WorldWideScience

Sample records for synchrotron uv radiation facility nbs

  1. Current research at NBS using synchrotron radiation at SURF-II

    International Nuclear Information System (INIS)

    Parr, A.C.; Rakowsky, G.; Ederer, D.L.; Stockbauer, R.L.; West, J.B.; Dehmer, J.L.

    1980-01-01

    The National Bureau of Standards (NBS) Synchrotron Ultraviolet Radiation Facility (SURF-II) is used in conjunction with a high flux normal incidence monochromator for angle resolved wavelength dependent photoelectron studies. The recent work has concentrated on studies of the effect of shape resonances on molecular vibrational intensity distributions as well as the effects of autoionization upon the vibrational intensity distributions over narrow wavelength regions. Results for CO, N 2 , Ar and Xe will be discussed

  2. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  3. European Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Buras, B.

    1985-01-01

    How a European Synchrotron Radiation Facility has developed into a detailed proposal recently accepted as the basis for construction of the facility at Grenoble is discussed. In November 1977, the General Assembly of the European Science Foundation (ESF) approved the report of the ESF working party on synchrotron radiation entitled Synchrotron Radiation - a Perspective View for Europe. This report contained as one of its principal recommendations that work should commence on a feasibility study for a European synchrotron radiation laboratory having a dedicated hard X-ray storage ring and appropriate advanced instrumentation. In order to prepare a feasibility study the European Science Foundation set up the Ad-hoc Committee on Synchrotron Radiation, which in turn formed two working groups: one for the machine and another for instrumentation. This feasibility study was completed in 1979 with the publication of the Blue Book describing in detail the so called 1979 European Synchrotron Radiation Facility. The heart of the facility was a 5 GeV electron storage ring and it was assumed that mainly the radiation from bending magnets will be used. The facility is described

  4. A status report on the SURF II synchrotron radiation facility at NBS

    International Nuclear Information System (INIS)

    Madden, R.P.

    1980-01-01

    Recent work to upgrade the SURF II (Synchrotron Ultraviolet Radiation Facility) storage ring is described, resulting in reliable operation up to 252 MeV at currents in the range 10-20 mA. A wide variety of experiments is now in progress at the facility, encompassing solid state physics, atomic and molecular physics and molecular biology, as well as the all-important radiometric standards work. The instrumentation used for these experiments is described; brief details of the experiments themselves are also given. (orig.)

  5. New synchrotron radiation facility project. Panel on new synchrotron radiation facility project

    CERN Document Server

    Sato, S; Kimura, Y

    2003-01-01

    The project for constructing a new synchrotron radiation facility dedicated to the science in VUV (or EUV) and Soft X-ray (SX) region has been discussed for these two years at the Panel on New Synchrotron Radiation Facility Project. The Panel together with the Accelerator Design Working Group (WG), Beamline Design WG and Research Program WG suggested to the Ministry of Education, Science, Culture and Sports the construction of a 1.8 GeV electron storage ring suitable for 'Top-Up' operation and beamlines and monochromators designed for undulator radiation. The scientific programs proposed by nationwide scientists are summarized with their requirements of the characteristics of the beam. (author)

  6. IKNO, a user facility for coherent terahertz and UV synchrotron radiation

    International Nuclear Information System (INIS)

    Sannibale, Fernando; Marcelli, Augusto; Innocenzi, Plinio

    2008-01-01

    IKNO (Innovation and KNOwledge) is a proposal for a multi-user facility based on an electron storage ring optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range, and of broadband incoherent synchrotron radiation (SR) ranging from the IR to the VUV. IKNO can be operated in an ultra-stable CSR mode with photon flux in the terahertz frequency region up to nine orders of magnitude higher than in existing 3rd generation light sources. Simultaneously to the CSR operation, broadband incoherent SR up to VUV frequencies is available at the beamline ports. The main characteristics of the IKNO storage and its performance in terms of CSR and incoherent SR are described in this paper. The proposed location for the infrastructure facility is in Sardinia, Italy

  7. Measurement of synchrotron radiation from the NBS SURF II using a silicon radiometer

    International Nuclear Information System (INIS)

    Schaefer, A.R.

    1980-01-01

    A project is described in which the synchrotron radiation output from the NBS storage ring known as SURF II, is measured using a well characterized silicon based radiometer. This device consists of a silicon photodiode coupled with two interference filters to restrict the spectral response to a finite and convenient spectral region for the measurement. Considerations required for the characterization of the radiometer will be discussed. The absolute radiant flux from the storage ring is also calculable from various machine parameters. A measurement of the number of circulating electrons will be derived from electron counting techniques at low levels. This will yield an important intercomparison between the synchrotron flux measurements determined in two entirely different ways. (orig.)

  8. Trace element measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    Hanson, A.L.; Kraner, H.W.; Jones, K.W.; Gordon, B.M.; Mills, R.E.

    1982-01-01

    Aspects of the application of synchrotron radiation to trace element determinations by x-ray fluorescence have been investigated using beams from the Cornell facility, CHESS. Fluoresced x rays were detected with a Si(Li) detector placed 4 cm from the target at 90 0 to the beam. Thick samples of NBS Standard Reference Materials were used to calibrate trace element sensitivity and estimate minimum detectable limits for this method

  9. UV and vacuum-UV biological spectroscopy using synchrotron radiation

    International Nuclear Information System (INIS)

    Ito, Amando Siuiti

    1996-01-01

    Full text. Synchrotron radiation has been used as light source in the UV and VUV region for the study of many biological systems. In the time domain, measurements are made that allow the observation of dynamics and kinetics of biomolecules like proteins and peptides, using the fluorescent properties of either intrinsic or extrinsic probes. Optical activity of groups inside biomolecules allows the use of circular dichroism techniques to generate structural information and to follow processes like protein folding. Confocal scanning of synchrotron light generates microscopy resolution below 100 nm, allowing the creation of high quality three dimensional images of biological samples, and the collection of fluorescence originated from microvolumes inside the samples. We propose a station at LNLS for these three techniques: time-resolved fluorescence, circular dischroism and confocal microscopy, using UV and VUV light. (author)

  10. A synchrotron radiation facility for x-ray astronomy

    DEFF Research Database (Denmark)

    Hall, C.J.; Lewis, R.A.; Christensen, Finn Erland

    1997-01-01

    A proposal for an x-ray optics test facility based at a synchrotron radiation source is presented. The facility would incorporate a clean preparation area, and a large evacuable test area. The advantages of using a synchrotron as the source of the test radiation are discussed. These include the a...

  11. The Synchrotron Radiation Facility ESFR in Grenoble

    International Nuclear Information System (INIS)

    Haensel, R.

    1994-01-01

    The European Synchrotron Radiation Facility (ESFR) is the first synchrotron radiation source of the 3-th generation for Roentgen radiations.It permits a new series of experiments in the domains of physics, chemistry, materials studies, micromechanics, biology, medicine and crystallography. The main part of device represents the 850 meter storage ring of 6 GeV electrons. (MSA)

  12. Planning study for advanced national synchrotron-radiation facilities

    International Nuclear Information System (INIS)

    1984-01-01

    A new generation of synchrotron-radiation sources based on insertion devices offers gains in photon-beam brilliance as large as the gains that present-day synchrotron sources provided over conventional sources. This revolution in synchrotron capability and its impact on science and technology will be as significant as the original introduction of synchrotron radiation. This report recommends that insertion-device technology be pursued as our highest priority, both through the full development of insertion-device potential on existing machines and through the building of new facilities

  13. Synchrotron radiation facilities at DESY, a status report

    International Nuclear Information System (INIS)

    Koch, E.E.

    1979-12-01

    A short summary of the developments which have led to the present extensive use of Synchrotron Radiation at DESY is presented and a description of the Synchrotron Radiation facilities presently available and under development is given with emphasis on the new HASYLAB project at the storage ring DORIS. (orig.) 891 HSI/orig. 892 MKO

  14. Radiological Considerations in the Desgin of Synchrotron Radiation Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ipe, Nisy E.

    1999-01-06

    As synchrotron radiation (SR) facilities are rapidly being designed and built all over the world, the radiological considerations should be weighed carefully at an early stage in the design of the facility. This necessitates the understanding and identification of beam losses in the machines, especially the storage ring. The potential sources of radiation are photons and neutrons from loss of injected or stored beam, gas bremsstrahlung and synchrotron radiation. Protection against radiation is achieved through the adequate design of the shielding walls of the storage ring and the synchrotron radiation beam lines. In addition safety systems such as stoppers and shutters provide protection in the forward direction for entry into the experimental enclosures. Special care needs to be exercised in the design of SR experimental enclosures to minimize radiation leakage through penetrations and gaps between doors and walls, and doors and floors.

  15. The European Synchrotron Radiation Facility - an overview of planned diffraction capability

    International Nuclear Information System (INIS)

    Kvick, A.

    1991-01-01

    The European Synchrotron Radiation Facility (ESRF) is a third generation synchrotron radiation facility presently being built as a joint venture between 12 European countries in Grenoble, France. The ESRF will be a low emittance 6 GeV storage ring aimed at producing high-brilliance synchrotron radiation from 29 insertion devices and from 27 bending magnet ports. The general user program will start in the middle of 1994 with seven ESRF beam-lines. By 1999, 30 facility beam-lines as well as beam-lines built and financed by Collaborating Research Groups are scheduled to be in operation. The guidelines for the first beam-lines to be constructed as well as a survey of the diffraction oriented beam-lines built by the ESRF are given in the article. (author)

  16. Synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    van Steenbergen, A.

    1979-01-01

    As a result of the exponential growth of the utilization of synchrotron radiation for research in the domain of the material sciences, atomic and molecular physics, biology and technology, a major construction activity has been generated towards new dedicated electron storage rings, designed optimally for synchrotron radiation applications, also, expansion programs are underway at the existing facilities, such as DORIS, SPEAR, and VEPP. In this report the basic properties of synchrotron radiation will be discussed, a short overview will be given of the existing and new facilities, some aspects of the optimization of a structure for a synchrotron radiation source will be discussed and the addition of wigglers and undulators for spectrum enhancement will be described. Finally, some parameters of an optimized synchrotron radiation source will be given.

  17. Synchrotron radiation in Australia

    International Nuclear Information System (INIS)

    Garrett, R.F.

    2002-01-01

    Full text: Synchrotron radiation research in Australia is entering a new era with the commencement of the Australian synchrotron project, which will construct a 3 GeV third generation synchrotron facility at Monash University in Victoria. To date Australian scientists have used overseas facilities, primarily those managed by the Australian Synchrotron Research Program in Japan and the USA. A fast developing and maturing Australian synchrotron user program has developed around these overseas facilities. The field of synchrotron radiation and its importance to a wide range of research will be introduced and Australia's current involvement and facilities will be described. The current status and technical specifications of the Australian synchrotron will be presented. Copyright (2002) Australian X-ray Analytical Association Inc

  18. Synchrotron radiation

    International Nuclear Information System (INIS)

    Knotek, M.L.

    1987-01-01

    Synchrotron radiation has had a revolutionary effect on a broad range of scientific studies, from physics, chemistry and metallurgy to biology, medicine and geoscience. The situation during the last decade has been one of very rapid growth, there is a great vitality to the field and a capability has been given to a very broad range of scientific disciplines which was undreamed of just a decade or so ago. Here we will discuss some of the properties of synchrotron radiation that makes it so interesting and something of the sources in existence today including the National Synchrotron Light Source (NSLS). The NSLS is one of the new facilities built specifically for synchrotron radiation research and the model that was developed there for involvement of the scientific community is a good one which provides some good lessons for these facilities and others

  19. Improving and extending performance at synchrotron radiation facilities

    International Nuclear Information System (INIS)

    Jackson, A.

    1997-05-01

    Synchrotron radiation facilities around the world have now matured through three generations. The latest facilities have all met or exceeded their design specifications and are learning how to cope with the ever more demanding requests of the user community, especially concerning beam stability. The older facilities remain competitive by extending the unique features of their design, and by developing novel insertion devices. In this paper we survey the beam characteristics achieved at third-generation sources and explore the improvements made at earlier generation facilities

  20. An assessment of research opportunities and the need for synchrotron radiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The workshop focused on six topics, all of which are areas of active research: (1) speciation, reactivity and mobility of contaminants in aqueous systems, (2) the role of surfaces and interfaces in molecular environmental science, (3) the role of solid phases in molecular environmental science, (4) molecular biological processes affecting speciation, reactivity, and mobility of contaminants in the environment, (5) molecular constraints on macroscopic- and field-scale processes, and (6) synchrotron radiation facilities and molecular environmental sciences. These topics span a range of important issues in molecular environmental science. They focus on the basic knowledge required for understanding contaminant transport and fate and for the development of science-based remediation and waste management technologies. Each topic was assigned to a working group charged with discussing recent research accomplishments, significant research opportunities, methods required for obtaining molecular-scale information on environmental contaminants and processes, and the value of synchrotron x-ray methods relative to other methods in providing this information. A special working group on synchrotron radiation facilities was convened to provide technical information about experimental facilities at the four DOE-supported synchrotron radiation sources in the US (NSLS, SSRL, AS and UPS) and synchrotron- based methods available for molecular environmental science research. Similar information on the NSF-funded Cornell High Energy synchrotron Source (CHESS) was obtained after the workshop was held.

  1. An assessment of research opportunities and the need for synchrotron radiation facilities

    International Nuclear Information System (INIS)

    1995-01-01

    The workshop focused on six topics, all of which are areas of active research: (1) speciation, reactivity and mobility of contaminants in aqueous systems, (2) the role of surfaces and interfaces in molecular environmental science, (3) the role of solid phases in molecular environmental science, (4) molecular biological processes affecting speciation, reactivity, and mobility of contaminants in the environment, (5) molecular constraints on macroscopic- and field-scale processes, and (6) synchrotron radiation facilities and molecular environmental sciences. These topics span a range of important issues in molecular environmental science. They focus on the basic knowledge required for understanding contaminant transport and fate and for the development of science-based remediation and waste management technologies. Each topic was assigned to a working group charged with discussing recent research accomplishments, significant research opportunities, methods required for obtaining molecular-scale information on environmental contaminants and processes, and the value of synchrotron x-ray methods relative to other methods in providing this information. A special working group on synchrotron radiation facilities was convened to provide technical information about experimental facilities at the four DOE-supported synchrotron radiation sources in the US (NSLS, SSRL, AS and UPS) and synchrotron- based methods available for molecular environmental science research. Similar information on the NSF-funded Cornell High Energy synchrotron Source (CHESS) was obtained after the workshop was held

  2. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    International Nuclear Information System (INIS)

    Cantwell, K.; St. Pierre, M.

    1992-01-01

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included

  3. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cantwell, K.; St. Pierre, M. [eds.

    1992-12-31

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

  4. Obtaining laser safety at a synchrotron radiation user facility: The Advanced Light Source

    International Nuclear Information System (INIS)

    Barat, K.

    1996-01-01

    The Advanced Light Source (ALS) is a US national facility for scientific research and development located at the Lawrence Berkeley National Laboratory in California. The ALS delivers the world's brightest synchrotron radiation in the far ultraviolet and soft X-ray regions of the spectrum. As a user facility it is available to researchers from industry, academia, and laboratories from around the world. Subsequently, a wide range of safety concerns become involved. This article relates not only to synchrotron facilities but to any user facility. A growing number of US centers are attracting organizations and individuals to use the equipment on site, for a fee. This includes synchrotron radiation and/or free electron facilities, specialty research centers, and laser job shops. Personnel coming to such a facility bring with them a broad spectrum of safety cultures. Upon entering, the guests must accommodate to the host facility safety procedures. This article describes a successful method to deal with that responsibility

  5. Synchrotron radiation facilities for chemical applications

    International Nuclear Information System (INIS)

    Hatano, Yoshihiko

    1995-01-01

    Synchrotron radiation (SR) research is of great importance in understanding radiation chemistry, physics, and biology. It is also clearly recognized in the international chemical community that chemical applications of SR are greatly advanced and divided into 1) Molecular Spectroscopy and Dynamics Studies-Gases, Surfaces, and Condensed Matter- , 2) Radiation Chemistry and Photochemistry, 3) X-ray Structural and XAFS Studies-Crystals, Surfaces, and Liquids- , 4) Analytical Chemistry, and 5) Synthesis or R and D of New Materials. In this paper, a survey is given of recent advances in the application of SR to the chemistry of excitation and ionization of molecules, i.e., SR chemistry, in the wavelength region between near-ultraviolet and hard X-rays. The topics will be chosen from those obtained at some leading SR facilities. (J.P.N.)

  6. Report of preliminary investigations on the next-generation large-scale synchrotron radiation facility projects

    International Nuclear Information System (INIS)

    1990-01-01

    The Special Committee for Future Project of the Japanese Society for Synchrotron Radiation Research investigated the construction-projects of the large-scaled synchrotron radiation facilities which are presently in progress in Japan. As a result, the following both projects are considered the very valuable research-project which will carry the development of Japan's next-generation synchrotron radiation science: 1. the 8 GeV synchrotron radiation facilities (SPring-8) projected to be constructed by Japan Atomic Energy Research Institute and the Institute of Physical and Chemical Research under the sponsorship of Science Technology Agency at Harima Science Park City, Hyogo Pref., Japan. 2. The project to utilize the Tristan Main Ring (MR) of the National Laboratory for High Energy Physics as the radiation source. Both projects are unique in research theme and technological approach, and complemental each other. Therefore it has been concluded that both projects should be aided and ratified by the Society. (M.T.)

  7. Use of synchrotron radiation in radiation biology research

    International Nuclear Information System (INIS)

    Yamada, Takeshi

    1981-01-01

    Synchrotron radiation (SR) holds great expectation as a new research tool in the new areas of material science, because it has the continuous spectral distribution from visible light to X-ray, and its intensity is 10 2 to 10 3 times as strong as that of conventional radiation sources. In the National Laboratory for High Energy Physics, a synchrotron radiation experimental facility has been constructed, which will start operation in fiscal 1982. With this SR, the photons having the wavelength in undeveloped region from vacuum ultraviolet to soft X-ray are obtained as intense mono-wavelength light. The SR thus should contribute to the elucidation of the fundamentals in the biological action of radiation. The following matters are described: synchrotron radiation, experimental facility using SR, electron storage ring, features of SR, photon factory plan and synchrotron radiation experimental facility, utilization of SR in radiation biology field. (J.P.N.)

  8. Storage ring design of the 8 GeV synchrotron radiation facility (SPring-8)

    International Nuclear Information System (INIS)

    Hara, M.; Bc, S.H.; Motonaga, S.

    1990-01-01

    In Japan, RIKEN (Institute of Physical and Chemical Research) and JAERI (Japan Atomic Energy Research Institute) have organized a joint design team and started a design study for an 8 GeV synchrotron radiation X-ray source. This paper outlines the status of the design study for the 8 GeV highly brilliant synchrotron radiation X-ray source ring named Super Photon Ring (SPring-8). The facility consists of a main storage ring, a full-energy injector booster synchrotron and a pre-injector 1 GeV linac. The injector linac and synchrotron are laid outside the storage ring because to permit the use of the linac and synchrotron not only as an injector but also as an electron or positron beam source. The purpose of the facility is to provide stable photon beams with high brilliance in the X-ray region. The energy of the stored electrons (positrons) is fixed at 8 GeV to fulfill the required condition using conventional type insertion devices. (N.K.)

  9. European synchrotron radiation facility at Risoe

    International Nuclear Information System (INIS)

    1981-07-01

    The results of the feasibility study on a potential European Synchrotron Radiation Facility site at Risoe, Denmark, can be summarized as follows: The site is located in a geologically stable area. The ground is fairly flat, free from vibrations and earth movements, and the foundation properties are considered generally good. The study is based upon the machine concept and main geometry as presented in the ESF feasibility study of May 1979. However, the proposed site could accomodate a larger machine (e.g. 900 m of circumference) or a multi-facility centre. The site is located in the vicinity of Risoe National Laboratory, a R and D establishment with 850 employees and a well-developed technical and scientific infrastructure, which can provide support to the ESRF during the plant construction and operation. In particular the possible combination of synchrotron radiation with the existing neutron scattering facilities in DR 3 is emphasized. The site is located 35 km west of Copenhagen with easy access to the scientific, technological and industrial organizations in the metropolitan area. The regional infrastructure ensures easy and fast communication between the ESRF and locations in the host country as well as abroad. The site is located 35 minutes drive from Copenhagen International Airport and on a main communication route out of Copenhagen. The estimated time duration for the design, construction and commissioning of ESRF phase 1 - taking into account national regulatory procedures - is consistent with that of the ESF feasibility study, i.e. approx. 6 years. The estimated captal costs associated with site-specific structures are consistent with those of the ESF feasibility study, taking into account price increase between 1979 and 1981. It should be emphasized that the study is based upon technical and scientific assessments only, and does not reflect any official position or approval from appropriate authorities. (author)

  10. Current status of facilities dedicated to the production of synchrotron radiation

    International Nuclear Information System (INIS)

    1983-01-01

    The use of synchrotron radiation has undergone a rapid growth in many areas of science during the past five years. Unforeseen fields have emerged, creating new opplortunities. In addition, there is a growing impact on many technological areas that will increase further on the emergence of new sources and experimental stations. The growth in the use of synchrotron radition has been so great that all existing experimental stations will be fully utilized when all current facilities in the United States begin full-time operation for users. Development of te remaining potential experimental stations at existing facilities will satisfy predicted demand until 1985. Insertion devices (wigglers and undulators) provide orders-of-magnitude brighter sources of radiation than bending magnets and are making possible new experiments not feasible, or even conceived, a few years ago

  11. Synchrotron radiation

    International Nuclear Information System (INIS)

    Poole, M.W.; Lea, K.R.

    1982-01-01

    A report is given on the work involving the Synchrotron Radiation Division of the Daresbury Laboratory during the period January 1981 - March 1982. Development of the source, beamlines and experimental stations is described. Progress reports from individual investigators are presented which reveal the general diversity and interdisciplinary nature of the research which benefits from access to synchrotron radiation and the associated facilities. Information is given on the organisation of the Division and publications written by the staff are listed. (U.K.)

  12. Synchrotron radiation A general overview and a review of storage rings, research facilities, and insertion devices

    International Nuclear Information System (INIS)

    Winick, H.

    1989-01-01

    Synchrotron radiation, the electromagnetic radiation given off by electrons in circular motion, is revolutionizing many branches of science and technology by offering beams of vacuum ultraviolet light and x rays of immense flux and brightness. In the past decade there has been an explosion of interest in these applications leading activity to construct new research facilities based on advanced storage rings and insertion device sources. Applications include basic and applied research in biology, chemistry, medicine, and physics plus many areas of technology. In this article we present a general overview of the field of synchrotron radiation research, its history, the present status and future prospects of storage rings and research facilities, and the development of wiggler and undulator insertion devices as sources of synchrotron radiation

  13. Application of PSA techniques to synchrotron radiation source facilities

    International Nuclear Information System (INIS)

    Sanyasi Rao, V.V.S.; Vinod, G.; Vaze, K.K.; Sarkar, P.K.

    2011-01-01

    Synchrotron radiation sources are increasingly being used in research and medical applications. Various instances of overexposure in these facilities have been reported in literature. These instances have lead to the investigation of the risks associated with them with a view to minimise the risks and thereby increasing the level of safety. In nuclear industry, Probabilistic Safety Assessment (PSA) methods are widely used to assess the risk from nuclear power plants. PSA presents a systematic methodology to evaluate the likelihood of various accident scenarios and their possible consequences using fault/event tree techniques. It is proposed to extend similar approach to analyse the risk associated with synchrotron radiation sources. First step for such an analysis is establishing the failure criteria, considering the regulatory stipulations on acceptable limits of dose due to ionization radiation from normal as well as beam loss scenarios. Some possible scenarios considered in this study are (1) excessive Bremsstrahlung in the ring due to loss of vacuum, (2) Target failure due to excessively focused beam (3) mis-directed/mis-steered beam (4) beam loss and sky shine. Hazard analysis needs to cover the beam transfer line, storage ring and experimental beam line areas. Various safety provisions are in place to minimize the hazards from these facilities such as access control interlock systems, radiation shielding for storage ring and beam lines and safety shutters (for beam lines). Experimental beam line area is the most vulnerable locations that need to be critically analysed. There are multiple beam lines, that have different safety provisions and consequences from postulated beam strikes will also be different and this increases the complexity of analysis. Similar studies conducted for such experimental facilities have identified that the radiation safety interlock system, used to control access to areas inside ring and the hutches of beamline facilities has an

  14. Fiber structural analysis by synchrotron radiation

    CERN Document Server

    Kojima, J I; Kikutani, T

    2003-01-01

    Topics of fiber structural analysis by synchrotron radiation are explained. There are only three synchrotron radiation facilities in the world, SPring-8 (Super Photon ring-8) in Japan, APS (Advanced Photon Source) in U.S.A. and ESRF (European Synchrotron Radiation Facility) in France. Online measurement of melt spinning process of PET and Nylon6 is explained in detail. Polypropylene and PBO (poly-p-phenylenebenzobisoxazole) was measured by WAXD (Wide Angle X-ray Diffraction)/SAXS (Small Angle X-ray Scattering) at the same time. Some examples of measure of drawing process of fiber are described. The structure formation process of spider's thread was measured. Micro beam of X-ray of synchrotron facility was improved and it attained to 65nm small angle resolving power by 10 mu m beamsize. (S.Y.)

  15. Synchrotron Radiation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Studies the effects of UV radiation and X rays on solids, and calibrates X-ray optics, detectors, and instruments.DESCRIPTION: Research focuses on applying...

  16. Uses of synchrotron radiation

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1982-01-01

    X-ray fluorescence has long been used as a technique for elemental analysis. X-ray fluorescence techniques have a number of features that make them attractive for application to biomedical samples. In the past few years synchrotron radiation x-ray sources have been developed and, because of their properties, their use can improve the sensitivity for trace element analysis by two to three orders of magnitude. Also, synchrotron radiation will make possible an x-ray microprobe with resolution in the micrometer range. The National Synchrotron Light Source (NSLS), a dedicated synchrotron radiation source recently built at Brookhaven National Laboratory, will have a facility for trace element analysis by x-ray fluorescence and will be available to all interested users

  17. A novel DC Magnetron sputtering facility for space research and synchrotron radiation optics

    DEFF Research Database (Denmark)

    Hussain, A.M.; Christensen, Finn Erland; Pareschi, G.

    1998-01-01

    A new DC magnetron sputtering facility has been build up at the Danish Space Research Institute (DSRI), specially designed to enable uniform coatings of large area curved optics, such as Wolter-I mirror optics used in space telescopes and curved optics used in synchrotron radiation facilities...

  18. Synchrotron radiation. 4. Analyses of biological samples using synchrotron radiation. 3. Research on radiation damage to DNA using synchrotron radiation

    International Nuclear Information System (INIS)

    Takakura, Kaoru

    1998-01-01

    This review described how the synchrotron radiation (SR) is used to solve problems unknown hitherto in radiation biology. Historically, the target substance of UV light in bacterial death was suggested to be nucleic acid in 1930. Researches on the radiation damage to DNA were begun at around 1960 and have mainly used UV light, X-ray and γray. Soft X-ray and vacuum UV whose energy covering from several eV to scores of keV have not been used since UV and X-ray lack the energy of this range. This is one of reasons why detailed process leading to radiation-induced death, carcinogenicity and mutation has not been known hitherto. RS possesses wide range of energy, i.e., from UV to hard X-ray, of high intensity, which is helpful for studying the unknown problems. The RS studies were begun in nineteen-seventies. Those include the action spectrum studies and atomic target studies. In the former, the course of the effect, e.g., the mechanism of DNA double strand breakage, can be elucidated. In the latter, photon of known energy can be irradiated to the specified atom like phosphorus in DNA which elucidating the precise physicochemical process of the breakage. Use of RS in these studies is thought still meaningful in future. (K.H.) 62 refs

  19. Report of the Synchrotron Radiation Vacuum Workshop

    International Nuclear Information System (INIS)

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well

  20. Synchrotron radiation research facility conceptual design report

    International Nuclear Information System (INIS)

    1976-06-01

    A report is presented to define, in general outline, the extent and proportions, the type of construction, the schedule for accomplishment, and the estimated cost for a new Synchrotron Radiation Facility, as proposed to the Energy Research and Development Administration by the Brookhaven National Laboratory. The report is concerned only indirectly with the scientific and technological justification for undertaking this project; the latter is addressed explicitly in separate documents. The report does consider user requirements, however, in order to establish a basis for design development. Preliminary drawings, outline specifications, estimated cost data, and other descriptive material are included as supporting documentation on the current status of the project in this preconstruction phase

  1. Synchrotron radiation research

    International Nuclear Information System (INIS)

    Markus, N.

    1995-01-01

    In the many varied application fields of accelerators, synchrotron radiation ranks as one of the most valuable and widely useful tools. Synchrotron radiation is produced in multi-GeV electron synchrotrons and storage rings, and emerges tangentially in a narrow vertical fan. Synchrotron radiation has been used extensively for basic studies and, more recently, for applied research in the chemical, materials, biotechnology and pharmaceutical industries. Initially, the radiation was a byproduct of high energy physics laboratories but the high demand soon resulted in the construction of dedicated electron storage rings. The accelerator technology is now well developed and a large number of sources have been constructed, with energies ranging from about 1.5 to 8 GeV including the 6 GeV European Synchrotron Radiation Facility (ESRF) source at Grenoble, France. A modern third-generation synchrotron radiation source has an electron storage ring with a complex magnet lattice to produce ultra-low emittance beams, long straights for 'insertion devices', and 'undulator' or 'wiggler' magnets to generate radiation with particular properties. Large beam currents are necessary to give high radiation fluxes and long beam lifetimes require ultra high vacuum systems. Industrial synchrotron radiation research programmes use either Xray diffraction or spectroscopy to determine the structures of a wide range of materials. Biological and pharmaceutical applications study the functions of various proteins. With this knowledge, it is possible to design molecules to change protein behaviour for pharmaceuticals, or to configure more active proteins, such as enzymes, for industrial processes. Recent advances in molecular biology have resulted in a large increase in protein crystallography studies, with researchers using crystals which, although small and weakly diffracting, benefit from the high intensity. Examples with commercial significance include the study of

  2. Coherent Synchrotron Radiation: Theory and Simulations

    International Nuclear Information System (INIS)

    Novokhatski, Alexander

    2012-01-01

    The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum

  3. Comparison of Design and Practices for Radiation Safety among Five Synchrotron Radiation Facilities

    International Nuclear Information System (INIS)

    Liu, James C.; Rokni, Sayed H.; SLAC; Asano, Yoshihiro; JAERI-RIKEN, Hyogo; Casey, William R.; Brookhaven; Donahue, Richard J.

    2005-01-01

    There are more and more third-generation synchrotron radiation (SR) facilities in the world that utilize low emittance electron (or positron) beam circulating in a storage ring to generate synchrotron light for various types of experiments. A storage ring based SR facility consists of an injector, a storage ring, and many SR beamlines. When compared to other types of accelerator facilities, the design and practices for radiation safety of storage ring and SR beamlines are unique to SR facilities. Unlike many other accelerator facilities, the storage ring and beamlines of a SR facility are generally above ground with users and workers occupying the experimental floor frequently. The users are generally non-radiation workers and do not wear dosimeters, though basic facility safety training is required. Thus, the shielding design typically aims for an annual dose limit of 100 mrem over 2000 h without the need for administrative control for radiation hazards. On the other hand, for operational and cost considerations, the concrete ring wall (both lateral and ratchet walls) is often desired to be no more than a few feet thick (with an even thinner roof). Most SR facilities have similar operation modes and beam parameters (both injection and stored) for storage ring and SR beamlines. The facility typically operates almost full year with one-month start-up period, 10-month science program for experiments (with short accelerator physics studies and routine maintenance during the period of science program), and a month-long shutdown period. A typical operational mode for science program consists of long periods of circulating stored beam (which decays with a lifetime in tens of hours), interposed with short injection events (in minutes) to fill the stored current. The stored beam energy ranges from a few hundreds MeV to 10 GeV with a low injection beam power (generally less than 10 watts). The injection beam energy can be the same as, or lower than, the stored beam energy

  4. Synchrotron Radiation in Biology and Medicine

    International Nuclear Information System (INIS)

    Pelka, J.B.

    2008-01-01

    This work is focused on a present status of synchrotron radiation X-ray applications in medicine and biology to imaging, diagnostics, and radio- therapy. Properties of X-ray beams generated by synchrotron sources are compared with radiation produced by classical laboratory X-ray tubes. A list of operating and planned synchrotron facilities applicable to biomedical purposes is given, together with their basic characteristics. A concise overview of typical X-ray synchrotron techniques in biology and medicine is carried out with discussion of their specific properties and examples of typical results. (author)

  5. Enhanced possibilities of section topography at a third-generation synchrotron radiation facility

    International Nuclear Information System (INIS)

    Medrano, C.; Rejmankova, P.; Ohler, M.; Matsouli, I.

    1997-01-01

    The authors show the new possibilities of section topography techniques at a third-generation synchrotron radiation facility, taking advantage of the high performances of this machine. Examples of the 1) so-called multiple sections, 2) visibility of weakly misoriented regions, 3) study of thick samples, 4) monochromatic and 5) realtime sections are presented

  6. Overview and perspective of materials characterization by using synchrotron radiation

    International Nuclear Information System (INIS)

    Kamitsubo, Hiromichi

    2009-01-01

    A peculiarity of techniques and the methods of synchrotron radiation are explained. It consists of five sections such as introduction, synchrotron radiation, interaction between X-ray and materials, analytical methods of materials using synchrotron radiation and perspective and problems. The second section described the principles of synchrotron orbit radiation, synchrotron light source, the main formulae and schematic drawing of undulator, and the synchrotron radiation facilities in Japan. The third section explained behavior of X-ray in materials, absorption, reflection, refraction and scattering of X-ray. The fourth section stated many analytical methods of materials; the surface diffractometer, powder diffractometer, high-energy X-ray diffraction, core-electron absorption spectroscopy, micro-beam diffraction, X-ray fluorescence, X-ray absorption fine structure (XAFS), and photoemission spectroscopy (PES). A characteristic feature of synchrotron radiation contains the large wave length ranges from infrared to X-ray, high directivity and brightness, linear (circular) polarization, pulsed light, good control and stability. The brightness spectra of Spring-8 and SAGA-LS, concept of synchrotron light source, undulator and wiggler, nine synchrotron radiation facilities in Japan, mass absorption coefficients of Cu and Au, and analysis of materials using synchrotron radiation are illustrated. (S.Y.)

  7. Berlin Electron Storage Ring BESSY: a dedicated XUV synchrotron radiation facility

    International Nuclear Information System (INIS)

    Muelhaupt, G.; Bradshaw, A.M.

    1985-01-01

    In response to national requirements in the fields of basic research, metrology and x-ray lithography it was decided in late 1977 to build a dedicated XUV synchrotron radiation source in Berlin. The history of the BESSY project, the user-oriented factors that determined the design parameters, the construction and commissioning of the facility as well as user operation and funding issues are reviewed

  8. Synchrotron radiation: its characteristics and applications

    International Nuclear Information System (INIS)

    Blewett, J.P.; Chasman, R.; Green, G.K.

    1977-01-01

    It has been known for a century that charged particles radiate when accelerated and that relativistic electrons in the energy range between 100 MeV and several GeV and constrained to travel in circular orbits emit concentrated, intense beams with broad continuous spectra that can cover the electromagnetic spectrum from infrared through hard X-rays. Recently the possible applications of this radiation have been appreciated and electron synchrotrons and electron storage rings are now being used in many centers for studies of the properties of matter in the solid, liquid and gaseous states. A brief history is presented of ''synchrotron radiation'' as it is now called. The basic properties of this radiation are described and the world-wide distribution is indicated of facilities for its production. Particular attention is given to the proposed facility at Brookhaven which will be the first major installation to be dedicated only to the production and use of synchrotron radiation. Finally, typical examples are given of applications in the areas of radiation absorption studies, techniques based on scattering of radiation, and advances based on X-ray lithography

  9. Injector system design of the 8 GeV synchrotron radiation facility (SPring-8)

    International Nuclear Information System (INIS)

    Harami, T.; Yokomizo, H.; Ohtsuka, H.

    1990-01-01

    The 8 GeV synchrotron radiation facility, named SPring-8, which will be constructed at Nishi-harima in Hyogo-ken, is designed jointly by JAERI (Japan Atomic Energy Research Institute and RIKEN (Institute of Physical and Chemical Research) under the supervision of Science and Technology Agency (STA) of the Japanese government. The facility provides photon in the X-ray and hard X-ray domains with high flux and high brilliance. The major characteristics of the storage ring are the low emittance and the large number of straight sections. Combining the low emittance beam with long insertion devices, several orders of magnitude improvement in intensity and brightness are expected. The injector system of SPring-8 is composed of a linac and a synchrotron. Not only electrons but positrons can be accelerated by the linac. These particles are injected into the synchrotron and further accelerated to 8 GeV. (N.K.)

  10. Making good use of synchrotron radiation, The role of CHESS at Cornell and as a national facility

    International Nuclear Information System (INIS)

    Batterman, B.W.

    1986-01-01

    Atom smashers is what the New York Times calls them when it publishes a piece about particle accelerators. Historically, particle accelerators were in fact used to break apart atoms, but modern machines do more exotic things. One of them is a spin-off of acceleration - the production of high-energy synchrotron radiation. Once considered a nuisance, this radiation has become valuable in almost every field of science and engineering. It is the basis of a national facility, the Cornell High Energy Synchrotron Source (CHESS), that operates in conjunction with the Cornell Electron Storage Ring (CESR). CHESS provides the highest-energy synchrotron radiation available in the United States

  11. Future Synchrotron Radiation Sources

    CERN Document Server

    Winick, Herman

    2003-01-01

    Sources of synchrotron radiation (also called synchrotron light) and their associated research facilities have experienced a spectacular growth in number, performance, and breadth of application in the past two to three decades. In 1978 there were eleven electron storage rings used as light sources. Three of these were small rings, all below 500 mega-electron volts (MeV), dedicated to this purpose; the others, with energy up to 5 giga-electron volts (GeV), were used parasitically during the operation of the ring for high energy physics research. In addition, at that time synchrotron radiation from nine cyclic electron synchrotrons, with energy up to 5 GeV, was also used parasitically. At present no cyclic synchrotrons are used, while about 50 electron storage rings are in operation around the world as fully dedicated light sources for basic and applied research in a wide variety of fields. Among these fields are structural molecular biology, molecular environmental science, materials, analytic chemistry, micr...

  12. Current status of Hiroshima Synchrotron Radiation Center

    International Nuclear Information System (INIS)

    Taniguchi, Masaki

    2000-01-01

    The Hiroshima Synchrotron Radiation Center is a common facility for both research and education in the field of synchrotron radiation science. The role of the center is to promote original research, training of young scientists, international exchange and cooperative research with neighbouring universities, public organizations and industries. (author)

  13. Synchrotron radiation applications in biophysics and medicine

    International Nuclear Information System (INIS)

    Burattini, E.

    1985-01-01

    The peculiar properties of synchrotron radiation are briefly summarized. A short review on the possible applications of synchrotron radiation in two important fields like Biophysics and Medicine is presented. Details are given on experiments both in progress and carried out in many synchrotron radiation facilities, all over the world, using different techniques like X-ray absorption and fluorescence spectroscopy, X-ray fluorescence microanalysis, X-ray microscopy and digital subtraction angiography. Some news about the photon-activation therapy are briefly reported too

  14. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Vylet, Vaclav; /Jefferson Lab

    2009-12-11

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  15. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    International Nuclear Information System (INIS)

    Liu, James C.; Rokni, Sayed H.; Vylet, Vaclav

    2009-01-01

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power (∼ 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  16. Study and characterization of phosphors excited in the V UV and UV range by the synchrotron radiation

    International Nuclear Information System (INIS)

    Gerard, I.

    1993-01-01

    A characterization tool using synchrotron radiation as a light source to record excitation spectra of the visible luminescence of phosphors induced by photons in the V UV and UV range, at several temperatures (10 to 300 K), is developed. The absorption and deexcitation mechanisms in Y F 3 , La F 3 and Th F 4 matrices doped with Eu 3+ , Tb 3+ , Dy 3+ and Er 3+ ions and polluted with oxygen ions, are examined; charge transfer bands appear clearly. The 4 f n to 4 f n-1 5 d transition bands are also observed on the excitation spectra of the visible luminescence of these compounds and two processes are proposed to interpret the energy relaxation. In order to determine the candidates for the color plasma display panel, measurements of luminous and external quantum yields for efficient phosphors are carried out. The Y F 3 :Eu 3+ compound is shown as a good candidate for the red emission in color plasma display panels

  17. Australian synchrotron radiation science

    International Nuclear Information System (INIS)

    White, J.W.

    1996-01-01

    Full text: The Australian Synchrotron Radiation Program, ASRP, has been set up as a major national research facility to provide facilities for scientists and technologists in physics, chemistry, biology and materials science who need access to synchrotron radiation. Australia has a strong tradition in crystallography and structure determination covering small molecule crystallography, biological and protein crystallography, diffraction science and materials science and several strong groups are working in x-ray optics, soft x-ray and vacuum ultra-violet physics. A number of groups whose primary interest is in the structure and dynamics of surfaces, catalysts, polymer and surfactant science and colloid science are hoping to use scattering methods and, if experience in Europe, Japan and USA can be taken as a guide, many of these groups will need third generation synchrotron access. To provide for this growing community, the Australian National Beamline at the Photon Factory, Tsukuba, Japan, has been established since 1990 through a generous collaboration with Japanese colleagues, the beamline equipment being largely produced in Australia. This will be supplemented in 1997 with access to the world's most powerful synchrotron x-ray source at the Advanced Photon Source, Argonne National Laboratory, USA. Some recent experiments in surface science using neutrons as well as x-rays from the Australian National Beamline will be used to illustrate one of the challenges that synchrotron x-rays may meet

  18. Radiation monitoring in a synchrotron light source facility using magnetically levitated electrode ionization chambers

    International Nuclear Information System (INIS)

    Ichiki, Hirofumi; Kawaguchi, Toshirou; Utsunomiya, Yoshitomo; Ishibashi, Kenji; Ikeda, Nobuo; Korenaga, Kazuhito

    2009-01-01

    We developed a highly accurate differential-type automatic radiation dosimeter to measure very low radiation doses. The dosimeter had two ionization chambers, each of which had a magnetically levitated electrode and it was operated in a repetitive-time integration mode. We first installed the differential-type automatic radiation dosimeter with MALICs at a high-energy electron accelerator facility (Kyushu Synchrotron Light Research Center Facility) and measured the background and ionizing radiations in the facility as well as the gaseous radiation in air. In the background dose measurements, the accuracy of the repetitive-time integration-type dosimeter was three times better than that of a commercial ionization chamber. When the radiation dose increased momentarily at the electron injection from the linac to the operating storage ring, the dosimeter with repetitive-time integral mode gave a successful response to the actual dose variation. The gaseous radiation dose in the facility was at the same level as that in Fukuoka City. We confirmed that the dosimeter with magnetically levitated electrode ionization chambers was usable in the accelerator facility, in spite of its limited response when operated in the repetitive-time integration mode. (author)

  19. Global Horizontal Control Network of Shanghai Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Yu Chenghao; Ke Ming; Du Hanwen; Yin Lixin; Zhao Zhentang; Dong Lan; Huang Kaixi

    2009-01-01

    As a national big scientific engineering, Shanghai Synchrotron Radiation Facility (SSRF) has rigid requirement to the components with sub-millimeter accuracy. In the process of survey and positioning global control network is a connecting link, which determines the position relationship between building and accelerator devices, and provides high accuracy datum to local control network. Within the designing process, building and devices are very restrict. While among observation, it's hard to be observed and abound with disadvantages. With continuous optimization and careful operation, super-high accuracy of 0.3 mm within 400 m circumference was achieved and slab's periodic movement could be seen through 3 times measurement. (authors)

  20. Discussions for the shielding materials of synchrotron radiation beamline hutches

    International Nuclear Information System (INIS)

    Asano, Y.

    2006-01-01

    Many synchrotron radiation facilities are now under operation such as E.S.R.F., APS, and S.P.ring-8. New facilities with intermediated stored electron energy are also under construction and designing such as D.I.A.M.O.N.D., S.O.L.E.I.L., and S.S.R.F.. At these third generation synchrotron radiation facilities, the beamline shielding as well as the bulk shield is very important for designing radiation safety because of intense and high energy synchrotron radiation beam. Some reasons employ lead shield wall for the synchrotron radiation beamlines. One is narrow space for the construction of many beamlines at the experimental hall, and the other is the necessary of many movable mechanisms at the beamlines, for examples. Some cases are required to shield high energy neutrons due to stored electron beam loss and photoneutrons due to gas Bremsstrahlung. Ordinary concrete and heavy concrete are coming up to shield material of synchrotron radiation beamline hutches. However, few discussions have been performed so far for the shielding materials of the hutches. In this presentation, therefore, we will discuss the characteristics of the shielding conditions including build up effect for the beamline hutches by using the ordinary concrete, heavy concrete, and lead for shielding materials with 3 GeV and 8 GeV class synchrotron radiation source. (author)

  1. Materials science and technology by synchrotron radiation

    International Nuclear Information System (INIS)

    Chikawa, J.

    1990-01-01

    In the present paper, features of the Photon Factory, a facility for synchrotron research installed at the National Laboratory for High Energy Physics in Japan, are outlined, and then the impact of the advent of synchrotron radiation is discussed in relation to its outcome during the past seven years. Prospects for future development of synchrotron radiation are also presented. The facility consists of an injector linac to accelerate electrons up to 2.5 GeV and a ring to store the accelerated electrons in a closed orbit. In the Photon Factory, a 400m-long linac has been constructed for use as injector for both the Photon Factory and the TRISTAN electron-positron collider. The storage ring is operated at the same electron energy of 2.5 GeV. The present report also describes some applications of synchrotron radiation, focusing on spectroscopy (X-ray fluorescence technique and time-resolved X-ray absorption spectroscopy), diffraction and scattering (surface structure studies and protein crystallography), and photo-chemical processing. (N.K.)

  2. The personnel protection system for a Synchrotron Radiation Accelerator Facility: Radiation safety perspective

    International Nuclear Information System (INIS)

    Liu, J.C.

    1993-05-01

    The Personnel Protection System (PPS) at the Stanford Synchrotron Radiation Laboratory is summarized and reviewed from the radiation safety point of view. The PPS, which is designed to protect people from radiation exposure to beam operation, consists of the Access Control System (ACS) and the Beam Containment System (BCS), The ACS prevents people from being exposed to the very high radiation level inside the shielding housing (also called a PPS area). The ACS for a PPS area consists of the shielding housing and a standard entry module at every entrance. The BCS prevents people from being exposed to the radiation outside a PPS area due to normal and abnormal beam losses. The BCS consists of the shielding (shielding housing and metal shielding in local areas), beam stoppers, active current limiting devices, and an active radiation monitor system. The system elements for the ACS and BCS and the associated interlock network are described. The policies and practices in setting up the PPS are compared with some requirements in the US Department of Energy draft Order of Safety of Accelerator Facilities

  3. Compact synchrotron radiation depth lithography facility

    Science.gov (United States)

    Knüppel, O.; Kadereit, D.; Neff, B.; Hormes, J.

    1992-01-01

    X-ray depth lithography allows the fabrication of plastic microstructures with heights of up to 1 mm but with the smallest possible lateral dimensions of about 1 μm. A resist is irradiated with ``white'' synchrotron radiation through a mask that is partially covered with x-ray absorbing microstructures. The plastic microstructure is then obtained by a subsequent chemical development of the irradiated resist. In order to irradiate a reasonably large resist area, the mask and the resist have to be ``scanned'' across the vertically thin beam of the synchrotron radiation. A flexible, nonexpensive and compact scanner apparatus has been built for x-ray depth lithography at the beamline BN1 at ELSA (the 3.5 GeV Electron Stretcher and Accelerator at the Physikalisches Institut of Bonn University). Measurements with an electronic water level showed that the apparatus limits the scanner-induced structure precision to not more than 0.02 μm. The whole apparatus is installed in a vacuum chamber thus allowing lithography under different process gases and pressures.

  4. Synchrotron-radiation research

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1982-01-01

    The use of radiation from synchrotron sources has started a renaissance in materials, physics, chemistry, and biology. Synchrotron radiation has advantages over conventional x rays in that its source brightness is a thousand times greater throughout a continuous energy spectrum, and resonances are produced with specific electron energy levels. Two major synchrotron radiation sources are operated by DOE: the Stanford Synchrotron Radiation Laboratory at SLAC, and the National Synchrotron Light Source at Brookhaven

  5. MOSFET dosimetry of the radiation therapy microbeams at the European synchrotron radiation facility

    International Nuclear Information System (INIS)

    Rozenfeld, A.; Lerch, M.

    2002-01-01

    Full text: We have developed an innovative on-line MOSFET readout system for use in the quality assurance of radiation treatment beams. Recently the system has found application in areas where excellent spatial resolution is also a requirement in the quality assurance process, for example IMRT, and microbeam radiation therapy. The excellent spatial resolution is achieved by using a quadruple RADFET TM chip in 'edge on' mode. In developing this approach we have found that the system can be utilised to determine any error in the beam profile measurements due to misalignment of RADFET with respect to the radiation beam or microbeam. Using this approach will ensure that the excellent spatial resolution of the RADFET used in 'edge-on' mode is fully utilised. In this work we report on dosimetry measurements performed at the microbeam radiation therapy beamline located at the European Synchrotron Radiation Facility. The synchrotron planar array microbeam with size 10-30 μm and pitch ∼200 μm has found an important application in microbeam radiation therapy (MRT) of brain tumours in infants for whom other kinds of radiotherapy are inadequate and/or unsafe. The radiation damage from an array of parallel microbeams correlates strongly with the range of peak-valley dose ratios (PVDR), ie, the range of the ratio of the absorbed dose to tissue directly in line with the mid-plane of the microbeam to that in the mid-plane between adjacent microbeams. Novel physical dosimetry of the microbeams using the online MOSFET reader system will be presented. Comparison of the experimental results with both GaF film measurements and Monte Carlo computer-simulated dosimetry are described here for selected points in the peak and valley regions of a microbeam-irradiated tissue phantom

  6. Technological challenges of third generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Cornacchia, M.; Winick, H.

    1990-01-01

    New ''third generation'' synchrotron radiation research facilities are now in construction in France, Italy, Japan, Taiwan and the USA. Designs for such facilities are being developed in several other countries. Third generation facilities are based on storage rings with low electron beam emittance and space for many undulator magnets to produce radiation with extremely high brightness and coherent power. Photon beam from these rings will greatly extend present research capabilities and open up new opportunities in imaging, spectroscopy, structural and dynamic studies and other applications. The technological problems of the third generation of synchrotron radiation facilities are reviewed. These machines are designed to emit radiation of very high intensity, extreme brightness, very short pulses, and partial coherence. These performance goals put severe requirements on the quality of the electron or positron beams. Phenomena affecting the injection process and the beam lifetime are discussed. Gas desorption by synchrotron radiation and collective effects play an important role. Low emittance lattices are more sensitive to quadrupole movements and at the same time, in order not to lose the benefits of high brilliance, require tighter tolerances on the allowed movement of the photon beam source. We discuss some of the ways that should be considered to extend the performance capabilities of the facilities in the future. 14 refs., 1 fig

  7. The status of the first infrared beamline at Shanghai Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Ji, Te; Tong, Yajun; Zhu, Huachun; Zhang, Zengyan; Peng, Weiwei; Chen, Min; Xiao, Tiqiao; Xu, Hongjie

    2015-01-01

    Construction of the first infrared beamline BL01B1 at Shanghai Synchrotron Radiation Facility (SSRF) was completed at the end of 2013. The IR beamline collects both edge radiation (ER) and bending magnet radiation (BMR) from a port, providing a solid angle of 40 mrad and 20 mrad in the horizontal and vertical directions, respectively. The optical layout of the infrared beamline and the design of the extraction mirror are described in this paper. A calculation of the beam propagation has been used to optimize the parameters of the optical components. The photon flux and spatial resolution have been measured at the end-station, and the experimental results are in good agreement with the theoretical calculation

  8. The status of the first infrared beamline at Shanghai Synchrotron Radiation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Te; Tong, Yajun; Zhu, Huachun; Zhang, Zengyan; Peng, Weiwei; Chen, Min, E-mail: chenmin@sinap.ac.cn; Xiao, Tiqiao; Xu, Hongjie

    2015-07-11

    Construction of the first infrared beamline BL01B1 at Shanghai Synchrotron Radiation Facility (SSRF) was completed at the end of 2013. The IR beamline collects both edge radiation (ER) and bending magnet radiation (BMR) from a port, providing a solid angle of 40 mrad and 20 mrad in the horizontal and vertical directions, respectively. The optical layout of the infrared beamline and the design of the extraction mirror are described in this paper. A calculation of the beam propagation has been used to optimize the parameters of the optical components. The photon flux and spatial resolution have been measured at the end-station, and the experimental results are in good agreement with the theoretical calculation.

  9. The status of the first infrared beamline at Shanghai Synchrotron Radiation Facility

    Science.gov (United States)

    Ji, Te; Tong, Yajun; Zhu, Huachun; Zhang, Zengyan; Peng, Weiwei; Chen, Min; Xiao, Tiqiao; Xu, Hongjie

    2015-07-01

    Construction of the first infrared beamline BL01B1 at Shanghai Synchrotron Radiation Facility (SSRF) was completed at the end of 2013. The IR beamline collects both edge radiation (ER) and bending magnet radiation (BMR) from a port, providing a solid angle of 40 mrad and 20 mrad in the horizontal and vertical directions, respectively. The optical layout of the infrared beamline and the design of the extraction mirror are described in this paper. A calculation of the beam propagation has been used to optimize the parameters of the optical components. The photon flux and spatial resolution have been measured at the end-station, and the experimental results are in good agreement with the theoretical calculation.

  10. Experiments recently carried out on the photoemission station at Beijing Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Kurash Ibrahim; Wu Ziyu; Qian Haijie; Zhang Jing; Abbas, M.I.; Chen Zhigang; Su Run; Liu Fengqin

    2003-01-01

    With a sustained and steady operation of the photoemission station at Beijing Synchrotron Radiation Facility, users from different research fields have carried out their investigation on the electronic structure of metal surface-interface, metal doped fullerene as well as colossal magneto-resistance materials utilizing different experimental modes provided by the photoemission station. In this paper authors would present some representative experimental results obtained on the station

  11. Preliminary study on X-ray phase contrast imaging using synchrotron radiation facility

    International Nuclear Information System (INIS)

    Xiong Zhuang; Wang Jianhua; Yu Yongqiang; Jiang Shiping; Chen Yang; Tian Yulian

    2006-01-01

    Objective: To study the methodology of X-ray phase contrast imaging using synchrotron radiation, and evaluate the quality of phase contrast images. Methods: Several experiments to obtain phase contrast images and absorption contrast images of various biological samples were conducted in Beijing Synchrotron Radiation Facility (BSRF), and then these images were interpreted to find out the difference between the two kinds of imaging methods. Results: Satisfactory phase contrast images of these various samples were obtained, and the quality of these images was superior to that obtained with absorption contrast imaging. The phase contrast formation is based on the phenomenon of fresnel diffraction which transforms phase shifts into intensity variations upon a simple act of free-space propagation, so it requires highly coherent X-rays and appropriate distance between sample and detector. This method of imaging is very useful in imaging of low-absorption objects or objects with little absorption variation, and its resolution is far higher than that of the conventional X-ray imaging. The photographs obtained showed very fine inner microstructure of the biological samples, and the smallest microstructure to be distinguished is within 30-40 μm. There is no doubt that phase contrast imaging has a practical applicability in medicine. Moreover, it improves greatly the efficiency and the resolution of the existing X-ray diagnostic techniques. Conclusions: X-ray phase contrast imaging can be performed with synchrotron radiation source and has some advantages over the conventional absorption contrast imaging. (authors)

  12. Synchrotron radiation applications in medical research at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1997-08-01

    In the relatively short time that synchrotrons have been available to the scientific community, their characteristic beams of UV and X-ray radiation have been applied to virtually all areas of medical science which use ionizing radiation. The ability to tune intense monochromatic beams over wide energy ranges clearly differentiates these sources from standard clinical and research tools. The tunable spectrum, high intrinsic collimation of the beams, polarization and intensity of the beams make possible in-vitro and in-vivo research and therapeutic programs not otherwise possible. From the beginning of research operation at the National Synchrotron Light Source (NSLS), many programs have been carrying out basic biomedical research. At first, the research was limited to in-vitro programs such as the x-ray microscope, circular dichroism, XAFS, protein crystallography, micro-tomography and fluorescence analysis. Later, as the coronary angiography program made plans to move its experimental phase from SSRL to the NSLS, it became clear that other in-vivo projects could also be carried out at the synchrotron. The development of SMERF (Synchrotron Medical Research Facility) on beamline X17 became the home not only for angiography but also for the MECT (Multiple Energy Computed Tomography) project for cerebral and vascular imaging. The high energy spectrum on X17 is necessary for the MRT (Microplanar Radiation Therapy) experiments. Experience with these programs and the existence of the Medical Programs Group at the NSLS led to the development of a program in synchrotron based mammography. A recent adaptation of the angiography hardware has made it possible to image human lungs (bronchography). Fig. 1 schematically depicts the broad range of active programs at the NSLS

  13. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    Science.gov (United States)

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  14. Synchrotron Radiation in eRHIC Interaction Region

    CERN Document Server

    Beebe-Wang, Joanne; Montag, Christoph; Rondeau, Daniel J; Surrow, Bernd

    2005-01-01

    The eRHIC currently under study at BNL consists of an electron storage ring added to the existing RHIC complex. The interaction region of this facility has to provide the required low-beta focusing while accommodating the synchrotron radiation generated by beam separation close to the interaction point. In the current design, the synchrotron radiation caused by 10GeV electrons bent by low-beta triplet magnets will be guided through the interaction region and dumped 5m downstream. However, it is unavoidable to stop a fraction of the photons at the septum where the electron and ion vacuum system are separated. In order to protect the septum and minimize the backward scattering of the synchrotron radiation, an absorber and collimation system will be employed. In this paper, we first present the overview of the current design of the eRHIC interaction region with special emphasis on the synchrotron radiation. Then the initial design of the absorber and collimation system, including their geometrical and physical p...

  15. Synchrotron radiation

    CERN Document Server

    Kunz, C

    1974-01-01

    The production of synchrotron radiation as a by-product of circular high-energy electron (positron) accelerators or storage rings is briefly discussed. A listing of existing or planned synchrotron radiation laboratories is included. The following properties are discussed: spectrum, collimation, polarization, and intensity; a short comparison with other sources (lasers and X-ray tubes) is also given. The remainder of the paper describes the experimental installations at the Deutsches Elektronen-Synchrotron (DESY) and DORIS storage rings, presents a few typical examples out of the fields of atomic, molecular, and solid-state spectroscopy, and finishes with an outlook on the use of synchrotron radiation in molecular biology. (21 refs).

  16. The linac control system for the large-scale synchrotron radiation facility (SPring-8)

    Energy Technology Data Exchange (ETDEWEB)

    Sakaki, Hironao; Yoshikawa, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Itoh, Yuichi [Atomic Energy General Services Corporation, Tokai, Ibaraki (Japan); Terashima, Yasushi [Information Technology System Co., Ltd. (ITECS), Tokyo (Japan)

    2000-09-01

    The linac for large-scale synchrotron radiation facilities has been operated since August of 1996. The linac deal with the user requests without any big troubles. In this report, the control system development policy, details, and the operation for the linac are presented. It is also described so that these experiences can be used for control system of a large scale proton accelerators which will be developed in the High Intensity Proton Accelerator Project. (author)

  17. Study of the initial processes of radiation effects using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobayashi, Katsumi

    1990-01-01

    Necessity for the research of production mechanisms of molecular damages in biological system and usefulness of monochromatic soft X-ray in these studies are described. Synchrotron radiation are introduced as a strong light source with continuous spectrum. Practically, it is the only light source in soft X-ray and vacuum UV region. Development of irradiation apparatus for radiation biology and recent results using various biological systems are reviewed. (author)

  18. Proposed uv-FEL user facility at BNL

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Di Mauro, L.F.; Krinsky, S.; White, M.G.; Yu, L.H.; Batchelor, K.; Friedman, A.; Fisher, A.S.; Halama, H.; Ingold, G.; Johnson, E.D.; Kramer, S.; Rogers, J.T.; Solomon, L.; Wachtel, J.; Zhang, X.

    1991-01-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of a UV-FEL operating in the wavelength range from visible to 750 Angstrom. Nano-Coulomb electron pulses will be generated at a laser photo-cathode RF gun at a repetition rate of 10 KHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL output will serve four stations with independent wavelength tuning, using two wigglers and two rotating mirror beam switches. Seed radiation for the FEL amplifiers will be provided by conventional tunable lasers, and the final frequency multiplication from the visible or near UV to the VUV will be carried out in the FEL itself. Each FEL will comprise of an initial wiggler resonant to the seed wavelength, a dispersion section, and a second wiggler resonant to the output wavelength. The facility will provide pump probe capability, FEL or FEL, and FEL on synchrotron light from an insersion device on the NSLS X-Ray ring. 15 refs., 2 figs., 3 tabs

  19. Selective surface functionalization of polystyrene induced by synchrotron or UV radiation in the presence of oxygen or acrylic acid vapors

    International Nuclear Information System (INIS)

    Kessler, Felipe; Kuhn, Sidiney; Weibel, Daniel E.

    2009-01-01

    Efficient surface functionalization of Polystyrene (PS) thin films by electromagnetic radiation in combination with a reactive gaseous atmosphere was obtained. Monochromatic synchrotron (SR) or polychromatic UV radiation were used as excitation sources. When SR was used, O 2 was introduced after irradiation into the UHV chamber. UV irradiation was carried out keeping a constant flow of O 2 or acrylic acid (AA) vapors during the photolysis. FTIR-ATR and XPS-NEXAFS spectra were obtained at the UFRGS and the LNLS, Campinas respectively. PS films were functionalized by monochromatic SR and then expose to O 2 at specific transitions such us C 1s →σ * C-C excitation. It was found a high rate of COO, C=O and C-O groups at the surface (> 70%). UV-assisted treatment in the presence of AA vapors showed that an efficient polymerization process took place, such as, it was observed in previous AA low pressure RF plasma treatments. UV-assisted functionalization has the advantage of lower costs and simple set-up compared to plasma treatments. (author)

  20. Medical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved

  1. Medical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1992-01-01

    Ever since the first diagnostic X-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become incrasingly important. Both in clinical medicine and basic research the use of X-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved. (orig.)

  2. ANKA - new horizons with synchrotron radiation

    International Nuclear Information System (INIS)

    Hagelstein, M.; Czolk, R.

    2001-01-01

    ANKA GmbH operates a state-of-the-art electron storage ring (2.5 GeV energy, 400 mA maximum current) for the production of high-intensity synchrotron radiation. The produced 'superlight' ranges from the hard X-ray to the infrared region of the electromagnetic spectrum. To use the light for microfabrication and analysis a number of modern, high quality production and experimental facilities exist on this circular (diameter about 35 m) synchrotron radiation sources. The experimental facilities are consolidated by a young, experienced and highly motivated team of experts. For the patterning of polymers by deep X-ray lithography three end-stations (so-called beamlines) are available. For analytical tasks five beamlines are established where different experiments can be made based on X-ray methods such as X-ray absorption, diffraction and fluorescence spectroscopy as well as IR-spectroscopy. (orig.)

  3. Education and training program for graduate school student with synchrotron radiation facility

    International Nuclear Information System (INIS)

    Harada, Isao; Ikeda, Naoshi; Yokoya, Takayoshi

    2008-01-01

    We report the education and training program for graduate students of Graduate School of Natural Science and Technology Okayama University made at synchrotron facilities, SPring-8 and HiSOR. This program is a joint course of graduate school lecture and synchrotron facility training with company researchers, that was authorized by the Ministry of Education, Culture, Sports, Science and Technology. The purpose of this program is the development of human resources who can understand the potential ability of synchrotron experiment. We report our plan and actual activity of the training program. (author)

  4. Synchrotron radiation sources: their properties and applications for VUV and X-ray spectroscopy

    International Nuclear Information System (INIS)

    Koch, E.E.

    1976-09-01

    Synchrotron radiation from accelerators and storage rings offers far reaching possibilities for many fields of basic and applied physics. The properties of synchrotron radiation, existing and planned synchrotron radiation facilities, as well as instrumental aspects are discussed. In order to illustrate the usefulness of the synchrotron radiation sources a few highlights from atomic, molelucar, and solid state spectroscopy are presented and examples from x-ray experiments and from the field of applied physics are given. (orig.) [de

  5. Synchrotron radiation facilities in the USA

    International Nuclear Information System (INIS)

    Decker, G.

    1996-01-01

    With the successful commissioning and achievement of significant milestones at both the 7-GeV Advanced Photon Source (APS) and the 1.5- GeV Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory, synchrotron radiation research capability in the United States holds the promise of many important discoveries in the decade to come. An overview of current accelerator commissioning performance at the American third-generation light sources, state-of-the-art developments at first- and second-generation sources, and a preview of fourth-generation source progress is presented

  6. Synchrotron radiation

    International Nuclear Information System (INIS)

    Nave, C.; Quinn, P.; Blake, R.J.

    1988-01-01

    The paper on Synchrotron Radiation contains the appendix to the Daresbury Annual Report 1987/88. The appendix is mainly devoted to the scientific progress reports on the work at the Synchrotron Radiation Source in 1987/8. The parameters of the Experimental Stations and the index to the Scientific Reports are also included in the appendix. (U.K.)

  7. Synchrotron radiation applications in medical research

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1995-01-01

    The medical projects employing synchrotron radiation as discussed in this paper are, for the most part, still in their infancies and no one can predict the direction in which they will develop. Both the basic research and applied medical programs are sure to be advanced at the new facilities coming on line, especially the ESRF and Spring- 8. However, success is not guaranteed. There is a lot of competition from advances in conventional imaging with the development of digital angiography, computed tomography, functional magnetic resonance imaging and ultrasound. The synchrotron programs will have to provide significant advantages over these modalities in order to be accepted by the medical profession. Advances in image processing and potentially the development of compact sources will be required in order to move the synchrotron developed imaging technologies into the clinical world. In any event, it can be expected that the images produced by the synchrotron technologies will establish ''gold standards'' to be targeted by conventional modalities. A lot more work needs to be done in order to bring synchrotron radiation therapy and surgery to the level of human studies and, subsequently, to clinical applications

  8. ''Use of synchrotron radiation in France: present status and perspectives''

    International Nuclear Information System (INIS)

    Thiry, P.

    1996-01-01

    LURE (laboratory for the use of electromagnetic radiation) plays an important role as a research center, as a synchrotron radiation producer and as a leading pole about new light source studies. The necessity to maintain LURE at a high level of technological competitiveness implies to build a new facility called SOLEIL. This article describes the present equipment of LURE, its activity fields and draws the prospect of synchrotron radiation in France. (A.C.)

  9. Chemistry with synchrotron radiation

    International Nuclear Information System (INIS)

    Preses, J.; Grover, J.R.; White, M.G.; Kvick, A.

    1990-01-01

    An accidental by-product of high-energy physics, synchrotron radiation, has emerged as one of the most powerful tools for the understanding of chemical reactions. Advances made by using synchrotron radiation in physical chemistry are reviewed herein. Descriptions of experiments exploiting the many ways that synchrotron radiation can be manipulated are presented. These manipulations include intensification of the radiation and compression or shifting of its spectral structure. Combinations of the use of synchrotron radiation, which provides access to very short wavelengths and is, at the same time, continuously and easily tunable, with laser radiation, which offers much higher resolution and much more intense radiation per pulse, but is difficult to tune in the ultraviolet region of the spectra, gives the chemist a way to map a molecule's potential energy curve, to note the lengths and strengths of chemical bonds, and to predict and explain novel reactions of more complex molecules. The use of diffraction of x-rays to study the spacing of atoms in crystals is discussed. Various applications of synchrotron radiation to studies of the fluorescence of hydrocarbons and to the chiral dichroism studies of other natural products like DNA and RNA are described. Methods for enhancing synchrotron light sources by insertion devices, such as wigglers and undulators, that increase the available photo flux and construction of new sources of synchrotron radiation are mentioned

  10. Analytical research using synchrotron radiation based techniques

    International Nuclear Information System (INIS)

    Jha, Shambhu Nath

    2015-01-01

    There are many Synchrotron Radiation (SR) based techniques such as X-ray Absorption Spectroscopy (XAS), X-ray Fluorescence Analysis (XRF), SR-Fourier-transform Infrared (SRFTIR), Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. which are increasingly being employed worldwide in analytical research. With advent of modern synchrotron sources these analytical techniques have been further revitalized and paved ways for new techniques such as microprobe XRF and XAS, FTIR microscopy, Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. The talk will cover mainly two techniques illustrating its capability in analytical research namely XRF and XAS. XRF spectroscopy: XRF spectroscopy is an analytical technique which involves the detection of emitted characteristic X-rays following excitation of the elements within the sample. While electron, particle (protons or alpha particles), or X-ray beams can be employed as the exciting source for this analysis, the use of X-ray beams from a synchrotron source has been instrumental in the advancement of the technique in the area of microprobe XRF imaging and trace level compositional characterisation of any sample. Synchrotron radiation induced X-ray emission spectroscopy, has become competitive with the earlier microprobe and nanoprobe techniques following the advancements in manipulating and detecting these X-rays. There are two important features that contribute to the superb elemental sensitivities of microprobe SR induced XRF: (i) the absence of the continuum (Bremsstrahlung) background radiation that is a feature of spectra obtained from charged particle beams, and (ii) the increased X-ray flux on the sample associated with the use of tunable third generation synchrotron facilities. Detection sensitivities have been reported in the ppb range, with values of 10 -17 g - 10 -14 g (depending on the particular element and matrix). Keeping in mind its demand, a microprobe XRF beamline has been setup by RRCAT at Indus-2 synchrotron

  11. Synchrotron radiation from protons

    International Nuclear Information System (INIS)

    Dutt, S.K.

    1992-12-01

    Synchrotron radiation from protons, though described by the same equations as the radiation from electrons, exhibits a number of interesting features on account of the parameters reached in praxis. In this presentation, we shall point out some of the features relating to (i) normal synchrotron radiation from dipoles in proton machines such as the High Energy Booster and the Superconducting Super Collider; (ii) synchrotron radiation from short dipoles, and its application to light monitors for proton machines, and (iii) synchrotron radiation from undulators in the limit when, the deflection parameter is much smaller than unity. The material for this presentation is taken largely from the work of Hofmann, Coisson, Bossart, and their collaborators, and from a paper by Kim. We shall emphasize the qualitative aspects of synchrotron radiation in the cases mentioned above, making, when possible, simple arguments for estimating the spectral and angular properties of the radiation. Detailed analyses can be found in the literature

  12. Monochromatization of synchrotron radiation for studies in photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Murty, P.S.

    1981-01-01

    Synchrotron radiation provides a tunable photon source which bridges the wavelength gap between HeI and AlKsub(α) radiation sources in photoelectron spectroscopy. The essential component for using synchrotron radiation is a monochromator. Some design features of the monochromators fabricated at Stanford, U.S.A., and Orsay, France, are described. The Stanford monochromator is a silicon crystal monochromator yielding 8 keV X-ray beam and is used with SPEAR storage ring facility, while the Orsay monochromator is a grazing incidence grating monochromator used for UPS studies. (M.G.B.)

  13. Prospects of using synchrotron radiation facilities with diamond-anvil cells

    International Nuclear Information System (INIS)

    Manghani, M.H.; Ming, L.C.; Jamieson, J.C.

    1980-01-01

    Diamond-anvil pressure cells have proven versatile and useful for conducting high pressure research in the submegabar range. The interfacing of diamond-anvil cell technology with synchrotron facilities seems a logical new step for carrying out in situ X-ray diffraction studies of materials under extreme conditions of combined high pressure and temperature. The conventional film method of X-ray diffraction has definite limitations which call for the energy dispersive analysis techniques. Various potential high pressure-temperature studies in geophysis and related fields involving the use of diamond-anvil cell, synchrotron facilities and energy dispersive techniques are exemplified. For geophysical studies the conditions prevailing in 86% of the Earth's volume are capable of being simulated completely in pressure, and partially in pressure and temperature, simultaneously. (orig.)

  14. The recent development of an X-ray grating interferometer at Shanghai Synchrotron Radiation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sun Haohua; Kou Bingquan; Xi Yan; Qi Juncheng; Sun Jianqi; Mohr, Juergen; Boerner, Martin; Zhao Jun; Xu, Lisa X.; Xiao Tiqiao; Wang Yujie [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China) and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200040 (China); Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Karlsruhe Institute of Technology (KIT), Institute for Microstructure Technology (IMT), Hermannvon-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-07-31

    An X-ray grating interferometer has been installed at Shanghai Synchrotron Radiation Facility (SSRF). Three sets of phase gratings were designed to cover the wide X-ray energy range needed for biological and soft material imaging capabilities. The performance of the grating interferometer has been evaluated by a tomography study of a PMMA particle packing and a new born mouse chest. In the mouse chest study, the carotid artery and carotid vein inside the mouse can be identified in situ without contrast agents.

  15. The recent development of an X-ray grating interferometer at Shanghai Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Sun Haohua; Kou Bingquan; Xi Yan; Qi Juncheng; Sun Jianqi; Mohr, Jürgen; Börner, Martin; Zhao Jun; Xu, Lisa X.; Xiao Tiqiao; Wang Yujie

    2012-01-01

    An X-ray grating interferometer has been installed at Shanghai Synchrotron Radiation Facility (SSRF). Three sets of phase gratings were designed to cover the wide X-ray energy range needed for biological and soft material imaging capabilities. The performance of the grating interferometer has been evaluated by a tomography study of a PMMA particle packing and a new born mouse chest. In the mouse chest study, the carotid artery and carotid vein inside the mouse can be identified in situ without contrast agents.

  16. Superconducting NbN detectors for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Alexei; Richter, Heiko; Huebers, Heinz-Wilhelm [DLR, Instiute of Planetary Research, Berlin (Germany); Ilin, Konstantin; Siegel, Michael [Institute of Micro- and Nanoelectronic Systems, University of Karlsruhe (Germany)

    2009-07-01

    We present development of a special type of hot-electron bolometers that is designed to optimally detect pulsed synchrotron radiation in the terahertz frequency range. The enlarged log-spiral antenna makes it possible to sense the low-frequency part of the spectrum in coherent and non-coherent regime. The device follows the layout of a typical HEB mixer. The radiation is coupled quasioptically with the 6-mm elliptical silicon lens. The bolometer has the noise equivalent power 2 nW per square root Hz and responds to a few picoseconds long radiation pulse with the electric pulse having full width at half maximum of 160 ps. We present results obtained with this type of detector at different synchrotron facilities and discuss possible improvements of the detector performance.

  17. Metrology of reflection optics for synchrotron radiation

    International Nuclear Information System (INIS)

    Takacs, P.Z.

    1985-09-01

    Recent years have seen an almost explosive growth in the number of beam lines on new and existing synchrotron radiation facilities throughout the world. The need for optical components to utilize the unique characteristics of synchrotron radiation has increased accordingly. Unfortunately, the technology to manufacture and measure the large, smooth, exotic optical surfaces required to focus and steer the synchrotron radiation beam has not progressed as rapidly as the operational demands on these components. Most companies do not wish to become involved with a project that requires producing a single, very expensive, aspheric optic with surface roughness and figure tolerances that are beyond their capabilities to measure. This paper will review some of the experiences of the National Synchrotron Light Source in procuring grazing incidence optical components over the past several years. We will review the specification process - how it is related to the function of the optic, and how it relates to the metrology available during the manufacturing process and after delivery to the user's laboratory. We will also discuss practical aspects of our experience with new technologies, such as single point diamond turning of metal mirrors and the use of SiC as a mirror material. Recent advances in metrology instrumentation have the potential to move the measurement of surface figure and finish from the research laboratory into the optical shop, which should stimulate growth and interest in the manufacturing of optics to meet the needs of the synchrotron radiation user community

  18. Synchrotron radiation

    International Nuclear Information System (INIS)

    Norman, D.; Walker, R.P.; Durham, P.J.; Ridley, P.A.

    1986-01-01

    The paper on synchrotron radiation is the appendix to the Daresbury (United Kingdom) annual report, 1985/86. The bulk of the volume is made up of the progress reports for the work carried out during the year under review using the Synchrotron Radiation Source (SRS) at Daresbury. The Appendix also contains: the scientific programmes at the the SRS, progress on beamlines, instrumentation and computing developments, and activities connected with accelerator development. (U.K.)

  19. Bejing synchrotron radiation TXRF facility and its applications on trace element study of cells

    International Nuclear Information System (INIS)

    Yuying, H.; Yingrong, W.; Limin, Z.; Guangcheng, L.; Wie, H.

    2000-01-01

    In this paper, Beijing synchrotron radiation TXRF facility and experimental method were described. The minimum detection limits of some elements were tested by using several kinds of standard reference materials. The feasibility of using TXRF in biomedical field is discussed. With this technique small intestine cells of both normal and radiated white mice were analyzed, and the elemental average contents of each single cell are also given. The results indicated that the contents of some trace elements for normal and radiated white mice are greatly different, which may be used to provide valuable reference for clinic medicine. On the other hand, the trace elements of cells of lung and cervix cancer before and after apoptosis were determined by SRTXRF and the changes of trace elements in these cells were discussed. (author)

  20. X-ray fluorescence in Member States (India): Micro-beam X-ray fluorescence spectroscopy using Indus-2 synchrotron radiation facility: beamline BL-16

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, M. K.; Lodha, G. S.; Deb, S.K., E-mail: mktiwari@rrcat.gov.in [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (MP) (India)

    2014-02-15

    Indus-1 and Indus-2, are India’s national synchrotron radiation facilities located at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore. Indus-1 is a 450 MeV electron storage ring which provides synchrotron radiation in the VUV soft x-ray range with a critical wavelength of 61 Å whereas Indus-2 is a 2.5 GeV, 300 mA synchrotron radiation machine with a critical wavelength of 2 Å for its bending magnet source. The Indus-2 is at present operating at 2.5 GeV, 100 mA in round-theclock operation mode. Both synchrotron sources exist in the same premises of RRCAT, Indore and have very good air/rail connectivities with major cities of India. The RRCAT centre also fosters research and development activities in the fields of particle accelerators, Lasers and related advanced technologies like cryogenics, ultra high vacuum, superconducting cavities, RF power, magnet and their application in different fields of science, thus the centre provides a unique platform covering a wide range of experiments for the synchrotron users in the Indian subcontinent.

  1. Coronary angiography using synchrotron radiation

    International Nuclear Information System (INIS)

    Akatsuka, Takao; Hiranaka, Yukio; Takeda, Tohru; Hyodo, Kazuyuki.

    1990-01-01

    Invasive coronary angiography is the imaging technique of choice for diagnosis of ischemic heart disease. Recently, the application of synchrotron radiation in coronary angiography has been investigated in the world, with the aim of developing the noninvasive technique for visualizing the heart. In this article, backgrounds and present situation of coronary angiography using synchrotron radiation are reviewed. Firstly, visual imaging techniques of the cardiovascular system are discussed in terms of angiography and digital subtraction angiography (DSA). Conventional temporal, energy, and hybrid subtraction modes used in DSA are referred to. Secondly, the application of synchrotron radiation is presented, focusing on the property of synchrotron radiation and K-edge subtraction angiography. Two kinds of synchrotron radiation beam methods are outlined. Interpretation of image data and various subtraction procedures remain unestablished. There is much to be done before coronary angiography using synchrotron radiation comes into a clinical practice. (N.K.)

  2. Measuring circular dichroism in a capillary cell using the b23 synchrotron radiation CD beamline at diamond light source.

    Science.gov (United States)

    Jávorfi, Tamás; Hussain, Rohanah; Myatt, Daniel; Siligardi, Giuliano

    2010-01-01

    Synchrotron radiation circular dichroism (SRCD) is a well-established method in structural biology. The first UV-VIS beamline dedicated to circular dichroism at Diamond Light Source, a third generation synchrotron facility in South Oxfordshire, has recently become operational and it is now available for the user community. Herein we present an important application of SRCD: the CD measurement of protein solutions in fused silica rectangular capillary cells. This was achieved without the use of any lens between the photoelastic modulator and the photomultiplier tube detectors by exploiting the high photon flux of the collimated beam that can be as little as half a millimeter squared. Measures to minimize or eliminate vacuum-UV protein denaturation effects are discussed. The CD spectra measured in capillaries is a proof of principle to address CD measurements in microdevice systems using the new B23 SRCD beamline. © 2010 Wiley-Liss, Inc.

  3. NBS SURF 11: A small versatile synchrotron light source

    International Nuclear Information System (INIS)

    Rakowsky, G.

    1981-01-01

    Synchrotron radiation sources do not have to be large multi-megadollar installations. SURF II is based on a compact electron storage ring with a radius of only 0.84 m, an operating energy of 250 MeV, and useful light output down to 5 nm. Small beam size, high brightness and wide-angle light ports give SURF II unique capabilities. Presently five beamlines are instrumented and operational, supporting experiments in atomic and molecular physics, surface science and materials studies, as well as providing optical calibration services. Nearing completion is a large facility for calibrating optical instruments, especially those intended for space flight. The capability of determining the absolute light flux emitted by SURF II has recently been improved and is now operational. The technique employs ultralinear silicon photodiodes to detect and count individual electrons in the stored beam. Other user conveniences include close access to the machine, flexible scheduling and close interaction with the operations staff. The machine's simplicity contributes to reliability and a high ratio of beamtime to downtime

  4. Sensitivities in synchrotron radiation TXRF

    International Nuclear Information System (INIS)

    Pianetta, P.; Baur, K.; Brennan, S.

    2000-01-01

    This work describes the progress we achieved at the Stanford Synchrotron Radiation Laboratory (SSRL) in improving the sensitivity for both the transition metals and light elements such as Al and Na. The transition metal work has matured to the point where a facility exists at SSRL in which semiconductor companies are able to perform industrially relevant measurements at state of the art detection limits. This facility features clean wafer handling and automated data acquisition making routine analytical measurements possible. The best sensitivity demonstrated so far is 3.4 E7 atoms/cm 2 for a 5000 second count time corresponding to 7.6 E7 atoms/cm 2 for a standard 1000 second count time. This is more than a factor of 100 better than what can be achieved with conventional TXRF systems. The detection of light elements such as Al and Na is challenging due to the presence of the h stronger Si fluorescence peak. For traditional energy-dispersive detection only the tunability of synchrotron radiation to excitation energies below the Si-K absorption edge leads to an acceptable sensitivity for Al detection which is limited by a large background due to inelastic x-ray Raman scattering. An alternative approach to overcome the Raman contribution and the strong Si fluorescence is to use a wavelength-dispersive spectrometer for fluorescence detection. The benefits of such a multilayer spectrometer over a solid state detector are its higher energy resolution and greater dynamic range. This strategy allows primary excitation above the Si K absorption edge, eliminating the background due to Raman scattering, and a gracing emission geometry to guarantee high surface sensitivity. Studies testing this concept in combination with high flux synchrotron radiation are underway and first results will be presented. (author)

  5. Synchrotron radiation at Trieste

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-06-15

    The fast developing field of synchrotron radiation has its origins in the mastery of storage rings in high energy physics and is a prime example of spinoff from pure science. Intense electromagnetic radiation streams off when beams of high energy electrons are bent or shaken. This synchrotron radiation was once an annoying waste of energy in particle storage rings, but now the wheel has turned full circle, with dedicated machines supplying this radiation for a wide range of science. The astonishing growth rate in this field was highlighted at an International Conference on Synchrotron Radiation, held at the International Centre for Theoretical Physics (ICTP), Trieste, Italy from 7-11 April.

  6. Synchrotron radiation at Trieste

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The fast developing field of synchrotron radiation has its origins in the mastery of storage rings in high energy physics and is a prime example of spinoff from pure science. Intense electromagnetic radiation streams off when beams of high energy electrons are bent or shaken. This synchrotron radiation was once an annoying waste of energy in particle storage rings, but now the wheel has turned full circle, with dedicated machines supplying this radiation for a wide range of science. The astonishing growth rate in this field was highlighted at an International Conference on Synchrotron Radiation, held at the International Centre for Theoretical Physics (ICTP), Trieste, Italy from 7-11 April

  7. Science experiments via telepresence at a synchrotron radiation source facility

    International Nuclear Information System (INIS)

    Warren, J. E.; Diakun, G.; Bushnell-Wye, G.; Fisher, S.; Thalal, A.; Helliwell, M.; Helliwell, J. R.

    2008-01-01

    The application of a turnkey communication system for telepresence at station 9.8 of the Synchrotron Radiation Source, Daresbury, is described and demonstrated, including its use for inter-continental classroom instruction and user training. Station 9.8 is one of the most oversubscribed and high-throughput stations at the Synchrotron Radiation Source, Daresbury, whereby awarded experimental time is limited, data collections last normally no longer than an hour, user changeover is normally every 24 h, and familiarity with the station systems can be low. Therefore time lost owing to technical failures on the station has a dramatic impact on productivity. To provide 24 h support, the application of a turnkey communication system has been implemented, and is described along with additional applications including its use for inter-continental classroom instruction, user training and remote participation

  8. Synchrotron radiation

    International Nuclear Information System (INIS)

    Hallmeier, K.H.; Meisel, A.; Ranft, J.

    1982-01-01

    The physical background and the properties of synchrotron radiation are described. The radiation offers many useful applications in the fields of spectroscopy and structural investigations. Some examples are given

  9. The uses of synchrotron radiation sources for elemental and chemical microanalysis

    Science.gov (United States)

    Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Jones, K.W.; Rivers, M.L.; Sutton, S.R.

    1990-01-01

    Synchrotron radiation sources offer important features for the analysis of a material. Among these features is the ability to determine both the elemental composition of the material and the chemical state of its elements. For microscopic analysis synchrotron X-ray fluorescence (SXRF) microprobes now offer spatial resolutions of 10 ??m with minimum detection limits in the 1-10 ppm range depending on the nature of the sample and the synchrotron source used. This paper describes the properties of synchrotron radiation and their importance for elemental analysis, existing synchrotron facilities and those under construction that are optimum for SXRF microanalysis, and a number of applications including the high energy excitation of the K lines of heavy elements, microtomography, and XANES and EXAFS spectroscopies. ?? 1990.

  10. Synchrotron radiation: appendix to the Daresbury annual report 1990/91

    International Nuclear Information System (INIS)

    1991-01-01

    This Appendix to the Annual Report of the Daresbury Laboratory of the United Kingdom Science and Engineering Research Council contains the 1990 Annual Report of the Synchrotron Radiation Facilities Committee, specifications for the beamlines and stations, the index for the synchrotron radiation user reports, the reports themselves and the list of publications detailing work performed on the Synchrotron Radiation Source. By far the largest part of the Appendix is taken up with the user reports for the period 1990 to 1991. They include reports on structural determination of sodium methyl, an investigation of DNA-Binding Proteins, monitoring of vital processes in live cells, the structure of semiconductor interfaces, the structure and properties of glasses and soft x-ray absorption spectroscopy of liquid samples. (author)

  11. Synchrotron light beam and a synchrotron light experiment facility

    International Nuclear Information System (INIS)

    Ando, Masami

    1980-01-01

    In the National Laboratory for High Energy Physics, about two years ago, the requirements of synchrotron light beam in respective measuring instruments were discussed. Then, also the arrangement (lattice) of a storage ring, the nature of synchrotron light beam, a synchrotron light experiment facility and the arrangement of the beam lines were studied. During the period of two years since then, due to the changes in the circumstances, the design of the lattice was altered. Accordingly, the arrangement of the beam lines and of measuring instruments were largely changed. At this point, the results of discussions in various meetings are described, though they may still be subject to future changes, with due consideration to beam, environment and beam lines required for the design of the measuring instruments: (1) storage ring and synchrotron light beam, (2) requirements on small beam size and beam stability, (3) a synchrotron light experiment facility. (J.P.N.)

  12. Towards Establishing of National Centre of Synchrotron Radiation in Poland

    International Nuclear Information System (INIS)

    Kolodziej, J.J.; Szymonski, M.

    2004-01-01

    Synchrotron radiation facilities (SRF) are established part of contemporary world research landscape. They facilitate fast advances of life, health, and physical sciences as well as development of new technologies. The extent of synchrotron radiation (SR) use has been growing up steadily for the last two decades all over the world and it is anticipated that the growth will continue in future. Growing community of SR users has generated increasing demand for the beam-time in infrared, vacuum UV and X-ray ranges. In response, many new SR facilities are now being constructed and planned, not only in large countries of strong economy but also in developing countries. It is expected that such trends will be followed in other parts of the world. No doubt, the ''cutting edge'' of research activity will continue to create the demand for beams of higher brightness, flux and photon energy but it is predictable that the increasing fraction of research done presently with laboratory radiation sources will be shifting towards small-scale SR facilities. Several hundred Polish scientists, a meaningful fraction of all SR users, take part in experiments using synchrotron sources all over the world. Many of them belong to the Polish Synchrotron Radiation Society - an active body promoting the use of SR. Present European Union priorities include knowledge, research and innovation as the key priorities and a pillar of development and stable welfare of Europe. Poland as a new member of EU will have to conform to the EU policy. The government strategy assumes a fast increase of investments in research and development sector starting from 2005. No other scientific research installations has had such major impact on advances in science an technology as the SRF. It is obvious that the time is ripe now for establishing a National Centre of Synchrotron Radiation in Poland. Recently, several Polish educational and research institutions constituted around the idea of Polish SRF. The initiative

  13. HESYRL: a dedicated synchrotron radiation laboratory in China

    International Nuclear Information System (INIS)

    Qiu, L.J.

    1985-01-01

    The HESYRL national synchrotron radiation laboratory was first proposed in 1977 as a conclusion of a general planning meeting on nationwide development of natural science and technology at which a topic was the application of synchrotron radiation. A study group was formed in 1978 to carry out preliminary research and prototype development work. The final approval of the project was given in April 1983 and the lab was soon founded. Designs of the main facilities and building completed in Oct 1984. The ground breaking was in Nov 1984. Manufacturing and purchasing of all the equipment and components are now in progress. The overall layout of HESYRL project is shown. the main facilities are an 800 MeV electron storage ring, a 88 meter transport line and a 240 MeV linac as the injector. Some basic considerations in the selecting of major machine parameters are discussed

  14. Beryllium window flange for synchrotron radiation X-ray beamline fabricated by hot isostatic press method

    International Nuclear Information System (INIS)

    Asaoka, Seiji; Maezawa, Hideki; Nishida, Kiyotoshi; Sakamoto, Naoki.

    1995-01-01

    The synchrotron radiation experimental facilities in National Laboratory for High Energy Physics are the experimental facilities for joint utilization, that possess the positron storage ring of 2.5 GeV exclusively used for synchrotron radiation. Synchrotron radiation is led through a mainstay beam channel to the laboratory, and in the beam line of X-ray, it is used for experiment through the taking-out window made of beryllium. At this time, the function of the taking-out window is to shut off between the ultrahigh vacuum in the mainstay beam channel and the atmosphere, and to cut the low energy component of synchrotron radiation spectra. The experiment using X-ray is carried out mostly in the atmosphere. The design of the efficient cooling water channel which is compatible with the flange construction is important under the high thermal load of synchrotron radiation. The beryllium window flange for synchrotron radiation X-ray was made by HIP method, and the ultrahigh vacuum test, the high pressure water flow test and the actual machine test were carried out by heat cycle. The properties required for the window material, the requirement of the construction, the new development of HIP method, and the experiments for evaluating the manufactured beryllium window are described. (K.I.)

  15. Synchrotron Radiation

    International Nuclear Information System (INIS)

    Asfour, F.I

    2000-01-01

    Synchrotron light is produced by electron accelerators combined with storage rings. This light is generated over a wide spectral region; from infra-red (IR) through the visible and vacuum ultraviolet (VUV), and into the X-ray region. For relativistic electrons (moving nearly with the speed of light), most radiation is concentrated in a small cone with an opening angle of 1/gamma(some 0.1 to 1 milliradian),where gamma is the electron energy in units of rest energy (typically 10 3 -10 4 ). In synchrotron radiation sources (storage rings) highly relativistic electrons are stored to travel along a circular path for many hours. Radiation is caused by transverse acceleration due to magnetic forces(bending magnets). The radiation is emitted in pulses of 10-20 picosecond, separated by some 2 nanosecond or longer separation

  16. The uses of synchrotron radiation sources for elemental and chemical microanalysis

    International Nuclear Information System (INIS)

    Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Jones, K.W.; Rivers, M.L.; Sutton, S.R.

    1989-08-01

    Synchrotron radiation sources offer important features for the analysis of a material. Among these features is the ability to determine both the elemental composition of the material and the chemical state of its elements. For microscopic analysis synchrotron x-ray fluorescence (SXRF) microprobes now offer spatial resolutions of 10μm with minimum detection limits in the 1--10 ppM range depending on the nature of the sample and the synchrotron source used. This paper describes the properties of synchrotron radiation and their importance for elemental analysis, existing synchrotron facilities and those under construction that are optimum for SXRF microanalysis, and a number of applications including the high energy excitation of the K lines of heavy elements, microtomography, and XANES and EXAFS spectroscopies. 45 refs., 8 figs., 1 tab

  17. Synchrotron radiation XRF microprobe study of human bone tumor slice

    International Nuclear Information System (INIS)

    Huang Yuying; Zhao Limin; Wang Zhouguang; Shao Hanru; Li Guangcheng; Wu Yingrong; He Wei; Lu Jianxin; He Rongguo

    1999-01-01

    The experimental apparatus of X-ray fluorescence (XRF) microprobe analysis at Beijing Synchrotron Radiation Facility (BSRF) is described. Using the bovine liver as the standard reference, the minimum detection limit (MDL) of trace element was measured to determine the capability of biological sample analysis by synchrotron radiation XRF microprobe. The relative change of the content of the major or trace element in the normal and tumor part of human bone tissue slice was investigated. The experimental result relation to the clinical medicine was also discussed. (author)

  18. Synchrotrons: biomedical applications of the most versatile radiation source of all

    International Nuclear Information System (INIS)

    Lewis, R.

    2003-01-01

    Synchrotrons are the brightest and most versatile sources of radiation that have ever been devised. The spectrum extends from the infra-red to hard X-rays and the application range is just as wide. Applications range from radiotherapy to archaeology and from genomics to mineral identification. For a property of particle accelerators that was for many years seen as a problem, the transformation has been remarkable. There are now more than 50 synchrotron facilities worldwide and the number is still growing rapidly. Some 25 years after the first dedicated machines came into operation, Australia is about to enter the field with a national facility being built at Monash University in Melbourne. The largest impact of synchrotrons has been in the X-ray region of the spectrum where the performance gain over conventional sources is many orders of magnitude. In fact synchrotrons are the only significant improvement in X-ray production since the rotating anode was first marketed in 1929. The possibilities opened up by the availability of monochromatic, tightly collimated beams of enormous intensity has impacted on practically every area of science. Following a brief overview of synchrotron radiation production, the various prominent techniques that synchrotron radiation has made possible will be reviewed. Particular emphasis will be placed on the biomedical applications which include; 1. advanced imaging techniques exploiting X-ray phase contrast 2. radiotherapy using microbeams 3. structural biology 4. elemental, chemical and molecular structure mapping of live wet samples

  19. Photoionization. Daresbury synchrotron radiation lecture note series No. 1

    Energy Technology Data Exchange (ETDEWEB)

    Bottcher, C.

    1973-11-15

    These lectures were given in November 1973 to experimental physicists using the Synchrotron Radiation Facility at Daresbury. The aim was a modest one, to survey the basic ideas of the subject and introduce some current theoretical developments.

  20. Effect of solar UV/EUV heating on the intensity and spatial distribution of Jupiter's synchrotron radiation

    Science.gov (United States)

    Kita, H.; Misawa, H.; Tsuchiya, F.; Tao, C.; Morioka, A.

    2013-10-01

    We analyzed the Very Large Array archived data observed in 2000 to determine whether solar ultraviolet (UV)/extreme ultraviolet (EUV) heating of the Jovian thermosphere causes variations in the total flux density and dawn-dusk asymmetry (the characteristic differences between the peak emissions at dawn and dusk) of Jupiter's synchrotron radiation (JSR). The total flux density varied by 10% over 6 days of observations and accorded with theoretical expectations. The average dawn-dusk peak emission ratio indicated that the dawn side emissions were brighter than those on the dusk side and this was expected to have been caused by diurnal wind induced by the solar UV/EUV. The daily variations in the dawn-dusk ratio did not correspond to the solar UV/EUV, and this finding did not support the theoretical expectation that the dawn-dusk ratio and diurnal wind velocity varies in correspondence with the solar UV/EUV. We tried to determine whether the average dawn-dusk ratio could be explained by a reasonable diurnal wind velocity. We constructed an equatorial brightness distribution model of JSR using the revised Divine-Garrett particle distribution model and used it to derive a relation between the dawn-dusk ratio and diurnal wind velocity. The estimated diurnal wind velocity reasonably corresponded to a numerical simulation of the Jovian thermosphere. We also found that realistic changes in the diurnal wind velocity could not cause the daily variations in the dawn-dusk ratio. Hence, we propose that the solar UV/EUV related variations were below the detection limit and some other processes dominated the daily variations in the dawn-dusk ratio.

  1. Transverse coupling impedance of the storage ring at the European Synchrotron Radiation Facility

    Directory of Open Access Journals (Sweden)

    T. F. Günzel

    2006-11-01

    Full Text Available The vertical and horizontal impedance budgets of the European Synchrotron Radiation Facility (ESRF storage ring are calculated by element-by-element wake potential calculation. Resistive wall wakes are calculated analytically; the short range geometrical wakes are calculated by a 3D electromagnetic field solver. The effect of the quadrupolar wakes due to the flatness of most ESRF vacuum chambers is included in the model. It can well explain the sensitivity of the horizontal single bunch threshold on vacuum chamber changes, in particular, in low-gap sections of the ESRF storage ring. The values of the current thresholds on the transverse planes could be predicted correctly by the model within a factor of 2.

  2. Physics fundamentals and biological effects of synchrotron radiation therapy

    International Nuclear Information System (INIS)

    Prezado, Y.

    2010-01-01

    The main goal of radiation therapy is to deposit a curative dose in the tumor without exceeding the tolerances in the nearby healthy tissues. For some radioresistant tumors, like gliomas, requiring high doses for complete sterilization, the major obstacle for curative treatment with ionizing radiation remains the limited tolerance of the surrounding healthy tissue. This limitation is particularly severe for brain tumors and, especially important in children, due to the high risk of complications in the development of the central nervous system. In addition, the treatment of tumors close to an organ at risk, like the spinal cord, is also restricted. One possible solution is the development of new radiation therapy techniques exploiting radically different irradiation modes and modifying, in this way, the biological equivalent doses. This is the case of synchrotron radiation therapy (SRT). In this work the three new radiation therapy techniques under development at the European Synchrotron Radiation Facility (ESRF), in Grenoble (France) will be described, namely: synchrotron stereotactic radiation therapy (SSRT), microbeam radiation therapy (MRT) and minibeam radiation therapy. The promising results in the treatment of the high grade brain tumors obtained in preclinical studies have paved the way to the clinical trials. The first patients are expected in the fall of 2010. (Author).

  3. Infrared spectroscopy by use of synchrotron radiation

    International Nuclear Information System (INIS)

    Nanba, Takao

    1991-01-01

    During five years since the author wrote the paper on the utilization of synchrotron radiation in long wavelength region, it seems to be recognized that in synchrotron radiation, the light from infrared to milli wave can be utilized, and is considerably useful. Recently the research on coherent synchrotron radiation in this region using electron linac has been developed by Tohoku University group, and the high capability of synchrotron radiation as light source is verified. This paper is the report on the infrared spectroscopic research using incoherent synchrotron radiation obtained from the deflection electromagnet part of electron storage rings. Synchrotron radiation is high luminance white light source including from X-ray to micro wave. The example of research that the author carried out at UVSOR is reported, and the perspective in near future is mentioned. Synchrotron radiation as the light source for infrared spectroscopy, the intensity and dimensions of the light source, far infrared region and mid infrared region, far infrared high pressure spectroscopic experiment, and the heightening of luminance of synchrotron radiation as infrared light source are described. (K.I.)

  4. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  5. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    International Nuclear Information System (INIS)

    Jones, Keith W.

    1999-01-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  6. Fast microwave detection system for coherent synchrotron radiation study at KEK: Accelerator test facility

    International Nuclear Information System (INIS)

    Aryshev, A.; Araki, S.; Karataev, P.; Naito, T.; Terunuma, N.; Urakawa, J.

    2007-01-01

    A fast room temperature microwave detection system based on the Schottky Barrier-diode detector was created at the KEK ATF (Accelerator Test Facility). It was tested using Coherent Synchrotron Radiation (CSR) generated by the 1.28 GeV electron beam in the damping ring. The speed performance of the detection system was checked by observing the CSR from a multi-bunch (2.8 ns bunch separation time) beam. The theoretical estimations of CSR power yield from an edge of bending magnet as well as new injection tuning method are presented. A very high sensitivity of CSR power yield to the longitudinal electron distribution in a bunch is discussed

  7. New theoretical results in synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G. [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation)]. E-mail: bagrov@phys.tsu.ru; Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil); Tlyachev, V.B. [Tomsk Institute of High Current Electronics, Akademicheskiy Avenue 4, Tomsk (Russian Federation); Jarovoi, A.T. [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation)

    2005-11-15

    One of the remarkable features of the relativistic electron synchrotron radiation is its concentration in small angle {delta}{approx}1/{gamma} (here {gamma}-relativistic factor: {gamma}=E/mc{sup 2}, E - energy, m - electron rest mass, c - light velocity) near rotation orbit plane [V.G. Bagrov, V.A. Bordovitsyn, V.G. Bulenok, V. Ya. Epp, Kinematical projection of pulsar synchrotron radiation profiles, in: Proceedings of IV ISTC Scientific Advisory Commitee Seminar on Basic Science in ISTC Aktivities, Akademgorodok, Novosibirsk, April 23-27, 2001, p. 293-300]. This theoretically predicted and experimentally confirmed feature is peculiar to total (spectrum summarized) radiating intensity. This angular distribution property has been supposed to be (at least qualitatively) conserved and for separate spectrum synchrotron radiation components. In the work of V.G. Bagrov, V.A. Bordovitsyn, V. Ch. Zhukovskii, Development of the theory of synchrotron radiation and related processes. Synchrotron source of JINR: the perspective of research, in: The Materials of the Second International Work Conference, Dubna, April 2-6, 2001, pp. 15-30 and in Angular dependence of synchrotron radiation intensity. http://lanl.arXiv.org/abs/physics/0209097, it is shown that the angular distribution of separate synchrotron radiation spectrum components demonstrates directly inverse tendency - the angular distribution deconcentration relatively the orbit plane takes place with electron energy growth. The present work is devoted to detailed investigation of this situation. For exact quantitative estimation of angular concentration degree of synchrotron radiation the definition of radiation effective angle and deviation angle is proposed. For different polarization components of radiation the dependence of introduced characteristics was investigated as a functions of electron energy and number of spectrum component.

  8. Influence of filling pattern structure on synchrotron radiation and beam spectrum at ANKA

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, Johannes; Brosi, Miriam; Bruendermann, Erik; Caselle, Michele; Blomley, Edmund; Hiller, Nicole; Kehrer, Benjamin; Mueller, Anke-Susanne; Schoenfeldt, Patrik; Schuh, Marcel; Schwarz, Markus; Siegel, Michael [Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2016-07-01

    We present the effects of the filling pattern structure in multi-bunch mode on the beam spectrum. This effects can be seen by all detectors whose resolution is better than the RF frequency, ranging from stripline and Schottky measurements to high resolution synchrotron radiation measurements. Our heterodyne measurements of the emitted coherent synchrotron radiation at 270 GHz reveal the discrete frequency harmonics around the 100'000 revolution harmonic of ANKA, the synchrotron radiation facility in Karlsruhe, Germany. Significant effects of bunch spacing, gaps between bunch trains and variations in individual bunch currents on the emitted CSR spectrum are described by theory and supported by observations.

  9. Synchrotron radiation and its various uses in physics, chemistry and biology

    Energy Technology Data Exchange (ETDEWEB)

    Farge, Y [Laboratoire pour l' Utilisation du Rayonnement Electromagnetique (LURE), Paris-11 Univ., 91 - Orsay (France)

    1975-01-01

    The synchrotron radiation emitted by synchrotrons or storage rings has exceptional properties: spectral continuity from X-rays to radiofrequencies, high intensity, focussed emission in the orbit plane, polarization, and time pulsed structure. The radiation is a unique tool for spectroscopic investigations in the far uv or X-rays on atoms, molecules, or solids. Time resolved spectroscopy in the nano and subnanosecond range is now available in a very broad wavelength range. In the X-ray range, these sources are revolutionary because they are more powerful than the best X-ray tubes by two to four orders of magnitude; it will be very soon possible to do kinetic measurements with typical times of one second and less either by diffraction, scattering, or topography.

  10. Light source for synchrotron radiation x-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL)

    International Nuclear Information System (INIS)

    Zhao Jiyong; Jiang Jianhua; Tian Yulian

    1992-01-01

    Characteristics of the synchrotron radiation source for X-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL) is described, local geometrical resolution of topographies is discussed, and the diffracting intensities of white beam topography is given

  11. Precision synchrotron radiation detectors

    International Nuclear Information System (INIS)

    Levi, M.; Rouse, F.; Butler, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab

  12. Solid state spectroscopy by using of far-infrared synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nanba, Takao [Kobe Univ. (Japan). Faculty of Science

    1996-07-01

    If the spectroscopic system corresponding to the wavelength region required for experiment is installed, the light source with continuous wavelength is to be obtainable by synchrotron radiation. This report is that of the research on solid state spectroscopy using the ordinary incoherent synchrotron radiation which is obtained from the deflection electromagnet parts of electron storage ring. At present in the world, the facilities which can be utilized in far-infrared spectroscopy region are five, including the UVSOR of Molecular Science Research Institute in Japan. The optical arrangement of the measuring system of the UVSOR is shown. The spectrum distribution of the light passing through the pinholes with different diameter in the place of setting samples was compared in case of the UVSOR and a high pressure mercury lamp, and it was shown that synchrotron radiation has high luminance. The researches on solid state spectroscopy carried out in the above mentioned five facilities are enumerated. In this paper, the high pressure spectroscopic experiment which has been carried out at the UVSOR is reported. The observation of the phase transition of fine particles and the surface phonons of fine particles are described. As fine particle size became smaller, the critical pressure at which phase transition occurred was high. (K.I.)

  13. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Crasemann, B.; Wuilleumier, F.

    1985-01-01

    This chapter discusses applications of synchrotron light in atomic and molecular physics. Use of the radiation from storage rings has expanded and lent access to new areas of absorption and photoemission spectroscopy and scattering experiments. Techniques applied in connection with synchrotron radiation are discussed including absorption spectroscopy, photoelectron spectroscopy, fluorescence spectroscopy and X-ray scattering. Problem areas that are being studied by the techniques mentioned above are discussed. Synchrotron radiation has provided the means for measuring the threshold-excitation and interference effects that signal the breakdown of the two-step model of atomic excitation/deexcitation. Synchrotron radiation provides more means of excited-state photoionization measurements

  14. Time-resolved experiments in the frequency domain using synchrotron radiation (invited)

    Science.gov (United States)

    De Stasio, Gelsomina; Giusti, A. M.; Parasassi, T.; Ravagnan, G.; Sapora, O.

    1992-01-01

    PLASTIQUE is the only synchrotron radiation beam line in the world that performs time-resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and the dynamics of molecules. This technique measures fluorescence lifetimes with picosecond resolution in the near UV spectral range. Such accurate measurements are rendered possible by taking phase and modulation data, and by the advantages of the cross-correlation technique. A successful experiment demonstrated the radiation damage induced by low doses of radiation on rabbit blood cell membranes.

  15. Facilities for small-molecule crystallography at synchrotron sources.

    Science.gov (United States)

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  16. Development and trial measurement of synchrotron-radiation-light-illuminated scanning tunneling microscope

    International Nuclear Information System (INIS)

    Matsushima, Takeshi; Okuda, Taichi; Eguchi, Toyoaki; Ono, Masanori; Harasawa, Ayumi; Wakita, Takanori; Kataoka, Akira; Hamada, Masayuki; Kamoshida, Atsushi; Hasegawa, Yukio; Kinoshita, Toyohiko

    2004-01-01

    Scanning tunneling microscope (STM) study is performed under synchrotron-radiation-light illumination. The equipment is designed so as to achieve atomic resolution even under rather noisy conditions in the synchrotron radiation facility. By measuring photoexcited electron current by the STM tip together with the conventional STM tunneling current, Si 2p soft-x-ray absorption spectra are successfully obtained from a small area of Si(111) surface. The results are a first step toward realizing a new element-specific microscope

  17. National Synchrotron Light Source: vacuum system for National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Schuchman, J.C.; Godel, J.B.; Jordan, W.; Oversluizen, T.

    1978-01-01

    The National Synchrotron Light Source (NSLS), a 24 million dollar project under construction at Brookhaven National Laboratory (BNL), is a research facility dedicated to the production of synchrotron radiation. Synchrotron radiation is that radiation produced by the acceleration of charged particles at near the speed of light. This facility will provide a continuous spectrum of radiation from the vacuum ultraviolet to the hard x-ray range. The radiation will be highly intense, 100% polarized, extremely well collimated and will have a pulsed time structure. The radiation will be produced in two electron storage rings at energies of 700 MeV and 2.5 GeV, respectively. A maximum of one ampere at 2 GeV, or one-half ampere at 2.5 GeV, of electron beam will be stored

  18. The LBL [Lawrence Berkeley Laboratory] 1-2 GeV synchrotron radiation source

    International Nuclear Information System (INIS)

    Cornacchia, M.

    1987-03-01

    A description is presented of the conceptual design of the 1 to 2 GeV Synchrotron Radiation Source proposed for construction at Lawrence Berkeley Laboratory. This facility is designed to produce ultraviolet and soft x-ray radiation. The accelerator complex consists of an injection system (linac plus booster synchrotron) and a low-emittance storage ring optimized for insertion devices. Eleven straight sections are available for undulators and wigglers, and up to 48 photon beam lines may ultimately emanate from bending magnets. Design features of the radiation source are the high brightness of the photon beams, the very short pulses (tens of picoseconds), and the tunability of the radiation

  19. The present status of a compact synchrotron radiation source LUNA of IHI

    International Nuclear Information System (INIS)

    Marushita, Motoharu; Oishi, Masaya; Takahashi, Mitsuyuki; Komatsu, Takahito; Mandai, Shinichi

    1993-01-01

    Synchrotron radiation is expected to apply to many fields of science and industry and we are specially interested in availability of SR for X-ray lithography. This paper presents the characteristics, the design parameters, the features and current status of LUNA. Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI) has developed a compact synchrotron radiation source 'LUNA' for lithography and has successfully stored beam current at full energy. LUNA consists of a 45 MeV linear accelerator as an electron injector and an 800 MeV synchrotron as a storage ring. The construction of LUNA has been completed in April 1989 at IHI Tsuchiura facility near Tsukuba. Synchrotron Radiation was first observed at December 1989. The design goal, which is to store beam current of 50 mA with the beam lifetime of over 30 minutes, has been successfully achieved in March 1991. At present the stored beam current is 80 mA with the beam lifetime of over 5 hours. (author)

  20. PTB’s radiometric scales for UV and VUV source calibration based on synchrotron radiation

    Science.gov (United States)

    Klein, Roman; Kroth, Simone; Paustian, Wolfgang; Richter, Mathias; Thornagel, Reiner

    2018-06-01

    The radiant intensity of synchrotron radiation can be accurately calculated with classical electrodynamics. This primary realization of the spectral radiant intensity has been used by PTB at several electron storage rings which have been optimized to be operated as primary source standards for the calibration of transfer sources in the spectral range of UV and VUV for almost 30 years. The transfer sources are compared to the primary source standard by means of suitable wavelength-dispersive transfer stations. The spectral range covered by deuterium lamps, which represent transfer sources that are easy to handle, is of particular relevance in practice. Here, we report on developments in the realization and preservation of the radiometric scales for spectral radiant intensity and spectral radiance in the wavelength region from 116 nm to 400 nm, based on a set of deuterium reference lamps, over the last few decades. An inside view and recommendations on the operation of the D2 lamps used for the realization of the radiometric scale are presented. The data has been recently compiled to illustrate the chronological behaviour at various wavelengths. Moreover, an overview of the internal and external validation measurements and intercomparisons is given.

  1. Synchrotron radiation

    International Nuclear Information System (INIS)

    Helliwell, J.R.; Walker, R.P.

    1985-01-01

    A detailed account of the research work associated with the Synchrotron Radiation Source at Daresbury Laboratory, United Kingdom, in 1984/85, is presented in the Appendix to the Laboratory's Annual Report. (U.K.)

  2. Infrared synchrotron radiation from electron storage rings

    International Nuclear Information System (INIS)

    Duncan, W.D.; Williams, G.P.

    1983-01-01

    Simple and useful approximations, valid at infrared wavelengths, to the equations for synchrotron radiation are presented and used to quantify the brightness and power advantage of current synchrotron radiation light sources over conventional infrared broadband laboratory sources. The Daresbury Synchrotron Radiation Source (SRS) and the Brookhaven National Synchrotron Light Source (vacuum ultraviolet) [NSLS(VUV)] storage rings are used as examples in the calculation of the properties of infrared synchrotron radiation. The pulsed nature of the emission is also discussed, and potential areas of application for the brightness, power, and time structure advantages are presented. The use of infrared free electron lasers and undulators on the next generation of storage ring light sources is briefly considered

  3. Induction of prophages in spores of Bacillus subtilis by ultraviolet irradiation from synchrotron orbital radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sadaie, Y.; Kada, T.; Ohta, Y. (National Inst. of Genetics, Mishima, Shizuoka (Japan)); Kobayashi, K.; Hieda, K.; Ito, T.

    1984-06-01

    Prophages were induced from Bacillus subtilis spores lysogenic with SP02 by ultraviolet (160 nm to 240 nm) irradiation from synchrotron orbital radiation (SR UV). SR UV at around 220 nm was most effective in the inactivation of spores and prophage induction from lysogenic spores, suggesting that the lesions are produced on the DNA molecule which eventually induces signals to inactivate the phage repressor.

  4. Induction of prophages in spores of Bacillus subtilis by ultraviolet irradiation from synchrotron orbital radiation

    International Nuclear Information System (INIS)

    Sadaie, Y.; Kada, T.; Ohta, Y.; Kobayashi, K.; Hieda, K.; Ito, T.

    1984-01-01

    Prophages were induced from Bacillus subtilis spores lysogenic with SP02 by ultraviolet (160 nm to 240 nm) irradiation from synchrotron orbital radiation (SR UV). SR UV at around 220 nm was most effective in the inactivation of spores and prophage induction from lysogenic spores, suggesting that the lesions are produced on the DNA molecule which eventually induces signals to inactivate the phage repressor. (author)

  5. Radiation safety aspects of new X-ray free electron laser facility, SACLA

    International Nuclear Information System (INIS)

    Asano, Yoshihiro

    2013-01-01

    In the safety point of view, X-ray free electron laser facilities have some characteristics in comparison with 3 rd generation synchrotron radiation facilities. One is that the high energy electrons are always injected into the beam dump and the beamlines must be constructed in the direction of the movements of electrons, and another is that the total number of accelerated electrons of X-ray free electron laser facilities is much larger than that of synchrotron radiation facilities. In addition to the importance of safety interlock systems, therefore, it is important that high energy electrons never invade into X-ray free electron laser beamlines and the amount of accelerated electron beam losses must be reduced as much as possible. At SACLA, a safety permanent magnet was installed into the X-ray light beam axis, and a beam halo monitor and beam loss monitors were installed within and around the electron transport pipes, respectively. In comparison with the SPring-8 synchrotron radiation facility, shielding design of SACLA, outline of the radiation safety systems including the monitors will be presented

  6. Advanced Light Source, a 1-2 GeV synchrotron radiation facility

    International Nuclear Information System (INIS)

    Berkner, K.H.

    1985-01-01

    The Advanced Light Source (ALS), a dedicated synchrotron radiation facility optimized to generate soft x-ray and vacuum ultraviolet (XUV) light using magnetic insertion devices, was proposed by the Lawrence Berkeley Laboratory in 1982. It consists of a 1.3-GeV injection system, an electron storage ring optimized at 1.3 GeV (with the capability of 1.9-GeV operation), and a number of photon beamlines emanating from twelve 6-meter-long straight sections. In addition, 24 bending-magnet ports will be available for development. The ALS was conceived as a research tool whose range and power would stimulate fundamentally new research in fields from biology to materials science. The conceptual design and associated cost estimate for the ALS have been completed and reviewed by the US Department of Energy (DOE), but Title I activities have not yet begun. The focus in this study is on the history of the ALS as an example of how a technical construction project was conceived, designed, proposed, and validated within the framework of a national laboratory funded largely by the DOE

  7. Synchrotron radiation

    International Nuclear Information System (INIS)

    Farge, Y.

    1982-01-01

    Synchrotron radiation is produced by electrons accelerated near the velocity of light in storage rings, which are used for high energy Physics experiments. The radiation light exhibits a wide spread continuous spectrum ranging from 01 nanometre to radiofrequency. This radiation is characterized by high power (several kilowatts) and intense brightness. The paper recalls the emission laws and the distinctive properties of the radiation, and gives some of the numerous applications in research, such as molecular spectroscopy, X ray diffraction by heavy proteins and X ray microlithography in LVSI circuit making [fr

  8. Transient absorption spectroscopy in biology using the Super-ACO storage ring FEL and the synchrotron radiation combination

    CERN Document Server

    Renault, E; De Ninno, G; Garzella, D; Hirsch, M; Nahon, L; Nutarelli, D

    2001-01-01

    The Super-ACO storage ring FEL, covering the UV range down to 300 nm with a high average power (300 mW at 350 nm) together with a high stability and long lifetime, is a unique tool for the performance of users applications. We present here the first pump-probe two color experiments on biological species using a storage ring FEL coupled to the synchrotron radiation. The intense UV pulse of the Super-ACO FEL is used to prepare a high initial concentration of chromophores in their first singlet electronic excited state. The nearby bending magnet synchrotron radiation provides, on the other hand a pulsed, white light continuum (UV-IR), naturally synchronized with the FEL pulses and used to probe the photochemical subsequent events and the associated transient species. We have demonstrated the feasibility with a dye molecule (POPOP) observing a two-color effect, signature of excited state absorption and a temporal signature with Acridine. Applications on various chromophores of biological interest are carried out,...

  9. Transvenous coronary angiography in humans with synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1994-01-01

    The transvenous coronary angiography project at the National Synchrotron Light Source (NSLS) is presently undergoing a significant upgrade to the hardware and software in the synchrotron medical facility. When completed, the project will have reached a level of maturity in the imaging technology which will allow the research team to begin to concentrate on medical research programs. This paper will review the status of the project and imaging technology and will discuss the current upgrades and future advanced technology initiatives. The advantages of using the radiation from a synchrotron, over that from a standard x-ray source, were the motivation for the project. A total of 23 human imaging sessions have been carried out with in the project. The primary goals have been to establish the imaging parameters and protocol necessary to obtain clinically useful images

  10. Transvenous coronary angiography in humans with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Thomlinson, W.

    1994-10-01

    The transvenous coronary angiography project at the National Synchrotron Light Source (NSLS) is presently undergoing a significant upgrade to the hardware and software in the synchrotron medical facility. When completed, the project will have reached a level of maturity in the imaging technology which will allow the research team to begin to concentrate on medical research programs. This paper will review the status of the project and imaging technology and will discuss the current upgrades and future advanced technology initiatives. The advantages of using the radiation from a synchrotron, over that from a standard x-ray source, were the motivation for the project. A total of 23 human imaging sessions have been carried out with in the project. The primary goals have been to establish the imaging parameters and protocol necessary to obtain clinically useful images.

  11. Atoms, molecules, clusters and synchrotron radiation

    International Nuclear Information System (INIS)

    Kui Rexi; Ju Xin

    1995-01-01

    The importance of synchrotron radiation, especially the third generation synchrotron radiation light source, in atomic, molecular and cluster physics is discussed and some views are presented on new methods which may become available for research in the above fields

  12. Synchrotron radiation

    International Nuclear Information System (INIS)

    Seddon, E.A.; Reid, R.J.

    1992-01-01

    Work at the Daresbury SRS has of necessity been interrupted this year (1991/92) due to the incorporation of Wiggler II. However, considerable beamtime was awarded before the shutdown and the major part of this appendix is concerned with the progress reports of the research undertaken then. The reports have been organised under the following broad headings: Molecular Science (19 papers), Surface and Materials Science (169 papers), Biological Science (85 papers), Instrumental and Technique Developments (13 papers) and Accelerator Physics (3 papers). It is hoped that in time the number of contributions on accelerator physics will grow to reflect the in-house activity on, for example, accelerator improvement and design. The research reports are preceded by the Annual Report of the Synchrotron Radiation Facilities Committee, which outlines the research highlights identified by that Committee (also included are details of the current membership of the SRFC and the chairmen of the Beamtime Allocation Panels). Following the reports are the specifications for the beamlines and stations. This year Section 3 contains 289 reports (nearly 100 more than last year) and the number of publications, generated by scientists and engineers who have used or are associated with Daresbury Laboratory facilities, has topped 500 for the first time. (author)

  13. The synchrotron radiation and its various uses in physics, chemistry and biology

    International Nuclear Information System (INIS)

    Farge, Y.

    1975-01-01

    The synchrotron radiation emitted by synchrotrons or storage rings has exceptional properties: spectral continuity from X-rays to radiofrequencies, high intensity, focussed emission in the orbit plane, polarization, time pulsed structure. For the sake of these properties, this radiation is a unique tool for spectroscopic investigations in the far UV or X-rays on atoms, molecules or solids. Time resolved spectroscopy in the nano and subnanosecond range is now available in a very broad wavelength range. In the X-ray range, these sources are introducing a revolution because they are more powerfull than the best X-ray tubes by two to four orders of magnitude; it will be very soon possible to do kinetic measurements with typical times of one second and less either by diffraction, scattering or topography [fr

  14. Experience with synchrotron radiation sources

    International Nuclear Information System (INIS)

    Krinsky, S.

    1987-01-01

    The development of synchrotron radiation sources is discussed, emphasizing characteristics important for x-ray microscopy. Bending magnets, wigglers and undulators are considered as sources of radiation. Operating experience at the national Synchrotron Light Source on the VUV and XRAY storage rings is reviewed, with particular consideration given to achieved current and lifetime, transverse bunch dimensions, and orbit stability. 6 refs., 3 figs

  15. Synchrotron radiation calibration for soft X-ray detector

    International Nuclear Information System (INIS)

    Ning, Jiamin; Guo, Cun; Xu, Rongkun; Jiang, Shilun; Xu, Zeping; Chen, Jinchuan; Xia, Guangxin; Xue, Feibiao; Qin, Yi

    2009-04-01

    The calibration experiments were carried out to X-ray film, scintillator and transmission grating by employing the soft X-ray station at 3W1B beam-line in Beijing synchrotron Radiation Facility. The experiments presented the black intensity curve and energy response curve of soft X-ray film. And the experimental results can be used in diagnosis of X-ray radiation characterization of Z-pinch, such as in the measurement of soft X-ray Power Meter, grating spectrometer, pinhole camera and one-dimension imaging system which can ensure precision of Z-pinch results. (authors)

  16. Medical applications with synchrotron radiation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T.; Itai, Y. [Univ. of Tsukuba, Inst. of Clinical Medicine, Tsukuba (Japan); Hyodo, K.; Ando, M. [KEK, Tsukuba (Japan); Akatsuka, T. [Yamagata Univ., Faculty of Engineering, Yamagata (Japan); Uyama, C. [National Cardiovascular Centre, Suita (Japan)

    1998-05-01

    In Japan, various medical applications of synchrotron X-ray imaging, such as angiography, monochromatic X-ray computed tomography (CT), radiography and radiation therapy, are being developed. In particular, coronary arteriography (CAG) is quite an important clinical application of synchrotron radiation. Using a two-dimensional imaging method, the first human intravenous CAG was carried out at KEK in May 1996; however, further improvements of image quality are required in clinical practice. On the other hand, two-dimensional aortographic CAG revealed canine coronary arteries as clearly as those on selective CAG, and coronary arteries less than 0.2 mm in diameter. Among applications of synchrotron radiation to X-ray CT, phase-contrast X-ray CT and fluorescent X-ray CT are expected to be very interesting future applications of synchrotron radiation. For actual clinical applications of synchrotron radiation, a medical beamline and a laboratory are now being constructed at SPring-8 in Harima. 55 refs.

  17. Synchrotron radiation and structural proteomics

    CERN Document Server

    Pechkova, Eugenia

    2011-01-01

    This book presents an overview of the current state of research in both synchrotron radiation and structural proteomics from different laboratories worldwide. The book presents recent research results in the most advanced methods of synchrotron radiation analysis, protein micro- and nano crystallography, X-ray scattering and X-ray optics, coherent X-Ray diffraction, and laser cutting and contactless sample manipulation are described in details. The book focuses on biological applications and highlights important aspects such as radiation damage and molecular modeling.

  18. New synchrotron powder diffraction facility for long-duration experiments.

    Science.gov (United States)

    Murray, Claire A; Potter, Jonathan; Day, Sarah J; Baker, Annabelle R; Thompson, Stephen P; Kelly, Jon; Morris, Christopher G; Yang, Sihai; Tang, Chiu C

    2017-02-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world's first dedicated facility for long-term studies (weeks to years) using synchrotron radiation.

  19. Overview of Industrial Synchrotron Radiation Use

    Science.gov (United States)

    Laderman, Stephen S.

    1996-03-01

    Relevant, reliable and accessible synchrotron radiation methods can play an important role in industrial activities. To date, the application of synchrotron radiation based materials characterization methods by industrial concerns has followed the path of laboratory based x-ray methods: early adoption, continuous improvement, and a high degree of specialization to meet specific goals, which may change over time. Like all x-ray methods, their applicability to segments of the biotechnology, chemical, electronics, medical and metallurgical industries arises from a need to develop sophisticated processes for precisely controlling microstructures. An increasing number of those processes are being developed in ways which can, in principle, be more effectively studied if synchrotron radiation based analyses are performed. Technical limitations confined the efforts of early synchrotron radiation users to long-range research investigations. Nowadays, progress in data collection methods, analysis algorithims, accelerator performance, and worker training, have removed many constraints. However, commercial technologies are being improved at steadily higher rates, shortening the time between research, development and manufacturing and, in many cases, blurring their distinctions. Certainly, rapid rates of innovation increase the opportunities for synchrotron radiation techniques to bring competitive advantage since they can be used to shrink development times, to maintain yields and, perhaps, as part of advanced manufacturing. At the same time, rapid rates of innovation also impose stringent criteria on the reliability and timeliness of the supporting methods. Successful conventional x-ray methods have resulted from efforts to create useful new capabilities that effectively balance such forces. Currently, synchrotron radiation users throughout the world are pursuing analogous goals.

  20. Scanning photoemission microscopy with synchrotron radiation

    Science.gov (United States)

    Ade, Harald W.

    1992-08-01

    Progress in photoemission spectro-microscopy at various synchrotron radiation facilities is reviewed. Microprobe devices such as MAXIMUM at the SRC in Wisconsin, the X1-SPEM at the NSLS at BNL, as well as the ellipsoidal ring mirror microscope at DESY in Hamburg, recorded first images during the last few years. The present status of these devices which achieve their lateral resolution by focusing X-rays to a small spot is the primary focus of this paper, but work representing other approaches to spectro-microscopy is also discussed.

  1. Stanford Synchrotron Radiation Laboratory activity report for 1987

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, S.; Cantwell, K. [eds.

    1988-12-31

    During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

  2. Contact microscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs

  3. The World of Synchrotrons

    Indian Academy of Sciences (India)

    de Ciencias Fisicas,. Universidad Nacional. Autonoma de Mexico. Sameen Ahmed Khan. A summary of results on synchrotron radiation is presented along with notes on its properties and applications. Quantum aspects are briefly mentioned. Synchrotron radiation facilities are described briefly with a detailed coverage of ...

  4. Application of synchrotron radiation to elemental analysis

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Hanson, A.L.; Hastings, J.B.; Howells, M.R.; Kraner, H.W.; Chen, J.R.

    1983-01-01

    The use of a synchrotron storage ring as a high brightness source for production of monoergic, variable energy, and highly polarized x-ray beams promises to revolutionize the field of elemental analysis. The results of exploratory work using the Cornell synchrotron facility, CHESS, will be described. Design considerations and features of the new X-Ray Microprobe Facility now under construction at the Brookhaven National Synchrotron Light Source will be presented. This facility will be used for bulk analysis and for microanalysis with an initial spatial resolution of the order of 30 μm

  5. Properties of synchrotron radiation

    International Nuclear Information System (INIS)

    Materlik, G.

    1982-01-01

    This paper forms the introductory chapter to a book concerning the use of synchrotron radiation for investigation of the structure and mechanism of biological macromolecules. After a historical section, the physics of synchrotron radiation is summarized so that the most promising experiments may be extrapolated. Irradiated power and intensity, polarization and angular distribution, brilliance of a real source, and developments such as wigglers and undulators are briefly dealt with. The paper includes a tabulated compilation of proposed and operating machines in 1982, with some of their characteristics. (U.K.)

  6. Installation of a Synchrotron Radiation Beamline Facility at the J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices for the Science and Engineering Alliance. Phase I and II. Final Report

    International Nuclear Information System (INIS)

    Gooden, R.

    2000-01-01

    The Johnston Center presents a unique opportunity for scientists and engineers at southern institutions to initiate and carry out original research using synchrotron radiation ranging from visible light to hard x-rays. The Science and Engineering Alliance proposes to carry out a comprehensive new synchrotron radiation research initiative at CAMD in carefully phased steps of increasing risks. (1) materials research on existing CAMD beam lines and end stations; (2) design, construction and installation of end stations on existing CAMD beam lines, and research with this new instrumentation; (3) design, construction and operation of dedicated synchrotron radiation beam lines that covers the full spectral range of the CAMD storage ring and expanded research in the new facility

  7. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections

  8. Microangiography in Living Mice Using Synchrotron Radiation

    International Nuclear Information System (INIS)

    Yuan Falei; Wang Yongting; Xie Bohua; Tang Yaohui; Guan Yongjing; Lu Haiyan; Yang Guoyuan; Xie Honglan; Du Guohao; Xiao Tiqiao

    2010-01-01

    Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-1 mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent. The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 μm/pixel. The optimal dose of contrast agent is 100 μl per injection and the injecting rate is 33 μl/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43±6.8 μm. There were no differences between LSAs from the left and right hemisphere (p<0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.

  9. Microangiography in Living Mice Using Synchrotron Radiation

    Science.gov (United States)

    Yuan, Falei; Wang, Yongting; Guan, Yongjing; Lu, Haiyan; Xie, Bohua; Tang, Yaohui; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Yang, Guo-Yuan

    2010-07-01

    Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-1 mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent. The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 μm/pixel. The optimal dose of contrast agent is 100 μl per injection and the injecting rate is 33 μl/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43±6.8 μm. There were no differences between LSAs from the left and right hemisphere (p<0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.

  10. 1-2 GeV synchrotron radiation facility at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Berkner, K.H.

    1985-10-01

    The Advanced Light Source (ALS), a dedicated synchrotron radiation facility optimized to generate soft x-ray and vacuum ultraviole (XUV) light using magnetic insertion devices, was proposed by the Lawrence Berkeley Laboratory in 1982. It consists of a 1.3-GeV injection system, an electron storage ring optimized at 1.3 GeV (with the capability of 1.9-GeV operation), and a number of photon beamlines emanating from twelve 6-meter-long straight sections, as shown in Fig. 1. In addition, 24 bending-magnet ports will be avialable for development. The ALS was conceived as a research tool whose range and power would stimulate fundamentally new research in fields from biology to materials science (1-4). The conceptual design and associated cost estimate for the ALS have been completed and reviewed by the US Department of Energy (DOE), but preliminary design activities have not yet begun. The focus in this paper is on the history of the ALS as an example of how a technical construction project was conceived, designed, proposed, and validated within the framwork of a national laboratory funded largely by the DOE

  11. Atmospheric pressure photoionization using tunable VUV synchrotron radiation

    International Nuclear Information System (INIS)

    Giuliani, A.; Giorgetta, J.-L.; Ricaud, J.-P.; Jamme, F.; Rouam, V.; Wien, F.; Laprévote, O.; Réfrégiers, M.

    2012-01-01

    Highlights: ► Coupling of an atmospheric pressure photoionization source with a vacuum ultra-violet (VUV) beamline. ► The set up allows photoionization up to 20 eV. ► Compared to classical atmospheric pressure photoionization (APPI), our set up offers spectral purity and tunability. ► Allows photoionization mass spectrometry on fragile and hard to vaporize molecules. - Abstract: We report here the first coupling of an atmospheric pressure photoionization (APPI) source with a synchrotron radiation beamline in the vacuum ultra-violet (VUV). A commercial APPI source of a QStar Pulsar i from AB Sciex was modified to receive photons from the DISCO beamline at the SOLEIL synchrotron radiation facility. Photons are delivered at atmospheric pressure in the 4–20 eV range. The advantages of this new set up, termed SR-APPI, over classical APPI are spectral purity and continuous tunability. The technique may also be used to perform tunable photoionization mass spectrometry on fragile compounds difficult to vaporize by classical methods.

  12. Transient absorption spectroscopy in biology using the Super-ACO storage ring FEL and the synchrotron radiation combination

    International Nuclear Information System (INIS)

    Renault, Eric; Nahon, Laurent; Garzella, David; Nutarelli, Daniele; De Ninno, Giovanni; Hirsch, Matthias; Couprie, Marie Emmanuelle

    2001-01-01

    The Super-ACO storage ring FEL, covering the UV range down to 300 nm with a high average power (300 mW at 350 nm) together with a high stability and long lifetime, is a unique tool for the performance of users applications. We present here the first pump-probe two color experiments on biological species using a storage ring FEL coupled to the synchrotron radiation. The intense UV pulse of the Super-ACO FEL is used to prepare a high initial concentration of chromophores in their first singlet electronic excited state. The nearby bending magnet synchrotron radiation provides, on the other hand a pulsed, white light continuum (UV-IR), naturally synchronized with the FEL pulses and used to probe the photochemical subsequent events and the associated transient species. We have demonstrated the feasibility with a dye molecule (POPOP) observing a two-color effect, signature of excited state absorption and a temporal signature with Acridine. Applications on various chromophores of biological interest are carried out, such as the time-resolved absorption study of the first excited state of Acridine

  13. Construction and maintenance of SUNY facilities at the National Synchrotron Light Source. Progress report, 1 July 1982-1 July 1983

    International Nuclear Information System (INIS)

    Bigeleisen, J.

    1983-01-01

    Experimental facilities on the X-21 beam line at the National Synchrotron Light Source are described, and synchrotron radiation experiments performed by PRT members are discussed. The report includes a description of the beam line development stages and the experimental equipment

  14. Activity report of Synchrotron Radiation Laboratory 2005

    International Nuclear Information System (INIS)

    2006-11-01

    Since 1980s, the Synchrotron Radiation Laboratory (SRL) has been promoting the 'Super-SOR' project, the new synchrotron radiation facility dedicated to sciences in vacuum ultraviolet and soft X-ray regions. The University of Tokyo considered the project as one of the most important future academic plans and strongly endorsed to construct the new facility with an electron storage ring of third generation type in the Kashiwa campus. During last year, the design of the accelerator system was slightly modified to obtain stronger support of the people in the field of bio-sciences, such as medicine, pharmacy, agriculture, etc. The energy of the storage ring was increased to 2.4 GeV, which is determined to obtain undulator radiation with sufficient brightness in X-ray region for the protein crystallography experiments. The value was also optimised to avoid considerable degradation of undulator radiation in the VUV and soft X-ray regions. However, in October last year, the president office of the University found out that the promotion of the project was very difficult for financial reasons. The budget for the new facility project is too big to be supported by a single university. The decision was intensively discussed by the International Review Committee on the Institute for Solid State Physics (ISSP), which was held at ISSP from November 14 to 16. The committee understood that the restructuring of the University system in Japan would overstrain the financial resources of the University of Tokyo and accepted the decision by the University. Presently, SRL has inclined to install beamlines using undulator radiation in other SR facilities instead of constructing a facility with a light source accelerator. At new beamlines, SRL will promote advanced materials sciences utilizing high brilliance and small emittance of synchrotron radiation which have been considered in the Super-SOR project. They are those such as microscopy and time-resolved experiments, which will only be

  15. A synchrotron-based X-ray exposure station for radiation biology experiments

    International Nuclear Information System (INIS)

    Thompson, A.C.; Blakely, E.A.; Bjornstad, K.A.; Chang, P.Y.; Rosen, C.J.; Schwarz, R.I.

    2007-01-01

    Synchrotron X-ray sources enable radiation biology experiments that are difficult with conventional sources. A synchrotron source can easily deliver a monochromatic, tunable energy, highly collimated X-ray beam of well-calibrated intensity. An exposure station at beamline 10.3.1 of the Advanced Light Source (ALS) has been developed which delivers a variable energy (5-20 keV) X-ray fan beam with very sharp edges (10-90% in less than 3 μm). A series of experiments have been done with a four-well slide where a stripe (100 μm widex18 mm long) of cells in each well has been irradiated and the dose varied from well to well. With this facility we have begun a series of experiments to study cells adjacent to irradiated cells and how they respond to the damage of their neighbors. Initial results have demonstrated the advantages of using synchrotron radiation for these experiments

  16. A synchrotron-based X-ray exposure station for radiation biology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.C. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States)], E-mail: acthompson@lbl.gov; Blakely, E.A.; Bjornstad, K.A. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States); Chang, P.Y. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States); SRI International, Menlo Park, CA (United States); Rosen, C.J.; Schwarz, R.I. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States)

    2007-11-11

    Synchrotron X-ray sources enable radiation biology experiments that are difficult with conventional sources. A synchrotron source can easily deliver a monochromatic, tunable energy, highly collimated X-ray beam of well-calibrated intensity. An exposure station at beamline 10.3.1 of the Advanced Light Source (ALS) has been developed which delivers a variable energy (5-20 keV) X-ray fan beam with very sharp edges (10-90% in less than 3 {mu}m). A series of experiments have been done with a four-well slide where a stripe (100 {mu}m widex18 mm long) of cells in each well has been irradiated and the dose varied from well to well. With this facility we have begun a series of experiments to study cells adjacent to irradiated cells and how they respond to the damage of their neighbors. Initial results have demonstrated the advantages of using synchrotron radiation for these experiments.

  17. Synchrotron radiation and prospects of its applications

    Energy Technology Data Exchange (ETDEWEB)

    Kulipanov, G; Skrinskii, A

    1981-04-01

    Current and prospective applications are described of synchrotron radiation resulting from the motion of high-energy electrons or positrons in a magnetic field and covering a wide spectral range from the infrared to X-ray. The advantages of the synchrotron radiation include a big source luminance, a small angular divergence, the possibility of calculating the absolute intensity and the spectral distribution of the radiation. Special storage rings are most suitable as a source. Synchrotron radiation is applied in X-ray microscopy, energy diffractometry, atomic and molecular spectroscopy, in the structural analysis of microcrystals, very rapid diffractometry of biological objects and crystals, and in Moessbauer spectroscopy. The prospective applications include uses in metrology, medicine, X-ray lithography, elemental analysis, molecular microsurgery, and in radiation technology.

  18. The Advanced Light Source: A new 1.5 GeV synchrotron radiation facility at the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1989-01-01

    The Advanced Light Source (ALS), now under construction at the Lawrence Berkeley Laboratory, is being planned as a national user facility for the production of high-brightness and partially coherent x-ray and ultraviolet synchrotron radiation. The ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in 11 long straight sections and up to 48 bend-magnet ports. High-brightness photon beams, from less than 10 eV to more than 1 keV, will be produced by undulators, thereby providing many research opportunities in materials and surface science, biology, atomic physics and chemistry. Wigglers and bend magnets will provide high-flux, broad-band radiation at energies to 10 keV. 6 refs., 10 figs., 2 tabs

  19. The Australian synchrotron research program

    International Nuclear Information System (INIS)

    Garrett, R.F.

    1998-01-01

    Full text: The Australian Synchrotron Research Program (ASRP) was established in 1996 under a 5 year grant from the Australian Government, and is managed by ANSTO on behalf of a consortium of Australian universities and research organisations. It has taken over the operation of the Australian National Beamline Facility (ANBF) at the Photon Factory, and has joined two CATS at the Advanced Photon Source: the Synchrotron Radiation Instrumentation CAT (SRI-CAT) and the Consortium for Advanced Radiation Sources (CARS). The ASRP thus manages a comprehensive range of synchrotron radiation research facilities for Australian science. The ANBF is a general purpose hard X-ray beamline which has been in operation at the Photon Factory since 1993. It currently caters for about 35 Australian research teams per year. The facilities available at the ANBF will be presented and the research program will be summarised. The ASRP facilities at the APS comprise the 5 sectors operated by SRI-CAT, BioCARS and ChemMatCARS. A brief description will be given of the ASRP research programs at the APS, which will considerably broaden the scope of Australian synchrotron science

  20. Omega: A 24-beam UV irradiation facility

    International Nuclear Information System (INIS)

    Richardson, M.C.; Beich, W.; Delettrez, J.

    1985-01-01

    The authors report on the characterization and performance of the 24-beam Omega laser facility under full third harmonic (351-nm) upconversion. This system provides for the first time a multibeam laser facility for the illumination of spherical targets with UV laser light in symmetric irradiation conditions with energies in the kilojoule range. This facility is capable of providing sufficient irradiation uniformity to test concepts of direct drive laser fusion with UV-driven ablation targets. The results of initial studies of ablatively driven DT-fueled glass microballoon targets will be described. The 24-beam Omega Nd:phosphate glass facility is capable of providing at 1054 nm output powers in excess of 10 TW in short ( 10 4 full system shots to date) irradiation facility with beam synchronism of approx. =3 psec, beam placement accuracy on target of 10 μm, and interbeam energy variance of approx. =2%. From measured target plane intensity distributions, overall illumination uniformity with tangentially focused beams is estimated to be approx. =5%. In 1984, a symmetric set of six beams was upconverted to 351-nm radiation using the polarization-mismatch scheme developed by Craxton. Monolithic cells of 20-cm clear aperture containing both frequency and doubler and tripler type II KDP crystals in index-matching propylene carbonate liquid were incorporated to output of six of the Omega beams with a full set of UV beam diagnostics

  1. Techniques for materials research with synchrotron radiation x-rays

    International Nuclear Information System (INIS)

    Bowen, D.K.

    1983-01-01

    A brief introductory survey is presented of the properties and generation of synchrotron radiation and the main techniques developed so far for its application to materials problems. Headings are:synchrotron radiation; X-ray techniques in synchrotron radiation (powder diffraction; X-ray scattering; EXAFS (Extended X-ray Absorption Fine Structure); X-ray fluorescent analysis; microradiography; white radiation topography; double crystal topography); future developments. (U.K.)

  2. Bursts of Coherent Synchrotron Radiation in Electron Storage Rings: a Dynamical Model

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Marco

    2002-09-17

    Evidence of coherent synchrotron radiation (CSR) has been reported recently at the electron storage rings of several light source facilities. The main features of the observations are (i) a radiation wavelength short compared to the nominal bunch length, and (ii) a coherent signal showing recurrent bursts of duration much shorter than the radiation damping time, but with spacing equal to a substantial fraction of the damping time. We present a model of beam longitudinal dynamics that reproduces these features.

  3. Synchrotron light

    International Nuclear Information System (INIS)

    2001-01-01

    'Synchrotron Light' is an interactive and detailed introduction to the physics and technology of the generation of coherent radiation from accelerators as well as to its widespread high-tech applications in science, medicine and engineering. The topics covered are the interaction of light and matter, the technology of synchrotron light sources, spectroscopy, imaging, scattering and diffraction of X-rays, and applications to materials science, biology, biochemistry, medicine, chemistry, food and pharmaceutical technology. All synchrotron light facilities are introduced with their home-page addresses. 'Synchrotron Light' provides an instructive and comprehensive multimedia learning tool for students, experienced practitioners and novices wishing to apply synchrotron radiation in their future work. Its multiple-entry points permit an easy exploration of the CD-Rom according to the users knowledge and interest. 2-D and 3-D animations and virtual reconstruction with computer-generated images guide visitors into the scientific and technical world of a synchrotron and into the applications of synchrotron radiation. This bilingual (English and French) CD-Rom can be used for self-teaching and in courses at various levels in physics, chemistry, engineering, and biology. (author)

  4. Historical overview of the synchrotron radiation research in Japan. From the view point of creative works in the development of light sources and related technology

    International Nuclear Information System (INIS)

    Kamitsubo, Hiromichi

    2007-01-01

    Synchrotron radiation research in Japan started in early 1960's when the first electron synchrotron was commissioned at the Institute of Nuclear Study (INS), University of Tokyo (UT). This review covers the parasite use of the INS electron synchrotron and research works done at the light sources in Japan such as SOR-RING, Photon Factory (KEK-PF) Accumulator Ring (KEK-AR), and SPring-8. History of synchrotron radiation research in Japan was overviewed by paying attention to the creative works in the development of light sources and related technology, as well as the pioneering works on the development of experimental techniques and methods. At present there are more than ten synchrotron radiation sources are in operation and the number of their users, especially users from industries in Japan is increasing very rapidly and the research fields of users are also developing. Accordingly the synchrotron radiation facility becomes more and more indispensable facility in the society in Japan. (author)

  5. The Stanford Synchrotron Radiation Laboratory, 20 years of synchrotron light

    International Nuclear Information System (INIS)

    Cantwell, K.

    1993-08-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) is now operating as a fully dedicated light source with low emittance electron optics, delivering high brightness photon beams to 25 experimental stations six to seven months per year. On October 1, 1993 SSRL became a Division of the Stanford Linear Accelerator Center, rather than an Independent Laboratory of Stanford University, so that high energy physics and synchrotron radiation now function under a single DOE contract. The SSRL division of SLAC has responsibility for operating, maintaining and improving the SPEAR accelerator complex, which includes the storage ring and a 3 GeV injector. SSRL has thirteen x-ray stations and twelve VUV/Soft x-ray stations serving its 600 users. Recently opened to users is a new spherical grating monochromator (SGM) and a multiundulator beam line. Circularly polarized capabilities are being exploited on a second SGM line. New YB 66 crystals installed in a vacuum double-crystal monochromator line have sparked new interest for Al and Mg edge studies. One of the most heavily subscribed stations is the rotation camera, which has been recently enhanced with a MAR imaging plate detector system for protein crystallography on a multipole wiggler. Under construction is a new wiggler-based structural molecular biology beam line with experimental stations for crystallography, small angle scattering and x-ray absorption spectroscopy. Plans for new developments include wiggler beam lines and associated facilities specialized for environmental research and materials processing

  6. Synchrotron radiation sources: general features and vacuum system

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1985-01-01

    In the last years the electron or positron storage rings, which were until 1970 only used for high energy physics experiments, begun to be built in several countries exclusively as electromagnetic radiation source (synchrotron radiation). The sources are generally made up by injector (linear accelerator or microtron), 'booster' (synchrotron), storage ring, insertions ('Wigglers' and ondulators) and light lines. The interest by these sources are due to the high intensity, large spectrum (from infrared to the X-rays), polarization and pulsed structure of the produced radiation. For the ultra-vacuum obtainement, necessary for the functioning storage rings (p=10 -9 Torr), several special procedures are used. In Brazil the Synchrotron Radiation National Laboratory of the CNPq worked out a conceptual project of synchrotron radiation source, whose execution should begin by the construction of the several components prototypes. (L.C.) [pt

  7. Reflectometry with synchrotron radiation

    International Nuclear Information System (INIS)

    Krumrey, Michael; Cibik, Levent; Fischer, Andreas; Gottwald, Alexander; Kroth, Udo; Scholze, Frank

    2014-01-01

    The measurement of the reflectivity for VUV, XUV, and X-radiation at the PTB synchrotron radiation sources is described. The corresponding data of the used beams are presented. Results of experiments on a Cu-Ni double-layer, SiO 2 , Si, and MgF 2 are presented. (HSI)

  8. Synchrotron radiation and free electron laser activities in Novosibirsk

    International Nuclear Information System (INIS)

    Korchuganov, V.N.; Kulipanov, G.N.; Mezentsev, N.A.; Oreshkov, A.D.; Panchenko, V.E.; Pindyurin, V.F.; Skrinskij, A.N.; Sheromov, M.A.; Vinokurov, N.A.; Zolotarev, K.V.

    1994-01-01

    The results of studies realized in the Siberian synchrotron radiation centre within the frameworks of wide program of synchrotron radiation and free electron laser research are summarized. The technical information on the VEPP-2M, VEPP-3 and VEPP-4M storage rings used as synchrotron radiation sources is given. 10 refs.; 8 figs.; 12 tabs

  9. Coherent Synchrotron Radiation in Storage Rings

    International Nuclear Information System (INIS)

    Venturini, Marco

    2002-01-01

    We take a detour from the main theme of this volume and present a discussion of coherent synchrotron radiation (CSR) in the context of storage rings rather than single-pass systems. Interest in this topic has been revived by a series of measurements carried out at several light source facilities. There is strong evidence that the observed coherent signal is accompanied by a beam instability, possibly driven by CSR itself. In this paper we review a ''self-consistent'' model of longitudinal beam dynamics in which CSR is the only agent of collective forces. The model yields numerical solutions that appear to reproduce the main features of the observations

  10. The pressure behaviour of actinides via synchrotron radiation

    International Nuclear Information System (INIS)

    Haire, R.G.; Heathman, S.; Le Bihan, T.; Lindbaum, A.

    2002-01-01

    Various aspects of performing high-pressure studies with radioactive f-elements using synchrotrons as sources of X-rays are discussed. For ultra-high pressures, intense well-focused beams of 10 to 30 microns in diameter and a single wavelength of 0.3 to 0.7 angstrom are desired for angle dispersive diffraction measurements. Special considerations are necessary for the studies of transuranium elements under pressure at synchrotron facilities. Normally, with these actinides the pressure cells are prepared off-site and shipped to the synchrotron for study. Approved containment techniques must be provided to assure there is not a potential for the release of sample material. The goal of these high-pressure studies is to explore the fundamental science occurring as pressure is applied to the actinide samples. One of the primary effects of pressure is to reduce interatomic distances, and the goal is to ascertain the changes in bonding and electronic nature of the system that result as atoms and electronic orbitals are forced closer together. Concepts of the science being pursued with these f-elements are outlined. A brief discussion of the behaviour of americium metal under pressure performed recently at the ESRF is provided as an example of the high-pressure research being performed with synchrotron radiation. Also discussed here is the important role synchrotrons play and the techniques/procedures employed in high-pressure studies with actinides. (authors)

  11. National Synchrotron Light Source

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1979-01-01

    The National Synchrotron Light Source comprises two high intensity electron storage rings for the generation of intense fluxes of synchrotron radiation in the vuv wavelength domain (700 MeV e - ring) and in the x-ray wavelength domain (2.5 GeV e - ring). A description is presented of the basic facility and the characteristics of the synchrotron radiation sources. The present plans for specific beam lines will be enumerated and the planned use of beam wigglers and undulators will be discussed

  12. X-ray diffraction using synchrotron radiation on the G.I.L.D.A. beam line at the E.S.R.F

    Energy Technology Data Exchange (ETDEWEB)

    Balerna, A [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Meneghini, C [INFN, Laboratori Nazionali di Frascati, Rome (Italy); [INFM, Genoa (Italy); Bordoni, S [Rome Univ. ` Tor Vergata` (Italy). Dip. di Fisica; Mobilio, S [Rome Univ. III (Italy). Dip. di Fisica ` E. Amaldi`

    1996-09-01

    The aim of this lecture is to make a short introduction on Synchrotron radiation, its history and main properties. The main components of a synchrotron radiation beam line will be described. The Italian beam line, General purpose Italian beam line Line for Diffraction and Absorption (G.I.L.D.A.) at the European Synchrotron Radiation Facility (E.S.R.F.) in Grenoble will be used as an example. The G.I.L.D.A. diffractometer will be described in detail reporting also some experimental results.

  13. Synchrotron radiation techniques for the characterization of Nb$_{3}$Sn superconductors

    CERN Document Server

    Scheuerlein, C; Buta, F

    2009-01-01

    The high flux of high energy x-rays that can be provided through state-of-the-art high energy synchrotron beam lines has enabled a variety of new experiments with the highly absorbing Nb$_{3}$Sn superconductors. We report different experiments with Nb$_{3}$Sn strands that have been conducted at the ID15 High Energy Scattering beam line of the European Synchrotron Radiation Facility (ESRF). Synchrotron x-ray diffraction has been used in order to monitor phase transformations during in-situ reaction heat treatments prior to Nb$_{3}$Sn formation, and to monitor Nb$_{3}$Sn growth. Fast synchrotron micro-tomography was applied to study void growth during the reaction heat treatment of Internal Tin strands. The elastic strain in the different phases of fully reacted Nb$_{3}$Sn composite conductors can be measured by high resolution x-ray diffraction during in-situ tensile tests.

  14. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    International Nuclear Information System (INIS)

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube

  15. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

  16. Photoemission studies of clean and adsorbate covered metal surfaces using synchrotron and uv radiation sources

    International Nuclear Information System (INIS)

    Apai, G.R. II.

    1977-09-01

    Photoemission energy distribution experiments on clean metal and adsorbate-covered surfaces were performed under ultrahigh vacuum conditions by using x-ray and ultraviolet photon sources in the laboratory as well as continuously-tunable, highly polarized synchrotron radiation obtainable at the Stanford Synchrotron Radiation Laboratory (SSRL). Studies focused on two general areas: cross-section modulation in the photoemission process was studied as a function of photon energy and orbital composition. Sharp decreases in intensity of the valence bands of several transition metals (i.e., Ag, Au, and Pt) are attributed to the radial nodes in the respective wave functions. Adsorbate photoemission studies of CO adsorbed on platinum single crystals have demonstrated a very high spectral sensitivity to the 4sigma and (1π + 5sigma) peaks of CO at photon energies of 150 eV. Angle-resolved photoemission allowed determination of the orientation of CO chemisorbed on a Pt (111) or Ni(111) surface. Prelinimary results at high photon energies (approximately 150 eV) indicated scattering from the substrate which could yield chemisorption site geometries

  17. Molecular Environmental Science and Synchrotron Radiation Facilities An Update of the 1995 DOE-Airlie Report on Molecular Environmental Science

    Energy Technology Data Exchange (ETDEWEB)

    Bargar, John R

    1999-05-07

    This workshop was requested by Dr. Robert Marianelli, Director of the DOE-BES Chemical Sciences Division, to update the findings of the Workshop on Molecular Environmental Sciences (MES) held at Airlie, VA, in July 1995. The Airlie Workshop Report defined the new interdisciplinary field referred to as Molecular Environmental Science (MES), reviewed the synchrotron radiation methods used in MES research, assessed the adequacy of synchrotron radiation facilities for research in this field, and summarized the beam time requirements of MES users based on a national MES user survey. The objectives of MES research are to provide information on the chemical and physical forms (speciation), spatial distribution, and reactivity of contaminants in natural materials and man-made waste forms, and to develop a fundamental understanding of the complex molecular-scale environmental processes, both chemical and biological, that affect the stability, transformations, mobility, and toxicity of contaminant species. These objectives require parallel studies of ''real'' environmental samples, which are complicated multi-phase mixtures with chemical and physical heterogeneities, and of simplified model systems in which variables can be controlled and fundamental processes can be examined. Only by this combination of approaches can a basic understanding of environmental processes at the molecular-scale be achieved.

  18. Molecular Environmental Science and Synchrotron Radiation Facilities An Update of the 1995 DOE-Airlie Report on Molecular Environmental Science

    International Nuclear Information System (INIS)

    Bargar, John R

    1999-01-01

    This workshop was requested by Dr. Robert Marianelli, Director of the DOE-BES Chemical Sciences Division, to update the findings of the Workshop on Molecular Environmental Sciences (MES) held at Airlie, VA, in July 1995. The Airlie Workshop Report defined the new interdisciplinary field referred to as Molecular Environmental Science (MES), reviewed the synchrotron radiation methods used in MES research, assessed the adequacy of synchrotron radiation facilities for research in this field, and summarized the beam time requirements of MES users based on a national MES user survey. The objectives of MES research are to provide information on the chemical and physical forms (speciation), spatial distribution, and reactivity of contaminants in natural materials and man-made waste forms, and to develop a fundamental understanding of the complex molecular-scale environmental processes, both chemical and biological, that affect the stability, transformations, mobility, and toxicity of contaminant species. These objectives require parallel studies of ''real'' environmental samples, which are complicated multi-phase mixtures with chemical and physical heterogeneities, and of simplified model systems in which variables can be controlled and fundamental processes can be examined. Only by this combination of approaches can a basic understanding of environmental processes at the molecular-scale be achieved

  19. Room-temperature macromolecular serial crystallography using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Francesco Stellato

    2014-07-01

    Full Text Available A new approach for collecting data from many hundreds of thousands of microcrystals using X-ray pulses from a free-electron laser has recently been developed. Referred to as serial crystallography, diffraction patterns are recorded at a constant rate as a suspension of protein crystals flows across the path of an X-ray beam. Events that by chance contain single-crystal diffraction patterns are retained, then indexed and merged to form a three-dimensional set of reflection intensities for structure determination. This approach relies upon several innovations: an intense X-ray beam; a fast detector system; a means to rapidly flow a suspension of crystals across the X-ray beam; and the computational infrastructure to process the large volume of data. Originally conceived for radiation-damage-free measurements with ultrafast X-ray pulses, the same methods can be employed with synchrotron radiation. As in powder diffraction, the averaging of thousands of observations per Bragg peak may improve the ratio of signal to noise of low-dose exposures. Here, it is shown that this paradigm can be implemented for room-temperature data collection using synchrotron radiation and exposure times of less than 3 ms. Using lysozyme microcrystals as a model system, over 40 000 single-crystal diffraction patterns were obtained and merged to produce a structural model that could be refined to 2.1 Å resolution. The resulting electron density is in excellent agreement with that obtained using standard X-ray data collection techniques. With further improvements the method is well suited for even shorter exposures at future and upgraded synchrotron radiation facilities that may deliver beams with 1000 times higher brightness than they currently produce.

  20. Application of Synchrotron Radiation in the Geological and Environmental Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith W.

    1999-09-01

    A survey of some of the different ways that synchrotrons x-ray beams can be used to study geological materials is presented here. This field developed over a period of about 30 years, and it is clear that the geological community has made major use of the many synchrotrons facilities operating around the world during this time period. This was a time of rapid change in the operational performance of the synchrotrons facilities and this in itself has made it possible for geologists to develop new and more refined types of experiments that have yielded many important results. The advance in experimental techniques has proceeded in parallel with a revolution in computing techniques that has made it possible to cope with the great amount of data accumulated in the experiments. It is reasonable, although risky, to speculate about what might be expected to develop in the field during the next five- to ten-year period. It does seem plausible that the rate of change in the performance of what might now be called conventional x-ray storage rings will slow. There are no new facilities that are superior to the ESRF, ALS, APS, or SPring8 facilities under construction or about to come into operation. Thus, performance increments in the characteristics of the x-ray sources may come through the introduction of specialized devices in existing storage rings. The free electron laser is one example of a developing new technology that should take us into new regions of performance for radiation sources and stimulate new types of experimental applications. It is also likely that major advances will come through the introduction of more sophisticated experimental devices developed for use with the very recently operational undulator or wiggler sources at the newer rings. Improved x-ray optics and x-ray detectors and more powerful computation and high-speed data transmission can bring about more refined experiments and make the synchrotrons facilities more widely available to the

  1. Materials science created by synchrotron radiation

    International Nuclear Information System (INIS)

    Oshima, Masaharu

    2015-01-01

    We survey the use of synchrotron radiation for studies on oxides. High luminosity enables the spectroscopy with high energy-resolution in soft X-ray and vacuum ultraviolet region. Element analysis is possible by examining absorption edge in the X-ray absorption spectra. Time-resolved measurements are possible due to the pulsed nature of the radiation. The radiation can bear linear or circular polarization. The feature of molecules adhered on a surface can be clarified by using linearly polarized radiation. The circularly polarized radiation, on the other hand, clarifies the magnetic structure. The structure information so far unknown can be obtained by using space- or time-coherent radiation. We show studies using synchrotron radiation on LSI gate oxide foils, variable resistance RAM, strongly correlated oxide foils, and the oxide as positive electrode of Li ion battery. (J.P.N.)

  2. Low frequency interference between short synchrotron radiation sources

    Directory of Open Access Journals (Sweden)

    F. Méot

    2001-06-01

    Full Text Available A recently developed analytical formalism describing low frequency far-field synchrotron radiation (SR is applied to the calculation of spectral angular radiation densities from interfering short sources (edge, short magnet. This is illustrated by analytical calculation of synchrotron radiation from various assemblies of short dipoles, including an “isolated” highest density infrared SR source.

  3. An adaptive crystal bender for high power synchrotron radiation beams

    International Nuclear Information System (INIS)

    Berman, L.E.; Hastings, J.B.

    1992-01-01

    Perfect crystal monochromators cannot diffract x-rays efficiently, nor transmit the high source brightness available at synchrotron radiation facilities, unless surface strains within the beam footprint are maintained within a few arcseconds. Insertion devices at existing synchrotron sources already produce x-ray power density levels that can induce surface slope errors of several arcseconds on silicon monochromator crystals at room temperature, no matter how well the crystal is cooled. The power density levels that will be produced by insertion devices at the third-generation sources will be as much as a factor of 100 higher still. One method of restoring ideal x-ray diffraction behavior, while coping with high power levels, involves adaptive compensation of the induced thermal strain field. The design and performance, using the X25 hybrid wiggler beam line at the National Synchrotron Light Source (NSLS), of a silicon crystal bender constructed for this purpose are described

  4. Electron correlation explored through electron spectrometry using synchrotron radiation

    International Nuclear Information System (INIS)

    Caldwell, C.D.; Whitfield, S.B.; Flemming, M.G.

    1991-01-01

    The development of synchrotron radiation facilities as a research tool has made possible experiments which provide new insights into the role which correlation plays in electron dynamics and atomic and molecular structure. Features such as autoionizing resonances, normal and resonant Auger decay modes, and ionization threshold structure have become visible in a wealth of new detail. Some aspects of this information drawn from recent experiments on the alkaline earth metals and the rare gases are presented. The potential for increased flux and resolution inherent in insertion device-based facilities like the Advanced Light Source should advance this understanding even further, and some future directions are suggested. 8 refs., 8 figs

  5. Third generation synchrotron radiation applied to materials science

    International Nuclear Information System (INIS)

    Kaufmann, E.N.; Yun, W.

    1993-01-01

    Utility of synchrotron radiation for characterization of materials and ramifications of availability of new third-generation, high-energy, high-intensity sources of synchrotron radiation are discussed. Examples are given of power of x-ray analysis techniques to be expected with these new machines

  6. Use of a synchrotron radiation x-ray microprobe for elemental analysis at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1980-01-01

    The National Synchrotron Light Source (NSLS) is a facility consisting of a 700 MeV and a 2.5 GeV electron storage ring and dedicated to providing synchrotron radiation in the energy range from the vacuum ultraviolet to high energy x rays. Some of the properties of synchrotron radiation that contribute to its usefulness for x-ray fluorescence are: a continuous, tunable energy spectrum, strong collimation in the horizontal plane, high polarization in the storage ring plane, and relatively low energy deposition. The highest priority is for the development of an x-ray microprobe beam line capable of trace analysis in the parts per million range with spatial resolution as low as one micrometer. An eventual capability for bulk sample analysis is also planned with sensitivities in the more favorable cases beings low as 50 parts per billion in dry biological tissue. The microprobe technique has application to a variety of fields including the geological, medical, materials and environmental sciences. Examples of investigations include multielemental trace analysis across grain boundaries for the study of diffusion and cooling processes in geological and materials sciences samples; in leukocytes and other types of individual cells for studying the relationship between trace element concentrations and disease or nutrition; and in individual particles in air pollution samples

  7. Neutron and synchrotron radiation for condensed matter studies. Volume 1: theory, instruments and methods

    International Nuclear Information System (INIS)

    Baruchel, J.; Hodeau, J.L.; Lehmann, M.S.; Regnard, J.R.; Schlenker, C.

    1993-01-01

    This book provides the basic information required by a research scientist wishing to undertake studies using neutrons or synchrotron radiation at a Large Facility. These lecture notes result from 'HERCULES', a course that has been held in Grenoble since 1991 to train young scientists in these fields. They cover the production of neutrons and synchrotron radiation and describe all aspects of instrumentation. In addition, this work outlines the basics of the various fields of research pursued at these Large Facilities. It consists of a series of chapters written by experts in the particular fields. While following a progression and constituting a lecture course on neutron and x-ray scattering, these chapters can also be read independently. This first volume will be followed by two further volumes concerned with the applications to solid state physics and chemistry, and to biology and soft condensed matter properties

  8. Moessbauer spectroscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Bergmann, U.

    1994-01-01

    The short pulse nature of synchrotron radiation makes it possible to perform Moessbauer spectroscopy in the time domain, i.e. instead of measuring the transmitted intensity time integrated as a function of source/absorber velocity, the intensity of the scattered radiation is measured time differential. The resulting time spectrum is essentially source independent and complications in the data analysis which are related to the radioactive source are completely removed. Furthermore, the large brightness and well defined polarization of the synchrotron radiation can, e.g., speed up the data collection and facilitate studies of polarization phenomena. To illustrate these new spectroscopic possibilities, measurements of the temperature dependence and polarization dependence of forward scattering from alpha - sup 5 sup 7 Fe nuclei are presented and discussed 26 refs., 5 figs. (author)

  9. Synchrotron-radiation experiments with recoil ions

    International Nuclear Information System (INIS)

    Levin, J.C.

    1989-01-01

    Studies of atoms, ions and molecules with synchrotron radiation have generally focused on measurements of properties of the electrons ejected during, or after, the photoionization process. Much can also be learned, however, about the atomic or molecular relaxation process by studies of the residual ions or molecular fragments following inner-shell photoionization. Measurements are reported of mean kinetic energies of highly charged argon, krypton, and xenon recoil ions produced by vacancy cascades following inner-shell photoionization using white and monochromatic synchrotron x radiation. Energies are much lower than for the same charge-state ions produced by charged-particle impact. The results may be applicable to design of future angle-resolved ion-atom collision experiments. Photoion charge distributions are presented and compared with other measurements and calculations. Related experiments with synchrotron-radiation produced recoil ion, including photoionization of stored ions and measurement of shakeoff in near-threshold excitation, are briefly discussed. 24 refs., 6 figs., 1 tab

  10. Synchrotron Radiation and Faraday Rotation

    NARCIS (Netherlands)

    Heald, George

    2015-01-01

    Synchrotron radiation and its degree of linear polarization are powerful tracers of magnetic fields that are illuminated by cosmic ray electrons. Faraday rotation of the linearly polarized radiation is induced by intervening line-of-sight magnetic fields that are embedded in ionized plasmas. For

  11. Development of optical thin film technology for lasers and synchrotron radiation

    International Nuclear Information System (INIS)

    Apparao, K.V.S.R.; Bagchi, T.C.; Sahoo, N.K.

    1985-01-01

    Dielectric multilayer optical thin film devices play an important role not only in the working of lasers but also in different front line research activities using high power lasers and high intensity synchrotron radiation sources. Facilities are set up recently in the Spectroscopy Division to develop the optical thin film design and fabrication technologies indigeneously. Using the facilities thin film devices for different laser applications working in the wavelength range from 300 nm to 1064 nm were developed. Different technical aspects involved in the technology development are briefly described. (author)

  12. Health physics experience with nondestructive X-radiation facilities in the US Air Force

    International Nuclear Information System (INIS)

    Stencel, J.R.; Piltingsrud, H.V.

    1976-01-01

    Radiation safety experience in the construction and use of enclosed nondestructive inspection (NDI) facilities in the US Air Force, has reaffirmed the constant need for the health physicist to continually monitor and assit in upgrading these facilities. Health physics contributions include evaluation of initial shielding requirements, proper selection of construction material, insuring that adequate safety devices are installed and adequate personnel dosimetry devices are available, surveying the facility, and assisting in the safety education program. There is a need to better define NDI warning/safety devices, using the National Bureau of Standards, (NBS) Handbook 107 as the most applicable guide

  13. The synchrotron radiation

    International Nuclear Information System (INIS)

    Chevallier, P.

    1994-01-01

    Synchrotron Radiation is a fantastic source of electromagnetic radiation the energy spectrum of which spreads continuously from the far infrared to hard X-rays. For this reason a wide part of the scientific community, fundamentalists as well as industry, is concerned by its use. We shall describe here the main properties of this light source and give two examples of application in the field of characterization of materials: EXAFS (Extended X-Ray Absorption Fine Structure) and X-ray fluorescence. (author). 8 figs., 21 refs

  14. Atomic collision experiments using pulsed synchrotron radiation

    International Nuclear Information System (INIS)

    Arikawa, Tatsuo; Watanabe, Tsutomu.

    1982-01-01

    High intensity and continuous nature of the synchrotron radiation are the properties that are fundamentally important for studies of some atomic collision experiments, and many processes have been investigated by using these characteristics. However, so far the property that the radiation is highly polarized and pulsed in time has not been exploited significantly in atomic physics. As an example of the atomic processes relevant to such polarized and pulsed features of the synchrotron radiation, collisions involving optically-allowed excited atoms and molecules will be presented. (author)

  15. Coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Agoh, Tomonori

    2006-01-01

    This article presents basic properties of coherent synchrotron radiation (CSR) with numerical examples and introduces the reader to important aspects of CSR in future accelerators with short bunches. We show interesting features of the single bunch instability due to CSR in storage rings and discuss the longitudinal CSR field via the impedance representation. (author)

  16. A method for ultrashort electron pulse-shape measurement using coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Geloni, G.; Yurkov, M.V.

    2003-03-01

    In this paper we discuss a method for nondestructive measurements of the longitudinal profile of sub-picosecond electron bunches for X-ray free electron lasers (XFELs). The method is based on the detection of the coherent synchrotron radiation (CSR) spectrum produced by a bunch passing a dipole magnet system. This work also contains a systematic treatment of synchrotron radiation theory which lies at the basis of CSR. Standard theory of synchrotron radiation uses several approximations whose applicability limits are often forgotten: here we present a systematic discussion about these assumptions. Properties of coherent synchrotron radiation from an electron moving along an arc of a circle are then derived and discussed. We describe also an effective and practical diagnostic technique based on the utilization of an electromagnetic undulator to record the energy of the coherent radiation pulse into the central cone. This measurement must be repeated many times with different undulator resonant frequencies in order to reconstruct the modulus of the bunch form-factor. The retrieval of the bunch profile function from these data is performed by means of deconvolution techniques: for the present work we take advantage of a constrained deconvolution method. We illustrate with numerical examples the potential of the proposed method for electron beam diagnostics at the TESLA test facility (TTF) accelerator. Here we choose, for emphasis, experiments aimed at the measure of the strongly non-Gaussian electron bunch profile in the TTF femtosecond-mode operation. We demonstrate that a tandem combination of a picosecond streak camera and a CSR spectrometer can be used to extract shape information from electron bunches with a narrow leading peak and a long tail. (orig.)

  17. The application of synchrotron radiation to X-ray lithography

    International Nuclear Information System (INIS)

    Spiller, E.; Eastman, D.E.; Feder, R.; Grobman, W.D.; Gudat, W.; Topalian, J.

    1976-06-01

    Synchrotron radiation from the German electron synchrotron DESY in Hamburg has been used for X-ray lithograpgy. Replications of different master patterns (for magnetic bubble devices, fresnel zone plates, etc.) were made using various wavelengths and exposures. High quality lines down to 500 A wide have been reproduced using very soft X-rays. The sensitivities of X-ray resists have been evaluated over a wide range of exposures. Various critical factors (heating, radiation damage, etc.) involved with X-ray lithography using synchrotron radiation have been studied. General considerations of storage ring sources designed as radiation sources for X-ray lithography are discussed, together with a comparison with X-ray tube sources. The general conclusion is that X-ray lithography using synchrotron radiation offers considerable promise as a process for forming high quality sub-micron images with exposure times as short as a few seconds. (orig.) [de

  18. National Laboratory of Synchrotron Radiation: technologic potential

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da; Rodrigues, A.R.D.

    1987-01-01

    The technological or industrial developments based on the accumulated experience by research group of condensed matter physics, in Brazil, are described. The potential of a National Laboratory of Synchrotron Radiation for personnel training, absorption and adaptation of economically important technologies for Brazil, is presented. Examples of cooperations between the Laboratory and some national interprises, and some industrial applications of the synchrotron radiation are done. (M.C.K.) [pt

  19. Proposal for a national synchrotron light source

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1977-02-01

    Since 1971 discussions have been held at Brookhaven National Laboratory on the desirability of construction of a storage ring which would be used exclusively for production of intense beams of photons with wavelengths in the ultraviolet and X-ray ranges. A proposal is given which discusses in detail the machine, its characteristics, and its expected uses. The proposal includes: (1) characteristics of synchrotron radiation; (2) scientific justification for a synchrotron radiation facility; (3) facility design; (4) wiggler magnets; (5) experimental facilities; (6) buildings and utilities; (7) construction schedules, costs, and manpower; and (8) environmental assessment

  20. Bunch heating by coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Heifets, S.A.; Zolotorev, M.

    1995-10-01

    The authors discuss here effects which define the steady-state rms energy spread of a microbunch in a storage ring. It is implied that the longitudinal microwave instability is controlled by low α lattice. In this case the coherent synchrotron radiation, if exists, may be the main factor defining the bunch temperature. Another effect comes from the fact that a nonlinear momentum compaction of such lattices makes Haissinskii equation not applicable, and the coherent synchrotron radiation may effect not only bunch lengthening but the energy spread as well

  1. Photoionization studies of atoms and molecules using synchrotron radiation

    International Nuclear Information System (INIS)

    Lindle, D.W.

    1988-01-01

    Photoionization studies of free atoms and molecules have undergone considerable development in the past decade, in large part due to the use of synchrotron radiation. The tunability of synchrotron radiation has permitted the study of photoionization processes near valence-and core-level ionization thresholds for atoms and molecules throught the Periodic Table. A general illustration of these types of study will be presented, with emphasis on a few of the more promising new directions in atomic and molecular physics being pursued with synchrotron radiation. (author) [pt

  2. Characteristics of synchrotron radiation

    International Nuclear Information System (INIS)

    Brown, G.S.

    1984-01-01

    The characteristics and production of synchrotron radiation are qualitatively discussed. The spectral properties of wigglers and undulators are briefly described. Possible applications in condensed matter physics are outlined. These include atomic and molecular studies, crystallography, impurities in solids and radiographic imaging

  3. Macromolecular crystallography using synchrotron radiation

    International Nuclear Information System (INIS)

    Bartunik, H.D.; Phillips, J.C.; Fourme, R.

    1982-01-01

    The use of synchrotron X-ray sources in macromolecular crystallography is described. The properties of synchrotron radiation relevant to macromolecular crystallography are examined. The applications discussed include anomalous dispersion techniques, the acquisition of normal and high resolution data, and kinetic studies of structural changes in macromolecules; protein data are presented illustrating these applications. The apparatus used is described including information on the electronic detectors, the monitoring of the incident beam and crystal cooling. (U.K.)

  4. Synchrotron radiation: a new perspectives for structure examinations

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Kozhakhmetov, S.K.; Turkebaev, T.Eh.

    2001-01-01

    An important task of radiation material testing is manufacture of multifunctional, stable and cheap materials with designed properties. A materials successful operation in an extemal conditions (high temperatures and pressures, high radiation fluences and charged particles, and etc.) imply an joint decision of physical, chemical, mechanical and other problems. The decision of these problems includes at least examination for structural, phase content, oxidation stability, thermal stability, mechanical strength, thin-film-coverings controlled synthesis (both the passivating and the catalytic) compatible with main matrix, and etc. Synchrotron radiation sources application for these problems are highly perspective. Solution of a set of problems on structural examinations for a materials exposed to high radiation fluences and operating in extemal condition is planning with use of the DELSY third generation synchrotron radiation source constructing at the Joint Institute for Nuclear Research (Dubna). In the paper the principal parameters of the DELSY synchrotron radiation source are given

  5. Fifth school on Magnetism and Synchrotron Radiation

    CERN Document Server

    Beaurepaire, Eric; Scheurer, Fabrice; Kappler, Jean-Paul; Magnetism and Synchrotron Radiation : New Trends

    2010-01-01

    Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials. At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale. With the Fifth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.

  6. Applications of synchrotron radiation in Biophysics

    International Nuclear Information System (INIS)

    Bemski, G.

    1983-01-01

    A short introduction to the generation of the synchrotron radiation is made. Following, the applications of such a radiation in biophysics with emphasis to the study of the hemoglobin molecule are presented. (L.C.) [pt

  7. Synchrotron radiation

    International Nuclear Information System (INIS)

    Pattison, P.; Quinn, P.

    1990-01-01

    This report details the activities in synchrotron radiation and related areas at Daresbury Laboratory during 1989/90. The number and scope of the scientific reports submitted by external users and in-house staff is a reflection of the large amount of scheduled beamtime and high operating efficiency achieved at the Synchrotron Radiation Source (SRS) during the past year. Over 4000 hours of user beam were available, equivalent to about 80% of the total scheduled time. Many of the reports collected here illustrate the increasing technical complexity of the experiments now being carried out at Daresbury. Provision of the appropriate technical and scientific infrastructure and support is a continuing challenge. The development of the Materials Science Laboratory together with the existing Biological Support Laboratory will extend the range of experiments which can be carried out on the SRS. This will particularly facilitate work in which the sample must be prepared or characterised immediately before or during an experiment. The year 1989/90 has also seen a substantial upgrade of several stations, especially in the area of x-ray optics. Many of the advantages of the High Brightness Lattice can only be exploited effectively with the use of focusing optics. As the performance of these stations improves, the range of experiments which are feasible on the SRS will be extended significantly. (author)

  8. A study on radiation shielding and safety analysis for a synchrotron radiation beamline

    International Nuclear Information System (INIS)

    Asano, Yoshihiro

    2001-03-01

    Methods of shielding design and safety analysis are presented for a beam-line of synchrotron radiation. This paper consists of the shielding and safety study of synchrotron radiation with extremely intense and low energy photon below several hundreds keV, and the study for the behavior of remarkable high-energy photons up to 8 GeV, which can creep into beam-lines. A new shielding design code, STAC8 was developed to estimate the leakage dose outside the beam line hutch (an enclosure of the beam, optical elements or experimental instruments) easily and quickly with satisfactory accuracy. The code can calculate consistently from sources of synchrotron radiation to dose equivalent outside hutches with considering the build up effect and polarization effect. Validity of the code was verified by comparing its calculations with those of Monte Carlo simulations and measurement results of the doses inside the hutch of the BL14C of Photon Factory in the High Energy Accelerator Research Organization (KEK), showing good agreements. The shielding design calculations using STAC8 were carried out to apply to the practical beam-lines with the considering polarization effect and clarified the characteristics of the typical beam-line of the third generation synchrotron radiation facility, SPring-8. In addition, the shielding calculations were compared with the measurement outside the shield wall of the bending magnet beam-line of SPring-8, and showed fairly good agreement. The new shielding problems, which have usually been neglected in shielding designs for existing synchrotron radiation facilities, are clarified through the analysis of the beam-line shielding of SPring-8. The synchrotron radiation from the SPring-8 has such extremely high-intensity involving high energy photons that the scattered synchrotron radiation from the concrete floor of the hutch, the ground shine, causes a seriously high dose. The method of effective shielding is presented. For the estimation of the gas

  9. A study on radiation shielding and safety analysis for a synchrotron radiation beamline

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Yoshihiro [Japan Atomic Energy Research Inst., Kansai Research Establishment, Synchrotron Radiation Research Center, Mikazuhi, Hyogo (Japan)

    2001-03-01

    Methods of shielding design and safety analysis are presented for a beam-line of synchrotron radiation. This paper consists of the shielding and safety study of synchrotron radiation with extremely intense and low energy photon below several hundreds keV, and the study for the behavior of remarkable high-energy photons up to 8 GeV, which can creep into beam-lines. A new shielding design code, STAC8 was developed to estimate the leakage dose outside the beam line hutch (an enclosure of the beam, optical elements or experimental instruments) easily and quickly with satisfactory accuracy. The code can calculate consistently from sources of synchrotron radiation to dose equivalent outside hutches with considering the build up effect and polarization effect. Validity of the code was verified by comparing its calculations with those of Monte Carlo simulations and measurement results of the doses inside the hutch of the BL14C of Photon Factory in the High Energy Accelerator Research Organization (KEK), showing good agreements. The shielding design calculations using STAC8 were carried out to apply to the practical beam-lines with the considering polarization effect and clarified the characteristics of the typical beam-line of the third generation synchrotron radiation facility, SPring-8. In addition, the shielding calculations were compared with the measurement outside the shield wall of the bending magnet beam-line of SPring-8, and showed fairly good agreement. The new shielding problems, which have usually been neglected in shielding designs for existing synchrotron radiation facilities, are clarified through the analysis of the beam-line shielding of SPring-8. The synchrotron radiation from the SPring-8 has such extremely high-intensity involving high energy photons that the scattered synchrotron radiation from the concrete floor of the hutch, the ground shine, causes a seriously high dose. The method of effective shielding is presented. For the estimation of the gas

  10. Investigation of the suitability of the PTB-Synchrotron for a radiation standard and the performance of an irradiance scale in the UV

    International Nuclear Information System (INIS)

    Kaase, H.

    1975-01-01

    The electromagnetic energetic quantities of a synchrotron are given analytically in a form suitable for radiation measurement and are determined numerically using the computer data of the 140 MeV electron synchrotron of PTB. In the spectral region 350 nm [de

  11. Stanford Synchrotron Radiation Laboratory activity report for 1986

    Energy Technology Data Exchange (ETDEWEB)

    Cantwell, K. [ed.

    1987-12-31

    1986 was another year of major advances for SSRL as the ultimate capabilities of PEP as a synchrotron radiation source became more apparent and a second PEP beam line was initiated, while effective development and utilization of SPEAR proceeded. Given these various PEP developments, SSRL abandoned its plans for a separate diffraction limited ring, as they abandoned their plans for a 6--7 GeV ring of the APS type last year. It has become increasingly apparent that SSRL should concentrate on developing SPEAR and PEP as synchrotron radiation sources. Consequently, initial planning for a 3 GeV booster synchrotron injector for SPEAR was performed in 1986, with a proposal to the Department of Energy resulting. As described in Chapter 2, the New Rings Group and the Machine Physics Group were combined into one Accelerator Physics Group. This group is focusing mainly on the improvement of SPEAR`s operating conditions and on planning for the conversion of PEP into a fourth generation x-ray source. Considerable emphasis is also being given to the training of accelerator physics graduate students. At the same time, several improvements of SSRL`s existing facilities were made. These are described in Chapter 3. Chapter 4 describes new SSRL beam lines being commissioned. Chapter 5 discusses SSRL`s present construction projects. Chapter 6 discusses a number of projects presently underway in the engineering division. Chapter 7 describes SSRL`s advisory panels while Chapter 8 discusses SSRL`s overall organization. Chapter 9 describes the experimental progress reports.

  12. Synchrotron radiation in atomic physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1998-01-01

    Much of present understanding of atomic and molecular structure and dynamics was gained through studies of photon-atom interactions. In particular, observations of the emission, absorption, and scattering of X rays have complemented particle-collision experiments in elucidating the physics of atomic inner shells. Grounded on Max von Laue's theoretical insight and the invention of the Bragg spectrometer, the field's potential underwent a step function with the development of synchrotron-radiation sources. Notably current third-generation sources have opened new horizons in atomic and molecular physics by producing radiation of wide tunability and exceedingly high intensity and polarization, narrow energy bandwidth, and sharp time structure. In this review, recent advances in synchrotron-radiation studies in atomic and molecular science are outlined. Some tempting opportunities are surveyed that arise for future studies of atomic processes, including many-body effects, aspects of fundamental photon-atom interactions, and relativistic and quantum-electrodynamic phenomena. (author)

  13. Fast infrared detectors for beam diagnostics with synchrotron radiation

    International Nuclear Information System (INIS)

    Bocci, A.; Marcelli, A.; Pace, E.; Drago, A.; Piccinini, M.; Cestelli Guidi, M.; De Sio, A.; Sali, D.; Morini, P.; Piotrowski, J.

    2007-01-01

    Beam diagnostic is a fundamental constituent of any particle accelerators either dedicated to high-energy physics or to synchrotron radiation experiments. All storage rings emit radiations. Actually they are high brilliant sources of radiation: the synchrotron radiation emission covers from the infrared range to the X-ray domain with a pulsed structure depending on the temporal characteristics of the stored beam. The time structure of the emitted radiation is extremely useful as a tool to perform time-resolved experiments. However, this radiation can be also used for beam diagnostic to determine the beam stability and to measure the dimensions of the e - or e + beam. Because of the temporal structure of the synchrotron radiation to perform diagnostic, we need very fast detectors. Indeed, the detectors required for the diagnostics of the stored particle bunches at third generation synchrotron radiation sources and FEL need response times in the sub-ns and even ps range. To resolve the bunch length and detect bunch instabilities, X-ray and visible photon detectors may be used achieving response times of a few picoseconds. Recently, photon uncooled infrared devices optimized for the mid-IR range realized with HgCdTe semiconductors allowed to obtain sub-nanosecond response times. These devices can be used for fast detection of intense IRSR sources and for beam diagnostic. We present here preliminary experimental data of the pulsed synchrotron radiation emission of DAΦNE, the electron positron collider of the LNF laboratory of the INFN, performed with new uncooled IR detectors with a time resolution of a few hundreds of picoseconds

  14. Singapore Synchrotron Light Source - Status, first results, program

    CERN Document Server

    Moser, H O; Kempson, V C; Kong, J R; Li, Z W; Nyunt, T; Qian, H J; Rossmanith, R; Tor, P H; Wilhelmi, O; Yang, P; Zheng, H W; Underhay, I J

    2003-01-01

    The Singapore Synchrotron Light Source is a general-purpose synchrotron radiation facility serving research organisations and industry. Beamlines active or coming up within 2002 include lithography for micro/nanofabrication, phase contrast imaging, surface science, and X-ray diffraction and absorption. An infrared spectro/microscopy beamline is expected to become operational in 2003. Further beamlines are under discussion with user groups. The Microtron Undulator Radiation Facility (MURF) is under development to provide brilliant VUV radiation and to prepare for subsequent development of an EUV and X-ray FEL.

  15. Radiosensitization of head/neck sqaumous cell carcinoma by adenovirus-mediated expression of the Nbs1 protein

    International Nuclear Information System (INIS)

    Rhee, Juong G.; Li, Daqing; Suntharalingam, Mohan; Guo Chuanfa; O'Malley, Bert W.; Carney, James P.

    2007-01-01

    Purpose: Local failure and toxicity to adjacent critical structures is a significant problem in radiation therapy of cancers of the head and neck. We are developing a gene therapy based method of sensitizing head/neck squamous cell carcinoma (HNSCC) to radiation treatment. As patients with the rare hereditary disorder, Nijmegen breakage syndrome, show radiation sensitivity we hypothesized that tumor-specific disruption of the function of the Nbs1 protein would lead to enhanced cellular sensitivity to ionizing radiation. Experimental Procedures: We constructed two recombinant adenoviruses by cloning the full-length Nbs1 cDNA as well as the C-terminal 300 amino acids of Nbs1 into an adenovirus backbone under the control of a CMV promoter. The resulting adenoviruses were used to infect HNSCC cell line JHU011. These cells were evaluated for expression of the viral based constructs and assayed for clonogenic survival following radiation exposure. Results: Exposure of cells expressing Nbs1-300 to ionizing radiation resulted in a small reduction in survival relative to cells infected with control virus. Surprisingly, expression of full-length Nbs1 protein resulted in markedly enhanced sensitivity to ionizing radiation. Furthermore, the use of a fractionated radiation scheme following virus infection demonstrates that expression of full-length Nbs1 protein results in significant reduction in cell survival. Conclusions: These results provide a proof of principle that disruption of Nbs1 function may provide a means of enhancing the radiosensitivity of head and neck tumors. Additionally, this work highlights the Mre11 complex as an attractive target for development of radiation sensitizers

  16. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    Energy Technology Data Exchange (ETDEWEB)

    Sei, Norihiro, E-mail: sei.n@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Zen, Heishun; Ohgaki, Hideaki [Institute for Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-10-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR. - Highlights: • We have developed intense coherent synchrotron radiation (CSR) at KU-FEL. • The elevation angle of the CSR was correctly measured by a new technique. • The CSR power extracted to the air was 55 μJ per 7 μs macropulse. • It was demonstrated that an energy slit was effective to improve the CSR properties.

  17. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    International Nuclear Information System (INIS)

    Sei, Norihiro; Zen, Heishun; Ohgaki, Hideaki

    2016-01-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR. - Highlights: • We have developed intense coherent synchrotron radiation (CSR) at KU-FEL. • The elevation angle of the CSR was correctly measured by a new technique. • The CSR power extracted to the air was 55 μJ per 7 μs macropulse. • It was demonstrated that an energy slit was effective to improve the CSR properties.

  18. Synchrotron radiation from a Helical Wiggler

    International Nuclear Information System (INIS)

    Irani, A.A.

    1979-01-01

    The use of Wiggler magnets as an improved source of synchrotron radiation from high energy electron storage rings was proposed a few years ago. Since then it has also been suggested that synchrotron radiation from Wiggler magnets placed in proton machines can be used to monitor energy, dimensions and position of the beam and that this effect is even more interesting in proton storage rings where the need to see the beam is greater. Most of the calculations carried out so far consider radiation from a single particle in a Wiggler which is appropriate when the beam is radiating incoherently. In this paper a general formalism is developed for the case when the beam radiates coherently. These results are then applied to both electron and proton storage rings. For the electron case, an expression is derived for the length of the bunch to be used as a more intense coherent radiation source. For proton machines the radiation can be used to measure energy, current, transverse dimensions and longitudinal density variations in the beam

  19. Synchrotron radiation from a helical wiggler

    International Nuclear Information System (INIS)

    Irani, A.A.

    1979-01-01

    The use of wiggler magnets as an improved source of synchrotron radiation from high energy electron storage rings was proposed a few years age. Since then it has also been suggested that synchrotron radiation from wiggler magnets placed in proton machines can be used to monitor energy, dimensions and position of the beam and that this effect is even more interesting in proton storage rings where the need to see the beam is greater. Most of the calculations carried out so far consider radiation from a single particle in a wiggler which is appropriate when the beam is radiating incoherently. A general formalism is presented for the case when the beam radiates coherently. These results are applied to both electron and proton storage rings. For the electron case, an expression is derived for the length of the bunch to use it as a more intense coherent radiation source. For proton machines the radiation can be used to measure energy, current, transverse dimensions and longitudinal density variations in the beam

  20. Optical systems for synchrotron radiation. Lecture 2. Mirror systems

    International Nuclear Information System (INIS)

    Howells, M.R.

    1986-02-01

    The process of reflection of VUV and x-radiation is summarized. The functions of mirrors in synchrotron beamlines are described, which include deflection, filtration, power absorption, formation of a real image, focusing, and collimation. Fabrication of optical surfaces for synchrotron radiation beamlines are described, and include polishing of a near spherical surface as well as bending a cylindrical surface to toroidal shape. The imperfections present in mirrors, aberrations and surface figure inaccuracy, are discussed. Calculation of the thermal load of a mirror in a synchrotron radiation beam and the cooling of the mirror are covered briefly. 50 refs., 7 figs

  1. A simplified edge illumination set-up for quantitative phase contrast mammography with synchrotron radiation at clinical doses

    International Nuclear Information System (INIS)

    Longo, Mariaconcetta; Rigon, Luigi; Lopez, Frances C M; Longo, Renata; Chen, Rongchang; Dreossi, Diego; Zanconati, Fabrizio

    2015-01-01

    This work presents the first study of x-ray phase contrast imaging based on a simple implementation of the edge illumination method (EIXPCi) in the field of mammography with synchrotron radiation. A simplified EIXPCi set-up was utilized to study a possible application in mammography at clinical doses. Moreover, through a novel algorithm capable of separating and quantifying absorption and phase perturbations of images acquired in EIXPCi modality, it is possible to extract quantitative information on breast images, allowing an accurate tissue identification. The study was carried out at the SYRMEP beamline of Elettra synchrotron radiation facility (Trieste, Italy), where a mastectomy specimen was investigated with the EIXPCi technique. The sample was exposed at three different energies suitable for mammography with synchrotron radiation in order to test the validity of the novel algorithm in extracting values of linear attenuation coefficients integrated over the sample thickness. It is demonstrated that the quantitative data are in good agreement with the theoretical values of linear attenuation coefficients calculated on the hypothesis of the breast with a given composition. The results are promising and encourage the current efforts to apply the method in mammography with synchrotron radiation. (note)

  2. Synchrotron radiation in art and archaeology SRA 2005

    International Nuclear Information System (INIS)

    Pollard, A.M.; Janssens, K.; Artioli, G.; Young, M.L.; Casadio, F.; Schnepp, S.; Marvin, J.; Dunand, D.C.; Almer, J.; Fezzaa, K.; Lee, W.K.; Haeffner, D.R.; Reguer, S.; Dillmann, Ph.; Mirambet, F.; Susini, J.; Lagarde, P.; Pradell, T.; Molera, J.; Brunetti, B.; D'acapito, F.; Maurizio, C.; Mazzoldi, P.; Padovani, S.; Sgamellotti, A.; Garges, F.; Etcheverry, M.P.; Flank, A.M.; Lagarde, P.; Marcus, M.A.; Scheidegger, A.M.; Grolimund, D.; Pallot-Frossard, I.; Smith, A.D.; Jones, M.; Gliozzo, E.; Memmi-Turbanti, I.; Molera, J.; Vendrell, M.; Mcconachie, G.; Skinner, T.; Kirkman, I.W.; Pantos, E.; Wallert, A.; Kanngiesser, B.; Hahn, O.; Wilke, M.; NekaT, B.; Malzer, W.; Erko, A.; Chalmin, E.; Vignaud, C.; Farges, F.; Susini, J.; Menu, M.; Sandstrom, M.; Cotte, M.; Kennedy, C.J.; Wess, T.J.; Muller, M.; Murphy, B.; Roberts, M.A.; Burghammer, M.; Riekel, C.; Gunneweg, J.; Pantos, E.; Dik, J.; Tafforeau, P.; Boistel, R.; Boller, E.; Bravin, A.; Brunet, M.; Chaimanee, Y.; Cloetens, P.; Feist, M.; Hoszowska, J.; Jaeger, J.J.; Kay, R.F.; Lazzari, V.; Marivaux, L.; Nel, A.; Nemoz, C.; Thibault, X.; Vignaud, P.; Zabler, S.; Sciau, P.; Goudeau, P.; Tamura, N.; Doormee, E.; Kockelmann, W.; Adriaens, A.; Ryck, I. de; Leyssens, K.; Hochleitner, B.; Schreiner, M.; Drakopoulos, M.; Snigireva, I.; Snigirev, A.; Sanchez Del Rio, M.; Martinetto, P.; Dooryhee, E.; Suarez, M.; Sodo, A.; Reyes-Valerio, C.; Haro Poniatowski, E.; Picquart, M.; Lima, E.; Reguera, E.; Gunneweg, J.; Reiche, I.; Berger, A.; Bevers, H.; Duval, A.

    2005-01-01

    Materials - bones, artifacts, artwork,.... - lie at the heart of both archaeology and art conservation. Synchrotron radiation techniques provide powerful ways to interrogate these records of our physical and cultural past. In this workshop we will discuss and explore the current and potential applications of synchrotron radiation science to problems in archaeology and art conservation. This document gathers the abstracts of the presentations

  3. Synchrotron radiation in art and archaeology SRA 2005

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, A M; Janssens, K; Artioli, G; Young, M L; Casadio, F; Schnepp, S; Marvin, J; Dunand, D C; Almer, J; Fezzaa, K; Lee, W K; Haeffner, D R; Reguer, S; Dillmann, Ph; Mirambet, F; Susini, J; Lagarde, P; Pradell, T; Molera, J; Brunetti, B; D' acapito, F; Maurizio, C; Mazzoldi, P; Padovani, S; Sgamellotti, A; Garges, F; Etcheverry, M P; Flank, A M; Lagarde, P; Marcus, M A; Scheidegger, A M; Grolimund, D; Pallot-Frossard, I; Smith, A D; Jones, M; Gliozzo, E; Memmi-Turbanti, I; Molera, J; Vendrell, M; Mcconachie, G; Skinner, T; Kirkman, I W; Pantos, E; Wallert, A; Kanngiesser, B; Hahn, O; Wilke, M; NekaT, B; Malzer, W; Erko, A; Chalmin, E; Vignaud, C; Farges, F; Susini, J; Menu, M; Sandstrom, M; Cotte, M; Kennedy, C J; Wess, T J; Muller, M; Murphy, B; Roberts, M A; Burghammer, M; Riekel, C; Gunneweg, J; Pantos, E; Dik, J; Tafforeau, P; Boistel, R; Boller, E; Bravin, A; Brunet, M; Chaimanee, Y; Cloetens, P; Feist, M; Hoszowska, J; Jaeger, J J; Kay, R F; Lazzari, V; Marivaux, L; Nel, A; Nemoz, C; Thibault, X; Vignaud, P; Zabler, S; Sciau, P; Goudeau, P; Tamura, N; Doormee, E; Kockelmann, W; Adriaens, A; Ryck, I de; Leyssens, K; Hochleitner, B; Schreiner, M; Drakopoulos, M; Snigireva, I; Snigirev, A; Sanchez Del Rio, M; Martinetto, P; Dooryhee, E; Suarez, M; Sodo, A; Reyes-Valerio, C; Haro Poniatowski, E; Picquart, M; Lima, E; Reguera, E; Gunneweg, J; Reiche, I; Berger, A; Bevers, H; Duval, A

    2005-07-01

    Materials - bones, artifacts, artwork,.... - lie at the heart of both archaeology and art conservation. Synchrotron radiation techniques provide powerful ways to interrogate these records of our physical and cultural past. In this workshop we will discuss and explore the current and potential applications of synchrotron radiation science to problems in archaeology and art conservation. This document gathers the abstracts of the presentations.

  4. Intense synchrotron radiation from a magnetically compressed relativistic electron layer

    International Nuclear Information System (INIS)

    Shearer, J.W.; Nowak, D.A.; Garelis, E.; Condit, W.C.

    1975-10-01

    Using a simple model of a relativistic electron layer rotating in an axial magnetic field, energy gain by an increasing magnetic field and energy loss by synchrotron radiation were considered. For a typical example, initial conditions were approximately 8 MeV electron in approximately 14 kG magnetic field, at a layer radius of approximately 20 mm, and final conditions were approximately 4 MG magnetic field approximately 100 MeV electron layer energy at a layer radius of approximately 1.0 mm. In the final state, the intense 1-10 keV synchrotron radiation imposes an electron energy loss time constant of approximately 100 nanoseconds. In order to achieve these conditions in practice, the magnetic field must be compressed by an imploding conducting liner; preferably two flying rings in order to allow the synchrotron radiation to escape through the midplane. The synchrotron radiation loss rate imposes a lower limit to the liner implosion velocity required to achieve a given final electron energy (approximately 1 cm/μsec in the above example). In addition, if the electron ring can be made sufficiently strong (field reversed), the synchrotron radiation would be a unique source of high intensity soft x-radiation

  5. Medical application of Synchrotron Radiation

    International Nuclear Information System (INIS)

    Hyodo, Kazuyuki; Nishimura, Katsuyuki.

    1990-01-01

    The number of patients suffering from ischemic heart disease is also increasing rapidly in Japan. The standard method for assessing coronary artery diseases is the coronary angiography. Excellent images are taken by this method, however, it is an invasive method in which a catheter into a peripheral artery. The patients would obtain great benefit if the coronary arteries could be distinguished by intravenous injection of the contrast material. The K-edge subtraction method, which uses the K-edge discontinuity in the attenuation coefficient of the contrast material, is considered to be the most suitable method for coronary angiography by peripheral venous injection. Synchrotron Radiation (SR) is so intense that it allows selection of monochromatic X-rays, and studies on K-edge subtraction using SR has been started at some facilities. Recent activities K-edge subtraction method at the Accumulation Ring are briefly described here. (author)

  6. Design and construction of the prototype synchrotron radiation detector

    CERN Document Server

    Anderhub, H; Baetzner, D; Baumgartner, S; Biland, A; Camps, C; Capell, M; Commichau, V; Djambazov, L; Fanchiang, Y J; Flügge, G; Fritschi, M; Grimm, O; Hangarter, K; Hofer, H; Horisberger, Urs; Kan, R; Kaestli, W; Kenney, G P; Kim, G N; Kim, K S; Koutsenko, V F; Kraeber, M; Kuipers, J; Lebedev, A; Lee, M W; Lee, S C; Lewis, R; Lustermann, W; Pauss, Felicitas; Rauber, T; Ren, D; Ren, Z L; Röser, U; Son, D; Ting, Samuel C C; Tiwari, A N; Viertel, Gert M; Gunten, H V; Wicki, S W; Wang, T S; Yang, J; Zimmermann, B

    2002-01-01

    The Prototype Synchrotron Radiation Detector (PSRD) is a small-scale experiment designed to measure the rate of low-energy charged particles and photons in near the Earth's orbit. It is a precursor to the Synchrotron Radiation Detector (SRD), a proposed addition to the upgraded version of the Alpha Magnetic Spectrometer (AMS-02). The SRD will use the Earth's magnetic field to identify the charge sign of electrons and positrons with energies above 1 TeV by detecting the synchrotron radiation they emit in this field. The differential energy spectrum of these particles is astrophysically interesting and not well covered by the remaining components of AMS-02. Precise measurements of this spectrum offer the possibility to gain information on the acceleration mechanism and characteristics of all cosmic rays in our galactic neighbourhood. The SRD will discriminate against protons as they radiate only weakly. Both the number and energy of the synchrotron photons that the SRD needs to detect are small. The identificat...

  7. Histomorphometric quantification of human pathological bones from synchrotron radiation 3D computed microtomography

    International Nuclear Information System (INIS)

    Nogueira, Liebert P.; Braz, Delson

    2011-01-01

    Conventional bone histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed microtomography is a noninvasive technique, which can be used to evaluate histomorphometric indices in trabecular bones (BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp). In this technique, the output 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. In this work, histomorphometric quantification using synchrotron 3D X-ray computed microtomography was performed to quantify pathological samples of human bone. Samples of human bones were cut into small blocks (8 mm x 8 mm x 10 mm) with a precision saw and then imaged. The computed microtomographies were obtained at SYRMEP (Synchrotron Radiation for MEdical Physics) beamline, at ELETTRA synchrotron radiation facility (Italy). The obtained 3D images yielded excellent resolution and details of intra-trabecular bone structures, including marrow present inside trabeculae. Histomorphometric quantification was compared to literature as well. (author)

  8. MICROFLUIDIC MIXERS FOR THE INVESTIGATION OF PROTEIN FOLDING USING SYNCHROTRON RADIATION CIRCULAR DICHROISM SPECTROSCOPY

    International Nuclear Information System (INIS)

    Kane, A; Hertzog, D; Baumgartel, P; Lengefeld, J; Horsley, D; Schuler, B; Bakajin, O

    2006-01-01

    The purpose of this study is to design, fabricate and optimize microfluidic mixers to investigate the kinetics of protein secondary structure formation with Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy. The mixers are designed to rapidly initiate protein folding reaction through the dilution of denaturant. The devices are fabricated out of fused silica, so that they are transparent in the UV. We present characterization of mixing in the fabricated devices, as well as the initial SRCD data on proteins inside the mixers

  9. Preliminar plan of a machine for the synchrotron radiation production

    International Nuclear Information System (INIS)

    Moscati, G.; Takahashi, J.; Miyao, Y.

    1985-01-01

    A preliminar plan, with all the technical specifications, for the construction of a machine for the synchrotron radiation production to be done by the National Synchrotron Radiation Laboratory in Brazil is presented. (L.C.) [pt

  10. Scaling behavior of circular colliders dominated by synchrotron radiation

    Science.gov (United States)

    Talman, Richard

    2015-08-01

    The scaling formulas in this paper — many of which involve approximation — apply primarily to electron colliders like CEPC or FCC-ee. The more abstract “radiation dominated” phrase in the title is intended to encourage use of the formulas — though admittedly less precisely — to proton colliders like SPPC, for which synchrotron radiation begins to dominate the design in spite of the large proton mass. Optimizing a facility having an electron-positron Higgs factory, followed decades later by a p, p collider in the same tunnel, is a formidable task. The CEPC design study constitutes an initial “constrained parameter” collider design. Here the constrained parameters include tunnel circumference, cell lengths, phase advance per cell, etc. This approach is valuable, if the constrained parameters are self-consistent and close to optimal. Jumping directly to detailed design makes it possible to develop reliable, objective cost estimates on a rapid time scale. A scaling law formulation is intended to contribute to a “ground-up” stage in the design of future circular colliders. In this more abstract approach, scaling formulas can be used to investigate ways in which the design can be better optimized. Equally important, by solving the lattice matching equations in closed form, as contrasted with running computer programs such as MAD, one can obtain better intuition concerning the fundamental parametric dependencies. The ground-up approach is made especially appropriate by the seemingly impossible task of simultaneous optimization of tunnel circumference for both electrons and protons. The fact that both colliders will be radiation dominated actually simplifies the simultaneous optimization task. All GeV scale electron accelerators are “synchrotron radiation dominated”, meaning that all beam distributions evolve within a fraction of a second to an equilibrium state in which “heating” due to radiation fluctuations is canceled by the “cooling” in

  11. Modelisation of synchrotron radiation losses in realistic tokamak plasmas

    International Nuclear Information System (INIS)

    Albajar, F.; Johner, J.; Granata, G.

    2000-08-01

    Synchrotron radiation losses become significant in the power balance of high-temperature plasmas envisaged for next step tokamaks. Due to the complexity of the exact calculation, these losses are usually roughly estimated with expressions derived from a plasma description using simplifying assumptions on the geometry, radiation absorption, and density and temperature profiles. In the present article, the complete formulation of the transport of synchrotron radiation is performed for realistic conditions of toroidal plasma geometry with elongated cross-section, using an exact method for the calculation of the absorption coefficient, and for arbitrary shapes of density and temperature profiles. The effects of toroidicity and temperature profile on synchrotron radiation losses are analyzed in detail. In particular, when the electron temperature profile is almost flat in the plasma center, as for example in ITB confinement regimes, synchrotron losses are found to be much stronger than in the case where the profile is represented by its best generalized parabolic approximation, though both cases give approximately the same thermal energy contents. Such an effect is not included in present approximate expressions. Finally, we propose a seven-variable fit for the fast calculation of synchrotron radiation losses. This fit is derived from a large database, which has been generated using a code implementing the complete formulation and optimized for massively parallel computing. (author)

  12. Synchrotron radiation, a powerful tool in research and technological development. Basic principles

    International Nuclear Information System (INIS)

    Jimenez M, J.

    2001-01-01

    The basic principles of synchrotron radiation emission in electron accelerators are presented. The main characteristics of synchrotron radiation, together with the physical principles that describe its interaction with different materials are also discussed. Different areas in which the development of synchrotron radiation has made a major impact are given. (Author)

  13. Biomedical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Kwiatek, W.M.; Galka, M.; Hanson, A.L.; Paluszkiewicz, Cz.; Cichocki, T.

    2001-01-01

    Synchrotron radiation techniques application in medical diagnostics have been presented especially for: trace element analysis in tissues, elemental mapping, chemical speciation at trace levels, chemical structure determination. Presented techniques are very useful for early cancer discovery

  14. Aharonov-Bohm effect in cyclotron and synchrotron radiations

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G.; Gitman, D.M. E-mail: gitman@fma.if.usp.br; Levin, A.; Tlyachev, V.B

    2001-07-02

    We study the impact of Aharonov-Bohm solenoid on the radiation of a charged particle moving in a constant uniform magnetic field. With this aim in view, exact solutions of Klein-Gordon and Dirac equations are found in the magnetic-solenoid field. Using such solutions, we calculate exactly all the characteristics of one-photon spontaneous radiation both for spinless and spinning particle. Considering non-relativistic and relativistic approximations, we analyze cyclotron and synchrotron radiations in detail. Radiation peculiarities caused by the presence of the solenoid may be considered as a manifestation of Aharonov-Bohm effect in the radiation. In particular, it is shown that new spectral lines appear in the radiation spectrum. Due to angular distribution peculiarities of the radiation intensity, these lines can in principle be isolated from basic cyclotron and synchrotron radiation spectra.

  15. Aharonov-Bohm effect in cyclotron and synchrotron radiations

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Levin, A.; Tlyachev, V.B.

    2001-01-01

    We study the impact of Aharonov-Bohm solenoid on the radiation of a charged particle moving in a constant uniform magnetic field. With this aim in view, exact solutions of Klein-Gordon and Dirac equations are found in the magnetic-solenoid field. Using such solutions, we calculate exactly all the characteristics of one-photon spontaneous radiation both for spinless and spinning particle. Considering non-relativistic and relativistic approximations, we analyze cyclotron and synchrotron radiations in detail. Radiation peculiarities caused by the presence of the solenoid may be considered as a manifestation of Aharonov-Bohm effect in the radiation. In particular, it is shown that new spectral lines appear in the radiation spectrum. Due to angular distribution peculiarities of the radiation intensity, these lines can in principle be isolated from basic cyclotron and synchrotron radiation spectra

  16. Fundamentals of Coherent Synchrotron Radiation in Storage Rings

    International Nuclear Information System (INIS)

    Sannibale, F.; Byrd, J.M.; Loftsdottir, A.; Martin, M.C.; Venturini, M.

    2004-01-01

    We present the fundamental concepts for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The analysis includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use these concepts to optimize the performance of a source for CSR emission

  17. Chemical applications of synchrotron radiation: Workshop report

    International Nuclear Information System (INIS)

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases

  18. Chemical applications of synchrotron radiation: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  19. Current schemes for National Synchrotron Light Source UV beamlines

    International Nuclear Information System (INIS)

    Williams, G.P.; Howells, M.R.; McKinney, W.R.

    1979-01-01

    We describe in some detail four beamlines proposed for the National Synchrotron Light Source uv ring at Brookhaven National Laboratory. Three grazing-incidence instruments, one of the plane grating Mijake type and two with toroidal gratings at grazing angles of 2-1/2 0 and 15 0 are described. Two normal incidence instruments, one using the source as entrance slit and accepting 75 milliradians horizontally are also discussed. In each case we have estimated the output fluxes expected from such beamlines

  20. Initial scientific uses of coherent synchrotron radiation inelectron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Basov, D.N.; Feikes, J.; Fried, D.; Holldack, K.; Hubers, H.W.; Kuske, P.; Martin, M.C.; Pavlov, S.G.; Schade, U.; Singley, E.J.; Wustefeld, G.

    2004-11-23

    The production of stable, high power, coherent synchrotron radiation at sub-terahertz frequency at the electron storage ring BESSY opens a new region in the electromagnetic spectrum to explore physical properties of materials. Just as conventional synchrotron radiation has been a boon to x-ray science, coherent synchrotron radiation may lead to many new innovations and discoveries in THz physics. With this new accelerator-based radiation source we have been able to extend traditional infrared measurements down into the experimentally poorly accessible sub-THz frequency range. The feasibility of using the coherent synchrotron radiation in scientific applications was demonstrated in a series of experiments: We investigated shallow single acceptor transitions in stressed and unstressed Ge:Ga by means of photoconductance measurements below 1 THz. We have directly measured the Josephson plasma resonance in optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} for the first time and finally we succeeded to confine the sub-THz radiation for spectral near-field imaging on biological samples such as leaves and human teeth.

  1. Construction of a synchrotron radiation research laboratory in Thailand

    International Nuclear Information System (INIS)

    Ishii, Takehiko

    2005-01-01

    Various obstacles encountered during the course of the construction of the synchrotron radiation facilities in Thailand are described. First background information such as the brief history, the purpose of the project, and the human resources development are mentioned. Then difficulty in promoting the new project is described. Some serious problems having emerged and been overcome in the accelerator construction are mentioned. They are non-uniform floor subsidence, the broken injection timing system, the breaking of newly built vacuum chambers, the unstable operation of the linac, and electrical shortage between layers of coils of quadrupole magnets. (author)

  2. Ginzburg's invention of undulators and their role in modern synchrotron radiation sources and free electron lasers

    International Nuclear Information System (INIS)

    Kulipanov, Gennadii N

    2007-01-01

    Undulators - periodic magnetic structures that were originally introduced by Vitalii Ginzburg in 1947 for electromagnetic radiation generation using relativistic electrons - are among the key elements of modern synchrotron radiation sources and free electron lasers (FELs). In this talk, the history of three generations of storage ring-based synchrotron X-ray sources using wigglers and undulators is briefly traced. Prospects for two types of next-generation space-coherent X-ray sources are discussed, which use long undulators and energy recovery accelerators or, alternatively, employ linear accelerator-based FELs. The recently developed Novosibirsk terahertz FEL facility, currently the world' s most powerful terahertz source, is described. It was the generation of electromagnetic radiation in this range that Ginzburg discussed in his 1947 work. (oral issue of the journal 'uspekhi fizicheskikh nauk')

  3. Propagation of synchrotron radiation through nanocapillary structures

    International Nuclear Information System (INIS)

    Bjeoumikhov, A.; Bjeoumikhova, S.; Riesemeier, H.; Radtke, M.; Wedell, R.

    2007-01-01

    The propagation of synchrotron radiation through nanocapillary structures with channel sizes of 200 nm and periods in the micrometer size has been studied experimentally. It was shown that the propagation through individual capillary channels has a mode formation character. Furthermore it was shown that during the propagation through capillary channels the coherence of synchrotron radiation is partially conserved. Interference of beams propagating through different capillary channels is observed which leads to a periodically modulated distribution of the radiation intensity in a plane far from the exit of the structure. These investigations are of high relevance for the understanding of X-ray transmission through nanocapillaries and the appearance of wave properties at this size scale

  4. Multichannel FPGA-Based Data-Acquisition-System for Time-Resolved Synchrotron Radiation Experiments

    Science.gov (United States)

    Choe, Hyeokmin; Gorfman, Semen; Heidbrink, Stefan; Pietsch, Ullrich; Vogt, Marco; Winter, Jens; Ziolkowski, Michael

    2017-06-01

    The aim of this contribution is to describe our recent development of a novel compact field-programmable gatearray (FPGA)-based data acquisition (DAQ) system for use with multichannel X-ray detectors at synchrotron radiation facilities. The system is designed for time resolved counting of single photons arriving from several-currently 12-independent detector channels simultaneously. Detector signals of at least 2.8 ns duration are latched by asynchronous logic and then synchronized with the system clock of 100 MHz. The incoming signals are subsequently sorted out into 10 000 time-bins where they are counted. This occurs according to the arrival time of photons with respect to the trigger signal. Repeatable mode of triggered operation is used to achieve high statistic of accumulated counts. The time-bin width is adjustable from 10 ns to 1 ms. In addition, a special mode of operation with 2 ns time resolution is provided for two detector channels. The system is implemented in a pocketsize FPGA-based hardware of 10 cm × 10 cm × 3 cm and thus can easily be transported between synchrotron radiation facilities. For setup of operation and data read-out, the hardware is connected via USB interface to a portable control computer. DAQ applications are provided in both LabVIEW and MATLAB environments.

  5. The nature of ancient Egyptian copper-containing carbon inks is revealed by synchrotron radiation based X-ray microscopy

    OpenAIRE

    Christiansen , Thomas; Cotte , Marine; Loredo-Portales , René; Lindelof , Poul ,; Mortensen , Kell; Ryholt , Kim; Larsen , Sine

    2017-01-01

    International audience; For the first time it is shown that carbon black inks on ancient Egyptian papyri from different time periods and geographical regions contain copper. The inks have been investigated using synchrotron-based micro X-ray fluorescence (XRF) and micro X-ray absorption near-edge structure spectroscopy (XANES) at the European Synchrotron Radiation Facility (ESRF). The composition of the copper-containing carbon inks showed no significant differences that could be related to t...

  6. Synchrotron radiation laboratories at the Bonn electron accelerators. a status report

    Science.gov (United States)

    Hormes, J.

    1987-07-01

    At the Physikalisches Institut of the University in Bonn experiments with synchrotron radiation were carried out ever since 1962. At the moment (June 1986) all work takes place in the SR-laboratory at the 2.5 GeV synchrotron. A 3.5 GeV stretcher ring (ELSA) is under construction and will come into operation at the end of 1986. This accelerator will also run as a storage ring for synchrotron radiation experiments and a laboratory to be used at this machine is also under consideration. The SR experiments which are carried out in Bonn try to take advantage of the fact that we are still using a high energy synchrotron for our work. Besides basic research also applied work is done using synchrotron radiation even as a production tool for X-ray lithography.

  7. 3D histomorphometric quantification of trabecular bones by computed microtomography using synchrotron radiation.

    Science.gov (United States)

    Nogueira, L P; Braz, D; Barroso, R C; Oliveira, L F; Pinheiro, C J G; Dreossi, D; Tromba, G

    2010-12-01

    Conventional bone histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed microtomography is a non-invasive technique, which can be used to evaluate histomorphometric indices in trabecular bones (BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp). In this technique, 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. In this work, histomorphometric quantification using synchrotron 3D X-ray computed microtomography was performed to quantify the bone structure at different skeletal sites as well as to investigate the effects of bone diseases on quantitative understanding of bone architecture. The images were obtained at Synchrotron Radiation for MEdical Physics (SYRMEP) beamline, at ELETTRA synchrotron radiation facility, Italy. Concerning the obtained results for normal and pathological bones from same skeletal sites and individuals, from our results, a certain declining bone volume fraction was achieved. The results obtained could be used in forming the basis for comparison of the bone microarchitecture and can be a valuable tool for predicting bone fragility. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Overview of United States synchrotron radiation facilities

    International Nuclear Information System (INIS)

    Watson, R.E.

    1983-01-01

    There has been considerable activity within the past year involving the creation of new and the improvement of existing capabilities for research with synchrotron light. The purpose of this review is to summarize what has happened within the United States. Being a status report, some of the information necessarily has a date attached to it - the date, in this case, being early September 1983

  9. The application of infrared synchrotron radiation to the study of interfacial vibrational modes

    International Nuclear Information System (INIS)

    Hirschmugl, C.J.; Williams, G.P.

    1992-01-01

    Synchrotron radiation provides an extremely bright broad-band source in the infrared which is ideally suited to the study of surface and interface vibrational modes in the range 50--3,000 cm -1 . Thus it covers the important range of molecule-substrate interactions, as well as overlapping with the more easily accessible near-ir region where molecular internal modes are found. Compared to standard broadband infrared sources such as globars, not only is it 1,000 times brighter, but its emittance matches the phase-space of the electrochemical cell leading to full utilization of this brightness advantage. In addition, the source is more stable even than water-cooled globars in vacuum for both short-term and long-term fluctuations. The authors summarize the properties of synchrotron radiation in the infrared, in particular pointing out the distinct differences between this and the x-ray region. They use experimental data in discussing important issues of signal to noise and address the unique problems and advantages of the synchrotron source. Thus they emphasize the important considerations necessary for developing new facilities. This analysis then leads to a discussion of phase-space matching to electrochemical cells, and to other surfaces in vacuum. Finally they show several examples of the application of infrared synchrotron radiation to surface vibrational spectroscopy. The examples are for metal crystal surfaces in ultra-high vacuum and include CO/Cu(100) and (111) and CO/K/Cu(100). The experiments show how the stability of the synchrotron source allows subtle changes in the background to be observed in addition to the discrete vibrational modes. These changes are due to electronic states induced by the adsorbate. In some cases the authors have seen interferences between these and the discrete vibrational modes, leading to a breakdown of the dipole selection rules, and the observation of additional modes

  10. Synchrotron radiation losses in Engineering Test Reactors (ETRs)

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1987-11-01

    In next-generation Engineering Test Reactors (ETRs), one major objective is envisioned to be a long-pulse or steady-state burn using noninductive current drive. At the high temperatures needed for efficient current drive, synchrotron radiation could represent a large power loss, especially if wall reflectivity (R) is very low. Many INTOR-class ETR designs [Fusion Engineering Reactor (FER), Next European Torus (NET), OTR, Tokamak Ignition/Burn Engineering Reactor (TIBER), etc.] call for carbon-covered surfaces for which wall reflectivity is uncertain. Global radiation losses are estimated for these devices using empirical expressions given by Trubnikov (and others). Various operating scenarios are evaluated under the assumption that the plasma performance is limited by either the density limit (typical of the ignition phase) or the beta limit (typical of the current drive phase). For a case with ≥90% wall reflectivity, synchrotron radiation is not a significant contribution to the overall energy balance (the ratio of synchrotron to alpha power is less than 10 to 20%, even at ∼ 30 keV) and thus should not adversely alter performance in these devices. In extreme cases with 0% wall reflectivity, the ratio of synchrotron radiation to alpha power may approach 30 to 60% (depending on the device and limiting operating scenario), adversely affecting the performance characteristics. 12 refs., 7 tabs

  11. High pressure and synchrotron radiation satellite workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  12. High pressure and synchrotron radiation satellite workshop

    International Nuclear Information System (INIS)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A.

    2006-01-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations

  13. Application of circular polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Miyahara, Tsuneaki; Kawata, Hiroshi

    1988-03-01

    The idea of using the polarizing property of light for physical experiment by controlling it variously has been known from old time, and the Faraday effect and the research by polarizing microscopy are its examples. The light emitted from the electron orbit of an accelerator has the different polarizing characteristics from those of the light of a laboratory light source, and as far as observing it within the electron orbit plane, it becomes linearly polarized light. By utilizing this property well, research is carried out at present in synchrotron experimental facilities. Recently, the technology related to the insert type light cources using permanent magnets has advanced remarkably, and circular polarized light has become to be producible. If the light like this can be obtained with the energy not only in far ultraviolet region but also to x-ray region at high luminance, new possibility should open. At the stage that the design of an insert type light source was finished, and its manufacture was started, the research on the method of evaluating the degree of circular polarization and the research on the utilization of circular polarized synchrotron radiation are earnestly carried out. In this report, the results of researches presented at the study meeting are summarized. Moreover, the design and manufacture of the beam lines for exclusive use will be carried out. (Kako, I.)

  14. The relativistic foundations of synchrotron radiation.

    Science.gov (United States)

    Margaritondo, Giorgio; Rafelski, Johann

    2017-07-01

    Special relativity (SR) determines the properties of synchrotron radiation, but the corresponding mechanisms are frequently misunderstood. Time dilation is often invoked among the causes, whereas its role would violate the principles of SR. Here it is shown that the correct explanation of the synchrotron radiation properties is provided by a combination of the Doppler shift, not dependent on time dilation effects, contrary to a common belief, and of the Lorentz transformation into the particle reference frame of the electromagnetic field of the emission-inducing device, also with no contribution from time dilation. Concluding, the reader is reminded that much, if not all, of our argument has been available since the inception of SR, a research discipline of its own standing.

  15. Radiosensitization of head/neck squamous cell carcinoma by adenovirus-mediated expression of dominant negative constructs of the Nbs1 protein

    International Nuclear Information System (INIS)

    Carney, J.P.; Rhee, J.G.; Li, D.; Chen, T.; Suntharalingam, M.; O'Malley, B.W.

    2001-01-01

    Purpose: Local failure and toxicity to adjacent critical structures is a significant problem in radiation therapy of cancers of the head and neck. We are developing a gene therapy based method of sensitizing head/neck squamous cell carcinoma (HNSCC) to radiation treatment. As patients with the rare hereditary disorder, Nijmegen breakage syndrome show radiation sensitivity we hypothesized that tumor-specific disruption of the function of the Nbs1 protein would lead to enhanced cellular sensitivity to ionizing radiation. In order to test this hypothesis we have devised recombinant adenoviruses expressing various portions of the Nbs1 protein and assessed the ability of these viruses to increase the radiation sensitivity of HNSCC cells. Materials and Methods: We constructed two recombinant adenoviruses by cloning the full-length Nbs1 cDNA as well as the C-terminal 300 amino acids of Nbs1(Nbs1-300, aa453 to aa754) into an adenovirus backbone under the control of a CMV promoter. The resulting adenoviruses were used to infect HNSCC cell line 011. These cells were evaluated for expression of the viral based constructs and assayed for growth rate and clonogenic survival following radiation exposure. Results: A constitutively expressed GFP gene in the viral backbone confirmed efficient uptake of the virus into the 011 cell line and Western blot confirmed the presence of the virally expressed Nbs1 and Nbs1-300. Following exposure to ionizing radiation cells infected with the Nbs1-300 virus showed a significant reduction in growth rate relative to cells infected with control virus. Surprisingly, this effect was even stronger with the full-length wild-type Nbs1 protein. Examination of clonogenic survival also demonstrated statistically significant sensitization, however the effects of the two constructs were distinct as Nbs1-300 expression resulted in reduction of the shoulder while expression of the full-length Nbs1 showed a change in the slope of the survival curve

  16. National synchrotron light source basic design and project status

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1981-01-01

    A summary description and the basic design parameters of the National Synchrotron Light Source, a facility for the generation of intense synchrotron radiation in the vuv and x-ray range is presented, the parameters of the sources are given, the presently planned facility beam lines are tabulated and the status of the project is indicated

  17. Protein Data Bank Depositions from Synchrotron Sources

    International Nuclear Information System (INIS)

    Jiang, J.; Sweet, R.

    2004-01-01

    A survey and analysis of Protein Data Bank (PDB) depositions from international synchrotron radiation facilities, based on the latest released PDB entries, are reported. The results ( ) show that worldwide, every year since 1999, more than 50% of the deposited X-ray structures have used synchrotron facilities, reaching 75% by 2003. In this web-based database, all PDB entries among individual synchrotron beamlines are archived, synchronized with the weekly PDB release. Statistics regarding the quality of experimental data and the refined model for all structures are presented, and these are analysed to reflect the impact of synchrotron sources. The results confirm the common impression that synchrotron sources extend the size of structures that can be solved with equivalent or better quality than home sources

  18. Extinction correction and synchrotron radiation

    International Nuclear Information System (INIS)

    Suortti, P.

    1983-01-01

    The primary extinction factor ysub(p) is defined as the ratio of the integrated reflection from a coherently diffracting domain to the integrated kinematical reflection from the same domain. When ysub(p) is larger than 0.5 it may be approximated by ysub(p)= exp[-(αdelta) 2 ], where α is about 0.5 and delta the average size of the coherent domain when measured in units of the extinction length Λ, delta = D/Λ. Transfer equations are applied to symmetrical Laue diffraction, and the reflectivity per unit length, sigma(epsilon) is solved from the measured reflecting ratio as a function of the rocking angle epsilon = theta -thetasub(B). Measurements with conventional x-ray sources are made on single crystal slabs of Be and Si using AgKβ, MoKα 1 and CuKα radiation. The primary extinction factor ysub(p)(epsilon) is solved from a point-by-point comparison of two measurements where the extinction length Λ is changed by varying the polarization and/or wavelength of the x-ray beam. The results show that primary and secondary extinction are strongly correlated, and that the customary assumption of independent size and orientation distributions of crystal mosaics is unjustified. The structure factors for Be and Si show close agreement with other recent measurements and calculations. The limitations of the method are discussed in length, particularly the effects of beam divergences and incoherence of the rays in the crystal. It is concluded that under typical experimental conditions the requirements of the theory are met. Practical limitations arising from the use of characteristic wavelengths and unpolarized radiation prohibit the use of the full potential of the method. The properties of a synchrotron radiation source are compared with a conventional x-ray source, and it is demonstrated that the experimental limitations can be removed by the use of synchrotron radiation. A diffraction experiment with synchrotron radiation is outlined, as well as generalization of the

  19. Development of the protein crystallography by synchrotron radiation

    International Nuclear Information System (INIS)

    Yamamoto, Masaki

    2014-01-01

    Since crystal structure determination of the first protein by Kendrew in 1959, protein crystallography developed into the leading role of the protein structure study by various technology developments. Especially the utilization of synchrotron radiation from the 1990s brought innovative progress of protein crystallography on the data quality and the phasing method and had expanded the samples targets including membrane proteins and suprarmolecular complexes. Here I give the outline of the history and the future prospects of the protein crystallography from the role of synchrotron radiation. (author)

  20. Paraxial Green's functions in synchrotron radiation theory

    International Nuclear Information System (INIS)

    Geloni, G.; Saldin, E.; Scheidmiller, E.; Yurkov, M.

    2005-02-01

    This work contains a systematic treatment of single particle synchrotron radiation and some application to realistic beams with given cross section area, divergence and energy spread. Standard theory relies on several approximations whose applicability limits and accuracy are often forgotten. We begin remarking that on the one hand, a paraxial approximation can always be applied without loss of generality and with ultra relativistic accuracy. On the other hand, dominance of the acceleration field over the velocity part in the Lienard-Wiechert expressions is not always guaranteed and constitutes a separate assumption, whose applicability is discussed. Treating synchrotron radiation in paraxial approximation we derive the equation for the slow varying envelope function of the Fourier components of the electric field vector. Calculations of Synchrotron Radiation properties performed by others showed that the phase of the Fourier components of the electric field vector differs from the phase of a virtual point source. In this paper we present a systematic, analytical description of this phase shift, calculating amplitude and phase of electric field from bending magnets, short magnets, two bending magnet system separated by a straight section (edge radiation) and undulator devices. We pay particular attention to region of applicability and accuracy of approximations used. Finally, taking advantage of results of analytical calculation presented in reduced form we analyze various features of radiation from a complex insertion device (set of two undulators with a focusing triplet in between) accounting for the influence of energy spread and electron beam emittance. (orig.)

  1. Brightness of synchrotron radiation from wigglers

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2014-12-01

    According to literature, while calculating the brightness of synchrotron radiation from wigglers, one needs to account for the so called 'depth-of-field' effects. In fact, the particle beam cross section varies along the wiggler. It is usually stated that the effective photon source size increases accordingly, while the brightness is reduced. Here we claim that this is a misconception originating from an analysis of the wiggler source based on geometrical arguments, regarded as almost self-evident. According to electrodynamics, depth-of-field effects do not exist: we demonstrate this statement both theoretically and numerically, using a well-known first-principle computer code. This fact shows that under the usually accepted approximations, the description of the wiggler brightness turns out to be inconsistent even qualitatively. Therefore, there is a need for a well-defined procedure for computing the brightness from a wiggler source. We accomplish this task based on the use of a Wigner function formalism. In the geometrical optics limit computations can be performed analytically. Within this limit, we restrict ourselves to the case of the beam size-dominated regime, which is typical for synchrotron radiation facilities in the X-ray wavelength range. We give a direct demonstration of the fact that the apparent horizontal source size is broadened in proportion to the beamline opening angle and to the length of the wiggler. While this effect is well-understood, a direct proof appears not to have been given elsewhere. We consider the problem of the calculation of the wiggler source size by means of numerical simulations alone, which play the same role of an experiment. We report a significant numerical disagreement between exact calculations and approximations currently used in literature.

  2. Molecular photoemission studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Truesdale, C.M.

    1983-04-01

    The angular distributions of photoelectrons and Auger electrons were measured by electron spectroscopy using synchrotron radiation. The experimental results are compared with theoretical calculations to interpret the electronic behavior of photoionization for molecular systems

  3. Synchrotron radiation sources for photobiology and ultraviolet, visible and infrared spectroscopy

    International Nuclear Information System (INIS)

    Sutherland, J.C.

    1980-01-01

    The advantages of synchrotron radiation in several types of spectroscopy, microscopy and diffraction studies are clear. The availability of synchrotron radiation will expand rapidly in the early 1980's as experimental programs start at the new generation of dedicated storage rings

  4. The benefit of the European User Community from transnational access to national radiation facilities

    DEFF Research Database (Denmark)

    Barrier, Elise; Manuel Braz Fernandes, Francisco; Bujan, Maya

    2014-01-01

    Transnational access (TNA) to national radiation sources is presently provided via programmes of the European Commission by BIOSTRUCT-X and CALIPSO with a major benefit for scientists from European countries. Entirely based on scientific merit, TNA allows all European scientists to realise synchr...... development of the research infrastructure of photon science. Taking into account the present programme structure of HORIZON2020, the European Synchrotron User Organization (ESUO) sees considerable dangers for the continuation of this successful collaboration in the future....... synchrotron radiation experiments for addressing the Societal Challenges promoted in HORIZON2020. In addition, by TNA all European users directly take part in the development of the research infrastructure of facilities. The mutual interconnection of users and facilities is a strong prerequisite for future...

  5. Synchrotron radiation and biomedical imaging

    International Nuclear Information System (INIS)

    Luccio, A.

    1986-08-01

    In this lecture we describe the characteristics of Synchrotron radiation as a source of X rays. We discuss the properties of SR arc sources, wigglers, undulators and the use of backscattering of laser light. Applications to angiography, X ray microscopy and tomography are reviewed. 16 refs., 23 figs

  6. Adaptation of spectral distribution of synchrotron radiation to X-ray depth lithography

    International Nuclear Information System (INIS)

    Maid, B.; Ehrfeld, W.; Hormes, J.; Mohr, J.; Muenchmeyer, D.

    1989-05-01

    Plastic microstructures with extremly high aspect ratios can be fabricated by X-ray depth lithography with synchrotron radiation. In order to minimize the expenditure in terms of irradiation the spectrum of the synchrotron radiation source has to be adapted to the irradiation task. It is characterized by the height of the microstructure and the maximum admissible dose ratio permitting the resist to develop in the depth without destruction of the surface as a result of radiation damage. Expenditure in terms of irradiation is minimum if an ideal sharp cutoff filter, profiting from the maximum permissible dose ratio, filters out the long-waved portion of the spectrum without attenuating the intensity of the short-waved portion of the spectrum. By the example of a typical resist-developer system the location of the filter edge was determined at different structural heights for the Bonn synchrotron and the ELSA electron stretching facility (Bonn). To be capable of building the ideal sharp cutoff filter, the thickness of an absorber was adapted for different materials in such a way that the maximum permissible dose ratio was obtained. If a thin reflector foil is used which is hit by glazing radiation, the expenditure in terms of irradiation can be reduced because of the steeper filter characteristic of resists with small maximum dose ratios. The short-waved transmitted beam is used for irradiation, with the filter edge set by the angle between the foil and the beam. The technical feasibility of a reflection filter was demonstrated on the model of a reflector foil consisting of 30 nm titanium on 7.5 μm polyimide substrate by transmission measurements performed at different angles. (orig./HP) [de

  7. Proceedings of the Meeting on Techniques and Applications of Synchrotron Radiation

    International Nuclear Information System (INIS)

    1983-01-01

    Several techniques and applications of the synchrotron radiation used in Physics, Biophysics and Chemistry are extensively discussed. The major part of the subjects of the works treat with the possible implantation of a national synchrotron radiation laboratory in Brazil. (L.C.) [pt

  8. Physics and technology challenges of ultra low emittance synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Krinsky, S.

    1991-01-01

    There is a great activity throughout the world in the development of synchrotron radiation facilities to serve as sources for basic and applied research. We discuss some of the the opportunities and challenges presented by the development of ever higher brightness synchrotron radiation sources. 39 refs.

  9. X-ray energy-dispersive diffractometry using synchrotron radiation

    International Nuclear Information System (INIS)

    Buras, B.; Staun Olsen, J.; Gerward, L.

    1977-03-01

    In contrast to bremsstrahlung from X-ray tubes, synchrotron radiation is very intense, has a smooth spectrum, its polarization is well defined, and at DESY the range of useful photon energies can be extended to about 70 keV and higher. In addition the X-ray beam is very well collimated. Thus synchrotron radiation seems to be an ideal X-ray source for energy-dispersive diffractometry. This note briefly describes the experimental set up at DESY, shows examples of results, and presents the underlying 'philosophy' of the research programme. (Auth.)

  10. Synchrotron radiation from spherically accreting black holes

    International Nuclear Information System (INIS)

    Ipser, J.R.; Price, R.H.

    1982-01-01

    Spherical accretion onto a Schwartzchild black hole, of gas with frozen-in magnetic field, is studied numerically and analytically for a range of hole masses and accretion rates in which synchrotron emission is the dominant radiative mechanism. At small radii the equipartition of magnetic, kinetic, and gravitational energy is assumed to apply, and the gas is heated by dissipation of infalling magnetic energy, turbulent energy, etc. The models can be classified into three types: (a) synchrotron cooling negligible, (b) synchrotron cooling important but synchrotron self-absorption negligible, (c) synchrotron cooling and self-absorption important. In the first case gas temperatures become very high near the horizon but luminosity efficiencies (luminosity/mass-energy accretion rate) are low. In cases (b) and (c) the gas flow near the horizon is essentially isothermal and luminosity efficiencies are fairly high. The analysis and results for the isothermal cases (b) and (c) are valid only for moderate dissipative heating and synchrotron self-absorption. If self-absorption is very strong or if dissipated energy is comparable to infall energy, Comptonization effects, not included in the analysis, become important

  11. Protein Data Bank depositions from synchrotron sources.

    Science.gov (United States)

    Jiang, Jiansheng; Sweet, Robert M

    2004-07-01

    A survey and analysis of Protein Data Bank (PDB) depositions from international synchrotron radiation facilities, based on the latest released PDB entries, are reported. The results (http://asdp.bnl.gov/asda/Libraries/) show that worldwide, every year since 1999, more than 50% of the deposited X-ray structures have used synchrotron facilities, reaching 75% by 2003. In this web-based database, all PDB entries among individual synchrotron beamlines are archived, synchronized with the weekly PDB release. Statistics regarding the quality of experimental data and the refined model for all structures are presented, and these are analysed to reflect the impact of synchrotron sources. The results confirm the common impression that synchrotron sources extend the size of structures that can be solved with equivalent or better quality than home sources.

  12. Biological physics and synchrotron radiation

    International Nuclear Information System (INIS)

    Filhol, J.M.; Chavanne, J.; Weckert, E.

    2001-01-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  13. Biological physics and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Filhol, J M; Chavanne, J [European Synchrotron Radiation Facility, 38 - Grenoble (France); Weckert, E [Hasylab at Desy, Hamburg (Germany); and others

    2001-07-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  14. Synchrotron radiation in material science

    International Nuclear Information System (INIS)

    Zanotto, E.D.

    1983-01-01

    A brief review on the several experimental techniques (XRD, SAXS, EXAFS, IRRS, etc...) which, utilizing of synchrotron radiation can be applied in glass structural studies, is presented. The major part of these techniques can be also used for studies of other materials such as polymers, metals, etc... (L.C.) [pt

  15. Effects of UV radiation on freshwater metazooplankton

    International Nuclear Information System (INIS)

    Tartarotti, B.

    1999-06-01

    There is evidence that fluxes of solar ultraviolet-B radiation (UV-B, 290-320 nm) are increasing over wide parts of the earth's surface due to stratospheric ozone depletion. UV radiation (290-400 nm) can have damaging effects on biomolecules and cell components that are common to most living organisms. The aim of this thesis is to gain a more thorough understanding of the potential impacts of solar radiation on freshwater metazooplankton. To detect UV-vulnerability in zooplankton populations dominating the zooplankton community of two clear-water, high mountain lakes located one in the Austrian Alps and another in the Chilean Andes, the survival of two copepod species was studied. The organisms were exposed to a 10- to 100-fold increase in UV-B radiation compared to those levels found at their natural, maximum daytime distribution. Both species vertically migrate and are pigmented. UV-absorbing compounds with a maximum absorption at ∼334 nm were also detected. Cyclops abyssorum tatricus, a common cyclopoid copepod species of Alpine lakes, was highly resistant to UV-B radiation and no significant lethal effect was observed. The calanoid copepod Boeckella gracilipes, frequent in Andean lakes, had a mortality ∼5 times higher in the treatment receiving full sunlight than in the UV-B excluded treatment (3.2 %) only when exposed for 70 h. The resistance of B. gracilipes was higher than that reported in the literature for the same species suggesting the existence of intraspecific differences in UV sensitivity. Survival, fecundity and development of the zooplankton community of a clear-water, high elevation Andean lake (33 o S) were studied with mesocosms experiments after prolonged UV exposure (48 days). When exposed to full sunlight, the population of the cladoceran Chydorus sphaericus and the rotifer Lepadella ovalis were strongly inhibited by UV-B, whereas both species were resistant to UV-A radiation. Conversely, UV-B radiation had no effect on the survival of the

  16. Activity report of Synchrotron Radiation Laboratory 2001

    International Nuclear Information System (INIS)

    2002-11-01

    After moved from Tanashi to Kashiwa Campus in the spring of 2000, the Synchrotron Radiation Laboratory (SRL) has been promoting the High-brilliance Light Source project, Super SOR project, in cooperation with the nationwide user group as well as with the users of the University of Tokyo. In May of 2001, the project has met with a dramatic progress. The Ministry of Education, Science, Sports and Culture organized the Advisory Board and started to discuss the future synchrotron radiation facilities in EUV and SX regime in Japan. Based on extensive discussion, they proposed the new facility consisting of a 1.8 GeV storage ring of 3rd generation type. The University of Tokyo approved to construct the proposed facility in the Kashiwa campus. The plan is supported not only by researchers in academic institutions but also bio- and chemical-industries. We strongly hope the plan will be realized in near future. On the other hand, SRL maintains a branch laboratory in the Photon Factory (PF) High Energy Accelerator Research Organization (KEK) at Tsukuba with a Revolver undulator, two beamlines and three experimental stations (BL-18A, 19A and 19B), which are and fully opened to the outside users. In the fiscal year of 2001, the operation time of the beamlines was more than 5000 hours and the number of the users was about 200. The main scientific interests and activities in the SRL at KEK-PF are directed to the electronic structures of new materials with new transport, magnetic and optical properties. The electronic structures of solid surfaces and interfaces are also intensively studied by photoelectron spectroscopy and photoelectron microscopy. The accelerator group of SRL is carrying out research works of the accelerator physics and developing the accelerator-related technology, many parts of which will be directly applied to the new light source project. This report contains the activities of the staff members of SRL and users of the three beamlines in FY2001. The status of

  17. Interaction between NBS1 and the mTOR/Rictor/SIN1 complex through specific domains.

    Directory of Open Access Journals (Sweden)

    Jian-Qiu Wang

    Full Text Available Nijmegen breakage syndrome (NBS is a chromosomal-instability syndrome. The NBS gene product, NBS1 (p95 or nibrin, is a part of the Mre11-Rad50-NBS1 complex. SIN1 is a component of the mTOR/Rictor/SIN1 complex mediating the activation of Akt. Here we show that NBS1 interacted with mTOR, Rictor, and SIN1. The specific domains of mTOR, Rictor, or SIN1 interacted with the internal domain (a.a. 221-402 of NBS1. Sucrose density gradient showed that NBS1 was located in the same fractions as the mTOR/Rictor/SIN1 complex. Knockdown of NBS1 decreased the levels of phosphorylated Akt and its downstream targets. Ionizing radiation (IR increased the NBS1 levels and activated Akt activity. These results demonstrate that NBS1 interacts with the mTOR/Rictor/SIN1 complex through the a.a. 221-402 domain and contributes to the activation of Akt activity.

  18. Research using synchrotron radiation at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1982-01-01

    The National Synchrotron Light Source (NSLS) is now becoming operational with synchrotron radiation experiments beginning on the 700 MeV VUV electron storage ring. Commissioning of the 2.5 GeV x-ray storage ring has also begun with the experimental program expected to begin in 1983. The current status of the experimental program and instrumentation and the plans for future developments, will be discussed. Although some early results have been obtained on VUV beam lines no attempt will be made in this paper to describe them. Instead, an overview of the beam line characteristics will be given, with an indication of those already operational. In the oral presentation some initial experimental results will be discussed

  19. Reflectometry with synchrotron radiation; Reflektometrie mit Synchrotronstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Krumrey, Michael [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany). Arbeitsgruppe ' Roentgenradiometrie' ; Cibik, Levent; Fischer, Andreas; Gottwald, Alexander; Kroth, Udo; Scholze, Frank

    2014-09-15

    The measurement of the reflectivity for VUV, XUV, and X-radiation at the PTB synchrotron radiation sources is described. The corresponding data of the used beams are presented. Results of experiments on a Cu-Ni double-layer, SiO{sub 2}, Si, and MgF{sub 2} are presented. (HSI)

  20. Photoemission spectroscopy using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobayashi, K.L.I.

    1980-01-01

    It is an epoch making event for photoemission spectroscopy that the light sources of continuous wavelength from vacuum ultra-violet to X-ray region have become available by the advent of synchrotron radiation. Specifically the progress after stable intense light has become obtainable from storage rings is very significant. One of the features of these synchrotron radiation is its extreme polarization of radiating pattern. Though the elementary processes of photoemission out of solids are the basic themes, phenomenalistic 3-stage model is usually applied to the analysis of experiments. In this model, the process of photoemission is considered by dividing into three stages, namely the generation of photoelectrons due to optical transition between electron status -- the transportation of photoelectrons to solid surfaces -- breaking away from the surfaces. The spectrometers, the energy analyzers of photoelectrons, and sample-preparing room used for photoemission spectroscopy are described. Next, energy distribution curves are explained. At the end, photoelectron yield spectroscopy, CFS (constant final energy spectroscopy) and CIS (constant initial energy spectroscopy), Auger yield and interatomic Auger yield, the determination of surface structure by normal emission CIS, and surface EXAFS (extended X-ray absorption fine structure) are described. As seen above, the application specifically to surface physics is promising in the future. (Wakatsuki, Y.)

  1. Sirepo for Synchrotron Radiation Workshop

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-25

    Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jinja, which is a secure and widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is the Synchrotron Radiation Workshop (SRW). SRW computes synchrotron radiation from relativistic electrons in arbitrary magnetic fields and propagates the radiation wavefronts through optical beamlines. SRW is open source and is primarily supported by Dr. Oleg Chubar of NSLS-II at Brookhaven National Laboratory.

  2. Research of synchrotron radiation by virtual photon and compton scattering

    International Nuclear Information System (INIS)

    Meng Xianzhu

    2005-01-01

    This paper presents a new theory to explain the synchrotron radiation. When charged particle does circular motion in the accelerator, the magnetic field of the accelerator can be taken as periodic, and equivalent to virtual photon. By Compton scattering of virtual photon and charged particle, the virtual photon can be transformed into photon to radiate out. According to this theory, the formula of photon wavelength in synchrotron radiation is found out, and the calculation results of wavelength is consonant with experimental data. (author)

  3. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Crasemann, B.

    1981-01-01

    Applications of synchrotron radiation to research in high-energy atomic physics are summarized. These lie in the areas of photoelectron spectrometry, photon scattering, x-ray absorption spectroscopy, time-resolved measurements, resonance spectroscopy and threshold excitation, and future, yet undefined studies

  4. Techniques of production and analysis of polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    The use of the unique polarization properties of synchrotron radiation in the hard x-ray spectral region (E>3 KeV) is becoming increasingly important to many synchrotron radiation researchers. The radiation emitted from bending magnets and conventional (planar) insertion devices (IDs) is highly linearly polarized in the plane of the particle's orbit. Elliptically polarized x-rays can also be obtained by going off axis on a bending magnet source, albeit with considerable loss of flux. The polarization properties of synchrotron radiation can be further tailored to the researcher's specific needs through the use of specialized insertion devices such as helical and crossed undulators and asymmetrical wigglers. Even with the possibility of producing a specific polarization, there is still the need to develop x-ray optical components which can manipulate the polarization for both analysis and further modification of the polarization state. A survey of techniques for producing and analyzing both linear and circular polarized x-rays will be presented with emphasis on those techniques which rely on single crystal optical components

  5. National Synchrotron Light Source safety-analysis report

    International Nuclear Information System (INIS)

    Batchelor, K.

    1982-07-01

    This document covers all of the safety issues relating to the design and operation of the storage rings and injection system of the National Synchrotron Light Source. The building systems for fire protection, access and egress are described together with air and other gaseous control or venting systems. Details of shielding against prompt bremstrahlung radiation and synchrotron radiation are described and the administrative requirements to be satisfied for operation of a beam line at the facility are given

  6. Recent developments in photoelectron dynamics using synchrotron radiation

    International Nuclear Information System (INIS)

    Carlson, T.A.; Krause, M.O.; Taylor, J.W.; Keller, P.R.; Piancastelli, M.N.; Grimm, F.A.; Whitley, T.A.

    1982-01-01

    Through a collaborative effort of members of the Oak Ridge National Laboratory and Universities of Wisconsin and Tennessee, a comprehensive study of atoms and molecules using angle-resolved photoelectron spectroscopy and synchrotron radiation is underway at the Synchrotron Radiation Center, Stoughton, Wisconsin. Over 50 molecules and atoms have been investigated. These results, coupled with theory, aim at a better understanding of the dynamics of photoionization and of the wave functions that control these processes. In particular, attention is given to the following topics: metal atomic vapors, generalization of molecular orbital types, autoionization, shape resonances, core shell effects, satellite structure, and the Cooper minimum

  7. A precision synchrotron radiation detector using phosphorescent screens

    International Nuclear Information System (INIS)

    Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Butler, J.; Wormser, G.

    1990-01-01

    A precision detector to measure synchrotron radiation beam positions has been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 μm on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. 3 refs., 5 figs., 1 tab

  8. Application of synchrotron-radiation soft x-ray spectroscopy for food analysis. Oxidation of the Japanese traditional sweets 'Karinto'

    International Nuclear Information System (INIS)

    Muramatsu, Yasuji; Kamamoto, Keishi; Nozawa, Jiro; Amano, Osamu; Gullikson, Eric M.

    2008-01-01

    To establish synchrotron-radiation soft X-ray spectroscopy as a reliable method for food analysis, we measured the X-ray absorption spectra of Japanese traditional sweets 'Karinto' and monitored the oxidation process. We prepared oxidized Karinto samples; The oxidation conditions such as UV/Vis-irradiation/shading and air/nitrogen-atmosphere were controlled for nine months at room temperature. The soft X-ray absorption spectra (XAS) of Karinto samples were measured in the beamline BL-6.3.2 at the Advanced Light Source (ALS). The XAS of the Karinto samples oxidized with UV/Vis-irradiation in air show that the relative peak intensity ratio, π*/σ*, of the nine-month-oxidized sample clearly increases relative to the initial sample. This demonstrates that Karinto can be oxidized with UV/Vis-irradiation. (author)

  9. Synchrotron radiation resonance Raman spectroscopy (SR3S)

    International Nuclear Information System (INIS)

    Hester, R.E.

    1979-01-01

    The use of normal Raman spectroscopy and resonance Raman spectroscopy to study the structure of molecular species and the nature of their chemical bonds is discussed. The availability of a fully tunable radiation source (the Synchrotron Radiation Source) extending into the ultraviolet raises the possibility of using synchrotron radiation resonance Raman spectroscopy as a sensitive and specific analytical probe. The pulsed nature of the SRS beam may be exploited for time-resolved resonance Raman spectroscopy and its high degree of polarization could be very helpful in the interpretation of spectra. The possibilities are considered under the headings: intensity requirements and comparison with other sources; some applications (e.g. structure of proteins; study of iron-porphyrin unit; study of chlorophylls). (U.K.)

  10. The profile of the electron beam in the PTB synchrotron, and its influence on radiometric measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    Kaase, H.

    1976-01-01

    A simple method is described to determine the beam profile in an electron synchrotron; the measured results are compared with calculated values. Moreover, the influence of synchrotron- and betatron-oscillations on synchrotron radiation measurements is discussed, and a method is given to correct this. (orig.) [de

  11. Array element of a space-based synchrotron radiation detector

    International Nuclear Information System (INIS)

    Lee, M.W.; Commichau, S.C.; Kim, G.N.; Son, D.; Viertel, G.M.

    2006-01-01

    A synchrotron radiation detector (SRD) has been proposed as part of the Alpha Magnetic Spectrometer experiment on the International Space Station to study cosmic ray electrons and positrons in the TeV energy range. The SRD will identify these particles by detecting their emission of synchrotron radiation in the Earth's magnetic field. This article reports on the study of key technical parameters for the array elements which form the SRD, including the choice of the detecting medium, the sensor and the readout system

  12. The global and UV-B radiation over Egypt

    OpenAIRE

    BASSET, H. A.; KORANY, M. H.

    2007-01-01

    This work studies the relation between UV-B radiation and global radiation over Egypt. The relationships between the global solar radiation and UV-B radiation at four stations in Egypt have been studied, and linear empirical formulas for estimating UV-B from global radiation at these stations has been deduced. The deduced equations were applied to calculate the UV-B radiation for other stations where measurements were unavailable, using records of global radiation at these stations. Because o...

  13. Synchrotron radiation. Basics, methods and applications

    International Nuclear Information System (INIS)

    Mobilio, Settimio; Meneghini, Carlo; Boscherini, Federico

    2015-01-01

    Synchrotron radiation is today extensively used for fundamental and applied research in many different fields of science. Its exceptional characteristics in terms of intensity, brilliance, spectral range, time structure and now also coherence pushed many experimental techniques to previously un-reachable limits, enabling the performance of experiments unbelievable only few years ago. The book gives an up-to-date overview of synchrotron radiation research today with a view to the future, starting from its generation and sources, its interaction with matter, illustrating the main experimental technique employed and provides an overview of the main fields of research in which new and innovative results are obtained. The book is addressed to PhD students and young researchers to provide both an introductory and a rather deep knowledge of the field. It will also be helpful to experienced researcher who want to approach the field in a professional way.

  14. Stability of high-brilliance synchrotron radiation sources

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1989-12-01

    This paper discusses the following topics: characteristics of synchrotron radiation sources; stability of the orbits; orbit control; nonlinear dynamic stability; and coherent stability and control. 1 ref., 5 figs., 1 tab

  15. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    International Nuclear Information System (INIS)

    Behrens, Christopher

    2010-02-01

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 μm to 110 μm. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 μm to 160 μm were done. (orig.)

  16. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2010-02-15

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 {mu}m to 110 {mu}m. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 {mu}m to 160 {mu}m were done. (orig.)

  17. Development of compact synchrotron light source LUNA for x-ray lithography

    International Nuclear Information System (INIS)

    Takahashi, M.; Mandai, S.; Hoshi, Y.; Kohno, Y.

    1992-01-01

    A compact synchrotron light source LUNA has been developed by Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI), especially for x-ray lithography. It consists of a 45-MeV linac as an electron injector and an 800-MeV synchrotron. The peak wavelength of synchrotron radiation is around 10 A. The installation of LUNA was completed in April 1989 at the Tsuchiura Facility of IHI. The synchrotron radiation was first observed in December 1989. A stored beam current of 50 mA at 800 MeV and a lifetime over 1 h have been achieved. At present, experiments are still continuing to increase the stored current and the lifetime. X-ray lithography testing is scheduled to begin in a clean room in this facility. This paper describes the outline of LUNA and the present status

  18. Synchrotron X-radiation research

    International Nuclear Information System (INIS)

    Kabler, M.N.; Nagel, D.J.; Skelton, E.F.

    1990-05-01

    The Naval Research Laboratory (NRL) has been involved in the exploitation of X rays since the 1920s. The report gives a brief description of the generation and characteristics of synchrotron radiation, and review highlights of current research. Research examples include soft-X-ray optics, semiconductor surface passivation, surface electron dynamics, space-charge dynamics on silicon, photochemistry on GaAs, local atomic structure, crystal structures from X-ray diffraction. The report then discusses emerging research opportunities

  19. Efficiency of Synchrotron Radiation from Rotation-powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kisaka, Shota [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa, 252-5258 (Japan); Tanaka, Shuta J., E-mail: kisaka@phys.aoyama.ac.jp, E-mail: sjtanaka@center.konan-u.ac.jp [Department of Physics, Konan University, Kobe, Hyogo, 658-8501 (Japan)

    2017-03-01

    Synchrotron radiation is widely considered to be the origin of the pulsed non-thermal emissions from rotation-powered pulsars in optical and X-ray bands. In this paper, we study the synchrotron radiation emitted by the created electron and positron pairs in the pulsar magnetosphere to constrain the energy conversion efficiency from the Poynting flux to the particle energy flux. We model two pair creation processes, two-photon collision, which efficiently works in young γ -ray pulsars (≲10{sup 6} year), and magnetic pair creation, which is the dominant process to supply pairs in old pulsars (≳10{sup 6} year). Using the analytical model, we derive the maximum synchrotron luminosity as a function of the energy conversion efficiency. From the comparison with observations, we find that the energy conversion efficiency to the accelerated particles should be an order of unity in the magnetosphere, even though we make a number of the optimistic assumptions to enlarge the synchrotron luminosity. In order to explain the luminosity of the non-thermal X-ray/optical emission from pulsars with low spin-down luminosity L {sub sd} ≲ 10{sup 34} erg s{sup −1}, non-dipole magnetic field components should be dominant at the emission region. For the γ -ray pulsars with L {sub sd} ≲ 10{sup 35} erg s{sup −1}, observed γ -ray to X-ray and optical flux ratios are much higher than the flux ratio between curvature and the synchrotron radiations. We discuss some possibilities such as the coexistence of multiple accelerators in the magnetosphere as suggested from the recent numerical simulation results. The obtained maximum luminosity would be useful to select observational targets in X-ray and optical bands.

  20. Single-mode coherent synchrotron radiation instability

    Directory of Open Access Journals (Sweden)

    S. Heifets

    2003-06-01

    Full Text Available The microwave instability driven by the coherent synchrotron radiation (CSR has been previously studied [S. Heifets and G. V. Stupakov, Phys. Rev. ST Accel. Beams 5, 054402 (2002] neglecting effect of the shielding caused by the finite beam pipe aperture. In practice, the unstable mode can be close to the shielding threshold where the spectrum of the radiation in a toroidal beam pipe is discrete. In this paper, the CSR instability is studied in the case when it is driven by a single synchronous mode. A system of equations for the beam-wave interaction is derived and its similarity to the 1D free-electron laser theory is demonstrated. In the linear regime, the growth rate of the instability is obtained and a transition to the case of continuous spectrum is discussed. The nonlinear evolution of the single-mode instability, both with and without synchrotron damping and quantum diffusion, is also studied.

  1. Spectroscopy with synchrotron radiation sources: challenges and opportunities

    International Nuclear Information System (INIS)

    Jagatap, B.N.

    2011-01-01

    Spectroscopy and energetics of atoms, molecules and cluster in ultra-violate (UV), vacuum ultra-violate (VUV) and soft X-ray region is one of the frontier topics of research today, These high energy photons allow us to prepare atomic and molecular systems in energy levels far away from their ground levels; the energy region that is characterized by the complex and highly degenerate energy level structure and multiple channels for reaction and energy dissipation. In this talk we provide a bird's eye view of the progress in this area, with a particular emphasis on spectroscopy research using Indian synchrotron sources. We shall also cover the avenues for collaborative research on Indus synchrotron sources, and the challenges and opportunities that await the Indian spectroscopy community

  2. A preliminary clinic dosimetry study for synchrotron radiation therapy at SSRF

    International Nuclear Information System (INIS)

    Li Zhaobin; Shi Zeliang; Zhang Qing; Wang Yong; Fu Shen

    2013-01-01

    Synchrotron radiation (SR) represents a unique and innovative anti-cancer treatment due to its unique physical features, including high flux density, and tunable and collimated radiation generation. The aim of this work is to assess the dosimetric properties of SR in Shanghai Synchrotron Radiation Facility (SSRF) for potential applications to clinical radiation oncology. The experiments were performed with 34 and 50 keV X-rays on the BL13W biomedical beamline of SSRF and the 6 MV X-rays from ARTISTE linac for the dosimetry study. The percentage depth dose (PDD) and the surface dose of the SR X-rays and the 6 MV photon beams were performed in solid water phantom with Gafchromic EBT3 films. All curves are normalized to the maximum calculated dose, The depth of full dose buildup is about 10 μm deeper for the monoenergetic X-ray beams of 34 and 50 keV. The beam transmits through the phantom, with a linear attenuation coefficient. The profile in the horizontal plane shows that the dose distribution is uniform within the facula, while the vertical profile shows a Gaussian distribution of the dose. The penumbra is less than 0.2 mm in the horizontal profile. Gafchromic EBT film may be a useful and convenient tool for dose measurement and quality control for the high space and density resolution. It is therefore important to gain a thorough understanding about the physical features of SR before this novel technology can be applied to clinical practice. (authors)

  3. X-ray stress measurement by use of synchrotron radiation source

    International Nuclear Information System (INIS)

    Yoshioka, Yasuo; Matsui, Hisaaki; Moro-oka, Toshimasa; Hasegawa, Ken-ichi; Nakajima, Tetsuo.

    1986-01-01

    In the field of X-ray stress measurement of polycrystalline materials, a diffraction plane at higher Bragg angle has to be selected in order to obtain the precise value of stress. However, the stress measurement on an optional (hkl) plane desired is not always possible because the X-ray beam exited from a metal target has a dispersive wave length. Recently, we have been able to use the synchrotron radiation source (SR) as an excellent X-ray source. In Japan, the facility of synchrotron radiation (Photon Factory, PF) was constructed in the National Laboratory for High Energy Physics (KEK) at Tsukuba academic city. The use of this SR enables the stress measurements on many (hkl) planes with high accuracy in the higher Bragg angle region by providing an X-ray beam having an optional wave length. We have started the X-ray stress analysis by use of the synchrotron radiation source. This paper reports the system of measurement and some results of preliminaly experiments. Since a monochromatic X-ray beam is required for the stress measurement, we used a beam line which consists of a double crystal monochrometer and a focusing mirror. X-rays between 4 KeV (λ = 0.31 nm) and 10 KeV (λ = 0.12 nm) are available with this optical system. We adopted a constant Bragg angle of 2θ = 154 deg for all the diffraction planes. A PSPC having a carbon fiber anode is made and used as a detector with the use of a fast digital signal processor. We could observe the diffraction profiles from (200), (211), (220), (310) and (321) crystal plane of alpha iron, respectively, and the residual stresses in these planes except the (200) plane were measured with high accuracy in a short time. Such feature especially suits the stress analysis of the material which has preferred orientation or stress gradient. (author)

  4. Design and project status of the National Synchrotron Light Source; storage rings (2.5 GeV, 0.7 GeV) for the generation of bright synchrotron radiation sources

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1980-01-01

    Two high intensity storage rings are being constructed at Brookhaven National Laboratory for the generation of intense fluxes of synchrotron radiation in the vuv wavelength region (700 MeV ring, lambda/sub c/ = 31.5 A) and in the x-ray wavelength region (2.5 GeV ring, lambda/sub c/ = 2.5 A). A description is given of the facility, the main features of the storage rings are presented and the basic parameters are enumerated. High field superconducting wigglers, to lower the short wavelength cutoff in the x-ray ring, and undulators, for flux enhancement or a free electron laser experiment will be incorporated and parameters are given here. Special design aspects to optimize the electron storage rings as dedicated synchrotron radiation sources will be emphasized and the status of the project will be given

  5. Experimental investigations of synchrotron radiation at the onset of the quantum regime

    DEFF Research Database (Denmark)

    Andersen, Kristoffer; Knudsen, Helge; Uggerhøj, Ulrik Ingerslev

    2012-01-01

    The classical description of synchrotron radiation fails at large Lorentz factors, $\\gamma$, for relativistic electrons crossing strong transverse magnetic fields $B$. In the rest frame of the electron this field is comparable to the so-called critical field $B_0 = 4.414\\cdot10^9$ T. For $\\chi = ......-field quantum electrodynamics, the experimental results are also relevant for the design of future linear colliders where beamstrahlung - a closely related process - may limit the achievable luminosity....... = \\gamma B/B_0 \\simeq 1$ quantum corrections are essential for the description of synchrotron radiation to conserve energy. With electrons of energies 10-150 GeV penetrating a germanium single crystal along the $\\langle110\\rangle$ axis, we have experimentally investigated the transition from the regime...... where classical synchrotron radiation is an adequate description, to the regime where the emission drastically changes character; not only in magnitude, but also in spectral shape. The spectrum can only be described by quantum synchrotron radiation formulas. Apart from being a test of strong...

  6. Experimental investigations of synchrotron radiation at the onset of the quantum regime

    DEFF Research Database (Denmark)

    Andersen, Kristoffer; Uggerhøj, Ulrik Ingerslev

    The classical description of synchrotron radiation fails at large Lorentz factors for relativistic electrons crossing strong transverse magnetic fields. In the rest frame of the electron this field is comparable to the so-called critical field of 4.414*109 T. When the Lorentz factor times the mag......-field quantum electrodynamics, the experimental results are also relevant for the design of future linear colliders where beamstrahlung - a closely related process - may limit the achievable luminosity....... the magnetic field is comparable to the critical field, quantum corrections are essential for the description of synchrotron radiation to conserve energy. With electrons of energies 10-150 GeV penetrating a germanium single crystal along the axis, we have experimentally investigated the transition from...... the regime where classical synchrotron radiation is an adequate description, to the regime where the emission drastically changes character; not only in magnitude, but also in spectral shape. The spectrum can only be described by quantum synchrotron radiation formulas. Apart from being a test of strong...

  7. Beam simulation of synchrotron radiation equipment. New method responsive to three dimensional magnetic field

    International Nuclear Information System (INIS)

    Tanaka, Hirofumi

    1999-01-01

    A new numerical analysis method capable of precise modeling of complex three dimensional magnetic field of superconducting wiggler and of long-term beam simulation without destroying property of Hamiltonian dynamics system was developed by using the above-mentioned method. Therefore, a fundamental design of a compact synchrotron radiation equipment with hexagonal column shape was also developed. Its main parameters had 1 GeV in energy, 36 m in circumference, 300 mA in stored current, and 184 nmrad in emittance. So as to enable to research the x-ray and vacuum UV regions, a superconducting wiggler with 7T in magnetic field strength and an undulator were set at straight section. It depends upon if beam around stable region on exciting the superconducting wiggler is wider than the required region whether this type of synchrotron radiation equipment can be realized or not. By using three orbit analysis methods containing the developed one, the circulating stable region was introduced. As a result, although shape of the stable region was different from used methods, it was found that considerably larger stable region was obtained than the required in circulation results of every three methods. That is to say, it was shown that the designed compact equipment can accumulate electron beams stably. (G.K.)

  8. HSC5: synchrotron radiation and neutrons for cultural heritage studies

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Anne [Institut Neel - CNRS, 38 - Grenoble (France); Artioli, G. [Padova Univ. (Italy); Bleuet, P.; Cotte, M.; Tafforeau, P.; Susini, J. [European Synchrotron Radiation Facility, 38 - Grenoble (France); Dumas, P.; Somogyl, A. [SOLEIL Synchrotron, 91 - Gif sur Yvette (France); Cotte, M. [Centre de Recherche et de Restauration des Musees de France, UMR171, 75 - Paris (France)]|[European Synchrotron Radiation Facility, 38 - Grenoble (France); Kockelmann, W. [Science and Technology Facilities Council, Rutherford Appleton Lab. (United Kingdom); Kolar, J. [Ljubljana Univ., Morana RTD, Slovenia, Faculty of Chemistry and Chemical Technology (Slovenia); Areon, I. [Nova Gorica Univ. (Slovenia); Meden, A.; Strlie, M. [Ljubljana Univ., Faculty of Chemistry and Chemical Technology (Slovenia); Pantos, M. [Daresbury Laboratory, Warrington (United Kingdom); Vendrell, M. [Barcelona Univ., dept. of Crystallography and Mineralogy (Spain); Wess, T. [Cardiff Univ., School of Optometry and Institute of Vision (Ireland); Gunneweg, J. [Hebrew Univ., Jerusalem (Israel)

    2007-07-01

    Synchrotron and neutron sources offer recent and additional insight into the records of our cultural past. Over the last years, there has been an increasing demand for access to synchrotron radiation- and neutron-based techniques, and their applications in the fields of archaeological science and cultural heritage. The purpose of this Hercules Specialized Course is to give the participants an introduction to the basic principles of synchrotron radiation and neutron techniques (imaging, microscopy, diffraction, absorption and fluorescence, IR spectroscopy). The school provides cross-disciplinary examples illustrating the abilities of these techniques in a representative range of scientific cases concerning painting, archaeological artefacts, inks, pigments, fossils and the Dead Sea scrolls. This document gathers only the resumes of the lectures.

  9. HSC5: synchrotron radiation and neutrons for cultural heritage studies

    International Nuclear Information System (INIS)

    Michel, Anne; Artioli, G.; Bleuet, P.; Cotte, M.; Tafforeau, P.; Susini, J.; Dumas, P.; Somogyl, A.; Cotte, M.; Kockelmann, W.; Kolar, J.; Areon, I.; Meden, A.; Strlie, M.; Pantos, M.; Vendrell, M.; Wess, T.; Gunneweg, J.

    2007-01-01

    Synchrotron and neutron sources offer recent and additional insight into the records of our cultural past. Over the last years, there has been an increasing demand for access to synchrotron radiation- and neutron-based techniques, and their applications in the fields of archaeological science and cultural heritage. The purpose of this Hercules Specialized Course is to give the participants an introduction to the basic principles of synchrotron radiation and neutron techniques (imaging, microscopy, diffraction, absorption and fluorescence, IR spectroscopy). The school provides cross-disciplinary examples illustrating the abilities of these techniques in a representative range of scientific cases concerning painting, archaeological artefacts, inks, pigments, fossils and the Dead Sea scrolls. This document gathers only the resumes of the lectures

  10. UV-B Radiation Contributes to Amphibian Population Declines

    Science.gov (United States)

    Blaustein, Andrew

    2007-05-01

    UV-B (280-315 nm) radiation is the most significant biologically damaging radiation at the terrestrial surface. At the organismal level, UV-B radiation can slow growth rates, cause immune dysfunction and result in sublethal damage. UV-B radiation can lead to mutations and cell death. Over evolutionary time, UV radiation has been an important stressor on living organisms. Natural events, including impacts from comets and asteroids, volcanic activity, supernova explosions and solar flares, can cause large-scale ozone depletion with accompanying increases in UV radiation. However, these natural events are transient. Moreover, the amount of ozone damage due to natural events depends upon a number of variables, including the magnitude of the event. This is different from modern-day human-induced production of chlorofluorocarbons (CFCs) and other chemicals that deplete stratospheric ozone continuously, resulting in long-term increases in UV-B radiation at the surface of the earth. We will briefly review the effects of UV-B exposure in one group of aquatic organisms_amphibians. UV-B has been implicated as a possible factor contributing to global declines and range reductions in amphibian populations.

  11. A multiple CCD X-ray detector and its first operation with synchrotron radiation X-ray beam

    CERN Document Server

    Suzuki, M; Kumasaka, T; Sato, K; Toyokawa, H; Aries, I F; Jerram, P A; Ueki, T

    1999-01-01

    A 4x4 array structure of 16 identical CCD X-ray detector modules, called the multiple CCD X-ray detector system (MCCDX), was submitted to its first synchrotron radiation experiment at the protein crystallography station of the RIKEN beamline (BL45XU) at the SPring-8 facility. An X-ray diffraction pattern of cholesterol powder was specifically taken in order to investigate the overall system performance.

  12. Automation and Remote Synchrotron Data Collection

    International Nuclear Information System (INIS)

    Gilski, M.

    2008-01-01

    X-ray crystallography is the natural choice for macromolecular structure determination by virtue of its accuracy, speed, and potential for further speed gains, while synchrotron radiation is indispensable because of its intensity and tuneability. Good X-ray crystallographic diffraction patterns are essential and frequently this is achievable through using the few large synchrotrons located worldwide. Beamline time on these facilities have long queues, and increasing the efficiency of utilization of these facilities will help in expediting the structure determination process. Automation and remote data collection are therefore essential steps in ensuring that macromolecular structure determination becomes a very high throughput process. (author)

  13. Synchrotron radiation structure analyses of the light-induced radical pair of a hexaarylbiimidazolyl derivative. Origin of the spin-multiplicity change

    CERN Document Server

    Kawano, M; Matsubara, K; Imabayashi, H; Mitsumi, M; Toriumi, K; Ohashi, Y

    2002-01-01

    In situ synchrotron radiation structure analyses of a light-induced radical pair from o-Cl-HABI were performed by using an X-ray vacuum camera at 23-70K at the BL02B1 station of SPring-8. The combined results of X-ray analysis with theoretical calculation, IR, and UV-vis spectroscopy reveal that a slight conformational change of the radical pair causes the drastic spin-multiplicity change during 2-140K. (author)

  14. Nuclear Bragg diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Rueffer, R.; Gerdau, E.; Grote, M.; Hollatz, R.; Roehlsberger, R.; Rueter, H.D.; Sturhahn, W.

    1990-01-01

    Nuclear Bragg diffraction with synchrotron radiation as source will become a powerful new X-ray source in the A-region. This source exceeds by now the brilliance of conventional Moessbauer sources giving hyperfine spectroscopy further momentum. As examples applications to yttrium iron garnet (YIG) and iron borate will be discussed. (author)

  15. Time Resolved Detection of Infrared Synchrotron Radiation at DAΦNE

    International Nuclear Information System (INIS)

    Bocci, A.; Marcelli, A.; Drago, A.; Guidi, M. Cestelli; Pace, E.; Piccinini, M.; Sali, D.; Morini, P.; Piotrowski, J.

    2007-01-01

    Synchrotron radiation is characterized by a very wide spectral emission from IR to X-ray wavelengths and a pulsed structure that is a function of the source time structure. In a storage ring, the typical temporal distance between two bunches, whose duration is a few hundreds of picoseconds, is on the nanosecond scale. Therefore, synchrotron radiation sources are a very powerful tools to perform time-resolved experiments that however need extremely fast detectors. Uncooled IR devices optimized for the mid-IR range with sub-nanosecond response time, are now available and can be used for fast detection of intense IR sources such as synchrotron radiation storage rings. We present here different measurements of the pulsed synchrotron radiation emission at DAΦNE (Double Annular Φ-factory for Nice Experiments), the collider of the Laboratori Nazionali of Frascati (LNF) of the Istituto Nazionale di Fisica Nucleare (INFN), performed with very fast uncooled infrared detectors with a time resolution of a few hundreds of picoseconds. We resolved the emission time structure of the electron bunches of the DAΦNE collider when it works in a normal condition for high energy physics experiments with both photovoltaic and photoconductive detectors. Such a technology should pave the way to new diagnostic methods in storage rings, monitoring also source instabilities and bunch dynamics

  16. VRK1 phosphorylates and protects NBS1 from ubiquitination and proteasomal degradation in response to DNA damage.

    Science.gov (United States)

    Monsalve, Diana M; Campillo-Marcos, Ignacio; Salzano, Marcella; Sanz-García, Marta; Cantarero, Lara; Lazo, Pedro A

    2016-04-01

    NBS1 is an early component in DNA-Damage Response (DDR) that participates in the initiation of the responses aiming to repair double-strand breaks caused by different mechanisms. Early steps in DDR have to react to local alterations in chromatin that are induced by DNA damage. NBS1 participates in the early detection of DNA damage and functions as a platform for the recruitment and assembly of components that are sequentially required for the repair process. In this work we have studied whether the VRK1 chromatin kinase can affect the activation of NBS1 in response to DNA damage induced by ionizing radiation. VRK1 is forming a basal preassembled complex with NBS1 in non-damaged cells. Knockdown of VRK1 resulted in the loss of NBS1 foci induced by ionizing radiation, an effect that was also detected in cell-cycle arrested cells and in ATM (-/-) cells. The phosphorylation of NBS1 in Ser343 by VRK1 is induced by either doxorubicin or IR in ATM (-/-) cells. Phosphorylated NBS1 is also complexed with VRK1. NBS1 phosphorylation by VRK1 cooperates with ATM. This phosphorylation of NBS1 by VRK1 contributes to the stability of NBS1 in ATM (-/-) cells, and the consequence of its loss can be prevented by treatment with the MG132 proteasome inhibitor of RNF8. We conclude that VRK1 regulation of NBS1 contributes to the stability of the repair complex and permits the sequential steps in DDR. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. A novel facility for ageing materials with narrow-band ultraviolet radiation exposure

    International Nuclear Information System (INIS)

    Kaerhae, Petri; Ruokolainen, Kimmo; Heikkilae, Anu; Kaunismaa, Merja

    2011-01-01

    A facility for exploring wavelength dependencies in ultraviolet (UV) radiation induced degradation in materials has been designed and constructed. The device is essentially a spectrograph separating light from a lamp to spectrally resolved UV radiation. It is based on a 1 kW xenon lamp and a flat-field concave holographic grating 10 cm in diameter. Radiation at the wavelength range 250-500 nm is dispersed onto the sample plane of 1.5 cm in height and 21 cm in width. The optical performance of the device has been characterized by radiometric measurements. Using the facility, test samples prepared of regular newspaper have been irradiated from 1 to 8 h. Color changes on the different locations of the aged samples have been quantified by color measurements. Yellowness indices computed from the color measurements demonstrate the capability of the facility in revealing wavelength dependencies of the material property changes in reasonable time frames.

  18. Advanced development of catalysts by using the high-brilliance synchrotron radiation in SPring-8

    International Nuclear Information System (INIS)

    2006-10-01

    The advanced development of catalysts by using the high-brilliance synchrotron radiation in SPring-8 is described: (1) the industrial use of SPring-8, (2) the analytical methods of catalyst using SPring-8 (XAFS, powder X-ray diffraction, thin film X-ray scattering, X-ray imaging, infrared analysis, X-ray fluorescence analysis, and photoelectron spectroscopy etc.), (3) the history of synchrotron radiation and catalyst investigations, (4) the new advanced measuring methods of catalyst using synchrotron radiation (various X-ray spectroscopic methods, and application of XAFS to highly-disperse systems of catalyst), and (5) the new advanced development of catalysts using synchrotron radiation and its applications (motor-car catalysts, light catalysts, fuel cells, nanotechnology, and trace amounts of catalyst in wastes). (M.H.)

  19. MQRAD, a computer code for synchrotron radiation from quadrupole magnets

    International Nuclear Information System (INIS)

    Morimoto, Teruhisa.

    1984-01-01

    The computer code, MQRAD, is developed for the calculation of the synchrotron radiation from the particles passing through quadrupole magnets at the straight section of the electron-positron colliding machine. This code computes the distributions of photon numbers and photon energies at any given points on the beam orbit. In this code, elements such as the quadrupole magnets and the drift spaces can be divided into many sub-elements in order to obtain the results with good accuracy. The synchrotron radiation produced by inserted quadrupole magnets at the interaction region of the electron-positron collider is one of the main background sources to the detector. The masking system against the synchrotron radiation at TRISTAN is very important because of the relatively high beam energy and the long straight section, which are 30 GeV and 100 meters, respectively. MQRAD has been used to design the masking system of the TOPAZ detector and the result is presented here as an example. (author)

  20. Investigation of the topological shape of bovine serum albumin in solution by small-angle x-ray scattering at Beijing synchrotron radiation facility

    International Nuclear Information System (INIS)

    Dong Shuqiang; Chen Ximeng; Li Liqin; Liu Peng; Dong Yuhui

    2008-01-01

    This paper reports that at a newly constructed small-angle x-ray scattering station of Beijing Synchrotron Radiation Facility, the topological shape of ligand-free bovine serum albumin in solution has been investigated. An appropriate scattering curve is obtained and the calculated value of the gyration radius is 31.2ű0.25A (1Å=0.1 nm) which is coincident with other ones' results. It finds that the low-resolution structure models obtained by making use of ab initio reconstruction methods are fitting the crystal structure of human serum albumin very well. All of these results perform the potential of the beamline to apply to structural biology studies. The characteristics, the defects, and the improving measures of the station in future are also discussed. (condensed matter: structure, thermal and mechanical properties)

  1. The Advanced Light Source: A new 1.5 GeV synchrotron radiation facility at the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schlachter, F.

    1990-01-01

    The Advanced Light Source (ALS), presently under construction at the Lawrence Berkeley Laboratory, will be the world's brightest synchrotron-radiation source of ultraviolet and soft x-ray photons when it opens its doors to users in April 1993. The ALS is a third-generation source that is based on a low-emittance electron storage ring, optimized for operation at 1.5 GeV, with long straight sections for insertion devices. Its naturally short pulses are ideal for time-resolved measurements. Undulators will produce high-brightness beams from below 10 eV to above 2 keV; wigglers will produce high fluxes of harder x-rays to energies above 10 keV. The ALS will support an extensive research program in a broad spectrum of scientific and technological areas. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. Undulator radiation can excite the K shell of elements up to silicon and the L shell of elements up to krypton, and wiggler radiation can excite the L shell of nearly every element. The ALS will operate as a national user facility; interested scientists are encouraged to contact the ALS Scientific Program Coordinator to explore their scientific and technological research interests

  2. The effect of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic UV-B radiation in leaves of Brassica napus

    International Nuclear Information System (INIS)

    Cen, Y.-P.; Bornman, J.F.

    1993-01-01

    Using quartz optical fibres, penetration of both monochromatic (310 nm) and polychromatic UV-B (280–320 nm) radiation in leaves of Brassica napus L. (cv. Ceres) was measured. Plants were grown under either visible light (750 μmol m −2 s −1 photosynthetically active radiation) or with the addition of 8. 9 KJ m −2 day −1 biologically effective UV-B (UV-B BE ) radiation. Results showed that of the 310 nm radiation that penetreated the leaf, 90% was within the intial one third of the leaf with high attenuation in the leaf epidermis, especially in UV-treated plants. Polychromatic UV-B radiation, relative to incident radiation, showed a relatively uniform spectral distribution within the leaf, except for collimated radiation. Over 30% of the UV-screening pigments in the leaf, including flavonoids, were found in the adaxial epidermal layer, making this layer less transparent to UV-B radiation than the abaxial epidermis, which contained less than 12% of the UV-screening pigments. UV-screening pigments increased by 20% in UV-treated leaves relative to control leaves. Densely arranged epicuticular wax on the adaxial leaf surface of UV-treated plants may have further decreased penetration of UV-B radiation by reflectance. An increased leaf thickness, and decreases in leaf area and leaf dry weight were also found for UV-treated plants. (author)

  3. Surface modification of fluorocarbon polymers by synchrotron radiation

    CERN Document Server

    Kanda, K; Matsui, S; Ideta, T; Ishigaki, H

    2003-01-01

    The surface modification of a poly (tetrafluoroethylene) sheet was carried out by synchrotron radiation in the soft X-ray region. The poly (tetrafluoroethylene) substrate was exposed to synchrotron radiation while varying the substrate temperature from room temperature to 200degC. The contact angle of the modified surfaces with a water drop decreased from 96deg to 72deg by the irradiation at room temperature, while the contact angle increased to 143deg by the irradiation at the substrate temperature of 200degC. Scanning electron microscopy suggested that this repellence was ascribable to the microstructure of the poly (tetrafluoroethylene) surface. We succeeded in controlling the wettability of the poly (tetrafluoroethylene) surface from hydrophobic to hydrophilic by irradiation of the soft X-ray light. (author)

  4. Compact synchrotron radiation source

    International Nuclear Information System (INIS)

    Liu, N.; Wang, T.; Tian, J.; Lin, Y.; Chen, S.; He, W.; Hu, Y.; Li, Q.

    1985-01-01

    A compact 800 MeV synchrotron radiation source is discussed. The storage ring has a circumference of 30.3 m, two 90 degree and four 45 degree bending magnet sections, two long straight sections and four short straight sections. The radius of the bending magnet is 2.224m. The critical wave length is 24A. The injector is a 15 Mev Microtron Electrons are accelerated from 15 Mev to 800 Mev by ramping the field of the ring. The expected stored current will be around 100 ma

  5. High precision mirror alignment mechanism for use in synchrotron radiation beamlines

    International Nuclear Information System (INIS)

    Verma, Adu; Srivastava, P.K.; Das, Suraj; Nookaraju, Mogali

    2009-01-01

    The performance of a synchrotron radiation beamline is highly depends on parameters, crucially on the manufacturing accuracies of the optical elements and very good alignment of optical elements in the beam path. To develop a synchrotron beamline the misalignment effects have to be estimated and the mechanical components that hold optical elements have to be designed and developed within the specified tolerance limits. The translational inaccuracies result in shifting the image spot, which affect the flux throughput. The misorientation errors i.e. the rotation of optical elements about their mean position affects the image quality. The horizontal misorientation i.e. the rotation of an optical element about an axis passing through its centre and perpendicular to the plane containing the mirror has the most sever effect on the spectral resolution of the beamline, because of an increase in the dispersive spot size at the image plane. The design development and testing of a high precision mirror alignment mechanism is reported in this abstract. Though this mirror alignment mechanism is developed for the X-ray diffraction beamline on synchrotron radiation source Indus-2, 2.5 GeV, 300 mA, the design is general purpose and can be adapted for any other synchrotron facility or a similar ultra high vacuum environment. The mirror alignment mechanism is based on a constrained kinematic chain which provides the angular motions about three co-ordinate axes in the range of 0 to ±1° with the backlash free resolution of 1 arc second. The linear motions in three orthogonal directions are performed by other kinematic mounts in the range of 0 to ± 10 mm with a fine adjustment of 10 μm. The motions are transferred from air to ultra high vacuum through bellows. The ultra high vacuum chamber has been designed, fabricated and tested as per the ASME code. The rotational motions of the mirror alignment mechanism has been tested using a laser interferometer. (author)

  6. Handbook on synchrotron radiation, v.2

    CERN Document Server

    1987-01-01

    Volume 2 of this series concentrates on the use of synchrotron radiation which covers that region of the electromagnetic spectrum which extends from about 10eV to 3keV in photon energy and is essentially the region where the radiation is strongly absorbed by atmospheric gases. It therefore has to make extensive use of a high vacuum to transport the radiation to the workstation where the presence of hard X-rays can cause extensive damage to both the optics and the targets used in the experimental rigs. The topics chosen for this volume have been limited to the disciplines of physics and chemi

  7. Extreme UV harmonic production by free-electron generators of coherent radiation

    International Nuclear Information System (INIS)

    Ortega, J.M.

    1986-01-01

    The bunching phenomenon is the basic process occurring in a free-electron generator of coherent generation such as the Klystron in the mm-wave-length range or the free-electron laser (FEL) in the optical region. During interaction with the incident electromagnetic wave the electrons are progressively gathered into small packets separated by a length equal to its wavelength λ/sub L/. Once the electrons are bunched there is a given phase relationship between them and the field of any wave which wavelength is an harmonic of λ/sub L/. This is the source of the gain (electrons decelerated by the field) or of the absorption (electrons accelerated by the laser) mechanisms. In the FEL case the electrons are passing through an undulator (spatially varying periodic magnetic field). Since one uses high-energy electrons (E≅100-1000 MeV) they emit synchrotron radiation called in this case undulator radiation or spontaneous emission. This radiation coexists with the stimulated emission giving rise to the gain mechanism and to the FEL oscillation. When the electrons are bunched the spontaneous emission becomes coherent at the wavelength harmonic of λ/sub L/, and there is an increase in the emission intensity which ideally would be N/sub e/. (Number of electrons is typically ≅10/sup 10/.) Thus bursts of photons are emitted at frequencies harmonic of an incident wave which may be an external laser or the FEL itself. This is likely to extend the spectral range of the free-electron generation of coherent radiation toward the extreme UV λ<1000A). The advantages and limitations of the various solutions (linear or circular accelerator, FEL, or external laser) are discussed. The authors summarize the various experimental results obtained to date and the prospects for the synchrotron radiation dedicated ring super-ACO presently under construction at LURE at Orsay

  8. Insertion devices and beamlines for the proposed Australian synchrotron light source

    International Nuclear Information System (INIS)

    Garrett, R.F.; Boldeman, J.W.

    1999-01-01

    Full text: The proposed Australian synchrotron light source, Boomerang, is a third generation 3 GeV storage ring which is designed to provide for the great majority of Australian requirements for synchrotron radiation well into the next century. The storage ring could accommodate up to 60 experimental stations, including beamlines from 9 insertion devices, which far exceeds the projected Australian requirements over the life of the facility. Undulator radiation will be available up to 20 keV. The first phase construction of Boomerang includes funding for 9 beamlines, comprising 5 bending magnet and 4 insertion device beamlines. The beamline complement has been chosen to cater for approximately 95% of the current and projected Australian demand for synchrotron radiation over the first 5 years operation of the facility. Details will be shown of the performance of the proposed insertion devices, and the initial beamline complement will be presented

  9. Synchrotrons are also devoted to society

    International Nuclear Information System (INIS)

    Gacoin, M.P.; Cornuejols, D.; Cotte, M.; Deblay, P.; Mitchell, E.P.; McCarthy, J.; Fraissard, F.

    2013-01-01

    The ESRF and the SOLEIL synchrotrons are not only scientific instruments but also active players in the cultural and economic fields. This document gathers 6 short articles. The 2 first present the actions of SOLEIL and ESRS scientific teams towards the spreading of scientific knowledge in the public. The third article is dedicated to the uses of synchrotron radiation to the study of cultural objects to learn more about their fabrication, present state or the remedial actions that could be used to renovate them. The fourth and fifth articles present the contributions of ESRF and SOLEIL to the industrial world, in fact these contributions are not limited to the research field but also appear for quality assurance or the control of aging processes. Partnerships have been signed between both synchrotrons and enterprises to develop industrial products based on instrumentation or on the use of synchrotron radiation. The last article describes the procedure to have access to both facilities. (A.C.)

  10. Extending the possibilities in phase space analysis of synchrotron radiation x-ray optics.

    Science.gov (United States)

    Ferrero, Claudio; Smilgies, Detlef-Matthias; Riekel, Christian; Gatta, Gilles; Daly, Peter

    2008-08-01

    A simple analytical approach to phase space analysis of the performance of x-ray optical setups (beamlines) combining several elements in position-angle-wavelength space is presented. The mathematical description of a large class of optical elements commonly used on synchrotron beamlines has been reviewed and extended with respect to the existing literature and is reported in a revised form. Novel features are introduced, in particular, the possibility to account for imperfections on mirror surfaces and to incorporate nanofocusing devices like refractive lenses in advanced beamline setups using the same analytical framework. Phase space analysis results of the simulation of an undulator beamline with focusing optics at the European Synchrotron Radiation Facility compare favorably with results obtained by geometric ray-tracing methods and, more importantly, with experimental measurements. This approach has been implemented into a simple and easy-to-use program toolkit for optical calculations based on the Mathematica software package.

  11. Study on DNA damages induced by UV radiation

    International Nuclear Information System (INIS)

    Doan Hong Van; Dinh Ba Tuan; Tran Tuan Anh; Nguyen Thuy Ngan; Ta Bich Thuan; Vo Thi Thuong Lan; Tran Minh Quynh; Nguyen Thi Thom

    2015-01-01

    DNA damages in Escherichia coli (E. coli) exposed to UV radiation have been investigated. After 30 min of exposure to UV radiation of 5 mJ/cm"2, the growth of E. coli in LB broth medium was about only 10% in compared with non-irradiated one. This results suggested that the UV radiation caused the damages for E. coli genome resulted in reduction in its growth and survival, and those lesions can be somewhat recovered. For both solutions of plasmid DNAs and E. coli cells containing plasmid DNA, this dose also caused the breakage on single and double strands of DNA, shifted the morphology of DNA plasmid from supercoiled to circular and linear forms. The formation of pyrimidine dimers upon UV radiation significantly reduced when the DNA was irradiated in the presence of Ganoderma lucidum extract. Thus, studies on UV-induced DNA damage at molecular level are very essential to determine the UV radiation doses corresponding to the DNA damages, especially for creation and selection of useful radiation-induced mutants, as well as elucidation the protective effects of the specific compounds against UV light. (author)

  12. SURF II: Characteristics, facilities, and plans

    International Nuclear Information System (INIS)

    Madden, R.P.; Canfield, R.; Furst, M.; Hamilton, A.; Hughey, L.

    1992-01-01

    This facility report describes the Synchrotron Ultraviolet Radiation Facility (SURF II) operated by the National Institute of Standards and Technology, Gaithersburg, Maryland. SURF II is a 300-MeV electron storage ring which provides well characterized continuum radiation from the far infrared to the soft x-ray region with the critical wavelength at 17.4 nm. Brief descriptions are given of the user facilities, the characteristics of the synchrotron radiation, the main storage ring, the injector system and each of the operating beam lines, and associated instruments. Further description is given of expansion plans for additional beam lines

  13. Sensitivity of transient synchrotron radiation to tokamak plasma parameters

    International Nuclear Information System (INIS)

    Fisch, N.J.; Kritz, A.H.

    1988-12-01

    Synchrotron radiation from a hot plasma can inform on certain plasma parameters. The dependence on plasma parameters is particularly sensitive for the transient radiation response to a brief, deliberate, perturbation of hot plasma electrons. We investigate how such a radiation response can be used to diagnose a variety of plasma parameters in a tokamak. 18 refs., 13 figs

  14. A Model Describing Stable Coherent Synchrotron Radiation in Storage Rings

    International Nuclear Information System (INIS)

    Sannibale, F.

    2004-01-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission

  15. A model describing stable coherent synchrotron radiation in storage rings

    International Nuclear Information System (INIS)

    Sannibale, F.; Byrd, J.M.; Loftsdottir, A.; Venturini, M.; Abo-Bakr, M.; Feikes, J.; Holldack, K.; Kuske, P.; Wuestefeld, G.; Huebers, H.-W.; Warnock, R.

    2004-01-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission

  16. Sun, UV Radiation and Your Eyes

    Science.gov (United States)

    ... Sunglasses Sun Smart UV Safety Infographic The Sun, UV Radiation and Your Eyes Leer en Español: El ... Aug. 28, 2014 Keep an Eye on Ultraviolet (UV) Safety Eye medical doctors (ophthalmologists) caution us that ...

  17. MICROANALYSIS OF MATERIALS USING SYNCHROTRON RADIATION.

    Energy Technology Data Exchange (ETDEWEB)

    JONES,K.W.; FENG,H.

    2000-12-01

    High intensity synchrotron radiation produces photons with wavelengths that extend from the infrared to hard x rays with energies of hundreds of keV with uniquely high photon intensities that can be used to determine the composition and properties of materials using a variety of techniques. Most of these techniques represent extensions of earlier work performed with ordinary tube-type x-ray sources. The properties of the synchrotron source such as the continuous range of energy, high degree of photon polarization, pulsed beams, and photon flux many orders of magnitude higher than from x-ray tubes have made possible major advances in the possible chemical applications. We describe here ways that materials analyses can be made using the high intensity beams for measurements with small beam sizes and/or high detection sensitivity. The relevant characteristics of synchrotron x-ray sources are briefly summarized to give an idea of the x-ray parameters to be exploited. The experimental techniques considered include x-ray fluorescence, absorption, and diffraction. Examples of typical experimental apparatus used in these experiments are considered together with descriptions of actual applications.

  18. Characterization of dry globular proteins and protein fibrils by synchrotron radiation vacuum UV circular dichroism

    DEFF Research Database (Denmark)

    Nesgaard, Lise W.; Hoffmann, Søren Vrønning; Andersen, Christian Beyschau

    2008-01-01

    Circular dichroism using synchrotron radiation (SRCD) can extend the spectral range down to approximately 130 nm for dry proteins, potentially providing new structural information. Using a selection of dried model proteins, including alpha-helical, beta-sheet, and mixed-structure proteins, we...... with previously published theoretical calculations related to pi-orbital transitions. We also show that drying does not lead to large changes in the secondary structure and does not induce orientational artifacts. In combination with principal component analysis, our SRCD data allow us to distinguish between two...... different types of protein fibrils, highlighting that bona fide fibrils formed by lysozyme are structurally more similar to the nonclassical fibrillar aggregates formed by the SerADan peptide than with the amyloid formed by alpha-synuclein. Thus, despite the lack of direct structural conclusions...

  19. Applications of Synchrotron Radiation Micro Beams in Cell Micro Biology and Medicine

    CERN Document Server

    Ide-Ektessabi, Ari

    2007-01-01

    This book demonstrates the applications of synchrotron radiation in certain aspects of cell microbiology, specifically non-destructive elemental analyses, chemical-state analyses and imaging (distribution) of the elements within a cell. The basics for understanding and applications of synchrotron radiation are also described to make the contents easier to be understood for a wide group of researchers in medical and biological sciences who might not be familiar with the physics of synchrotron radiation. The two main techniques that are discussed in this book are the x-ray fluorescence spectroscopy (XRF) and the x-ray fine structure analysis (XAFS). Application of these techniques in investigations of several important scientific fields, such as neurodegeneration and other diseases related to cell malfunctioning, are demonstrated in this book.

  20. UV radiation dependent flavonoid accumulation of Cistus laurifolius L

    International Nuclear Information System (INIS)

    Vogt, T.; Gülz, P.-G.; Reznik, H.

    1991-01-01

    Epicuticular and intracellular flavonoids of Cistus laurifolius grown with and without UV radiation in a phytotron as well as under natural garden conditions in the field were studied. The amount of intracellular flavonoid glycosides of leaves receiving UV-A radiation was two fold higher than that measured in the absence o f UV-A radiation, whether grown in the phytotron or in the field. Exposure of previously protected leaves to UV-A radiation increased the intracellular flavonoid glycoside content to that of unprotected leaves. The qualitative composition of intracellular flavonoid glycosides showed a reduced amount of quercetin-3-galactoside to the myricetin monosides when the leaves were grown without UV-A radiation in the field and in the phytotron. Epicuticular flavonoid aglycones were not influenced by UV radiation significantly. (author)

  1. Stanford Synchrotron Radiation Laboratory. Activity report for 1988

    Energy Technology Data Exchange (ETDEWEB)

    Cantwell, K. [ed.

    1996-01-01

    For SSRL operations, 1988 was a year of stark contrasts. The first extended PEP parasitic running since the construction of our two beam lines on that storage ring took place in November and December. Four experiments discussed below, were performed and detailed operational procedures which allowed synchrotron radiation an high energy users to coexist were established. SSRL anticipates that there will be significant amounts of beam time when PEP is run again for high energy physics. On the other hand, activity on SPEAR consisted of brief parasitic running on the VUV lines in December when the ring was operated at 1.85 GeV for colliding beam experiments. There was no dedicated SPEAR running throughout the entire calendar year. This is the first time since dedicated SPEAR operation was initiated in 1980 that there was no such running. The decision was motivated by both cost and performance factors, as discussed in Section 1 of this report. Fortunately, SLAC and SSRL have reached an agreement on SPEAR and PEP dedicated time charges which eliminates the cost volatility which was so important in the cancellation of the June-July dedicated SPEAR run. As discussed in Section 2, the 3 GeV SPEAR injector construction is proceeding on budget and on schedule. The injector will overcome the difficulties associated with the SLC-era constraint of only two injections per day. SSR and SLAC have also embarked on a program to upgrade SPEAR to achieve high reliability and performance. As a consequence, SSRL`s users may anticipate a highly effective SPEAR by 1991, at the latest. At that time, SPEAR is expected to be fully dedicated to synchrotron radiation research and operated by SSRL. Also contained in this report is a discussion of the improvements to SSRL`s experimental facilities and highlights of the experiments of the past year.

  2. Stanford Synchrotron Radiation Laboratory. Activity report for 1988

    International Nuclear Information System (INIS)

    Cantwell, K.

    1996-01-01

    For SSRL operations, 1988 was a year of stark contrasts. The first extended PEP parasitic running since the construction of our two beam lines on that storage ring took place in November and December. Four experiments discussed below, were performed and detailed operational procedures which allowed synchrotron radiation an high energy users to coexist were established. SSRL anticipates that there will be significant amounts of beam time when PEP is run again for high energy physics. On the other hand, activity on SPEAR consisted of brief parasitic running on the VUV lines in December when the ring was operated at 1.85 GeV for colliding beam experiments. There was no dedicated SPEAR running throughout the entire calendar year. This is the first time since dedicated SPEAR operation was initiated in 1980 that there was no such running. The decision was motivated by both cost and performance factors, as discussed in Section 1 of this report. Fortunately, SLAC and SSRL have reached an agreement on SPEAR and PEP dedicated time charges which eliminates the cost volatility which was so important in the cancellation of the June-July dedicated SPEAR run. As discussed in Section 2, the 3 GeV SPEAR injector construction is proceeding on budget and on schedule. The injector will overcome the difficulties associated with the SLC-era constraint of only two injections per day. SSR and SLAC have also embarked on a program to upgrade SPEAR to achieve high reliability and performance. As a consequence, SSRL's users may anticipate a highly effective SPEAR by 1991, at the latest. At that time, SPEAR is expected to be fully dedicated to synchrotron radiation research and operated by SSRL. Also contained in this report is a discussion of the improvements to SSRL's experimental facilities and highlights of the experiments of the past year

  3. Lung cancer and angiogenesis imaging using synchrotron radiation

    International Nuclear Information System (INIS)

    Liu Xiaoxia; Zhao Jun; Xu, Lisa X; Sun Jianqi; Gu Xiang; Liu Ping; Xiao Tiqiao

    2010-01-01

    Early detection of lung cancer is the key to a cure, but a difficult task using conventional x-ray imaging. In the present study, synchrotron radiation in-line phase-contrast imaging was used to study lung cancer. Lewis lung cancer and 4T1 breast tumor metastasis in the lung were imaged, and the differences were clearly shown in comparison to normal lung tissue. The effect of the object-detector distance and the energy level on the phase-contrast difference was investigated and found to be in good agreement with the theory of in-line phase-contrast imaging. Moreover, 3D image reconstruction of lung tumor angiogenesis was obtained for the first time using a contrast agent, demonstrating the feasibility of micro-angiography with synchrotron radiation for imaging tumor angiogenesis deep inside the body.

  4. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    International Nuclear Information System (INIS)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis

  5. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  6. Berkeley Lab's ALS generates femtosecond synchrotron radiation

    CERN Document Server

    Robinson, A L

    2000-01-01

    A team at Berkeley's Advanced Light Source has shown how a laser time-slicing technique provides a path to experiments with ultrafast time resolution. A Lawrence Berkeley National Laboratory team has succeeded in generating 300 fs pulses of synchrotron radiation at the ALS synchrotron radiation machine. The team's members come from the Materials Sciences Division (MSD), the Center for Beam Physics in the Accelerator and Fusion Research Division and the Advanced Light Source (ALS). Although this proof-of principle experiment made use of visible light on a borrowed beamline, the laser "time-slicing" technique at the heart of the demonstration will soon be applied in a new bend magnet beamline that was designed specially for the production of femtosecond pulses of X-rays to study long-range and local order in condensed matter with ultrafast time resolution. An undulator beamline based on the same technique has been proposed that will dramatically increase the flux and brightness. The use of X-rays to study the c...

  7. Threedimensional microfabrication using synchrotron radiation

    International Nuclear Information System (INIS)

    Ehrfeld, W.

    1990-01-01

    For fabricating microstructures with extreme structural heights a technology has been developed which is based on deep-etch lithography and subsequent replication processes. A particularly high precision is achieved if the lithographic process is carried out by means of synchrotron radiation. Electroforming and molding processes are used for the replication of microstructures from a large variety of materials. The field of application comprises sensors, electrical and optical microconnectors, components for fluid technology, microfiltration systems and novel composite materials. (author)

  8. The effectiveness of UV-C radiation for facility-wide environmental disinfection to reduce health care-acquired infections.

    Science.gov (United States)

    Napolitano, Nathanael A; Mahapatra, Tanmay; Tang, Weiming

    2015-12-01

    Health care-acquired infections (HAIs) constitute an increasing threat for patients worldwide. Potential contributors of HAIs include environmental surfaces in health care settings, where ultraviolet-C radiation (UV-C) is commonly used for disinfection. This UV-C intervention-based pilot study was conducted in a hospital setting to identify any change in the incidence of HAIs before and after UV-C intervention, and to determine the effectiveness of UV-C in reducing pathogens. In a hospital in Culver City, CA, during 2012-2013, bactericidal doses of UV-C radiation (254 nm) were delivered through a UV-C-based mobile environmental decontamination unit. The UV-C dosing technology and expertise of the specifically trained personnel were provided together as a dedicated service model by a contracted company. The incidence of HAIs before and after the intervention period were determined and compared. The dedicated service model dramatically reduced HAIs (incidence difference, 1.3/1000 patient-days, a 34.2% reduction). Reductions in the total number and incidence proportions (28.8%) of HAIs were observed after increasing and maintaining the coverage of UV-C treatments. The dedicated service model was found to be effective in decreasing the incidence of HAIs, which could reduce disease morbidity and mortality in hospitalized patients. This model provides a continuously monitored and frequently UV-C-treated patient environment. This approach to UV-C disinfection was associated with a decreased incidence of HAIs. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  9. Dependence of effective spectrum width of synchrotron radiation on particle energy

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Institute of High Current Electronics, Tomsk (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); P.N. Lebedev Physical Institute, Moscow (Russian Federation); Levin, A.D. [University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Loginov, A.S.; Saprykin, A.D. [Tomsk State University, Department of Physics, Tomsk (Russian Federation)

    2017-05-15

    In the classical theory of synchrotron radiation, for the exact quantitative characterization of spectral properties, the concept of effective spectral width is introduced. In the first part of our work, published in EJPC 75 (2015), the effective spectral width as a function of the energy E of the radiating particle was obtained only in the ultra-relativistic approximation. In this article, which can be considered as a natural continuation of this work, a complete investigation is presented of the dependence of the effective width of the synchrotron radiation spectrum on energy for any values of E and for all the polarization components of the radiation. Numerical calculations were carried out for an effective width not exceeding 100 harmonics. (orig.)

  10. Radiative models for the evaluation of the UV radiation at the ground

    International Nuclear Information System (INIS)

    Koepke, P.

    2009-01-01

    The variety of radiative models for solar UV radiation is discussed. For the evaluation of measured UV radiation at the ground the basic problem is the availability of actual values of the atmospheric parameters that influence the UV radiation. The largest uncertainties are due to clouds and aerosol, which are highly variable. In the case of tilted receivers, like the human skin for most orientations, and for conditions like a street canyon or tree shadow, besides the classical radiative transfer in the atmosphere additional modelling is necessary. (authors)

  11. Specific chemical and structural damage to proteins produced by synchrotron radiation.

    Science.gov (United States)

    Weik, M; Ravelli, R B; Kryger, G; McSweeney, S; Raves, M L; Harel, M; Gros, P; Silman, I; Kroon, J; Sussman, J L

    2000-01-18

    Radiation damage is an inherent problem in x-ray crystallography. It usually is presumed to be nonspecific and manifested as a gradual decay in the overall quality of data obtained for a given crystal as data collection proceeds. Based on third-generation synchrotron x-ray data, collected at cryogenic temperatures, we show for the enzymes Torpedo californica acetylcholinesterase and hen egg white lysozyme that synchrotron radiation also can cause highly specific damage. Disulfide bridges break, and carboxyl groups of acidic residues lose their definition. Highly exposed carboxyls, and those in the active site of both enzymes, appear particularly susceptible. The catalytic triad residue, His-440, in acetylcholinesterase, also appears to be much more sensitive to radiation damage than other histidine residues. Our findings have direct practical implications for routine x-ray data collection at high-energy synchrotron sources. Furthermore, they provide a direct approach for studying the radiation chemistry of proteins and nucleic acids at a detailed, structural level and also may yield information concerning putative "weak links" in a given biological macromolecule, which may be of structural and functional significance.

  12. Very small beam-size measurement by a reflective synchrotron radiation interferometer

    Directory of Open Access Journals (Sweden)

    T. Naito

    2006-12-01

    Full Text Available A synchrotron radiation (SR interferometer with Herschelian reflective optics has been developed for the measurement of beams of several μm in size. In a conventional refractive SR interferometer, the dispersion effect of the objective lens limits the instrument to a smaller range of beam-size measurements. To avoid this problem, we designed a Herschelian arrangement of reflective optics for the interferometer. The effectiveness of the reflective SR interferometer was confirmed at the KEK Accelerator Test Facility (ATF damping ring. The measured vertical beam size obtained using the reflective SR interferometer was 4.7   μm and the estimated vertical emittance was 0.97×10^{-11}   m.

  13. Challenges and opportunities in synchrotron radiation optics

    Science.gov (United States)

    Rehn, V.

    Design necessities germaine to advances in optics for experimentation with synchrotron radiation are explored. Objectives for development include improved beam-line performance using new mirror materials or coatings, filtering and order-sorting enhancement, and lower surface scattering. A summary is presented of optical systems currently in use, together with requirements imposed by storage rings and experimental design. Advances are recommended in intensity, collimation, focus, and spectral purity of synchrotron beam lines. Any new storage ring mirror is noted to be required to dissipate several hundred watts, something which polished Cu is mentioned as being capable of handling, while standard SiO2 mirrors cannot.

  14. Real world issues for the new soft x-ray synchrotron sources

    International Nuclear Information System (INIS)

    Kincaid, B.M.

    1991-05-01

    A new generation of synchrotron radiation light sources covering the VUV, soft x-ray and hard x-ray spectral regions is under construction in several countries. They are designed specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce high-brightness near-diffraction-limited synchrotron radiation beams. An introduction to the properties of undulator radiation is followed by a discussion of some of the challenges to be faced at the new facilities. Examples of predicted undulator output from the Advanced Light Source, a third generation 1--2 GeV storage ring optimized for undulator use, are used to highlight differences from present synchrotron radiation sources, including high beam power, partial coherence, harmonics, and other unusual spectral and angular properties of undulator radiation. 8 refs., 2 figs

  15. Ultrafast molecular dynamics illuminated with synchrotron radiation

    International Nuclear Information System (INIS)

    Bozek, John D.; Miron, Catalin

    2015-01-01

    Highlights: • Ultrafast molecular dynamics probed with synchrotron radiation. • Core-excitation as probe of ultrafast dynamics through core-hole lifetime. • Review of experimental and theoretical methods in ultrafast dynamics using core-level excitation. - Abstract: Synchrotron radiation is a powerful tool for studying molecular dynamics in small molecules in spite of the absence of natural matching between the X-ray pulse duration and the time scale of nuclear motion. Promoting core level electrons to unoccupied molecular orbitals simultaneously initiates two ultrafast processes, nuclear dynamics on the potential energy surfaces of the highly excited neutral intermediate state of the molecule on the one hand and an ultrafast electronic decay of the intermediate excited state to a cationic final state, characterized by a core hole lifetime. The similar time scales of these processes enable core excited pump-probe-type experiments to be performed with long duration X-ray pulses from a synchrotron source. Recent results obtained at the PLIEADES beamline concerning ultrafast dissociation of core excited states and molecular potential energy curve mapping facilitated by changes in the geometry of the short-lived intermediate core excited state are reviewed. High brightness X-ray beams combined with state-of-the art electron and ion-electron coincidence spectrometers and highly sophisticated theoretical methods are required to conduct these experiments and to achieve a full understanding of the experimental results.

  16. Gravitational perturbation theory and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, R A [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany). Inst. fuer Astrophysik

    1975-01-01

    This article presents methods and results for a gravitational perturbation theory which treats massless fields as linearized perturbations of an arbitrary gravitational vacuum background spacetime. The formalism is outlined for perturbations of type (22) spacetimes. As an application, high-frequency radiation emitted by particles moving approximately on relativistic circular geodesic orbits is computed. More precisely, the test particle assumption is made; throughout it is therefore assumed that the reaction of the radiation on the particle motion is negligible. In particular, these orbits are studied in the gravitational field of a spherically symmetric (Schwarzschild-) black hole as well as of a rotating (Kerr-) black hole. In this model, the outgoing radiation is highly focussed and of much higher fequency than the orbital frequency, i.e. one is dealing with 'gravitational synchrotron radiation'.

  17. Optical components and systems for synchrotron radiation: an introduction

    International Nuclear Information System (INIS)

    Howells, M.R.

    1981-01-01

    A brief description of the nature and origins of synchrotron radiation is given with special reference to its geometrical optical properties and the use of storage rings as light souces. The geographical distribution of SR sources in the world is reviewed and some discussion of the level of experimental activity is given. Estimates of future levels of experimental activity are also made both for existing storage rings and those planned for the future. Calculations of the approximate number of mirrors and gratings that will be required are offered. Some general considerations are outlined showing how synchrotron radiation optical systems couple to the light source and indicating which parameters need to be maximized for best overall performance

  18. Francois Garin: Pioneer work in catalysis through synchrotron radiation

    International Nuclear Information System (INIS)

    Bazin, Dominique

    2014-01-01

    Starting from the late seventies, the progressively increased availability of beamlines dedicated to X-ray absorption spectroscopy allowed the execution of experiments in chemistry. In this manuscript, I describe the contribution of Francois Garin at the frontier of heterogeneous catalysis and synchrotron radiation. Working at LURE as a scientific in charge of a beamline dedicated to X-ray absorption spectroscopy during almost twenty years and thus, having the opportunity to discuss with research groups working in heterogeneous catalysis in Europe as well as in the United States, it was quite easy to show that his work is clearly at the origin of current research in heterogeneous catalysis, not only in France, but in different synchrotron radiation centres. (authors)

  19. Effects of UV radiation on phytoplankton

    Science.gov (United States)

    Smith, Raymond C.; Cullen, John J.

    1995-07-01

    It is now widely documented that reduced ozone will result in increased levels of ultraviolet (UV) radiation, especially UV-B (280-320nm), incident at the surface of the earth [Watson, 1988; Anderson et al., 1991; Schoeberl and Hartmann, 1991; Frederick and Alberts, 1991; WMO, 1991; Madronich, 1993; Kerr and McElroy, 1993], and there is considerable and increasing evidence that these higher levels of UV-B radiation may be detrimental to various forms of marine life in the upper layers of the ocean. With respect to aquatic ecosystems, we also know that this biologically- damaging mid-ultraviolet radiation can penetrate to ecologically- significant depths in marine and freshwater systems [Jerlov, 1950; Lenoble, 1956; Smith and Baker, 1979; Smith and Baker, 1980; Smith and Baker, 1981; Kirk et al., 1994]. This knowledge, plus the dramatic decline in stratospheric ozone over the Antarctic continent each spring, now known to be caused by anthropogenically released chemicals [Solomon, 1990; Booth et al., 1994], has resulted in increased UV-environmental research and a number of summary reports. The United Nations Environmental Program (UNEP) has provided recent updates with respect to the effects of ozone depletion on aquatic ecosystems (Hader, Worrest, Kumar in UNEP 1989, 1991, Hader, Worrest, Kumar and Smith UNEP 1994) and the Scientific Committee on Problems of the Environment (SCOPE) has provided [SCOPE, 1992] a summary of the effects of increased UV radiation on biological systems. SCOPE has also reported [SCOPE, 1993] on the effects of increased UV on the biosphere. In addition, several books have recently been published reviewing various aspects of environmental UV photobiology [Young et al., 1993], UV effects on humans, animals and plants [Tevini, 1993], the biological effects of UV radiation in Antarctica [Weiler and Penhale, 1994], and UV research in freshwater ecosystems [Williamson and Zagarese, 1994]. Several other reviews are relevant [NAS, 1984; Caldwell

  20. Design of a wire imaging synchrotron radiation detector

    International Nuclear Information System (INIS)

    Kent, J.; Gomez-Cadenas, J.J.; Hogan, A.; King, M.; Rowe, W.; Watson, S.; Von Zanthier, C.; Briggs, D.D.; Levi, M.

    1990-01-01

    This paper documents the design of a detector invented to measure the positions of synchrotron radiation beams for the precision energy spectrometers of the Stanford Linear Collider (SLC). The energy measurements involve the determination, on a pulse-by-pulse basis, of the separation of pairs of intense beams of synchrotron photons in the MeV energy range. The detector intercepts the beams with arrays of fine wires. The ejection of Compton recoil electrons results in charges being developed in the wires, thus enabling a determination of beam positions. 10 refs., 4 figs

  1. Inner-shell photoemission from atoms and molecules using synchrotron radiation

    International Nuclear Information System (INIS)

    Lindle, D.W.

    1983-12-01

    Photoelectron spectroscopy, in conjunction with synchrotron radiation, has been used to study inner-shell photoemission from atoms and molecules. The time structure of the synchrotron radiation permits the measurements of time-of-flight (TOF) spectra of Auger and photoelectrons, thereby increasing the electron collection efficiency. The double-angle TOF method yielded angle-resolved photoelectron intensities, which were used to determine photoionization cross sections and photoelectron angular distributions in several cases. Comparison to theoretical calculations has been made where possible to help explain observed phenomena in terms of the electronic structure and photoionization dynamics of the systems studied. 154 references, 23 figures, 7 tables

  2. Structure analysis of biomolecules using synchrotron radiation circular dichroism spectrophotometer

    International Nuclear Information System (INIS)

    Gekko, Kunihiko; Matsuo, Koichi

    2004-01-01

    We constructed the vacuum-ultraviolet circular dichroism (VUVCD) spectrophotometer, which is capable of measuring circular dichroism spectra to 140 nm for aqueous solutions at temperature from -30 to 70degC, using a small-scale SR source at Hiroshima Synchrotron Radiation Center (HiSOR). This spectrophotometer was used for structural analyses of amino acids, saccharides, and proteins in water. The obtained results demonstrate that a synchrotron radiation VUVCD spectroscopy provides more detailed and new information on the structures of biomolecules, based on the high energy transitions of chromophores such as hydroxyl, acetal, and peptide groups. (author)

  3. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    International Nuclear Information System (INIS)

    Reffner, J.A.; Martoglio, P.A.; Williams, G.P.

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization

  4. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    Energy Technology Data Exchange (ETDEWEB)

    Reffner, J.A.; Martoglio, P.A. [Spectra-Tech, Inc., Shelton, CT (United States); Williams, G.P. [Brookhaven National Lab., Upton, NY (United States)

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization.

  5. Development and validation of Monte Carlo dose computations for contrast-enhanced stereotactic synchrotron radiation therapy

    International Nuclear Information System (INIS)

    Vautrin, M.

    2011-01-01

    Contrast-enhanced stereotactic synchrotron radiation therapy (SSRT) is an innovative technique based on localized dose-enhancement effects obtained by reinforced photoelectric absorption in the tumor. Medium energy monochromatic X-rays (50 - 100 keV) are used for irradiating tumors previously loaded with a high-Z element. Clinical trials of SSRT are being prepared at the European Synchrotron Radiation Facility (ESRF), an iodinated contrast agent will be used. In order to compute the energy deposited in the patient (dose), a dedicated treatment planning system (TPS) has been developed for the clinical trials, based on the ISOgray TPS. This work focuses on the SSRT specific modifications of the TPS, especially to the PENELOPE-based Monte Carlo dose engine. The TPS uses a dedicated Monte Carlo simulation of medium energy polarized photons to compute the deposited energy in the patient. Simulations are performed considering the synchrotron source, the modeled beamline geometry and finally the patient. Specific materials were also implemented in the voxelized geometry of the patient, to consider iodine concentrations in the tumor. The computation process has been optimized and parallelized. Finally a specific computation of absolute doses and associated irradiation times (instead of monitor units) was implemented. The dedicated TPS was validated with depth dose curves, dose profiles and absolute dose measurements performed at the ESRF in a water tank and solid water phantoms with or without bone slabs. (author) [fr

  6. Interest of synchrotron radiation for the therapy of brain tumors: methodology and preclinical applications

    International Nuclear Information System (INIS)

    Regnard, P.

    2007-12-01

    Microbeam radiation (M.R.T.) and stereotactic synchrotron radiation therapy (S.S.R.T.) are innovative techniques currently developed at the european Synchrotron radiation facility. these techniques led to promising, but rarely reproduced, results. the use of different tumoral models for each techniques limit comparisons. M.R.T. experiments on rats bearing 9L tumors 14 days after implantation displayed a double median survival time ( from 20 to 40 days) with a 200 μm spacing irradiation, while a 100 μm spacing irradiation tripled this median (67 days) but damaged normal tissue. the impact of the device dividing synchrotron beam into micro-beams, named multi sit collimator, was also demonstrated. combination of drugs with M.R.T. irradiation was tested. promising results (median survival time: 40 days and 30% of long term survivors) were obtained with an intratumoral injection of gadolinium coupled with a crossing M.R.T. irradiation at 460 Gy. Moreover, earlier M.R.T. irradiation (tumor at D10) quadrupled the median survival time (79 days) with 30% of long term survivors. A new imaging device to target the tumor before irradiation and an adapted collimator will increase the M.R.T. results. As the differences existing between tumoral models used in M.R.T. (9L models) and in S.S.R.T. (F98 models) are major, M.R.T./S.S.R.T. comparative experiments were realised on these two models. Results showed that the two techniques have the same efficacy on F98 model and that the M.R.T. is more effective on 9L model. This can help to define adapted tumor type for these techniques. (author)

  7. Radiation control around the proton synchrotron Saturne (1962)

    International Nuclear Information System (INIS)

    Joffre, H.; Lamberieux, J.; Stirling, A.

    1962-01-01

    After giving the main characteristics of the Synchrotron at Saclay, the authors present on the one hand the general arrangements made for ensuring the safety of the personnel: specification of radiation levels, automatic devices, visual indications, etc... and on the other hand, the means employed for radiation detection. These detection methods include fixed γ and fast neutron detectors whose indications are centralised on a radiation control panel, and mobile detectors for specific or more precise measurements. The authors give results of radiation level measurements and some results of the diminishing of radiation intensity by wood, concrete and water. (author) [fr

  8. UV inactivation: Combined effects of UV radiation and xenobiotics in two strains of Saccharomyces

    International Nuclear Information System (INIS)

    Lochmann, E.R.; Lochmann, G.

    1997-01-01

    The effects of eight chemicals on the inactivation rate of ultraviolet radiation on the colony building capabilities of two strains of Saccharomyces cervisae - a wild type strain and a mutant deficient in excision repair - were studied. The insecticide methoxychlor, the herbicide 2,4-dichlorophenoxyacetic acid, the fungicide pentachlorophenol and its metabolite tetrachlorohydroquinone, as well as the chemicals acrylonitrile and 2,3-dichloro-1-propene have no significant impact on the effects of UV radiation in Saccharomyces cerevisae. Depending on the concentration, trichloroethylene increases the sensitivity to UV radiation. The herbicide paraquat provides efficient protection against UV radiation at concentrations where a toxic effect cannot be observed even without UV. The results were rather similar for both strains. (orig.) [de

  9. Synchrotrons are also devoted to the society

    International Nuclear Information System (INIS)

    Gacoin, M.P.; Cornuejols, D.; Cotte, M.; Deblay, P.; Mitchell, E.P.; McCarthy, J.; Fraissard, F.

    2013-01-01

    The ESRF and the SOLEIL synchrotrons are not only scientific instruments but also active players in the cultural and economic fields. This document gathers 6 short articles. The 2 first present the actions of SOLEIL and ESRS scientific teams towards the spreading of scientific knowledge in the public. The third article is dedicated to the uses of synchrotron radiation to the study of cultural objects to learn more about their fabrication, present state or the remedial actions that could be used to renovate them. The fourth and fifth articles present the contributions of ESRF and SOLEIL to the industrial world, in fact these contributions are not limited to the research field but also appear for quality assurance or the control of aging processes. Partnerships have been signed between both synchrotrons and enterprises to develop industrial products based on instrumentation or on the use of synchrotron radiation. The last article describes the procedure to have access to both facilities. (A.C.)

  10. Application of synchrotron radiation to x-ray fluorescence analysis of trace elements

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jones, K.W.; Hanson, A.L.

    1986-08-01

    The development of synchrotron radiation x-ray sources has provided the means to greatly extend the capabilities of x-ray fluorescence analysis for determinations of trace element concentrations. A brief description of synchrotron radiation properties provides a background for a discussion of the improved detection limits compared to existing x-ray fluorescence techniques. Calculated detection limits for x-ray microprobes with micrometer spatial resolutions are described and compared with experimental results beginning to appear from a number of laboratories. The current activities and future plans for a dedicated x-ray microprobe beam line at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory are presented

  11. Synchrotron-radiation plane-wave topography

    International Nuclear Information System (INIS)

    Riglet, P.; Sauvage, M.; Petroff, J.F.; Epelboin, Y.

    1980-01-01

    A computer program based on the Takagi-Taupin differential equations for X-ray propagation in distorted crystals has been developed in order to simulate dislocation images in the Bragg case. The program is valid both for thin and thick crystals. Simulated images of misfit dislocations formed either in a thin epilayer or in a thick substrate are compared with experimental images obtained by synchrotron-radiation plane-wave topography. The influence of the various strain components on the image features is discussed. (author)

  12. Synchrotron radiation studies on luminescence of Eu2+-doped LaCl3 microcrystals embedded in a NaCl matrix

    International Nuclear Information System (INIS)

    Savchyn, P.V.; Vistovskyy, V.V.; Pushak, A.S.; Voloshinovskii, A.S.; Gektin, A.V.; Pankratov, V.; Popov, A.I.

    2012-01-01

    LaCl 3 :Eu 2+ microcrystals dispersed in the NaCl matrix have been obtained in the NaCl–LaCl 3 (1 mol.%)–EuCl 3 (0.1 mol.%) crystalline system. The low-temperature luminescent properties of these microcrystals have been studied upon the VUV and UV excitation by the synchrotron radiation. The spectroscopic parameters as well as decay time constants of Eu 2+ -doped LaCl 3 host have been established. The excitation mechanism of divalent europium centers through energy transfer and reabsorption is discussed.

  13. Comparative study of structural properties of trehalose water solutions by neutron diffraction, synchrotron radiation and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cesaro, A.; Magazu, V.; Migliardo, F.; Sussich, F.; Vadala, M

    2004-07-15

    Neutron diffraction measurements combined with H/D substitution have been performed on trehalose aqueous solutions as a function of temperature and concentration by using the SANDALS diffractometer at ISIS Facility (UK). The findings point out a high capability of trehalose to strongly affect the tetrahedral hydrogen bond network of water. The neutron diffraction results are also compared with simulation and experimental data obtained by synchrotron radiation on the phospholipid bilayer membranes (DPPC)/trehalose/H{sub 2}O ternary system.

  14. Multiobjective optimization of the synchrotron radiation source 'Siberia-2' lattice using a genetic algorithm

    International Nuclear Information System (INIS)

    Korchuganov, V.N.; Smygacheva, A.S.; Fomin, E.A.

    2018-01-01

    One of the best ways to design, research and optimize accelerators and synchrotron radiation sources is to use numerical simulation. Nevertheless, very often during complex physical process simulation considering many nonlinear effects the use of classical optimization methods is difficult. The article deals with the application of multiobjective optimization using genetic algorithms for accelerators and light sources design. These algorithms allow both simple linear and complex nonlinear lattices to be efficiently optimized when obtaining the required facility parameters.

  15. Synchrotron radiation and industrial research

    International Nuclear Information System (INIS)

    Townsend, R.P.

    1995-01-01

    Fundamental studies on the properties of many different materials are of prime importance to most industrial concerns. For Unilever, solids (crystalline and amorphous), soft solids and complex fluids are the materials of primary interest. Synchrotron radiation has proved of great value for the analysis of a variety of such materials, because the intense and highly collimated radiation source has enabled us to obtain structural information rapidly as well as in time-resolved mode. In this paper are outlined the types of materials problems faced, and how we use different techniques to elucidate structure (both short and long range order) in zeolites, amorphous solids, as well as in biomaterials such as skin and hair containing lipid phases. Both equilibrium and time-resolved studies are described. (orig.)

  16. RIKEN-JAERI 8-GeV synchrotron radiation project - SPring-8

    International Nuclear Information System (INIS)

    Awaya, Yohko

    1990-01-01

    The plan of an 8-GeV synchrotron radiation facility, which is called SPring-8 (Super Photon Ring-8GeV), had been proposed by Science and Technology Agency (STA) in Japan and it was decided that its construction would be started from April 1990. An atomic physics group in Japan had the first meeting in December 1988 to discuss the future studies of atomic physics and related problems at SPring-8 and plans of research and development (R and D) for them. Their report was published in May 1990. In this report, an outline of SPring-8 is described. Results of the discussions of Japanese working group of atomic physics and the present status of R and D of this group will be presented by M. Kimura in this workshop

  17. Analysis and characterization. Nuclear resonant scattering with the synchrotron radiation

    International Nuclear Information System (INIS)

    Ruffer, R.; Teillet, J.

    2003-01-01

    The nuclear resonant scattering using the synchrotron radiation combines the uncommon properties of the Moessbauer spectroscopy and those of the synchrotron radiation. Since its first observation in 1984, this technique and its applications have been developed rapidly. The nuclear resonant scattering is now a standard technique for all the synchrotron radiation sources of the third generation. As the Moessbauer spectroscopy, it is a method of analysis at the atomic scale and a non destructive method. It presents the advantage not to require the use of radioactive sources of incident photons which can be difficult to make, of a lifetime which can be short and of an obviously limited intensity. The current applications are the hyperfine spectroscopy and the structural dynamics. In hyperfine spectroscopy, the nuclear resonant scattering can measure the same size than the Moessbauer spectroscopy. Nevertheless, it is superior in the ranges which exploit the specific properties of the synchrotron radiation, such as the very small samples, the monocrystals, the measures under high pressures, the geometry of small angle incidence for surfaces and multilayers. The structural dynamics, in a time scale of the nanosecond to the microsecond can be measured in the temporal scale. Moreover, the nuclear inelastic scattering gives for the first time a tool which allows to have directly the density of states of phonons and then allow to deduce the dynamical and thermodynamical properties of the lattice. The nuclear resonant scattering technique presented here, which corresponds to the Moessbauer spectroscopy technique (SM), is called 'nuclear forward scattering' (NFS). Current applications in physics and chemistry are develop. The NFS is compared to the usual SM technique in order to reveal its advantages and disadvantages. (O.M.)

  18. Brain tumors and synchrotron radiation: Methodological developments in quantitative brain perfusion imaging and radiation therapy

    International Nuclear Information System (INIS)

    Adam, Jean-Francois

    2005-01-01

    High-grade gliomas are the most frequent type of primary brain tumors in adults. Unfortunately, the management of glioblastomas is still mainly palliative and remains a difficult challenge, despite advances in brain tumor molecular biology and in some emerging therapies. Synchrotron radiation opens fields for medical imaging and radiation therapy by using monochromatic intense x-ray beams. It is now well known that angiogenesis plays a critical role in the tumor growth process and that brain perfusion is representative of the tumor mitotic activity. Synchrotron radiation quantitative computed tomography (SRCT) is one of the most accurate techniques for measuring in vivo contrast agent concentration and thus computing precise and accurate absolute values of the brain perfusion key parameters. The methodological developments of SRCT absolute brain perfusion measurements as well as their preclinical validation are detailed in this thesis. In particular, absolute cerebral volume and blood brain barrier permeability high-resolution (pixel size 2 ) parametric maps were reported. In conventional radiotherapy, the treatment of these tumors remains a delicate challenge, because the damages to the surrounding normal brain tissue limit the amount of radiation that can be delivered. One strategy to overcome this limitation is to infuse an iodinated contrast agent to the patient during the irradiation. The contrast agent accumulates in the tumor, through the broken blood brain barrier, and the irradiation is performed with kilovoltage x rays, in tomography mode, the tumor being located at the center of rotation and the beam size adjusted to the tumor dimensions. The dose enhancement results from the photoelectric effect on the heavy element and from the irradiation geometry. Synchrotron beams, providing high intensity, tunable monochromatic x rays, are ideal for this treatment. The beam properties allow the selection of monochromatic irradiation, at the optimal energy, for a

  19. Coherent synchrotron radiation and bunch stability in a compactstorage ring

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Marco; Warnock, Robert; Ruth, Ronald; Ellison, James A.

    2004-04-09

    We examine the effect of the collective force due to coherent synchrotron radiation (CSR) in an electron storage ring with small bending radius. In a computation based on time-domain integration of the nonlinear Vlasov equation, we find the threshold current for a longitudinal microwave instability induced by CSR alone. The model accounts for suppression of radiation at long wave lengths due to shielding by the vacuum chamber. In a calculation just above threshold, small ripples in the charge distribution build up over a fraction of a synchrotron period, but then die out to yield a relatively smooth but altered distribution with eventual oscillations in bunch length. The instability evolves from small noise on an initial smooth bunch of r.m.s.length much greater than the shielding cutoff. The paper includes a derivation and extensive analysis of the complete impedance function Z for synchrotron radiation with parallel plate shielding. We find corrections to the lowest approximation to the coherent force which involve ''off-diagonal'' values of Z, that is, fields with phase velocity not equal to the particle velocity.

  20. Radiative flux calculations at UV and visible wavelengths

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.; Wuebbles, D.J.

    1993-10-01

    A radiative transfer model to calculate the short wavelength fluxes at altitudes between 0 and 80 km has been developed at LLNL. The wavelength range extends from 175--735 nm. This spectral range covers the UV-B wavelength region, 250--350 nm, with sufficient resolution to allow comparison of UV-B measurements with theoretical predictions. Validation studies for the model have been made for both UV-B ground radiation calculations and tropospheric solar radiative forcing calculations for various ozone distributions. These studies indicate that the model produces results which agree well with respect to existing UV calculations from other published models

  1. Radiation biology using synchrotron radiation. In relation to radiation chemistry as an initial process

    International Nuclear Information System (INIS)

    Kobayashi, Katsumi

    1995-01-01

    Radiation biology using synchrotron radiation have been investigated, focusing on the mechanism of the formation of molecular damage. This paper introduces recent outcome of these studies. First, the process from imparted energy to the formation of molecular damage is outlined. The previous studies can be largely categorized as dealing with (1) biological effects of inner-shell ionization on elements composing the living body and (2) X-ray energy dependence of biological effects. Bromine and phosphorus are used as elements for the study of inner-cell ionization. In the study on lethal effects of monochromatic soft X-rays on the BrdUMP-incorporated yeast cells, Auger enhancement was found to occur. The first report on the effects of K-shell absorption of cellular phosphorus atoms has revealed that biological effects on cellular lethality and genetic changes was enhanced by 40%. Plasmid DNA and oligonucleotide have been used to study biological effects of vacuum ultraviolet rays to monochromatic soft X-ray, which makes it possible to study strand breaks. Because experimental production of energy required for the formation of double strand breaks has become possible, synchrotron radiation plays a very important role in radiation biological studies. Finally, future issues are presented. (N.K.)

  2. HPCAT: an integrated high-pressure synchrotron facility at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shen, Guoyin; Chow, Paul; Xiao, Yuming; Sinogeikin, Stanislav; Meng, Yue; Yang, Wenge; Liermann, Hans-Peter; Shebanova, Olga; Rod, Eric; Bommannavar, Arunkumar; Mao, Ho-Kwang

    2008-01-01

    The high pressure collaborative access team (HPCAT) was established to advance cutting edge, multidisciplinary, high-pressure (HP) science and technology using synchrotron radiation at sector 16 of the Advanced Photon Source of Argonne National Laboratory. The integrated HPCAT facility has established four operating beamlines in nine hutches. Two beamlines are split in energy space from the insertion device (16ID) line, whereas the other two are spatially divided into two fans from the bending magnet (16BM) line. An array of novel X-ray diffraction and spectroscopic techniques has been integrated with HP and extreme temperature instrumentation at HPCAT. With a multidisciplinary approach and multi-institution collaborations, the HP program at the HPCAT has been enabling myriad scientific breakthroughs in HP physics, chemistry, materials, and Earth and planetary sciences.

  3. A laboratory experimental setup for photo-absorption studies using synchrotron radiation

    CERN Document Server

    Shastri, A; Saraswati, P; Sunanda, K

    2002-01-01

    The photophysics beamline, which is being installed at the 450 MeV Synchrotron Radiation Source (SRS), Indus-l, is a medium resolution beamline useful for a variety of experiments in the VUV region viz. 500-2000 A. One of the major applications of this beamline is gas-phase photo-absorption studies. An experimental set up to be used for these experiments was designed, developed and tested in our laboratory. The setup consists of a high vacuum absorption cell, 1/4 m monochromator and detection system. For the purpose of testing, xenon and tungsten continuum sources were used and absorption spectra were recorded in the UV region. This setup was used to record the absorption spectrum of a few molecules like acetone, ammonia, benzene, formaldehyde and acetaldehyde in order to evaluate the performance of the experimental system which will subsequently be used with the photophysics beamline. Details of the design, fabrication and testing of the absorption cell and experimental procedures are presented in this repor...

  4. Temporal variation of optimal UV exposure time over Korea: risks and benefits of surface UV radiation

    Science.gov (United States)

    Lee, Y. G.; Koo, J. H.

    2015-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) over Korea during 2004-2012. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied in estimating the optimal UV exposure time. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice versa in winter. Thus, the balancing time in winter was enough to maximize UV benefits and minimize UV risks.

  5. Refraction-contrast bone imaging using synchrotron radiation

    International Nuclear Information System (INIS)

    Mori, Koichi; Sekine, Norio; Sato, Hitoshi; Shikano, Naoto; Shimao, Daisuke; Shiwaku, Hideaki; Hyodo, Kazuyuki; Oka, Hiroshi

    2002-01-01

    The X-ray refraction-contrast imaging using synchrotron radiation with some X-ray energies is successfully performed at B120B2 of SPring-8. The refraction-contrast images of bone samples such as human dried proximal phalanx, wrist, upper cervical vertebrae and sella turcica and as mouse proximal femur using the synchrotron X-ray are always better in image contrast and resolution than those of the absorption-contrast images using the synchrotron X-ray and/or the conventional X-ray tube. There is much likeness in the image contrast and resolution of trabeculae bone in the human dried proximal phalanx between X-ray energy of 30 keV at sample-to-film distance of 1 m and those of 40, 50 keV at those of 4,5 m, respectively. High-energy refraction-contrast imaging with suitable sample-to-film distance could reduce the exposure dose in human imaging. In the refraction-contrast imaging of human wrist, upper cervcal vertebrae, sella turcica and mouse proximal femur using the synchrotron X-ray, we can obtain better image contrast and resolution to correctly extract morphological information for diagnosis corresponding to each of the clinical field than those of the absorption-contrast images. (author)

  6. Synchrotron Physics and Industry: new opportunities for technology transfer

    International Nuclear Information System (INIS)

    Williams, P.

    2002-01-01

    Full text: In 1979, with the opening in the UK of the world's first dedicated synchrotron light source, the SRS, experimental science in virtually every discipline underwent what amounted to a major revolution. The unique nature of synchrotron radiation, with its intensity, brightness, polarization, time structure and energy spectrum offer an unequalled probe of matter in all its states. The decades since have seen the development of a wide range of associated experimental techniques which harness the power of this radiation, including photoemission, EXAFS, spectroscopy, imaging and, of course, protein crystallography. These in turn have been applied to studies from surface science to molecular biology. The advances using synchrotron radiation throughout the 1980s and '90s naturally had a major impact on fundamental research, particularly in unraveling the structures of large proteins and in understanding the properties of semiconductors and surfaces. Much of this work could not have been accomplished without access to one of the world's increasing number of synchrotron facilities, of which there are now approaching 100. However, industrial awareness of the opportunities afforded by the use of synchrotron radiation was restricted to the handful of major multinational corporations, primarily in Europe, the USA and Japan, whose fundamental research staff had access. While there were major programmes in certain specific areas, such as X-ray lithography for semiconductor LSI fabrication, the general level of industrial involvement was low. But today, this is changing. In protein crystallography, for example, the use of synchrotron radiation in structure determination puts the 1PX' technique on the same level as NMR in terms of its routine utility. It has become an essential tool to drug designers in biopharmaceuticals, where access to the structural data is increasingly thought of almost as a service, rather than fundamental research. Pioneering work on medical imaging

  7. Quantitative X-ray microtomography with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Donath, T. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2007-07-01

    Synchrotron-radiation-based computed microtomography (SR{sub {mu}}CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR{sub {mu}}CT measurements have been further improved by enhancements that were made to the SR{sub {mu}}CT apparatus and to the reconstruction chain. For high-resolution SR{sub {mu}}CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR{sub {mu}}CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  8. Quantitative X-ray microtomography with synchrotron radiation

    International Nuclear Information System (INIS)

    Donath, T.

    2007-01-01

    Synchrotron-radiation-based computed microtomography (SR μ CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR μ CT measurements have been further improved by enhancements that were made to the SR μ CT apparatus and to the reconstruction chain. For high-resolution SR μ CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR μ CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  9. Medical applications of synchrotron radiation. Ch. 10

    International Nuclear Information System (INIS)

    Giacomini, J.C.; Gordon, H.J.

    1991-01-01

    Synchrotron radiation has a number of properties which make it uniquely suited for medical diagnostic imaging. The radiation is intense and can be readily monochromatized. With these highly intense, mono-chromatized X-ray beams, iodine K-edge di-chromatography can yield images which greatly enhance the visualization of iodine containing structures. As this technology continues to improve, the possibility of performing diagnostic cardiac, neuroradiological, and other vascular examinations with minimally invasive peripheral venous injections of iodinated contrast agent becomes increasingly practical. (author). 10 refs.; 6 figs

  10. Synchrotron radiation spectroscopy including X-ray absorption spectroscopy and industrial applications

    International Nuclear Information System (INIS)

    Oshima, Masaharu

    2016-01-01

    Recent trends of synchrotron radiation spectroscopy, especially X-ray absorption spectroscopy for industrial applications are introduced based on our latest results for energy efficient devices such as magnetic RAM, LSI and organic FET, power generation devices such as fuel cells, and energy storage devices such as Li ion batteries. Furthermore, future prospects of spectroscopy with higher energy resolution, higher spatial resolution, higher temporal resolution and operando spectroscopy taking advantage of much brighter synchrotron radiation beam at low emittance SR rings are discussed from the view point of practical applications. (author)

  11. 3D printed polarizing grids for IR-THz synchrotron radiation

    Science.gov (United States)

    Ryu, Meguya; Linklater, Denver; Hart, William; Balčytis, Armandas; Skliutas, Edvinas; Malinauskas, Mangirdas; Appadoo, Dominique; Tan, Yaw-Ren Eugene; Ivanova, Elena P.; Morikawa, Junko; Juodkazis, Saulius

    2018-03-01

    Grid polarisers 3D-printed out of commercial acrilic resin were tested for the polariser function and showed spectral regions where the dichroic ratio {D}R> 1 and The used 3D printing method allows for fabrication of an arbitrary high aspect ratio grid polarisers. Polarization analysis of synchrotron THz radiation was carried out with a standard stretched polyethylene polariser and revealed that the linearly polarized (horizontal) component contributes up to 22% ± 5% to the circular polarized synchrotron emission extracted by a gold-coated mirror with a horizontal slit inserted near the bending magnet edge. Comparison with theoretical predictions shows a qualitative match with dominance of the edge radiation.

  12. Growth properties of poly(tetrafluoroethylene) films by synchrotron radiation ablation

    International Nuclear Information System (INIS)

    Guo, Qixin; Kugino, Takashi; Kume, Yusuke; Mitsuishi, Yoshiaki; Tanaka, Tooru; Nishi, Mitsuhiro; Ogawa, Hiroshi

    2007-01-01

    High-quality poly(tetrafluoroethylene) (PTFE) films have been grown on Si substrates by synchrotron radiation ablation of a PTFE target. Only doublet absorption structures assigned to C-F asymmetric and symmetric stretching vibrations in CF 2 groups are observed, suggesting that the CF 2 groups in the grown PTFE film are organized in an ordered manner through linear attachment. The growth rate of the PTFE films increases with increasing target temperature, while it decreases with increasing substrate temperature. It has been shown that the thickness of the PTFE film with a high-spatial-resolution structure can be easily controlled at nanometer order by changing the synchrotron radiation irradiation dose. (author)

  13. ROSY - Rossendorf synchrotron radiation source

    International Nuclear Information System (INIS)

    Einfeld, D.; Matz, W.

    1993-11-01

    The electron energy of the storage ring will be 3 GeV and the emitted synchrotron radiation is in the hard X-ray region with a critical energy of the spectrum of E c =8,4 keV (λ c =0,14 nm). With a natural emittance of 28 π nm rad ROSY emits high brilliance radiation. Besides the radiation from bending magnets there will be the possibility for using radiation from wigglers and undulators. For the insertion devices 8 places are foreseen four of which are located in non-dispersion-free regions. The storage ring is of fourfold symmetry, has a circumference of 148 m and is designed in a modified FODO structure. An upgrade of ROSY with superconducting bending magnets in order to shift the spectrum to higher energy can easily be done. Part I contains the scientific case and a description of the planned use of the beam lines. Part II describes the design of the storage ring and its components in more detail. (orig.) [de

  14. CCD detectors for X-ray synchrotron radiation application

    CERN Document Server

    Fedotov, M G

    2000-01-01

    In this paper the possibility of the application of some types of CCDs for the study of fast processes (by recording an image formed by a short flash of synchrotron radiation) is considered. The first results of model experiments are also described.

  15. NBS-LASL racetrack microtron

    International Nuclear Information System (INIS)

    Penner, S.; Debenham, P.H.; Green, D.C.

    1980-01-01

    The NBS-LASL racetrack microtron (RTM) is a joint project of the National Bureau of Standards (NBS) and the Los Alamos Scientific Laboratory (LASL). This is a new accelerator research project whose goal is to determine the feasibility of building a high-energy, high-current, cw electron accelerator using beam recirculation and room-temperature rf acceleration structures. The NBS-LASL RTM is being designed and built to develop the required technology for a large national 1 to 2 GeV cw accelerator for nuclear physics research and to prove experimentally that high currents can be accelerated successfully in an RTM. Some of the parameters of the NBS-LASL RTM are 185 MeV final energy, 550 μA maximum current, 15 passes, 12 MeV one-pass energy gain, and 2380 MHz frequency. One 450 kW cw klystron will supply rf power to both the 5 MeV injector and the 12 MeV linac in the RTM

  16. Numerical methods for characterization of synchrotron radiation based on the Wigner function method

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2014-06-01

    Full Text Available Numerical characterization of synchrotron radiation based on the Wigner function method is explored in order to accurately evaluate the light source performance. A number of numerical methods to compute the Wigner functions for typical synchrotron radiation sources such as bending magnets, undulators and wigglers, are presented, which significantly improve the computation efficiency and reduce the total computation time. As a practical example of the numerical characterization, optimization of betatron functions to maximize the brilliance of undulator radiation is discussed.

  17. Synchrotron radiation gives insight in smaller and smaller crystals

    International Nuclear Information System (INIS)

    Hintsches, E.

    1983-01-01

    Scientists from the ''Max-Planck-Institut fuer Festkoerperforschung'' in Stuttgart have extended the method of X-ray analysis to study the structure of very small crystals. For the first time a crystal with 6 μm linear dimension has been successfully analysed using the synchrotron radiation from the DESY electron synchrotron at Hamburg. Thus this important method of analysis has been demonstrated to be usefull for structural studies of crystals, which are smaller by a factor of 20 than hitherto. (orig.) [de

  18. New developments in the application of synchrotron radiation to material science

    International Nuclear Information System (INIS)

    Sinha, S. K.

    1999-01-01

    Recent developments in the application of synchrotrons radiation to materials science are discussed, using techniques which exploit the high brilliance of the newer synchrotrons sources, such as microbeam techniques and correlation spectroscopy. These include studies of environmental systems, residual stress, slow dynamics of condensed matter systems and studies of liquid surfaces and thin magnetic films

  19. The effect of ultraviolet (UV)-B radiation on primary producers

    International Nuclear Information System (INIS)

    Germ, M.

    2003-01-01

    Ozone layer in stratosphere is thinning and consequently UV-B radiation on the Earth surface is increasing. Although there is a small portion of UV-B radiation in the solar radiation, it has strong influence on organisms. Targets of UV-B radiation and protective mechanisms in primary producers are described. In the framework of the international project we studied the effect of UV-B radiation on blue-greens, algae, mosses, lichens and vascular plants on the National Institute of Biology

  20. A MODEL FOR PRODUCING STABLE, BROADBAND TERAHERTZ COHERENT SYNCHROTRON RADIATION IN STORAGE RINGS

    International Nuclear Information System (INIS)

    Sannibale, Fernando; Byrd, John M.; Loftsdottir, Agusta; Martin, MichaelC.; Venturini, Marco

    2003-01-01

    We present a model for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use this model to optimize the performance of a source for CSR emission

  1. Synchrotron radiation and fusion materials

    International Nuclear Information System (INIS)

    Nielsen, S.F.

    2009-01-01

    The development of fusion energy is approaching a stage where the capabilities of materials will be dictating the further progress and the time scale for the attainment of fusion power. EU has therefore funded the Fusion Energy Materials Science project Coordination Action (FEMaS - CA) with the intension to utilise the know-how in the materials community to help overcome the material science problems with the fusion related materials. The FEMaS project and some of the possible applications of synchrotron radiation for materials characterisation are described in this paper. (au)

  2. UV radiation sources for artificial skin tanning and protection

    International Nuclear Information System (INIS)

    Zivkovic, D.; Hrnjak, M.

    1999-01-01

    UV radiation sources for artificial tanning are more utilized at the last time. UV radiation is not harmless, so there are not safety devices for tanning. If people do not want to avoid exposure to their radiation, than it is necessary to take the prevention measure: strictly dose of UV radiation according to skin type, use of appropriate protective eye-wears and respect for inhibit of some medicaments and some cosmetic products use. (author)

  3. Test of atomic theory by photoelectron spectrometry with synchrotron radiation

    International Nuclear Information System (INIS)

    Krause, M.O.

    1984-01-01

    The successful combination of synchrotron radiation with electron spectrometry, accomplished at Daresbury, England and Orsay, France, made it possible to investigate sigma/sub x/ and β/sub x/ continuously over the very soft x-ray or the uv range of photon energies. The detailed and highly differentiated data resulting from this advanced experimentation put theory to a stringent test. In the interplay between theory and experiment, sophisticated Hartree Fock (HF) based models were developed which included both relativistic and many-electron effects. These theoretical models have provided us with a better insight than previously possible into the physics of the photon-atom interaction and the electronic structure and dynamics of atoms. However, critical experiments continue to be important for further improvements of theory. A number of such experiments are discussed in this presentation. The dynamic properties determined in these studies include in addition to sigma/sub x/ and β/sub x/ the spin polarization parameters. As a result the comparison between theory and experiment becomes rigorous, detailed and comprehensive. 46 references, 6 figures

  4. TopBP1 associates with NBS1 and is involved in homologous recombination repair

    International Nuclear Information System (INIS)

    Morishima, Ken-ichi; Sakamoto, Shuichi; Kobayashi, Junya; Izumi, Hideki; Suda, Tetsuji; Matsumoto, Yoshiyuki; Tauchi, Hiroshi; Ide, Hiroshi; Komatsu, Kenshi; Matsuura, Shinya

    2007-01-01

    TopBP1 is involved in DNA replication and DNA damage checkpoint. Recent studies have demonstrated that TopBP1 is a direct positive effecter of ATR. However, it is not known how TopBP1 recognizes damaged DNA. Here, we show that TopBP1 formed nuclear foci after exposure to ionizing radiation, but such TopBP1 foci were abolished in Nijmegen breakage syndrome cells. We also show that TopBP1 physically associated with NBS1 in vivo. These results suggested that NBS1 might regulate TopBP1 recruitment to the sites of DNA damage. TopBP1-depleted cells showed hypersensitivity to Mitomycin C and ionizing radiation, an increased frequency of sister-chromatid exchange level, and a reduced frequency of DNA double-strand break induced homologous recombination repair. Together, these results suggested that TopBP1 might be a mediator of DNA damage signaling from NBS1 to ATR and promote homologous recombination repair

  5. Applications of Indus-1 synchrotron radiation source

    International Nuclear Information System (INIS)

    Nandedkar, R.V.

    2003-01-01

    Indus-1 is a 450 MeV electron storage ring. This is a soft X-ray and Vacuum Ultra Violet radiation source with the critical wavelength being 61 A. In this source, the first beam was stored in mid-1999 and was then made available, after initial storage and beam cleaning of the vacuum components, for beamline installation in the early 2000. Two beamlines are commissioned and are working. Other beamlines are in the advanced stage of commissioning. For Indus-1, the injection system consists of a 20 MeV classical microtron as a preinjector and a booster synchrotron that can go up to 700 MeV. For Indus-1, the injection into the storage ring is at full 450 MeV from this booster synchrotron

  6. Prediction of UV spectra and UV-radiation damage in actual plasma etching processes using on-wafer monitoring technique

    International Nuclear Information System (INIS)

    Jinnai, Butsurin; Fukuda, Seiichi; Ohtake, Hiroto; Samukawa, Seiji

    2010-01-01

    UV radiation during plasma processing affects the surface of materials. Nevertheless, the interaction of UV photons with surface is not clearly understood because of the difficulty in monitoring photons during plasma processing. For this purpose, we have previously proposed an on-wafer monitoring technique for UV photons. For this study, using the combination of this on-wafer monitoring technique and a neural network, we established a relationship between the data obtained from the on-wafer monitoring technique and UV spectra. Also, we obtained absolute intensities of UV radiation by calibrating arbitrary units of UV intensity with a 126 nm excimer lamp. As a result, UV spectra and their absolute intensities could be predicted with the on-wafer monitoring. Furthermore, we developed a prediction system with the on-wafer monitoring technique to simulate UV-radiation damage in dielectric films during plasma etching. UV-induced damage in SiOC films was predicted in this study. Our prediction results of damage in SiOC films shows that UV spectra and their absolute intensities are the key cause of damage in SiOC films. In addition, UV-radiation damage in SiOC films strongly depends on the geometry of the etching structure. The on-wafer monitoring technique should be useful in understanding the interaction of UV radiation with surface and in optimizing plasma processing by controlling UV radiation.

  7. Putting synchrotron radiation to work: New opportunities for industrial R ampersand D

    International Nuclear Information System (INIS)

    1991-03-01

    This paper describes the basic categories of experimental techniques that have been successfully exploited at existing synchrotron facilities or, in some cases, that are expected to join the research armamentarium at the next-generation synchrotron sources now under construction, such as the ALS. In each case, a selection of typical industrial applications is noted

  8. Synchrotron environmental laboratory (SUL) at Anka

    International Nuclear Information System (INIS)

    Denecke, M.A.

    2002-01-01

    A research facility dedicated to environmental/geochemical research, the Synchrotron Environmental Laboratory (SUL), is planned to be installed and operated at ANKA. ANKA is the new synchrotron facility at the Research Centre Karlsruhe (FZK), Karlsruhe, Germany. ANKA is now in commissioning and planning operations for the fall of 2000. As the Institute for Nuclear Waste Disposal (INE) at FZK conducts a vigorous synchrotron-based research programme, INE was instrumental in the original impetus for installing such a facility at ANKA. These research activities at INE concentrate on actinide speciation in nuclear waste forms, geological media and geochemical model systems. In order for INE to direct their synchrotron research activities to ANKA, equipment and licensing required for performing experiments on actinide-containing samples is required. One great advantage of performing experiments on actinide-containing samples at ANKA is that the INE radiological laboratories lie in the near vicinity of the facility. This will minimise transport hazards and costs and allow experiments to be performed on samples whose characteristics may change with time. Experiments on radioactive samples with activities below the exemption level, according to German regulations, will be possible at ANKA at the start of operations. Licensing for work on higher levels of activity will be applied for in the future. The decades of experience in radiological work at FZK will facilitate development of procedure and equipment as prerequisites to licensing. A consortium of synchrotron radiation-user groups with environmental research interests has specified their requirements and needs for this facility. This scientific case serves as the foundation for the SUL design and is the basis for an application for federal funding. The SUL design reflects the heterogeneity and complexity of challenges facing researchers in the environmental/geochemical sciences. X-ray absorption fine structure (XAFS

  9. Analysis of rapidly synthesized guest-filled porous complexes with synchrotron radiation: practical guidelines for the crystalline sponge method

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhar, Timothy R. [Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts, 02115 (United States); Zheng, Shao-Liang [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts, 02138 (United States); Chen, Yu-Sheng [ChemMatCARS, Center for Advanced Radiation Sources, The University of Chicago c/o Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois, 60439 (United States); Clardy, Jon, E-mail: jon-clardy@hms.harvard.edu [Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts, 02115 (United States)

    2015-01-01

    This report describes complete practical guidelines and insights for the crystalline sponge method, which have been derived through the first use of synchrotron radiation on these systems, and includes a procedure for faster synthesis of the sponges. These guidelines will be applicable to crystal sponge data collected at synchrotrons or in-house facilities, and will allow researchers to obtain reliable high-quality data and construct chemically and physically sensible models for guest structural determination. A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported. The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collection times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine

  10. Analysis of rapidly synthesized guest-filled porous complexes with synchrotron radiation: practical guidelines for the crystalline sponge method

    International Nuclear Information System (INIS)

    Ramadhar, Timothy R.; Zheng, Shao-Liang; Chen, Yu-Sheng; Clardy, Jon

    2015-01-01

    This report describes complete practical guidelines and insights for the crystalline sponge method, which have been derived through the first use of synchrotron radiation on these systems, and includes a procedure for faster synthesis of the sponges. These guidelines will be applicable to crystal sponge data collected at synchrotrons or in-house facilities, and will allow researchers to obtain reliable high-quality data and construct chemically and physically sensible models for guest structural determination. A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported. The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collection times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine

  11. Covalent dimerization of ribulose bisphosphate carboxylase subunits by UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, R.M.B. [Universidade Tecnica, Lisbon (Portugal). Inst. Superior de Agronomia]|[Universidade Nova de Lisboa, Oeiras (Portugal). Instituto de Tecnologia Quimica e Biologica; Franco, E.; Teixeira, A.R.N. [Universidade Tecnica, Lisbon (Portugal). Inst. Superior de Agronomia

    1996-08-15

    The effect of UV radiation (UV-A, UV-B and UV-C) on ribulose bisphosphate carboxylase from a variety of plant species was examined. The exposition of plant leaves or the pure enzyme to UV radiation produced a UV-dependent accumulation of a 65 kDa polypeptide (P65). Different approaches were utilized to elucidate the origin and structure of P65: electrophoretic and fluorographic analyses of {sup 35}S-labelled ribulose biphosphate carboxylase exposed to UV radiation and immunological experiments using antibodies specific for P65, for the large and small subunits of ribulose biphosphate carboxylase and for high-molecular-mass aggregates of the enzyme. These studies revealed that P65 is a dimer, formed by the covalent, non-disulphide linkage of one small subunit with one large subunit of ribulose biphosphate carboxylase. For short periods of time (<1 h), the amount of P65 formed increased with the duration of the exposure to the UV radiation and with the energy of the radiation applied. Prolonged exposure to UV radiation (1-6 h) resulted in the formation of high-molecular-mass aggregates of ribulose biphosphate carboxylase. Formation of P65 was shown to depend on the native state of the protein, was stimulated by inhibitors of enzyme activity, and was inhibited by activators of enzyme activity. A UV-independent accumulation of P65 was also achieved by the in vitro incubation of plant crude extracts. However, the UV-dependent and the UV-independent formation of P65 seemed to occur by distinct molecular mechanisms. The UV-dependent accumulation of P65 was immunologically detected in all species examined, including Lemna minor, Arum italicum, Brassica oleracea, Triticum aestivum, Zea mays, Pisum sativum and Phaseolus vulgaris, suggesting that it may constitute a universal response to UV radiation, common to all photosynthetic tissues. (Author).

  12. Covalent dimerization of ribulose bisphosphate carboxylase subunits by UV radiation

    International Nuclear Information System (INIS)

    Ferreira, R.M.B.; Universidade Nova de Lisboa, Oeiras; Franco, E.; Teixeira, A.R.N.

    1996-01-01

    The effect of UV radiation (UV-A, UV-B and UV-C) on ribulose bisphosphate carboxylase from a variety of plant species was examined. The exposition of plant leaves or the pure enzyme to UV radiation produced a UV-dependent accumulation of a 65 kDa polypeptide (P65). Different approaches were utilized to elucidate the origin and structure of P65: electrophoretic and fluorographic analyses of 35 S-labelled ribulose biphosphate carboxylase exposed to UV radiation and immunological experiments using antibodies specific for P65, for the large and small subunits of ribulose biphosphate carboxylase and for high-molecular-mass aggregates of the enzyme. These studies revealed that P65 is a dimer, formed by the covalent, non-disulphide linkage of one small subunit with one large subunit of ribulose biphosphate carboxylase. For short periods of time (<1 h), the amount of P65 formed increased with the duration of the exposure to the UV radiation and with the energy of the radiation applied. Prolonged exposure to UV radiation (1-6 h) resulted in the formation of high-molecular-mass aggregates of ribulose biphosphate carboxylase. Formation of P65 was shown to depend on the native state of the protein, was stimulated by inhibitors of enzyme activity, and was inhibited by activators of enzyme activity. A UV-independent accumulation of P65 was also achieved by the in vitro incubation of plant crude extracts. However, the UV-dependent and the UV-independent formation of P65 seemed to occur by distinct molecular mechanisms. The UV-dependent accumulation of P65 was immunologically detected in all species examined, including Lemna minor, Arum italicum, Brassica oleracea, Triticum aestivum, Zea mays, Pisum sativum and Phaseolus vulgaris, suggesting that it may constitute a universal response to UV radiation, common to all photosynthetic tissues. (Author)

  13. Molecular Environmental Science: An Assessment of Research Accomplishments, Available Synchrotron Radiation Facilities, and Needs

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G

    2004-02-05

    Synchrotron-based techniques are fundamental to research in ''Molecular Environmental Science'' (MES), an emerging field that involves molecular-level studies of chemical and biological processes affecting the speciation, properties, and behavior of contaminants, pollutants, and nutrients in the ecosphere. These techniques enable the study of aqueous solute complexes, poorly crystalline materials, solid-liquid interfaces, mineral-aqueous solution interactions, microbial biofilm-heavy metal interactions, heavy metal-plant interactions, complex material microstructures, and nanomaterials, all of which are important components or processes in the environment. Basic understanding of environmental materials and processes at the molecular scale is essential for risk assessment and management, and reduction of environmental pollutants at field, landscape, and global scales. One of the main purposes of this report is to illustrate the role of synchrotron radiation (SR)-based studies in environmental science and related fields and their impact on environmental problems of importance to society. A major driving force for MES research is the need to characterize, treat, and/or dispose of vast quantities of contaminated materials, including groundwater, sediments, and soils, and to process wastes, at an estimated cost exceeding 150 billion dollars through 2070. A major component of this problem derives from high-level nuclear waste. Other significant components come from mining and industrial wastes, atmospheric pollutants derived from fossil fuel consumption, agricultural pesticides and fertilizers, and the pollution problems associated with animal waste run-off, all of which have major impacts on human health and welfare. Addressing these problems requires the development of new characterization and processing technologies--efforts that require information on the chemical speciation of heavy metals, radionuclides, and xenobiotic organic compounds and

  14. Molecular Environmental Science: An Assessment of Research Accomplishments, Available Synchrotron Radiation Facilities, and Needs

    International Nuclear Information System (INIS)

    Brown, G

    2004-01-01

    Synchrotron-based techniques are fundamental to research in ''Molecular Environmental Science'' (MES), an emerging field that involves molecular-level studies of chemical and biological processes affecting the speciation, properties, and behavior of contaminants, pollutants, and nutrients in the ecosphere. These techniques enable the study of aqueous solute complexes, poorly crystalline materials, solid-liquid interfaces, mineral-aqueous solution interactions, microbial biofilm-heavy metal interactions, heavy metal-plant interactions, complex material microstructures, and nanomaterials, all of which are important components or processes in the environment. Basic understanding of environmental materials and processes at the molecular scale is essential for risk assessment and management, and reduction of environmental pollutants at field, landscape, and global scales. One of the main purposes of this report is to illustrate the role of synchrotron radiation (SR)-based studies in environmental science and related fields and their impact on environmental problems of importance to society. A major driving force for MES research is the need to characterize, treat, and/or dispose of vast quantities of contaminated materials, including groundwater, sediments, and soils, and to process wastes, at an estimated cost exceeding 150 billion dollars through 2070. A major component of this problem derives from high-level nuclear waste. Other significant components come from mining and industrial wastes, atmospheric pollutants derived from fossil fuel consumption, agricultural pesticides and fertilizers, and the pollution problems associated with animal waste run-off, all of which have major impacts on human health and welfare. Addressing these problems requires the development of new characterization and processing technologies--efforts that require information on the chemical speciation of heavy metals, radionuclides, and xenobiotic organic compounds and their reactions with

  15. Molecular environmental science : an assessment of research accomplishments, available synchrotron radiation facilities, and needs.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G. E., Jr.; Sutton, S. R.; Bargar, J. R.; Shuh, D. K.; Fenter, P. A.; Kemner, K. M.

    2004-10-20

    Synchrotron-based techniques are fundamental to research in ''Molecular Environmental Science'' (MES), an emerging field that involves molecular-level studies of chemical and biological processes affecting the speciation, properties, and behavior of contaminants, pollutants, and nutrients in the ecosphere. These techniques enable the study of aqueous solute complexes, poorly crystalline materials, solid-liquid interfaces, mineral-aqueous solution interactions, microbial biofilm-heavy metal interactions, heavy metal-plant interactions, complex material microstructures, and nanomaterials, all of which are important components or processes in the environment. Basic understanding of environmental materials and processes at the molecular scale is essential for risk assessment and management, and reduction of environmental pollutants at field, landscape, and global scales. One of the main purposes of this report is to illustrate the role of synchrotron radiation (SR)-based studies in environmental science and related fields and their impact on environmental problems of importance to society. A major driving force for MES research is the need to characterize, treat, and/or dispose of vast quantities of contaminated materials, including groundwater, sediments, and soils, and to process wastes, at an estimated cost exceeding 150 billion dollars through 2070. A major component of this problem derives from high-level nuclear waste. Other significant components come from mining and industrial wastes, atmospheric pollutants derived from fossil fuel consumption, agricultural pesticides and fertilizers, and the pollution problems associated with animal waste run-off, all of which have major impacts on human health and welfare. Addressing these problems requires the development of new characterization and processing technologies--efforts that require information on the chemical speciation of heavy metals, radionuclides, and xenobiotic organic compounds and

  16. Probing droplets with biological colloidal suspensions on smart surfaces by synchrotron radiation micro- and nano-beams

    KAUST Repository

    Marinaro, Giovanni

    2015-03-01

    Droplets with colloidal biological suspensions evaporating on substrates with defined wetting properties generate confined environments for initiating aggregation and self-assembly processes. We describe smart micro- and nanostructured surfaces, optimized for probing single droplets and residues by synchrotron radiation micro- and nanobeam diffraction techniques. Applications are presented for Ac-IVD and β-amyloid (1-42) peptides capable of forming cross-β sheet structures. Complementary synchrotron radiation FTIR microspectroscopy addresses secondary structure formation. The high synchrotron radiation source brilliance enables fast raster-scan experiments. © 2015 Elsevier Ltd.

  17. Probing droplets with biological colloidal suspensions on smart surfaces by synchrotron radiation micro- and nano-beams

    KAUST Repository

    Marinaro, Giovanni; Accardo, Angelo; Benseny-Cases, Nú ria; Burghammer, Manfred C.; Castillo-Michel, Hiram A.; Cotte, Marine; Dante, Silvia; De Angelis, Francesco De; Di Cola, Emanuela; Di Fabrizio, Enzo M.; Hauser, C.; Riekel, Christian

    2015-01-01

    Droplets with colloidal biological suspensions evaporating on substrates with defined wetting properties generate confined environments for initiating aggregation and self-assembly processes. We describe smart micro- and nanostructured surfaces, optimized for probing single droplets and residues by synchrotron radiation micro- and nanobeam diffraction techniques. Applications are presented for Ac-IVD and β-amyloid (1-42) peptides capable of forming cross-β sheet structures. Complementary synchrotron radiation FTIR microspectroscopy addresses secondary structure formation. The high synchrotron radiation source brilliance enables fast raster-scan experiments. © 2015 Elsevier Ltd.

  18. Design of a dedicated beamline for THz coherent synchrotron radiation at UVSOR-III

    International Nuclear Information System (INIS)

    Kimura, Shin-ichi; Nakamura, Eiken; Imura, Keiichiro; Katoh, Masahiro; Hosaka, Masahito; Takahashi, Toshiharu

    2012-01-01

    We report the design of a THz beamline for coherent synchrotron radiation (CSR) at the UVSOR-III very-low-emittance synchrotron radiation light source. The emitted THz-CSR is collected by a three-dimensional 'magic mirror', which is a perfect collecting mirror for bending-magnet radiation with an acceptance angle of 288 mrad (H) × 80 mrad (V). A quasi-monochromatic THz-CSR with an average flux of 104 μW/0.1 % b.w. and a peak power of 120 nJ/pulse/0.1 % b.w. is expected at the beamline.

  19. Stanford Synchrotron Radiation Laboratory. Activity report for 1989

    International Nuclear Information System (INIS)

    1996-01-01

    The April, 1990 SPEAR synchrotron radiation run was one of the two or three best in SSRL's history. High currents were accumulated, ramping went easily, lifetimes were long, beam dumps were infrequent and the average current was 42.9 milliamps. In the one month of operation, 63 different experiments involving 208 scientists from 50 institutions received beam. The end-of-run summary forms completed by the experimenters indicated high levels of user satisfaction with the beam quality and with the outstanding support received from the SSRL technical and scientific staffs. These fine experimental conditions result largely from the SPEAR repairs and improvements performed during the past year and described in Section I. Also quite significant was Max Cornacchia's leadership of the SLAG staff. SPEAR's performance this past April stands in marked contrast to that of the January-March, 1989 run which is also described in Section I. It is, we hope, a harbinger of the operation which will be provided in FY '91, when the SPEAR injector project is completed and SPEAR is fully dedicated to synchrotron radiation research. Over the coming years, SSRL intends to give highest priority to increasing the effectiveness of SPEAR and its various beam lines. The beam line and facility improvements performed during 1989 are described in Section III. In order to concentrate effort on SSRL's three highest priorities prior to the March-April run: (1) to have a successful run, (2) to complete and commission the injector, and (3) to prepare to operate, maintain and improve the SPEAR/injector system, SSRL was reorganized. In the new organization, all the technical staff is contained in three groups: Accelerator Research and Operations Division, Injector Project and Photon Research and Operations Division, as described in Section IV. In spite of the limited effectiveness of the January-March, 1989 run, SSRL's users made significant scientific progress, as described in Section V of this report

  20. Stanford Synchrotron Radiation Laboratory. Activity report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The April, 1990 SPEAR synchrotron radiation run was one of the two or three best in SSRL`s history. High currents were accumulated, ramping went easily, lifetimes were long, beam dumps were infrequent and the average current was 42.9 milliamps. In the one month of operation, 63 different experiments involving 208 scientists from 50 institutions received beam. The end-of-run summary forms completed by the experimenters indicated high levels of user satisfaction with the beam quality and with the outstanding support received from the SSRL technical and scientific staffs. These fine experimental conditions result largely from the SPEAR repairs and improvements performed during the past year and described in Section I. Also quite significant was Max Cornacchia`s leadership of the SLAG staff. SPEAR`s performance this past April stands in marked contrast to that of the January-March, 1989 run which is also described in Section I. It is, we hope, a harbinger of the operation which will be provided in FY `91, when the SPEAR injector project is completed and SPEAR is fully dedicated to synchrotron radiation research. Over the coming years, SSRL intends to give highest priority to increasing the effectiveness of SPEAR and its various beam lines. The beam line and facility improvements performed during 1989 are described in Section III. In order to concentrate effort on SSRL`s three highest priorities prior to the March-April run: (1) to have a successful run, (2) to complete and commission the injector, and (3) to prepare to operate, maintain and improve the SPEAR/injector system, SSRL was reorganized. In the new organization, all the technical staff is contained in three groups: Accelerator Research and Operations Division, Injector Project and Photon Research and Operations Division, as described in Section IV. In spite of the limited effectiveness of the January-March, 1989 run, SSRL`s users made significant scientific progress, as described in Section V of this report.

  1. Pump-probe experiments in atoms involving laser and synchrotron radiation: an overview

    International Nuclear Information System (INIS)

    Wuilleumier, F J; Meyer, M

    2006-01-01

    The combined use of laser and synchrotron radiations for atomic photoionization studies started in the early 1980s. The strong potential of these pump-probe experiments to gain information on excited atomic states is illustrated through some exemplary studies. The first series of experiments carried out with the early synchrotron sources, from 1960 to about 1995, are reviewed, including photoionization of unpolarized and polarized excited atoms, and time-resolved laser-synchrotron studies. With the most advanced generation of synchrotron sources, a whole new class of pump-probe experiments benefiting from the high brightness of the new synchrotron beams has been developed since 1996. A detailed review of these studies as well as possible future applications of pump-probe experiments using third generation synchrotron sources and free electron lasers is presented. (topical review)

  2. Antiradiation UV Vaccine: UV Radiation, Biological effects, lesions and medical management - immune-therapy and immune-protection.

    Science.gov (United States)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key Words: Ultraviolet radiation,Standard Erythema Dose(SED), Minimal Erythema Dose(MED), Sun Burns, Solar Dermatitis, Sun Burned Disease, DNA Damage,Cell Damage, Antiradiation UV Vaccine, Immune-Prophylaxis of Sun Burned Diseases, Immune-Prophylaxis of Sun Burns, Immune-Therapy of Sun-Burned Disease and Sun Burns,Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), Toxic Epidermal Necrolysis(TEN). Introduction: High doses of UV generated by solar source and artificial sources create an exposure of mammals and other species which can lead to ultraviolet(UV)radiation- associated disease (including erythema, epilation, keratitis, etc.). UV radiation belongs to the non-ionizing part of the electromagnetic spectrum and ranges between 100 nm and 400 nm with 100 nm having been chosen arbitrarily as the boundary between non-ionizing and ionizing radiation, however EMR is a spectrum and UV can produce molecular ionization. UV radiation is conventionally categorized into 3 areas: UV-A (>315-400 nm),UV-B (>280-315 nm)and UV-C (>100-280 nm) [IARC,Working Group Reports,2005] An important consequence of stratospheric ozone depletion is the increased transmission of solar ultraviolet (UV)radiation to the Earth's lower atmosphere and surface. Stratospheric ozone levels have been falling, in certain areas, for the past several decades, so current surface ultraviolet-B (UV-B) radiation levels are thought to be close to their modern day maximum. [S.Madronich et al.1998] Overexposure of ultraviolet radiation a major cause of skin cancer including basal cell carcinoma (BCC), squamous cell carcinoma (SCC) { collectively referred to as “non-melanoma" skin cancer (NMSC) and melanoma as well, with skin cancers being the most common cancer in North America. [Armstrong et al. 1993, Gallagher et al. 2005] Methods and Experimental Design: Our experiments and testing of a novel UV “Antiradiation Vaccine” have employed a wide variety of laboratory animals which include : Chinchilla

  3. Open cell conducting foams for high synchrotron radiation accelerators

    Directory of Open Access Journals (Sweden)

    S. Petracca

    2014-08-01

    Full Text Available The possible use of open cell conductive foams in high synchrotron radiation particle accelerators is considered. Available materials and modeling tools are reviewed, potential pros and cons are discussed, and preliminary conclusions are drawn.

  4. Synchrotron-radiation phase-contrast imaging of human stomach and gastric cancer: in vitro studies.

    Science.gov (United States)

    Tang, Lei; Li, Gang; Sun, Ying-Shi; Li, Jie; Zhang, Xiao-Peng

    2012-05-01

    The electron density resolution of synchrotron-radiation phase-contrast imaging (SR-PCI) is 1000 times higher than that of conventional X-ray absorption imaging in light elements, through which high-resolution X-ray imaging of biological soft tissue can be achieved. For biological soft tissue, SR-PCI can give better imaging contrast than conventional X-ray absorption imaging. In this study, human resected stomach and gastric cancer were investigated using in-line holography and diffraction enhanced imaging at beamline 4W1A of the Beijing Synchrotron Radiation Facility. It was possible to depict gastric pits, measuring 50-70 µm, gastric grooves and tiny blood vessels in the submucosa layer by SR-PCI. The fine structure of a cancerous ulcer was displayed clearly on imaging the mucosa. The delamination of the gastric wall and infiltration of cancer in the submucosa layer were also demonstrated on cross-sectional imaging. In conclusion, SR-PCI can demonstrate the subtle structures of stomach and gastric cancer that cannot be detected by conventional X-ray absorption imaging, which prompt the X-ray diagnosis of gastric disease to the level of the gastric pit, and has the potential to provide new methods for the imageology of gastric cancer.

  5. HERCULES Specialized Course on Synchrotron radiation and neutrons for extreme conditions studies - HSC12 - slides of the presentations

    International Nuclear Information System (INIS)

    Daniel, I.; Itie, J.P.; Meersman, F.; Jacobs, J.; Hantsetters, K. de; Syassen, K.; Krisch, M.; Mezouar, M.; Mac Millan, P.F.; Salmon, P.; Klotz, S.; Pascarelli, S.; Hansen, T.C.

    2011-01-01

    The purpose of this Hercules Specialized Course (HSC12) is to give the participants an introduction to high pressure research at large experimental facilities such as the synchrotron and the neutron reactor. The basic principles of synchrotron radiation and neutrons techniques at extreme conditions of pressure have been illustrated. Cross-disciplinary examples in a representative range of scientific areas, covering fundamental physics, earth and planetary science, chemistry and material science have been dealt with. Most presentations are dedicated to X-ray diffraction, X-ray absorption and neutron scattering of materials (solids, liquids or glasses) at high pressure. Several presentations deal with the experimental set-up and especially the preparation of the diamond anvil. This document is made up of the slides of the presentations. (A.C.)

  6. Radio galaxies radiation transfer, dynamics, stability and evolution of a synchrotron plasmon

    CERN Document Server

    Pacholczyk, A G

    1977-01-01

    Radio Galaxies: Radiation Transfer, Dynamics, Stability and Evolution of a Synchrotron Plasmon deals with the physics of a region in space containing magnetic field and thermal and relativistic particles (a plasmon). The synchrotron emission and absorption of this region are discussed, along with the properties of its spectrum; its linear and circular polarization; transfer of radiation through such a region; its dynamics and expansion; and interaction with external medium.Comprised of eight chapters, this volume explores the stability, turbulence, and acceleration of particles in a synchrotro

  7. Challenges for utilization of the new synchrotron facilities

    International Nuclear Information System (INIS)

    Attwood, D.

    1989-08-01

    The emergence of third generation synchrotron radiation facilities provides new scientific opportunities and challenges. Optimized for small phase space electron beams, long periodic magnet structures, and dedicated scientific user access -- these new machines promise significant increases in spectral brightness, as well as enhanced spatial and temporal coherence properties, which translates to new opportunities for combining high spatial and spectral resolution. The challenges to the machine builders are well known: designing and maintaining the small phase space beams, constructing long magnet structures with minimal errors, stabilizing the beam to long and short term fluctuations, and multiple undulator tuning, to name a few. The challenges in beamline optics, spectroscopic and focusing systems are also quite clear. The issue of optical stability quickly comes to the forefront as we attempt to focus and image to ever finer spatial scales, with minimal loss of photon flux. Surface figure and polish are of greater importance, as is minimization of aberrations, as we strive to maintain these small phase space photon beams. The higher intensities and power loading mandate cooled, or cleverly controlled optics, to avoid thermal distortion. Spectroscopic efficiency, with minimal wavefront distortion to the near diffraction limited radiation, becomes more important, as do order and harmonic suppression resolution are called for -- with both diffractive and reflective optics. Two of our major issues will be efficient time sharing of these valuable resources, relegating time consuming setup procedures to branch lines while others take data, and controlling the cost of these ever more complex beamline engineering systems. 12 refs., 6 figs., 8 tabs

  8. Safety Analysis Report: X17B2 beamline Synchrotron Medical Research Facility

    International Nuclear Information System (INIS)

    Gmuer, N.F.; Thomlinson, W.

    1990-02-01

    This report contains a safety analysis for the X17B2 beamline synchrotron medical research facility. Health hazards, risk assessment and building systems are discussed. Reference is made to transvenous coronary angiography

  9. A preliminary study of synchrotron light sources for x-ray lithography

    International Nuclear Information System (INIS)

    Hoffmann, C.R.; Bigham, C.B.; Ebrahim, N.A.; Sawicki, J.A.; Taylor, T.

    1989-02-01

    A preliminary study of synchrotron light sources has been made, primarily oriented toward x-ray lithography. X-ray lithography is being pursued vigorously in several countries, with a goal of manufacturing high-density computer chips (0.25 μm feature sizes), and may attain commercial success in the next decade. Many other applications of soft x-rays appear worthy of investigation as well. The study group visited synchrotron radiation facilities and had discussions with members of the synchrotron radiation community, particularly Canadians. It concluded that accelerator technology for a conventional synchrotron light source appropriate for x-ray lithography is well established and is consistent with skills and experience at Chalk River Nuclear Laboratories. Compact superconducting systems are being developed also. Their technical requirements overlap with capabilities at Chalk River. (32 refs)

  10. X-UV lasers and their promising applications

    International Nuclear Information System (INIS)

    Ros, D.

    2004-01-01

    The author reviews 30 years of research and achievements concerning X-UV lasers. Typical features of X-UV lasers are: a large number of photons emitted per impulse (between 10 12 and 10 14 ) and very short impulses (between 1 and 100 ps). When a crystal is irradiated by a X-UV laser, these features favor new physical processes that did not appear when the irradiation was performed with other X-UV sources like synchrotron radiation for instance. Their high brilliance and coherence properties make them efficient means as irradiating sources or imaging tools. X-UV laser interferometry allows the mapping of a surface at the nano-metric scale without any interaction between the laser beam and the surface. (A.C.)

  11. Proceedings of the XIII International School and Symposium on Synchrotron Radiation in Natural Science 2016, Ustroń-Jaszowiec, Poland

    Science.gov (United States)

    Kozak, Maciej; Kwiatek, Wojciech M.; Piszora, Paweł

    2017-11-01

    This special issue of Nuclear Instruments and Methods in Physics Research Section B of Nuclear Instruments and Methods in Physics Research was prepared to present recent achievements in synchrotron radiation science and mark the 25th anniversary of the Polish Synchrotron Radiation Society (PSRS) which fell in 2016. It presents selected papers submitted after the 13th International School and Symposium on Synchrotron Radiation in Natural Science (ISSRNS 2016) which was organized by PSRS in cooperation with the Adam Mickiewicz University. It is worth noting that PSRS is probably one of the earliest founded scientific societies focused on promoting the use of synchrotron radiation research (for details visit the PSRS home page: http://www.synchrotron.org.pl.

  12. Risks of increased UV-B radiation for humans

    International Nuclear Information System (INIS)

    Przybilla, B.; Eberlein-Koenig, B.; Bergner, T.

    1994-01-01

    If not compensated in any way, depletion of the stratospheric ozone layer leads to an increase of UV-B radiation at the earth's surface, especially towards the short-wave range, which is biologically the more active. The most concerning effect here is that of UV-B induced skin reactions, in particular malignant skintumors (malignant melanoma, spinocellular carcinoma, basalioma), whose incidence is expected to increase in future. As some photoreactions can be inhibited or enhanced also by radiation outside their action spectrum, it is possible for changes in solar spectral radiation flux density to influence photo-induced reactions that are driven at wavelengths outside the UV-B range. The authors have performed studies for developing methods of quantifying individual UV sensitivity. In vitro studies have shown that UV-A dependent photoreactions can be partly inhibited by UV-B. A number of drugs, as well as sulphites, which are used as preservatives amongst other things, have been shown to have phototoxic properties that may be relevant to photocarcinogenesis. Irradiation tests on cell cultures for different UV-B ranges have shown that irradiation at shorter wavelengths leads to a stronger release of proinflammatory cytokines that ar longer wavelengths with the same dose. Altogether it can be said that despite compelling theoretical evidence it is not easily possible to predict the actual consequences of an increase in particular of short-wave UV-B radiation at the earth's surface. The assumed effects must be examined individually by appropriate methods. (orig.) [de

  13. CIRCE: A dedicated storage ring for coherent THz synchrotron radiation

    International Nuclear Information System (INIS)

    Byrd, J.M.; Martin, Michael C.; McKinney, W.R.; Munson, D.V.; Nishimura, H.; Robin, D.S.; Sannibale, F.; Schlueter, R.D.; Thur, W.G.; Jung, J.Y.; Wan, W.

    2003-01-01

    We present the concepts for an electron storage ring dedicated to and optimized for the production of stable coherent synchrotron radiation (CSR) over the far-infrared terahertz wavelength range from 200 mm to about one cm. CIRCE (Coherent InfraRed CEnter) will be a 66 m circumference ring located on top of the ALS booster synchrotron shielding tunnel and using the existing ALS injector. This location provides enough floor space for both the CIRCE ring, its required shielding, and numerous beamlines. We briefly outline a model for CSR emission in which a static bunch distortion induced by the synchrotron radiation field is used to significantly extend the stable CSR emission towards higher frequencies. This model has been verified with experimental CSR results. We present the calculated CIRCE photon flux where a gain of 6-9 orders of magnitude is shown compared to existing far-IR sources. Additionally, the particular design of the dipole vacuum chamber has been optimized to allow an excellent transmission of these far-infrared wavelengths. We believe that the CIRCE source can be constructed for a modest cost

  14. High-resolution inner-shell spectroscopies of free atoms and molecules using soft-x-ray beamlines at the third-generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2003-01-01

    This article reviews the current status of inner-shell spectroscopies of free atoms and molecules using high-resolution soft-x-ray monochromators installed in the soft-x-ray beamlines at the third-generation synchrotron radiation facilities. Beamlines and endstations devoted to atomic and molecular inner-shell spectroscopies and various types of experimental techniques, such as ion yield spectroscopy, resonant photoemission spectroscopy and multiple-coincidence momentum imaging, are described. Experimental results for K-shell excitation of Ne, O K-shell excitation of H 2 O and CO 2 , C K-shell excitation and ionization of CO 2 and B K-shell excitation of BF 3 , obtained at beamline 27SU of SPring-8 in Japan, are discussed as examples of atomic and molecular inner-shell spectroscopies using the third-generation synchrotron radiation sources. (topical review)

  15. Operational surface UV radiation product from GOME-2 and AVHRR/3 data

    OpenAIRE

    J. Kujanpää; N. Kalakoski

    2015-01-01

    The surface ultraviolet (UV) radiation product, version 1.20, generated operationally in the framework of the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is described. The product is based on the total ozone column derived from the measurements of the second Global Ozone Monitoring Experiment (GOME-2) instrument aboard EUMETSA...

  16. Effects and mechanism of UV-B radiation on rice growth

    International Nuclear Information System (INIS)

    Gao Xiaoxiao; Gao Zhaohua; Zu Yanqun

    2009-01-01

    The enhancement of UV-B radiation influences the growth of rice and physiology in different levels and this performances as changes in morphology destroyed photosynthetic system unstable anti-oxidation system changes of endogenous hormone content exacerbated rice diseases decreased biomass and developmental stage delay. Through the establishment of the response index we can evaluate the varietal differences in responses of the rice to UV-B radiation. Reasons for such varietal differences were differences in rice gene physiology and morphology developmental stage and environmental factors. The main mechanism in responses of the rice to UV-B radiation was induction of flavonoid compounds and accumulation of anthocyanins. Based on the analysis of the influence of enhanced UV-B radiation to rice and the varietal differences in responses to UV-B radiation and mechanism of rice the direction of the further research about the relationship between the rice and UV-B was put forward

  17. Experimental studies on coherent synchrotron radiation at an emittance exchange beam line

    Science.gov (United States)

    Thangaraj, J. C. T.; Thurman-Keup, R.; Ruan, J.; Johnson, A. S.; Lumpkin, A. H.; Santucci, J.

    2012-11-01

    One of the goals of the Fermilab A0 photoinjector is to investigate experimentally the transverse to longitudinal emittance exchange (EEX) principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR) in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy-chirped beam.

  18. Polarized vacuum ultraviolet and X-radiation

    International Nuclear Information System (INIS)

    Samson, J.A.R.

    1978-01-01

    The most intense source of polarized vacuum UV and X-radiation is synchrotron radiation, which exhibits a degree of partially polarized light between about 80-100%. However, the radiation transmitted by vacuum UV monochromators can also be highly polarized. The Seya-Namioka type of monochromator can produce partially polarized radiation between 50-80%. For certain experiments it is necessary to know the degree of polarisation of the radiation being used. Also, when synchrotron radiation and a monochromator are combined the polarization characteristic of both should be known in order to make full use of these polarization properties. The polarizing effect on monochromators (i.e. diffraction gratings) have been measured at the Seya angle and at grazing angles for various spectral orders. The author presents the first experimental evidence that the reciprocity law holds for polarization by reflection where the angle of incidence and diffraction are unequal. These results are reviewed along with the techniques for measuring the degree of polarization. (Auth.)

  19. A guide to using the BL-6A2 synchrotron facilities at the photon factory, Tsukuba, Japan

    International Nuclear Information System (INIS)

    1992-08-01

    The Photon Factory (PF) consists of a 2.5 GeV electron/positron linear accelerator, a 2.5 GeV storage ring as a dedicated synchrotron light source, beam lines and experimental stations, to serve users synchrotron radiation (SR) for experiment. The 2.5 GeV linear accelerator is used as an injector for both PF ring and the accumulating ring (AR). It is currently capable of injecting positrons or electrons. The AR has been partly used as a high energy synchrotron radiation source from its bending magnets, and partly augmented with a new insertion device to produce elliptically polarized radiation. It has been operated for the users of synchrotron radiation at the energy from 5.8 to 6.5 GeV. With the electron beam in the storage ring for SR research, the instability of the beam is inevitable arising from ions or charged dust trapped by the beam. Therefore, positrons are used instead of electrons in order to completely overcome the difficulty. The wiggler produces vertically polarized radiation in the range of photon energy. The superconducting NbTi is well suitable to obtain high magnetic field. (K.I.)

  20. Three-dimensional monochromatic x-ray computed tomography using synchrotron radiation

    Science.gov (United States)

    Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Katsuyuki; Uyama, Chikao

    1998-08-01

    We describe a technique of 3D computed tomography (3D CT) using monochromatic x rays generated by synchrotron radiation, which performs a direct reconstruction of a 3D volume image of an object from its cone-beam projections. For the development, we propose a practical scanning orbit of the x-ray source to obtain complete 3D information on an object, and its corresponding 3D image reconstruction algorithm. The validity and usefulness of the proposed scanning orbit and reconstruction algorithm were confirmed by computer simulation studies. Based on these investigations, we have developed a prototype 3D monochromatic x-ray CT using synchrotron radiation, which provides exact 3D reconstruction and material-selective imaging by using the K-edge energy subtraction technique.

  1. Structure analysis of photo-induced triplet phenylnitrene using synchrotron radiation

    CERN Document Server

    Kawano, M; Uekusa, H; Ohashi, Y; Ozawa, Y; Matsubara, K; Imabayashi, H; Mitsumi, M; Toriumi, K

    2003-01-01

    The crystal structures of [(PhCH sub 2) sub 2 NH sub 2] sup + [m-C sub 6 H sub 4 (N sub 3)-(COO)] sup - before and after UV-irradiation were analyzed at 25 K by using an X-ray vacuum camera set up at the synchrotron laboratory (SPring-8). The C-N (nitrene) bond distance in the triplet state of the photo-induced m-carboxyphenylnitrene is determined to be 1.34(4) A.

  2. Synchrotron radiation use in some researchs in program in Brazil

    International Nuclear Information System (INIS)

    Caticha-Ellis, S.

    1983-01-01

    Physical and biological applications of the synchrotron radiation in some pure and applied research programs in progress in Brazil are presented, in special those related with crystallografic research. (L.C.) [pt

  3. UV-Radiation: From Physics to Impacts

    Directory of Open Access Journals (Sweden)

    Hanns Moshammer

    2017-02-01

    Full Text Available Ultraviolet (UV radiation has affected life at least since the first life forms moved out of the seas and crawled onto the land. Therefore, one might assume that evolution has adapted to natural UV radiation. However, evolution is mostly concerned with the propagation of the genetic code, not with a long, happy, and fulfilling life. Because rickets is bad for a woman giving birth, the beneficial effects of UV-radiation outweigh the adverse effects like aged skin and skin tumors of various grades of malignancy that usually only afflict us at older age. Anthropogenic damage to the stratospheric ozone layer and frighteningly high rates of melanoma skin cancer in the light-skinned descendants of British settlers in Australia piqued interest in the health impacts of UV radiation. A changing cultural perception of the beauty of tanned versus light skin and commercial interests in selling UV-emitting devices such as tanning booths caught public health experts off-guard. Counseling and health communication are extremely difficult when dealing with a “natural” risk factor, especially when this risk factor cannot (and should not be completely avoided. How much is too much for whom or for which skin type? How even measure “much”? Is it the (cumulative dose or the dose rate that matters most? Or should we even construct a more complex metric such as the cumulative dose above a certain dose rate threshold? We find there are still many open questions, and we are glad that this special issue offered us the opportunity to present many interesting aspects of this important topic.

  4. Mark IV 'Grasshopper' grazing incidence mono-chromator for the Canadian Synchrotron Radiation Facility (CSRF)

    International Nuclear Information System (INIS)

    Tan, K.H.; Bancroft, G.M.; Coatsworth, L.L.; Yates, B.W.

    1982-01-01

    The vacuum, mechanical, and optical characteristics of a 'Grasshopper' grazing incidence monochromator for use with a synchrotron radiation source in the 30-300 eV range is described. The monochromator is compatible with ultrahigh vacuum ( -10 Torr throughout), and the motor driven scan mechanism is linear and reliable. The monchromator has been calibrated using several known absorption edges between 36 and 102 eV and a nonlinear least squares fit to the scan equation. These same absorption edges, plus a scan over zero order, show that the present resolution of the monochromator (with 10 and 16 μm exit and entrance slits respectively) is 0.16 A (0.06 eV at the AlLsub(2,3) edge). With 10 μm entrance and exit slits the resolution will be very close to the theoretical Δlambda = 0.083 A

  5. Effect of far-UV and near-UV radiation on the cell surface charge of the protozoan Tritrichomonas foetus

    Energy Technology Data Exchange (ETDEWEB)

    Silva Filho, F C; Elias, C A; Souza, W de

    1986-05-01

    Cell electrophoresis was used to detect the effect of far-UV or near-UV radiation on the cell surface charge of the pathogenic protozoan Tritrichomonas foetus. Either far-UV or near-UV radiation interfered with the surface charge of T. foetus at fluences which inhibited cell growth by 50%. Both UV-radiations induced a significant decrease on surface charge of T. foetus, as evaluated by measurement of its electrophoretic mobility (EPM). Determinations of EPM of protozoa in solution of low ionic strength indicated that the decrease in the EPM induced by far-UV is much less pronounced that that observed for near-UV or control cells.

  6. Effect of far-UV and near-UV radiation on the cell surface charge of the protozoan Tritrichomonas foetus

    International Nuclear Information System (INIS)

    Silva Filho, F.C.; Elias, C.A.; Souza, W. de

    1986-01-01

    Cell electrophoresis was used to detect the effect of far-UV or near-UV radiation on the cell surface charge of the pathogenic protozoan Tritrichomonas foetus. Either far-UV or near-UV radiation interfered with the surface charge of T. foetus at fluences which inhibited cell growth by 50%. Both UV-radiations induced a significant decrease on surface charge of T. foetus, as evaluated by measurement of its electrophoretic mobility (EPM). Determinations of EPM of protozoa in solution of low ionic strength indicated that the decrease in the EPM induced by far-UV is much less pronounced that that observed for near-UV or control cells. (author)

  7. Surface photo reaction processes using synchrotron radiation; Hoshako reiki ni yoru hyomenko hanno process

    Energy Technology Data Exchange (ETDEWEB)

    Imaizumi, Y. [Tohoku University, Sendai (Japan). Institute for Materials Research; Yoshigoe, A. [Toyohashi University of Technology, Aichi (Japan); Urisu, T. [Toyohashi University of Technology, Aichi (Japan). Institute for Molecular Science

    1997-08-20

    This paper introduces the surface photo reaction processes using synchrotron radiation, and its application. A synchrotron radiation process using soft X-rays contained in electron synchrotron radiated light as an excited light source has a possibility of high-resolution processing because of its short wave length. The radiated light can excite efficiently the electronic state of a substance, and can induce a variety of photochemical reactions. In addition, it can excite inner shell electrons efficiently. In the aspect of its application, it has been found that, if radiated light is irradiated on surfaces of solids under fluorine-based reaction gas or Cl2, the surfaces can be etched. This technology is utilized practically. With regard to radiated light excited CVD process, it may be said that anything that can be deposited by the ordinary plasma CVD process can be deposited. Its application to epitaxial crystal growth may be said a nano processing application in thickness direction, such as forming an ultra-lattice structure, the application being subjected to expectation. In micromachine fabricating technologies, a possibility is searched on application of a photo reaction process of the radiated light. 5 refs., 6 figs.

  8. Infrared spectroscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Lagarde, P.

    1978-01-01

    Storage rings are normally used as sources of radiation in the X-ray and the u.v. part of the spectrum. It is shown that, with a specially designed component, a storage ring like ACO at Orsay is a very powerful far-infrared source, whose advantages over classical wide band sources are reviewed. (author)

  9. UV Radiation and the Skin

    Directory of Open Access Journals (Sweden)

    Timothy Scott

    2013-06-01

    Full Text Available UV radiation (UV is classified as a “complete carcinogen” because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders. However, UV also benefits human health by mediating natural synthesis of vitamin D and endorphins in the skin, therefore UV has complex and mixed effects on human health. Nonetheless, excessive exposure to UV carries profound health risks, including atrophy, pigmentary changes, wrinkling and malignancy. UV is epidemiologically and molecularly linked to the three most common types of skin cancer, basal cell carcinoma, squamous cell carcinoma and malignant melanoma, which together affect more than a million Americans annually. Genetic factors also influence risk of UV-mediated skin disease. Polymorphisms of the melanocortin 1 receptor (MC1R gene, in particular, correlate with fairness of skin, UV sensitivity, and enhanced cancer risk. We are interested in developing UV-protective approaches based on a detailed understanding of molecular events that occur after UV exposure, focusing particularly on epidermal melanization and the role of the MC1R in genome maintenance.

  10. Status report of the Cornell High Energy Synchrotron Radiation Source (CHESS)

    International Nuclear Information System (INIS)

    Batterman, B.W.

    1980-01-01

    The Wilson Laboratory at Cornell University has done pioneering work on the development of high energy synchrotrons. In the last decade the 12 GeV Wilson Synchrotron was the most energetic electron synchrotron in the world. In 1975 plans were formulated at the Wilson Laboratory to build a new electron-positron storage ring to cover the range from 4-8 GeV. The storage ring was to be constructed in the same tunnel as the present synchrotron and to use the latter as an injector for the ring. A novel injection feature was to be incorporated, namely, vernier phase compression. In this scheme, positron coalesence is to be performed by compressing a 30-60 bunch positron beam by tranferring individual bunches from the storage ring to the synchrotron and stacking back into the storage ring. This procedure takes advantage of the slight circumferential difference between the storage ring and the synchrotron. Positron beams of 10 mA have been achieved in CESR at the present time. The first colliding beam studies were performed in an October 1979 two-week running period at which time CHESS, the synchrotron radiation source associated with CESR, also had its first extended experience with synchrotron light. (orig.)

  11. Better Efficacy of Synchrotron Spatially Microfractionated Radiation Therapy Than Uniform Radiation Therapy on Glioma

    International Nuclear Information System (INIS)

    Bouchet, Audrey; Bräuer-Krisch, Elke; Prezado, Yolanda; El Atifi, Michèle; Rogalev, Léonid; Le Clec'h, Céline; Laissue, Jean Albert; Pelletier, Laurent; Le Duc, Géraldine

    2016-01-01

    Purpose: Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident, highly focused synchrotron beam into arrays of parallel microbeams, typically a few tens of microns wide and depositing several hundred grays. This irradiation modality was shown to have a high therapeutic impact on tumors, especially in intracranial locations. However, mechanisms responsible for such a property are not fully understood. Methods and Materials: Thanks to recent progress in dosimetry, we compared the effect of MRT and synchrotron broad beam (BB) radiation therapy delivered at comparable doses (equivalent to MRT valley dose) on tumor growth control and on classical radiobiological functions by histologic evaluation and/or transcriptomic analysis. Results: MRT significantly improved survival of rats bearing 9L intracranial glioma compared with BB radiation therapy delivered at a comparable dose (P<.001); the efficacy of MRT and BB radiation therapy was similar when the MRT dose was half that of BB. The greater efficacy of MRT was not correlated with a difference in cell proliferation (Mki67 and proliferating cell nuclear antigen) or in transcriptomic stimulation of angiogenesis (vascular endothelial growth factor A or tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 2) but was correlated with a higher cell death rate (factor for apoptosis signals) and higher recruitment of macrophages (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and CD68 transcripts) a few days after MRT. Conclusions: These results show the superiority of MRT over BB radiation therapy when applied at comparable doses, suggesting that spatial fractionation is responsible for a specific and particularly efficient tissue response. The higher induction of cell death and immune cell activation in brain tumors treated by MRT may be involved in such responses.

  12. Better Efficacy of Synchrotron Spatially Microfractionated Radiation Therapy Than Uniform Radiation Therapy on Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Bouchet, Audrey, E-mail: audrey.m.bouchet@gmail.com [Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble (France); Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble (France); Bräuer-Krisch, Elke; Prezado, Yolanda [Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble (France); El Atifi, Michèle [Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble (France); Grenoble University Hospital, Grenoble (France); Rogalev, Léonid; Le Clec' h, Céline [Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble (France); Laissue, Jean Albert [University of Bern, Bern (Switzerland); Pelletier, Laurent, E-mail: laurent.pelletier@ujf-grenoble.fr [Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble (France); Grenoble University Hospital, Grenoble (France); Le Duc, Géraldine [Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble (France)

    2016-08-01

    Purpose: Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident, highly focused synchrotron beam into arrays of parallel microbeams, typically a few tens of microns wide and depositing several hundred grays. This irradiation modality was shown to have a high therapeutic impact on tumors, especially in intracranial locations. However, mechanisms responsible for such a property are not fully understood. Methods and Materials: Thanks to recent progress in dosimetry, we compared the effect of MRT and synchrotron broad beam (BB) radiation therapy delivered at comparable doses (equivalent to MRT valley dose) on tumor growth control and on classical radiobiological functions by histologic evaluation and/or transcriptomic analysis. Results: MRT significantly improved survival of rats bearing 9L intracranial glioma compared with BB radiation therapy delivered at a comparable dose (P<.001); the efficacy of MRT and BB radiation therapy was similar when the MRT dose was half that of BB. The greater efficacy of MRT was not correlated with a difference in cell proliferation (Mki67 and proliferating cell nuclear antigen) or in transcriptomic stimulation of angiogenesis (vascular endothelial growth factor A or tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 2) but was correlated with a higher cell death rate (factor for apoptosis signals) and higher recruitment of macrophages (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and CD68 transcripts) a few days after MRT. Conclusions: These results show the superiority of MRT over BB radiation therapy when applied at comparable doses, suggesting that spatial fractionation is responsible for a specific and particularly efficient tissue response. The higher induction of cell death and immune cell activation in brain tumors treated by MRT may be involved in such responses.

  13. SR TXRF: performances and perspectives of a dedicated synchrotron beamline

    International Nuclear Information System (INIS)

    Comin, F.; Apostolo, G.

    2000-01-01

    In principle the brilliance of synchrotron radiation x-ray beams combined with a high degree of linear polarization allows to reach at the same time low LLDs, mapping of the impurity distribution and chemical identification for elements as light as Na. The TXRF facility at the European synchrotron radiation facility is installed along a beamline dedicated to industry and is designed to reach ultimate detection limits of 6 x 10 7 at/cm 2 in selected areas, or to map the concentration of contaminants with LLD in the scale 10 9 at/cm 2 . In the present configuration the facility works in vacuum with a single element detector. Loading, unloading and pump down of wafers is completely automatic. Typical DDLs are of few 10 9 at/cm 2 for Na and Al and 10 8 at/cm 2 for transition metals. Absorption spectra (XANES and EXAFS) of TM help in the defining the chemistry of the contaminant. (author)

  14. Brightness and coherence of synchrotron radiation and high-gain free electron lasers

    International Nuclear Information System (INIS)

    Kim, K.J.

    1986-10-01

    The characteristics of synchrotron radiation are reviewed with particular attention to its phase-space properties and coherence. The transition of the simple undulator radiation to more intense, more coherent high-gain free electron lasers, is discussed

  15. Synchrotron radiation based analytical techniques (XAS and XRF)

    International Nuclear Information System (INIS)

    Jha, Shambhu Nath

    2014-01-01

    A brief description of the principles of X-ray absorption spectroscopy (XAS) and X-ray fluorescence (XRF) techniques is given in this article with emphasis on the advantages of using synchrotron radiation-based instrumentation/beamline. XAS technique is described in more detail to emphasize the strength of the technique as a local structural probe. (author)

  16. Applications of synchrotron radiation in biology and medicine

    International Nuclear Information System (INIS)

    Khole, V.

    1988-01-01

    This paper discusses the important role of synchrotron radiation in dealing with problems in various branches of biology and medicine, viz. molecular biology, molecular biophysics, biochemistry, cell biology, X-ray microscopy, molecular surgery, medical diagnostics (angiography, X-ray radiography, forensic medicine, element analysis), environmental biology, pollution control and photobiology. (author). 15 refs., 9 figs

  17. Survival Analysis of F98 Glioma Rat Cells Following Minibeam or Broad-Beam Synchrotron Radiation Therapy

    International Nuclear Information System (INIS)

    Gil, Silvia; Sarun, Sukhéna; Biete, Albert; Prezado, Yolanda; Sabés, Manel

    2011-01-01

    In the quest of a curative radiotherapy treatment for gliomas new delivery modes are being explored. At the Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF), a new spatially-fractionated technique, called Minibeam Radiation Therapy (MBRT) is under development. The aim of this work is to compare the effectiveness of MBRT and broad-beam (BB) synchrotron radiation to treat F98 glioma rat cells. A dose escalation study was performed in order to delimit the range of doses where a therapeutic effect could be expected. These results will help in the design and optimization of the forthcoming in vivo studies at the ESRF. Two hundred thousand F98 cells were seeded per well in 24-well plates, and incubated for 48 hours before being irradiated with spatially fractionated and seamless synchrotron x-rays at several doses. The percentage of each cell population (alive, early apoptotic and dead cells, where either late apoptotic as necrotic cells are included) was assessed by flow cytometry 48 hours after irradiation, whereas the metabolic activity of surviving cells was analyzed on days 3, 4, and 9 post-irradiation by using QBlue test. The endpoint (or threshold dose from which an important enhancement in the effectiveness of both radiation treatments is achieved) obtained by flow cytometry could be established just before 12 Gy in the two irradiation schemes, whilst the endpoints assessed by the QBlue reagent, taking into account the cell recovery, were set around 18 Gy in both cases. In addition, flow cytometric analysis pointed at a larger effectiveness for minibeams, due to the higher proportion of early apoptotic cells. When the valley doses in MBRT equal the dose deposited in the BB scheme, similar cell survival ratio and cell recovery were observed. However, a significant increase in the number of early apoptotic cells were found 48 hours after the minibeam radiation in comparison with the seamless mode

  18. The experimental apparatus for synchrotron radiation Moessbauer spectroscopy of BL11 in SPring-8

    International Nuclear Information System (INIS)

    Mitsui, T.; Kitao, S.; Zhang, X.W.; Marushita, M.; Seto, M.

    2001-01-01

    Synchrotron radiation Moessbauer spectroscopy (time spectrum of nuclear forward scattering and nuclear resonant inelastic scattering) enables us to study both the electronic state and lattice dynamics of a target material. Furthermore, the excellent properties of synchrotron radiation (polarization, pulse, small beam size) promise us the unique studies for material science. In order to progress in these studies, some experimental apparatuses were installed in BL11XU of SPring-8

  19. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    on high-arctic vegetation. They supplement previous investigations from the Arctic focussing on other variables like growth etc., which have reported no or minor plant responses to UV-B, and clearly indicates that UV-B radiation is an important factor affecting plant life at high-arctic Zackenberg......Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high......-arctic regions, manipulation experiments with various set-ups have been performed. Activation of plant defence mechanisms by production of UV-B absorbing compounds was significant in ambient UV-B in comparison to a filter treatment reducing the UV-B radiation. Despite the UV-B screening response, ambient UV...

  20. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high......-arctic regions, manipulation experiments with various set-ups have been performed. Activation of plant defence mechanisms by production of UV-B absorbing compounds was significant in ambient UV-B in comparison to a filter treatment reducing the UV-B radiation. Despite the UV-B screening response, ambient UV...... (mycorrhiza) or in the biomass of microbes in the soil of the root zone. However, the composition of the soil microbial community was different in the soils under ambient and reduced UV radiation after three treatment years. These results provide new insight into the negative impact of current UV-B fluxes...

  1. Atomic physics and synchrotron radiation: The production and accumulation of highly charged ions

    International Nuclear Information System (INIS)

    Johnson, B.M.; Meron, M.; Agagu, A.; Jones, K.W.

    1986-01-01

    Synchrotron radiation can be used to produce highly-charged ions, and to study photoexcitation and photoionization for ions of virtually any element in the periodic table. To date, with few exceptions, atomic physics studies have been limited to rare gases and a few metal vapors, and to photoexcitation energies in the VUV region of the electromagnetic spectrum. These limitations can now be overcome using photons produced by high-brightness synchrotron storage rings, such as the x-ray ring at the National Synchrotron Light Source (NSLS) at Brookhaven. Furthermore, calculations indicate that irradiation of an ion trap with an intense energetic photon beam will result in a viable source of highly-charged ions that can be given the name PHOBIS: the PHOton Beam Ion Source. Promising results, which encourage the wider systematic use of synchrotron radiation in atomic physics research, have been obtained in recent experiments on VUV photoemission and the production and storage of multiply-charged ions. 26 refs., 4 figs., 1 tab

  2. Synchrotron radiation sources in the Soviet Union

    International Nuclear Information System (INIS)

    Kapitza, S.P.

    1987-01-01

    Synchrotron radiation (SR) is now recognized to be an important instrument for experimental work in many fields of science. Recently the application of SR in medicine and industry, especially as a light source for microelectronics production have been demonstrated. Thus the development of SR sources has now grown to become a significant and independent dimension for accelerator research and technology. This article describes SR work in the Soviet Union

  3. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms.

    Science.gov (United States)

    Paul, Nigel D; Moore, Jason P; McPherson, Martin; Lambourne, Cathryn; Croft, Patricia; Heaton, Joanna C; Wargent, Jason J

    2012-08-01

    Solar ultraviolet (UV)-B radiation (280-315 nm) has a wide range of effects on terrestrial ecosystems, yet our understanding of how UV-B influences the complex interactions of plants with pest, pathogen and related microorganisms remains limited. Here, we report the results of a series of experiments in Lactuca sativa which aimed to characterize not only key plant responses to UV radiation in a field environment but also consequential effects for plant interactions with a sap-feeding insect, two model plant pathogens and phylloplane microorganism populations. Three spectrally modifying filters with contrasting UV transmissions were used to filter ambient sunlight, and when compared with our UV-inclusive filter, L. sativa plants grown in a zero UV-B environment showed significantly increased shoot fresh weight, reduced foliar pigment concentrations and suppressed population growth of green peach aphid (Myzus persicae). Plants grown under a filter which allowed partial transmission of UV-A radiation and negligible UV-B transmission showed increased density of leaf surface phylloplane microbes compared with the UV-inclusive treatment. Effects of UV treatment on the severity of two plant pathogens, Bremia lactucae and Botrytis cinerea, were complex as both the UV-inclusive and zero UV-B filters reduced the severity of pathogen persistence. These results are discussed with reference to known spectral responses of plants, insects and microorganisms, and contrasted with established fundamental responses of plants and other organisms to solar UV radiation, with particular emphasis on the need for future integration between different experimental approaches when investigating the effects of solar UV radiation. Copyright © Physiologia Plantarum 2011.

  4. Plan and present status of synchrotron radiation applications at HESYRL

    International Nuclear Information System (INIS)

    Zhang, Y.; Su, Y.; Qian, S.; Xu, X.; Jiang, D.; Xu, C.

    1985-01-01

    An 800 MeV electron storage ring is being constructed at Hefei, China. It is a dedicated UV synchrotron light source from which 27 beam lines could be extracted to accommodate about 50 experimental stations. Four beam lines and five stations are planned and some instruments have been designed and are under construction for the first five-year plan. The proposed experiments include x-ray lithography, soft x-ray microscopy, photoelectron spectroscopy, time-resolved spectroscopy and photochemistry

  5. Phase analysis and focusing of synchrotron radiation

    CERN Document Server

    Chubar, O; Snigirev, A

    1999-01-01

    High accuracy calculations of synchrotron radiation (SR) emitted by a relativistic electron show that the phase of the frequency domain electric field of SR differs from the phase of radiation of a virtual point source. These differences may result in the reduction of focusing efficiency of diffraction-limited SR, if the focusing is performed by conventional optical components optimised for point sources. We show that by applying a phase correction locally, one may transform the phase of SR electric field at a desired polarisation to that of a point source. Such corrections are computed for undulator radiation (planar and helical) and bending magnet radiation (central part and edges). The focusing of the corrected SR wavefront can result in the increase of peak intensity in the focused spot up to several times compared to the focusing without correction. For non-diffraction-limited radiation, the effect of the phase corrections is reduced. Due to this reason, the use of the proposed phase corrections in exist...

  6. Femto-second pulses of synchrotron radiation

    International Nuclear Information System (INIS)

    Zholents, A.A.; Zolotorev, M.S.

    1995-07-01

    A method capable of producing femto-second pulses of synchrotron radiation is proposed. It is based on the interaction of femto-second light pulses with electrons in a storage ring. The application of the method to the generation of ultra-short x-ray pulses at the Advance Light Source of Lawrence Berkeley National Laboratory has been considered. The same method can also be used for extraction of electrons from a storage ring in ultra-short series of microbunches spaced by the periodicity of light wavelength

  7. Liquid microjet synchrotron-radiation spectroscopy for biomolecules in water solution 2

    International Nuclear Information System (INIS)

    Shimada, Hiroyuki; Ukai, Masatoshi

    2014-01-01

    A new spectroscopic research of radiation induced damage on DNA and its constituent molecules is proposed, which is made possible using a liquid microjet technique for bio-solution under vacuum in combination with synchrotron-radiation aided site-selective excitation. The latter part of the proposal article describes the present state of research on the selective primary radiation interaction by looking at base moieties of nucleotides. X-ray absorption near edge structure (XANES) spectra at energies around the nitrogen K-edge for nucleotides, adenosine-5'-monophosphate (AMP), guanosine-5'-monophosophate (GMP), cytidine-5'-monophosophate (CMP), and adenosine-5'-triphosphate (ATP) in aqueous solutions are presented. Selective excitation of a base moiety using a synchrotron radiation allows us to investigate the interaction of the base moiety with water solvent. We discuss the change of spectral character of XANES which reveals to the structural change of the base moiety under different pH environmental condition of water solution. Through the present research a scope for cooperative direct and indirect primary radiation effects is given. (author)

  8. SUNY beamline facilities at the National Synchrotron Light Source (Final Report)

    International Nuclear Information System (INIS)

    Coppens, Philip

    2003-01-01

    The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellent training for students and postdoctoral scientists in the field

  9. SUNY beamline facilities at the National Synchrotron Light Source (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Coppens, Philip

    2003-06-22

    The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellent training for students and postdoctoral scientists in the field.

  10. Interest of synchrotron radiation for the therapy of brain tumors: methodology and preclinical applications; Interet du rayonnement synchrotron dans la therapie des tumeurs cerebrales: methodologie et applications precliniques

    Energy Technology Data Exchange (ETDEWEB)

    Regnard, P

    2007-12-15

    Microbeam radiation (M.R.T.) and stereotactic synchrotron radiation therapy (S.S.R.T.) are innovative techniques currently developed at the european Synchrotron radiation facility. these techniques led to promising, but rarely reproduced, results. the use of different tumoral models for each techniques limit comparisons. M.R.T. experiments on rats bearing 9L tumors 14 days after implantation displayed a double median survival time ( from 20 to 40 days) with a 200 {mu}m spacing irradiation, while a 100 {mu}m spacing irradiation tripled this median (67 days) but damaged normal tissue. the impact of the device dividing synchrotron beam into micro-beams, named multi sit collimator, was also demonstrated. combination of drugs with M.R.T. irradiation was tested. promising results (median survival time: 40 days and 30% of long term survivors) were obtained with an intratumoral injection of gadolinium coupled with a crossing M.R.T. irradiation at 460 Gy. Moreover, earlier M.R.T. irradiation (tumor at D10) quadrupled the median survival time (79 days) with 30% of long term survivors. A new imaging device to target the tumor before irradiation and an adapted collimator will increase the M.R.T. results. As the differences existing between tumoral models used in M.R.T. (9L models) and in S.S.R.T. (F98 models) are major, M.R.T./S.S.R.T. comparative experiments were realised on these two models. Results showed that the two techniques have the same efficacy on F98 model and that the M.R.T. is more effective on 9L model. This can help to define adapted tumor type for these techniques. (author)

  11. CAS CERN Accelerator School. Synchrotron radiation and free electron lasers. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1998-01-01

    These proceedings present the lectures given at the tenth specialised course organised by the CERN Accelerator School (CAS), the topic this time being 'Synchrotron Radiation and Free-electron Lasers'. A similar course was already given at Chester, UK in 1989 and whose proceedings were published as CERN 90-03. However, recent progress in this field has been so rapid that it became urgent to present a revised version of the course. Starting with a review of the characteristics of synchrotron radiation there follows introductory lectures on electron dynamics in storage rings, beam insertion devices, and beam current and radiation brightness limits. These themes are then developed with more detailed lectures on lattices and emittance, wigglers and undulators, current limitations, beam lifetime and quality, diagnostics and beam stability. Finally lectures are presented on linac and storage ring free-electron lasers. (orig.)

  12. Is UV-A radiation a cause of malignant melanoma?

    International Nuclear Information System (INIS)

    Moan, J.

    1994-01-01

    The first action spectrum for cutaneous malignant melanoma was published recently. This spectrum was obtained using the fish Xiphophorus. If the same action spectrum applies to humans, the following statements are true: Sunbathing products (agents to protect against the sun) that absorb UV-B radiation provide almost no protection against cutaneous malignant melanoma. UV-A-solaria are more dangerous than expected so far. If people are determined to use artificial sources of radiation for tanning, they should choose UV-B solaria rather than UV-A-solaria. Fluorescent tubes and halogen lamps may have weak melanomagenic effects. Ozone depletion has almost no effect on the incidence rates of CMM, since ozone absorbs very little UV-A radiation. Sunbathing products which contain UV-A-absorbing compounds or neutral filter (like titanium oxide) provide real protection against cutaneous malignant melanoma, at least if they are photochemically inert. 34 refs., 2 figs

  13. Applications of first order matricial theory to the calculation of storage ring designed for producing synchrotron radiation

    International Nuclear Information System (INIS)

    Machado, J.M.

    1984-01-01

    A review of first order matrix theory (linear approximation) used for calculating component elements of a particle accelerator employing the synchrotron principle of alternated gradient, is presented. Based on this theory, criteria for dimensioning synchrotron designed, exclusively for producing electromagnetic radiation, are established. The problem to find out optimum disposition of elements (straight line sections, quadrupolar magnetic lens, etc.) which take advantages of deflector magnets of the DCI synchrotron (Orsay Linear Accelerator Laboratory, French) aiming to construct a synchrotron designed to operate as electromagnetic radiation source, is solved. (M.C.K.) [pt

  14. Monte Carlo simulations of ultra high vacuum and synchrotron radiation for particle accelerators

    CERN Document Server

    AUTHOR|(CDS)2082330; Leonid, Rivkin

    With preparation of Hi-Lumi LHC fully underway, and the FCC machines under study, accelerators will reach unprecedented energies and along with it very large amount of synchrotron radiation (SR). This will desorb photoelectrons and molecules from accelerator walls, which contribute to electron cloud buildup and increase the residual pressure - both effects reducing the beam lifetime. In current accelerators these two effects are among the principal limiting factors, therefore precise calculation of synchrotron radiation and pressure properties are very important, desirably in the early design phase. This PhD project shows the modernization and a major upgrade of two codes, Molflow and Synrad, originally written by R. Kersevan in the 1990s, which are based on the test-particle Monte Carlo method and allow ultra-high vacuum and synchrotron radiation calculations. The new versions contain new physics, and are built as an all-in-one package - available to the public. Existing vacuum calculation methods are overvi...

  15. Revisiting scalar geodesic synchrotron radiation in Kerr spacetime

    International Nuclear Information System (INIS)

    Macedo, Caio F.B.; Crispino, Luis C.B.

    2011-01-01

    Full text: The Kerr solution [R. P. Kerr, Phys. Rev. D 11, 5 (1963)] is one of the most important black hole solutions of Einstein equations. It describes a chargeless rotating black hole, with Schwarzschild black hole as a particular case. It is estimated, inferred using distinct methods, that most black hole candidates have a considerable value of the rotation parameter [E. Berti, V. Cardoso, and A. Starinets, Classical Quantum Gravity 26, 163001 (2009)]. Although the Schwarzschild solution is suitable for a great variety of phenomena in star and black hole physics, the Kerr solution becomes very important in the explanation of the electrodynamical aspects of accretion disks for binary X-ray sources [The Kerr Spacetime: Rotating Black Holes in General Relativity, edited by D. L. Wiltshire, M. Visser, and S. M. Scott (Cambridge University Press, Cambridge, 2009)]. Thus, the investigation of how radiation emission processes are modified by the nontrivial curvature of rotating black holes is particularly important. As a first approximation to the problem, one can consider a moving particle, minimally coupled to the massless scalar field, in circular geodesic motion. The radiation emitted in this configuration is called scalar geodesic synchrotron radiation. In this work, we revisit the main aspects of scalar geodesic synchrotron radiation in Kerr spacetime, including some effects occurring in the high-frequency approximation. Our results can be readily compared with the results of the equivalent phenomena in Schwarzschild spacetime. (author)

  16. Time-resolved spectroscopy in synchrotron radiation

    International Nuclear Information System (INIS)

    Rehn, V.; Stanford Univ., CA

    1980-01-01

    Synchrotron radiation (SR) from large-diameter storage rings has intrinsic time structure which facilitates time-resolved measurements form milliseconds to picoseconds and possibly below. The scientific importance of time-resolved measurements is steadily increasing as more and better techniques are discovered and applied to a wider variety of scientific problems. This paper presents a discussion of the importance of various parameters of the SR facility in providing for time-resolved spectroscopy experiments, including the role of beam-line optical design parameters. Special emphasis is placed on the requirements of extremely fast time-resolved experiments with which the effects of atomic vibrational or relaxation motion may be studied. Before discussing the state-of-the-art timing experiments, we review several types of time-resolved measurements which have now become routine: nanosecond-range fluorescence decay times, time-resolved emission and excitation spectroscopies, and various time-of-flight applications. These techniques all depend on a short SR pulse length and a long interpulse period, such as is provided by a large-diameter ring operating in a single-bunch mode. In most cases, the pulse shape and even the stability of the pulse shape is relatively unimportant as long as the pulse length is smaller than the risetime of the detection apparatus, typically 1 to 2 ns. For time resolution smaller than 1 ns, the requirements on the pulse shape become more stringent. (orig./FKS)

  17. Experimental studies on coherent synchrotron radiation at an emittance exchange beam line

    Directory of Open Access Journals (Sweden)

    J. C. T. Thangaraj

    2012-11-01

    Full Text Available One of the goals of the Fermilab A0 photoinjector is to investigate experimentally the transverse to longitudinal emittance exchange (EEX principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy-chirped beam.

  18. AILES: the infrared and THz beamline on SOLEIL synchrotron radiation source

    International Nuclear Information System (INIS)

    Roy, P.; Brubach, J.B.; Rouzieres, M.; Pirali, O.; Kwabia Tchana, F.; Manceron, L.

    2008-01-01

    The development of a new infrared beamline (ligne de lumiere AILES) at the third generation Synchrotron Radiation source SOLEIL is underway. This beamline utilizes infrared synchrotron radiation from both the edge emission and the constant field conventional source. The expected performances including flux, spatial distribution of the photons, spectral range and stability are calculated and discussed. The optical system, spectroscopic stations and workspace are described. The calculation in the near field approach and the simulation by ray tracing show that the source with its adapted optics offers high flux and brilliance for a variety of infrared experiments. We also review the main research themes and the articulation and developments of the infrared sources at SOLEIL. (authors)

  19. Plant Responses to Increased UV-B Radiation: A Research Project

    Science.gov (United States)

    DAntoni, H. L.; Skiles, J. W.; Armstrong, R.; Coughlan, J.; Daleo, G.; Mayoral, A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Ozone decrease implies more ultraviolet-B (UV-B) radiation reaching the surface of the Earth. Increased UV-B radiation triggers responses by living organisms. Despite the large potential impacts on vegetation, little is known about UV-B effects on terrestrial ecosystems. Long-term ecological studies are needed to quantify the effects of increased UV radiation on terrestrial ecosystems, asses the risks, and produce reliable data for prediction. Screening pigments are part of one of the protective mechanism in plants. Higher concentrations of screening pigments in leaves may be interpreted as a response to increased UV radiation. If the screening effect is not sufficient, important molecules will be disturbed by incoming radiation. Thus, genetics, photosynthesis, growth, plant and leaf shape and size, and pollen grains may be affected. This will have an impact on ecosystem dynamics, structure and productivity. It is necessary to monitor selected terrestrial ecosystems to permit detection and interpretation of changes attributable to global climate change and depleted ozone shield. The objectives of this project are: (1) To identify and measure indicators of the effects of increased solar UV-B radiation on terrestrial plants; (2) to select indicators with the greatest responses to UV-B exposure; (3) to test, adapt or create ecosystem models that use the information gathered by this project for prediction and to enhance our understanding of the effects of increased UV-B radiation on terrestrial ecosystems. As a first step to achieve these objectives we propose a three-year study of forest and steppe vegetation on the North slope of the Brooks Range (within the Arctic circle, in Alaska), in the Saguaro National Monument (near Tucson, Arizona) and in the forests and steppes of Patagonia (Argentina). We selected (1) vegetation north of the Polar Circle because at 70N there is 8% risk of plant damage due to increased UV-B radiation; (2) the foothills of Catalina Mountains

  20. Elevated UV-B radiation incident on Quercus robur leaf canopies enhances decomposition of resulting leaf litter in soil

    International Nuclear Information System (INIS)

    Newsham, K.K.; Greenslade, P.D.; Kennedy, V.H.; McLeod, A.R.

    1999-01-01

    We examined whether the exposure of Quercus robur L. to elevated UV-B radiation (280–315 nm) during growth would influence leaf decomposition rate through effects on litter quality. Saplings were exposed for eight months at an outdoor facility in the UK to a 30% elevation above the ambient level of erythemally weighted UV-B radiation under UV-B treatment arrays of fluorescent lamps filtered with cellulose diacetate, which transmitted both UV-B and UV-A (315–400 nm) radiation. Saplings were exposed to elevated UV-A alone under control arrays of lamps filtered with polyester and to ambient radiation under unenergised arrays of lamps. Abscised leaves from saplings were enclosed in 1 mm2 mesh nylon bags, placed in a Quercus–Fraxinus woodland and were sampled at 0.11, 0.53, 1.10 and 1.33 years for dry weight loss, chemical composition and saprotrophic fungal colonization. At abscission, litters from UV-A control arrays had ≈ 7.5% higher lignin/nitrogen ratios than those from UV-B treatment and ambient arrays (P < 0.06). Dry weight loss of leaves treated with elevated UV-B radiation during growth was 2.5% and 5% greater than that of leaves from UV-A control arrays at 0.53 and 1.33 years, respectively. Litter samples from UV-B treatment arrays lost more nitrogen and phosphorus than samples from ambient arrays and more carbon than samples from UV-A control arrays. The annual fractional weight loss of litter from UV-B treatment arrays was 8% and 6% greater than that of litter from UV-A control and ambient arrays, respectively. Regression analyses indicated that the increased decomposition rate of UV-B treated litters was associated with enhanced colonization of leaves by basidiomycete fungi, the most active members of the soil fungal community, and that the frequency of these fungi was negatively associated with the initial lignin/nitrogen ratio of leaves. (author)