specimens. In order to compare the experimental results with calculation of the shading effect the generation of controlled specimens is crucial. This was achieved by “drop on demand” technology. It allows generating uniform, microscopic deposits of elements. The experimentally measured shadings match well with those expected from calculation. - Highlights: • Use of a color X-ray camera and drop on demand printing to diagnose X-ray shading • Specimens were obtained uniform and well-defined in shape and concentration by printing. • Direct visualization and determination of shading in such specimens using the camera.

  8. In-Situ Synchrotron X-ray Study of the Phase and Texture Evolution of Ceria and Superconductor Films Deposited by Chemical Solution Method

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude; He, Dong

    2012-01-01

    In situ synchrotron x-ray diffraction is used to study the phase and texture formation of ceria based films and superconductor films deposited by the chemical solution method on technical substrates. Combined analysis using in situ synchrotron x-ray diffraction, thermogravimetry/differential ther......In situ synchrotron x-ray diffraction is used to study the phase and texture formation of ceria based films and superconductor films deposited by the chemical solution method on technical substrates. Combined analysis using in situ synchrotron x-ray diffraction, thermogravimetry...

  9. The X-ray microscopy beamline UE46-PGM2 at BESSY

    International Nuclear Information System (INIS)

    Follath, R.; Schmidt, J. S.; Weigand, M.; Fauth, K.

    2010-01-01

    The Max Planck Institute for Metal Physics in Stuttgart and the Helmholtz Center Berlin operate a soft X-ray microscopy beamline at the storage ring BESSY II. A collimated PGM serves as monochromator for a scanning X-ray microscope and a full field X-ray microscope at the helical undulator UE46. The selection between both instruments is accomplished via two switchable focusing mirrors. The scanning microscope (SM) is based on the ALS STXM microscope and fabricated by the ACCEL company. The full field microscope (FFM) is currently in operation at the U41-SGM beamline and will be relocated to its final location this year.

  10. High resolution double-sided diffractive optics for hard X-ray microscopy.

    Science.gov (United States)

    Mohacsi, Istvan; Vartiainen, Ismo; Guizar-Sicairos, Manuel; Karvinen, Petri; Guzenko, Vitaliy A; Müller, Elisabeth; Färm, Elina; Ritala, Mikko; Kewish, Cameron M; Somogyi, Andrea; David, Christian

    2015-01-26

    The fabrication of high aspect ratio metallic nanostructures is crucial for the production of efficient diffractive X-ray optics in the hard X-ray range. We present a novel method to increase their structure height via the double-sided patterning of the support membrane. In transmission, the two Fresnel zone plates on the two sides of the substrate will act as a single zone plate with added structure height. The presented double-sided zone plates with 30 nm smallest zone width offer up to 9.9% focusing efficiency at 9 keV, that results in a factor of two improvement over their previously demonstrated single-sided counterparts. The increase in efficiency paves the way to speed up X-ray microscopy measurements and allows the more efficient utilization of the flux in full-field X-ray microscopy.

  11. Evaluation of In-Vacuum Imaging Plate Detector for X-Ray Diffraction Microscopy

    International Nuclear Information System (INIS)

    Nishino, Yoshinori; Takahashi, Yukio; Yamamoto, Masaki; Ishikawa, Tetsuya

    2007-01-01

    We performed evaluation tests of a newly developed in-vacuum imaging plate (IP) detector for x-ray diffraction microscopy. IP detectors have advantages over direct x-ray detection charge-coupled device (CCD) detectors, which have been commonly used in x-ray diffraction microscopy experiments, in the capabilities for a high photon count and for a wide area. The detector system contains two IPs to make measurement efficient by recording data with the one while reading or erasing the other. We compared speckled diffraction patterns of single particles taken with the IP and a direct x-ray detection CCD. The IP was inferior to the CCD in spatial resolution and in signal-to-noise ratio at a low photon count

  12. Chemical shifts of K-X-ray absorption edges on copper in different compounds by X-ray absorption spectroscopy (XAS) with Synchrotron radiation

    Science.gov (United States)

    Joseph, D.; Basu, S.; Jha, S. N.; Bhattacharyya, D.

    2012-03-01

    Cu K X-ray absorption edges were measured in compounds such as CuO, Cu(CH3CO2)2, Cu(CO3)2, and CuSO4 where Cu is present in oxidation state of 2+, using the energy dispersive EXAFS beamline at INDUS-2 Synchrotron radiation source at RRCAT, Indore. Energy shifts of ˜4-7 eV were observed for Cu K X-ray absorption edge in the above compounds compared to its value in elemental copper. The difference in the Cu K edge energy shifts in the different compounds having same oxidation state of Cu shows the effect of different chemical environments surrounding the cation in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on Cu cations in the above compounds.

  13. Investigations of the phase transition in V3O5 using energy dispersive X-ray diffraction and synchrotron radiation white beam X-ray topography

    International Nuclear Information System (INIS)

    Asbrink, S.; Gerward, L.; Staun Olsen, J.

    1985-01-01

    The reversible first order phase transition in V 3 O 5 at T t =155 0 C has been studied using a specially constructed oven, where the temperature can be kept constant within a few hundredths of a degree for several hours. Energy dispersive diffraction measurements have beem made in a temperature region around the phase transition with the fixed crystal method and the θ/2θ scanning method. White beam X-ray topographs have been obtained from the same crystal in the same temperature region using synchrotron radiation. The integrated intensities of the strong h 0 0 reflections show anomalies that are correlated with the corresponding X-ray topographs. Thus, an unexpected increase of crystal perfection is observed a few hundredths of a degree below T t . The energy dependence of the intensity maximum at T t for strong reflections has been determined and semi-quantitatively explained on the basis of extinction theory. (orig.)

  14. A setup for synchrotron-radiation-induced total reflection X-ray fluorescence and X-ray absorption near-edge structure recently commissioned at BESSY II BAMline.

    Science.gov (United States)

    Fittschen, U; Guilherme, A; Böttger, S; Rosenberg, D; Menzel, M; Jansen, W; Busker, M; Gotlib, Z P; Radtke, M; Riesemeier, H; Wobrauschek, P; Streli, C

    2016-05-01

    An automatic sample changer chamber for total reflection X-ray fluorescence (TXRF) and X-ray absorption near-edge structure (XANES) analysis in TXRF geometry was successfully set up at the BAMline at BESSY II. TXRF and TXRF-XANES are valuable tools for elemental determination and speciation, especially where sample amounts are limited (TXRF requires a well defined geometry regarding the reflecting surface of a sample carrier and the synchrotron beam. The newly installed chamber allows for reliable sample positioning, remote sample changing and evacuation of the fluorescence beam path. The chamber was successfully used showing accurate determination of elemental amounts in the certified reference material NIST water 1640. Low limits of detection of less than 100 fg absolute (10 pg ml(-1)) for Ni were found. TXRF-XANES on different Re species was applied. An unknown species of Re was found to be Re in the +7 oxidation state.

  15. Protein folding and protein metallocluster studies using synchrotron small angler X-ray scattering

    International Nuclear Information System (INIS)

    Eliezer, D.

    1994-06-01

    Proteins, biological macromolecules composed of amino-acid building blocks, possess unique three dimensional shapes or conformations which are intimately related to their biological function. All of the information necessary to determine this conformation is stored in a protein's amino acid sequence. The problem of understanding the process by which nature maps protein amino-acid sequences to three-dimensional conformations is known as the protein folding problem, and is one of the central unsolved problems in biophysics today. The possible applications of a solution are broad, ranging from the elucidation of thousands of protein structures to the rational modification and design of protein-based drugs. The scattering of X-rays by matter has long been useful as a tool for the characterization of physical properties of materials, including biological samples. The high photon flux available at synchrotron X-ray sources allows for the measurement of scattering cross-sections of dilute and/or disordered samples. Such measurements do not yield the detailed geometrical information available from crystalline samples, but do allow for lower resolution studies of dynamical processes not observable in the crystalline state. The main focus of the work described here has been the study of the protein folding process using time-resolved small-angle x-ray scattering measurements. The original intention was to observe the decrease in overall size which must accompany the folding of a protein from an extended conformation to its compact native state. Although this process proved too fast for the current time-resolution of the technique, upper bounds were set on the probable compaction times of several small proteins. In addition, an interesting and unexpected process was detected, in which the folding protein passes through an intermediate state which shows a tendency to associate. This state is proposed to be a kinetic molten globule folding intermediate

  16. Protein folding and protein metallocluster studies using synchrotron small angler X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Eliezer, D.

    1994-06-01

    Proteins, biological macromolecules composed of amino-acid building blocks, possess unique three dimensional shapes or conformations which are intimately related to their biological function. All of the information necessary to determine this conformation is stored in a protein`s amino acid sequence. The problem of understanding the process by which nature maps protein amino-acid sequences to three-dimensional conformations is known as the protein folding problem, and is one of the central unsolved problems in biophysics today. The possible applications of a solution are broad, ranging from the elucidation of thousands of protein structures to the rational modification and design of protein-based drugs. The scattering of X-rays by matter has long been useful as a tool for the characterization of physical properties of materials, including biological samples. The high photon flux available at synchrotron X-ray sources allows for the measurement of scattering cross-sections of dilute and/or disordered samples. Such measurements do not yield the detailed geometrical information available from crystalline samples, but do allow for lower resolution studies of dynamical processes not observable in the crystalline state. The main focus of the work described here has been the study of the protein folding process using time-resolved small-angle x-ray scattering measurements. The original intention was to observe the decrease in overall size which must accompany the folding of a protein from an extended conformation to its compact native state. Although this process proved too fast for the current time-resolution of the technique, upper bounds were set on the probable compaction times of several small proteins. In addition, an interesting and unexpected process was detected, in which the folding protein passes through an intermediate state which shows a tendency to associate. This state is proposed to be a kinetic molten globule folding intermediate.

  17. In situ membrane bending setup for strain-dependent scanning transmission x-ray microscopy investigations.

    Science.gov (United States)

    Finizio, S; Wintz, S; Kirk, E; Raabe, J

    2016-12-01

    We present a setup that allows for the in situ generation of tensile strains by bending x-ray transparent Si 3 N 4 membranes with the application of a pressure difference between the two sides of the membrane, enabling the possibility to employ high resolution space- and time-resolved scanning transmission x-ray microscopy for the investigation of the magneto-elastic coupling.

  18. Study of magnetic metal periodic structures by X-Ray and electron microscopy methods

    Science.gov (United States)

    Prutskov, G. V.; Chesnokov, Yu. M.; Vasilliev, A. L.; Likhachev, I. A.; Pashaev, E. M.; Subbotin, I. A.

    2017-11-01

    Complex studies of magnetic periodic metallic systems based on Dy/Gd layers have been carried out by X-ray diffraction, resonance X-ray reflectometry, transmission electronic microscopy, and energydispersve microanalysis. The application of these methods and joint analysis of their results provide an effective approach to study of the structure and determination of the parameters of individual layers and interfaces and their structural quality with a high degree of reliability.

  19. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    Science.gov (United States)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2017-12-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT ) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  20. Synchrotron X-ray scattering studies at mineral-water interfaces

    International Nuclear Information System (INIS)

    Chiarello, R.P.; Sturchio, N.C.

    1995-01-01

    Synchrotron X-ray scattering techniques provide a powerful tool for the in situ study of atomic scale processes occurring at solid-liquid interfaces. We have applied these techniques to characterize and study reactions at mineral-water interfaces. Here we present two examples. The first is the characterization of the calcite (CaCO 3 ) (10 bar 14) cleavage surface, in equilibrium with deionized water, by crystal truncation rod measurements. The second is the in situ study of the heteroepitaxial growth of otavite (CdCO 3 ) on the calcite (10 bar 14) cleavage surface. The results of such studies will lead to significant progress in understanding mineral-water interface geochemistry

  1. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-12-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature.

  2. Multi-elemental analysis of produced water by synchrotron radiation total reflection X-ray fluorescence.

    Science.gov (United States)

    Pimentel, P M; Anjos, M J; Melo, D M A; Melo, M A F; Gonçalves, L M; Silva, C N; Lopes, R T

    2008-02-15

    The synchrotron radiation total reflection X-ray fluorescence (SRTXRF) technique was used for the analysis of heavy metals in produced water samples from oil field in Rio Grande do Norte, in order to determine potential sources of pollution. Since the inorganic components in produced water generally resembling sea water, pre-concentration procedures have been applied to increase the concentration of the analyte of interest and to minimize the salt matrix effects. This technique allows us to determine the contents of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Hg and Pb in 20 produced water samples. The great majority of the sampling points presented low elemental concentration value. However, in some sample, the Fe, Ni, Cu, Zn and Hg concentration were higher than the established limits by the Brazilian legislation.

  3. Generating picosecond x-ray pulses in synchrotron light sources using dipole kickers

    Directory of Open Access Journals (Sweden)

    W. Guo

    2007-02-01

    Full Text Available The duration of the x-ray pulse generated at a synchrotron light source is typically tens of picoseconds. Shorter pulses are highly desired by the users. In electron storage rings, the vertical beam size is usually orders of magnitude less than the bunch length due to radiation damping; therefore, a shorter pulse can be obtained by slitting the vertically tilted bunch. Zholents proposed tilting the bunch using rf deflection. We found that tilted bunches can also be generated by a dipole magnet kick. A vertical tilt is developed after the kick in the presence of nonzero chromaticity. The tilt was successfully observed and a 4.2-ps pulse was obtained from a 27-ps electron bunch at the Advanced Photon Source. Based on this principle, we propose a short-pulse generation scheme that produces picosecond x-ray pulses at a repetition rate of 1–2 kHz, which can be used for pump-probe experiments.

  4. NATO Advanced Study Institute on Chemical Crystallography with Pulsed Neutrons and Synchrotron X-Rays

    CERN Document Server

    Jeffrey, George

    1988-01-01

    X-ray and neutron crystallography have played an increasingly impor­ tant role in the chemical and biochemical sciences over the past fifty years. The principal obstacles in this methodology, the phase problem and com­ puting, have been overcome. The former by the methods developed in the 1960's and just recognised by the 1985 Chemistry Nobel Prize award to Karle and Hauptman, the latter by the dramatic advances that have taken place in computer technology in the past twenty years. Within the last decade, two new radiation sources have been added to the crystallographer's tools. One is synchrotron X-rays and the other is spallation neutrons. Both have much more powerful fluxes than the pre­ vious sources and they are pulsed rather than continuos. New techniques are necessary to fully exploit the intense continuos radiation spectrum and its pulsed property. Both radiations are only available from particular National Laboratories on a guest-user basis for scientists outside these Na­ tional Laboratories. Hi...

  5. Spatially resolved synchrotron radiation induced X-ray fluorescence analyses of rare Rembrandt silverpoint drawings

    International Nuclear Information System (INIS)

    Reiche, I.; Radtke, M.; Berger, A.; Goerner, W.; Merchel, S.; Riesemeier, H.; Bevers, H.

    2006-01-01

    New analyses of a series of very rare silverpoint drawings that were executed by Rembrandt Harmensz. van Rijn (1606-1669) which are kept today in the Kupferstichkabinett (Museum of Prints and Drawings) of the State Museums of Berlin are reported here. Analysis of these drawings requires particular attention because the study has to be fully non-destructive and extremely sensitive. The metal alloy on the paper does not exceed some hundreds of μg/cm 2 . Therefore, synchrotron radiation induced X-ray fluorescence (SR-XRF) is - together with external micro-proton-induced X-ray emission - the only well-suited method for the analyses of metalpoint drawings. In some primary work, about 25 German and Flemish metalpoint drawings were investigated using spatially resolved SR-XRF analysis at the BAMline at BESSY. This study enlarges the existing French-German database of metalpoint drawings dating from the 15th and 16th centuries, as these Rembrandt drawings originate from the 17th century where this graphical technique was even rarer and already obsolete. It also illustrates how SR-XRF analysis can reinforce art historical assumptions on the dating of drawings and their connection. (orig.)

  6. Effect of Cobalt Fillers on Polyurethane Segmentations Investigated by Synchrotron Small Angle X-Ray Scattering

    Directory of Open Access Journals (Sweden)

    Krit Koyvanich

    2013-01-01

    Full Text Available The segmentation between rigid and rubbery chains in polyurethanes (PUs influences polymeric properties and implementations. Several models have successfully been proposed to visualize the configuration between the hard segment (HS and soft segment (SS. For particulate PU composites, the arrangement of HS and SS is more complicated because the fillers tend to disrupt the chain formation and segmentation. In this work, the effect of ferromagnetic cobalt (Co powders (average diameter 2 μm on PU synthesized from a reaction between polyether polyol (soft segment and diphenylmethane-4,4′-diisocyanate (hard segment was studied with varying loadings (0, 20, 40, and 60 wt.%. The 300 μm thick PU/Co samples were tape-casted and then received heat treatment at 80°C for 180 min. From synchrotron small angle X-ray scattering (SAXS, the plot of the X-ray scattering intensity (I against the scattering vector (q exhibited a typical single peak of PU whose intensity was reduced by the increase in the Co loading. Characteristic SAXS peaks in the case of 0-20 wt.% Co agreed well with the scattering by globular hard segment domains according to Zernike-Prins and Percus-Yevick models. The higher Co loadings led to larger deviations from all theoretical models.

  7. Synchrotron X-Ray Studies of Model SOFC Cathodes, Part I: Thin Film Cathodes.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee-Chul; Ingram, Brian; Ilavsky, Jan; Lee, Shiwoo; Fuoss, Paul; You, Hoydoo

    2017-11-15

    We present synchrotron x-ray investigations of thin film La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) model cathodes for solid oxide fuel cells, grown on electrolyte substrates by pulse laser deposition, in situ during half-cell operations. We observed dynamic segregations of cations, such as Sr and Co, on the surfaces of the film cathodes. The effects of temperature, applied potentials, and capping layers on the segregations were investigated using a surfacesensitive technique of total external reflection x-ray fluorescence. We also studied patterned thin film LSCF cathodes using high-resolution micro-beam diffraction measurements. We find chemical expansion decreases for narrow stripes. This suggests the expansion is dominated by the bulk pathway reactions. The chemical expansion vs. the distance from the electrode contact was measured at three temperatures and an oxygen vacancy activation energy was estimated to be ~1.4 eV.

  8. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-05-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature. This paper presents an overview of the principal results obtained from X-ray microdiffraction studies of electromigration effects on aluminum and copper interconnects at the ALS throughout continuous efforts that spanned over a decade (1998-2008) from approximately 40 weeks of combined beamtime.

  9. High resolution X-ray detector for synchrotron-based microtomography

    CERN Document Server

    Stampanoni, M; Wyss, P; Abela, R; Patterson, B; Hunt, S; Vermeulen, D; Rueegsegger, P

    2002-01-01

    Synchrotron-based microtomographic devices are powerful, non-destructive, high-resolution research tools. Highly brilliant and coherent X-rays extend the traditional absorption imaging techniques and enable edge-enhanced and phase-sensitive measurements. At the Materials Science Beamline MS of the Swiss Light Source (SLS), the X-ray microtomographic device is now operative. A high performance detector based on a scintillating screen optically coupled to a CCD camera has been developed and tested. Different configurations are available, covering a field of view ranging from 715x715 mu m sup 2 to 7.15x7.15 mm sup 2 with magnifications from 4x to 40x. With the highest magnification 480 lp/mm had been achieved at 10% modulation transfer function which corresponds to a spatial resolution of 1.04 mu m. A low-noise fast-readout CCD camera transfers 2048x2048 pixels within 100-250 ms at a dynamic range of 12-14 bit to the file server. A user-friendly graphical interface gives access to the main parameters needed for ...

  10. $YB_{66} a new soft X-ray monochromator for synchrotron radiation

    CERN Document Server

    Wong, J; Rowen, M; Schäfers, F; Müller, B R; Rek, Z U

    1999-01-01

    For pt.I see Nucl. Instrum. Methods Phys. Res., vol.A291, p.243-8, 1990. YB/sub 66/, a complex boron-rich man-made crystal, has been singled out as a potential monochromator material to disperse synchrotron soft X-rays in the 1-2 keV region. Results of a series of systematic property characterizations pertinent for this application are presented in this paper. These include Laue diffraction patterns and high-precision lattice-constant determination, etch rate, stoichiometry, thermal expansion, soft X-ray reflectivity and rocking-curve measurements, thermal load effects on monochromator performance, nature of intrinsic positive glitches and their reduction. The 004 reflection of YB/sub 66/ has a reflectance of ~3 in this spectral region. The width of the rocking curve varies from 0.25 eV at 1.1 keV to 1.0 eV at 2 keV, which is a factor of two better than that of beryl(1010) in the same energy range, and enables measurements of high-resolution XANES spectra at the Mg, Al and Si K- edges. The thermal bump on the...

  11. Characterization and quantification of cerebral edema induced by synchrotron x-ray microbeam radiation therapy

    International Nuclear Information System (INIS)

    Serduc, Raphael; Looij, Yohan van de; Francony, Gilles; Verdonck, Olivier; Sanden, Boudewijn van der; Farion, Regine; Segebarth, Christoph; Remy, Chantal; Lahrech, Hana; Laissue, Jean; Braeuer-Krisch, Elke; Siegbahn, Erik Albert; Bravin, Alberto; Prezado, Yolanda

    2008-01-01

    Cerebral edema is one of the main acute complications arising after irradiation of brain tumors. Microbeam radiation therapy (MRT), an innovative experimental radiotherapy technique using spatially fractionated synchrotron x-rays, has been shown to spare radiosensitive tissues such as mammal brains. The aim of this study was to determine if cerebral edema occurs after MRT using diffusion-weighted MRI and microgravimetry. Prone Swiss nude mice's heads were positioned horizontally in the synchrotron x-ray beam and the upper part of the left hemisphere was irradiated in the antero-posterior direction by an array of 18 planar microbeams (25 mm wide, on-center spacing 211 mm, height 4 mm, entrance dose 312 Gy or 1000 Gy). An apparent diffusion coefficient (ADC) was measured at 7 T 1, 7, 14, 21 and 28 days after irradiation. Eventually, the cerebral water content (CWC) was determined by microgravimetry. The ADC and CWC in the irradiated (312 Gy or 1000 Gy) and in the contralateral non-irradiated hemispheres were not significantly different at all measurement times, with two exceptions: (1) a 9% ADC decrease (p < 0.05) was observed in the irradiated cortex 1 day after exposure to 312 Gy, (2) a 0.7% increase (p < 0.05) in the CWC was measured in the irradiated hemispheres 1 day after exposure to 1000 Gy. The results demonstrate the presence of a minor and transient cellular edema (ADC decrease) at 1 day after a 312 Gy exposure, without a significant CWC increase. One day after a 1000 Gy exposure, the CWC increased, while the ADC remained unchanged and may reflect the simultaneous presence of cellular and vasogenic edema. Both types of edema disappear within a week after microbeam exposure which may confirm the normal tissue sparing effect of MRT. For more information on this article, see medicalphysicsweb.org

  12. Characterization and quantification of cerebral edema induced by synchrotron x-ray microbeam radiation therapy

    Science.gov (United States)

    Serduc, Raphaël; van de Looij, Yohan; Francony, Gilles; Verdonck, Olivier; van der Sanden, Boudewijn; Laissue, Jean; Farion, Régine; Bräuer-Krisch, Elke; Siegbahn, Erik Albert; Bravin, Alberto; Prezado, Yolanda; Segebarth, Christoph; Rémy, Chantal; Lahrech, Hana

    2008-03-01

    Cerebral edema is one of the main acute complications arising after irradiation of brain tumors. Microbeam radiation therapy (MRT), an innovative experimental radiotherapy technique using spatially fractionated synchrotron x-rays, has been shown to spare radiosensitive tissues such as mammal brains. The aim of this study was to determine if cerebral edema occurs after MRT using diffusion-weighted MRI and microgravimetry. Prone Swiss nude mice's heads were positioned horizontally in the synchrotron x-ray beam and the upper part of the left hemisphere was irradiated in the antero-posterior direction by an array of 18 planar microbeams (25 mm wide, on-center spacing 211 mm, height 4 mm, entrance dose 312 Gy or 1000 Gy). An apparent diffusion coefficient (ADC) was measured at 7 T 1, 7, 14, 21 and 28 days after irradiation. Eventually, the cerebral water content (CWC) was determined by microgravimetry. The ADC and CWC in the irradiated (312 Gy or 1000 Gy) and in the contralateral non-irradiated hemispheres were not significantly different at all measurement times, with two exceptions: (1) a 9% ADC decrease (p edema (ADC decrease) at 1 day after a 312 Gy exposure, without a significant CWC increase. One day after a 1000 Gy exposure, the CWC increased, while the ADC remained unchanged and may reflect the simultaneous presence of cellular and vasogenic edema. Both types of edema disappear within a week after microbeam exposure which may confirm the normal tissue sparing effect of MRT. For more information on this article, see medicalphysicsweb.org

  13. Characterization and quantification of cerebral edema induced by synchrotron x-ray microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Serduc, Raphael; Looij, Yohan van de; Francony, Gilles; Verdonck, Olivier; Sanden, Boudewijn van der; Farion, Regine; Segebarth, Christoph; Remy, Chantal; Lahrech, Hana [INSERM, U836, F-38043 Grenoble (France); Laissue, Jean [Institute of Pathology, University of Bern (Switzerland); Braeuer-Krisch, Elke; Siegbahn, Erik Albert; Bravin, Alberto; Prezado, Yolanda [European Synchrotron Radiation Facility, F-38043 Grenoble (France)], E-mail: serduc@esrf.fr

    2008-03-07

    Cerebral edema is one of the main acute complications arising after irradiation of brain tumors. Microbeam radiation therapy (MRT), an innovative experimental radiotherapy technique using spatially fractionated synchrotron x-rays, has been shown to spare radiosensitive tissues such as mammal brains. The aim of this study was to determine if cerebral edema occurs after MRT using diffusion-weighted MRI and microgravimetry. Prone Swiss nude mice's heads were positioned horizontally in the synchrotron x-ray beam and the upper part of the left hemisphere was irradiated in the antero-posterior direction by an array of 18 planar microbeams (25 mm wide, on-center spacing 211 mm, height 4 mm, entrance dose 312 Gy or 1000 Gy). An apparent diffusion coefficient (ADC) was measured at 7 T 1, 7, 14, 21 and 28 days after irradiation. Eventually, the cerebral water content (CWC) was determined by microgravimetry. The ADC and CWC in the irradiated (312 Gy or 1000 Gy) and in the contralateral non-irradiated hemispheres were not significantly different at all measurement times, with two exceptions: (1) a 9% ADC decrease (p < 0.05) was observed in the irradiated cortex 1 day after exposure to 312 Gy, (2) a 0.7% increase (p < 0.05) in the CWC was measured in the irradiated hemispheres 1 day after exposure to 1000 Gy. The results demonstrate the presence of a minor and transient cellular edema (ADC decrease) at 1 day after a 312 Gy exposure, without a significant CWC increase. One day after a 1000 Gy exposure, the CWC increased, while the ADC remained unchanged and may reflect the simultaneous presence of cellular and vasogenic edema. Both types of edema disappear within a week after microbeam exposure which may confirm the normal tissue sparing effect of MRT. For more information on this article, see medicalphysicsweb.org.

  14. Direct observation of unstained wet biological samples by scanning-electron generation X-ray microscopy

    International Nuclear Information System (INIS)

    Ogura, Toshihiko

    2010-01-01

    Analytical tools of nanometre-scale resolution are indispensable in the fields of biology, physics and chemistry. One suitable tool, the soft X-ray microscope, provides high spatial resolution of visible light for wet specimens. For biological specimens, X-rays of water-window wavelength between carbon (284 eV; 4.3 nm) and oxygen (540 eV; 2.3 nm) absorption edges provide high-contrast imaging of biological samples in water. Among types of X-ray microscope, the transmission X-ray microscope using a synchrotron radiation source with diffractive zone plates offers the highest spatial resolution, approaching 15-10 nm. However, even higher resolution is required to measure proteins and protein complexes in biological specimens; therefore, a new type of X-ray microscope with higher resolution that uses a simple light source is desirable. Here we report a novel scanning-electron generation X-ray microscope (SGXM) that demonstrates direct imaging of unstained wet biological specimens. We deposited wet yeasts in the space between two silicon nitride (Si 3 N 4 ) films. A scanning electron beam of accelerating voltage 5 keV and current 1.6 nA irradiates the titanium (Ti)-coated Si 3 N 4 film, and the soft X-ray signal from it is detected by an X-ray photodiode (PD) placed below the sample. The SGXM can theoretically achieve better than 5 nm resolution. Our method can be utilized easily for various wet biological samples of bacteria, viruses, and protein complexes.

  15. One-Step Synthesis of Copper and Cupric Oxide Particles from the Liquid Phase by X-Ray Radiolysis Using Synchrotron Radiation

    Directory of Open Access Journals (Sweden)

    Akinobu Yamaguchi

    2016-01-01

    Full Text Available The deposition of copper (Cu and cupric oxide (Cu4O3, Cu2O, and CuO particles in an aqueous copper sulfate (CuSO4 solution with additive alcohol such as methanol, ethanol, 2-propanol, and ethylene glycol has been studied by X-ray exposure from synchrotron radiation. An attenuated X-ray radiation time of 5 min allows for the synthesis of Cu, Cu4O3, Cu2O, and CuO nano/microscale particles and their aggregation into clusters. The morphology and composition of the synthesized Cu/cupric oxide particle clusters were characterized by scanning electron microscopy, scanning transmission electron microscopy, and high-resolution transmission electron microscopy with energy dispersive X-ray spectroscopy. Micro-Raman spectroscopy revealed that the clusters comprised cupric oxide core particles covered with Cu particles. Neither Cu/cupric oxide particles nor their clusters were formed without any alcohol additives. The effect of alcohol additives is attributed to the following sequential steps: photochemical reaction due to X-ray irradiation induces nucleation of the particles accompanying redox reaction and forms a cluster or aggregates by LaMer process and DLVO interactions. The procedure offers a novel route to synthesize the Cu/cupric oxide particles and aggregates. It also provides a novel additive manufacturing process or lithography of composite materials such as metal, oxide, and resin.

  16. 3D X-ray ultra-microscopy of bone tissue.

    Science.gov (United States)

    Langer, M; Peyrin, F

    2016-02-01

    We review the current X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. We further review the different ultra-structural features that have so far been resolved: the lacuno-canalicular network, collagen orientation, nano-scale mineralization and their use as basis for mechanical simulations. X-ray computed tomography at the micro-metric scale is increasingly considered as the reference technique in imaging of bone micro-structure. The trend has been to push towards increasingly higher resolution. Due to the difficulty of realizing optics in the hard X-ray regime, the magnification has mainly been due to the use of visible light optics and indirect detection of the X-rays, which limits the attainable resolution with respect to the wavelength of the visible light used in detection. Recent developments in X-ray optics and instrumentation have allowed to implement several types of methods that achieve imaging that is limited in resolution by the X-ray wavelength, thus enabling computed tomography at the nano-scale. We review here the X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. Further, we review the different ultra-structural features that have so far been resolved and the applications that have been reported: imaging of the lacuno-canalicular network, direct analysis of collagen orientation, analysis of mineralization on the nano-scale and use of 3D images at the nano-scale to drive mechanical simulations. Finally, we discuss the issue of going beyond qualitative description to quantification of ultra-structural features.

  17. X-ray microscopy of plant cells by using LiF crystal as a detector.

    Science.gov (United States)

    Reale, Lucia; Bonfigli, Francesca; Lai, Antonia; Flora, Francesco; Poma, Anna; Albertano, Patrizia; Bellezza, Simona; Montereali, Rosa Maria; Faenov, Anatoly; Pikuz, Tania; Almaviva, Salvatore; Vincenti, Maria Aurora; Francucci, Massimo; Gaudio, Pasqualino; Martellucci, Sergio; Richetta, Maria

    2008-12-01

    A lithium fluoride (LiF) crystal has been utilized as a new soft X-ray detector to image different biological samples at a high spatial resolution. This new type of image detector for X-ray microscopy has many interesting properties: high resolution (nanometer scale), permanent storage of images, the ability to clear the image and reuse the LiF crystal, and high contrast with greater dynamic range. Cells of the unicellular green algae Chlamydomonas dysosmos and Chlorella sorokiniana, and pollen grains of Olea europea have been used as biological materials for imaging. The biological samples were imaged on LiF crystals by using the soft X-ray contact microscopy and contact micro-radiography techniques. The laser plasma soft X-ray source was generated using a Nd:YAG/Glass laser focused on a solid target. The X-ray energy range for image acquisition was in the water-window spectral range for single shot contact microscopy of very thin biological samples (single cells) and around 1 keV for multishots microradiography. The main aim of this article is to highlight the possibility of using a LiF crystal as a detector for the biological imaging using soft X-ray radiation and to demonstrate its ability to visualize the microstructure within living cells. 2008 Wiley-Liss, Inc.

  18. Dark-field X-ray microscopy for multiscale structural characterization

    DEFF Research Database (Denmark)

    Simons, Hugh; King, A.; Ludwig, W.

    2015-01-01

    Many physical and mechanical properties of crystalline materials depend strongly on their internal structure, which is typically organized into grains and domains on several length scales. Here we present dark-field X-ray microscopy; a non-destructive microscopy technique for the three...... of the interactions between crystalline elements is a key step towards the formulation and validation of multiscale models that account for the entire heterogeneity of a material. Furthermore, dark-field X-ray microscopy is well suited to applied topics, where the structural evolution of internal nanoscale elements...

  19. Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward.

    Science.gov (United States)

    Cotte, Marine; Susini, Jean; Dik, Joris; Janssens, Koen

    2010-06-15

    A variety of analytical techniques augmented by the use of synchrotron radiation (SR), such as X-ray fluorescence (SR-XRF) and X-ray diffraction (SR-XRD), are now readily available, and they differ little, conceptually, from their common laboratory counterparts. Because of numerous advantages afforded by SR-based techniques over benchtop versions, however, SR methods have become popular with archaeologists, art historians, curators, and other researchers in the field of cultural heritage (CH). Although the CH community now commonly uses both SR-XRF and SR-XRD, the use of synchrotron-based X-ray absorption spectroscopy (SR-XAS) techniques remains marginal, mostly because CH specialists rarely interact with SR physicists. In this Account, we examine the basic principles and capabilities of XAS techniques in art preservation. XAS techniques offer a combination of features particularly well-suited for the chemical analysis of works of art. The methods are noninvasive, have low detection limits, afford high lateral resolution, and provide exceptional chemical sensitivity. These characteristics are highly desirable for the chemical characterization of precious, heterogeneous, and complex materials. In particular, the chemical mapping capability, with high spatial resolution that provides information about local composition and chemical states, even for trace elements, is a unique asset. The chemistry involved in both the object's history (that is, during fabrication) and future (that is, during preservation and restoration treatments) can be addressed by XAS. On the one hand, many studies seek to explain optical effects occurring in historical glasses or ceramics by probing the molecular environment of relevant chromophores. Hence, XAS can provide insight into craft skills that were mastered years, decades, or centuries ago but were lost over the course of time. On the other hand, XAS can also be used to characterize unwanted reactions, which are then considered

  20. Identification of copper-based green pigments in Jaume Huguet's Gothic altarpieces by Fourier transform infrared microspectroscopy and synchrotron radiation X-ray diffraction.

    Science.gov (United States)

    Salvadó, N; Pradell, T; Pantos, E; Papiz, M Z; Molera, J; Seco, M; Vendrell-Saz, M

    2002-07-01

    The scientific investigation of ancient paintings gives a unique insight into ancient painting techniques and their evolution through time and geographic location. This study deals with the identification of the green pigments used by one of the most important Catalan masters in Gothic times, Jaume Huguet. Other pigments and materials have also been characterized by means of conventional techniques such as optical microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Synchrotron radiation X-ray diffraction has been used to produce maps of phases at a spatial resolution of 100 microm across chromatic layers.

  1. X-ray absorption in pillar shaped transmission electron microscopy specimens

    Energy Technology Data Exchange (ETDEWEB)

    Bender, H., E-mail: hugo.bender@imec.be [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Seidel, F.; Favia, P.; Richard, O. [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, W. [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Instituut voor Kern- en Stralingsfysica, KU Leuven, 3001 Leuven (Belgium)

    2017-06-15

    Highlights: • Universal curves for X-ray absorption in pillar shaped TEM specimens are derived. • Absorption effects in pillars are a factor 3 less important than in planar specimens. • Medium absorbed X-rays require constant absorption correction across the pillar. • Major absorption for thin layers occurs in the surrounding materials. • Tabulated mass attenuation coefficients predict the absorption well. - Abstract: The dependence of the X-ray absorption on the position in a pillar shaped transmission electron microscopy specimen is modeled for X-ray analysis with single and multiple detector configurations and for different pillar orientations relative to the detectors. Universal curves, applicable to any pillar diameter, are derived for the relative intensities between weak and medium or strongly absorbed X-ray emission. For the configuration as used in 360° X-ray tomography, the absorption correction for weak and medium absorbed X-rays is shown to be nearly constant along the pillar diameter. Absorption effects in pillars are about a factor 3 less important than in planar specimens with thickness equal to the pillar diameter. A practical approach for the absorption correction in pillar shaped samples is proposed and its limitations discussed. The modeled absorption dependences are verified experimentally for pillars with HfO{sub 2} and SiGe stacks.

  2. Use of backscattered electron imaging, X-ray microanalysis and X-ray microscopy in demonstrating physiological cell death

    International Nuclear Information System (INIS)

    Bowen, I.D.; Worrill, N.A.; Winters, C.A.; Mullarkey, K.

    1988-01-01

    The cytochemical localization of enzymatic activity by means of backscattered electron imaging (BEI) is reviewed and the application of BEI to changes in acid phosphatase and ATPase distribution during physiological (programmed) cell death in Heliothis midgut is explored. Programmed cell death entails the release of nascent free acid phosphatase as extracisternal hydrolase. This shift can readily be detected by means of the atomic number contrast imparted by BEI of the lead phosphatase reaction product, thus enabling the distribution of dying cells to be mapped. BEI is particularly useful in this context as it allows the examination of bulk specimens at low magnification. Death of cells is also accompanied by a collapse in ATPase activity which shows up as cytochemically negative areas in the X-ray microscope and by means of BEI. Acid phosphatase in normal cells is localized in the apical microvilli and lysosomes. Senescent or dying cells, however, clearly show a basally situated free hydrolase which migrates throughout the cell. Parallel TEM results confirm that this enzyme is ribosomal and extracisternal rather than lysosomal in origin. ATPase activity is largely limited to the apical microvilli, although there is some activity associated with the basal plasma membranes. The apical ATPase, however is partially resistant to ouabain. Young and mature cells are positive although in the latter case some microvilli may be lost as the cells acquire a negative cap or dome. Inhibition by bromotetramizole indicates that apical activity is not to any significant extent contributed to by alkaline phosphatase. Degenerate or dead cells are negative and can be seen as a mozaic of black patches among normal cells when imaged by means of BEI or X-ray microscopy

  3. Chemical Mapping of Paleontological and Archeological Artifacts with Synchrotron X-Rays

    Science.gov (United States)

    Bergmann, Uwe; Manning, Phillip L.; Wogelius, Roy A.

    2012-07-01

    The application of the recently developed synchrotron rapid scanning X-ray fluorescence (SRS-XRF) technique to the mapping of large objects is the focus of this review. We discuss the advantages of SRS-XRF over traditional systems and the use of other synchrotron radiation (SR) techniques to provide corroborating spectroscopic and diffraction analyses during the same analytical session. After reviewing routine techniques used to analyze precious specimens, we present several case studies that show how SR-based methods have been successfully applied in archeology and paleontology. For example, SRS-XRF imaging of a seventh-century Qur'ān palimpsest and an overpainted original opera score from Luigi Cherubini is described. We also review the recent discovery of soft-tissue residue in fossils of Archaeopteryx and an ancient reptile, as well as work that has successfully resolved the remnants of pigment in Confuciusornis sanctus, a 120-million-year-old fossil of the oldest documented bird with a fully derived avian beak.

  4. Using Synchrotron X-ray Fluorescence Microprobes in the Study of Metal Homeostasis in Plants

    International Nuclear Information System (INIS)

    Punshon, T.; Guerinot, M.; Lanzirotti, A.

    2009-01-01

    Background and Aims: This Botanical Briefing reviews the application of synchrotron X-ray fluorescence (SXRF) microprobes to the plant sciences; how the technique has expanded our knowledge of metal(loid) homeostasis, and how it can be used in the future. Scope: The use of SXRF microspectroscopy and microtomography in research on metal homeostasis in plants is reviewed. The potential use of SXRF as part of the ionomics toolbox, where it is able to provide fundamental information on the way that plants control metal homeostasis, is recommended. Conclusions: SXRF is one of the few techniques capable of providing spatially resolved in-vivo metal abundance data on a sub-micrometre scale, without the need for chemical fixation, coating, drying or even sectioning of samples. This gives researchers the ability to uncover mechanisms of plant metal homeostasis that can potentially be obscured by the artefacts of sample preparation. Further, new generation synchrotrons with smaller beam sizes and more sensitive detection systems will allow for the imaging of metal distribution within single living plant cells. Even greater advances in our understanding of metal homeostasis in plants can be gained by overcoming some of the practical boundaries that exist in the use of SXRF analysis.

  5. Synchrotron radiation total reflection x-ray fluorescence analysis; of polymer coated silicon wafers

    International Nuclear Information System (INIS)

    Brehm, L.; Kregsamer, P.; Pianetta, P.

    2000-01-01

    It is well known that total reflection x-ray fluorescence (TXRF) provides an efficient method for analyzing trace metal contamination on silicon wafer surfaces. New polymeric materials used as interlayer dielectrics in microprocessors are applied to the surface of silicon wafers by a spin-coating process. Analysis of these polymer coated wafers present a new challenge for TXRF analysis. Polymer solutions are typically analyzed for bulk metal contamination prior to application on the wafer using inductively coupled plasma mass spectrometry (ICP-MS). Questions have arisen about how to relate results of surface contamination analysis (TXRF) of a polymer coated wafer to bulk trace analysis (ICP-MS) of the polymer solutions. Experiments were done to explore this issue using synchrotron radiation (SR) TXRF. Polymer solutions were spiked with several different concentrations of metals. These solutions were applied to silicon wafers using the normal spin-coating process. The polymer coated wafers were then measured using the SR-TXRF instrument set-up at the Stanford Synchrotron Radiation Laboratory (SSRL). Several methods of quantitation were evaluated. The best results were obtained by developing calibration curves (intensity versus ppb) using the spiked polymer coated wafers as standards. Conversion of SR-TXRF surface analysis results (atoms/cm 2 ) to a volume related concentration was also investigated. (author)

  6. Ring artifact reduction in synchrotron x-ray tomography through helical acquisition

    Science.gov (United States)

    Pelt, Daniël M.; Parkinson, Dilworth Y.

    2018-03-01

    In synchrotron x-ray tomography, systematic defects in certain detector elements can result in arc-shaped artifacts in the final reconstructed image of the scanned sample. These ring artifacts are commonly found in many applications of synchrotron tomography, and can make it difficult or impossible to use the reconstructed image in further analyses. The severity of ring artifacts is often reduced in practice by applying pre-processing on the acquired data, or post-processing on the reconstructed image. However, such additional processing steps can introduce additional artifacts as well, and rely on specific choices of hyperparameter values. In this paper, a different approach to reducing the severity of ring artifacts is introduced: a helical acquisition mode. By moving the sample parallel to the rotation axis during the experiment, the sample is detected at different detector positions in each projection, reducing the effect of systematic errors in detector elements. Alternatively, helical acquisition can be viewed as a way to transform ring artifacts to helix-like artifacts in the reconstructed volume, reducing their severity. We show that data acquired with the proposed mode can be transformed to data acquired with a virtual circular trajectory, enabling further processing of the data with existing software packages for circular data. Results for both simulated data and experimental data show that the proposed method is able to significantly reduce ring artifacts in practice, even compared with popular existing methods, without introducing additional artifacts.

  7. Sulfur fixation in wood mapped by synchrotron X-ray studies: implications for environmental archives.

    Science.gov (United States)

    Fairchild, Ian I; Loader, Neil J; Wynn, Peter M; Frisia, Silvia; Thomas, Peter A; Lageard, Jonathan G A; De Momi, Anna; Hartland, Adam; Borsato, Andrea; La Porta, Nicola; Susini, Jean

    2009-03-01

    There is a shortage of archives of sulfur that can be used to investigate industrial orvolcanic pollution in terrestrial catchments, but the role of S as a nutrient, coupled with sparse published evidence, suggests that trees are promising targets. We focused on two conifer species (Picea abies (L.) Karst and Abies alba Miller) from an Alpine site in NE Italy. Bulk analyses of Abies demonstrate that S concentrations were higher in the second half of the 20th century but with some high outliers possibly reflecting particulate impurities. X-ray synchrotron analyses confirmed the observed time trend, which is similar to that of a nearby stalagmite, and reflects an atmospheric pollution record mediated by storage in the soil and ecosystem. S and P were found to be localized in the inner cell wall (ca. 2 microm wide), local thickenings of which probably account for some outlying high values of S in synchrotron studies. S occurs as a mixture of oxidation states (0 to +0.5, +2, +5, and +6) which are consistent in space and time. The results indicate that wood older than a few years contains archive-quality S but that robust conclusions require multiple replicate analyses.

  8. Hard X-ray photoelectron spectroscopy on the GALAXIES beamline at the SOLEIL synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Céolin, D.; Ablett, J.M.; Prieur, D.; Moreno, T. [Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, FR-91192 Gif-sur-Yvette Cedex (France); Rueff, J.-P. [Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, FR-91192 Gif-sur-Yvette Cedex (France); Laboratoire de Chimie Physique-Matière et Rayonnement, Université Pierre et Marie Curie and CNRS UMR7614, FR-75231 Paris Cedex 05 (France); Marchenko, T.; Journel, L.; Guillemin, R.; Pilette, B.; Marin, T. [Laboratoire de Chimie Physique-Matière et Rayonnement, Université Pierre et Marie Curie and CNRS UMR7614, FR-75231 Paris Cedex 05 (France); Simon, M., E-mail: marc.simon@upmc.fr [Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, FR-91192 Gif-sur-Yvette Cedex (France); Laboratoire de Chimie Physique-Matière et Rayonnement, Université Pierre et Marie Curie and CNRS UMR7614, FR-75231 Paris Cedex 05 (France)

    2013-10-15

    Highlights: ► We developed a new HAXPES endstation at the French synchrotron facility SOLEIL. ► The setup is operational for both solid state and gas phase experiments. ► Beamline performances allow working in the Auger Raman conditions. ► Beamline flux compensates for ionization cross section decrease at high photon energy. ► Spectrometer compensates for ionization cross section decrease at high photon energy. -- Abstract: We report on the newly operational HAXPES endstation located on the GALAXIES beamline of the SOLEIL French synchrotron facility. The photon energy provided by the beamline covers the 2.4–12 keV range, and electrons of kinetic energy up to 12 keV can be analyzed. The HAXPES station is comprised of a UHV analysis chamber designed for investigating both solid samples and gases for the first time at high kinetic energy, and a fully equipped preparation chamber. We present the first results of X-ray photoemission and photoabsorption collected with this setup.

  9. Characterization of single-crystal sapphire substrates by X-ray methods and atomic force microscopy

    International Nuclear Information System (INIS)

    Prokhorov, I. A.; Zakharov, B. G.; Asadchikov, V. E.; Butashin, A. V.; Roshchin, B. S.; Tolstikhina, A. L.; Zanaveskin, M. L.; Grishchenko, Yu. V.; Muslimov, A. E.; Yakimchuk, I. V.; Volkov, Yu. O.; Kanevskii, V. M.; Tikhonov, E. O.

    2011-01-01

    The possibility of characterizing a number of practically important parameters of sapphire substrates by X-ray methods is substantiated. These parameters include wafer bending, traces of an incompletely removed damaged layer that formed as a result of mechanical treatment (scratches and marks), surface roughness, damaged layer thickness, and the specific features of the substrate real structure. The features of the real structure of single-crystal sapphire substrates were investigated by nondestructive methods of double-crystal X-ray diffraction and plane-wave X-ray topography. The surface relief of the substrates was investigated by atomic force microscopy and X-ray scattering. The use of supplementing analytical methods yields the most complete information about the structural inhomogeneities and state of crystal surface, which is extremely important for optimizing the technology of substrate preparation for epitaxy.

  10. X-ray diffraction microscopy based on refractive optics

    DEFF Research Database (Denmark)

    Poulsen, Henning Friis; Jakobsen, A. C.; Simons, Hugh

    2017-01-01

    A formalism is presented for dark‐field X‐ray microscopy using refractive optics. The new technique can produce three‐dimensional maps of lattice orientation and axial strain within millimetre‐sized sampling volumes and is particularly suited to in situ studies of materials at hard X‐ray energies...

  11. Synchrotron Radiation Total Reflection X-ray Fluorescence Spectroscopy for Microcontamination Analysis on Silicon Wafer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Takaura, Norikatsu

    1997-10-01

    As dimensions in state-of-the-art CMOS devices shrink to less than 0.1 pm, even low levels of impurities on wafer surfaces can cause device degradation. Conventionally, metal contamination on wafer surfaces is measured using Total Reflection X-Ray Fluorescence Spectroscopy (TXRF). However, commercially available TXRF systems do not have the necessary sensitivity for measuring the lower levels of contamination required to develop new CMOS technologies. In an attempt to improve the sensitivity of TXRF, this research investigates Synchrotron Radiation TXRF (SR TXRF). The advantages of SR TXRF over conventional TXRF are higher incident photon flux, energy tunability, and linear polarization. We made use of these advantages to develop an optimized SR TXRF system at the Stanford Synchrotron Radiation Laboratory (SSRL). The results of measurements show that the Minimum Detection Limits (MDLs) of SR TXRF for 3-d transition metals are typically at a level-of 3x10{sup 8} atoms/cm{sup 2}, which is better than conventional TXRF by about a factor of 20. However, to use our SR TXRF system for practical applications, it was necessary to modify a commercially available Si (Li) detector which generates parasitic fluorescence signals. With the modified detector, we could achieve true MDLs of 3x10{sup 8} atoms/cm{sup 2} for 3-d transition metals. In addition, the analysis of Al on Si wafers is described. Al analysis is difficult because strong Si signals overlap the Al signals. In this work, the Si signals are greatly reduced by tuning the incident beam energy below the Si K edge. The results of our measurements show that the sensitivity for Al is limited by x-ray Raman scattering. Furthermore, we show the results of theoretical modeling of SR TXRF backgrounds consisting of the bremsstrahlung generated by photoelectrons, Compton scattering, and Raman scattering. To model these backgrounds, we extended conventional theoretical models by taking into account several aspects particular

  12. Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges

    Science.gov (United States)

    Neutze, Richard; Moffat, Keith

    2012-01-01

    X-ray free electron lasers (XFELs) are potentially revolutionary X-ray sources because of their very short pulse duration, extreme peak brilliance and high spatial coherence, features that distinguish them from today’s synchrotron sources. We review recent time-resolved Laue diffraction and time-resolved wide angle X-ray scattering (WAXS) studies at synchrotron sources, and initial static studies at XFELs. XFELs have the potential to transform the field of time-resolved structural biology, yet many challenges arise in devising and adapting hardware, experimental design and data analysis strategies to exploit their unusual properties. Despite these challenges, we are confident that XFEL sources are poised to shed new light on ultrafast protein reaction dynamics. PMID:23021004

  13. High resolution hard X-ray photoemission using synchrotron radiation as an essential tool for characterization of thin solid films

    International Nuclear Information System (INIS)

    Kim, J.J.; Ikenaga, E.; Kobata, M.; Takeuchi, A.; Awaji, M.; Makino, H.; Chen, P.P.; Yamamoto, A.; Matsuoka, T.; Miwa, D.; Nishino, Y.; Yamamoto, T.; Yao, T.; Kobayashi, K.

    2006-01-01

    Recently, we have shown that hard X-ray photoemission spectroscopy using undulator X-rays at SPring-8 is quite feasible with both high resolution and high throughput. Here we report an application of hard X-ray photoemission spectroscopy to the characterization of electronic and chemical states of thin solid films, for which conventional PES is not applicable. As a typical example, we focus on the problem of the scatter in the reported band-gap values for InN. We show that oxygen incorporation into the InN film strongly modifies the valence and plays a crucial role in the band gap problem. The present results demonstrate the powerful applicability of high resolution photoemission spectroscopy with hard X-rays from a synchrotron source

  14. Studies of protein structure in solution and protein folding using synchrotron small-angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lingling [Stanford Univ., CA (United States)

    1996-04-01

    Synchrotron small angle x-ray scattering (SAXS) has been applied to the structural study of several biological systems, including the nitrogenase complex, the heat shock cognate protein (hsc70), and lysozyme folding. The structural information revealed from the SAXS experiments is complementary to information obtained by other physical and biochemical methods, and adds to our knowledge and understanding of these systems.

  15. Efficient Analytical Approaches to the Optics of Compound Refractive Lenses for Use with Synchrotron X-rays

    DEFF Research Database (Denmark)

    Poulsen, Stefan Othmar; Poulsen, Henning Friis

    2014-01-01

    The properties of compound refractive lenses (CRLs) of biconcave parabolic lenses for focusing and imaging synchrotron X-rays have been investigated theoretically by ray transfer matrix analysis and Gaussian beam propagation. We present approximate analytical expressions, that allow fast estimati...

  16. Theoretical analysis of the background intensity distribution in X-ray Birefringence Imaging using synchrotron bending-magnet radiation

    Science.gov (United States)

    Sutter, John P.; Dolbnya, Igor P.; Collins, Stephen P.; Harris, Kenneth D. M.; Edwards-Gau, Gregory R.; Palmer, Benjamin A.

    2015-04-01

    In the recently developed technique of X-ray Birefringence Imaging, molecular orientational order in anisotropic materials is studied by exploiting the birefringence of linearly polarized X-rays with energy close to an absorption edge of an element in the material. In the experimental setup, a vertically deflecting high-resolution double-crystal monochromator is used upstream from the sample to select the appropriate photon energy, and a horizontally deflecting X-ray polarization analyzer, consisting of a perfect single crystal with a Bragg reflection at Bragg angle of approximately 45°, is placed downstream from the sample to measure the resulting rotation of the X-ray polarization. However, if the experiment is performed on a synchrotron bending-magnet beamline, then the elliptical polarization of the X-rays out of the electron orbit plane affects the shape of the output beam. Also, because the monochromator introduces a correlation between vertical position and photon energy to the X-ray beam, the polarization analyzer does not select the entire beam, but instead selects a diagonal stripe, the slope of which depends on the Bragg angles of the monochromator and the polarization analyzer. In the present work, the final background intensity distribution is calculated analytically because the phase space sampling methods normally used in ray traces are too inefficient for this setup. X-ray Birefringence Imaging data measured at the Diamond Light Source beamline B16 agree well with the theory developed here.

  17. Theoretical analysis of the background intensity distribution in X-ray Birefringence Imaging using synchrotron bending-magnet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, John P., E-mail: john.sutter@diamond.ac.uk; Dolbnya, Igor P.; Collins, Stephen P. [Diamond Light Source Ltd., Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom); Harris, Kenneth D. M.; Edwards-Gau, Gregory R. [School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, Wales (United Kingdom); Palmer, Benjamin A. [Department of Structural Biology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001 (Israel)

    2015-04-28

    In the recently developed technique of X-ray Birefringence Imaging, molecular orientational order in anisotropic materials is studied by exploiting the birefringence of linearly polarized X-rays with energy close to an absorption edge of an element in the material. In the experimental setup, a vertically deflecting high-resolution double-crystal monochromator is used upstream from the sample to select the appropriate photon energy, and a horizontally deflecting X-ray polarization analyzer, consisting of a perfect single crystal with a Bragg reflection at Bragg angle of approximately 45°, is placed downstream from the sample to measure the resulting rotation of the X-ray polarization. However, if the experiment is performed on a synchrotron bending-magnet beamline, then the elliptical polarization of the X-rays out of the electron orbit plane affects the shape of the output beam. Also, because the monochromator introduces a correlation between vertical position and photon energy to the X-ray beam, the polarization analyzer does not select the entire beam, but instead selects a diagonal stripe, the slope of which depends on the Bragg angles of the monochromator and the polarization analyzer. In the present work, the final background intensity distribution is calculated analytically because the phase space sampling methods normally used in ray traces are too inefficient for this setup. X-ray Birefringence Imaging data measured at the Diamond Light Source beamline B16 agree well with the theory developed here.

  18. Rare earth element concentrations in geological and synthetic samples using synchrotron X-ray fluorescence analysis

    Science.gov (United States)

    Chen, J.R.; Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Rivers, M.L.; Sutton, S.R.; Cygan, G.L.; Grossman, J.N.; Reed, M.J.

    1993-01-01

    The concentrations of rare earth elements (REEs) in specific mineral grains from the Bayan Obo ore deposit and synthetic high-silica glass samples have been measured by synchrotron X-ray fluorescence (SXRF) analysis using excitation of the REE K lines between 33 and 63 keV. Because SXRF, a nondestructive analytical technique, has much lower minimum detection limits (MDLs) for REEs, it is an important device that extends the in situ analytical capability of electron probe microanalysis (EPMA). The distribution of trace amounts of REEs in common rock-forming minerals, as well as in REE minerals and minerals having minor quantities of REEs, can be analyzed with SXRF. Synchrotron radiation from a bending magnet and a wiggler source at the National Synchrotron Light Source, Brookhaven National Laboratory, was used to excite the REEs. MDLs of 6 ppm (La) to 26 ppm (Lu) for 3600 s in 60-??m-thick standard samples were obtained with a 25-??m diameter wiggler beam. The MDLs for the light REEs were a factor of 10-20 lower than the MDLs obtained with a bending magnet beam. The SXRF REE concentrations in mineral grains greater than 25 ??m compared favorably with measurements using EPMA. Because EPMA offered REE MDLs as low as several hundred ppm, the comparison was limited to the abundant light REEs (La, Ce, Pr, Nd). For trace values of medium and heavy REEs, the SXRF concentrations were in good agreement with measurements using instrumental neutron activation analysis (INAA), a bulk analysis technique. ?? 1993.

  19. In situ hydration of sulphoaluminate cement mixtures monitored by synchrotron x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Turrillas, X. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Barcelona (Spain); Martinez, L.G.; Carvalho, A.M.; Carezzato, G.L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rossetto, C.M. [Faculdade de Tecnologia de Sao Paulo (FATEC), SP (Brazil)

    2016-07-01

    Full text: The hydration of calcium sulpho-aluminate cement mixtures was studied in situ by synchrotron X-ray diffraction at the XRD1 beamline of the Laboratorio Nacional de Luz Sincrotron (LNLS) in Campinas, SP. The powder specimens were introduced in borosilicate glass capillary tubes of 0.7 mm of internal diameter and imbued with deionized water. As the hydration reaction is very fast the capillaries were placed on the goniometer and the data collection was started after two minutes of mixing with water. The X-ray energy chosen to get an adequate flux for these short time acquisitions was 12 keV or more precisely 1.033258 Å, determined with polycrystalline corundum standard. Diffraction patterns were collected sequentially every 35 seconds for several hours at temperatures ranging from 40 degC to 55 degC with an accuracy better than 0.1 degC attained with the help of a hot air blower. The diffracted signal was collected with an array of twenty-four Mythen detectors at 760 mm from the capillary tube. The diffraction patterns had appropriate statistics to determine the kinetics of the reaction either by quantitative Rietveld analysis or by fitting isolated diffraction peaks to Gaussian curves as a function of time. The most important phases involved in the hydration are Klein´s salt, also known as Ye’elimite, Ca4(AlO2)6SO4, and gypsum, CaSO4.2H2O to yield Ettringite, Ca6Al2(SO4)3(OH)12 - 26H2O, phase responsible for the mechanical properties. (author)

  20. Fabrication of an 8:1 ellipsoidal mirror for a synchrotron x-ray microprobe

    International Nuclear Information System (INIS)

    Jones, K.W.; Takacs, P.Z.; Hastings, J.B.; Casstevens, J.M.; Pionke, C.D.

    1987-01-01

    The fabrication of an 8:1 demagnifying ellipsoidal mirror to be used for an x-ray microprobe at the National Synchrotron Light Source X-26 beam port is described. The design aim was to produce a mirror that could be used over the photon energy range from about 3 to 17 keV. The 300-mm long mirror was required to operate at a grazing angle of 5 mr. The semimajor axis was 4500 mm and the semiminor axis 14.142 mm. Surface roughness of 1 nm or less and slope errors of 1 arc second parallel to the long axis and 200 arc seconds parallel to the short direction were specified. Production of the first electroless nickel-coated aluminum mirror using a diamond-turning technique has been completed. The mirror meets the 1 arc sec surface figure specification except for areas near the ends of the mirror. The reasons for these deviations arise from subtle details of the diamond-turning process which have not been fully incorporated in to the computer program that controls the diamond-turning machines. Further work in computer correction of repeatable errors of the diamond-turning machine can eliminate the waviness at the ends of the mirror. The diamond-turned mirror surface was not fully polished under this effort and therefore does not meet the roughness specification; however, surface smoothness of a fully polished cylindrical mirror manufactured using the same techniques does not meet the specification. It can be concluded that it is now technically feasible to meet the required specifications for the mirror and that the x-ray microprobe based on its use can be achieved

  1. 3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission x-ray microscopy at 5.4 keV

    Science.gov (United States)

    Chen, Jie; Yang, Yunhao; Zhang, Xiaobo; Andrews, Joy C.; Pianetta, Piero; Guan, Yong; Liu, Gang; Xiong, Ying; Wu, Ziyu; Tian, Yangchao

    2010-01-01

    Three-dimensional (3D) nanoscale structures of the fission yeast, Schizosaccharomyces pombe, can be obtained by full-field transmission hard x-ray microscopy with 30 nm resolution using synchrotron radiation sources. Sample preparation is relatively simple and the samples are portable across various imaging environments, allowing for high throughput sample screening. The yeast cells were fixed and double stained with Reynold’s lead citrate and uranyl acetate. We performed both absorption contrast and Zernike phase contrast imaging on these cells in order to test this method. The membranes, nucleus and subcellular organelles of the cells were clearly visualized using absorption contrast mode. The x-ray images of the cells could be used to study the spatial distributions of the organelles in the cells. These results show unique structural information, demonstrating that hard x-ray microscopy is a complementary method for imaging and analyzing biological samples. PMID:20349228

  2. Observation of X-ray shadings in synchrotron radiation-total reflection X-ray fluorescence using a color X-ray camera

    Science.gov (United States)

    Fittschen, Ursula Elisabeth Adriane; Menzel, Magnus; Scharf, Oliver; Radtke, Martin; Reinholz, Uwe; Buzanich, Günther; Lopez, Velma M.; McIntosh, Kathryn; Streli, Christina; Havrilla, George Joseph

    2014-09-01

    Absorption effects and the impact of specimen shape on TXRF analysis has been discussed intensively. Model calculations indicated that ring shaped specimens should give better results in terms of higher counts per mass signals than filled rectangle or circle shaped specimens. One major reason for the difference in signal is shading effects. Full field micro-XRF with a color X-ray camera (CXC) was used to investigate shading, which occurs when working with small angles of excitation as in TXRF. The device allows monitoring the illuminated parts of the sample and the shaded parts at the same time. It is expected that sample material hit first by the primary beam shade material behind it. Using the CXC shading could be directly visualized for the high concentration specimens. In order to compare the experimental results with calculation of the shading effect the generation of controlled specimens is crucial. This was achieved by “drop on demand” technology. It allows generating uniform, microscopic deposits of elements. The experimentally measured shadings match well with those expected from calculation.

  3. Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data

    Science.gov (United States)

    Laanait, Nouamane; Zhang, Zhan; Schlepütz, Christian M.

    2016-09-01

    We present a novel methodology based on machine learning to extract lattice variations in crystalline materials, at the nanoscale, from an x-ray Bragg diffraction-based imaging technique. By employing a full-field microscopy setup, we capture real space images of materials, with imaging contrast determined solely by the x-ray diffracted signal. The data sets that emanate from this imaging technique are a hybrid of real space information (image spatial support) and reciprocal lattice space information (image contrast), and are intrinsically multidimensional (5D). By a judicious application of established unsupervised machine learning techniques and multivariate analysis to this multidimensional data cube, we show how to extract features that can be ascribed physical interpretations in terms of common structural distortions, such as lattice tilts and dislocation arrays. We demonstrate this ‘big data’ approach to x-ray diffraction microscopy by identifying structural defects present in an epitaxial ferroelectric thin-film of lead zirconate titanate.

  4. X-ray fluorescent microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis

    International Nuclear Information System (INIS)

    Finney, L.; Mandava, S.; Ursos, L.; Zhang, W.; Rodi, D.; Vogt, S.; Legnini, D.; Maser, J.; Ikpatt, F.; Olopade, O. I.; Glesne, D.

    2007-01-01

    Although copper has been reported to influence numerous proteins known to be important for angiogenesis, the enhanced sensitivity of this developmental process to copper bioavailability has remained an enigma, because copper metalloproteins are prevalent and essential throughout all cells. Recent developments in x-ray optics at third-generation synchrotron sources have provided a resource for highly sensitive visualization and quantitation of metalloproteins in biological samples. Here, we report the application of x-ray fluorescence microscopy (XFM) to in vitro models of angiogenesis and neurogenesis, revealing a surprisingly dramatic spatial relocalization specific to capillary formation of 80-90% of endogenous cellular copper stores from intracellular compartments to the tips of nascent endothelial cell filopodia and across the cell membrane. Although copper chelation had no effect on process formation, an almost complete ablation of network formation was observed. XFM of highly vascularized ductal carcinomas showed copper clustering in putative neoangiogenic areas. This use of XFM for the study of a dynamic developmental process not only sheds light on the copper requirement for endothelial tube formation but highlights the value of synchrotron-based facilities in biological research

  5. Modifications for soft x-ray contact microscopy -- quantification of carbon density discrimination and stereo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Page, A.M.; Cotton, R.A. [Univ. of London, Egham (United Kingdom). Dept. of Biology] [and others

    1995-12-31

    Soft x-ray contact microscopy successfully images hydrated biological material with resolution superior to light microscopy. Nanosecond laser pulses record the image before movement or radiation damage can occur, eliminating concerns of fixation-induced artifacts (cf electron microscopy). X-rays make the recording polymethyl methacrylate (PMMA) photoresist more soluble, thus a contour map of x-ray absorbency is produced in which relative heights, measured by atomic force microscopy, reflect specimen carbon density. Until now quantification of the carbon-density differences was impossible, neither has the minimum carbon density difference which is detectable been determined. Since biological specimens are composed of structures differing only marginally in carbon density the discrimination between carbon densities is critical. Using Si{sub 3}N{sub 4} windows coated with differing carbon thicknesses the authors have followed the rate of PMMA dissolution in order to produce calibration curves from which specimen carbon density can be determined. These experiments have also attempted to determine the minimum detectable carbon density difference. When using relatively thick (>5{micro}m) specimens image interpretation can be difficult as spatially separated structures in the original specimen become superimposed in the x-ray image. To provide spatial resolution in three dimensions they are developing a soft x-ray stereo imaging system. Using two laser plasma x-ray sources and contoured photoresists they have obtained two simultaneous images of the same specimen from different angles. E-beam lithography, cutting and imprinting have been tested as means of producing contoured photoresists. The merits of each will be discussed and preliminary stereo images of hydrated biological specimens presented.

  6. K-Edge Subtraction Angiography with Synchrotron X-Rays; TOPICAL

    International Nuclear Information System (INIS)

    Giacomini, John C.

    1996-01-01

    The purpose of this project was to utilize dual energy, monochromatic X-rays produced from synchrotrons radiation in order to obtain noninvasive medical imaging. The application of synchrotrons radiation to medical imaging is based on the principle of iodine dichromography, first described by Bertil Jacobson of the Karolinska Institute in 1953. Medical imaging using synchrotrons radiation and K-edge dichromography was pioneered at Stanford University under the leadership of Dr. Ed Rubenstein, and the late Nobel Laureate in Physics, Dr. Robert Hofstadter. With progressive refinements in hardware, clinical-quality images were obtained of human coronary arteries utilizing peripheral injections of iodinated contrast agent. These images even now are far superior to those being presented by investigators using MRI as an imaging tool for coronary arteries. However, new supplies and instruments in the cardiac catheterization laboratory have served to transform coronary angiography into an outpatient procedure, with relatively little morbidity. We extended the principles learned with coronary angiography to noninvasive imaging of the human bronchial tree. For these images, we utilized xenon as the contrast agent, as it has a K-edge very similar to that of iodine. In this case, there is no true competing diagnostic test, and pulmonary neoplasm is an enormous public health concern. In early experiments, we demonstrated remarkably clear images of the human bronchial tree. These images have been shown internationally; however, funding difficulties primarily with the Department of Energy have not allowed for progression of this promising avenue of research. One potential criticism of the project is that in order to obtain these images, we utilized national laboratories. Some have questioned whether this would lead to a practical imaging modality. However, we have shown that the technology exists to allow for construction of a miniature storage ring, with a superconducting

  7. Synchrotron X-ray Applications Toward an Understanding of Elastic Anisotropy

    Science.gov (United States)

    Kanitpanyacharoen, Waruntorn

    The contribution of this dissertation is to expand the current knowledge of factors and mechanisms that influence the development of preferred orientation of minerlas and pores in different materials, ranging from rocks in Earth's crust to minerals in the deep Earth. Preferred orientation--a main contributing component to elastic anisotropy--is however very challenging to quantify. The overall focus of this thesis thus aims to (1) apply the capabilities of synchrotron X-ray techniques to determine preferred orientations of hexagonal metals and shales under different conditions and (2) enhance our understanding of their relationships to the elastic properties. Lattice preferred orientation (LPO) or 'texture' of hexagonal close-packed iron (hcp- Fe) crystals during deformation has been suggested as the cause of the elastic anisotropy observed in Earth's inner core. However, relatively little is known about LPO of other hcp metals. An investigation of a wide range of hcp metals (Cd, Zn, Os, and Hf) as analogs to hcp-Fe was thus undertaken to better understand deformation mechanisms at high pressure and temperature in Chapter 2. Results show that all hcp metals preferentially align their c-axes near the compression axis during deformation but with considerable differences. The gradual texture evolution in Cd and Zn is mainly controlled by basal slip systems while a rapid texture development in Os and Hf at ambient temperature is due to a dominant role of tensile twinning, with some degree of basal slip. At elevated temperature, tensile twinning is suppressed and texturing is governed by combined basal and prismatic slip. Under all conditions, basal slip appears to be the main deformation mechanism in hcp metals at high pressure and temperature. These findings are similar to those of hcp-Fe and useful to better understand the deformation mechanisms of hcp metals and their implications for elastic anisotropy. In Chapter 3, a high-energy synchrotron X-ray diffraction

  8. Construction of a forensic soil database of the Hokkaido region in Japan by synchrotron radiation X-ray analysis

    International Nuclear Information System (INIS)

    Shirota, Yusuke; Hirao, Masataka; Abe, Yoshinari; Nakai, Izumi; Osaka, Keiichi; Itou, Masayoshi

    2017-01-01

    The purpose of the present study is to construct a nation-wide forensic soil database, which allows for the identification of soil evidence based on heavy element and heavy mineral signatures determined by two synchrotron radiation (SR) X-ray techniques, i.e., a high-energy synchrotron radiation X-ray fluorescence analysis and a synchrotron-radiation X-ray powder diffraction analysis, respectively. The heavy element and heavy mineral compositions of the stream sediments collected at 3024 points located all over Japan were measured by the two SR X-ray techniques. The present paper focuses on a regional characterization of the sediments collected from the Hokkaido areas. The concentrations of heavy elements and heavy minerals in the Hokkaido areas were visualized as maps that enable us to compare the heavy element and heavy mineral compositions with the geological context of the samples. Based on a hierarchical cluster analysis using the semi-quantitative compositions of the heavy minerals, we could successfully classify the sediments into six groups corresponding to their background geologies. A Bonferroni multiple comparison demonstrated that these six groups also have significant differences in the heavy element composition. From these examinations, we could demonstrate that detailed regional identification of unknown samples is possible by analyzing both heavy element and heavy mineral compositions of each sample. (author)

  9. Combined use of X-ray fluorescence microscopy, phase contrast imaging for high resolution quantitative iron mapping in inflamed cells

    Science.gov (United States)

    Gramaccioni, C.; Procopio, A.; Farruggia, G.; Malucelli, E.; Iotti, S.; Notargiacomo, A.; Fratini, M.; Yang, Y.; Pacureanu, A.; Cloetens, P.; Bohic, S.; Massimi, L.; Cutone, A.; Valenti, P.; Rosa, L.; Berlutti, F.; Lagomarsino, S.

    2017-06-01

    X-ray fluorescence microscopy (XRFM) is a powerful technique to detect and localize elements in cells. To derive information useful for biology and medicine, it is essential not only to localize, but also to map quantitatively the element concentration. Here we applied quantitative XRFM to iron in phagocytic cells. Iron, a primary component of living cells, can become toxic when present in excess. In human fluids, free iron is maintained at 10-18 M concentration thanks to iron binding proteins as lactoferrin (Lf). The iron homeostasis, involving the physiological ratio of iron between tissues/secretions and blood, is strictly regulated by ferroportin, the sole protein able to export iron from cells to blood. Inflammatory processes induced by lipopolysaccharide (LPS) or bacterial pathoge inhibit ferroportin synthesis in epithelial and phagocytic cells thus hindering iron export, increasing intracellular iron and bacterial multiplication. In this respect, Lf is emerging as an important regulator of both iron and inflammatory homeostasis. Here we studied phagocytic cells inflamed by bacterial LPS and untreated or treated with milk derived bovine Lf. Quantitative mapping of iron concentration and mass fraction at high spatial resolution is obtained combining X-ray fluorescence microscopy, atomic force microscopy and synchrotron phase contrast imaging.

  10. X-ray diffraction measurement of liquid As2Se3 by using third-generation synchrotron radiation source

    OpenAIRE

    Kajihara, Yukio; Inui, Masanori; Matsuda, Kazuhiro; Tamura, Kozaburo; Hosokawa, Shinya

    2007-01-01

    X-ray diffraction (XD) measurements of liquid As2Se3 were carried out in the temperature range up to 1600◦C where the temperature is well beyond the semiconductor to metal (SC-M) transition temperature around 1000◦C . The measurements were done by using third-generation synchrotron radiation source at SPring-8 and the obtained structure factors have much improvements over the previous XD measurements by using in house X-ray sources with regard to the momentum transfer range and the data stati...

  11. In situ analysis of cracks in structural materials using synchrotron X-ray tomography and diffraction

    International Nuclear Information System (INIS)

    Steuwer, A.; Edwards, L.; Pratihar, S.; Ganguly, S.; Peel, M.; Fitzpatrick, M.E.; Marrow, T.J.; Withers, P.J.; Sinclair, I.; Singh, K.D.; Gao, N.; Buslaps, T.; Buffiere, J.-Y.

    2006-01-01

    The structural integrity and performance of many components and structures are dominated by cracks and hence the study of cracked bodies study is of major economical and social importance. Despite nearly 30 years of study, there is still no detailed consensus regarding either the fundamental parameters that drive cracks or the precise mechanisms of their growth in most materials. Thus, virtually all crack life prediction models currently in engineering use are largely phenomenological rather than physically based. Historically, a major hindrance to our understanding of crack initiation and propagation has been the inability to measure either the crack tip stresses or the crack morphology deep within materials. The development of very high-resolution strain and tomography mapping on third generation synchrotron sources such as the ESRF has opened up the possibility of developing complementary techniques to monitor the entire plastic/process zone growth mechanisms and the accompanying crack tip field and crack wake field around growing cracks. If realized, such techniques would produce unique information that would be invaluable both in validating present finite element simulations of fatigue crack growth and in developing the future high accuracy simulations necessary for the development of physically realistic fatigue life-prediction models. Recent technique developments at the ESRF, Grenoble, opens up the possibility of imaging cracks and crack tip stress/strain fields, and the ability to study the extend of crack closure and overload effects, even under in situ loading. In this paper, first results from synchrotron X-ray diffraction and tomography experiments performed on ID11 and ID19 (respectively) at the ESRF, Grenoble, are presented and discussed in comparison with predictions from finite element modeling

  12. Aberration-corrected multipole Wien filter for energy-filtered x-ray photoemission electron microscopy

    OpenAIRE

    Niimi, Hironobu; Chun, Wang-Jae; Suzuki, Shushi; Asakura, Kiyotaka; Kato, Makoto

    2007-01-01

    The aberration of a multipole Wien filter for energy-filtered x-ray photoemission electron microscopy was analyzed and the optimized Fourier components of the electric and magnetic fields for the third-order aperture aberration corrections were obtained. It was found that the third-order aperture aberration correction requires 12 electrodes and magnetic poles. ©2007 American Institute of Physics

  13. Aberration-corrected multipole Wien filter for energy-filtered x-ray photoemission electron microscopy

    Science.gov (United States)

    Niimi, Hironobu; Chun, Wang-Jae; Suzuki, Shushi; Asakura, Kiyotaka; Kato, Makoto

    2007-06-01

    The aberration of a multipole Wien filter for energy-filtered x-ray photoemission electron microscopy was analyzed and the optimized Fourier components of the electric and magnetic fields for the third-order aperture aberration corrections were obtained. It was found that the third-order aperture aberration correction requires 12 electrodes and magnetic poles.

  14. Surface x-ray scattering and scanning tunneling microscopy studies at the Au(111) electrode

    International Nuclear Information System (INIS)

    Ocko, B.M.; Magnussen, O.M.; Wang, J.X.; Adzic, R.R.

    1993-01-01

    This chapter reviews Surface X-ray Scattering and Scanning Tunneling Microscopy results carried out at the Au(111) surface under electrochemical conditions. Results are presented for the reconstructed surface, and for bromide and thallium monolayers. These examples are used to illustrate the complementary nature of the techniques

  15. Investigations of Caenorhabditis Elegans Using Soft X-ray Contact Microscopy

    Czech Academy of Sciences Publication Activity Database

    Desai, T.; Batani, D.; Bernardinello, A.; Poletti, G.; Orsini, F.; Ullschmied, Jiří; Skála, Jiří; Králiková, Božena; Krouský, Eduard; Mocek, Karel; Pfeifer, Miroslav; Kadlec, Christelle; Mocek, Tomáš; Präg R., Ansgar; Renner, Oldřich; Juha, Libor; Cotelli, F.; Lamia, C. L.; Zullini, A.

    2004-01-01

    Roč. 20, č. 3 (2004), s. 121-125 ISSN 1120-1797 R&D Projects: GA MŠk LN00A100 Keywords : C. elegans * soft X-ray contact microscopy * intense laser plasma * gold target Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.341, year: 2004

  16. Scanning electron microscopy and X-ray spectroscopy applied to mycelial phase of sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    M. Thibaut

    1975-04-01

    Full Text Available Scanning electron microscopy applied to the mycelial phase of Sporothrix schenckii shows a matted mycelium with conidia of a regular pattern. X-Ray microanalysis applied in energy dispersive spectroscopy and also in wavelength dispersive spectroscopy reveals the presence of several elements of Mendeleef's classification.

  17. An introduction to three-dimensional X-ray diffraction microscopy

    DEFF Research Database (Denmark)

    Poulsen, Henning Friis

    2012-01-01

    Three-dimensional X-ray diffraction microscopy is a fast and nondestructive structural characterization technique aimed at studies of the individual crystalline elements (grains or subgrains) within millimetre-sized polycrystalline specimens. It is based on two principles: the use of highly...

  18. Classification of lead white pigments using synchrotron radiation micro X-ray diffraction

    Science.gov (United States)

    Welcomme, E.; Walter, P.; Bleuet, P.; Hodeau, J.-L.; Dooryhee, E.; Martinetto, P.; Menu, M.

    2007-12-01

    Lead white pigment was used and synthesised for cosmetic and artistic purposes since the antiquity. Ancient texts describe the various recipes, and preparation processes as well as locations of production. In this study, we describe the results achieved on several paint samples taken from Matthias Grünewald’s works. Grünewald, who was active between 1503 and 1524, was a major painter at the beginning of the German Renaissance. Thanks to X-ray diffraction analysis using synchrotron radiation, it is possible to associate the composition of the paint samples with the masters ancient recipes. Different approaches were used, in reflection and transmission modes, directly on minute samples or on paint cross-sections embedded in resin. Characterisation of lead white pigments reveals variations in terms of composition, graininess and proportion of mineral phases. The present work enlightens the presence of lead white as differentiable main composition groups, which could be specific of a period, a know-how or a geographical origin. In this way, we aim at understanding the choices and the trading of pigments used to realise paintings during northern European Renaissance.

  19. Classification of lead white pigments using synchrotron radiation micro X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Welcomme, E.; Walter, P.; Menu, M. [Centre de Recherche et de Restauration des Musees de France - CNRS UMR 171, Paris (France); Bleuet, P. [European Synchrotron Radiation Facility, BP 220, Grenoble Cedex (France); Hodeau, J.L.; Dooryhee, E.; Martinetto, P. [Institut Neel CNRS-UPR 503-1, 25, Av. des Martyrs, BP 166, Grenoble Cedex 9 (France)

    2007-12-15

    Lead white pigment was used and synthesised for cosmetic and artistic purposes since the antiquity. Ancient texts describe the various recipes, and preparation processes as well as locations of production. In this study, we describe the results achieved on several paint samples taken from Matthias Gruenewald's works. Gruenewald, who was active between 1503 and 1524, was a major painter at the beginning of the German Renaissance. Thanks to X-ray diffraction analysis using synchrotron radiation, it is possible to associate the composition of the paint samples with the masters ancient recipes. Different approaches were used, in reflection and transmission modes, directly on minute samples or on paint cross-sections embedded in resin. Characterisation of lead white pigments reveals variations in terms of composition, graininess and proportion of mineral phases. The present work enlightens the presence of lead white as differentiable main composition groups, which could be specific of a period, a know-how or a geographical origin. In this way, we aim at understanding the choices and the trading of pigments used to realise paintings during northern European Renaissance. (orig.)

  20. Characterization of enamel caries lesions in rat molars using synchrotron X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Free, R.D.; DeRocher, K.; Stock, S.R.; Keane, D.; Scott-Anne, K.; Bowen, W.H.; Joester, D. (Rochester); (NWU)

    2017-08-18

    Dental caries is a ubiquitous infectious disease with a nearly 100% lifetime prevalence. Rodent caries models are widely used to investigate the etiology, progression and potential prevention or treatment of the disease. To explore the suitability of these models for deeper investigations of intact surface zones during enamel caries, the structures of early-stage carious lesions in rats were characterized and compared with previous reports on white spot enamel lesions in humans. Synchrotron X-ray microcomputed tomography non-destructively mapped demineralization in carious rat molar specimens across a range of caries severity, identifying 52 lesions across the 30 teeth imaged. Of these lesions, 13 were shown to have intact surface zones. Depth profiles of fractional mineral density were qualitatively similar to lesions in human teeth. However, the thickness of the surface zone in the rat model ranges from 10 to 58 µm, and is therefore significantly thinner than in human enamel. These results indicate that a fraction of lesions in rat caries possess an intact surface zone and are qualitatively similar to human lesions at the micrometer scale. This suggests that rat caries models may be a suitable analog through which to investigate the structure of surface zone enamel and its role during dental caries.

  1. Synchrotron X-ray Absorption and In Vitro Bioactivity of Magnetic Macro/Mesoporous Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Thanida Charoensuk

    2015-12-01

    Full Text Available Iron oxides in macro/mesoporous bioactive glasses were characterized by synchrotron X-ray absorption near edge structure (XANES spectroscopy. This magnetic phase was introduced by adding Fe(NO33 9H2O during the sol-gel synthesis. The obtained bioactive glass scaffolds exhibited superparamagnetism, in which the magnetization was increased with the increase in the Fe molar ratio from 10 to 20%. The linear combination fits of the XANES spectra indicated that the increase in the Fe molar ratio to 20% enhanced the γ-Fe2O3 formation at the expense of the α- Fe2O3 phase. This variation also promoted the formation of fine-grained bone-like apatites on the surface of the scaffolds in the in vitro test. The apatite growth between three and seven days was confirmed by the changing elemental compositions. However, the highest magnetic proportion led to the distortion of the skeleton walls and the collapse of the porous networks.

  2. Synchrotron X-ray computed microtomography study on gas hydrate decomposition in a sedimentary matrix

    Science.gov (United States)

    Yang, Lei; Falenty, Andrzej; Chaouachi, Marwen; Haberthür, David; Kuhs, Werner F.

    2016-09-01

    In-situ synchrotron X-ray computed microtomography with sub-micrometer voxel size was used to study the decomposition of gas hydrates in a sedimentary matrix. Xenon-hydrate was used instead of methane hydrate to enhance the absorption contrast. The microstructural features of the decomposition process were elucidated indicating that the decomposition starts at the hydrate-gas interface; it does not proceed at the contacts with quartz grains. Melt water accumulates at retreating hydrate surface. The decomposition is not homogeneous and the decomposition rates depend on the distance of the hydrate surface to the gas phase indicating a diffusion-limitation of the gas transport through the water phase. Gas is found to be metastably enriched in the water phase with a concentration decreasing away from the hydrate-water interface. The initial decomposition process facilitates redistribution of fluid phases in the pore space and local reformation of gas hydrates. The observations allow also rationalizing earlier conjectures from experiments with low spatial resolutions and suggest that the hydrate-sediment assemblies remain intact until the hydrate spacers between sediment grains finally collapse; possible effects on mechanical stability and permeability are discussed. The resulting time resolved characteristics of gas hydrate decomposition and the influence of melt water on the reaction rate are of importance for a suggested gas recovery from marine sediments by depressurization.

  3. Crystal structure and charge density analysis of Li2NH by synchrotron X-ray diffraction

    International Nuclear Information System (INIS)

    Noritake, T.; Nozaki, H.; Aoki, M.; Towata, S.; Kitahara, G.; Nakamori, Y.; Orimo, S.

    2005-01-01

    Complex hydrides, such as lithium amide (LiNH 2 ) and lithium imide (Li 2 NH), have recently been noticed as one of the most promising materials for reversible hydrogen storage. In this paper, we reveal the bonding nature of hydrogen in Li 2 NH crystal by synchrotron powder X-ray diffraction measurement at room temperature. The crystal structure was refined by Rietveld method and the charge density distribution was analyzed by maximum entropy method (MEM). The Li 2 NH crystal is anti-fluorite type structure (space group Fm3-bar m) consisting of Li and NH. Hydrogen atom occupies randomly the 48h (Wyckoff notation) sites around N atom. The refined lattice constant is a=5.0742(2)A. The charge density distribution around NH anion in Li 2 NH is almost spherical. The number of electrons within the sphere around the Li and NH is estimated from the obtained charge density distribution. As the result, the ionic charge is expressed as [Li 0.99+ ] 2 [NH] 1.21- . Therefore, it is confirmed experimentally that Li 2 NH is ionically bonded

  4. Deformation in Metallic Glasses Studied by Synchrotron X-Ray Diffraction

    Directory of Open Access Journals (Sweden)

    Takeshi Egami

    2016-01-01

    Full Text Available High mechanical strength is one of the superior properties of metallic glasses which render them promising as a structural material. However, understanding the process of mechanical deformation in strongly disordered matter, such as metallic glass, is exceedingly difficult because even an effort to describe the structure qualitatively is hampered by the absence of crystalline periodicity. In spite of such challenges, we demonstrate that high-energy synchrotron X-ray diffraction measurement under stress, using a two-dimensional detector coupled with the anisotropic pair-density function (PDF analysis, has greatly facilitated the effort of unraveling complex atomic rearrangements involved in the elastic, anelastic, and plastic deformation of metallic glasses. Even though PDF only provides information on the correlation between two atoms and not on many-body correlations, which are often necessary in elucidating various properties, by using stress as means of exciting the system we can garner rich information on the nature of the atomic structure and local atomic rearrangements during deformation in glasses.

  5. Classification of lead white pigments using synchrotron radiation micro X-ray diffraction

    International Nuclear Information System (INIS)

    Welcomme, E.; Walter, P.; Menu, M.; Bleuet, P.; Hodeau, J.L.; Dooryhee, E.; Martinetto, P.

    2007-01-01

    Lead white pigment was used and synthesised for cosmetic and artistic purposes since the antiquity. Ancient texts describe the various recipes, and preparation processes as well as locations of production. In this study, we describe the results achieved on several paint samples taken from Matthias Gruenewald's works. Gruenewald, who was active between 1503 and 1524, was a major painter at the beginning of the German Renaissance. Thanks to X-ray diffraction analysis using synchrotron radiation, it is possible to associate the composition of the paint samples with the masters ancient recipes. Different approaches were used, in reflection and transmission modes, directly on minute samples or on paint cross-sections embedded in resin. Characterisation of lead white pigments reveals variations in terms of composition, graininess and proportion of mineral phases. The present work enlightens the presence of lead white as differentiable main composition groups, which could be specific of a period, a know-how or a geographical origin. In this way, we aim at understanding the choices and the trading of pigments used to realise paintings during northern European Renaissance. (orig.)

  6. Indentation Size Effects in Single Crystal Copper as Revealed by Synchrotron X-ray Microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Feng, G.; Budiman, A. S.; Nix, W. D.; Tamura, N.; Patel, J. R.

    2007-11-19

    The indentation size effect (ISE) has been observed in numerous nanoindentation studies on crystalline materials; it is found that the hardness increases dramatically with decreasing indentation size - a 'smaller is stronger' phenomenon. Some have attributed the ISE to the existence of strain gradients and the geometrically necessary dislocations (GNDs). Since the GND density is directly related to the local lattice curvature, the Scanning X-ray Microdiffraction ({mu}SXRD) technique, which can quantitatively measure relative lattice rotations through the streaking of Laue diffractions, can used to study the strain gradients. The synchrotron {mu}SXRD technique we use - which was developed at the Advanced Light Source (ALS), Berkeley Lab - allows for probing the local plastic behavior of crystals with sub-micrometer resolution. Using this technique, we studied the local plasticity for indentations of different depths in a Cu single crystal. Broadening of Laue diffractions (streaking) was observed, showing local crystal lattice rotation due to the indentation-induced plastic deformation. A quantitative analysis of the streaking allows us to estimate the average GND density in the indentation plastic zones. The size dependence of the hardness, as found by nanoindentation, will be described, and its correlation to the observed lattice rotations will be discussed.

  7. Solving mercury (Hg) speciation in soil samples by synchrotron X-ray microspectroscopic techniques

    International Nuclear Information System (INIS)

    Terzano, Roberto; Santoro, Anna; Spagnuolo, Matteo; Vekemans, Bart; Medici, Luca; Janssens, Koen; Goettlicher, Joerg; Denecke, Melissa A.; Mangold, Stefan; Ruggiero, Pacifico

    2010-01-01

    Direct mercury (Hg) speciation was assessed for soil samples with a Hg concentration ranging from 7 up to 240 mg kg -1 . Hg chemical forms were identified and quantified by sequential extractions and bulk- and micro-analytical techniques exploiting synchrotron generated X-rays. In particular, microspectroscopic techniques such as μ-XRF, μ-XRD and μ-XANES were necessary to solve bulk Hg speciation, in both soil fractions 3 S 2 Cl 2 ), and an amorphous phase containing Hg bound to chlorine and sulfur. The amount of metacinnabar and amorphous phases increased in the fraction <2 μm. No interaction among Hg-species and soil components was observed. All the observed Hg-species originated from the slow weathering of an inert Hg-containing waste material (K106, U.S. EPA) dumped in the area several years ago, which is changing into a relatively more dangerous source of pollution. - Direct mercury (Hg) speciation in chlor-alkali plant contaminated soils enabled the identification of potentially dangerous Hg-S/Cl amorphous species.

  8. Experimental measurement of lattice strain pole figures using synchrotron x rays

    International Nuclear Information System (INIS)

    Miller, M.P.; Bernier, J.V.; Park, J.-S.; Kazimirov, A.

    2005-01-01

    This article describes a system for mechanically loading test specimens in situ for the determination of lattice strain pole figures and their evolution in multiphase alloys via powder diffraction. The data from these experiments provide insight into the three-dimensional mechanical response of a polycrystalline aggregate and represent an extremely powerful material model validation tool. Relatively thin (0.5 mm) iron/copper specimens were axially strained using a mechanical loading frame beyond the macroscopic yield strength of the material. The loading was halted at multiple points during the deformation to conduct a diffraction experiment using a 0.5x0.5 mm 2 monochromatic (50 keV) x ray beam. Entire Debye rings of data were collected for multiple lattice planes ({hkl}'s) in both copper and iron using an online image plate detector. Strain pole figures were constructed by rotating the loading frame about the specimen transverse direction. Ideal powder patterns were superimposed on each image for the purpose of geometric correction. The chosen reference material was cerium (IV) oxide powder, which was spread in a thin layer on the downstream face of the specimen using petroleum jelly to prevent any mechanical coupling. Implementation of the system at the A2 experimental station at the Cornell High Energy Synchrotron Source (CHESS) is described. The diffraction moduli measured at CHESS were shown to compare favorably to in situ data from neutron-diffraction experiments conducted on the same alloys

  9. Rainwater analysis by synchrotron radiation-total reflection X-ray fluorescence

    Science.gov (United States)

    López, María L.; Ceppi, Sergio A.; Asar, María L.; Bürgesser, Rodrigo E.; Ávila, Eldo E.

    2015-11-01

    Total reflection X-ray fluorescence analysis excited with synchrotron radiation was used to quantify the elemental concentration of rainwater in Córdoba, Argentina. Standard solutions with gallium as internal standard were prepared for the calibration curves. Rainwater samples of 5 μl were added to an acrylic reflector, allowed to dry, and analyzed for 200 s measuring time. The elemental concentrations of As, Ca, Co, Cr, Cu, Fe, K, Mn, Ni, Pb, S, Sr, V, and Zn were determined. The electrical conductivity, pH, and elemental concentrations were compared to data previously reported for the soluble fraction of rainwater at different sites. A factor analysis was performed in order to determine the sources that contributed to the elemental concentration in rainwater. Anthropogenic sources were identified as traffic pollution, vehicular emissions, and metallurgical factories. The quality of rainwater was analyzed by comparing the concentrations of all the elements in rainwater samples with the WHO guideline values for drinking water. The results show the need to control the atmospheric emissions in order to preserve the quality of rainwater. SR-TXRF analysis of chemical composition of rainwater in Córdoba represents the very first contribution in the region to the knowledge of the concentration of trace metals in the soluble fraction of rainwater. These data are scarce, especially in the Southern Hemisphere.

  10. Phantom and animal imaging studies using PLS synchrotron X-rays

    CERN Document Server

    Hee Joung Kim; Kyu Ho Lee; Hai Jo Jung; Eun Kyung Kim; Jung Ho Je; In Woo Kim; Yeukuang, Hwu; Wen Li Tsai; Je Kyung Seong; Seung Won Lee; Hyung Sik Yoo

    2001-01-01

    Ultra-high resolution radiographs can be obtained using synchrotron X-rays. A collaboration team consisting of K-JIST, POSTECH and YUMC has recently commissioned a new beamline (5C1) at Pohang Light Source (PLS) in Korea for medical applications using phase contrast radiology. Relatively simple image acquisition systems were set up on 5C1 beamline, and imaging studies were performed for resolution test patterns, mammographic phantom, and animals. Resolution test patterns and mammographic phantom images showed much better image resolution and quality with the 5C1 imaging system than the mammography system. Both fish and mouse images with 5C1 imaging system also showed much better image resolution with great details of organs and anatomy compared to those obtained with a conventional mammography system. A simple and inexpensive ultra-high resolution imaging system on 5C1 beamline was successfully implemented. The authors were able to acquire ultra-high resolution images for, resolution test patterns, mammograph...

  11. A synchrotron X-ray diffraction study of non-proportional strain-path effects

    International Nuclear Information System (INIS)

    Collins, D.M.; Erinosho, T.; Dunne, F.P.E.; Todd, R.I.; Connolley, T.; Mostafavi, M.; Kupfer, H.; Wilkinson, A.J.

    2017-01-01

    Common alloys used in sheet form can display a significant ductility benefit when they are subjected to certain multiaxial strain paths. This effect has been studied here for a polycrystalline ferritic steel using a combination of Nakajima bulge testing, X-ray diffraction during biaxial testing of cruciform samples and crystal plasticity finite element (CPFE) modelling. Greatest gains in strain to failure were found when subjecting sheets to uniaxial loading followed by balanced biaxial deformation, resulting in a total deformation close to plane-strain. A combined strain of approximately double that of proportional loading was achieved. The evolution of macrostrain, microstrain and texture during non-proportional loading were evaluated by in-situ high energy synchrotron diffraction. The results have demonstrated that the inhomogeneous strain accumulation from non-proportional deformation is strongly dependent on texture and the applied strain-ratio of the first deformation pass. Experimental diffraction evidence is supported by results produced by a novel method of CPFE-derived diffraction simulation. Using constitutive laws selected on the basis of good agreement with measured lattice strain development, the CPFE model demonstrated the capability to replicate ductility gains measured experimentally.

  12. NOVEL INTEGRATING SOLID STATE DETECTOR WITH SEGMENTATION FOR SCANNING TRANSMISSION SOFT X-RAY MICROSCOPY.

    Energy Technology Data Exchange (ETDEWEB)

    FESER,M.JACOBSEN,C.REHAK,P.DE GERONIMO,G.HOLL,P.STUDER,L.

    2001-07-29

    An integrating solid state detector with segmentation has been developed that addresses the needs in scanning transmission x-ray microscopy below 1 keV photon energy. The detector is not cooled and can be operated without an entrance window which leads to a total photon detection efficiency close to 100%. The chosen segmentation with 8 independent segments is matched to the geometry of the STXM to maximize image mode flexibility. In the bright field configuration for 1 ms integration time and 520 eV x-rays the rms noise is 8 photons per integration.

  13. Scanning electron microscopy and electron probe X-ray microanalysis (SEM-EPMA) of pink teeth

    International Nuclear Information System (INIS)

    Ikeda, N.; Watanabe, G.; Harada, A.; Suzuki, T.

    1988-01-01

    Samples of postmortem pink teeth were investigated by scanning electron microscopy and electron probe X-ray microanalysis. Fracture surfaces of the dentin in pink teeth were noticeably rough and revealed many more smaller dentinal tubules than those of the control white teeth. Electron probe X-ray microanalysis showed that the pink teeth contained iron which seemed to be derived from blood hemoglobin. The present study confirms that under the same circumstance red coloration of teeth may occur more easily in the teeth in which the dentin is less compact and contains more dentinal tubules

  14. Stereo soft x-ray microscopy and elemental mapping of hematite and clay suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Gleber, S.-C.; Thieme, J.; Chao, W.; Fischer, P.

    2008-09-01

    The spatial arrangements of hematite particles within aqueous soil and clay samples are investigated with soft X-ray microscopy, taking advantage of the elemental contrast at the Fe-L edge around E = 707 eV. In combination with stereo microscopy, information about spatial arrangements are revealed and correlated to electrostatic interactions of the different mixtures. Manipulation of a sample mounted to the microscope is possible and particles added while imaging can be detected.

  15. Advancement of X-Ray Microscopy Technology and its Application to Metal Solidification Studies

    Science.gov (United States)

    Kaukler, William F.; Curreri, Peter A.

    1996-01-01

    The technique of x-ray projection microscopy is being used to view, in real time, the structures and dynamics of the solid-liquid interface during solidification. By employing a hard x-ray source with sub-micron dimensions, resolutions of 2 micrometers can be obtained with magnifications of over 800 X. Specimen growth conditions need to be optimized and the best imaging technologies applied to maintain x-ray image resolution, contrast and sensitivity. It turns out that no single imaging technology offers the best solution and traditional methods like radiographic film cannot be used due to specimen motion (solidification). In addition, a special furnace design is required to permit controlled growth conditions and still offer maximum resolution and image contrast.

  16. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation

    Science.gov (United States)

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M.; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ˜10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

  17. X-ray optics for scanning fluorescence microscopy and other applications

    International Nuclear Information System (INIS)

    Ryon, R.W.; Warburton, W.K.

    1992-05-01

    Scanning x-ray fluorescence microscopy is analogous to scanning electron microscopy. Maps of chemical element distribution are produced by scanning with a very small x-ray beam. Goal is to perform such scanning microscopy with resolution in the range of <1 to 10 μm, using standard laboratory x-ray tubes. We are investigating mirror optics in the Kirkpatrick-Baez (K-B) configuration. K-B optics uses two curved mirrors mounted orthogonally along the optical axis. The first mirror provides vertical focus, the second mirror provides horizontal focus. We have used two types of mirrors: synthetic multilayers and crystals. Multilayer mirrors are used with lower energy radiation such as Cu Kα. At higher energies such as Ag Kα, silicon wafers are used in order to increase the incidence angles and thereby the photon collection efficiency. In order to increase the surface area of multilayers which reflects x-rays at the Bragg angle, we have designed mirrors with the spacing between layers graded along the optic axis in order to compensate for the changing angle of incidence. Likewise, to achieve a large reflecting surface with silicon, the wafers are placed on a specially designed lever arm which is bent into a log spiral by applying force at one end. In this way, the same diffracting angle is maintained over the entire surface of the wafer, providing a large solid angle for photon collection

  18. X-ray study of a test quadrant of the SODART telescopes using the expanded beam x-ray optics facility at the Daresbury synchrotron

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Frederiksen, P.

    1994-01-01

    The imaging properties of a test model of the SODART telescopes have been studied using an expanded beam X-ray facility at the Daresbury synchrotron. The encircled power and the point spread function at three energies 6.627 keV, 8.837 keV and 11.046 keV have been measured using 1D and 2D position......V the HPD is 2.5 - 3.0 arcmin for all detectors whereas it is somewhat larger at 11.046 keV for HEPC and LEPC but essentially unchanged for SIXA. Finally, the data are used to point to improvements that can be introduced during the manufacture of the flight telescopes....

  19. X-ray study of a SODART flight telescope using the expanded beam x-ray optics beamline at the Daresbury synchrotron

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Frederiksen, P. K.

    1995-01-01

    The on- and off-axis imaging properties of the first of two SODART flight telescopes have been studied using the expanded beam x-ray facility at the Daresbury synchrotron. From on- axis measurements the encircled power distribution and the point spread function at three energies 6.627 keV, 8.837 ke...... element solid state array detector (SIXA). We found that the HPD decreases with increasing energy due to poorer figure error of the outermost mirrors. The HPD falls in the range from 2.3 to 3 arcmin for all detectors. Residual misalignment of the individual quadrants of the telescope was found...... to contribute to the HPD by approximately 10%. If 33% of the geometric telescope area near the edges of the quadrants are covered a reduction of 10% of the HPD can be obtained. On- and off-axis images generated from the one dimensional intensity distribution are presented. Finally the data have been used...

  20. Research in x-ray optics with the ultimate aim of constructing a synchrotron radiation pumped soft x-ray lithium laser

    International Nuclear Information System (INIS)

    Csonka, P.L.

    1988-01-01

    One of the primary components of the proposed synchrotron radiation (SR) pumped Li X-Ray Laser which the present research (DOE Proposal No. DE-FG06-85ER-13309) undertook to develop, was a vacuum-based high density plasma of predominantly monatomic Lithium as the lasing medium. A monomer density in excess of 10 19 particles/cm 3 at temperatures > 1600 degree C, in volume of roughly 1cm x 0.001cm x 0.001cm was estimated as being necessary for attaining useful gain. Originally two different methods of achieving this were considered, namely: laser-driven ablation of solid Li, and steady-state thermal emission of Li gas from an orifice in a suitable chamber. Due to uncertainties associated with the first option, the resources of the present development program were focused primarily on the latter technique. 9 figs

  1. Spatial imaging and speciation of Cu in rice (Oryza sativa L.) roots using synchrotron-based X-ray microfluorescence and X-ray absorption spectroscopy.

    Science.gov (United States)

    Lu, Lingli; Xie, Ruohan; Liu, Ting; Wang, Haixing; Hou, Dandi; Du, Yonghua; He, Zhenli; Yang, Xiaoe; Sun, Hui; Tian, Shengke

    2017-05-01

    Knowledge of elemental localization and speciation in rice (Oryza sativa L.) roots is crucial for elucidating the mechanisms of Cu accumulation so as to facilitate the development of strategies to inhibit Cu accumulation in rice grain grown in contaminated soils. Using synchrotron-based X-ray microfluorescence and X-ray absorption spectroscopy, we investigated the distribution patterns and speciation of Cu in rice roots treated with 50 μM Cu for 7 days. A clear preferential localization of Cu in the meristematic zone was observed in root tips as compared with the elongation zone. Investigation of Cu in the root cross sections revealed that the intensity of Cu in the vascular bundles was more than 10-fold higher than that in the other scanned sites (epidermis and cortex) in rice roots. The dominant chemical form of Cu (79.1%) in rice roots was similar to that in the Cu-cell wall compounds. These results suggest that although Cu can be easily transported into the vascular tissues in rice roots, most of the metal absorbed by plants is retained in the roots owing to its high binding to the cell wall compounds, thus preventing metal translocation to the aerial parts of the plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. X-ray absorption in pillar shaped transmission electron microscopy specimens.

    Science.gov (United States)

    Bender, H; Seidel, F; Favia, P; Richard, O; Vandervorst, W

    2017-06-01

    The dependence of the X-ray absorption on the position in a pillar shaped transmission electron microscopy specimen is modeled for X-ray analysis with single and multiple detector configurations and for different pillar orientations relative to the detectors. Universal curves, applicable to any pillar diameter, are derived for the relative intensities between weak and medium or strongly absorbed X-ray emission. For the configuration as used in 360° X-ray tomography, the absorption correction for weak and medium absorbed X-rays is shown to be nearly constant along the pillar diameter. Absorption effects in pillars are about a factor 3 less important than in planar specimens with thickness equal to the pillar diameter. A practical approach for the absorption correction in pillar shaped samples is proposed and its limitations discussed. The modeled absorption dependences are verified experimentally for pillars with HfO 2 and SiGe stacks. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. An improved phase shift reconstruction algorithm of fringe scanning technique for X-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lian, S.; Yang, H., E-mail: yang.haiquan@gmail.com [Midorino Research Corporation, 5-15-13 Chuo Rinkan Nishi, Yamato, Kanagawa 242-0008 (Japan); Kudo, H. [Division of Information Engineering, Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573 (Japan); Momose, A.; Yashiro, W. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2015-02-15

    The X-ray phase imaging method has been applied to observe soft biological tissues, and it is possible to image the soft tissues by using the benefit of the so-called “Talbot effect” by an X-ray grating. One type of the X-ray phase imaging method was reported by combining an X-ray imaging microscope equipped by a Fresnel zone plate with a phase grating. Using the fringe scanning technique, a high-precision phase shift image could be obtained by displacing the grating step by step and measuring dozens of sample images. The number of the images was selected to reduce the error caused by the non-sinusoidal component of the Talbot self-image at the imaging plane. A larger number suppressed the error more but increased radiation exposure and required higher mechanical stability of equipment. In this paper, we analyze the approximation error of fringe scanning technique for the X-ray microscopy which uses just one grating and proposes an improved algorithm. We compute the approximation error by iteration and substitute that into the process of reconstruction of phase shift. This procedure will suppress the error even with few sample images. The results of simulation experiments show that the precision of phase shift image reconstructed by the proposed algorithm with 4 sample images is almost the same as that reconstructed by the conventional algorithm with 40 sample images. We also have succeeded in the experiment with real data.

  4. Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime.

    Science.gov (United States)

    Di Fabrizio, Enzo; Cojoc, Dan; Emiliani, Valentina; Cabrini, Stefano; Coppey-Moisan, Maite; Ferrari, Enrico; Garbin, Valeria; Altissimo, Matteo

    2004-11-01

    The aim of this report is to demonstrate a unified version of microscopy through the use of advanced diffractive optics. The unified scheme derives from the technical possibility of realizing front wave engineering in a wide range of electromagnetic spectrum. The unified treatment is realized through the design and nanofabrication of phase diffractive elements (PDE) through which wave front beam shaping is obtained. In particular, we will show applications, by using biological samples, ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy combined with X-ray fluorescence. We report some details on the design and physical implementation of diffractive elements that besides focusing also perform other optical functions: beam splitting, beam intensity, and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of micro-beads surrounding a cell as an array of tweezers and for arraying and sorting microscopic size biological samples. Another application is the Gauss to Laguerre-Gauss mode conversion, which allows for trapping and transfering orbital angular momentum of light to micro-particles immersed in a fluid. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for diffractive optics implementation. High-resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in x-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field x-ray microscopy. Besides the topographic information, fluorescence allows detection of certain chemical elements (Cl, P, Sc, K) in the same setup, by changing the photon energy of the x-ray beam. (c) 2005 Wiley-Liss, Inc.

  5. LAMBDA 2M GaAs—A multi-megapixel hard X-ray detector for synchrotrons

    Science.gov (United States)

    Pennicard, D.; Smoljanin, S.; Pithan, F.; Sarajlic, M.; Rothkirch, A.; Yu, Y.; Liermann, H. P.; Morgenroth, W.; Winkler, B.; Jenei, Z.; Stawitz, H.; Becker, J.; Graafsma, H.

    2018-01-01

    Synchrotrons can provide very intense and focused X-ray beams, which can be used to study the structure of matter down to the atomic scale. In many experiments, the quality of the results depends strongly on detector performance; in particular, experiments studying dynamics of samples require fast, sensitive X-ray detectors. "LAMBDA" is a photon-counting hybrid pixel detector system for experiments at synchrotrons, based on the Medipix3 readout chip. Its main features are a combination of comparatively small pixel size (55 μm), high readout speed at up to 2000 frames per second with no time gap between images, a large tileable module design, and compatibility with high-Z sensors for efficient detection of higher X-ray energies. A large LAMBDA system for hard X-ray detection has been built using Cr-compensated GaAs as a sensor material. The system is composed of 6 GaAs tiles, each of 768 by 512 pixels, giving a system with approximately 2 megapixels and an area of 8.5 by 8.5 cm2. While the sensor uniformity of GaAs is not as high as that of silicon, its behaviour is stable over time, and it is possible to correct nonuniformities effectively by postprocessing of images. By using multiple 10 Gigabit Ethernet data links, the system can be read out at the full speed of 2000 frames per second. The system has been used in hard X-ray diffraction experiments studying the structure of samples under extreme pressure in diamond anvil cells. These experiments can provide insight into geological processes. Thanks to the combination of high speed readout, large area and high sensitivity to hard X-rays, it is possible to obtain previously unattainable information in these experiments about atomic-scale structure on a millisecond timescale during rapid changes of pressure or temperature.

  6. Synchrotron radiation sources and condensers for projection x-ray lithography

    International Nuclear Information System (INIS)

    Murphy, J.B.; MacDowell, A.A.; White, D.L.; Wood, O.R. II

    1992-01-01

    The design requirements for a compact electron storage ring that could be used as a soft x-ray source for projection lithography are discussed. The design concepts of the x-ray optics that are required to collect and condition the radiation in divergence, uniformity and direction to properly illuminate the mask and the particular x-ray projection camera used are discussed. Preliminary designs for an entire soft x-ray projection lithography system using an electron storage ring as a soft X-ray source are presented. It is shown that by combining the existing technology of storage rings with large collection angle condensers, a powerful and reliable source of 130 Angstrom photons for production line projection x-ray lithography is possible

  7. HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY.

    Energy Technology Data Exchange (ETDEWEB)

    FENG,H.; JONES,K.W.; MCGUIGAN,M.; SMITH,G.J.; SPILETIC,J.

    2001-10-12

    Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data.

  8. Multimodal imaging of human cerebellum - merging X-ray phase microtomography, magnetic resonance microscopy and histology

    Science.gov (United States)

    Schulz, Georg; Waschkies, Conny; Pfeiffer, Franz; Zanette, Irene; Weitkamp, Timm; David, Christian; Müller, Bert

    2012-11-01

    Imaging modalities including magnetic resonance imaging and X-ray computed tomography are established methods in daily clinical diagnosis of human brain. Clinical equipment does not provide sufficient spatial resolution to obtain morphological information on the cellular level, essential for applying minimally or non-invasive surgical interventions. Therefore, generic data with lateral sub-micrometer resolution have been generated from histological slices post mortem. Sub-cellular spatial resolution, lost in the third dimension as a result of sectioning, is obtained using magnetic resonance microscopy and micro computed tomography. We demonstrate that for human cerebellum grating-based X-ray phase tomography shows complementary contrast to magnetic resonance microscopy and histology. In this study, the contrast-to-noise values of magnetic resonance microscopy and phase tomography were comparable whereas the spatial resolution in phase tomography is an order of magnitude better. The registered data with their complementary information permit the distinct segmentation of tissues within the human cerebellum.

  9. X-ray tomography as a complementary technique to nuclear microscopy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Morilla, Inmaculada [Institut fuer Stroemungsmechanik, Technische Universitaet Dresden, Lehrstuhl fuer Magnetofluiddynamik, Georg-Baehr-Str. 3, 01069 Dresden (Germany)], E-mail: inmaculada.gomez-morilla@tu-dresden.de; Pinheiro, Teresa [Laboratorio de Feixes de Ioes, Instituto Tecnologico e Nuclear, E.N. 10, 2685-953 Sacavem (Portugal); Odenbach, Stefan [Institut fuer Stroemungsmechanik, Technische Universitaet Dresden, Lehrstuhl fuer Magnetofluiddynamik, Georg-Baehr-Str. 3, 01069 Dresden (Germany); Alcala, Maria Dolores Ynsa [Centro de Microanalisis de Materiales, Universidad Autonoma de Madrid, Campus de Cantoblanco, E-28049, Madrid (Spain)

    2009-06-15

    X-ray micro-computed tomography is an excellent tool to examine the morphology of a sample in a non-destructive way, making its inner structure visible. Nuclear microscopy provides quantitative information about the elemental distribution and concentration. Both can be used as complementary techniques in order to get more information about the samples. Osteoporosis is a disease that deteriorates the bone due to, among other things, a failure in the normal hormonal function. In this project, bones from rats under osteoporosis treatments based on hormonal supplementation, as well as healthy bones and osteoporotic ones without treatment, have been analyzed by both nuclear microscopy and X-ray micro-tomography. Following the results achieved by nuclear microscopy, quantitative concentration and distribution of elements such as Ca and P suggested a change in bone density. In order to image this change of density, the same samples have been analyzed by micro-tomography.

  10. Synchrotron X-ray adaptative monochromator: study and realization of a prototype; Monochromateur adaptatif pour rayonnement X synchrotron: etude et realisation d`un prototype

    Energy Technology Data Exchange (ETDEWEB)

    Dezoret, D.

    1995-12-12

    This work presents a study of a prototype of a synchrotron X-ray monochromator. The spectral qualities of this optic are sensitive to the heat loads which are particularly important on third synchrotron generation like ESRF. Indeed, powers generated by synchrotron beams can reach few kilowatts and power densities about a few tens watts per square millimeters. The mechanical deformations of the optical elements of the beamlines issue issue of the heat load can damage their spectral efficiencies. In order to compensate the deformations, wa have been studying the transposition of the adaptive astronomical optics technology to the x-ray field. First, we have considered the modifications of the spectral characteristics of a crystal induced by x-rays. We have established the specifications required to a technological realisation. Then, thermomechanical and technological studies have been required to transpose the astronomical technology to an x-ray technology. After these studies, we have begun the realisation of a prototype. This monochromator is composed by a crystal of silicon (111) bonded on a piezo-electric structure. The mechanical control is a loop system composed by a infrared light, a Shack-Hartmann CDD and wave front analyser. This system has to compensate the deformations of the crystal in the 5 kcV to 60 kcV energy range with a power density of 1 watt per square millimeters. (authors).

  11. A flow cell for in situ synchrotron x-ray diffraction studies of scale formation under Bayer processing conditions

    Science.gov (United States)

    Webster, Nathan A. S.; Madsen, Ian C.; Loan, Melissa J.; Scarlett, Nicola V. Y.; Wallwork, Kia S.

    2009-08-01

    The design, construction, and commissioning of a stainless steel flow cell for in situ synchrotron x-ray diffraction studies of scale formation under Bayer processing conditions is described. The use of the cell is demonstrated by a study of Al(OH)3 scale formation on a mild steel substrate from synthetic Bayer liquor at 70 °C. The cell design allows for interchangeable parts and substrates and would be suitable for the study of scale formation in other industrial processes.

  12. Design status of the 2.5 GeV National Synchrotron Light Source x-ray ring

    International Nuclear Information System (INIS)

    Krinsky, S.; Blumberg, L.; Bittner, J.; Galayda, J.; Heese, R.; Schuchman, J.C.; van Steenbergen, A.

    1979-01-01

    The present state of the design of the 2.5 GeV electron storage ring for the National Synchrotron Light Source is described. This ring will serve as a dedicated source of synchrotron radiation in the wavelength range 0.1 A to 30 A. While maintaining the basic high brigtness features of the eariler developed lattice structure, recent work resulted in a more economical magnet system, is simplified chromaticity corrections, and improved distribution of the X-ray beam lines. In addition, the adequacy of the dynamic aperture for stable betatron oscillations has been verified for a variety of betatron tunes

  13. Demonstration experiment of a laser synchrotron source for tunable, monochromatic x-rays at 500 eV

    Energy Technology Data Exchange (ETDEWEB)

    Ting, A.; Fischer, R.; Fisher, A. [Naval Research Lab., Washington, DC (United States)] [and others

    1995-12-31

    A Laser Synchrotron Source (LSS) was proposed to generate short-pulsed, tunable x-rays by Thomson scattering of laser photons from a relativistic electron beam. A proof-of-principle experiment was performed to generate x-ray photons of 20 eV. A demonstration experiment is being planned and constructed to generate x-ray photons in the range of {approximately}500 eV. Laser photons of {lambda}=1.06 {mu}m are Thomson backscattered by a 4.5 MeV electron beam which is produced by an S-band RF electron gun. The laser photons are derived from either (i) a 15 Joules, 3 nsec Nd:glass laser, (ii) the uncompressed nsec: pulse of the NRL table-top terawatt (T{sup 3}) laser, or (iii) the compressed sub-picosec pulse of the T{sup 3} laser. The RF electron gun is being constructed with initial operation using a thermionic cathode. It will be upgraded to a photocathode to produce high quality electron beams with high current and low emittance. The x-ray pulse structure consists of {approximately}10 psec within an envelope of a macropulse whose length depends on the laser used. The estimated x-ray photon flux is {approximately}10{sup 18} photons/sec, and the number of photons per macropulse is {approximately}10{sup 8}. Design parameters and progress of the experiment will be presented.

  14. CCD[charge-coupled device]-based synchrotron x-ray detector for protein crystallography: Performance projected from an experiment

    International Nuclear Information System (INIS)

    Strauss, M.G.; Naday, I.; Sherman, I.S.; Kraimer, M.R.; Westbrook, E.M.

    1986-01-01

    The intense x radiation from a synchrotron source could, with a suitable detector, provide a complete set of diffraction images from a protein crystal before the crystal is damaged by radiation (2 to 3 min). An area detector consisting of a 40 mm dia. x-ray fluorescing phosphor, coupled with an image intensifier and lens to a CCD image sensor, was developed to determine the effectiveness of such a detector in protein crystallography. The detector was used in an experiment with a rotating anode x-ray generator. Diffraction patterns from a lysozyme crystal obtained with this detector are compared to those obtained with film. The two images appear to be virtually identical. The flux of 10 4 x-ray photons/s was observed on the detector at the rotating anode generator. At the 6-GeV synchrotron being designed at Argonne, the flux on an 80 x 80 mm 2 detector is expected to be >10 9 photons/s. The projected design of such a synchrotron detector shows that a diffraction-peak count >10 6 could be obtained in ∼0.5 s. With an additional ∼0.5 s readout time of a 512 x 512 pixel CCD, the data acquisition time per frame would be ∼1 s so that ninety 1 0 diffraction images could be obtained, with approximately 1% precision, in less than 3 min

  15. Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Wei [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.

  16. Visualizing Metal Content and Intracellular Distribution in Primary Hippocampal Neurons with Synchrotron X-Ray Fluorescence.

    Directory of Open Access Journals (Sweden)

    Robert A Colvin

    Full Text Available Increasing evidence suggests that metal dyshomeostasis plays an important role in human neurodegenerative diseases. Although distinctive metal distributions are described for mature hippocampus and cortex, much less is known about metal levels and intracellular distribution in individual hippocampal neuronal somata. To solve this problem, we conducted quantitative metal analyses utilizing synchrotron radiation X-Ray fluorescence on frozen hydrated primary cultured neurons derived from rat embryonic cortex (CTX and two regions of the hippocampus: dentate gyrus (DG and CA1. Comparing average metal contents showed that the most abundant metals were calcium, iron, and zinc, whereas metals such as copper and manganese were less than 10% of zinc. Average metal contents were generally similar when compared across neurons cultured from CTX, DG, and CA1, except for manganese that was larger in CA1. However, each metal showed a characteristic spatial distribution in individual neuronal somata. Zinc was uniformly distributed throughout the cytosol, with no evidence for the existence of previously identified zinc-enriched organelles, zincosomes. Calcium showed a peri-nuclear distribution consistent with accumulation in endoplasmic reticulum and/or mitochondria. Iron showed 2-3 distinct highly concentrated puncta only in peri-nuclear locations. Notwithstanding the small sample size, these analyses demonstrate that primary cultured neurons show characteristic metal signatures. The iron puncta probably represent iron-accumulating organelles, siderosomes. Thus, the metal distributions observed in mature brain structures are likely the result of both intrinsic neuronal factors that control cellular metal content and extrinsic factors related to the synaptic organization, function, and contacts formed and maintained in each region.

  17. Accommodation stresses in hydride precipitates by synchrotron x-ray diffraction

    International Nuclear Information System (INIS)

    Santisteban, J R; Vicente, M A; Vizcaino, P; Banchik, A D; Almer, J

    2012-01-01

    Hydride-forming materials (Zr, Ti, Nb, etc) are affected by a sub-critical crack growth mechanism that involves the diffusion of H to the stressed region ahead of a crack, followed by nucleation and fracture of hydrides at the crack tip [1]. The phenomenon is intermittent, with the crack propagating through the hydride and stopping when it reaches the matrix. By repeating these processes, the crack propagates through a component at a rate that is highly dependent on the temperature history of the component. Most research effort to understand this phenomenon has occurred within the nuclear industry, as it affects the safe operation of pressure tubes (Zr2.5%Nb) and the long-term storage of nuclear fuel (Zircaloy cladding). Stress-induced hydride formation is a consequence of the volume dilatation that accompanies hydride formation (of the order of 15%), which is elastoplastically accommodated by the matrix and precipitate. Compressive stresses are expected within hydride precipitates due to the constraint imposed by the matrix. Such 'accommodation' stresses are essential ingredients in all theoretical models developed to assess the crack growth rate dependence on operational variables such as temperature, applied stress intensity factor, or overall H concentration [2]. Yet little experimental information is available about the magnitude and directionality of such accommodation stresses. Synchrotron X-ray diffraction is the only technique capable of quantifying such stresses. Here we briefly describe the fundaments of the technique, when used through an area detector placed in transmission geometry. The results of the experiments have allowed us to produce a comprehensive picture about the magnitude and origin of accommodation stresses in δ zirconium hydride platelets (author)

  18. Lead tolerance and cellular distribution in Elsholtzia splendens using synchrotron radiation micro-X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Tian, Shengke [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); University of Florida, Institute of Food and Agricultural Science, Indian River Research and Education Center, Fort Pierce, FL 34945 (United States); Lu, Lingli; Shohag, M.J.I.; Liao, Haibing [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Xiaoe, E-mail: xyang@zju.edu.cn [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Elsholtzia splendens had a good ability of lead tolerance and accumulation. Black-Right-Pointing-Pointer Pb was mostly restricted to the vascular bundles and epidermis tissues. Black-Right-Pointing-Pointer Pb and Ca shared most similar distribution patterns in E. splendens. - Abstract: Hydroponic experiments were conducted to investigate the tolerance and spatial distribution of lead (Pb) in Elsholtzia splendens-a copper (Cu) accumulator plant using synchrotron-based micro-X-ray fluorescence. According to chlorophyll concentration and chlorophyll fluorescence parameters, E. splendens displayed certain tolerance at 100 {mu}M Pb treatment. Lead concentration in roots, stems and leaves of E. splendens reached 45,183.6, 1657.6, and 380.9 mg kg{sup -1}, respectively. Pb was mostly accumulated in the roots, and there were also high concentrations of Pb been transported into stems and leaves. Micro-XRF analysis of the stem and leaf cross section revealed that Pb was mostly restricted in the vascular bundles and epidermis tissues of both stem and leaf of E. splendens. The correlation between distribution of K, Ca, Zn and Pb were analyzed. There were significant positive correlations (P < 0.01) among Pb and Ca, K, Zn distribution both in stem and leaf of E. splendens. However, among the three elements, Ca shared the most similar distribution pattern and the highest correlation coefficients with Pb in both stem and leaf cross section of E. splendens. This suggests that Ca may play an important role in Pb accumulation in stem and leaf of E. splendens.

  19. Micro-fresnel structures for microscopy of laser generated bright x-ray sources

    International Nuclear Information System (INIS)

    Ceglio, N.M.; Shavers, D.C.; Flanders, D.C.; Smith, H.I.

    1979-01-01

    A brief parametric survey of the x-ray characteristics of a gold micro-disk irradiated at 3 x 10 14 watt/cm 2 by a 1 nsec Nd-glass laser pulse has been provided as an example of a laser generated bright x-ray source. It was shown that a simple phenomenological model of the laser generated x-ray source as a microscopic equilibrium plasma radiating as a blackbody for a finite time determined by its hydrodynamic disassembly and radiation losses, serves to provide an adequate approximation to the x-ray characteristics of such sources. The current state of x-ray microscopy within the LLL laser fusion program was briefly reviewed. Kirpatrick--Baez grazing incidence reflection x-ray microscopes are being used to provide 3 to 5 μm resolution, broadband images (ΔE/E approx. 0.3) over a spectral range from .6 keV to 3.5 keV. Zone Plate Coded Imaging is used to provide 5 to 10 μm resolution, broadband (ΔE/E approx. 0.5) images over a spectral range from 3 keV to 50 keV. Efficient x-ray lensing elements with anticipated submicron resolution are being developed for narrowband (ΔE/E approx. 10 -2 ) imaging applications over a spectral range .1 keV to 8 keV. The x-ray lens design is that of a transmission blazed Fresnel phase plate. Micro--Fresnel zone plates with 3200 A minimum linewidth have been fabricated and preliminary resolution tests begun. The first resolution test pattern, having minimum linewidth of 2.5 μm, was imaged in lambda = 8.34 A light with no difficulty. Newer test patterns with submicron minimum line are being prepared for the next stage of resolution testing. An off-axis Fresnel zone plate with 1600 A minimum linewidth is presently being fabricated for use as an imaging spectrometer in order to provide spatially separated, chromatically distinct images of characteristic line emissions from laser fusion targets

  20. Studies of colloidal system in soils with X-ray microscopy

    International Nuclear Information System (INIS)

    Thieme, J.; Schmidt, C.; Niemeyer, J.

    2000-01-01

    Soil is a part of the environment where colloidal systems play an important role when it comes to the description of its properties. A great variety of chemical reactions within these systems occur in an aqueous phase. Due to its ability to image specimen directly in their natural aqueous environment, X-ray microscopy is very suitable tool for the study of these systems. Man-made contamination of soils, especially organic contaminations, can be removed with thermal clean-up techniques. These techniques influence strongly the shape of the colloidal systems within the treated soils. X-ray microscopy studies of an agriculturally used soil and a forest soil give examples of this influence

  1. Development of synchrotron x-ray micro-spectroscopic techniques and application to problems in low temperature geochemistry. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    The focus of the technical development effort has been the development of apparatus and techniques for the utilization of X-ray Fluorescence (XRF), Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Structure (XANES) spectroscopies in a microprobe mode. The present XRM uses white synchrotron radiation (3 to 30 keV) from a bending magnet for trace element analyses using the x-ray fluorescence technique Two significant improvements to this device have been recently implemented. Focusing Mirror: An 8:1 ellipsoidal mirror was installed in the X26A beamline to focus the incident synchrotron radiation and thereby increase the flux on the sample by about a factor of 30. Incident Beam Monochromator: The monochromator has been successfully installed and commissioned in the X26A beamline upstream of the mirror to permit analyses with focused monochromatic radiation. The monochromator consists of a channel-cut silicon (111) crystal driven by a Klinger stepping motor translator. We have demonstrated the operating range of this instrument is 4 and 20 keV with 0.01 eV steps and produces a beam with a {approximately}10{sup {minus}4} energy bandwidth. The primary purpose of the monochromator is for x-ray absorption spectroscopy (XAS) measurements but it is also used for selective excitation in trace element microanalysis. To date, we have conducted XANES studies on Ti, Cr, Fe, Ce and U, spanning the entire accessible energy range and including both K and L edge spectra. Practical detection limits for microXANES are 10--100 ppM for 100 {mu}m spots.

  2. Characterization of iron ore green pellets by scanning electron microscopy and X-ray microtomography

    OpenAIRE

    Bhuiyan, Iftekhar Uddin

    2011-01-01

    Cryogenic scanning electron microscopy (cryo-SEM), image analysis (IA) of SEM micrographs and X-ray microtomography (XMT) were used to obtain new information about the morphology of iron ore green pellets in this work. Cryo-SEM and freeze fracturing was used to observe entrapped air bubbles and arrangement of particles around the bubbles and in the matrix of wet green pellets. The observations of samples prepared by plunge and unidirectional freezing indicate that unidirectional freezing fac...

  3. High-energy x-ray microscopy with multilayer reflectors (invited)

    International Nuclear Information System (INIS)

    Underwood, J.H.

    1986-01-01

    A knowledge of the spatial distribution of the x rays emitted by the hot plasma region is a key element in the study of the physical processes occurring in laser-produced plasmas and complements other diagnostics such as spectroscopy and temporal studies. X-ray microscopy with reflection microscopes offers the most direct means of obtaining this information. Until recently, the two types of microscopes that had been developed for this purpose, the Kirkpatrick--Baez and the Wolter, operated at relatively low energies (about 4--5 keV) and had very little spectral selectivity, relying on filters for coarse spectral resolution. With the development of x-ray reflecting multilayer mirrors, the energy response of such microscopes can be extended to 10 keV or higher, with good spectral selectivity. In addition, it is possible to reduce some of the optical aberrations to obtain improved spatial resolution. This paper describes some of the recent progress in making and evaluating x-ray reflectors, and outlines the optical design considerations for multilayer-coated microscopes. Results from a prototype multilayer K--B microscope are presented

  4. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae.

    Science.gov (United States)

    Deng, Junjing; Vine, David J; Chen, Si; Nashed, Youssef S G; Jin, Qiaoling; Phillips, Nicholas W; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris J

    2015-02-24

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolution beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ∼90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.

  5. A novel technique combining high-resolution synchrotron x-ray microtomography and x-ray diffraction for characterization of micro particulates

    International Nuclear Information System (INIS)

    Merrifield, David R; Ramachandran, Vasuki; Roberts, Kevin J; Armour, Wesley; Axford, Danny; Basham, Mark; Connolley, Thomas; Evans, Gwyndaf; McAuley, Katherine E; Owen, Robin L; Sandy, James

    2011-01-01

    The processing of solids, such as crystals, is strongly influenced by the surface properties of the material. In recent years the pharmaceutical industry has shown great interest in identifying, or chemically speciating, the molecular components of crystal faces. Formerly, characterization of the molecular identity of crystal faces was restricted to the study of large single crystals. This would have been primarily for structure determination as part of the drug registration process. Diamond Light Source in Oxfordshire is a new synchrotron facility in the UK, having 18 operational beamlines with 4 more in the construction phase. Beamlines at this medium energy light source enable the study of micron-sized objects in great detail. It is well known that x-ray microtomography (XMT) can be used to investigate the external morphology of a crystal whereas x-ray diffraction (XRD) is used to study the molecular orientation, structure and packing within the crystal. The objective of this research is to assess the feasibility of, and thereby develop a new methodology for, characterizing the molecular identity of a particular face of a crystalline particle at a scale of scrutiny of 20–50 µm by combining these two powerful techniques. This work demonstrates the application of XMT and XRD to investigate respectively the shape and crystalline phase/orientation of relevant test crystals. This research has applications in the pharmaceutical industry in that when the exact molecular nature of a particular face is known, the important physico-pharmaceutical properties stemming from that can be better understood. Some initial data are presented and discussed

  6. In situ analyses of Ag speciation in tissues of cucumber and wheat using synchrotron-based X-ray absorption spectroscopy

    Data.gov (United States)

    U.S. Environmental Protection Agency — In situ analyses of Ag speciation in tissues of cucumber and wheat using synchrotron-based X-ray absorption spectroscopy showing spectral fitting and linear...

  7. A redox equilibrator for the preparation of cytochrome oxidase of mixed valence states and intermediate compounds for x-ray synchrotron studies

    International Nuclear Information System (INIS)

    Chance, B.; Moore, J.; Powers, L.; Ching, Y.

    1982-01-01

    A redox titrator for the preparation of small volumes of highly concentrated biological samples of X-ray synchrotron studies provides for the redox equilibration at temperatures of 40 to -30 0 C. Anaerobic transfer directly to the X-ray sample chamber and mixing of an additional reagent just prior to freeze-trapping of the redox-equilibrated sample are provided

  8. X-ray television area detectors for macromolecular structural studies with synchrotron radiation sources

    International Nuclear Information System (INIS)

    Arndt, U.W.; Gilmore, D.J.

    1978-01-01

    Two-dimensional X-ray diffraction patterns may be recorded quantitatively by means of X-ray-to-electron converters which are scanned in a television-type raster scan. Detectors of this type are capable of operating over the whole range of counting rates from very low to higher than those with which other types of converters can deal. The component parts of an X-ray television detector are examined and the limits to the precision of the measurements are analysed. (Auth.)

  9. Synchrotron-radiation-induced formation of salt particles on an X-ray lithography mask

    International Nuclear Information System (INIS)

    Utsumi, Y.; Takahashi, J.; Hosokawa, T.

    1998-01-01

    The suppression and removal of contaminants on X-ray masks are required for the application of X-ray lithography to practical semiconductor production, because contamination is easily transferred to the replicated resist patterns and degrades the LSI patterns in order to study contamination of a Ta/SiN X-ray mask, its growth process was investigated using an atmospheric reaction chamber and in situ observation apparatus for gases at atmospheric pressure. It was found that the contamination particles were ammonium sulfate and oxalate. The sources of the salt particle were also identified

  10. Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Isaure, Marie-Pierre [Section d' Application des Traceurs, LITEN, CEA-Grenoble, 17, rue des Martyrs, 38054 Grenoble cedex 9 (France) and Environmental Geochemistry Group, LGIT, UMR 5559, Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France)]. E-mail: mpisaure@ujf-grenoble.fr; Fayard, Barbara [Laboratoire de Physique des Solides, UMR 8502 Universite Paris Sud, 91405 Orsay (France); European Synchrotron Radiation Facility, ID-21, BP220, 38043 Grenoble (France); Sarret, Geraldine [Environmental Geochemistry Group, LGIT, UMR 5559, Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Pairis, Sebastien [Laboratoire de Cristallographie, UPR 5031, 25 Avenue des Martyrs, BP 166, 38042 Grenoble cedex 9 (France); Bourguignon, Jacques [Laboratoire de Physiologie Cellulaire Vegetale, UMR 5168 CEA/CNRS/INRA/UJF, DRDC, CEA-Grenoble, 17 Avenue des Martyrs, 38054 Grenoble cedex 9 (France)

    2006-12-15

    Cadmium (Cd) is a metal of high toxicity for plants. Resolving its distribution and speciation in plants is essential for understanding the mechanisms involved in Cd tolerance, trafficking and accumulation. The model plant Arabidopsis thaliana was exposed to cadmium under controlled conditions. Elemental distributions in the roots and in the leaves were determined using scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX), and synchrotron-based micro X-ray fluorescence ({mu}-XRF), which offers a better sensitivity. The chemical form(s) of cadmium was investigated using Cd L{sub III}-edge (3538 eV) micro X-ray absorption near edge structure ({mu}-XANES) spectroscopy. Plant {mu}-XANES spectra were fitted by linear combination of Cd reference spectra. Biological sample preparation and conditioning is a critical point because of possible artifacts. In this work we compared freeze-dried samples analyzed at ambient temperature and frozen hydrated samples analyzed at -170 deg. C. Our results suggest that in the roots Cd is localized in vascular bundles, and coordinated to S ligands. In the leaves, trichomes (epidermal hairs) represent the main compartment of Cd accumulation. In these specialized cells, {mu}-XANES results show that the majority of Cd is bound to O/N ligands likely provided by the cell wall, and a minor fraction could be bound to S-containing ligands. No significant difference in Cd speciation was observed between freeze-dried and frozen hydrated samples. This work illustrates the interest and the sensitivity of Cd L{sub III}-edge XANES spectroscopy, which is applied here for the first time to plant samples. Combining {mu}-XRF and Cd L{sub III}-edge {mu}-XANES spectroscopy offers promising tools to study Cd storage and trafficking mechanisms in plants and other biological samples.

  11. Real-time growth study of plasma assisted atomic layer epitaxy of InN films by synchrotron x-ray methods

    Energy Technology Data Exchange (ETDEWEB)

    Nepal, Neeraj [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; Anderson, Virginia R. [American Society for Engineering Education, 1818 N Street NW, Washington, DC 20036; Johnson, Scooter D. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; Downey, Brian P. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; Meyer, David J. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; DeMasi, Alexander [Physics Department, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215; Robinson, Zachary R. [Department of Physics, SUNY College at Brockport, 350 New Campus Dr, Brockport, New York 14420; Ludwig, Karl F. [Physics Department, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215; Eddy, Charles R. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375

    2017-03-13

    The temporal evolution of high quality indium nitride (InN) growth by plasma-assisted atomic layer epitaxy (ALEp) on a-plane sapphire at 200 and 248 °C was probed by synchrotron x-ray methods. The growth was carried out in a thin film growth facility installed at beamline X21 of the National Synchrotron Light Source at Brookhaven National Laboratory and at beamline G3 of the Cornell High Energy Synchrotron Source, Cornell University. Measurements of grazing incidence small angle x-ray scattering (GISAXS) during the initial cycles of growth revealed a broadening and scattering near the diffuse specular rod and the development of scattering intensities due to half unit cell thick nucleation islands in the Yoneda wing with correlation length scale of 7.1 and 8.2 nm, at growth temperatures (Tg) of 200 and 248 °C, respectively. At about 1.1 nm (two unit cells) of growth thickness nucleation islands coarsen, grow, and the intensity of correlated scattering peak increased at the correlation length scale of 8.0 and 8.7 nm for Tg = 200 and 248 °C, respectively. The correlated peaks at both growth temperatures can be fitted with a single peak Lorentzian function, which support single mode growth. Post-growth in situ x-ray reflectivity measurements indicate a growth rate of ~0.36 Å/cycle consistent with the growth rate previously reported for self-limited InN growth in a commercial ALEp reactor. Consistent with the in situ GISAXS study, ex situ atomic force microscopy power spectral density measurements also indicate single mode growth. Electrical characterization of the resulting film revealed an electron mobility of 50 cm2/V s for a 5.6 nm thick InN film on a-plane sapphire, which is higher than the previously reported mobility of much thicker InN films grown at higher temperature by molecular beam epitaxy directly on sapphire. These early results indicated that in situ synchrotron x-ray study of the epitaxial growth kinetics of InN films is a very powerful method to

  12. X-Ray-induced Deuterium Enrichment of N-rich Organics in Protoplanetary Disks: An Experimental Investigation Using Synchrotron Light

    Energy Technology Data Exchange (ETDEWEB)

    Gavilan, Lisseth; Carrasco, Nathalie [LATMOS, Université Versailles St Quentin, UPMC Université Paris 06, CNRS, 11 blvd d’Alembert, F-78280 Guyancourt (France); Remusat, Laurent; Roskosz, Mathieu [IMPMC, CNRS UMR 7590, Sorbonne Universités, UPMC Université Paris 06, IRD, Muséum National d’Histoire Naturelle, CP 52, 57 rue Cuvier, Paris F-75231 (France); Popescu, Horia; Jaouen, Nicolas [SEXTANTS beamline, SOLEIL synchrotron, L’Orme des Merisiers, F-91190 Saint-Aubin (France); Sandt, Christophe [SMIS beamline, SOLEIL synchrotron, L’Orme des Merisiers, F-91190 Saint-Aubin (France); Jäger, Cornelia [Laboratory Astrophysics and Cluster Physics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University and Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Henning, Thomas [Max-Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany); Simionovici, Alexandre [Institut des Sciences de la Terre, Observatoire des Sciences de l’Univers de Grenoble, BP 53, F-38041 Grenoble (France); Lemaire, Jean Louis [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris Sud, Université Paris-Saclay, F-91405 Orsay (France); Mangin, Denis, E-mail: lisseth.gavilan@latmos.ipsl.fr [Institut Jean Lamour, CNRS, Université de Lorraine, F-54011 Nancy (France)

    2017-05-01

    The deuterium enrichment of organics in the interstellar medium, protoplanetary disks, and meteorites has been proposed to be the result of ionizing radiation. The goal of this study is to simulate and quantify the effects of soft X-rays (0.1–2 keV), an important component of stellar radiation fields illuminating protoplanetary disks, on the refractory organics present in the disks. We prepared tholins, nitrogen-rich organic analogs to solids found in several astrophysical environments, e.g., Titan’s atmosphere, cometary surfaces, and protoplanetary disks, via plasma deposition. Controlled irradiation experiments with soft X-rays at 0.5 and 1.3 keV were performed at the SEXTANTS beamline of the SOLEIL synchrotron, and were immediately followed by ex-situ infrared, Raman, and isotopic diagnostics. Infrared spectroscopy revealed the preferential loss of singly bonded groups (N–H, C–H, and R–N≡C) and the formation of sp{sup 3} carbon defects with signatures at ∼1250–1300 cm{sup −1}. Raman analysis revealed that, while the length of polyaromatic units is only slightly modified, the introduction of defects leads to structural amorphization. Finally, tholins were measured via secondary ion mass spectrometry to quantify the D, H, and C elemental abundances in the irradiated versus non-irradiated areas. Isotopic analysis revealed that significant D-enrichment is induced by X-ray irradiation. Our results are compared to previous experimental studies involving the thermal degradation and electron irradiation of organics. The penetration depth of soft X-rays in μ m-sized tholins leads to volume rather than surface modifications: lower-energy X-rays (0.5 keV) induce a larger D-enrichment than 1.3 keV X-rays, reaching a plateau for doses larger than 5 × 10{sup 27} eV cm{sup −3}. Synchrotron fluences fall within the expected soft X-ray fluences in protoplanetary disks, and thus provide evidence of a new non-thermal pathway to deuterium fractionation of

  13. Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy.

    Science.gov (United States)

    Jiang, Huaidong; Song, Changyong; Chen, Chien-Chun; Xu, Rui; Raines, Kevin S; Fahimian, Benjamin P; Lu, Chien-Hung; Lee, Ting-Kuo; Nakashima, Akio; Urano, Jun; Ishikawa, Tetsuya; Tamanoi, Fuyuhiko; Miao, Jianwei

    2010-06-22

    Microscopy has greatly advanced our understanding of biology. Although significant progress has recently been made in optical microscopy to break the diffraction-limit barrier, reliance of such techniques on fluorescent labeling technologies prohibits quantitative 3D imaging of the entire contents of cells. Cryoelectron microscopy can image pleomorphic structures at a resolution of 3-5 nm, but is only applicable to thin or sectioned specimens. Here, we report quantitative 3D imaging of a whole, unstained cell at a resolution of 50-60 nm by X-ray diffraction microscopy. We identified the 3D morphology and structure of cellular organelles including cell wall, vacuole, endoplasmic reticulum, mitochondria, granules, nucleus, and nucleolus inside a yeast spore cell. Furthermore, we observed a 3D structure protruding from the reconstructed yeast spore, suggesting the spore germination process. Using cryogenic technologies, a 3D resolution of 5-10 nm should be achievable by X-ray diffraction microscopy. This work hence paves a way for quantitative 3D imaging of a wide range of biological specimens at nanometer-scale resolutions that are too thick for electron microscopy.

  14. Measurements of internal stresses in bond coating using high energy x-rays from synchrotron radiation source

    CERN Document Server

    Suzuki, K; Akiniwa, Y; Nishio, K; Kawamura, M; Okado, H

    2002-01-01

    Thermal barrier coating (TBC) techniques enable high temperature combustion of turbines made of Ni-base alloy. TBC is made of zirconia top coating on NiCoCrAlY bond coating. The internal stresses in the bond coating play essential role in the delamination or fracture of TBC in service. With the X-rays from laboratory equipments, it is impossible to measure nondestructively the internal stress in the bond coating under the top coating. synchrotron radiations with a high energy and high brightness have a large penetration depth as compared with laboratory X-rays. Using the high energy X-rays from the synchrotron radiation, it is possible to measure the internal stress in the bond coating through the top coating. In this study, the furnace, which can heat a specimen to 1473 K, was developed for the stress measurement of the thermal barrier coatings. The internal stresses in the bond coating were measured at the room temperature, 773 K, 1073 K and 1373 K by using the 311 diffraction from Ni sub 3 Al with about 73...

  15. Characterization of porosity in a 19th century painting ground by synchrotron radiation X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gervais, Claire [Swiss Institute for Art Research (SIK-ISEA), Zuerich (Switzerland); Bern University of the Arts, Bern (Switzerland); Boon, Jaap J. [Swiss Institute for Art Research (SIK-ISEA), Zuerich (Switzerland); JAAP Enterprise for MOLART Advice, Amsterdam (Netherlands); Marone, Federica [Paul Scherrer Institute, Swiss Light Source (SLS), Villigen (Switzerland); Ferreira, Ester S.B. [Swiss Institute for Art Research (SIK-ISEA), Zuerich (Switzerland)

    2013-04-15

    The study of the early oeuvre of the Swiss painter Cuno Amiet (1868-1961) has revealed that, up to 1907, many of his grounds were hand applied and are mainly composed of chalk, bound in protein. These grounds are not only lean and absorbent, but also, as Synchrotron radiation X-ray microtomography has shown, porous. Our approach to the characterization of pore structure and quantity, their connectivity, and homogeneity is based on image segmentation and application of a clustering algorithm to high-resolution X-ray tomographic data. The issues associated with the segmentation of the different components of a ground sample based on X-ray imaging data are discussed. The approach applied to a sample taken from ''Portrait of Max Leu'' (1899) by Amiet revealed the presence of three sublayers within the ground with distinct porosity features, which had not been observed optically in cross-section. The upper and lower layers are highly porous with important connectivity and thus prone to water uptake/storage. The middle layer however shows low and nonconnected porosity at the resolution level of the X-ray tomography images, so that few direct water absorption paths through the entire sample exist. The potential of the method to characterize porosity and to understand moisture-related issues in paint layer degradation are discussed. (orig.)

  16. Application of synchrotron x-ray microbeam spectroscopy to the determination of metal distribution and speciation in biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Punshon, T.; Jackson, B.P.; Lanzirotti, A.; Hopkins, W.A.; Bertsch, P.M.; Burger, J. [Rutgers State University, Piscataway, NJ (United States). Division of Life Science

    2005-07-01

    Resolving the distribution and speciation of metal(loid)s within biological environmental samples is essential for understanding bioavailability, trophic transfer, and environmental risk. We used synchrotron x-ray microspectroscopy to analyze a range of samples that had been exposed to metal(loid) contamination. Microprobe x-ray fluorescence elemental mapping ({mu} SXRF) of decomposing rhizosphere microcosms consisting of Ni- and U-contaminated soil planted with wheat (Triticum aestivum) showed the change in Ni and U distribution over a 27-day period, with a progressive movement of U into decaying tissue. mu SXRF maps showed the micrometer-scale distribution of Ca, Mn, Fe, Ni, and U in roots of willow (Salix nigra L.) growing on a former radiological settling pond, with U located outside of the epidermis and Ni inside the cortex. X-ray computed tomography (CMT) of woody tissue of this same affected willow showed that small points of high Ni fluorescence observed previously are actually a Ni-rich substance contained within an individual xylem vessel. {mu} SXRF and x-ray absorption near-edge spectroscopy (XANES) linked the elevated Se concentrations in sediments of a coal fly ash settling pond with oral deformities of bullfrog tadpoles (Rana catesbeiana). Se distribution was localized within the deformed mouthparts, and with an oxidation state of Se (-II) consistent with organo-Se compounds, it suggests oral deformities are caused by incorporation of Se into proteins.

  17. Characterization of porosity in a 19th century painting ground by synchrotron radiation X-ray tomography

    International Nuclear Information System (INIS)

    Gervais, Claire; Boon, Jaap J.; Marone, Federica; Ferreira, Ester S.B.

    2013-01-01

    The study of the early oeuvre of the Swiss painter Cuno Amiet (1868-1961) has revealed that, up to 1907, many of his grounds were hand applied and are mainly composed of chalk, bound in protein. These grounds are not only lean and absorbent, but also, as Synchrotron radiation X-ray microtomography has shown, porous. Our approach to the characterization of pore structure and quantity, their connectivity, and homogeneity is based on image segmentation and application of a clustering algorithm to high-resolution X-ray tomographic data. The issues associated with the segmentation of the different components of a ground sample based on X-ray imaging data are discussed. The approach applied to a sample taken from ''Portrait of Max Leu'' (1899) by Amiet revealed the presence of three sublayers within the ground with distinct porosity features, which had not been observed optically in cross-section. The upper and lower layers are highly porous with important connectivity and thus prone to water uptake/storage. The middle layer however shows low and nonconnected porosity at the resolution level of the X-ray tomography images, so that few direct water absorption paths through the entire sample exist. The potential of the method to characterize porosity and to understand moisture-related issues in paint layer degradation are discussed. (orig.)

  18. Chemical component mapping of pulverized toner by scanning transmission X-ray microscopy.

    Science.gov (United States)

    Iwata, Noriyuki; Tani, Katsuhiko; Watada, Atsuyuki; Ikeura-Sekiguchi, Hiromi; Araki, Toru; Hitchcock, Adam P

    2006-01-01

    Toners are micron scale polymer particles constructed of several kinds of resin, pigment, wax, etc. Transmission electron microscopy (TEM) is used for observation of the dispersion of the component materials in toners, but TEM images cannot identify simultaneously all components. Scanning transmission X-ray microscopy (STXM) not only provides simultaneous observation of spatial distributions of wax, resin and carbon black in toners, but it also provides detailed, quantitative, chemical information about the wax and resin environments through chemical component maps derived from multiple energy image sequences. The capabilities of STXM for toner analysis are illustrated by results of a study of a toner for black/white copy/print applications.

  19. Characterisation of archaeological glass mosaics by electron microscopy and X-ray microanalysis

    International Nuclear Information System (INIS)

    Roe, M; Plant, S; Henderson, J; Andreescu-Treadgold, I; Brown, P D

    2006-01-01

    The combined techniques of scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy (TEM) and selected area electron diffraction are used to characterise the microstructures of opaque coloured glass mosaics from a mediaeval church in Torcello, Italy. Comparison of MgO/K 2 O ratios allows distinction between mediaeval and modern glass artefacts to be made. TEM investigation of inclusions indicates that relict silica is responsible for the speckled appearance of an impure mediaeval glass artefact, whilst a fine scale dispersion of elemental Cu nanoparticles is considered responsible for the orange-red colouration of a modern glass artefact

  20. Structure of ordered polyelectrolyte films from atomic-force microscopy and X-ray reflectivity data

    International Nuclear Information System (INIS)

    Belyaev, V.V.; Tolstikhina, A.L.; Stepina, N.D.; Kayushina, R.L.

    1998-01-01

    The possible application of atomic-force microscopy and X-ray reflectometry methods to structural studies of polyelectrolyte films obtained due to alternating adsorption of oppositely charged polyanion [sodium polysterenesulfonate (PSS)] and polycation [poly(allylamine) hydrochloride (PAA)] layers on solid substrates has been considered. The atomic-force microscopy study has revealed the characteristic features of the surface topography of samples consisting of different numbers of polyelectrolyte layers deposited from solutions characterized by different ionic strength values. It is shown that the shape of the reflectivity curves obtained from thin polyelectrolyte films depends on their surface structure

  1. Using Dark Field X-Ray Microscopy To Study In-Operando Yttria Stabilized Zirconia Electrolyte Supported Solid Oxide Cell

    DEFF Research Database (Denmark)

    Sierra, J. X.; Poulsen, H. F.; Jørgensen, P. S.

    Dark Field X-Ray Microscopy is a promising technique to study the structure of materials in nanometer length scale. In combination with x-ray diffraction technique, the microstructure evolution of Yttria Stabilized Zirconia electrolyte based solid oxide cell was studied running at extreme operati...

  2. Soft X-ray microscopy to 25 nm with applications to biology and magnetic materials

    CERN Document Server

    Denbeaux, G; Chao, W; Eimueller, T; Johnson, L; Köhler, M; Larabell, C; Legros, M; Fischer, P; Pearson, A; Schuetz, G; Yager, D; Attwood, D

    2001-01-01

    We report both technical advances in soft X-ray microscopy (XRM) and applications furthered by these advances. With new zone plate lenses we record test pattern features with good modulation to 25 nm and smaller. In combination with fast cryofixation, sub-cellular images show very fine detail previously seen only in electron microscopy, but seen here in thick, hydrated, and unstained samples. The magnetic domain structure is studied at high spatial resolution with X-ray magnetic circular dichroism (X-MCD) as a huge element-specific magnetic contrast mechanism, occurring e.g. at the L sub 2 sub , sub 3 edges of transition metals. It can be used to distinguish between in-plane and out-of-plane contributions by tilting the sample. As XRM is a photon based technique, the magnetic images can be obtained in unlimited varying external magnetic fields. The images discussed have been obtained at the XM-1 soft X-ray microscope on beamline 6.1 at the Advanced Light Source in Berkeley.

  3. Analyses of the mouthpart kinematics in Periplaneta americana (Blattodea, Blattidae) using synchrotron-based X-ray cineradiography.

    Science.gov (United States)

    Schmitt, Christian; Rack, Alexander; Betz, Oliver

    2014-09-01

    The kinematics of the biting and chewing mouthparts of insects is a complex interaction of various components forming multiple jointed chains. The non-invasive technique of in vivo cineradiography by means of synchrotron radiation was employed to elucidate the motion cycles of the mouthparts in the cockroach Periplaneta americana. Digital X-ray footage sequences were used in order to calculate pre-defined angles and distances, each representing characteristic aspects of the movement pattern. We were able to analyze the interactions of the mouthpart components and to generate a functional model of maxillary movement by integrating kinematic results, morphological dissections and fluorescence microscopy. During the opening and closing cycles, which take about 450-500 ms on average, we found strong correlations between the measured maxillary and mandibular angles, indicating a strong neural coordination of these movements. This is manifested by strong antiphasic courses of the maxillae and the mandibles, antiphasic patterns of the rotation of the cardo about its basic articulation at the head and by the deflection between the cardo and stipes. In our functional model of the maxilla, its movement pattern is explained by the antagonistic activity of four adductor-promotor muscles and two abductor-remotor muscles. However, beyond the observed intersegmental and bilateral stereotypy, certain amounts of variation across subsequent cycles within a sequence were observed with respect to the degree of correlation between the various mouthparts, the maximum, minimum and time course of the angular movements. Although generally correlated with the movement pattern of the mandibles and the maxillary cardo-stipes complex, such plastic behaviour was especially observed in the maxillary palpi and the labium. © 2014. Published by The Company of Biologists Ltd.

  4. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    Science.gov (United States)

    Klug, Jeffrey A.; Weimer, Matthew S.; Emery, Jonathan D.; Yanguas-Gil, Angel; Seifert, Sönke; Schlepütz, Christian M.; Martinson, Alex B. F.; Elam, Jeffrey W.; Hock, Adam S.; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

  5. Phased-Resolved Strain Measuremetns in Hydrated Ordinary Portland Cement Using Synchrotron x-Rays (Prop. 2003-033)

    International Nuclear Information System (INIS)

    Biernacki, Joseph J.; Watkins, Thomas R.; Parnham, C.J.; Hubbard, Camden R.; Bai, J.

    2006-01-01

    X-ray diffraction methods developed for the determination of residual stress states in crystalline materials have been applied to study residual strains and strains because of mechanical loading of ordinary portland cement paste. Synchrotron X-rays were used to make in situ measurements of interplanar spacings in the calcium hydroxide (CH) phase of hydrated neat portland cement under uniaxial compression. The results indicate that strains on the order of 1/100 000 can be resolved providing an essentially new technique by which to measure the phase-resolved meso-scale mechanical behavior of cement under different loading conditions. Evaluation of these strain data in view of published elastic parameters for CH suggests that the CH carries a large fraction of the applied stress and that plastic interactions with the matrix are notable.

  6. Fabrication Of Supersmooth Spherical Quartz Blank For Soft X-Ray Synchrotron Radiation Grating Monochromator In China

    Science.gov (United States)

    Changxin, Zhou; Deming, Shu; Wuming, Liu

    1989-07-01

    A spherical grating monochromator (SGM) has been designed and installed in beamline 48913 at Beijing Electron Positron Collider (BEPC) for synchrotron radiation soft x-ray photoemission experiments. There are four laminar gratings in this monochromator to covering the region of 10 -1100ev. On three of them, which covering the soft x-ray range, a supersmooth blank surface with large radial (57M) and high figuring accuracy (>λ/50) is required to suit the monochromator high resolving power desgn (>2000) and reduce the beam power loss. In this paper, the methods of fabrication and metrology has been described, the test results of this plank using WYKO and ZYGO show that the surface roughness of this blank is about 2Å RMS with 0.014 figure tolerance.

  7. Magnetic imaging with full-field soft X-ray microscopies

    International Nuclear Information System (INIS)

    Fischer, Peter; Im, Mi-Young; Baldasseroni, Chloe; Bordel, Catherine; Hellman, Frances; Lee, Jong-Soo; Fadley, Charles S.

    2013-01-01

    Progress toward a fundamental understanding of magnetism continues to be of great scientific interest and high technological relevance. To control magnetization on the nanoscale, external magnetic fields and spin polarized currents are commonly used. In addition, novel concepts based on spin manipulation by electric fields or photons are emerging which benefit from advances in tailoring complex magnetic materials. Although the nanoscale is at the very origin of magnetic behavior, there is a new trend toward investigating mesoscale magnetic phenomena, thus adding complexity and functionality, both of which will become crucial for future magnetic devices. Advanced analytical tools are thus needed for the characterization of magnetic properties spanning the nano- to the meso-scale. Imaging magnetic structures with high spatial and temporal resolution over a large field of view and in three dimensions is therefore a key challenge. A variety of spectromicroscopic techniques address this challenge by taking advantage of variable-polarization soft X-rays, thus enabling X-ray dichroism effects provide magnetic contrast. These techniques are also capable of quantifying in an element-, valence- and site-sensitive way the basic properties of ferro(i)- and antiferro-magnetic systems, such as spin and orbital moments, spin configurations from the nano- to the meso-scale and spin dynamics with sub-ns time resolution. This paper reviews current achievements and outlines future trends with one of these spectromicroscopies, magnetic full field transmission soft X-ray microscopy (MTXM) using a few selected examples of recent research on nano- and meso-scale magnetic phenomena. The complementarity of MTXM to X-ray photoemission electron microscopy (X-PEEM) is also emphasized

  8. Magnetic imaging with full-field soft X-ray microscopies

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Peter, E-mail: PJFischer@lbl.gov [Center for X-ray Optics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Im, Mi-Young [Center for X-ray Optics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Baldasseroni, Chloe [Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720 (United States); Bordel, Catherine; Hellman, Frances [Department of Physics, University of California Berkeley, Berkeley, CA 94720 (United States); Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270 (United States); Lee, Jong-Soo [Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of); Fadley, Charles S. [Department of Physics, University of California Davis, Davis, CA 95616 (United States); Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270 (United States)

    2013-08-15

    Progress toward a fundamental understanding of magnetism continues to be of great scientific interest and high technological relevance. To control magnetization on the nanoscale, external magnetic fields and spin polarized currents are commonly used. In addition, novel concepts based on spin manipulation by electric fields or photons are emerging which benefit from advances in tailoring complex magnetic materials. Although the nanoscale is at the very origin of magnetic behavior, there is a new trend toward investigating mesoscale magnetic phenomena, thus adding complexity and functionality, both of which will become crucial for future magnetic devices. Advanced analytical tools are thus needed for the characterization of magnetic properties spanning the nano- to the meso-scale. Imaging magnetic structures with high spatial and temporal resolution over a large field of view and in three dimensions is therefore a key challenge. A variety of spectromicroscopic techniques address this challenge by taking advantage of variable-polarization soft X-rays, thus enabling X-ray dichroism effects provide magnetic contrast. These techniques are also capable of quantifying in an element-, valence- and site-sensitive way the basic properties of ferro(i)- and antiferro-magnetic systems, such as spin and orbital moments, spin configurations from the nano- to the meso-scale and spin dynamics with sub-ns time resolution. This paper reviews current achievements and outlines future trends with one of these spectromicroscopies, magnetic full field transmission soft X-ray microscopy (MTXM) using a few selected examples of recent research on nano- and meso-scale magnetic phenomena. The complementarity of MTXM to X-ray photoemission electron microscopy (X-PEEM) is also emphasized.

  9. Analysis of wood microstructure by synchrotron radiation-based x-ray microtomography (SRμCT)

    Science.gov (United States)

    Lautner, Silke; Beckmann, Felix

    2012-10-01

    Wood is a versatile tissue complex composed of different cell types such as tracheids, fibers, vessels and parenchyma cells, that each fulfills specific tasks within the woody body of a tree. However, even within a tree genus wood structure can differ significantly due to either biotic or abiotic stress factors occurring during the growth season, or due to cultivar specific growth characteristics. Typical tools for structural analysis of wood so far are scanning electron microscopy (SEM) and light microscopy, allowing measurements of sectional planes. However, the detection of boundary surfaces between neighboring cells and interconnectivity can only be observed in a restricted dimension. In our investigations at DESY, Hamburg, we applied SRμCT for characterization of small wood samples of poplar (Populus trichocarpa) to gain a three dimensional image of a small scale sample that allows us to visualize size, volume, form and interconnectivity of the cells in a non-destructive way. Dependent on sample size, high resolution of micro-structure can be gained. This technique is appropriate to calculate volumes, e.g. of water transported in vessel cells. Since it is possible to reconstruct the vessel network within a stem section, effects of wounding or other environmental stresses on the xylem structure in general, and particularly on the water transport system, might be detected and visualized in 3D by synchrotron radiation-based microtomography. Hence this method is a most promising tool for future investigations in the field of plant physiology.

  10. Soft X-ray scanning microscopy: its practical use for elemental mapping at the NSLS U15 beamline

    International Nuclear Information System (INIS)

    Jacobsen, C.; Kenney, J.M.; Kirz, J.; McNulty, I.; Rosser, R.J.

    1986-01-01

    Scanning soft X-ray microscopy offers several advantages over other forms of X-ray microscopy. It subjects the specimen to the lower doses of radiation and by digitally recording the image, gives direct quantitative information on the absorption of the specimen as a function of position. Elemental maps can be produced easily by comparing images taken at different wavelengths, chosen to exploit X-ray absorption edges or resonances. This technique was used to explore the distribution of calcium in 0.2 μm-thick bone specimens, detecting concentrations of 5#percent# by weight, with a spatial resolution of 0.2 μm. Progress in X-ray sources in the form of undulators and in X-ray optics indicates that soon the range of elements that can be mapped will be extended and the spatial resolution and elemental sensitivity will be improved by an order of magnitude. (author)

  11. Probing Stress States in Silicon Nanowires During Electrochemical Lithiation Using In Situ Synchrotron X-Ray Microdiffraction

    Directory of Open Access Journals (Sweden)

    Imran Ali

    2018-04-01

    Full Text Available Silicon is considered as a promising anode material for the next-generation lithium-ion battery (LIB due to its high capacity at nanoscale. However, silicon expands up to 300% during lithiation, which induces high stresses and leads to fractures. To design silicon nanostructures that could minimize fracture, it is important to understand and characterize stress states in the silicon nanostructures during lithiation. Synchrotron X-ray microdiffraction has proven to be effective in revealing insights of mechanical stress and other mechanics considerations in small-scale crystalline structures used in many important technological applications, such as microelectronics, nanotechnology, and energy systems. In the present study, an in situ synchrotron X-ray microdiffraction experiment was conducted to elucidate the mechanical stress states during the first electrochemical cycle of lithiation in single-crystalline silicon nanowires (SiNWs in an LIB test cell. Morphological changes in the SiNWs at different levels of lithiation were also studied using scanning electron microscope (SEM. It was found from SEM observation that lithiation commenced predominantly at the top surface of SiNWs followed by further progression toward the bottom of the SiNWs gradually. The hydrostatic stress of the crystalline core of the SiNWs at different levels of electrochemical lithiation was determined using the in situ synchrotron X-ray microdiffraction technique. We found that the crystalline core of the SiNWs became highly compressive (up to -325.5 MPa once lithiation started. This finding helps unravel insights about mechanical stress states in the SiNWs during the electrochemical lithiation, which could potentially pave the path toward the fracture-free design of silicon nanostructure anode materials in the next-generation LIB.

  12. Gadolinium Deposition in Nephrogenic Systemic Fibrosis: An Examination of Tissue using Synchrotron X-ray Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    High, W.; Ranville, J; Brown, M; Punshon, T; Lanzirotti, A; Jackson, B

    2010-01-01

    Nephrogenic systemic fibrosis is a fibrosing disorder associated with gadolinium (Gd)-based contrast agents dosed during renal insufficiency. In two patients, Gd deposition in tissue affected by nephrogenic systemic fibrosis was quantified using inductively coupled plasma mass spectrometry. The presence of Gd was confirmed and mapped using synchrotron x-ray fluorescence spectroscopy. Affected skin and soft tissue from the lower extremity demonstrated 89 and 209 ppm ({micro}g/g, dry weight, formalin fixed) in cases 1 and 2, respectively. In case 2, the same skin and soft tissue was retested after paraffin embedding, with the fat content removed by xylene washes, and this resulted in a measured value of 189 ppm ({micro}g/g, dry weight, paraffin embedded). Synchrotron x-ray fluorescence spectroscopy confirmed Gd in the affected tissue of both cases, and provided high-sensitivity and high-resolution spatial mapping of Gd deposition. A gradient of Gd deposition in tissue correlated with fibrosis and cellularity. Gd deposited in periadnexal locations within the skin, including hair and eccrine ducts, where it colocalized to areas of high calcium and zinc content. Because of the difficulty in obtaining synchrotron x-ray fluorescence spectroscopy scans, tissue from only two patients were mapped. A single control with kidney disease and gadolinium-based contrast agent exposure did not contain Gd. Gd content on a gravimetric basis was impacted by processing that removed fat and altered the dry weight of the specimens. Gradients of Gd deposition in tissue corresponded to fibrosis and cellularity. Adnexal deposition of Gd correlated with areas of high calcium and zinc content.

  13. Time-resolved X-ray transmission microscopy on magnetic microstructures

    International Nuclear Information System (INIS)

    Puzic, Aleksandar

    2007-01-01

    Three excitation schemes were designed for stroboscopic imaging of magnetization dynamics with time-resolved magnetic transmission X-ray microscopy (TR-MTXM). These techniques were implemented into two types of X-ray microscopes, namely the imaging transmission X-ray microscope (ITXM) and the scanning transmission X-ray microscope (STXM), both installed at the electron storage ring of the Advanced Light Source in Berkeley, USA. Circular diffraction gratings (Fresnel zone plates) used in both microscopes as focusing and imaging elements presently allow for lateral resolution down to 30 nm. Magnetic imaging is performed by using the X-ray magnetic circular dichroism (XMCD) as element specific contrast mechanism. The developed methods have been successfully applied to the experimental investigation of magnetization dynamics in ferromagnetic microstructures. A temporal resolution well below 100 ps was achieved. A conventional pump-probe technique was implemented first. The dynamic response of the magnetization excited by a broadband pulsed magnetic field was imaged spatially resolved using focused X-ray flashes. As a complementary method, the spatially resolved ferromagnetic resonance (SR-FMR) technique was developed for experimental study of magnetization dynamics in the frequency domain. As a third excitation mode, the burst excitation was implemented. The performance and efficiency of the developed methods have been demonstrated by imaging the local magnetization dynamics in laterally patterned ferromagnetic thin-film elements and three-layer stacks. The existence of multiple eigenmodes in the excitation spectra of ferromagnetic microstructures has been verified by using the pump-probe technique. Magnetostatic spin waves were selectively excited and detected with a time resolution of 50 ps using the SR-FMR technique. Thorough analysis of 20 in most cases independently prepared samples has verified that vortices which exhibit a low-amplitude switching of their core

  14. Time-resolved X-ray transmission microscopy on magnetic microstructures; Zeitaufloesende Roentgentransmissionsmikroskopie an magnetischen Mikrostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Puzic, Aleksandar

    2007-10-23

    Three excitation schemes were designed for stroboscopic imaging of magnetization dynamics with time-resolved magnetic transmission X-ray microscopy (TR-MTXM). These techniques were implemented into two types of X-ray microscopes, namely the imaging transmission X-ray microscope (ITXM) and the scanning transmission X-ray microscope (STXM), both installed at the electron storage ring of the Advanced Light Source in Berkeley, USA. Circular diffraction gratings (Fresnel zone plates) used in both microscopes as focusing and imaging elements presently allow for lateral resolution down to 30 nm. Magnetic imaging is performed by using the X-ray magnetic circular dichroism (XMCD) as element specific contrast mechanism. The developed methods have been successfully applied to the experimental investigation of magnetization dynamics in ferromagnetic microstructures. A temporal resolution well below 100 ps was achieved. A conventional pump-probe technique was implemented first. The dynamic response of the magnetization excited by a broadband pulsed magnetic field was imaged spatially resolved using focused X-ray flashes. As a complementary method, the spatially resolved ferromagnetic resonance (SR-FMR) technique was developed for experimental study of magnetization dynamics in the frequency domain. As a third excitation mode, the burst excitation was implemented. The performance and efficiency of the developed methods have been demonstrated by imaging the local magnetization dynamics in laterally patterned ferromagnetic thin-film elements and three-layer stacks. The existence of multiple eigenmodes in the excitation spectra of ferromagnetic microstructures has been verified by using the pump-probe technique. Magnetostatic spin waves were selectively excited and detected with a time resolution of 50 ps using the SR-FMR technique. Thorough analysis of 20 in most cases independently prepared samples has verified that vortices which exhibit a low-amplitude switching of their core

  15. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  16. Transmission x-ray microscopy at Diamond-Manchester I13 Imaging Branchline

    Energy Technology Data Exchange (ETDEWEB)

    Vila-Comamala, Joan, E-mail: joan.vila.comamala@gmail.com; Wagner, Ulrich; Bodey, Andrew J.; Garcia-Fernandez, Miryam; Rau, Christoph [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Bosgra, Jeroen; David, Christian [Paul Scherrer Institut, 5232 PSI-Villigen (Switzerland); Eastwood, David S. [Manchester X-ray Imaging Facility, School of Materials, University of Manchester, Manchester M13 9PL, UK and Research Complex at Harwell, Harwell Campus, Didcot OX11 0FA (United Kingdom)

    2016-01-28

    Full-field Transmission X-ray Microscopy (TXM) has been shown to be a powerful method for obtaining quantitative internal structural and chemical information from materials at the nanoscale. The installation of a Full-field TXM station will extend the current microtomographic capabilities of the Diamond-Manchester I13 Imaging Branchline at Diamond Light Source (UK) into the sub-100 nm spatial resolution range using photon energies from 8 to 14 keV. The dedicated Full-field TXM station will be built in-house with contributions of Diamond Light Source support divisions and via collaboration with the X-ray Optics Group of Paul Scherrer Institut (Switzerland) which will develop state-of-the-art diffractive X-ray optical elements. Preliminary results of the I13 Full-field TXM station are shown. The Full-field TXM will become an important Diamond Light Source direct imaging asset for material science, energy science and biology at the nanoscale.

  17. Transmission x-ray microscopy at Diamond-Manchester I13 Imaging Branchline

    International Nuclear Information System (INIS)

    Vila-Comamala, Joan; Wagner, Ulrich; Bodey, Andrew J.; Garcia-Fernandez, Miryam; Rau, Christoph; Bosgra, Jeroen; David, Christian; Eastwood, David S.

    2016-01-01

    Full-field Transmission X-ray Microscopy (TXM) has been shown to be a powerful method for obtaining quantitative internal structural and chemical information from materials at the nanoscale. The installation of a Full-field TXM station will extend the current microtomographic capabilities of the Diamond-Manchester I13 Imaging Branchline at Diamond Light Source (UK) into the sub-100 nm spatial resolution range using photon energies from 8 to 14 keV. The dedicated Full-field TXM station will be built in-house with contributions of Diamond Light Source support divisions and via collaboration with the X-ray Optics Group of Paul Scherrer Institut (Switzerland) which will develop state-of-the-art diffractive X-ray optical elements. Preliminary results of the I13 Full-field TXM station are shown. The Full-field TXM will become an important Diamond Light Source direct imaging asset for material science, energy science and biology at the nanoscale

  18. Transmission x-ray microscopy at Diamond-Manchester I13 Imaging Branchline

    Science.gov (United States)

    Vila-Comamala, Joan; Bosgra, Jeroen; Eastwood, David S.; Wagner, Ulrich; Bodey, Andrew J.; Garcia-Fernandez, Miryam; David, Christian; Rau, Christoph

    2016-01-01

    Full-field Transmission X-ray Microscopy (TXM) has been shown to be a powerful method for obtaining quantitative internal structural and chemical information from materials at the nanoscale. The installation of a Full-field TXM station will extend the current microtomographic capabilities of the Diamond-Manchester I13 Imaging Branchline at Diamond Light Source (UK) into the sub-100 nm spatial resolution range using photon energies from 8 to 14 keV. The dedicated Full-field TXM station will be built in-house with contributions of Diamond Light Source support divisions and via collaboration with the X-ray Optics Group of Paul Scherrer Institut (Switzerland) which will develop state-of-the-art diffractive X-ray optical elements. Preliminary results of the I13 Full-field TXM station are shown. The Full-field TXM will become an important Diamond Light Source direct imaging asset for material science, energy science and biology at the nanoscale.

  19. Simulation of image formation in x-ray coded aperture microscopy with polycapillary optics.

    Science.gov (United States)

    Korecki, P; Roszczynialski, T P; Sowa, K M

    2015-04-06

    In x-ray coded aperture microscopy with polycapillary optics (XCAMPO), the microstructure of focusing polycapillary optics is used as a coded aperture and enables depth-resolved x-ray imaging at a resolution better than the focal spot dimensions. Improvements in the resolution and development of 3D encoding procedures require a simulation model that can predict the outcome of XCAMPO experiments. In this work we introduce a model of image formation in XCAMPO which enables calculation of XCAMPO datasets for arbitrary positions of the object relative to the focal plane as well as to incorporate optics imperfections. In the model, the exit surface of the optics is treated as a micro-structured x-ray source that illuminates a periodic object. This makes it possible to express the intensity of XCAMPO images as a convolution series and to perform simulations by means of fast Fourier transforms. For non-periodic objects, the model can be applied by enforcing artificial periodicity and setting the spatial period larger then the field-of-view. Simulations are verified by comparison with experimental data.

  20. Thermal expansion and phase transformations of nitrogen-expanded austenite studied with in situ synchrotron X-ray diffraction

    DEFF Research Database (Denmark)

    Brink, Bastian; Ståhl, Kenny; Christiansen, Thomas Lundin

    2014-01-01

    as a fitting parameter. The stacking fault density is constant for temperatures up to 680 K, whereafter it decreases to nil. Surprisingly, a transition phase with composition M4N (M = Fe, Cr, Ni, Mo) appears for temperatures above 770 K. The linear coefficient of thermal expansion depends on the nitrogen......Nitrogen-expanded austenite, _N, with high and low nitrogen contents was produced from AISI 316 grade stainless steel powder by gaseous nitriding in ammonia/hydrogen gas mixtures. In situ synchrotron X-ray diffraction was applied to investigate the thermal expansion and thermal stability...

  1. Plastic deformation in Al (Cu) interconnects stressed by electromigration and studied by synchrotron polychromatic X-ray microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Light Source; UCLA; Chen, Kai; Chen, Kai; Tamura, Nobumichi; Valek, Bryan C.; Tu, King-Ning

    2008-05-14

    We report here an in-depth synchrotron radiation based white beam X-ray microdiffraction study of plasticity in individual grains of an Al (Cu) interconnect during the early stage of electromigration. The study shows a rearrangement of the geometrically necessary dislocations (GND) in bamboo typed grains during that stage. We find that about 90percent of the GNDs are oriented so that their line direction is the closest to the current flow direction. In non-bamboo typed grains, the Laue peak positions shift, indicating that the grains rotate. An analysis in terms of force directions has been carried out and is consistent with observed electromigration induced grain rotation and bending.

  2. X-ray holographic microscopy using the atomic-force microscope

    International Nuclear Information System (INIS)

    Howells, M.R.; Jacobsen, C.J.; Lindaas, S.

    1993-09-01

    The present authors have been seeking for some time to improve the resolution of holographic microscopy and have engaged in a continuing series of experiments using the X1A soft x-ray undulator beam line at Brookhaven. The principle strategy for pushing the resolution lower in these experiments has been the use of polymer resists as x-ray detectors and the primary goal has been to develop the technique to become useful for examining wet biological material. In the present paper the authors report on progress in the use of resist for high-spatial-resolution x-ray detection. This is the key step in in-line holography and the one which sets the ultimate limit to the image resolution. The actual recording has always been quite easy, given a high-brightness undulator source, but the difficult step was the readout of the recorded pattern. The authors describe in what follows how they have built a special instrument: an atomic force microscope (AFM) to read holograms recorded in resist. They report the technical reasons for building, rather than buying, such an instrument and they give details of the design and performance of the device. The authors also describe the first attempts to use the system for real holography and the authors show results of both recorded holograms and the corresponding reconstructed images. Finally, the authors try to analyze the effect that these advances are likely to have on the future prospects for success in applications of x-ray holography and the degree to which the other technical systems that are needed for such success are available or within reach

  3. Application of soft X-ray microscopy to environmental microbiology of hydrosphere

    Science.gov (United States)

    Takemoto, K.; Yoshimura, M.; Ohigashi, T.; Inagaki, Y.; Namba, H.; Kihara, H.

    2017-06-01

    Microstructures of unprocessed filamentous cyanobacterium, Pseudanabaena foetida sp., producing a musty smell were observed using soft X-ray microscopy. Carbon-enriched structures and granules as well as oxygen-enriched granules which have been already reported were observed. Except for early log growth phase, the oxygen-enriched granules were observed. However, the carbon-enriched structures were observed throughout log growth phase. The result suggests there is a relationship between the oxygen-enriched granules and 2-methylisoborneol (2-MIB) productivity, since the 2-MIB productivity of each cell is increased depending on the culture period in log growth phase.

  4. Zernike phase contrast in high-energy x-ray transmission microscopy based on refractive optics.

    Science.gov (United States)

    Falch, Ken Vidar; Lyubomirsky, Mikhail; Casari, Daniele; Snigirev, Anatoly; Snigireva, Irina; Detlefs, Carsten; Michiel, Marco Di; Lyatun, Ivan; Mathiesen, Ragnvald H

    2018-01-01

    The current work represents the first implementation of Zernike phase contrast for compound refractive lens based x-ray microscopy, and also the first successful Zernike phase contrast experiment at photon energies above 12 keV. Phase contrast was achieved by fitting a compound refractive lens with a circular phase plate. The resolution is demonstrated to be sub-micron, and can be improved using already existing technology. The possibility of combining the technique with polychromatic radiation is considered, and a preliminary test experiment was performed with positive results. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Scanning electron microscopy and X-ray spectroscopy applied to mycelial phase of sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    M. Thibaut

    1975-04-01

    Full Text Available Scanning electron microscopy applied to the mycelial phase of Sporothrix schenckii shows a matted mycelium with conidia of a regular pattern. X-Ray microanalysis applied in energy dispersive spectroscopy and also in wavelength dispersive spectroscopy reveals the presence of several elements of Mendeleef's classification.Sporothrix schenckii foi estudado em microscopia eletrônica. Foram observados caracteres das hífas e dos esporos, vários elementos da classificação periódica foram postos em evidência graças à micro-análise a raios X.

  6. Application of soft X-ray microscopy to environmental microbiology of hydrosphere

    International Nuclear Information System (INIS)

    Takemoto, K; Yoshimura, M; Namba, H; Kihara, H; Ohigashi, T; Inagaki, Y

    2017-01-01

    Microstructures of unprocessed filamentous cyanobacterium, Pseudanabaena foetida sp., producing a musty smell were observed using soft X-ray microscopy. Carbon-enriched structures and granules as well as oxygen-enriched granules which have been already reported were observed. Except for early log growth phase, the oxygen-enriched granules were observed. However, the carbon-enriched structures were observed throughout log growth phase. The result suggests there is a relationship between the oxygen-enriched granules and 2-methylisoborneol (2-MIB) productivity, since the 2-MIB productivity of each cell is increased depending on the culture period in log growth phase. (paper)

  7. Nanostructured imaging of biological specimens in vivo with laser plasma X-ray contact microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cefalas, A.C.; Sarantopoulou, E.; Kollia, Z.; Argitis, P.; Tegou, E.; Ford, T.W.; Stead, A.D.; Danson, C.N.; Neely, D.; Kobe, S

    2003-01-15

    Soft X-ray contact microscopy (SXCM) enables the study of the ultrastructure of living hydrated specimens, without the need of dehydration or any other chemical pretreatment, by using suitable pulsed X-ray sources such as laser plasmas. The successful imaging of biological specimen requires the development of sensitive photoresist materials for image recording; these should have capabilities of high-resolution lithography and an extended grey scale. A very sensitive photoresist, used for the first time in SXCM, enabled the biological imaging with the specific source in single-pulse experiments in the water window spectral range. This photoresist is an epoxy novolac-based chemically amplified photoresist (EPR), which has been proven capable of resolving subtenth-micron features. The photoresist response was at least two orders of magnitude 'faster' than polymethyl methacrylate (PMMA), which is the standard resist used so far in SXCM. Atomic force microscopy (AFM) and scanning electron microscopy of the biological specimen images recorded in the resist clearly showed the flagella of the motile green alga, suggesting a lateral resolution better than 100 nm. The resist was also capable of providing height features, as small as 20 nm, in AFM depth profiles and discriminating the flagella intersection areas.

  8. Conventional and Synchrotron X-Ray Topography of Defects in the Core Region of SrLaGaO4

    International Nuclear Information System (INIS)

    Malinowska, A.; Lefeld-Sosnowska, M.; Wieteska, K.; Wierzchowski, W.; Pajaczkowska, A.; Graeff, W.

    2008-01-01

    SrLaGaO 4 single crystals are perspective substrate materials for high temperature superconductors thin films, elements of thermal radiation receivers and other electronic devices. The defect structure of the Czochralski grown SrLaGaO 4 crystal was investigated by means of X-ray topography exploring both conventional and synchrotron sources. The crystal lattice defects in the core region of the crystal were investigated. The regular network of defects arranged in rows only in direction was observed. Owing to high resolution of synchrotron radiation white beam back reflection topographs one can distinguish individual spots forming the lines of the rows. It can be supposed that these elongated rod-like volume defects are located in f100g lattice planes forming a kind of walls. They are built approximately of the same phase as crystal but crystallize at a different moment than a rest of the crystal due to the constitutional supercooling. (authors)

  9. Individual particle analysis of coarse air suspended particulate material by synchrotron radiation X-ray micro fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Melo Junior, Ariston [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Perez, Carlos Alberto [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)]. E-mail: perez@lnls.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br

    2005-07-01

    The purpose of this work is evaluate the size of individual particles present in the air suspended particulate material collected in Campinas, Sao Paulo State, and analyze quantitatively the particles using the synchrotron radiation X-ray micro fluorescence ({mu}-SRXRF) associated with the fundamental parameter method to correct attenuation/absorption effects by the matrix. The particles analyzed have size between 50-10 {mu}m and to perform the spatial distribution a white beam of synchrotron radiation condensed by a conical capillary (13 {mu}m diameter) was used. For the quantitative analysis punctual measures in thin films standards in Mylar subtract were performed. The elements detected were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. (author)

  10. Individual particle analysis of coarse air suspended particulate material by synchrotron radiation X-ray micro fluorescence

    International Nuclear Information System (INIS)

    Moreira, Silvana; Melo Junior, Ariston; Vives, Ana Elisa S. de; Nascimento Filho, Virgilio F.

    2005-01-01

    The purpose of this work is evaluate the size of individual particles present in the air suspended particulate material collected in Campinas, Sao Paulo State, and analyze quantitatively the particles using the synchrotron radiation X-ray micro fluorescence (μ-SRXRF) associated with the fundamental parameter method to correct attenuation/absorption effects by the matrix. The particles analyzed have size between 50-10 μm and to perform the spatial distribution a white beam of synchrotron radiation condensed by a conical capillary (13 μm diameter) was used. For the quantitative analysis punctual measures in thin films standards in Mylar subtract were performed. The elements detected were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. (author)

  11. Multielemental analysis in organic products and seed of linum by X-ray total reflection fluorescence with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Serpa, Renata F.B.; Jesus, Edgar F.O. de; Lopes, Ricardo T. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Instrumentacao Nuclear]. E-mail: renata@lin.ufrj.br; Carmo, Maria da Graca T. do [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Nutricao; Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil]. E-mail: silvana@fec.com.br

    2005-07-01

    The main goal of this study is to determining the trace and major elements levels in organic seeds samples, like soy, rice, bean and in Brazilian and Canadian linum seed by X-ray Total Reflection Fluorescence with Synchrotron Radiation (SR-TXRF). The measurements were carried out in the XRF beamline at the Light Synchrotron National Laboratory (Campinas, Brazil). The organic soy presented major concentrations of P, Ca, Ti, Fe, Ni, Cu, Zn, Br, Rb and Sr than organic bean and rice. Brazilian linum samples presented higher concentrations of S, P, Ca, Ni, Cu, Sr, Zr and Mo than Canadian one, even than organic samples. However potassium, iron and zinc were more pronounced in the Canadian seed of linum (author)

  12. Synchrotron x-ray fluorescence analyses of stratospheric cosmic dust: New results for chondritic and nickel-depleted particles

    International Nuclear Information System (INIS)

    Flynn, G.J.; Sutton, S.R.

    1989-06-01

    Trace element abundance determinations were performed using synchrotron x-ray fluorescence on nine particles collected from the stratosphere and classified as ''cosmic''. Improvements to the Synchrotron Light Source allowed the detection of all elements between Cr and Mo, with the exceptions of Co and As, in our largest particle. The minor and trace element abundance patterns of three Ni-depleted particles were remarkably similar to those of extraterrestrial igneous rocks. Fe/Ni and Fe/Mn ratios suggest that one of these may be of lunar origin. All nine particles exhibited an enrichment in Br, ranging form 1.3 to 38 times the Cl concentration. Br concentrations were uncorrelated with particle size, as would be expected for a surface correlated component acquires from the stratosphere. 27 refs., 4 figs., 2 tabs

  13. A powerful flare from Sgr A* confirms the synchrotron nature of the X-ray emission

    NARCIS (Netherlands)

    Ponti, G.; George, E.; Scaringi, S.; Zhang, S.; Jin, C.; Dexter, J.; Terrier, R.; Clavel, M.; Degenaar, N.; Eisenhauer, F.; Genzel, R.; Gillessen, S.; Goldwurm, A.; Habibi, M.; Haggard, D.; Hailey, C.; Harrison, F.; Merloni, A.; Mori, K.; Nandra, K.; Ott, T.; Pfuhl, O.; Plewa, P.M.; Waisberg, I.

    2017-01-01

    We present the first fully simultaneous fits to the near-infrared (NIR) and X-ray spectral slope (and its evolution) during a very bright flare from Sgr A*, the supermassive black hole at the Milky Way's centre. Our study arises from ambitious multiwavelength monitoring campaigns with XMM-Newton,

  14. Report of the fifth workshop on synchrotron x-ray lithography

    International Nuclear Information System (INIS)

    Williams, G.P.; Godel, J.B.; Brown, G.S.

    1989-01-01

    Semiconductors comprise a greater part of the United States economy than the aircraft, steel and automobile industries combined. In future the semiconductor manufacturing industry will be forced to switch away from present optical manufacturing methods in the early to mid 1990's. X-ray lithography has emerged as the leading contender for continuing production below the 0.4 micron level. Brookhaven National Laboratory began a series of workshops on x-ray lithography in 1986 to examine key issues and in particular to enable United States industry to take advantage of the technical base established in this field. Since accelerators provide the brightest sources for x-ray lithography, most of the research and development to date has taken place at large accelerator-based research centers such as Brookhaven, the University of Wisconsin and Stanford. The goals of this Fifth Brookhaven Workshop were to review progress and goals since the last workshop and to establish a blueprint for the future. The meeting focused on the ''Exposure Tool,'' that is, a term defined as the source plus beamline and stepper. In order to assess the appropriateness of schedules for the development of this tool, other aspects of the required technology such as masks, resists and inspection and repair were also reviewed. To accomplish this, two working groups were set up, one to review the overall aspects of x-ray lithography and set a time frame, the other to focus on sources

  15. Report of the fifth workshop on synchrotron x-ray lithography

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.P.; Godel, J.B. (Brookhaven National Lab., Upton, NY (USA)); Brown, G.S. (Stanford Univ., CA (USA). Stanford Synchrotron Radiation Lab.); Liebmann, W. (Suss (Karl) America, Essex Junction, VT (USA))

    1989-01-01

    Semiconductors comprise a greater part of the United States economy than the aircraft, steel and automobile industries combined. In future the semiconductor manufacturing industry will be forced to switch away from present optical manufacturing methods in the early to mid 1990's. X-ray lithography has emerged as the leading contender for continuing production below the 0.4 micron level. Brookhaven National Laboratory began a series of workshops on x-ray lithography in 1986 to examine key issues and in particular to enable United States industry to take advantage of the technical base established in this field. Since accelerators provide the brightest sources for x-ray lithography, most of the research and development to date has taken place at large accelerator-based research centers such as Brookhaven, the University of Wisconsin and Stanford. The goals of this Fifth Brookhaven Workshop were to review progress and goals since the last workshop and to establish a blueprint for the future. The meeting focused on the Exposure Tool,'' that is, a term defined as the source plus beamline and stepper. In order to assess the appropriateness of schedules for the development of this tool, other aspects of the required technology such as masks, resists and inspection and repair were also reviewed. To accomplish this, two working groups were set up, one to review the overall aspects of x-ray lithography and set a time frame, the other to focus on sources.

  16. BioCARS: a synchrotron resource for time-resolved X-ray science.

    Science.gov (United States)

    Graber, T; Anderson, S; Brewer, H; Chen, Y S; Cho, H S; Dashdorj, N; Henning, R W; Kosheleva, I; Macha, G; Meron, M; Pahl, R; Ren, Z; Ruan, S; Schotte, F; Srajer, V; Viccaro, P J; Westferro, F; Anfinrud, P; Moffat, K

    2011-07-01

    BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick-Baez mirror system capable of focusing the X-ray beam to a spot size of 90 µm horizontal by 20 µm vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to ~4 × 10(10) photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450-2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained.

  17. X-ray absorption spectroscopy by full-field X-ray microscopy of a thin graphite flake: Imaging and electronic structure via the carbon K-edge

    Directory of Open Access Journals (Sweden)

    Carla Bittencourt

    2012-04-01

    Full Text Available We demonstrate that near-edge X-ray-absorption fine-structure spectra combined with full-field transmission X-ray microscopy can be used to study the electronic structure of graphite flakes consisting of a few graphene layers. The flake was produced by exfoliation using sodium cholate and then isolated by means of density-gradient ultracentrifugation. An image sequence around the carbon K-edge, analyzed by using reference spectra for the in-plane and out-of-plane regions of the sample, is used to map and spectrally characterize the flat and folded regions of the flake. Additional spectral features in both π and σ regions are observed, which may be related to the presence of topological defects. Doping by metal impurities that were present in the original exfoliated graphite is indicated by the presence of a pre-edge signal at 284.2 eV.

  18. Microbeam X-ray fluorescence mapping of Cu and Fe in human prostatic carcinoma cell lines using synchrotron radiation

    International Nuclear Information System (INIS)

    Rocha, K.M.J.; Leitao, R.G.; Oliveira-Barros, E.G.; Oliveira, M.A.; Canellas, C.G.L.; Anjos, M.J.; Nasciutti, L.E.; Lopes, R.T.; Universidade Federal do Rio de Janeiro; Universidade do Estado do Rio de Janeiro

    2017-01-01

    Cancer is a worldwide public health problem and prostate cancer continues to be one of the most common fatal cancers in men. Copper plays an important role in the aetiology and growth of tumours however, whether intratumoral copper is actually elevated in prostate cancer patients has not been established. Iron, an important trace element, plays a vital function in oxygen metabolism, oxygen uptake, and electron transport in mitochondria, energy metabolism, muscle function, and hematopoiesis. The X-ray microfluorescence technique (μXRF) is a rapid and non-destructive method of elemental analysis that provides useful elemental information about samples without causing damage or requiring extra sample preparations. This study investigated the behavior of cells in spheroids of human prostate cells, tumour cell line (DU145) and normal cell line (RWPE-1), after supplementation with zinc chloride by 24 hours using synchrotron X-ray microfluorescence (μSRXRF). The measurements were performed with a standard geometry of 45 deg of incidence, excited by a white beam using a pixel of 25 μm and a time of 300 ms/pixel at the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). The results by SRμXRF showed non-uniform Cu and Fe distributions in all the spheroids analyzed. (author)

  19. In situ X-ray diffraction of surface oxide on type 430 stainless steel in breakaway condition using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, Isao, E-mail: isaos@mmm.muroran-it.ac.jp [Department of Materials Science and Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585 (Japan); Sugiyama, Yusuke [Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585 (Japan); Hayashi, Shigenari; Yamauchi, Akira [Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 006-8628 (Japan); Doi, Takashi; Nishiyama, Yoshitaka [Corporate R and D Laboratories, Sumitomo Metals Industries Ltd., 1-8 Fuso-cho, Amagasaki, Hyogo 660-0891 (Japan); Kyo, Shoji [Power Engineering R and D Centre, Kansai Electric Power Co., Inc., 3-11-20 Wakaoji, Amagasaki, Hyogo 661-0794 (Japan); Suzuki, Shigeru [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Sato, Masugu [Japan Synchrotron Radiation Research Institute, 1-1-1 Koto, Sayo-cho, Hyogo 679-5198 (Japan); Fujimoto, Shinji [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Breakaway studied with Synchrotron radiation X-ray. Black-Right-Pointing-Pointer Local equilibria between phases established during high-temperature oxidation. Black-Right-Pointing-Pointer Chemical failure model well describes the breakaway. - Abstract: Changes in the crystal structure of type 430 stainless steel and the oxides on its surface were studied in situ at 1373 K using a high-intensity synchrotron X-ray source provided by SPring-8 in Japan. The surface of the steel was initially covered with Cr{sub 2}O{sub 3}, which was then converted to FeCr{sub 2}O{sub 4}, and finally Fe{sub 3}O{sub 4} and Fe{sub 2}O{sub 3} formed on it. These results indicated that the reason for the breakaway oxidation in type 430 stainless steel is Cr depletion beneath Cr{sub 2}O{sub 3} layer and the subsequent ionisation of Fe, not the simple mechanical failure of Cr{sub 2}O{sub 3}.

  20. A compressed sensing based reconstruction algorithm for synchrotron source propagation-based X-ray phase contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Melli, Seyed Ali, E-mail: sem649@mail.usask.ca [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Wahid, Khan A. [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Babyn, Paul [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada); Montgomery, James [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Snead, Elisabeth [Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK (Canada); El-Gayed, Ali [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Pettitt, Murray; Wolkowski, Bailey [College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK (Canada); Wesolowski, Michal [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada)

    2016-01-11

    Synchrotron source propagation-based X-ray phase contrast computed tomography is increasingly used in pre-clinical imaging. However, it typically requires a large number of projections, and subsequently a large radiation dose, to produce high quality images. To improve the applicability of this imaging technique, reconstruction algorithms that can reduce the radiation dose and acquisition time without degrading image quality are needed. The proposed research focused on using a novel combination of Douglas–Rachford splitting and randomized Kaczmarz algorithms to solve large-scale total variation based optimization in a compressed sensing framework to reconstruct 2D images from a reduced number of projections. Visual assessment and quantitative performance evaluations of a synthetic abdomen phantom and real reconstructed image of an ex-vivo slice of canine prostate tissue demonstrate that the proposed algorithm is competitive in reconstruction process compared with other well-known algorithms. An additional potential benefit of reducing the number of projections would be reduction of time for motion artifact to occur if the sample moves during image acquisition. Use of this reconstruction algorithm to reduce the required number of projections in synchrotron source propagation-based X-ray phase contrast computed tomography is an effective form of dose reduction that may pave the way for imaging of in-vivo samples.

  1. Increased cell survival and cytogenetic integrity by spatial dose redistribution at a compact synchrotron X-ray source

    Science.gov (United States)

    Ilicic, Katarina; Dierolf, Martin; Günther, Benedikt; Walsh, Dietrich W. M.; Schmid, Ernst; Eggl, Elena; Achterhold, Klaus; Gleich, Bernhard; Combs, Stephanie E.; Molls, Michael; Schmid, Thomas E.; Pfeiffer, Franz; Wilkens, Jan J.

    2017-01-01

    X-ray microbeam radiotherapy can potentially widen the therapeutic window due to a geometrical redistribution of the dose. However, high requirements on photon flux, beam collimation, and system stability restrict its application mainly to large-scale, cost-intensive synchrotron facilities. With a unique laser-based Compact Light Source using inverse Compton scattering, we investigated the translation of this promising radiotherapy technique to a machine of future clinical relevance. We performed in vitro colony-forming assays and chromosome aberration tests in normal tissue cells after microbeam irradiation compared to homogeneous irradiation at the same mean dose using 25 keV X-rays. The microplanar pattern was achieved with a tungsten slit array of 50 μm slit size and a spacing of 350 μm. Applying microbeams significantly increased cell survival for a mean dose above 2 Gy, which indicates fewer normal tissue complications. The observation of significantly less chromosome aberrations suggests a lower risk of second cancer development. Our findings provide valuable insight into the mechanisms of microbeam radiotherapy and prove its applicability at a compact synchrotron, which contributes to its future clinical translation. PMID:29049300

  2. Cracking evolution behaviors of lightweight materials based on in situ synchrotron X-ray tomography: A review

    Science.gov (United States)

    Luo, Y.; Wu, S. C.; Hu, Y. N.; Fu, Y. N.

    2018-03-01

    Damage accumulation and failure behaviors are crucial concerns during the design and service of a critical component, leading researchers and engineers to thoroughly identifying the crack evolution. Third-generation synchrotron radiation X-ray computed microtomography can be used to detect the inner damage evolution of a large-density material or component. This paper provides a brief review of studying the crack initiation and propagation inside lightweight materials with advanced synchrotron three-dimensional (3D) X-ray imaging, such as aluminum materials. Various damage modes under both static and dynamic loading are elucidated for pure aluminum, aluminum alloy matrix, aluminum alloy metal matrix composite, and aluminum alloy welded joint. For aluminum alloy matrix, metallurgical defects (porosity, void, inclusion, precipitate, etc.) or artificial defects (notch, scratch, pit, etc.) strongly affect the crack initiation and propagation. For aluminum alloy metal matrix composites, the fracture occurs either from the particle debonding or voids at the particle/matrix interface, and the void evolution is closely related with fatigued cycles. For the hybrid laser welded aluminum alloy, fatigue cracks usually initiate from gas pores located at the surface or sub-surface and gradually propagate to a quarter ellipse or a typical semi-ellipse profile.

  3. Ice Recrystallization in a Solution of a Cryoprotector and Its Inhibition by a Protein: Synchrotron X-Ray Diffraction Study.

    Science.gov (United States)

    Zakharov, Boris; Fisyuk, Alexander; Fitch, Andy; Watier, Yves; Kostyuchenko, Anastasia; Varshney, Dushyant; Sztucki, Michael; Boldyreva, Elena; Shalaev, Evgenyi

    2016-07-01

    Ice formation and recrystallization is a key phenomenon in freezing and freeze-drying of pharmaceuticals and biopharmaceuticals. In this investigation, high-resolution synchrotron X-ray diffraction is used to quantify the extent of disorder of ice crystals in binary aqueous solutions of a cryoprotectant (sorbitol) and a protein, bovine serum albumin. Ice crystals in more dilute (10 wt%) solutions have lower level of microstrain and larger crystal domain size than these in more concentrated (40 wt%) solutions. Warming the sorbitol-water mixtures from 100 to 228 K resulted in partial ice melting, with simultaneous reduction in the microstrain and increase in crystallite size, that is, recrystallization. In contrast to sorbitol solutions, ice crystals in the BSA solutions preserved both the microstrain and smaller crystallite size on partial melting, demonstrating that BSA inhibits ice recrystallization. The results are consistent with BSA partitioning into quasi-liquid layer on ice crystals but not with a direct protein-ice interaction and protein sorption on ice surface. The study shows for the first time that a common (i.e., not-antifreeze) protein can have a major impact on ice recrystallization and also presents synchrotron X-ray diffraction as a unique tool for quantification of crystallinity and disorder in frozen aqueous systems. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Fast in situ phase and stress analysis during laser surface treatment: A synchrotron x-ray diffraction approach

    Science.gov (United States)

    Kostov, V.; Gibmeier, J.; Wilde, F.; Staron, P.; Rössler, R.; Wanner, A.

    2012-11-01

    An in situ stress analysis by means of synchrotron x-ray diffraction was carried out during laser surface hardening of steel. A single exposure set-up that based on a special arrangement of two fast silicon strip line detectors was established, allowing for fast stress analysis according to the sin2ψ x-ray analysis method. For the in situ experiments a process chamber was designed and manufactured, which is described in detail. First measurements were carried out at the HZG undulator imaging beamline (IBL, beamline P05) at the synchrotron storage ring PETRA III, DESY, Hamburg (Germany). The laser processing was carried out using a 6 kW high power diode laser system. Two different laser optics were compared, a Gaussian optic with a focus spot of ø 3 mm and a homogenizing optic with a rectangular spot dimension of 8 × 8 mm2. The laser processing was carried out using spot hardening at a heating-/cooling rate of 1000 K/s and was controlled via pyrometric temperature measurement using a control temperature of 1150 °C. The set-up being established during the measuring campaign allowed for this first realization data collection rates of 10Hz. The data evaluation procedure applied enables the separation of thermal from elastic strains and gains unprecedented insight into the laser hardening process.

  5. Increased cell survival and cytogenetic integrity by spatial dose redistribution at a compact synchrotron X-ray source.

    Directory of Open Access Journals (Sweden)

    Karin Burger

    Full Text Available X-ray microbeam radiotherapy can potentially widen the therapeutic window due to a geometrical redistribution of the dose. However, high requirements on photon flux, beam collimation, and system stability restrict its application mainly to large-scale, cost-intensive synchrotron facilities. With a unique laser-based Compact Light Source using inverse Compton scattering, we investigated the translation of this promising radiotherapy technique to a machine of future clinical relevance. We performed in vitro colony-forming assays and chromosome aberration tests in normal tissue cells after microbeam irradiation compared to homogeneous irradiation at the same mean dose using 25 keV X-rays. The microplanar pattern was achieved with a tungsten slit array of 50 μm slit size and a spacing of 350 μm. Applying microbeams significantly increased cell survival for a mean dose above 2 Gy, which indicates fewer normal tissue complications. The observation of significantly less chromosome aberrations suggests a lower risk of second cancer development. Our findings provide valuable insight into the mechanisms of microbeam radiotherapy and prove its applicability at a compact synchrotron, which contributes to its future clinical translation.

  6. Microbeam X-ray fluorescence mapping of Cu and Fe in human prostatic carcinoma cell lines using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, K.M.J.; Leitao, R.G.; Oliveira-Barros, E.G.; Oliveira, M.A.; Canellas, C.G.L.; Anjos, M.J.; Nasciutti, L.E.; Lopes, R.T., E-mail: kjose@nuclear.ufrj.br, E-mail: marcelin@lin.ufrj.br, E-mail: ricardo@lin.ufrj.br, E-mail: roberta@lin.ufrj.br, E-mail: eligouveab@gmail.com, E-mail: maria_aparecida_ufrj@yahoo.com.br, E-mail: luiz.nasciutti@histo.ufrj.br, E-mail: roberta.leitao@uerj.br, E-mail: marcelin@uerj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Laboratorio de Instrumentacao Nuclear; Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Ciencias Biomedicas; Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Instituto de Fisica

    2017-11-01

    Cancer is a worldwide public health problem and prostate cancer continues to be one of the most common fatal cancers in men. Copper plays an important role in the aetiology and growth of tumours however, whether intratumoral copper is actually elevated in prostate cancer patients has not been established. Iron, an important trace element, plays a vital function in oxygen metabolism, oxygen uptake, and electron transport in mitochondria, energy metabolism, muscle function, and hematopoiesis. The X-ray microfluorescence technique (μXRF) is a rapid and non-destructive method of elemental analysis that provides useful elemental information about samples without causing damage or requiring extra sample preparations. This study investigated the behavior of cells in spheroids of human prostate cells, tumour cell line (DU145) and normal cell line (RWPE-1), after supplementation with zinc chloride by 24 hours using synchrotron X-ray microfluorescence (μSRXRF). The measurements were performed with a standard geometry of 45 deg of incidence, excited by a white beam using a pixel of 25 μm and a time of 300 ms/pixel at the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). The results by SRμXRF showed non-uniform Cu and Fe distributions in all the spheroids analyzed. (author)

  7. Characterization of actinide bonding in Th(S2PMe2)4 by synchrotron X-ray diffraction

    International Nuclear Information System (INIS)

    Iversen, B.B.; Larsen, F.K.; Pinkerton, A.A.; Martin, A.; Darovsky, A.; Reynolds, P.A.

    1998-01-01

    Extensive synchrotron (28 K) and conventional sealed-tube (9 K) X-ray diffraction data have been collected on Th(S 2 PMe 2 ) 4 . Modeling of the electron density of the complex shows the bonding is quite ionic with little diffuse f or d type bonding density. Furthermore a large polarization of the Th core is observed revealing some 5d-like involvement in the bonding. High-quality ab initio density functional calculations are not able to reproduce these features and instead predict rather covalent bonding with considerable 6d-5f mixing. The study suggests that this theoretical method exaggerates the covalent nature of actinide bonds. It is shown that the most direct measure of covalence -- charge transfer and electron distributions -- can be usefully estimated by X-ray diffraction even in this most unfavorable of cases, where many actinide core electrons are present. The use of very low temperature data is crucial in the study of heavy metal complexes in order to minimize systematic errors such as thermal diffuse scattering and anharmonicity. The fact that accurate synchrotron radiation diffraction data can be measured within days makes studies of compounds beyond the first transition series more frequently within reach

  8. In situ synchrotron x-ray characterization of microstructure formation in solidification processing of Al-based metallic alloys

    International Nuclear Information System (INIS)

    Billia, Bernard; Nguyen-Thi, Henri; Mangelinck-Noel, Nathalie

    2010-01-01

    The microstructure formed during the solidification step has a major influence on the properties of materials processed by major techniques (casting, welding ...). In situ and real-time characterization by synchrotron X-ray imaging is the method of choice to unveil the dynamical formation of the solidification microstructure in metallic alloys, and thus provide precise data for the critical validation of the theoretical predictions that is needed for sound advancement of modeling and numerical simulation. After a description of the experimental procedure used at the European Synchrotron Radiation Facility (ESRF), dynamical phenomena in the formation of the grain structure and dendritic or equiaxed solidification microstructure in Al-based alloys are presented. Beyond fluid flow interaction, earth gravity induces stresses, deformation and fragmentation in the dendritic mush. Settling of dendrite arms and equiaxed grains thus occurs, in particular in the columnar to equiaxed transition. Other types of stresses and strains are caused by the mere formation of the solidification microstructure itself. In white-beam X-ray topography, stresses and strains are manifested by specific contrasts and breaking of the Laue images into several pieces. Finally, quantitative analysis of the grey level in radiographs enables the analysis of solute segregation, which noticeably results in solutal poisoning of growth when equiaxed grains are interacting. (author)

  9. Metal-binding proteins scanning and determination by combining gel electrophoresis, synchrotron radiation X-ray fluorescence and atomic spectrometry.

    Science.gov (United States)

    Verbi, F M; Arruda, S C C; Rodriguez, A P M; Pérez, C A; Arruda, M A Z

    2005-02-28

    In the present work, protein bands from in vitro embriogenic callus (Citrus sinensis L. Osbeck) were investigated using micro-synchrotron radiation X-ray fluorescence (muSR-XRF) after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation. Metal-binding protein quantification was done after microwave oven decomposition of gel by synchrotron radiation total reflection X-ray fluorescence (SR-TXRF), flame atomic absorption spectrometry (FAAS) and flame atomic emission spectrometry (FAES). According to the analysis of the protein bands, it is possible to observe that both 81 and ca. 14 kDa proteins present different Fe signal intensity at different positions. The analysis of 53 kDa protein, showed even more interesting results. Besides Fe, the muSR-XRF experiments indicate the presence of Ca, Cu, K and Zn. Chemical elements such as Cu, K, Fe and Zn were determined by SR-TXRF, Mg by FAAS and Na by FAES. Ca was determined by SR-TXRF and FAAS only for accuracy check. In the mineralised protein bands of 81 and around 14 kDa band, only Fe was determined (105 and 21.8 microg g(-1)). For those protein bands (86-ca. 14 kDa) were determined, Ca, K, Cu and Zn in a wide concentration range (42.4-283, 2.47-96.8, 0.91-15.9 and 3.39-29.7 microg g(-1), respectively).

  10. A new fixed-target approach for serial crystallography at synchrotron light sources and X-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, Philip

    2017-07-15

    In the framework of this thesis, a new method for high-speed fixed-target serial crystallography experiments and its applicability to biomacromolecular crystallography at both synchrotron light sources and X-ray free electron lasers (XFELs) is presented. The method is based on a sample holder, which can carry up to 20,000 microcrystals and which is made of single-crystalline silicon. Using synchrotron radiation, the structure of Operophtera brumata cytoplasmic polyhedrosis virus type 18 polyhedrin, lysozyme and cubic insulin was determined by collecting X-ray diffraction data from multiple microcrystals. Data collection was shown to be possible at both cryogenic and ambient conditions. For room-temperature measurements, both global and specific indications of radiation damage were investigated and characterized. Due to the sieve-like structure of the chip, the microcrystals tend to arrange themselves according to the micropore pattern, which allows for efficient sampling of the sample material. In combination with a high-speed scanning stage, the sample holder was furthermore shown to be highly suitable for serial femtosecond crystallography experiments. By fast raster scanning of the chip through the pulsed X-ray beam of an XFEL, structure determination of a virus, using the example of bovine enterovirus type 2, has been demonstrated at an XFEL for the first time. Hit rates of up to 100% were obtained by the presented method, which refers to a reduction in sample consumption by at least three orders of magnitude with respect to common liquid-jet injection methods used for sample delivery. In this way, the typical time needed for data collection in serial femtosecond crystallography is significantly decreased. The presented technique for sample loading of the chip is easy to learn and results in efficient removal of the surrounding mother liquor, thereby reducing the generated background signal. Since the chip is made of single-crystalline silicon, in principle no

  11. A new fixed-target approach for serial crystallography at synchrotron light sources and X-ray free electron lasers

    International Nuclear Information System (INIS)

    Roedig, Philip

    2017-07-01

    In the framework of this thesis, a new method for high-speed fixed-target serial crystallography experiments and its applicability to biomacromolecular crystallography at both synchrotron light sources and X-ray free electron lasers (XFELs) is presented. The method is based on a sample holder, which can carry up to 20,000 microcrystals and which is made of single-crystalline silicon. Using synchrotron radiation, the structure of Operophtera brumata cytoplasmic polyhedrosis virus type 18 polyhedrin, lysozyme and cubic insulin was determined by collecting X-ray diffraction data from multiple microcrystals. Data collection was shown to be possible at both cryogenic and ambient conditions. For room-temperature measurements, both global and specific indications of radiation damage were investigated and characterized. Due to the sieve-like structure of the chip, the microcrystals tend to arrange themselves according to the micropore pattern, which allows for efficient sampling of the sample material. In combination with a high-speed scanning stage, the sample holder was furthermore shown to be highly suitable for serial femtosecond crystallography experiments. By fast raster scanning of the chip through the pulsed X-ray beam of an XFEL, structure determination of a virus, using the example of bovine enterovirus type 2, has been demonstrated at an XFEL for the first time. Hit rates of up to 100% were obtained by the presented method, which refers to a reduction in sample consumption by at least three orders of magnitude with respect to common liquid-jet injection methods used for sample delivery. In this way, the typical time needed for data collection in serial femtosecond crystallography is significantly decreased. The presented technique for sample loading of the chip is easy to learn and results in efficient removal of the surrounding mother liquor, thereby reducing the generated background signal. Since the chip is made of single-crystalline silicon, in principle no

  12. L X-ray intensity ratio measurements using selective L sub-shell photo-ionisation on synchrotron

    Science.gov (United States)

    Bansal, Himani; Tiwari, M. K.; Mittal, Raj

    2017-10-01

    Lα/Lℓ, Lβ /Lℓ and Lγ/Lℓ intensity ratios have been measured for elements in the range 66≤Z≤83 at tuned photon energies on synchrotron beam line-16 at Indus-2, India. For each element, three incident energies Ei were E3; EL3 EL1 where ELi are Li absorption edge energies of the element. Emitted L X-ray spectrum of an element constitutes a number of X-ray lines generally grouped into four main groups due to limited resolution of available detectors as Lℓ(L3-M1), Lα(L3-M4,5), Lβ(L1-M2,3,4,5,N4; L2-M3,4; L3-N1,4,5,O1,4,5) and Lγ(L2-N1,4,O1,4; L1-N2,3,5,O3,2). Lα and Lℓ both comprise only the lines feeding L3 level and Lβ group comprises X-ray lines feeding all the three sub-shells where as Lγ involves contribution from L1 and L2 feedings. Only E3 excitation gives the ratios free from intra sub-shell Coster-Kronig (CK) transitions while excitations E2 and E1 give CK affected Lβ/Lℓ and Lγ/Lℓ X-ray intensity ratios and Lα/Lℓ still remains free from CKs. The pattern of intensity ratios at three excitation energies of elements was well interpreted in terms of on/off of CK transitions (Bambynek et al., 1972; Campbell, 2003) and outer shell electron filling configuration (Scofield, 1973).

  13. Advancement of Solidification Processing Technology Through Real Time X-Ray Transmission Microscopy: Sample Preparation

    Science.gov (United States)

    Stefanescu, D. M.; Curreri, P. A.

    1996-01-01

    Two types of samples were prepared for the real time X-ray transmission microscopy (XTM) characterization. In the first series directional solidification experiments were carried out to evaluate the critical velocity of engulfment of zirconia particles in the Al and Al-Ni eutectic matrix under ground (l-g) conditions. The particle distribution in the samples was recorded on video before and after the samples were directionally solidified. In the second series samples of the above two type of composites were prepared for directional solidification runs to be carried out on the Advanced Gradient Heating Facility (AGHF) aboard the space shuttle during the LMS mission in June 1996. X-ray microscopy proved to be an invaluable tool for characterizing the particle distribution in the metal matrix samples. This kind of analysis helped in determining accurately the critical velocity of engulfment of ceramic particles by the melt interface in the opaque metal matrix composites. The quality of the cast samples with respect to porosity and instrumented thermocouple sheath breakage or shift could be easily viewed and thus helped in selecting samples for the space shuttle experiments. Summarizing the merits of this technique it can be stated that this technique enabled the use of cast metal matrix composite samples since the particle location was known prior to the experiment.

  14. An investigation of the potential of optical computed tomography for imaging of synchrotron-generated x-rays at high spatial resolution.

    Science.gov (United States)

    Doran, Simon J; Brochard, Thierry; Adamovics, John; Krstajic, Nikola; Bräuer-Krisch, Elke

    2010-03-07

    X-ray microbeam radiation therapy (MRT) is a novel form of treatment, currently in its preclinical stage, which uses microplanar x-ray beams from a synchrotron radiation source. It is important to perform accurate dosimetry on these microbeams, but, to date, there has been no accurate enough method available for making 3D dose measurements with isotropic, high spatial resolution to verify the results of Monte Carlo dose simulations. Here, we investigate the potential of optical computed tomography for satisfying these requirements. The construction of a simple optical CT microscopy (optical projection tomography) system from standard commercially available hardware is described. The measurement of optical densities in projection data is shown to be highly linear (r2=0.999). The depth-of-field (DOF) of the imaging system is calculated based on the previous literature and measured experimentally using a commercial DOF target. It is shown that high quality images can be acquired despite the evident lack of telecentricity and despite DOF of the system being much lower than the sample diameter. Possible reasons for this are discussed. Results are presented for a complex irradiation of a 22 mm diameter cylinder of the radiochromic polymer PRESAGE, demonstrating the exquisite 'dose-painting' abilities available in the MRT hutch of beamline ID-17 at the European Synchrotron Radiation Facility. Dose distributions in this initial experiment are equally well resolved on both an optical CT scan and a corresponding transmission image of radiochromic film, down to a line width of 83 microm (6 lp mm(-1)) with an MTF value of 0.40. A group of 33 microm wide lines was poorly resolved on both the optical CT and film images, and this is attributed to an incorrect exposure time calculation, leading to under-delivery of dose. Image artefacts in the optical CT scan are discussed. PRESAGE irradiated using the microbeam facility is proposed as a suitable material for producing phantom

  15. Estimates of Imaging Times for Conventional and Synchrotron X-Ray Sources

    CERN Document Server

    Kinney, J

    2003-01-01

    The following notes are to be taken as estimates of the time requirements for imaging NIF targets in three-dimensions with absorption contrast. The estimates ignore target geometry and detector inefficiency, and focus only on the statistical question of detecting compositional (structural) differences between adjacent volume elements in the presence of noise. The basic equations, from the classic reference by Grodzins, consider imaging times in terms of the required number of photons necessary to provide an image with given resolution and noise. The time estimates, therefore, have been based on the calculated x-ray fluxes from the proposed Advanced Light Source (ALS) imaging beamline, and from the calculated flux for a tungsten anode x-ray generator operated in a point focus mode.

  16. Synchrotron radiation micro-X-ray fluorescence analysis: A tool to increase accuracy in microscopic analysis

    CERN Document Server

    Adams, F

    2003-01-01

    Microscopic X-ray fluorescence (XRF) analysis has potential for development as a certification method and as a calibration tool for other microanalytical techniques. The interaction of X-rays with matter is well understood and modelling studies show excellent agreement between experimental data and calculations using Monte Carlo simulation. The method can be used for a direct iterative calculation of concentrations using available high accuracy physical constants. Average accuracy is in the range of 3-5% for micron sized objects at concentration levels of less than 1 ppm with focused radiation from SR sources. The end-station ID18F of the ESRF is dedicated to accurate quantitative micro-XRF analysis including fast 2D scanning with collection of full X-ray spectra. Important aspects of the beamline are the precise monitoring of the intensity of the polarized, variable energy beam and the high reproducibility of the set-up measurement geometry, instrumental parameters and long-term stability.

  17. Clinopyroxenes still trapped in diamonds: high-energy synchrotron X-ray diffraction as a chemical probe

    Science.gov (United States)

    Casati, Nicola; Nestola, Fabrizio; Alvaro, Matteo; Wilhelm, Heribert; Kleppe, Annette; Nimis, Paolo; Harris, Jeffrey W.

    2014-05-01

    Clinopyroxenes are mainly Ca-Na-Fe-Mg-silicates constituting a significant portion of the Earth's upper mantle up to 20% of such shell of our planet. They could be found as typical mineral inclusions in diamonds being diopsidic and omphacitic in composition and, together with garnets, cover a key role in providing indications concerning the source rock in which the diamond crystallize. In detail, it is well known that eclogitic diamonds are characterized by clinopyroxenes with omphacitic compositions (about Ca0.5Na0.5Mg0.5Al0.5Si2O6) whereas peridotitic diamonds show clinopyroxenes very rich in the diopside end-member (CaMgSi2O6). In order to get direct chemical composition on the inclusions, and therefore on the diamond origin source, it is obviously necessary to extract them breaking and/or polishing the diamond host. However, a non-destructive investigation of an inclusion still trapped in a diamond is useful and important for different reasons: (1) the inclusions could be under pressure and their crystal structure can be modified if the pressure is released by the extraction; (2) the residual pressure on the inclusion can provide information about the formation pressure of the diamond (e.g. Nestola et al. 2011 and references therein); (3) the morphology and growth relationships of the inclusion with the host diamond can provide indications about its protogenetic vs. syngenetic and/or epigenetic nature; and (4) preservation of the diamond surface growth features can maintain crucial information on late oxidation processes (Fedortchouk et al. 2011). However the available methods to measure the composition of the inclusions implies to destroy the sample. The aim of this work is to obtain chemical information on the inclusions still trapped in their diamond host and therefore to indicate the diamond origin without extracting the inclusions. The work was carried out by single crystal X-ray diffraction using a new experimental approach by high energy synchrotron

  18. Spherulites growth in trachytic melts: a textural quantitative study from synchrotron X-ray microtomography and SEM data

    Science.gov (United States)

    Arzilli, Fabio; Mancini, Lucia; Giuli, Gabriele; Cicconi, Maria Rita; Voltolini, Marco; Carroll, Michael R.

    2013-04-01

    This study shows the first textural data on synthetic alkali-feldspar spherulites grown in trachytic melts during cooling and decompression experiments with water-saturated conditions. Previous textural studies have shown the shape evolution and the growth process of spherulites as a function of undercooling (T) and water content, although just in basaltic and rhyolitic melts [1-3]. Spherulites are spherical clusters of polycrystalline aggregates that occur commonly in rhyolitic melts under highly non-equilibrium conditions [3-4]. Cooling and decompression experiments have been carried out on trachytic melts in order to investigate crystallization kinetics of alkali feldspars and the implications for magma dynamics during the ascent towards the surface. Experiments have been conducted using cold seal pressure vessel apparatus at pressure range of 30 - 200 MPa, temperature of 750 - 850 °C and time of 2 - 16 hours, thereby reproducing pre- and syn-eruptive conditions of the Campi Flegrei volcanoes. This study presents quantitative data on spherulite morphologies obtained both by scanning electron microscopy (SEM) and synchrotron X-ray microtomography. Size, aspect ratio, number and crystallographic misorientation of alkali feldspar crystals will be measured. Furthermore, experiments performed at different durations could allow us to follow the growth and the evolution of spherulites. The shape of spherulites changes as a function of ΔT and experimental durations. Two kind of spherulites occured during experiments: open spherulites and close spherulites. The open spherulites are characterized by an structure with large (generally rectangular prismatic), widely spaced fibers with main axis converging towards a central nucleus, in agreement with previous observations [5-6]. Instead, the close spherulites consist of acicular and tiny fibers radially aggregated around a nucleus and single crystals are hardly distinguishable. First preliminary results show: a

  19. Synchrotron based measurements of the soft x-ray performance of thin film multilayer structures

    International Nuclear Information System (INIS)

    Kania, D.R.; Bartlett, R.J.; Trela, W.J.

    1985-01-01

    Using synchrotron radiation, measuring system has been developed to test the performance of layered synthetic microstructures (LSMs) from 50 to 500 eV. The measurement techniques are reviewed, and results are compared to theoretical predictions of LSM performance

  20. X-rays in the Cryo-Electron Microscopy Era: Structural Biology's Dynamic Future.

    Science.gov (United States)

    Shoemaker, Susannah C; Ando, Nozomi

    2018-01-23

    Over the past several years, single-particle cryo-electron microscopy (cryo-EM) has emerged as a leading method for elucidating macromolecular structures at near-atomic resolution, rivaling even the established technique of X-ray crystallography. Cryo-EM is now able to probe proteins as small as hemoglobin (64 kDa) while avoiding the crystallization bottleneck entirely. The remarkable success of cryo-EM has called into question the continuing relevance of X-ray methods, particularly crystallography. To say that the future of structural biology is either cryo-EM or crystallography, however, would be misguided. Crystallography remains better suited to yield precise atomic coordinates of macromolecules under a few hundred kilodaltons in size, while the ability to probe larger, potentially more disordered assemblies is a distinct advantage of cryo-EM. Likewise, crystallography is better equipped to provide high-resolution dynamic information as a function of time, temperature, pressure, and other perturbations, whereas cryo-EM offers increasing insight into conformational and energy landscapes, particularly as algorithms to deconvolute conformational heterogeneity become more advanced. Ultimately, the future of both techniques depends on how their individual strengths are utilized to tackle questions at the frontiers of structural biology. Structure determination is just one piece of a much larger puzzle: a central challenge of modern structural biology is to relate structural information to biological function. In this perspective, we share insight from several leaders in the field and examine the unique and complementary ways in which X-ray methods and cryo-EM can shape the future of structural biology.