WorldWideScience

Sample records for synchrotron tomographic microscopy

  1. Synchrotron radiation X-ray tomographic microscopy (SRXTM) of brachiopod shell interiors for taxonomy: Preliminary report

    OpenAIRE

    Motchurova-Dekova Neda; Harper David A.T.

    2010-01-01

    Synchrotron radiation X-ray tomographic microscopy (SRXTM) is a non-destructive technique for the investigation and visualization of the internal features of solid opaque objects, which allows reconstruction of a complete three-dimensional image of internal structures by recording of the differences in the effects on the passage of waves of energy reacting with those structures. Contrary to X-rays, produced in a conventional X-ray tube, the intense synchrot...

  2. Deciphering complex, functional structures with synchrotron-based absorption and phase contrast tomographic microscopy

    Science.gov (United States)

    Stampanoni, M.; Reichold, J.; Weber, B.; Haberthür, D.; Schittny, J.; Eller, J.; Büchi, F. N.; Marone, F.

    2010-09-01

    Nowadays, thanks to the high brilliance available at modern, third generation synchrotron facilities and recent developments in detector technology, it is possible to record volumetric information at the micrometer scale within few minutes. High signal-to-noise ratio, quantitative information on very complex structures like the brain micro vessel architecture, lung airways or fuel cells can be obtained thanks to the combination of dedicated sample preparation protocols, in-situ acquisition schemes and cutting-edge imaging analysis instruments. In this work we report on recent experiments carried out at the TOMCAT beamline of the Swiss Light Source [1] where synchrotron-based tomographic microscopy has been successfully used to obtain fundamental information on preliminary models for cerebral fluid flow [2], to provide an accurate mesh for 3D finite-element simulation of the alveolar structure of the pulmonary acinus [3] and to investigate the complex functional mechanism of fuel cells [4]. Further, we introduce preliminary results on the combination of absorption and phase contrast microscopy for the visualization of high-Z nanoparticles in soft tissues, a fundamental information when designing modern drug delivery systems [5]. As an outlook we briefly discuss the new possibilities offered by high sensitivity, high resolution grating interferomtery as well as Zernike Phase contrast nanotomography [6].

  3. Synchrotron radiation X-ray tomographic microscopy (SRXTM of brachiopod shell interiors for taxonomy: Preliminary report

    Directory of Open Access Journals (Sweden)

    Motchurova-Dekova Neda

    2010-01-01

    Full Text Available Synchrotron radiation X-ray tomographic microscopy (SRXTM is a non-destructive technique for the investigation and visualization of the internal features of solid opaque objects, which allows reconstruction of a complete three-dimensional image of internal structures by recording of the differences in the effects on the passage of waves of energy reacting with those structures. Contrary to X-rays, produced in a conventional X-ray tube, the intense synchrotron light beams are sharply focused like a laser beam. We report encouraging results from the use of SRXTM for purely taxonomic purposes in brachiopods: an attempt to find a non-destructive and more efficient alternative to serial sectioning and several other methods of dissection together with the non-destructive method of X-ray computerised micro-tomography. Two brachiopod samples were investigated using SRXTM. In “Rhynchonella” flustracea it was possible to visualise the 3D shape of the crura and dental plates. In Terebratulina imbricata it was possible to reveal the form of the brachidium. It is encouraging that we have obtained such promising results using SRXTM with our very first two fortuitous samples, which had respectively fine-grained limestone and marl as infilling sediment, in contrast to the discouraging results communicated to us by some colleagues who have tested specimens with such infillings using X-ray micro-tomography. In future the holotypes, rare museum specimens or delicate Recent material may be preferentially subjected to this mode of analysis.

  4. High-throughput full-automatic synchrotron-based tomographic microscopy

    International Nuclear Information System (INIS)

    Mader, Kevin; Marone, Federica; Hintermueller, Christoph; Mikuljan, Gordan; Isenegger, Andreas; Stampanoni, Marco

    2011-01-01

    At the TOMCAT (TOmographic Microscopy and Coherent rAdiology experimenTs) beamline of the Swiss Light Source with an energy range of 8-45 keV and voxel size from 0.37 (micro)m to 7.4 (micro)m, full tomographic datasets are typically acquired in 5 to 10 min. To exploit the speed of the system and enable high-throughput studies to be performed in a fully automatic manner, a package of automation tools has been developed. The samples are automatically exchanged, aligned, moved to the correct region of interest, and scanned. This task is accomplished through the coordination of Python scripts, a robot-based sample-exchange system, sample positioning motors and a CCD camera. The tools are suited for any samples that can be mounted on a standard SEM stub, and require no specific environmental conditions. Up to 60 samples can be analyzed at a time without user intervention. The throughput of the system is dependent on resolution, energy and sample size, but rates of four samples per hour have been achieved with 0.74 (micro)m voxel size at 17.5 keV. The maximum intervention-free scanning time is theoretically unlimited, and in practice experiments have been running unattended as long as 53 h (the average beam time allocation at TOMCAT is 48 h per user). The system is the first fully automated high-throughput tomography station: mounting samples, finding regions of interest, scanning and reconstructing can be performed without user intervention. The system also includes many features which accelerate and simplify the process of tomographic microscopy.

  5. X-ray tomographic and laminographic microscopy (XTM, XLM) using synchrotron radiation

    International Nuclear Information System (INIS)

    Wyss, P.; Obrist, A.; Hofmann, J.; Luethi, T.; Sennhauser, U.; Thurner, P.; Stampanoni, M.; Abela, R.; Patterson, B.; Mueller, R.

    2003-01-01

    Inner structures of composite materials, components or tissues have to be characterised with micrometer and even submicrometer resolution. It is often highly desirable that specimens stay unchanged after a first characterization to allow meaningful subsequent tests. This justifies major efforts for an ongoing improvement of nondestructive radiographical and tomographical methods for morphological characterization. Radiography and tomography as well as laminography can fulfill these requirements. X-ray sources and detectors have been improved. This applies for synchrotron-beamline systems as well as for tube based systems. A novel detector concept has been implemented in the XTM station at the SLS of the PSI in Villigen, Switzerland. This microtomography station at the SLS has started its operation in spring 2002. A selection of results related to industrial and scientific applications is presented in this contribution. Special emphasis will be given to first results of tomography with limited numbers of projections which is comparable to laminography. This method allows to characterise e.g. ribbons of tissue under load

  6. Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fife, Julie L., E-mail: julie.fife@psi.ch [Laboratory for Synchrotron Radiation, Swiss Light Source, Paul Scherrer Institut, Villigen (Switzerland); Computational Materials Laboratory, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Rappaz, Michel [Computational Materials Laboratory, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Pistone, Mattia [Institute for Geochemistry and Petrology, Swiss Federal Institute of Technology of Zurich, Zurich (Switzerland); Celcer, Tine [Laboratory for Synchrotron Radiation, Swiss Light Source, Paul Scherrer Institut, Villigen (Switzerland); The Centre of Excellence for Biosensors, Instrumentation and Process Control, Solkan (Slovenia); Mikuljan, Gordan [Laboratory for Synchrotron Radiation, Swiss Light Source, Paul Scherrer Institut, Villigen (Switzerland); Stampanoni, Marco [Laboratory for Synchrotron Radiation, Swiss Light Source, Paul Scherrer Institut, Villigen (Switzerland); Institute for Biomedical Engineering, Swiss Federal Institute of Technology and University of Zurich, Zurich (Switzerland)

    2012-05-01

    A laser-based heating system has been developed at the TOMCAT beamline of the Swiss Light Source for in situ observations of moderate-to-high-temperature applications of materials. Understanding the formation of materials at elevated temperatures is critical for determining their final properties. Synchrotron-based X-ray tomographic microscopy is an ideal technique for studying such processes because high spatial and temporal resolutions are easily achieved and the technique is non-destructive, meaning additional analyses can take place after data collection. To exploit the state-of-the-art capabilities at the tomographic microscopy and coherent radiology experiments (TOMCAT) beamline of the Swiss Light Source, a general-use moderate-to-high-temperature furnace has been developed. Powered by two diode lasers, it provides controlled localized heating, from 673 to 1973 K, to examine many materials systems and their dynamics in real time. The system can also be operated in various thermal modalities. For example, near-isothermal conditions at a given sample location can be achieved with a prescribed time-dependent temperature. This mode is typically used to study isothermal phase transformations; for example, the formation of equiaxed grains in metallic systems or to nucleate and grow bubble foams in silicate melts under conditions that simulate volcanic processes. In another mode, the power of the laser can be fixed and the specimen moved at a constant speed in a user-defined thermal gradient. This is similar to Bridgman solidification, where the thermal gradient and cooling rate control the microstructure formation. This paper details the experimental set-up and provides multiple proofs-of-concept that illustrate the versatility of using this laser-based heating system to explore, in situ, many elevated-temperature phenomena in a variety of materials.

  7. Exceptionally preserved Cambrian trilobite digestive system revealed in 3D by synchrotron-radiation X-ray tomographic microscopy.

    Directory of Open Access Journals (Sweden)

    Mats E Eriksson

    Full Text Available The Cambrian 'Orsten' fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish 'Orsten' fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the 'Orsten' fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome.

  8. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    Science.gov (United States)

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-06-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions.

  9. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    Science.gov (United States)

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-01-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109

  10. X-ray Tomographic Microscopy at TOMCAT

    Energy Technology Data Exchange (ETDEWEB)

    Marone, F; Hintermueller, C; McDonald, S; Abela, R; Mikuljan, G; Isenegger, A; Stampanoni, M, E-mail: federica.marone@psi.c [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland)

    2009-09-01

    Synchrotron-based X-ray Tomographic Microscopy is a powerful technique for fast non-destructive, high resolution quantitative volumetric investigations on diverse samples. At the TOMCAT (TOmographic Microscopy and Coherent rAdiology experimenTs) beamline at the Swiss Light Source, synchrotron light is delivered by a 2.9 T superbend. The main optical component, a Double Crystal Multilayer Monochromator, covers an energy range between 8 and 45 keV. The standard TOMCAT detector offers field of views ranging from 0.75x0.75 mm{sup 2} up to 12.1x12.1 mm{sup 2} with a pixel size of 0.37 {mu}m and 5.92 {mu}m, respectively. In addition to routine measurements, which exploit the absorption contrast, the high coherence of the source also enables phase contrast tomography, implemented with two complementary techniques (Modified Transport of Intensity approach and Grating Interferometry). Typical acquisition times for a tomogram are in the order of few minutes, ensuring high throughput and allowing for semi-dynamical investigations. Raw data are automatically post-processed online and full reconstructed volumes are available shortly after a scan with minimal user intervention.

  11. Contact microscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs

  12. TomoPy: a framework for the analysis of synchrotron tomographic data

    International Nuclear Information System (INIS)

    Gürsoy, Doǧa; De Carlo, Francesco; Xiao, Xianghui; Jacobsen, Chris

    2014-01-01

    A collaborative framework for the analysis of synchrotron tomographic data which has the potential to unify the effort of different facilities and beamlines performing similar tasks is described. The proposed Python-based framework is open-source, platform- and data-format-independent, has multiprocessing capability and supports functional programming that many researchers prefer. Analysis of tomographic datasets at synchrotron light sources (including X-ray transmission tomography, X-ray fluorescence microscopy and X-ray diffraction tomography) is becoming progressively more challenging due to the increasing data acquisition rates that new technologies in X-ray sources and detectors enable. The next generation of synchrotron facilities that are currently under design or construction throughout the world will provide diffraction-limited X-ray sources and are expected to boost the current data rates by several orders of magnitude, stressing the need for the development and integration of efficient analysis tools. Here an attempt to provide a collaborative framework for the analysis of synchrotron tomographic data that has the potential to unify the effort of different facilities and beamlines performing similar tasks is described in detail. The proposed Python-based framework is open-source, platform- and data-format-independent, has multiprocessing capability and supports procedural programming that many researchers prefer. This collaborative platform could affect all major synchrotron facilities where new effort is now dedicated to developing new tools that can be deployed at the facility for real-time processing, as well as distributed to users for off-site data processing

  13. TomoPy: a framework for the analysis of synchrotron tomographic data

    Energy Technology Data Exchange (ETDEWEB)

    Gürsoy, Doǧa, E-mail: dgursoy@aps.anl.gov; De Carlo, Francesco; Xiao, Xianghui; Jacobsen, Chris [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837 (United States)

    2014-08-01

    A collaborative framework for the analysis of synchrotron tomographic data which has the potential to unify the effort of different facilities and beamlines performing similar tasks is described. The proposed Python-based framework is open-source, platform- and data-format-independent, has multiprocessing capability and supports functional programming that many researchers prefer. Analysis of tomographic datasets at synchrotron light sources (including X-ray transmission tomography, X-ray fluorescence microscopy and X-ray diffraction tomography) is becoming progressively more challenging due to the increasing data acquisition rates that new technologies in X-ray sources and detectors enable. The next generation of synchrotron facilities that are currently under design or construction throughout the world will provide diffraction-limited X-ray sources and are expected to boost the current data rates by several orders of magnitude, stressing the need for the development and integration of efficient analysis tools. Here an attempt to provide a collaborative framework for the analysis of synchrotron tomographic data that has the potential to unify the effort of different facilities and beamlines performing similar tasks is described in detail. The proposed Python-based framework is open-source, platform- and data-format-independent, has multiprocessing capability and supports procedural programming that many researchers prefer. This collaborative platform could affect all major synchrotron facilities where new effort is now dedicated to developing new tools that can be deployed at the facility for real-time processing, as well as distributed to users for off-site data processing.

  14. Scanning photoemission microscopy with synchrotron radiation

    Science.gov (United States)

    Ade, Harald W.

    1992-08-01

    Progress in photoemission spectro-microscopy at various synchrotron radiation facilities is reviewed. Microprobe devices such as MAXIMUM at the SRC in Wisconsin, the X1-SPEM at the NSLS at BNL, as well as the ellipsoidal ring mirror microscope at DESY in Hamburg, recorded first images during the last few years. The present status of these devices which achieve their lateral resolution by focusing X-rays to a small spot is the primary focus of this paper, but work representing other approaches to spectro-microscopy is also discussed.

  15. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy.

    Science.gov (United States)

    Withers, P J

    2015-03-06

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored.

  16. Calcified-tissue investigations using synchrotron x-ray microscopy

    International Nuclear Information System (INIS)

    Jones, K.W.; Spanne, P.; Schidlovsky, G.; Dejun, X.; Bockman, R.S.; Hammond, P.B.; Bornschein, R.L.; Hoeltzel, D.A.

    1990-10-01

    Synchrotron x-ray microscopy (SXRM) in both emission and absorption modes has been used to examine elemental distributions in specimens of rat tibia, human deciduous teeth, and an orthopedic implant phantom. The work was performed with a spatial resolution of 8 μm for the emission work and 25 μm for the absorption work. The results illustrate the usefulness of SXRM for measurements of different types of calcified tissue. 3 figs

  17. Soft X-ray microscopy and lithography with synchrotron radiation

    International Nuclear Information System (INIS)

    Gudat, W.

    1977-12-01

    Considerable progress in the technique microscopy with soft X-ray radiation has been achieved in particular through the application of synchrotron radiation. Various methods which are currently being studied theoretically or already being used practically will be described briefly. Attention is focussed on the method of contact microscopy. Various biological specimens have been investigated by this method with a resolution as good as 100 A. X-ray lithography which in the technical procedure is very similar to contact microscopy gives promise for the fabrication of high quality submicron structures in electronic device production. Important factors limiting the resolution and determining the performance of contact microscopy and X-ray lithography will be discussed. (orig.) [de

  18. X-ray microscopy using collimated and focussed synchrotron radiation

    International Nuclear Information System (INIS)

    Jones, K.W.; Kwiatek, W.M.; Gordon, B.M.

    1987-01-01

    X-ray microscopy is a field that has developed rapidly in recent years. Two different approaches have been used. Zone plates have been employed to produce focused beams with sizes as low as 0.07 μm for x-ray energies below 1 keV. Images of biological materials and elemental maps for major and minor low Z have been produced using above and below absorption edge differences. At higher energies collimators and focusing mirrors have been used to make small diameter beams for excitation of characteristic K- or L-x rays of all elements in the periodic table. The practicality of a single instrument combining all the features of these two approaches is unclear. The use of high-energy x rays for x-ray microscopy has intrinsic value for characterization of thick samples and determination of trace amounts of most elements. A summary of work done on the X-26 beam line at the National Synchrotron Light Source (NSLS) with collimated and focused x rays with energies above 4 keV is given here. 6 refs., 5 figs., 1 tab

  19. Intraocular Pressure Induced Retinal Changes Identified Using Synchrotron Infrared Microscopy.

    Directory of Open Access Journals (Sweden)

    Hsin-Hui Shen

    Full Text Available Infrared (IR spectroscopy has been used to quantify chemical and structural characteristics of a wide range of materials including biological tissues. In this study, we examined spatial changes in the chemical characteristics of rat retina in response to intraocular pressure (IOP elevation using synchrotron infrared microscopy (SIRM, a non-destructive imaging approach. IOP elevation was induced by placing a suture around the eye of anaesthetised rats. Retinal sections were collected onto transparent CaF2 slides 10 days following IOP elevation. Using combined SIRM spectra and chemical mapping approaches it was possible to quantify IOP induced changes in protein conformation and chemical distribution in various layers of the rat retina. We showed that 10 days following IOP elevation there was an increase in lipid and protein levels in the inner nuclear layer (INL and ganglion cell layer (GCL. IOP elevation also resulted in an increase in nucleic acids in the INL. Analysis of SIRM spectra revealed a shift in amide peaks to lower vibrational frequencies with a more prominent second shoulder, which is consistent with the presence of cell death in specific layers of the retina. These changes were more substantial in the INL and GCL layers compared with those occurring in the outer nuclear layer. These outcomes demonstrate the utility of SIRM to quantify the effect of IOP elevation on specific layers of the retina. Thus SIRM may be a useful tool for the study of localised tissue changes in glaucoma and other eye diseases.

  20. Microbial biofilm study by synchrotron X-ray microscopy

    International Nuclear Information System (INIS)

    Pennafirme, S.; Lima, I.; Bitencourt, J.A.; Crapez, M.A.C.; Lopes, R.T.

    2015-01-01

    Microbial biofilm has already being used to remove metals and other pollutants from wastewater. In this sense, our proposal was to isolate and cultivate bacteria consortia from mangrove’s sediment resistant to Zn (II) and Cu (II) at 50 mg L −1 and to observe, through synchrotron X-ray fluorescence microscopy (microXRF), whether the biofilm sequestered the metal. The biofilm area analyzed was 1 mm 2 and a 2D map was generated (pixel size 20×20 μm 2 , counting time 5 s/point). The biofilm formation and retention followed the sequence Zn>Cu. Bacterial consortium zinc resistant formed dense biofilm and retained 63.83% of zinc, while the bacterial consortium copper resistant retained 3.21% of copper, with lower biofilm formation. Dehydrogenase activity of Zn resistant bacterial consortium was not negatively affect by 50 mg ml −1 zinc input, whereas copper resistant bacterial consortium showed a significant decrease on dehydrogenase activity (50 mg mL −1 of Cu input). In conclusion, biofilm may protect bacterial cells, acting as barrier against metal toxicity. The bacterial consortia Zn resistant, composed by Nitratireductor spp. and Pseudomonas spp formed dense biofilm and sequestered metal from water, decreasing the metal bioavailability. These bacterial consortia can be used in bioreactors and in bioremediation programs. - Highlights: • We studied bacterial bioremediation by microXRF. • Dense biofilm may act sequestering metal while protecting bacterial metabolism. • Nitratireductor spp. and Pseudomonas spp decreased seawater metal bioavailability. • Bacterial consortia from polluted areas may be used in bioremediation programs.

  1. X-ray tomographic microscopy tightens affinity of the early Cambrian Oymurania to the brachiopod stem group

    Directory of Open Access Journals (Sweden)

    Artem Kouchinsky

    2017-03-01

    Full Text Available The geologically rapid biotic evolution in the early Cambrian is marked by the first appearance of major groups of animals in the fossil record (e.g., Budd and Jensen 2000; Kouchinsky et al. 2012. Along with the earliest crown-group representatives of the phylum Brachiopoda, more basal branches of the phylogenetic tree belonging to the stem-group Brachiopoda, such as tannuolinids and mikwitziids, diversified and became widespread during the early Cambrian (e.g., Williams and Holmer 2002; Balthasar et al. 2009; Skovsted et al. 2014. Synchrotron-radiation X-ray tomographic microscopy (SRXTM of Oymurania gravestocki reveals the microstructure of its calcium-phosphatic shell differentiated into two layers and intersecting systems of canals. The outer layer shows the acrotretoid columnar microstructure and the inner layer consists of continuous prismatic columns. Phosphatized setae preserved within tangential canals, as well as perpendicular canals of Micrina–Setatella type demonstrate homology with the tannuolinid Micrina and the mickwitziid Setatella. A unique and novel combination of microstructural features in Oymurania confirms its evolutionary position within the brachiopod stem group.

  2. Effective segmentation of fresh post-mortem murine lung parenchyma in phase contrast X-ray tomographic microscopy images

    International Nuclear Information System (INIS)

    Oikonomidis, Ioannis Vogiatzis; Cremona, Tiziana P; Schittny, Johannes C; Lovric, Goran; Arcadu, Filippo; Stampanoni, Marco

    2017-01-01

    The acinus represents the functional unit of the mammalian lung. It is defined as the small tree of gas-exchanging airways, which is fed by the most distal purely conducting airway. Different hypotheses exist on how the fine structure of the acinus changes during ventilation and development. Since in classical 2-dimensional (2D) sections of the lung the borders of the acini are not detectable, every study of acini requires 3-dimensional (3D) datasets. As a basis for further studies of pulmonary acini we imaged rodent lungs as close to life as possible using phase contrast synchrotron radiation-based X-ray tomographic microscopy (SRXTM), and developed a protocol for the segmentation of the alveolar septa. The method is based on a combined multilevel filtering approach. Seeds are automatically defined for separate regions of tissue and airspace during each 2D filtering level and then given as input to a 3D random walk segmentation. Thus, the different types of artifacts present in the images are treated separately, taking into account the sample’s structural complexity. The proposed procedure yields high-quality 3D segmentations of acinar microstructure that can be used for a reliable morphological analysis. (paper)

  3. Experimental and theoretical analysis for improved microscope design of optical projection tomographic microscopy.

    Science.gov (United States)

    Coe, Ryan L; Seibel, Eric J

    2013-09-01

    We present theoretical and experimental results of axial displacement of objects relative to a fixed condenser focal plane (FP) in optical projection tomographic microscopy (OPTM). OPTM produces three-dimensional, reconstructed images of single cells from two-dimensional projections. The cell rotates in a microcapillary to acquire projections from different perspectives where the objective FP is scanned through the cell while the condenser FP remains fixed at the center of the microcapillary. This work uses a combination of experimental and theoretical methods to improve the OPTM instrument design.

  4. Application of X-ray synchrotron microscopy instrumentation in biology

    International Nuclear Information System (INIS)

    Gasperini, F. M.; Pereira, G. R.; Granjeiro, J. M.; Calasans-Maia, M. D.; Rossi, A. M.; Perez, C. A.; Lopes, R. T.; Lima, I.

    2011-01-01

    X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazil working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)

  5. GPU acceleration towards real-time image reconstruction in 3D tomographic diffractive microscopy

    Science.gov (United States)

    Bailleul, J.; Simon, B.; Debailleul, M.; Liu, H.; Haeberlé, O.

    2012-06-01

    Phase microscopy techniques regained interest in allowing for the observation of unprepared specimens with excellent temporal resolution. Tomographic diffractive microscopy is an extension of holographic microscopy which permits 3D observations with a finer resolution than incoherent light microscopes. Specimens are imaged by a series of 2D holograms: their accumulation progressively fills the range of frequencies of the specimen in Fourier space. A 3D inverse FFT eventually provides a spatial image of the specimen. Consequently, acquisition then reconstruction are mandatory to produce an image that could prelude real-time control of the observed specimen. The MIPS Laboratory has built a tomographic diffractive microscope with an unsurpassed 130nm resolution but a low imaging speed - no less than one minute. Afterwards, a high-end PC reconstructs the 3D image in 20 seconds. We now expect an interactive system providing preview images during the acquisition for monitoring purposes. We first present a prototype implementing this solution on CPU: acquisition and reconstruction are tied in a producer-consumer scheme, sharing common data into CPU memory. Then we present a prototype dispatching some reconstruction tasks to GPU in order to take advantage of SIMDparallelization for FFT and higher bandwidth for filtering operations. The CPU scheme takes 6 seconds for a 3D image update while the GPU scheme can go down to 2 or > 1 seconds depending on the GPU class. This opens opportunities for 4D imaging of living organisms or crystallization processes. We also consider the relevance of GPU for 3D image interaction in our specific conditions.

  6. Three-dimensional DNA image cytometry by optical projection tomographic microscopy for early cancer diagnosis.

    Science.gov (United States)

    Agarwal, Nitin; Biancardi, Alberto M; Patten, Florence W; Reeves, Anthony P; Seibel, Eric J

    2014-04-01

    Aneuploidy is typically assessed by flow cytometry (FCM) and image cytometry (ICM). We used optical projection tomographic microscopy (OPTM) for assessing cellular DNA content using absorption and fluorescence stains. OPTM combines some of the attributes of both FCM and ICM and generates isometric high-resolution three-dimensional (3-D) images of single cells. Although the depth of field of the microscope objective was in the submicron range, it was extended by scanning the objective's focal plane. The extended depth of field image is similar to a projection in a conventional x-ray computed tomography. These projections were later reconstructed using computed tomography methods to form a 3-D image. We also present an automated method for 3-D nuclear segmentation. Nuclei of chicken, trout, and triploid trout erythrocyte were used to calibrate OPTM. Ratios of integrated optical densities extracted from 50 images of each standard were compared to ratios of DNA indices from FCM. A comparison of mean square errors with thionin, hematoxylin, Feulgen, and SYTOX green was done. Feulgen technique was preferred as it showed highest stoichiometry, least variance, and preserved nuclear morphology in 3-D. The addition of this quantitative biomarker could further strengthen existing classifiers and improve early diagnosis of cancer using 3-D microscopy.

  7. Morphometric analysis of erythrocytes from patients with thalassemia using tomographic diffractive microscopy

    Science.gov (United States)

    Lin, Yang-Hsien; Huang, Shin-Shyang; Wu, Shang-Ju; Sung, Kung-Bin

    2017-11-01

    Complete blood count is the most common test to detect anemia, but it is unable to obtain the abnormal shape of erythrocytes, which highly correlates with the hematologic function. Tomographic diffractive microscopy (TDM) is an emerging technique capable of quantifying three-dimensional (3-D) refractive index (RI) distributions of erythrocytes without labeling. TDM was used to characterize optical and morphological properties of 172 erythrocytes from healthy volunteers and 419 erythrocytes from thalassemic patients. To efficiently extract and analyze the properties of erythrocytes, we developed an adaptive region-growing method for automatically delineating erythrocytes from 3-D RI maps. The thalassemic erythrocytes not only contained lower hemoglobin content but also showed doughnut shape and significantly lower volume, surface area, effective radius, and average thickness. A multi-indices prediction model achieved perfect accuracy of diagnosing thalassemia using four features, including the optical volume, surface-area-to-volume ratio, sphericity index, and surface area. The results demonstrate the ability of TDM to provide quantitative, hematologic measurements and to assess morphological features of erythrocytes to distinguish healthy and thalassemic erythrocytes.

  8. Full-angle tomographic phase microscopy of flowing quasi-spherical cells.

    Science.gov (United States)

    Villone, Massimiliano M; Memmolo, Pasquale; Merola, Francesco; Mugnano, Martina; Miccio, Lisa; Maffettone, Pier Luca; Ferraro, Pietro

    2017-12-19

    We report a reliable full-angle tomographic phase microscopy (FA-TPM) method for flowing quasi-spherical cells along microfluidic channels. This method lies in a completely passive optical system, i.e. mechanical scanning or multi-direction probing of the sample is avoided. It exploits the engineered rolling of cells while they are flowing along a microfluidic channel. Here we demonstrate significant progress with respect to the state of the art of in-flow TPM by showing a general extension to cells having almost spherical shapes while they are flowing in suspension. In fact, the adopted strategy allows the accurate retrieval of rotation angles through a theoretical model of the cells' rotation in a dynamic microfluidic flow by matching it with phase-contrast images resulting from holographic reconstructions. So far, the proposed method is the first and the only one that permits to get in-flow TPM by probing the cells with full-angle, achieving accurate 3D refractive index mapping and the simplest optical setup, simultaneously. Proof of concept experiments were performed successfully on human breast adenocarcinoma MCF-7 cells, opening the way for the full characterization of circulating tumor cells (CTCs) in the new paradigm of liquid biopsy.

  9. The development of synchrotron-assisted scanning probe microscopy at NSRRC

    International Nuclear Information System (INIS)

    Chan, Yuet-Loy; Lu, Dah-An; Hsu, Yao-Jane; Wei, D H; Liang, Xihui; Luo, Meng-Fan; Wu, Tsung-Hsuan

    2013-01-01

    Synchrotron-based X-ray microspectroscopy is a technique that brings together microscopy and X-ray spectroscopy. It can be considered as an experimental approach capable of extracting X-ray spectrum from a finite area, or an alternative way of constructing images with spectroscopic contrast. The goal of this project is to integrate the functions of scanning tunnelling electron microscope (STM) with near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Here, we describe our experimental setup, followed by recent results that demonstrate the feasibility of acquiring NEXAFS spectrum with a SiO 2 coated STM tip

  10. Imidazole and beta-carotene photoprotection against photodynamic therapy evaluated by synchrotron infrared microscopy

    Science.gov (United States)

    Bosio, Gabriela N.; Parisi, Julieta; García Einschlag, Fernando S.; Mártire, Daniel O.

    2018-04-01

    In order to better understand the role of β-carotene and imidazole on the Photodynamic Therapy (PDT) mechanism, synchrotron infrared microscopy was used to detect the associated intracellular biochemical modifications following the visible light irradiation of HeLa cells incubated with these compounds as typical hydrophobic and hydrophilic singlet oxygen quenchers, respectively. For this purpose, PDT was performed employing the hydrophilic sensitizer 5,10,15,20-Tetrakis (1-methyl-4-pyridinio) porphyrin tetra (p-toluenesulfonate), TMPyP, and the hydrophobic sensitizer 5-(4-Methoxycarboxyphenyl)-10,15,20-triphenyl-21H,23H-porphyrin. The single cell IR spectra of PDT-treated, PDT plus quencher-treated and control HeLa cells were recorded at the SOLEIL Synchrotron Infrared SMIS beamline targeting specifically the cell nucleus. Principal Component Analysis (PCA) was used to assess the IR spectral changes. PCA revealed that there is a frequency shift of the protein Amide I vibrational band for the assays with the TMPyP sensitizer, indicating changes in the protein secondary structures of the PDT-treated cancer cells compared to the controls. In addition, the scores in those cells treated with both quenchers appear to be similar to the controls indicating a photoprotective effect. Comparative experiments carried out with SKMEL-28 and HaCat cells showed non- significant photoprotective effects of β-carotene and imidazole.

  11. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hao, E-mail: hc000211@ohio.edu [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Preissner, Curt; Freeland, John W. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rosenmann, Daniel [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Kersell, Heath; Hla, Saw-Wai [Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rose, Volker, E-mail: vrose@anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2016-01-28

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  12. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source

    International Nuclear Information System (INIS)

    Woll, A.R.; Huang, R.; Mass, J.; Bisulca, C.; Bilderback, D.H.; Gruner, S.; Gao, N.

    2006-01-01

    A confocal X-ray fluorescence microscope was built at the Cornell High Energy Synchrotron Source (CHESS) to obtain compositional depth profiles of historic paintings. The microscope consists of a single-bounce, borosilicate monocapillary optic to focus the incident beam onto the painting and a commercial borosilicate polycapillary lens to collect the fluorescent X-rays. The resolution of the microscope was measured by scanning a variety of thin metal films through this confocal volume while monitoring the fluorescence signal. The capabilities of the technique were then probed using test paint microstructures with up to four distinct layers, each having a thickness in the range of 10-80 microns. Results from confocal XRF were compared with those from stand-alone XRF and visible light microscopy of the paint cross-sections. A large area, high-resolution scanner is currently being built to perform 3D scans on moderately sized paintings. (orig.)

  13. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography. The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source. 8 refs., 5 figs

  14. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography (CMT). The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits (MDLs) obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source (APS)

  15. Uniaxial Compression of Cellular Materials at a 10-1 s-1 Strain Rate Simultaneously with Synchrotron X-ray Computed Tomographic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Brian M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-01

    The topic is presented as a series of slides. Motivation for the work included the following: X-ray tomography is a fantastic technique for characterizing a material’s starting structure as well as for non-destructive, in situ experiments to investigate material response; 3D X-ray tomography is needed to fully characterize the morphology of cellular materials; and synchrotron micro-CT can capture 3D images without pausing experiment. Among the conclusions reached are these: High-rate radiographic and tomographic imaging (0.25 s 3D frame rate) using synchrotron CT can capture full 3D images of hyper-elastic materials at a 10-2 strain rate; dynamic true in situ uniaxial loading can be accurately captured; the three stages of compression can be imaged: bending, buckling, and breaking; implementation of linear modeling is completed; meshes have been imported into LANL modeling codes--testing and validation is underway and direct comparison and validation between in situ data and modeled mechanical response is possible.

  16. Chemical-state-selective mapping at nanometer scale using synchrotron radiation and photoelectron emission microscopy

    International Nuclear Information System (INIS)

    Hirao, Norie; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Honda, Mitsunori

    2010-01-01

    For surface analyses of semiconductor devices and various functional materials, it has become indispensable to analyze valence states at nanometer scale due to the rapid developments of nanotechnology. Since a method for microscopic mapping dependent on the chemical bond states has not been established so far, we have developed a photoelectron emission microscopy (PEEM) system combined with synchrotron soft X-ray excitation. The samples investigated were Si/SiO x micro-patterns prepared by O 2 + ion implantation in Si(001) wafer using a mask. PEEM images excited by various photon energies around the Si K-edge were observed. The lateral spatial resolution of the system was about 41 nm. The brightness of each spot in PEEM images changed depending on the photon energy, due to the X-ray absorption intensity of the respective chemical state. Since the surface of this sample was topographically flat, it has been demonstrated that the present method can be applied to observations of the microscopic pattern, depending not on the morphology, but only on the valence states of silicon. We have also in-situ measured the changes of the PEEM images upon annealing, and elucidated the mechanism of the lateral diffusion of oxygen and valence states of silicon at the nanometer scale. (author)

  17. Chemical-state-selective mapping at nanometer scale using synchrotron radiation and photoelectron emission microscopy

    International Nuclear Information System (INIS)

    Hirao, Norie; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Honda, Mitsunori

    2008-01-01

    For surface analyses of semiconductor devices and various functional materials, it has become indispensable to analyze the valence states at the nanometer scale due to the rapid developments of nanotechnology. Since a method for microscopic mapping dependent on the chemical bond states has not been established so far, we have developed a photoelectron emission microscopy (PEEM) system combined with synchrotron soft X-ray excitation. The samples investigated were Si/SiO x micro-patterns prepared by O 2 + ion implantation in a Si(001) wafer using a mask. PEEM images excited by various photon energies around the Si K-edge were observed. The lateral spatial resolution of the system was about 41 nm. The brightness of each spot in PEEM images changed depending on the photon energy, due to the X-ray absorption intensity of the respective chemical state. Since the surface of this sample is topographically flat, it has been demonstrated that the present method can be applied to observations of the microscopic pattern, depending not on the morphology, but only on the valence states of silicon. We have also in-situ measured the changes of PEEM images upon annealing, and elucidated the mechanism of the lateral diffusion of oxygen and valence states of silicon at the nanometer scale. (author)

  18. 3D+time acquisitions of 3D cell culture by means of lens-free tomographic microscopy

    Science.gov (United States)

    Berdeu, Anthony; Laperrousaz, Bastien; Bordy, Thomas; Morales, S.; Gidrol, Xavier; Picollet-D'hahan, Nathalie; Allier, Cédric

    2018-02-01

    We propose a three-dimensional (3D) imaging platform based on lens-free microscopy to perform multi-angle acquisitions on 3D cell cultures embedded in extracellular matrix (ECM). We developed algorithms based on the Fourier diffraction theorem to perform fully 3D reconstructions of biological samples and we adapted the lens-free microscope to incubator conditions. Here we demonstrate for the first time, 3D+time lens-free acquisitions of 3D cell culture over 8 days directly into the incubator. The 3D reconstructed volume is as large as 5 mm3 and provides a unique way to observe in the same 3D cell culture experiment multiple cell migration strategies. Namely, in a 3D cell culture of prostate epithelial cells embedded within a Matrigel® matrix, we are able to distinguish single cell 'leaders', migration of cell clusters, migration of large aggregates of cells, and also close-gap and large-scale branching. In addition, we observe long-scale 3D deformations of the ECM that modify the geometry of the 3D cell culture. Interestingly, we also observed the opposite, i.e. we found that large aggregates of cells may deform the ECM by generating traction forces over very long distances. In sum we put forward a novel 3D lens-free microscopy tomographic technique to study the single and collective cell migrations, the cell-to-cell interactions and the cell-to-matrix interactions.

  19. Computational diffraction tomographic microscopy with transport of intensity equation using a light-emitting diode array

    Science.gov (United States)

    Li, Jiaji; Chen, Qian; Zhang, Jialin; Zuo, Chao

    2017-10-01

    Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of +/-37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ˜ 0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.

  20. Investigation of liquid water in gas diffusion layers of polymer electrolyte fuel cells using X-ray tomographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Flueckiger, Reto [Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Marone, Federica [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Stampanoni, Marco [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, CH-8092 Zurich (Switzerland); Wokaun, Alexander [Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Buechi, Felix N., E-mail: felix.buechi@psi.c [Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2011-02-01

    In polymer electrolyte fuel cells (PEFCs), condensation of water within the pore network of the gas diffusion layers (GDL) can influence the gas transport properties and thus reduce the electrochemical conversion rates. The use of X-ray tomographic microscopy (XTM), which allows for a resolution in the order of one micrometer is investigated for studying ex situ the local saturation in GDL's. The strength of XTM is the high spatial resolution with simultaneous contrast for water and carbon, allowing for non-destructive 3D-imaging of the solid and the contained water. The application of this method for imaging the ex situ water intrusion into the porous network of GDLs is explored using absorption and phase contrast methods. It is shown that the inhomogeneous filling behavior of GDL materials can indeed be visualized with sufficient resolution. For Toray paper TGP-H-060 the local saturation was measured as function of the water pressure. The results, evaluated in 1D, 2D and 3D show a liquid water retention effect at the denser layers near the surface. A comparison with established capillary pressure functions is presented. Altogether, the results show the potential of the XTM-method as a tool for studying the liquid water behavior in PEFC on a microscopic scale.

  1. Investigation of liquid water in gas diffusion layers of polymer electrolyte fuel cells using X-ray tomographic microscopy

    International Nuclear Information System (INIS)

    Flueckiger, Reto; Marone, Federica; Stampanoni, Marco; Wokaun, Alexander; Buechi, Felix N.

    2011-01-01

    In polymer electrolyte fuel cells (PEFCs), condensation of water within the pore network of the gas diffusion layers (GDL) can influence the gas transport properties and thus reduce the electrochemical conversion rates. The use of X-ray tomographic microscopy (XTM), which allows for a resolution in the order of one micrometer is investigated for studying ex situ the local saturation in GDL's. The strength of XTM is the high spatial resolution with simultaneous contrast for water and carbon, allowing for non-destructive 3D-imaging of the solid and the contained water. The application of this method for imaging the ex situ water intrusion into the porous network of GDLs is explored using absorption and phase contrast methods. It is shown that the inhomogeneous filling behavior of GDL materials can indeed be visualized with sufficient resolution. For Toray paper TGP-H-060 the local saturation was measured as function of the water pressure. The results, evaluated in 1D, 2D and 3D show a liquid water retention effect at the denser layers near the surface. A comparison with established capillary pressure functions is presented. Altogether, the results show the potential of the XTM-method as a tool for studying the liquid water behavior in PEFC on a microscopic scale.

  2. Repeatability and reproducibility of intracellular molar concentration assessed by synchrotron-based x-ray fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merolle, L., E-mail: lucia.merolle@elettra.eu; Gianoncelli, A. [Elettra - Sincrotrone Trieste, 34149 Basovizza, Trieste (Italy); Malucelli, E., E-mail: emil.malucelli@unibo.it; Cappadone, C.; Farruggia, G.; Sargenti, A.; Procopio, A. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127 (Italy); Fratini, M. [Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, 00184 Roma Italy (Italy); Department of Science, Roma Tre University, Via della Vasca Navale 84, I-00146 Rome (Italy); Notargiacomo, A. [Institute for Photonics and Nanotechnology, Consiglio Nazionale delle Richerche, 00156 Rome (Italy); Lombardo, M. [Department of Chemistry “G. Ciamician”, University of Bologna, Bologna 40126 (Italy); Lagomarsino, S. [Institute of Chemical-Physical Processes, Sapienza University of Rome, 00185 Rome (Italy); National Institute of Biostructures and Biosystems, 00136 Rome (Italy); Iotti, S. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127 (Italy); National Institute of Biostructures and Biosystems, 00136 Rome (Italy)

    2016-01-28

    Elemental analysis of biological sample can give information about content and distribution of elements essential for human life or trace elements whose absence is the cause of abnormal biological function or development. However, biological systems contain an ensemble of cells with heterogeneous chemistry and elemental content; therefore, accurate characterization of samples with high cellular heterogeneity may only be achieved by analyzing single cells. Powerful methods in molecular biology are abundant, among them X-Ray microscopy based on synchrotron light source has gaining increasing attention thanks to its extremely sensitivity. However, reproducibility and repeatability of these measurements is one of the major obstacles in achieving a statistical significance in single cells population analysis. In this study, we compared the elemental content of human colon adenocarcinoma cells obtained by three distinct accesses to synchrotron radiation light.

  3. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy?

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, K.; Adams, F. [Universitaire Instelling Antwerpen, Antwerp (Belgium). Dept. of Chemistry; Rivers, M.L.; Jones, K.W. [Brookhaven National Lab., Upton, NY (United States)

    1992-10-01

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ({mu}-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  4. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, K.; Adams, F. (Universitaire Instelling Antwerpen, Antwerp (Belgium). Dept. of Chemistry); Rivers, M.L.; Jones, K.W. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ([mu]-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  5. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy?

    International Nuclear Information System (INIS)

    Janssens, K.; Adams, F.

    1992-01-01

    Synchrotron Radiation induced X-ray micro Fluorescence analysis (μ-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed

  6. Combining scanning tunneling microscopy and synchrotron radiation for high-resolution imaging and spectroscopy with chemical, electronic, and magnetic contrast

    International Nuclear Information System (INIS)

    Cummings, M.L.; Chien, T.Y.; Preissner, C.; Madhavan, V.; Diesing, D.; Bode, M.; Freeland, J.W.; Rose, V.

    2012-01-01

    The combination of high-brilliance synchrotron radiation with scanning tunneling microscopy opens the path to high-resolution imaging with chemical, electronic, and magnetic contrast. Here, the design and experimental results of an in-situ synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system are presented. The system is designed to allow monochromatic synchrotron radiation to enter the chamber, illuminating the sample with x-ray radiation, while an insulator-coated tip (metallic tip apex open for tunneling, electron collection) is scanned over the surface. A unique feature of the SXSTM is the STM mount assembly, designed with a two free-flex pivot, providing an angular degree of freedom for the alignment of the tip and sample with respect to the incoming x-ray beam. The system designed successfully demonstrates the ability to resolve atomic-scale corrugations. In addition, experiments with synchrotron x-ray radiation validate the SXSTM system as an accurate analysis technique for the study of local magnetic and chemical properties on sample surfaces. The SXSTM system's capabilities have the potential to broaden and deepen the general understanding of surface phenomena by adding elemental contrast to the high-resolution of STM. -- Highlights: ► Synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system designed. ► Unique STM mount design allows angular DOF for tip alignment with x-ray beam. ► System demonstrates ability to resolve atomic corrugations on HOPG. ► Studies show chemical sensitivity with STM tip from photocurrent and tunneling. ► Results show system's ability to study local magnetic (XMCD) properties on Fe films.

  7. Investigation of mineral distribution in bone by synchrotron X-ray fluorescence microscopy after tibolone therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lima, I. [Rio de Janeiro State Univ., Nova Friburgo, RJ (Brazil). Dept. of Mechanical Engineering and Energy; Federal Univ. of Rio de Janeiro, RJ (Brazil). Nuclear Instrumentation Lab. - COPPE; Carvalho, A.C.B.; Henriques, H.N.; Guzman-Silva, M.A. [Fluminense Federal Univ., Niteroi, RJ (Brazil). Lab. of Experimental Pathology; Sales, E.; Lopes, R.T. [Federal Univ. of Rio de Janeiro, RJ (Brazil). Nuclear Instrumentation Lab. - COPPE; Granjeiro, J.M. [Fluminense Federal Univ., Niteroi, RJ (Brazil). Dept. of Cellular and Molecular Biology

    2011-07-01

    Tibolone is a synthetic steroid with estrogenic, androgenic, and progestagenic properties used for the prevention of postmenopausal osteoporosis and treatment of climacteric symptoms. Tibolone shows almost no action on breast and endometrium, which are target-organs for estrogens and progesterone activity. The aim of this work was to investigate the spatial distribution of calcium and zinc minerals in the femoral head of ovariectomized rat in order to evaluate the effects of the long-term administration of tibolone. For that purpose X-ray microfluorescence was used with synchrotron radiation imaging technique which was performed at Brazilian Light Synchrotron Laboratory, Campinas, SP. Minerals were not homogeneously distributed in trabecular bone areas; a higher concentration of calcium in the trabecular regions at femoral heads was found in ovariectomized and tibolone-treated rats compared to ovariectomized and control groups. (orig.)

  8. Variable magnification with Kirkpatrick-Baez optics for synchrotron x-ray microscopy

    OpenAIRE

    Jach, T.; Bakulin, A. S.; Durbin, S. M.; Pedulla, J.; Macrander, A.

    2006-01-01

    We describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Kohler illumination). We demonstrate the distinction with a Kirkpatrick-Baez microscope consisting of short focal length multilayer mirrors operating at an energy of 8 keV. In add...

  9. Establishing the suitability of quantitative optical CT microscopy of PRESAGE® radiochromic dosimeters for the verification of synchrotron microbeam therapy

    Science.gov (United States)

    Doran, Simon J.; Rahman, A. T. Abdul; Bräuer-Krisch, Elke; Brochard, Thierry; Adamovics, John; Nisbet, Andrew; Bradley, David

    2013-09-01

    Previous research on optical computed tomography (CT) microscopy in the context of the synchrotron microbeam has shown the potential of the technique and demonstrated high quality images, but has left two questions unanswered: (i) are the images suitably quantitative for 3D dosimetry? and (ii) what is the impact on the spatial resolution of the system of the limited depth-of-field of the microscope optics? Cuvette and imaging studies are reported here that address these issues. Two sets of cuvettes containing the radiochromic plastic PRESAGE® were irradiated at the ID17 biomedical beamline of the European Synchrotron Radiation facility over the ranges 0-20 and 0-35 Gy and a third set of cuvettes was irradiated over the range 0-20 Gy using a standard medical linac. In parallel, three cylindrical PRESAGE® samples of diameter 9.7 mm were irradiated with test patterns that allowed the quantitative capabilities of the optical CT microscope to be verified, and independent measurements of the imaging modulation transfer function (MTF) to be made via two different methods. Both spectrophotometric analysis and imaging gave a linear dose response, with gradients ranging from 0.036-0.041 cm-1 Gy-1 in the three sets of cuvettes and 0.037 (optical CT units) Gy-1 for the imaging. High-quality, quantitative imaging results were obtained throughout the 3D volume, as illustrated by depth-dose profiles. These profiles are shown to be monoexponential, and the linear attention coefficient of PRESAGE® for the synchrotron-generated x-ray beam is measured to be (0.185 ± 0.02) cm-1 in excellent agreement with expectations. Low-level (<5%) residual image artefacts are discussed in detail. It was possible to resolve easily slit patterns of width 37 µm (which are smaller than many of the microbeams used on ID-17), but some uncertainty remains as to whether the low values of MTF for the higher spatial frequencies are scanner related or a result of genuine (but non-ideal) dose

  10. Non-invasive airway health measurement using synchrotron x-ray microscopy of high refractive index glass microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Donnelley, Martin, E-mail: martin.donnelley@adelaide.edu.au; Farrow, Nigel; Parsons, David [Respiratory & Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, South Australia (Australia); Robinson Research Institute, University of Adelaide, South Australia (Australia); School of Paediatrics and Reproductive Health, University of Adelaide, South Australia (Australia); Morgan, Kaye; Siu, Karen [School of Physics, Monash University, Victoria (Australia)

    2016-01-28

    Cystic fibrosis (CF) is caused by a gene defect that compromises the ability of the mucociliary transit (MCT) system to clear the airways of debris and pathogens. To directly characterise airway health and the effects of treatments we have developed a synchrotron X-ray microscopy method that non-invasively measures the local rate and patterns of MCT behaviour. Although the nasal airways of CF mice exhibit the CF pathophysiology, there is evidence that nasal MCT is not altered in CF mice1. The aim of this experiment was to determine if our non-invasive local airway health assessment method could identify differences in nasal MCT rate between normal and CF mice, information that is potentially lost in bulk MCT measurements. Experiments were performed on the BL20XU beamline at the SPring-8 Synchrotron in Japan. Mice were anaesthetized, a small quantity of micron-sized marker particles were delivered to the nose, and images of the nasal airways were acquired for 15 minutes. The nasal airways were treated with hypertonic saline or mannitol to increase surface hydration and MCT. Custom software was used to locate and track particles and calculate individual and bulk MCT rates. No statistically significant differences in MCT rate were found between normal and CF mouse nasal airways or between treatments. However, we hope that the improved sensitivity provided by this technique will accelerate the ability to identify useful CF lung disease-modifying interventions in small animal models, and enhance the development and efficacy of proposed new therapies.

  11. Non-invasive airway health measurement using synchrotron x-ray microscopy of high refractive index glass microbeads

    Science.gov (United States)

    Donnelley, Martin; Morgan, Kaye; Farrow, Nigel; Siu, Karen; Parsons, David

    2016-01-01

    Cystic fibrosis (CF) is caused by a gene defect that compromises the ability of the mucociliary transit (MCT) system to clear the airways of debris and pathogens. To directly characterise airway health and the effects of treatments we have developed a synchrotron X-ray microscopy method that non-invasively measures the local rate and patterns of MCT behaviour. Although the nasal airways of CF mice exhibit the CF pathophysiology, there is evidence that nasal MCT is not altered in CF mice1. The aim of this experiment was to determine if our non-invasive local airway health assessment method could identify differences in nasal MCT rate between normal and CF mice, information that is potentially lost in bulk MCT measurements. Experiments were performed on the BL20XU beamline at the SPring-8 Synchrotron in Japan. Mice were anaesthetized, a small quantity of micron-sized marker particles were delivered to the nose, and images of the nasal airways were acquired for 15 minutes. The nasal airways were treated with hypertonic saline or mannitol to increase surface hydration and MCT. Custom software was used to locate and track particles and calculate individual and bulk MCT rates. No statistically significant differences in MCT rate were found between normal and CF mouse nasal airways or between treatments. However, we hope that the improved sensitivity provided by this technique will accelerate the ability to identify useful CF lung disease-modifying interventions in small animal models, and enhance the development and efficacy of proposed new therapies.

  12. In situ characterization of delamination and crack growth of a CGO–LSM multi-layer ceramic sample investigated by X-ray tomographic microscopy

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Esposito, Vincenzo; Lauridsen, Erik Mejdal

    2014-01-01

    The densification, delamination and crack growth behavior in a Ce0.9Gd0.1O1.95 (CGO) and (La0.85Sr0.15)0.9MnO3 (LSM) multi-layer ceramic sample was studied using in situ X-ray tomographic microscopy (microtomography) to investigate the critical dynamics of crack propagation and delamination...... in a multilayered sample. Naturally occurring defects, caused by the sample preparation process, are shown not to be critical in sample degradation. Instead defects are nucleated during the debinding step. Crack growth is significantly faster along the material layers than perpendicular to them, and crack growth...

  13. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    Science.gov (United States)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  14. Synchrotron-based transmission x-ray microscopy for improved extraction in shale during hydraulic fracturing

    Science.gov (United States)

    Kiss, Andrew M.; Jew, Adam D.; Joe-Wong, Claresta; Maher, Kate M.; Liu, Yijin; Brown, Gordon E.; Bargar, John

    2015-09-01

    Engineering topics which span a range of length and time scales present a unique challenge to researchers. Hydraulic fracturing (fracking) of oil shales is one of these challenges and provides an opportunity to use multiple research tools to thoroughly investigate a topic. Currently, the extraction efficiency from the shale is low but can be improved by carefully studying the processes at the micro- and nano-scale. Fracking fluid induces chemical changes in the shale which can have significant effects on the microstructure morphology, permeability, and chemical composition. These phenomena occur at different length and time scales which require different instrumentation to properly study. Using synchrotron-based techniques such as fluorescence tomography provide high sensitivity elemental mapping and an in situ micro-tomography system records morphological changes with time. In addition, the transmission X-ray microscope (TXM) at the Stanford Synchrotron Radiation Lightsource (SSRL) beamline 6-2 is utilized to collect a nano-scale three-dimensional representation of the sample morphology with elemental and chemical sensitivity. We present the study of a simplified model system, in which pyrite and quartz particles are mixed and exposed to oxidizing solution, to establish the basic understanding of the more complex geology-relevant oxidation reaction. The spatial distribution of the production of the oxidation reaction, ferrihydrite, is retrieved via full-field XANES tomography showing the reaction pathway. Further correlation between the high resolution TXM data and the high sensitivity micro-probe data provides insight into potential morphology changes which can decrease permeability and limit hydrocarbon recovery.

  15. Synchrotron-based X-ray Fluorescence Microscopy in Conjunction with Nanoindentation to Study Molecular-Scale Interactions of Phenol–Formaldehyde in Wood Cell Walls

    Science.gov (United States)

    Joseph E. Jakes; Christopher G. Hunt; Daniel J. Yelle; Linda Lorenz; Kolby Hirth; Sophie-Charlotte Gleber; Stefan Vogt; Warren Grigsby; Charles R. Frihart

    2015-01-01

    Understanding and controlling molecular-scale interactions between adhesives and wood polymers are critical to accelerate the development of improved adhesives for advanced wood-based materials. The submicrometer resolution of synchrotron-based X-ray fluorescence microscopy (XFM) was found capable of mapping and quantifying infiltration of Br-labeled phenol−...

  16. Simultaneous scanning tunneling microscopy and synchrotron X-ray measurements in a gas environment

    NARCIS (Netherlands)

    Mom, R.V.; Onderwaater, W.G.; Rost, M.J.; Jankowski, M.; Wenzel, S.; Jacobse, L.; Alkemade, P.F.A.; Vandalon, V.; van Spronsen, M.A.; van Weeren, M.; Crama, B.; van der Tuijn, P.; Felici, R.; Kessels, W.M.M.; Carlà, F.; Frenken, J.W.M.; Groot, I.M.N.

    2017-01-01

    A combined X-ray and scanning tunneling microscopy (STM) instrument is presented that enables the local detection of X-ray absorption on surfaces in a gas environment. To suppress the collection of ion currents generated in the gas phase, coaxially shielded STM tips were used. The conductive outer

  17. Direct observation of organic layer growth by dynamic spectro-microscopy using high-brilliance synchrotron

    International Nuclear Information System (INIS)

    Umbach, E.

    2004-01-01

    It was always the dream of scientists to watch microscopic objects directly on an atomic scale, to follow their dynamical behaviour, and to know everything about them, i.e. to get as much spectroscopic information as possible. While instruments have become available which may fulfill two of these wishes simultaneously, it is much more difficult to get all three at once. The development of so called spectro-microscopes which operate at 3rd generation synchrotron sources nourishes the hope that this dream will become true in the near future. The talk intends to show how much can be learned about organic thin films and interfaces if high-brilliance synchrotron radiation is combined with new instruments, for instance a high energy resolution beamline and a high-spatial resolution spectro-microscope. While the former is standard technology of today, the latter is a new development, combining brilliant undulator radiation of variable polarization with a specially developed, energy-filtered low energy electron microscope. First, it will be shown that many new details about the electronic structure of organic materials and their interaction with one another or with an interface can be obtained using high-resolution photoemission and x-ray absorption. For instance, from a careful analysis of the fine structure of photoemission spectra one can derive details about the interface bonding, about the interaction between molecules, and about the dynamic response of the molecular system upon creation of a core hole. Or, from a careful analysis of the fine structure of high resolution x-ray absorption spectra one gets insight into the intermolecular interaction, the coupling between electronic and vibronic excitations, and even about the shapes of potential curves. Second, the dynamic growth of highly-ordered organic thin films will be followed as a function of molecule and preparation conditions. The formation of islands, the inner structure of organic crystallites, diffusion

  18. Nanoscale spatial analysis of clay minerals containing cesium by synchrotron radiation photoemission electron microscopy

    Science.gov (United States)

    Yoshigoe, Akitaka; Shiwaku, Hideaki; Kobayashi, Toru; Shimoyama, Iwao; Matsumura, Daiju; Tsuji, Takuya; Nishihata, Yasuo; Kogure, Toshihiro; Ohkochi, Takuo; Yasui, Akira; Yaita, Tsuyoshi

    2018-01-01

    A synchrotron radiation photoemission electron microscope (SR-PEEM) was applied to demonstrate the pinpoint analysis of micrometer-sized weathered biotite clay particles with artificially adsorbed cesium (Cs) atoms. Despite the insulating properties of the clay, we observed the spatial distributions of constituent elements (Si, Al, Cs, Mg, and Fe) without charging issues and clarified reciprocal site-correlations among these elements with nanometer resolution. We found that Cs atoms were likely to be adsorbed evenly over the entire particle; however, we identified an occupational conflict between Cs and Mg atoms, implying that Cs sorption involves ion exchange processes. Spatially resolved X-ray absorption spectra (XAS) of the Cs4,5 M-edge region showed Cs to be present in a monocation state (Cs+) as typically observed for Cs compounds. Further pinpoint XAS measurements were also performed at the Fe L2,3-edge to determine the chemical valence of the Fe atoms. The shapes of the spectra were similar to those for Fe2O3, indicating that Fe in the clay was in a 3+ oxidation state. From these observations, we infer that charge compensation facilitates Cs adsorption in the vicinity of a substitution site where Si4+ ions are replaced by Fe3+ ions in SiO4 tetrahedral sheets. Our results demonstrate the utility of SR-PEEM as a tool for spatially resolved chemical analyses of various environmental substances, which is not limited by the poor conductivity of samples.

  19. Analysis of peripheral thermal damage after laser irradiation of dentin using polarized light microscopy and synchrotron radiation infrared spectromicroscopy

    Science.gov (United States)

    Dela Rosa, Alfredo; Sarma, Anupama V.; Le, Charles Q.; Jones, Robert S.; Fried, Daniel

    2004-05-01

    It is necessary to minimize peripheral thermal damage during laser irradiation, since thermal damage to collagen and mineral compromises the bond strength to restorative materials in dentin and inhibits healing and osteointegration in bone. The overall objective of this study was to test the hypothesis that lasers resonant to the specific absorption of water, collagen, and hydroxyapatite with pulse durations less than the thermal relaxation times at each respective laser wavelength will efficiently remove dentin with minimal peripheral thermal damage. Precise incisions were produced in 3 x 3 mm2 blocks of human dentin using CO2 (9.6 μm), Er:YSGG (2.79 μm), and Nd:YAG (355 nm) lasers with and without a computer controlled water spray. Polarization-sensitive optical coherence tomography was used to obtain optical cross-sections of each incision to determine the rate and efficiency of ablation. The peripheral thermal damage zone around each incision was analyzed using polarized light microscopy (PLM) and Synchrotron-Radiation Fourier Transform Infrared Spectro-microscopy (SR-FTIR). Thermally induced chemical changes to both mineral and the collagen matrix was observed with SR-FTIR with a 10-μm spatial resolution and those changes were correlated with optical changes observed with PLM. Minimal (alveolar bone.

  20. Puzzling Intergrowth in Cerium Nitridophosphate Unraveled by Joint Venture of Aberration-Corrected Scanning Transmission Electron Microscopy and Synchrotron Diffraction.

    Science.gov (United States)

    Kloß, Simon D; Neudert, Lukas; Döblinger, Markus; Nentwig, Markus; Oeckler, Oliver; Schnick, Wolfgang

    2017-09-13

    Thorough investigation of nitridophosphates has rapidly accelerated through development of new synthesis strategies. Here we used the recently developed high-pressure metathesis to prepare the first rare-earth metal nitridophosphate, Ce 4 Li 3 P 18 N 35 , with a high degree of condensation >1/2. Ce 4 Li 3 P 18 N 35 consists of an unprecedented hexagonal framework of PN 4 tetrahedra and exhibits blue luminescence peaking at 455 nm. Transmission electron microscopy (TEM) revealed two intergrown domains with slight structural and compositional variations. One domain type shows extremely weak superstructure phenomena revealed by atomic-resolution scanning TEM (STEM) and single-crystal diffraction using synchrotron radiation. The corresponding superstructure involves a modulated displacement of Ce atoms in channels of tetrahedra 6-rings. The displacement model was refined in a supercell as well as in an equivalent commensurate (3 + 2)-dimensional description in superspace group P6 3 (α, β, 0)0(-α - β, α, 0)0. In the second domain type, STEM revealed disordered vacancies of the same Ce atoms that were modulated in the first domain type, leading to sum formula Ce 4-0.5x Li 3 P 18 N 35-1.5x O 1.5x (x ≈ 0.72) of the average structure. The examination of these structural intricacies may indicate the detection limit of synchrotron diffraction and TEM. We discuss the occurrence of either Ce displacements or Ce vacancies that induce the incorporation of O as necessary stabilization of the crystal structure.

  1. X-ray holographic microscopy experiments at the Brookhaven synchrotron light source

    International Nuclear Information System (INIS)

    Howells, M.R.; Iarocci, M.; Kenney, J.; Kirz, J.; Rarback, H.

    1983-01-01

    Soft x-ray holographic microscopy is discussed from an experimental point of view. Three series of measurements have been carried out using the Brookhaven 750 MeV storage ring as an x-ray source. Young slits fringes, Gabor (in line) holograms and various data pertaining to the soft x-ray performance of photographic plates are reported. The measurements are discussed in terms of the technique for recording them and the experimental limitations in effect. Some discussion is also given of the issues involved in reconstruction using visible light

  2. Epitaxial clusters studied by synchrotron x-ray diffraction and scanning tunneling microscopy

    DEFF Research Database (Denmark)

    Nielsen, M.; Feidenhans'l, R.; Rasmussen, F.B.

    1998-01-01

    Nanoscale clusters are often formed during heteroepitaxial crystal growth. Misfit between the lattice parameter of the substrate and the adsorbate stimulates the formation of regular clusters with a characteristic size. The well-known "hut-clusters" formed during the growth of Ge on Si(001) are a...... similar to the "hut clusters". We demonstrate that X-ray diffraction in combination with scanning tunneling microscopy can be used to determine the fundamental properties of such clusters. (C) 1998 Elsevier Science B.V. All rights reserved....

  3. Nanoscale examination of microdamage in sheep cortical bone using synchrotron radiation transmission x-ray microscopy.

    Directory of Open Access Journals (Sweden)

    Garry R Brock

    Full Text Available Microdamage occurs in bone through repeated and excessive loading. Accumulation of microdamage weakens bone, leading to a loss of strength, stiffness and energy dissipation in the tissue. Imaging techniques used to examine microdamage have typically been limited to the microscale. In the current study microdamage was examined at the nanoscale using transmission x-ray microscopy with an x-ray negative stain, lead-uranyl acetate. Microdamage was generated in notched and unnotched beams of sheep cortical bone (2×2×20 mm, with monotonic and fatigue loading. Bulk sections were removed from beams and stained with lead-uranyl acetate to identify microdamage. Samples were sectioned to 50 microns and imaged using transmission x-ray microscopy producing projection images of microdamage with nanoscale resolution. Staining indicated microdamage occurred in both the tensile and compressive regions. A comparison between monotonic and fatigue loading indicated a statistically significant greater amount of stain present in fatigue loaded sections. Microdamage occurred in three forms: staining to existing bone structures, cross hatch damage and a single crack extending from the notch tip. Comparison to microcomputed tomography demonstrated differences in damage morphology and total damage between the microscale and nanoscale. This method has future applications for understanding the underlying mechanisms for microdamage formation as well as three-dimensional nanoscale examination of microdamage.

  4. Quantification of Biogenic Magnetite by Synchrotron X-ray Microscopy During the PETM

    Science.gov (United States)

    Wang, H.; Wang, J.; Kent, D. V.; Chen-Wiegart, Y. C. K.

    2014-12-01

    Exceptionally large biogenic magnetite crystals, including spearhead-like and spindle-like ones up to 4 microns, have been reported in clay-rich sediments recording the ~56 Ma Paleocene-Eocene thermal maximum (PETM) and carbon isotope excursion (CIE) in a borehole at Ancora, NJ and along with magnetotactic bacteria (MTB) chains, were suggested [Schumann et al. 2008 PNAS; Kopp et al. 2009 Paleoceanography] to account for the distinctive single domain (SD) rock magnetic properties of these sediments [Lanci et al. 2002 JGR]. However, because uncalibrated magnetic extraction techniques were used to provide material for TEM imaging of the biogenic magnetite, it is difficult to quantitatively analyze their concentration in the bulk clay. In this study, we use a synchrotron transmission X-ray microscope to image bulk CIE clay. We first take mosaic images of sub-millimeter-sized bulk clay samples, in which we can identify many of the various types of giant biogenic magnetite crystals, as well as several other types of iron minerals, such as pyrite framboids, siderite, and detrital magnetite. However, limited by the instrument resolution (~50 nm), we are not able to identify MTB chains let alone isolated magnetic nanoparticles that may be abundant the clay. To quantitatively estimate the concentration of the giant biogenic magnetite, we re-deposited the bulk clay sample in an alcohol solution on a silicon nitride membrane for 2D X-ray scans. After scanning a total area of 0.55 mm2 with average clay thickness of 4 μm, we identified ~40 spearheads, ~5 spindles and a few elongated rods and estimated their total magnetization as SD particles to be less than about 10% of the mass normalized clay for the scanned area. This result suggests that the giant biogenic magnetite is not a major source of the SD signal for the clay and is in good agreement with rock magnetic analyses using high-resolution first-order reversal curves and thermal fluctuation tomography on bulk CIE clay

  5. Simultaneous scanning tunneling microscopy and synchrotron X-ray measurements in a gas environment.

    Science.gov (United States)

    Mom, Rik V; Onderwaater, Willem G; Rost, Marcel J; Jankowski, Maciej; Wenzel, Sabine; Jacobse, Leon; Alkemade, Paul F A; Vandalon, Vincent; van Spronsen, Matthijs A; van Weeren, Matthijs; Crama, Bert; van der Tuijn, Peter; Felici, Roberto; Kessels, Wilhelmus M M; Carlà, Francesco; Frenken, Joost W M; Groot, Irene M N

    2017-11-01

    A combined X-ray and scanning tunneling microscopy (STM) instrument is presented that enables the local detection of X-ray absorption on surfaces in a gas environment. To suppress the collection of ion currents generated in the gas phase, coaxially shielded STM tips were used. The conductive outer shield of the coaxial tips can be biased to deflect ions away from the tip core. When tunneling, the X-ray-induced current is separated from the regular, 'topographic' tunneling current using a novel high-speed separation scheme. We demonstrate the capabilities of the instrument by measuring the local X-ray-induced current on Au(1 1 1) in 800 mbar Ar. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Distribution of trace levels of therapeutic gallium in bone as mapped by synchrotron X-ray microscopy

    International Nuclear Information System (INIS)

    Bockman, R.S.; Repo, M.A.; Warrell, R.P. Jr.; Pounds, J.G.; Schidlovsky, G.; Gordon, B.M.; Jones, K.W.

    1990-01-01

    Gallium nitrate, a drug that inhibits calcium release from bone, has been proven a safe and effective treatment for the accelerated bone resorption associated with cancer. Though bone is a target organ for gallium, the kinetics, sites, and effects of gallium accumulation in bone are not known. The authors have used synchrotron X-ray microscopy to map the distribution of trace levels of gallium in bone. After short-term in vivo administration of gallium nitrate to rats, trace (nanogram) amounts of gallium preferentially localized to the metabolically active regions in the metaphysis as well as the endosteal and periosteal surfaces of diaphyseal bone, regions where new bone formation and modeling were occurring. The amounts measured were well below the levels known to be cytotoxic. Iron and zinc, trace elements normally found in bone, were decreased in amount after in vivo administration of gallium. These studies represent a first step toward understanding the mechanism(s) of action of gallium in bone by suggesting the possible cellular, structural, and elemental targets of gallium

  7. Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry

    KAUST Repository

    Kyriacou, Bianca

    2014-03-01

    Cereal crops accumulate low levels of iron (Fe) of which only a small fraction (5-10%) is bioavailable in human diets. Extensive co-localization of Fe in outer grain tissues with phytic acid, a strong chelator of metal ions, results in the formation of insoluble complexes that cannot be digested by humans. Here we describe the use of synchrotron X-ray fluorescence microscopy (XFM) and high resolution secondary ion mass spectrometry (NanoSIMS) to map the distribution of Fe, zinc (Zn), phosphorus (P) and other elements in the aleurone and subaleurone layers of mature grain from wild-type and an Fe-enriched line of rice (Oryza sativa L.). The results obtained from both XFM and NanoSIMS indicated that most Fe was co-localized with P (indicative of phytic acid) in the aleurone layer but that a small amount of Fe, often present as "hotspots", extended further into the subaleurone and outer endosperm in a pattern that was not co-localized with P. We hypothesize that Fe in subaleurone and outer endosperm layers of rice grain could be bound to low molecular weight chelators such as nicotianamine and/or deoxymugineic acid. © 2014.

  8. Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry

    KAUST Repository

    Kyriacou, Bianca; Moore, Katie L.; Paterson, David J.; De Jonge, Martin Daly; Howard, Daryl Lloyd; Stangoulis, James Constantine R; Tester, Mark A.; Lombi, E.; Johnson, Alexander A T

    2014-01-01

    Cereal crops accumulate low levels of iron (Fe) of which only a small fraction (5-10%) is bioavailable in human diets. Extensive co-localization of Fe in outer grain tissues with phytic acid, a strong chelator of metal ions, results in the formation of insoluble complexes that cannot be digested by humans. Here we describe the use of synchrotron X-ray fluorescence microscopy (XFM) and high resolution secondary ion mass spectrometry (NanoSIMS) to map the distribution of Fe, zinc (Zn), phosphorus (P) and other elements in the aleurone and subaleurone layers of mature grain from wild-type and an Fe-enriched line of rice (Oryza sativa L.). The results obtained from both XFM and NanoSIMS indicated that most Fe was co-localized with P (indicative of phytic acid) in the aleurone layer but that a small amount of Fe, often present as "hotspots", extended further into the subaleurone and outer endosperm in a pattern that was not co-localized with P. We hypothesize that Fe in subaleurone and outer endosperm layers of rice grain could be bound to low molecular weight chelators such as nicotianamine and/or deoxymugineic acid. © 2014.

  9. High-throughput, high-resolution X-ray phase contrast tomographic microscopy for visualisation of soft tissue

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, S A; Marone, F; Hintermueller, C; Stampanoni, M [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bensadoun, J-C; Aebischer, P, E-mail: samuel.mcdonald@psi.c [EPFL, School of Life Sciences, Station 15, 1015 Lausanne (Switzerland)

    2009-09-01

    The use of conventional absorption based X-ray microtomography can become limited for samples showing only very weak absorption contrast. However, a wide range of samples studied in biology and materials science can produce significant phase shifts of the X-ray beam, and thus the use of the phase signal can provide substantially increased contrast and therefore new and otherwise inaccessible information. The application of two approaches for high-throughput, high-resolution X-ray phase contrast tomography, both available on the TOMCAT beamline of the SLS, is illustrated. Differential Phase Contrast (DPC) imaging uses a grating interferometer and a phase-stepping technique. It has been integrated into the beamline environment on TOMCAT in terms of the fast acquisition and reconstruction of data and the availability to scan samples within an aqueous environment. The second phase contrast approach is a modified transfer of intensity approach that can yield the 3D distribution of the phase (refractive index) of a weakly absorbing object from a single tomographic dataset. These methods are being used for the evaluation of cell integrity in 3D, with the specific aim of following and analyzing progressive cell degeneration to increase knowledge of the mechanistic events of neurodegenerative disorders such as Parkinson's disease.

  10. The nature of ancient Egyptian copper-containing carbon inks is revealed by synchrotron radiation based X-ray microscopy

    OpenAIRE

    Christiansen , Thomas; Cotte , Marine; Loredo-Portales , René; Lindelof , Poul ,; Mortensen , Kell; Ryholt , Kim; Larsen , Sine

    2017-01-01

    International audience; For the first time it is shown that carbon black inks on ancient Egyptian papyri from different time periods and geographical regions contain copper. The inks have been investigated using synchrotron-based micro X-ray fluorescence (XRF) and micro X-ray absorption near-edge structure spectroscopy (XANES) at the European Synchrotron Radiation Facility (ESRF). The composition of the copper-containing carbon inks showed no significant differences that could be related to t...

  11. Characterisation of corrosion processes of using electron micro-probe, scanning probe microscopy and synchrotron-generated x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Neufeld, A.K.; Cole, I.S.; Furman, S.A.; Isaacs, H.S.

    2002-01-01

    Full text: With recent advances in computerized technology, the study of chemical reactions can now be visualized as they occur in real time and has resulted in analytical techniques with orders of magnitude greater sensitivity and resolution. This ability offers the corrosion scientist a unique opportunity to study the processes relevant to degradation science which could only be theoretically considered. Neufeld el al (1,2) have attempted to explain in great detail the mechanism of corrosion initiation of zinc by using X-ray micro-probe, Scanning Kelvin probe, and more recently by using synchrotron-generated X-rays and X-ray fluorescence imaging. New results are presented from the synchrotron studies where the transport of ions in-situ has been investigated. The synthesis of information from the techniques will also be discussed in its relevance to atmospheric corrosion processes. Copyright (2002) Australian Society for Electron Microscopy Inc

  12. Workshop on the coupling of synchrotron radiation IR and X-rays with tip based scanning probe microscopies X-TIP

    Energy Technology Data Exchange (ETDEWEB)

    Comin, F.; Martinez-Criado, G.; Mundboth, K.; Susini, J. [European Synchrotron Radiation Facility (ESRF), 38 - Grenoble (France); Purans, J.; Sammelselg, V. [Tartu Univ. (Estonia); Chevrier, J.; Huant, S. [Universite Joseph-Fourier, Grenoble I, LEPES, 38 (France); Hamilton, B. [School of Electrical Engineering and Electronics, Manchester (United Kingdom); Saito, A. [Osaka Univ., RIKEN/SPring8 (Japan); Dhez, O. [OGG, INFM/CNR, 38 - Grenoble (France); Brocklesby, W.S. [Southampton Univ., Optoelectronics Research Centre (United Kingdom); Alvarez-Prado, L.M. [Ovieado, Dept. de Fisica (Spain); Kuzmin, A. [Institute of Solid State Physics - Riga (Latvia); Pailharey, D. [CRMC-N - CNRS, 13 - Marseille (France); Tonneau, D. [CRMCN - Faculte des sciences de Luminy, 13 - Marseille (France); Chretien, P. [Laboratoire de Genie Electrique de Paris, 75 - Paris (France); Cricenti, A. [ISM-CNR, Rome (Italy); DeWilde, Y. [ESPCI, 75 - Paris (France)

    2005-07-01

    The coupling of scanning probe microscopy (SPM) with synchrotron radiation is attracting increasing attention from nano-science community. By combining these 2 tools one can visualize, for example, the sample nano-structure prior to any X-ray characterization. Coupled with focusing devices or independently, SPM can provide spatial resolution below the optical limits. Furthermore, the possibility of employing SPM to manipulate nano-objects under X-ray beams is another exciting perspective. This document gathers the transparencies of 6 of the presentations made at the workshop: 1) the combination of atomic force microscopy and X-ray beam - experimental set-up and objectives; 2) the combination of scanning probe microscope and X-rays for detection of electrons; 3) towards soft X-ray scanning microscopy using tapered capillaries and laser-based high harmonic sources; 4) near-field magneto-optical microscopy; 5) near-field scanning optical microscopy - a brief overview -; and 6) from aperture-less near-field optical microscopy to infra-red near-field night vision. 4 posters entitled: 1) development of laboratory setup for X-ray/AFM experiments, 2) towards X-ray diffraction on single islands, 3) nano-XEOL using near-field detection, and 4) local collection with a STM tip of photoelectrons emitted by a surface irradiated by visible of UV laser beam, are included in the document.

  13. Workshop on the coupling of synchrotron radiation IR and X-rays with tip based scanning probe microscopies X-TIP

    International Nuclear Information System (INIS)

    Comin, F.; Martinez-Criado, G.; Mundboth, K.; Susini, J.; Purans, J.; Sammelselg, V.; Chevrier, J.; Huant, S.; Hamilton, B.; Saito, A.; Dhez, O.; Brocklesby, W.S.; Alvarez-Prado, L.M.; Kuzmin, A.; Pailharey, D.; Tonneau, D.; Chretien, P.; Cricenti, A.; DeWilde, Y.

    2005-01-01

    The coupling of scanning probe microscopy (SPM) with synchrotron radiation is attracting increasing attention from nano-science community. By combining these 2 tools one can visualize, for example, the sample nano-structure prior to any X-ray characterization. Coupled with focusing devices or independently, SPM can provide spatial resolution below the optical limits. Furthermore, the possibility of employing SPM to manipulate nano-objects under X-ray beams is another exciting perspective. This document gathers the transparencies of 6 of the presentations made at the workshop: 1) the combination of atomic force microscopy and X-ray beam - experimental set-up and objectives; 2) the combination of scanning probe microscope and X-rays for detection of electrons; 3) towards soft X-ray scanning microscopy using tapered capillaries and laser-based high harmonic sources; 4) near-field magneto-optical microscopy; 5) near-field scanning optical microscopy - a brief overview -; and 6) from aperture-less near-field optical microscopy to infra-red near-field night vision. 4 posters entitled: 1) development of laboratory setup for X-ray/AFM experiments, 2) towards X-ray diffraction on single islands, 3) nano-XEOL using near-field detection, and 4) local collection with a STM tip of photoelectrons emitted by a surface irradiated by visible of UV laser beam, are included in the document

  14. The study of efficiency of endogenous and exogenous preventive methods of tooth enamel remineralisation by FTIR microscopy using synchrotron radiation

    International Nuclear Information System (INIS)

    Goloshchapov, D L; Kashkarov, V M; Seredin, P V; Ippolitov, Y A; Plotnikova, Y A; Bambery, K

    2016-01-01

    The efficiency carious preventive methods was detected with the use of equipment for IR-spectromicroscopy and high-intensive synchrotron radiation. The results of the experiment are indicative of the use of exogenous caries prevention alone (use of a toothpaste) being inadequate in saturating hard dental tissues by mineral groups and, thus, keeping teeth healthy, as this method is only short-lived. The use of endogenous methods (mineral tablets based on calcium glycerophosphate) in combination with exogenous prevention enhances prevention as part of remineralisation of dental tissues. (paper)

  15. Deflection gating for time-resolved x-ray magnetic circular dichroism-photoemission electron microscopy using synchrotron radiation

    Science.gov (United States)

    Wiemann, C.; Kaiser, A. M.; Cramm, S.; Schneider, C. M.

    2012-06-01

    In this paper, we present a newly developed gating technique for a time-resolving photoemission microscope. The technique makes use of an electrostatic deflector within the microscope's electron optical system for fast switching between two electron-optical paths, one of which is used for imaging, while the other is blocked by an aperture stop. The system can be operated with a switching time of 20 ns and shows superior dark current rejection. We report on the application of this new gating technique to exploit the time structure in the injection bunch pattern of the synchrotron radiation source BESSY II at Helmholtz-Zentrum Berlin for time-resolved measurements in the picosecond regime.

  16. Determination of polymerization particle morphology using synchrotron computed microtomography

    International Nuclear Information System (INIS)

    Jones, K.W.; Spanne, P.; Lindquist, W.B.; Conner, W.C.; Ferrero, M.

    1991-10-01

    Polymerization of monomers over heterogeneous catalysts results in the fragmentation of the catalysts and subsequent transport in the polymer particles that are produced. Characterization of the process using nondestructive synchrotron computed microtomography techniques makes possible measurement of the distribution of the catalyst fragments in an individual particle and, in addition, gives an estimate of the particle porosity and surface area. The present experiment was carried out using the x-ray microscopy facility at the Brookhaven National Synchrotron Light Source (NSLS) X26 beam line. The tomographic sections were analyzed using autocorrelation techniques to determine porosity and surface area values. The results are compared to values obtained using conventional methods. This procedure makes possible the extraction of quantitative information about porosity and specific area from the tomograms. 9 refs., 7 figs., 1 tab

  17. Quantified abundance of magnetofossils at the Paleocene-Eocene boundary from synchrotron-based transmission X-ray microscopy.

    Science.gov (United States)

    Wang, Huapei; Wang, Jun; Chen-Wiegart, Yu-Chen Karen; Kent, Dennis V

    2015-10-13

    The Paleocene-Eocene boundary (∼55.8 million years ago) is marked by an abrupt negative carbon isotope excursion (CIE) that coincides with an oxygen isotope decrease interpreted as the Paleocene-Eocene thermal maximum. Biogenic magnetite (Fe3O4) in the form of giant (micron-sized) spearhead-like and spindle-like magnetofossils, as well as nano-sized magnetotactic bacteria magnetosome chains, have been reported in clay-rich sediments in the New Jersey Atlantic Coastal Plain and were thought to account for the distinctive single-domain magnetic properties of these sediments. Uncalibrated strong field magnet extraction techniques have been typically used to provide material for scanning and transmission electron microscopic imaging of these magnetic particles, whose concentration in the natural sediment is thus difficult to quantify. In this study, we use a recently developed ultrahigh-resolution, synchrotron-based, full-field transmission X-ray microscope to study the iron-rich minerals within the clay sediment in their bulk state. We are able to estimate the total magnetization concentration of the giant biogenic magnetofossils to be only ∼10% of whole sediment. Along with previous rock magnetic studies on the CIE clay, we suggest that most of the magnetite in the clay occurs as isolated, near-equidimensional nanoparticles, a suggestion that points to a nonbiogenic origin, such as comet impact plume condensates in what may be very rapidly deposited CIE clays.

  18. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Soo In; George, Graham N.; Lawrence, John R.; Kaminskyj, Susan G. W.; Dynes, James J.; Lai, Barry; Pickering, Ingrid J.

    2016-10-04

    Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to the same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se0). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se0 using the Se LIII edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50–700 nm, suggesting Se0 nanoparticles. The intimate association of Se0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.

  19. Clamshell tomograph

    International Nuclear Information System (INIS)

    Derenzo, S. E.; Budinger, Th. F.

    1984-01-01

    In brief, the invention is a tomograph modified to be in a clamshell configuration so that the ring or rings may be moved to multiple sampling positions. The tomograph includes an array of detectors arranged in successive adjacent relative locations along a closed curve in a first position in a selected plane, and means for securing the detectors in the relative locations in a first sampling position. The securing means is movable in the plane in two sections and pivotable at one point and only one point to enable movement of at least one of the sections to a second sampling position out of the closed curve so that the ends of the section which are opposite the point are moved apart a predetermined space

  20. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration of a tomographic array in which the object can rotate about its axis is described. The X-ray detector is a cylindrical screen perpendicular to the axis of rotation. The X-ray source has a line-shaped focus coinciding with the axis of rotation. The beam is fan-shaped with one side of this fan lying along the axis of rotation. The detector screen is placed inside an X-ray image multiplier tube

  1. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    A tomographic array with the following characteristics is described. An X-ray screen serving as detector is placed before a photomultiplier tube which itself is placed in front of a television camera connected to a set of image processors. The detector is concave towards the source and is replacable. Different images of the object are obtained simultaneously. Optical fibers and lenses are used for transmission within the system

  2. Computer tomographs

    International Nuclear Information System (INIS)

    Niedzwiedzki, M.

    1982-01-01

    Physical foundations and the developments in the transmission and emission computer tomography are presented. On the basis of the available literature and private communications a comparison is made of the various transmission tomographs. A new technique of computer emission tomography ECT, unknown in Poland, is described. The evaluation of two methods of ECT, namely those of positron and single photon emission tomography is made. (author)

  3. Microscopy

    Science.gov (United States)

    Patricia A. Moss; Les Groom

    2001-01-01

    Microscopy is the study and interpretation of images produced by a microscope. "Interpretation" is the keyword, because the microscope enables one to see structures that are too small or too close together to be resolved by the unaided eye. (The human eye cannot separate two points or lines that are closer together than 0.1 mm.) it is important to...

  4. Noninvasive 3D Structural Analysis of Arthropod by Synchrotron X-Ray Phase Contrast Tomography

    International Nuclear Information System (INIS)

    Yao, S.; Zong, Y.; Fan, J.; Sun, Z.; Jiang, H.

    2015-01-01

    X-ray imaging techniques significantly advanced our understanding of materials and biology, among which phase contrast X-ray microscopy has obvious advantages in imaging biological specimens which have low contrast by conventional absorption contrast microscopy. In this paper, three-dimensional microstructure of arthropod with high contrast has been demonstrated by synchrotron X-ray in-line phase contrast tomography. The external morphology and internal structures of an earthworm were analyzed based upon tomographic reconstructions with and without phase retrieval. We also identified and characterized various fine structural details such as the musculature system, the digestive system, the nervous system, and the circulatory system. This work exhibited the high efficiency, high precision, and wide potential applications of synchrotron X-ray phase contrast tomography in nondestructive investigation of low-density materials and biology.

  5. Synchrotron-based in situ soft X-ray microscopy of Ag corrosion in aqueous chloride solution

    International Nuclear Information System (INIS)

    Bozzini, B; D'Urzo, L; Gianoncelli, A; Kaulich, B; Kiskinova, M; Prasciolu, M; Tadjeddine, A

    2009-01-01

    In this paper we report an in situ X-ray microscopy study of a model metal electrochemistry system, incorporating faradaic reactivity: the anodic corrosion and cathodic electrodeposition of Ag in aqueous systems. The information at sub-μm scale about morpho-chemical evolution of the electrified interface, provided by this novel electroanalytical approach fosters fundamental understanding of important issues concerning material fabrication and stability, which are crucial in developing the next generation electrochemical technologies, such as fuel cells and biosensors. The key methodology challenge faced in this pilot electrochemical experiments is combining a three-electrode configuration and wet environment, which required metal electrodes suitable for transmitting soft X-rays and a sealed cell allowing working in high vacuum. This has been solved via lithographic fabrication route fabricating 75 nm thick Ag electrodes and using Si 3 N 4 membranes as X-ray windows and electrode support. Imaging in the STXM mode with phase contrast allowed us to monitor the corrosion morphologies and metal outgrowth features. Localised thickness variation and the build-up of reaction products of electron density different from that of the starting material have been detected with high sensitivity.

  6. Duodenal crypt health following exposure to Cr(VI): Micronucleus scoring, γ-H2AX immunostaining, and synchrotron X-ray fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Chad M.; Wolf, Jeffrey C.; Elbekai, Reem H.; Paranjpe, Madhav G.; Seiter, Jennifer M.; Chappell, Mark A.; Tappero, Ryan V.; Suh, Mina; Proctor, Deborah M.; Bichteler, Anne; Haws, Laurie C.; Harris, Mark A.

    2015-08-01

    Lifetime exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water results in intestinal damage and an increase in duodenal tumors in B6C3F1 mice. To assess whether these tumors could be the result of a direct mutagenic or genotoxic mode of action, we conducted a GLP-compliant 7-day drinking water study to assess crypt health along the entire length of the duodenum. Mice were exposed to water (vehicle control), 1.4, 21, or 180 ppm Cr(VI) via drinking water for 7 consecutive days. Crypt enterocytes in Swiss roll sections were scored as normal, mitotic, apoptotic, karyorrhectic, or as having micronuclei. A single oral gavage of 50 mg/kg cyclophosphamide served as a positive control for micronucleus induction. Exposure to 21 and 180 ppm Cr(VI) significantly increased the number of crypt enterocytes. Micronuclei and γ-H2AX immunostaining were not elevated in the crypts of Cr(VI)-treated mice. In contrast, treatment with cyclophosphamide significantly increased numbers of crypt micronuclei and qualitatively increased γ-H2AX immunostaining. Synchrotron-based X-ray fluorescence (XRF) microscopy revealed the presence of strong Cr fluorescence in duodenal villi, but negligible Cr fluorescence in the crypt compartment. Together, these data indicate that Cr(VI) does not adversely effect the crypt compartment where intestinal stem cells reside, and provide additional evidence that the mode of action for Cr(VI)-induced intestinal cancer in B6C3F1 mice involves chronic villous wounding resulting in compensatory crypt enterocyte hyperplasia.

  7. Interfacial reaction pathways and kinetics during annealing of 111-textured Al/TiN bilayers: A synchrotron x-ray diffraction and transmission electron microscopy study

    International Nuclear Information System (INIS)

    Chun, J.-S.; Desjardins, P.; Lavoie, C.; Petrov, I.; Cabral, C. Jr.; Greene, J. E.

    2001-01-01

    Growth of TiN layers in most diffusion-barrier applications is limited to deposition temperatures T s s =450 deg. C on SiO 2 by ultrahigh vacuum reactive magnetron sputter deposition in pure N 2 . Al overlayers, 160 nm thick with inherited 111 preferred orientation, were then deposited at T s =100 deg. C without breaking vacuum. The as-deposited TiN layer is underdense due to the low deposition temperature (T s /T m ≅0.23 in which T m is the melting point) resulting in kinetically limited adatom mobilities leading to atomic shadowing which, in turn, results in a columnar microstructure with both inter- and intracolumnar voids. The Al overlayer is fully dense. Synchrotron x-ray diffraction was used to follow interfacial reaction kinetics during postdeposition annealing of the 111-textured Al/TiN bilayers as a function of time (t a =12-1200 s) and temperature (T a =440-550 deg. C). Changes in bilayer microstructure and microchemistry were investigated using transmission electron microscopy (TEM) and scanning TEM to obtain compositional maps of plan-view and cross-sectional specimens. Interfacial reaction during annealing is initiated at the Al/TiN interface. Al diffuses rapidly into TiN voids during anneals at temperatures ∼ 3 Ti at the interface. Al 3 Ti exhibits a relatively planar growth front extending toward the Al free surface. Analyses of time-dependent x-ray diffraction peak intensities during isothermal annealing as a function of temperature show that Al 3 Ti growth kinetics are, for the entire temperature range investigated, diffusion limited with an activation energy of 1.5±0.2 eV

  8. Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation μCT

    International Nuclear Information System (INIS)

    Raum, K; Leguerney, I; Chandelier, F; Talmant, M; Saied, A; Peyrin, F; Laugier, P

    2006-01-01

    200 MHz scanning acoustic microscopy (SAM) and synchrotron radiation μCT (SR-μCT) were used to assess microstructural parameters and tissue properties in site-matched regions of interest in cortical bone. Anterior and postero-lateral regions of ten cross sections from human cortical radius were explored. Structural parameters, including diameter and number of Haversian canals per cortical area (Ca.Dm, N.Ca/Ar) and porosity Po were assessed with both methods using a custom-developed image fusion and analysis software. Acoustic impedance Z and degree of mineralization of bone DMB were extracted separately for osteonal and interstitial tissues from the fused images. Structural parameter estimations obtained from radiographic and acoustic images were almost identical. DMB and impedance values were in the range between 0.77 and 1.28 g cm -3 and 5.13 and 12.1 Mrayl, respectively. Interindividual and regional variations were observed, whereas the strongest difference was found between osteonal and interstitial tissues (Z: 7.2 ± 1.1 Mrayl versus 9.3 ± 1.0 Mrayl, DMB: 1.06 ± 0.07 g cm -3 versus 1.16 ± 0.05 g cm -3 , paired t-test, p 2 = 0.174, p -4 ) and for the pooled (osteonal and interstitial) data. The regression of the pooled osteonal and interstitial tissue data follows a second-order polynomial (R 2 = 0.39, p -4 ). Both modalities fulfil the requirement for a simultaneous evaluation of cortical bone microstructure and material properties at the tissue level. While SAM inspection is limited to the evaluation of carefully prepared sample surfaces, SR-μCT provides volumetric information on the tissue without substantial preparation requirements. However, SAM provides a quantitative estimate of elastic properties at the tissue level that cannot be captured by SR-μCT

  9. Experience with synchrotron radiation sources

    International Nuclear Information System (INIS)

    Krinsky, S.

    1987-01-01

    The development of synchrotron radiation sources is discussed, emphasizing characteristics important for x-ray microscopy. Bending magnets, wigglers and undulators are considered as sources of radiation. Operating experience at the national Synchrotron Light Source on the VUV and XRAY storage rings is reviewed, with particular consideration given to achieved current and lifetime, transverse bunch dimensions, and orbit stability. 6 refs., 3 figs

  10. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues

    Directory of Open Access Journals (Sweden)

    Polentarutti Maurizio

    2011-02-01

    Full Text Available Abstract Background Occupational or environmental exposure to asbestos fibres is associated with pleural and parenchymal lung diseases. A histopathologic hallmark of exposure to asbestos is the presence in lung parenchyma of the so-called asbestos bodies. They are the final product of biomineralization processes resulting in deposition of endogenous iron and organic matter (mainly proteins around the inhaled asbestos fibres. For shedding light on the formation mechanisms of asbestos bodies it is of fundamental importance to characterize at the same length scales not only their structural morphology and chemical composition but also to correlate them to the possible alterations in the local composition of the surrounding tissues. Here we report the first correlative morphological and chemical characterization of untreated paraffinated histological lung tissue samples with asbestos bodies by means of soft X-ray imaging and X-Ray Fluorescence (XRF microscopy, which reveals new features in the elemental lateral distribution. Results The X-ray absorption and phase contrast images and the simultaneously monitored XRF maps of tissue samples have revealed the location, distribution and elemental composition of asbestos bodies and associated nanometric structures. The observed specific morphology and differences in the local Si, Fe, O and Mg content provide distinct fingerprints characteristic for the core asbestos fibre and the ferruginous body. The highest Si content is found in the asbestos fibre, while the shell and ferruginous bodies are characterized by strongly increased content of Mg, Fe and O compared to the adjacent tissue. The XRF and SEM-EDX analyses of the extracted asbestos bodies confirmed an enhanced Mg deposition in the organic asbestos coating. Conclusions The present report demonstrates the potential of the advanced synchrotron-based X-ray imaging and microspectroscopy techniques for studying the response of the lung tissue to the

  11. Synchrotron radiation

    CERN Document Server

    Kunz, C

    1974-01-01

    The production of synchrotron radiation as a by-product of circular high-energy electron (positron) accelerators or storage rings is briefly discussed. A listing of existing or planned synchrotron radiation laboratories is included. The following properties are discussed: spectrum, collimation, polarization, and intensity; a short comparison with other sources (lasers and X-ray tubes) is also given. The remainder of the paper describes the experimental installations at the Deutsches Elektronen-Synchrotron (DESY) and DORIS storage rings, presents a few typical examples out of the fields of atomic, molecular, and solid-state spectroscopy, and finishes with an outlook on the use of synchrotron radiation in molecular biology. (21 refs).

  12. Synchrotron radiation

    International Nuclear Information System (INIS)

    Nave, C.; Quinn, P.; Blake, R.J.

    1988-01-01

    The paper on Synchrotron Radiation contains the appendix to the Daresbury Annual Report 1987/88. The appendix is mainly devoted to the scientific progress reports on the work at the Synchrotron Radiation Source in 1987/8. The parameters of the Experimental Stations and the index to the Scientific Reports are also included in the appendix. (U.K.)

  13. Synchrotron light

    International Nuclear Information System (INIS)

    2001-01-01

    'Synchrotron Light' is an interactive and detailed introduction to the physics and technology of the generation of coherent radiation from accelerators as well as to its widespread high-tech applications in science, medicine and engineering. The topics covered are the interaction of light and matter, the technology of synchrotron light sources, spectroscopy, imaging, scattering and diffraction of X-rays, and applications to materials science, biology, biochemistry, medicine, chemistry, food and pharmaceutical technology. All synchrotron light facilities are introduced with their home-page addresses. 'Synchrotron Light' provides an instructive and comprehensive multimedia learning tool for students, experienced practitioners and novices wishing to apply synchrotron radiation in their future work. Its multiple-entry points permit an easy exploration of the CD-Rom according to the users knowledge and interest. 2-D and 3-D animations and virtual reconstruction with computer-generated images guide visitors into the scientific and technical world of a synchrotron and into the applications of synchrotron radiation. This bilingual (English and French) CD-Rom can be used for self-teaching and in courses at various levels in physics, chemistry, engineering, and biology. (author)

  14. Synchrotron-based nu-XRF mapping and mu-FTIR microscopy enable to look into the fate and effects of tattoo pigments in human skin

    OpenAIRE

    Schreiver , Ines; Hesse , Bernhard; Seim , Christian; Castillo-Michel , Hiram; Villanova , Julie; Laux , Peter; Dreiack , Nadine; Penning , Randolf; Tucoulou , Remi; Cotte , Marine; Luch , Andreas

    2017-01-01

    International audience; The increasing prevalence of tattoos provoked safety concerns with respect to particle distribution and effects inside the human body. We used skin and lymphatic tissues from human corpses to address local biokinetics by means of synchrotron X-ray fluorescence (XRF) techniques at both the micro (mu) and nano (nu) scale. Additional advanced mass spectrometry-based methodology enabled to demonstrate simultaneous transport of organic pigments, heavy metals and titanium di...

  15. Synchrotron radiation

    International Nuclear Information System (INIS)

    Helliwell, J.R.; Walker, R.P.

    1985-01-01

    A detailed account of the research work associated with the Synchrotron Radiation Source at Daresbury Laboratory, United Kingdom, in 1984/85, is presented in the Appendix to the Laboratory's Annual Report. (U.K.)

  16. Synchrotron radiation

    International Nuclear Information System (INIS)

    Hallmeier, K.H.; Meisel, A.; Ranft, J.

    1982-01-01

    The physical background and the properties of synchrotron radiation are described. The radiation offers many useful applications in the fields of spectroscopy and structural investigations. Some examples are given

  17. Synchrotron radiation

    International Nuclear Information System (INIS)

    Knotek, M.L.

    1987-01-01

    Synchrotron radiation has had a revolutionary effect on a broad range of scientific studies, from physics, chemistry and metallurgy to biology, medicine and geoscience. The situation during the last decade has been one of very rapid growth, there is a great vitality to the field and a capability has been given to a very broad range of scientific disciplines which was undreamed of just a decade or so ago. Here we will discuss some of the properties of synchrotron radiation that makes it so interesting and something of the sources in existence today including the National Synchrotron Light Source (NSLS). The NSLS is one of the new facilities built specifically for synchrotron radiation research and the model that was developed there for involvement of the scientific community is a good one which provides some good lessons for these facilities and others

  18. Synchrotron radiation

    International Nuclear Information System (INIS)

    Poole, M.W.; Lea, K.R.

    1982-01-01

    A report is given on the work involving the Synchrotron Radiation Division of the Daresbury Laboratory during the period January 1981 - March 1982. Development of the source, beamlines and experimental stations is described. Progress reports from individual investigators are presented which reveal the general diversity and interdisciplinary nature of the research which benefits from access to synchrotron radiation and the associated facilities. Information is given on the organisation of the Division and publications written by the staff are listed. (U.K.)

  19. Synchrotron radiation

    International Nuclear Information System (INIS)

    Norman, D.; Walker, R.P.; Durham, P.J.; Ridley, P.A.

    1986-01-01

    The paper on synchrotron radiation is the appendix to the Daresbury (United Kingdom) annual report, 1985/86. The bulk of the volume is made up of the progress reports for the work carried out during the year under review using the Synchrotron Radiation Source (SRS) at Daresbury. The Appendix also contains: the scientific programmes at the the SRS, progress on beamlines, instrumentation and computing developments, and activities connected with accelerator development. (U.K.)

  20. Effects of the photoactivation by synchrotron irradiation on the micro vascularization and on the cerebral tissues of the sane or glioma bearer mouse. Development in bi photonic microscopy and preclinical tests

    International Nuclear Information System (INIS)

    Ricard, C.

    2008-06-01

    Brain tumors are the third most frequent pathology encountered in neurology following stroke and dementia. Approximately 10 new cases are encountered each year in a population of 100.000. Glioblastoma are the most aggressive among brain tumors and despite medical progress they suffer of a poor prognosis (median survival time is 12 months; five years survival rate is 2%). One of the challenges in neuro-oncology is the development of new curative treatments against glioblastoma. One of them, the photoactivation therapy of platinum with synchrotron X-rays (PAT-Plat) was developed during the last years and has shown curative effects in rats bearing the F98 glioma. In the present study, we have attempted to characterize the effects of the PAT-Plat and its different modalities (chemotherapy with cisplatin and synchrotron radiotherapy) on healthy brain tissue and microvasculature as well as on the F98 glioma. Intra-vital multiphoton microscopy was used as the main imaging tool to investigate the effects of the PAT-Plat and many methodologies were developed (assessment of blood-brain-barrier (BBB) disruption, imaging of tumor microvasculature, staining of astrocytes and elastic fibers). We have shown that a 15 Gy/79 keV synchrotron irradiation does not induce short term side effects (BBB disruption, diminution of the perfusion, gliosis) in the parietal cortex of nude mice. We have also demonstrated that a synergistic effect between cisplatin and irradiation is at the origin of the effects of the PAT-Plat. Finally, we have shown that the action of the PAT-Plat is not restricted to tumor cells; a decrease in the angiogenic vessels perfusion was also observed in the peritumoral area of the F98 glioma. (author)

  1. An introduction to three-dimensional X-ray diffraction microscopy

    DEFF Research Database (Denmark)

    Poulsen, Henning Friis

    2012-01-01

    Three-dimensional X-ray diffraction microscopy is a fast and nondestructive structural characterization technique aimed at studies of the individual crystalline elements (grains or subgrains) within millimetre-sized polycrystalline specimens. It is based on two principles: the use of highly...... penetrating hard X-rays from a synchrotron source and the application of tomographic reconstruction algorithms for the analysis of the diffraction data. In favourable cases, the position, morphology, phase and crystallographic orientation can be derived for up to 1000 elements simultaneously. For each grain...

  2. Advances in tomographic PIV

    NARCIS (Netherlands)

    Novara, M.

    2013-01-01

    This research deals with advanced developments in 3D particle image velocimetry based on the tomographic PIV technique (Tomo-PIV). The latter is a relatively recent measurement technique introduced by Elsinga et al. in 2005, which is based on the tomographic reconstruction of particle tracers in

  3. JHF synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The Japan Hadron Facility (JHF) consists of two synchrotrons and an injector linac. First, we will present a brief review of the specifications and lattice of the synchrotrons; one is 3 GeV booster and the other is 50 GeV main ring. Secondly, some detailed results of design study will be discussed, together with the present status of the R and D programs in progress. Among them, an estimate of beam loss is one of critical issues in beam dynamics. The development of a high gradient RF cavity is also crucial for a high intensity machine. (author)

  4. Synchrotron radiation and biomedical imaging

    International Nuclear Information System (INIS)

    Luccio, A.

    1986-08-01

    In this lecture we describe the characteristics of Synchrotron radiation as a source of X rays. We discuss the properties of SR arc sources, wigglers, undulators and the use of backscattering of laser light. Applications to angiography, X ray microscopy and tomography are reviewed. 16 refs., 23 figs

  5. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are given of a tomographic scanning apparatus, with particular reference to a multiplexer slip ring means for receiving output from the detectors and enabling interfeed to the image reconstruction station. (U.K.)

  6. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are presented of a tomographic scanning apparatus, its rotational assembly, and the control and circuit elements, with particular reference to the amplifier and multiplexing circuits enabling detector signal calibration. (U.K.)

  7. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification relates to a tomographic scanning apparatus using a fan beam and digital output signal, and particularly to the design of the gas-pressurized ionization detection system. (U.K.)

  8. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification describes a tomographic scanning apparatus, with particular reference to the adjustable fan beam and its collimator system, together with the facility for taking a conventional x-radiograph without moving the patient. (U.K.)

  9. Synchrotron Radiation

    International Nuclear Information System (INIS)

    Asfour, F.I

    2000-01-01

    Synchrotron light is produced by electron accelerators combined with storage rings. This light is generated over a wide spectral region; from infra-red (IR) through the visible and vacuum ultraviolet (VUV), and into the X-ray region. For relativistic electrons (moving nearly with the speed of light), most radiation is concentrated in a small cone with an opening angle of 1/gamma(some 0.1 to 1 milliradian),where gamma is the electron energy in units of rest energy (typically 10 3 -10 4 ). In synchrotron radiation sources (storage rings) highly relativistic electrons are stored to travel along a circular path for many hours. Radiation is caused by transverse acceleration due to magnetic forces(bending magnets). The radiation is emitted in pulses of 10-20 picosecond, separated by some 2 nanosecond or longer separation

  10. Determination of elemental distribution in green micro-algae using synchrotron radiation nano X-ray fluorescence (SR-nXRF) and electron microscopy techniques--subcellular localization and quantitative imaging of silver and cobalt uptake by Coccomyxa actinabiotis.

    Science.gov (United States)

    Leonardo, T; Farhi, E; Boisson, A-M; Vial, J; Cloetens, P; Bohic, S; Rivasseau, C

    2014-02-01

    The newly discovered unicellular micro-alga Coccomyxa actinabiotis proves to be highly radio-tolerant and strongly concentrates radionuclides, as well as large amounts of toxic metals. This study helps in the understanding of the mechanisms involved in the accumulation and detoxification of silver and cobalt. Elemental distribution inside Coccomyxa actinabiotis cells was determined using synchrotron nano X-ray fluorescence spectroscopy at the ID22 nano fluorescence imaging beamline of the European Synchrotron Radiation Facility. The high resolution and high sensitivity of this technique enabled the assessment of elemental associations and exclusions in subcellular micro-algae compartments. A quantitative treatment of the scans was implemented to yield absolute concentrations of each endogenous and exogenous element with a spatial resolution of 100 nm and compared to the macroscopic content in cobalt and silver determined using inductively coupled plasma-mass spectrometry. The nano X-ray fluorescence imaging was complemented by transmission electron microscopy coupled to X-ray microanalysis (TEM-EDS), yielding differential silver distribution in the cell wall, cytosol, nucleus, chloroplast and mitochondria with unique resolution. The analysis of endogenous elements in control cells revealed that iron had a unique distribution; zinc, potassium, manganese, molybdenum, and phosphate had their maxima co-localized in the same area; and sulfur, copper and chlorine were almost homogeneously distributed among the whole cell. The subcellular distribution and quantification of cobalt and silver in micro-alga, assessed after controlled exposure to various concentrations, revealed that exogenous metals were mainly sequestered inside the cell rather than on mucilage or the cell wall, with preferential compartmentalization. Cobalt was homogeneously distributed outside of the chloroplast. Silver was localized in the cytosol at low concentration and in the whole cell excluding the

  11. Synchrotron radiation

    International Nuclear Information System (INIS)

    Farge, Y.

    1982-01-01

    Synchrotron radiation is produced by electrons accelerated near the velocity of light in storage rings, which are used for high energy Physics experiments. The radiation light exhibits a wide spread continuous spectrum ranging from 01 nanometre to radiofrequency. This radiation is characterized by high power (several kilowatts) and intense brightness. The paper recalls the emission laws and the distinctive properties of the radiation, and gives some of the numerous applications in research, such as molecular spectroscopy, X ray diffraction by heavy proteins and X ray microlithography in LVSI circuit making [fr

  12. Mobile 3D tomograph

    International Nuclear Information System (INIS)

    Illerhaus, Bernhard; Goebbels, Juergen; Onel, Yener; Sauerwein, Christoph

    2008-01-01

    Mobile tomographs often have the problem that high spatial resolution is impossible owing to the position or setup of the tomograph. While the tree tomograph developed by Messrs. Isotopenforschung Dr. Sauerwein GmbH worked well in practice, it is no longer used as the spatial resolution and measuring time are insufficient for many modern applications. The paper shows that the mechanical base of the method is sufficient for 3D CT measurements with modern detectors and X-ray tubes. CT measurements with very good statistics take less than 10 min. This means that mobile systems can be used, e.g. in examinations of non-transportable cultural objects or monuments. Enhancement of the spatial resolution of mobile tomographs capable of measuring in any position is made difficult by the fact that the tomograph has moving parts and will therefore have weight shifts. With the aid of tomographies whose spatial resolution is far higher than the mechanical accuracy, a correction method is presented for direct integration of the Feldkamp algorithm [de

  13. Synchrotron radiation

    International Nuclear Information System (INIS)

    Pattison, P.; Quinn, P.

    1990-01-01

    This report details the activities in synchrotron radiation and related areas at Daresbury Laboratory during 1989/90. The number and scope of the scientific reports submitted by external users and in-house staff is a reflection of the large amount of scheduled beamtime and high operating efficiency achieved at the Synchrotron Radiation Source (SRS) during the past year. Over 4000 hours of user beam were available, equivalent to about 80% of the total scheduled time. Many of the reports collected here illustrate the increasing technical complexity of the experiments now being carried out at Daresbury. Provision of the appropriate technical and scientific infrastructure and support is a continuing challenge. The development of the Materials Science Laboratory together with the existing Biological Support Laboratory will extend the range of experiments which can be carried out on the SRS. This will particularly facilitate work in which the sample must be prepared or characterised immediately before or during an experiment. The year 1989/90 has also seen a substantial upgrade of several stations, especially in the area of x-ray optics. Many of the advantages of the High Brightness Lattice can only be exploited effectively with the use of focusing optics. As the performance of these stations improves, the range of experiments which are feasible on the SRS will be extended significantly. (author)

  14. Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump-optical probe.

    Science.gov (United States)

    Jeon, Jae Kun; Han, Sung Mi; Kim, Jong Ki

    2016-09-01

    penetration by nanoradiators. In conclusion, the combined use of a synchrotron X-ray microbeam-irradiated three-dimensional ROS gel and confocal laser scanning fluorescence microscopy provides a simple dosimetry method for track analysis of X-ray photoelectric nanoradiator radiation, suggesting extensive cellular damage with dose-enhancement beyond a single cell containing IONs.

  15. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are given of a tomographic scanning apparatus, with particular reference to the means of adjusting the apparent gain of the signal processing means for receiving output signals from the detectors, to compensate for drift in the gain characteristics, including means for passing a reference signal. (U.K.)

  16. Synchrotron radiation applications in biophysics and medicine

    International Nuclear Information System (INIS)

    Burattini, E.

    1985-01-01

    The peculiar properties of synchrotron radiation are briefly summarized. A short review on the possible applications of synchrotron radiation in two important fields like Biophysics and Medicine is presented. Details are given on experiments both in progress and carried out in many synchrotron radiation facilities, all over the world, using different techniques like X-ray absorption and fluorescence spectroscopy, X-ray fluorescence microanalysis, X-ray microscopy and digital subtraction angiography. Some news about the photon-activation therapy are briefly reported too

  17. Synchrotron-radiation research

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1982-01-01

    The use of radiation from synchrotron sources has started a renaissance in materials, physics, chemistry, and biology. Synchrotron radiation has advantages over conventional x rays in that its source brightness is a thousand times greater throughout a continuous energy spectrum, and resonances are produced with specific electron energy levels. Two major synchrotron radiation sources are operated by DOE: the Stanford Synchrotron Radiation Laboratory at SLAC, and the National Synchrotron Light Source at Brookhaven

  18. Synchrotron radiation

    International Nuclear Information System (INIS)

    Seddon, E.A.; Reid, R.J.

    1992-01-01

    Work at the Daresbury SRS has of necessity been interrupted this year (1991/92) due to the incorporation of Wiggler II. However, considerable beamtime was awarded before the shutdown and the major part of this appendix is concerned with the progress reports of the research undertaken then. The reports have been organised under the following broad headings: Molecular Science (19 papers), Surface and Materials Science (169 papers), Biological Science (85 papers), Instrumental and Technique Developments (13 papers) and Accelerator Physics (3 papers). It is hoped that in time the number of contributions on accelerator physics will grow to reflect the in-house activity on, for example, accelerator improvement and design. The research reports are preceded by the Annual Report of the Synchrotron Radiation Facilities Committee, which outlines the research highlights identified by that Committee (also included are details of the current membership of the SRFC and the chairmen of the Beamtime Allocation Panels). Following the reports are the specifications for the beamlines and stations. This year Section 3 contains 289 reports (nearly 100 more than last year) and the number of publications, generated by scientists and engineers who have used or are associated with Daresbury Laboratory facilities, has topped 500 for the first time. (author)

  19. In situ analysis of foliar zinc absorption and short-distance movement in fresh and hydrated leaves of tomato and citrus using synchrotron-based X-ray fluorescence microscopy

    Science.gov (United States)

    Du, Yumei; Kopittke, Peter M.; Noller, Barry N.; James, Simon A.; Harris, Hugh H.; Xu, Zhi Ping; Li, Peng; Mulligan, David R.; Huang, Longbin

    2015-01-01

    Background and Aims Globally, zinc deficiency is one of the most important nutritional factors limiting crop yield and quality. Despite widespread use of foliar-applied zinc fertilizers, much remains unknown regarding the movement of zinc from the foliar surface into the vascular structure for translocation into other tissues and the key factors affecting this diffusion. Methods Using synchrotron-based X-ray fluorescence microscopy (µ-XRF), absorption of foliar-applied zinc nitrate or zinc hydroxide nitrate was examined in fresh leaves of tomato (Solanum lycopersicum) and citrus (Citrus reticulatus). Key Results The foliar absorption of zinc increased concentrations in the underlying tissues by up to 600-fold in tomato but only up to 5-fold in citrus. The magnitude of this absorption was influenced by the form of zinc applied, the zinc status of the treated leaf and the leaf surface to which it was applied (abaxial or adaxial). Once the zinc had moved through the leaf surface it appeared to bind strongly, with limited further redistribution. Regardless of this, in these underlying tissues zinc moved into the lower-order veins, with concentrations 2- to 10-fold higher than in the adjacent tissues. However, even once in higher-order veins, the movement of zinc was still comparatively limited, with concentrations decreasing to levels similar to the background within 1–10 mm. Conclusions The results advance our understanding of the factors that influence the efficacy of foliar zinc fertilizers and demonstrate the merits of an innovative methodology for studying foliar zinc translocation mechanisms. PMID:25399024

  20. Axial tomographic scanner

    International Nuclear Information System (INIS)

    1976-01-01

    An axial tomographic system is described comprising axial tomographic means for collecting sets of data corresponding to the transmission or absorption of a number of beams of penetrating radiation through a planar slice of an object. It includes means to locate an object to be analyzed, a source and detector for directing one or more beams of penetrating radiation through the object from the source to the detector, and means to rotate (and optionally translate) the source as well as means to process the collected sets of data. Data collection, data processing, and data display can each be conducted independently of each other. An additional advantage of the system described is that the raw data (i.e., the originally collected data) are not destroyed by the data processing but instead are retained intact for further reference or use, if needed

  1. Tomographic method and apparatus

    International Nuclear Information System (INIS)

    Moore, R.M.

    1981-01-01

    A tomographic x-ray machine has a camera and film-plane section which move about a primary axis for imaging a selected cross-section of an anatomical member onto the film. A ''scout image'' of the member is taken at right angles to the plane of the desired cross-section to indicate the cross-section's angle with respect to the primary axis. The film plane is then located at the same angle with respect to a film cassette axis as the selected cross-section makes with the primary axis. The film plane and the cross-section are then maintained in parallel planes throughout motion of the camera and film plane during tomographic radiography. (author)

  2. Industrial dynamic tomographic reconstruction

    International Nuclear Information System (INIS)

    Oliveira, Eric Ferreira de

    2016-01-01

    The state of the art methods applied to industrial processes is currently based on the principles of classical tomographic reconstructions developed for tomographic patterns of static distributions, or is limited to cases of low variability of the density distribution function of the tomographed object. Noise and motion artifacts are the main problems caused by a mismatch in the data from views acquired in different instants. All of these add to the known fact that using a limited amount of data can result in the presence of noise, artifacts and some inconsistencies with the distribution under study. One of the objectives of the present work is to discuss the difficulties that arise from implementing reconstruction algorithms in dynamic tomography that were originally developed for static distributions. Another objective is to propose solutions that aim at reducing a temporal type of information loss caused by employing regular acquisition systems to dynamic processes. With respect to dynamic image reconstruction it was conducted a comparison between different static reconstruction methods, like MART and FBP, when used for dynamic scenarios. This comparison was based on a MCNPx simulation as well as an analytical setup of an aluminum cylinder that moves along the section of a riser during the process of acquisition, and also based on cross section images from CFD techniques. As for the adaptation of current tomographic acquisition systems for dynamic processes, this work established a sequence of tomographic views in a just-in-time fashion for visualization purposes, a form of visually disposing density information as soon as it becomes amenable to image reconstruction. A third contribution was to take advantage of the triple color channel necessary to display colored images in most displays, so that, by appropriately scaling the acquired values of each view in the linear system of the reconstruction, it was possible to imprint a temporal trace into the regularly

  3. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    Abele, M.

    1983-01-01

    A computerized tomographic scanning apparatus suitable for diagnosis and for improving target identification in stereotactic neurosurgery is described. It consists of a base, a source of penetrating energy, a detector which produces scanning signals and detector positioning means. A frame with top and bottom arms secures the detector and source to the top and bottom arms respectively. A drive mechanism rotates the frame about an axis along which the frame may also be moved. Finally, the detector may be moved relative to the bottom arm in a direction contrary to the rotation of the frame. (U.K.)

  4. Synchrotron radiation in Australia

    International Nuclear Information System (INIS)

    Garrett, R.F.

    2002-01-01

    Full text: Synchrotron radiation research in Australia is entering a new era with the commencement of the Australian synchrotron project, which will construct a 3 GeV third generation synchrotron facility at Monash University in Victoria. To date Australian scientists have used overseas facilities, primarily those managed by the Australian Synchrotron Research Program in Japan and the USA. A fast developing and maturing Australian synchrotron user program has developed around these overseas facilities. The field of synchrotron radiation and its importance to a wide range of research will be introduced and Australia's current involvement and facilities will be described. The current status and technical specifications of the Australian synchrotron will be presented. Copyright (2002) Australian X-ray Analytical Association Inc

  5. Computerized tomographic system

    International Nuclear Information System (INIS)

    Godbarsen, R.; Barrett, D.M.; Garrott, P.M.; Foley, L.E.; Redington, R.W.; Lambert, T.W.; Edelheit, L.S.

    1981-01-01

    A computerized tomographic system for examining human breasts is described in detail. Conventional X-ray scanning apparatus has difficulty in achieving the levels of image definition and examination speeds required for mass screening. A novel method of scanning successive layers of the breast with a rotating X-ray beam is discussed and details of the control circuitry and sequence steps are given. The method involves immersing the breast in an inner fluid (e.g. water) filled container which is stationary during an examination and is surrounded by a large outer container which is also filled with the fluid; the inner and outer containers are always maintained at a constant height and the X-ray absorption across the fan-shaped beam is as close as possible to constant. (U.K.)

  6. Emission computed tomograph

    International Nuclear Information System (INIS)

    Hirose, Y.; Kanno, I.; Koga, K.; Miura, S.; Uemura, K.

    1981-01-01

    Emission computed tomograph wherein a pluralty of detectors surround an object to be examined so as to detect x- or gamma radiation emitted by said object. In front of each of said detectors there is provided a collimator which comprises a pair of main plates and a subsidiary plate interposed therebetween. The plates are made of a material capable of blocking penetration of the radiation therethrough and so supported as to be swingable over an angle sufficient to cover the whole of said object. The plates of all the collimators are simultaneously swung to the same side and at the same angular speed thereby to change the direction of incidence of said radiation on each of said detectors

  7. Tomographic examination table

    International Nuclear Information System (INIS)

    Redington, R.W.; Henkes, J.L.

    1979-01-01

    Equipment is described for positioning and supporting patients during tomographic mammography using X-rays. The equipment consists of a table and fabric slings which permit the examination of a downward, pendant breast of a prone patient by allowing the breast to pass through a aperture in the table into a fluid filled container. The fluid has an X-ray absorption coefficient similar to that of soft human tissue allowing high density resolution radiography and permitting accurate detection of breast tumours. The shape of the equipment and the positioning of the patient allow the detector and X-ray source to rotate 360 0 about a vertical axis through the breast. This permits the use of relatively simple image reconstruction algorithms and a divergent X-ray geometry. (UK)

  8. Hard X-ray Microscopy with sub 30 nm Spatial Resolution

    International Nuclear Information System (INIS)

    Tang, M.-T.; Song, Y.-F.; Yin, G.-C.; Chen, J.-H.; Chen, Y.-M.; Liang, Keng S.; Chen, F.-R.; Duewer, F.; Yun Wenbing

    2007-01-01

    A transmission X-ray microscope (TXM) has been installed at the BL01B beamline at National Synchrotron Radiation Research Center in Taiwan. This state-of-the-art TXM operational in a range 8-11 keV provides 2D images and 3D tomography with spatial resolution 60 nm, and with the Zernike-phase contrast mode for imaging light materials such as biological specimens. A spatial resolution of the TXM better than 30 nm, apparently the best result in hard X-ray microscopy, has been achieved by employing the third diffraction order of the objective zone plate. The TXM has been applied in diverse research fields, including analysis of failure mechanisms in microelectronic devices, tomographic structures of naturally grown photonic specimens, and the internal structure of fault zone gouges from an earthquake core. Here we discuss the scope and prospects of the project, and the progress of the TXM in NSRRC

  9. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  10. New microscopy for nanoimaging

    CERN Document Server

    Kinjo, Y; Watanabe, M

    2002-01-01

    Two types of new microscopy, namely, X-ray contact microscopy (XRCM) in combination with atomic force microscopy (AFM) and X-ray projection microscopy (XRPM) using synchrotron radiation and zone plate optics were used to image the fine structures of human chromosomes. In the XRCM plus AFM system, location of X-ray images on a photoresist has become far easier than that with our previous method using transmission electron microscopy coupled with the replica method. In addition, the images obtained suggested that the conformation of chromatin fiber differs from the current textbook model regarding the architecture of a eukaryotic chromosome. X-ray images with high contrast of the specimens could be obtained with XRPM. The resolution of each microscopy was about 30 and 200-300 nm for XRCM plus AFM and XRPM, respectively. (author)

  11. Tomographic multiphase flow measurement

    International Nuclear Information System (INIS)

    Sætre, C.; Johansen, G.A.; Tjugum, S.A.

    2012-01-01

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. - Highlights: ► Multiphase flow gas-fraction and flow regime measurements by multi gamma ray beams. ► High-speed gamma ray tomograph as reference for the flow pattern and gas fraction. ► Dual modality

  12. Tomographic multiphase flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Saetre, C., E-mail: camilla@ift.uib.no [Department of Physics and Technology, University of Bergen (Norway); Michelsen Centre for Industrial Measurement Science and Technology (Norway); Johansen, G.A. [Department of Physics and Technology, University of Bergen (Norway); Michelsen Centre for Industrial Measurement Science and Technology (Norway); Tjugum, S.A. [Michelsen Centre for Industrial Measurement Science and Technology (Norway); Roxar Flow Measurement, Bergen (Norway)

    2012-07-15

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. - Highlights: Black-Right-Pointing-Pointer Multiphase flow gas-fraction and flow regime measurements by multi gamma ray beams. Black-Right-Pointing-Pointer High-speed gamma ray tomograph as reference for the flow

  13. Classification of cryo electron microscopy images, noisy tomographic images recorded with unknown projection directions, by simultaneously estimating reconstructions and application to an assembly mutant of Cowpea Chlorotic Mottle Virus and portals of the bacteriophage P22

    Science.gov (United States)

    Lee, Junghoon; Zheng, Yili; Yin, Zhye; Doerschuk, Peter C.; Johnson, John E.

    2010-08-01

    Cryo electron microscopy is frequently used on biological specimens that show a mixture of different types of object. Because the electron beam rapidly destroys the specimen, the beam current is minimized which leads to noisy images (SNR substantially less than 1) and only one projection image per object (with an unknown projection direction) is collected. For situations where the objects can reasonably be described as coming from a finite set of classes, an approach based on joint maximum likelihood estimation of the reconstruction of each class and then use of the reconstructions to label the class of each image is described and demonstrated on two challenging problems: an assembly mutant of Cowpea Chlorotic Mottle Virus and portals of the bacteriophage P22.

  14. The World of Synchrotrons

    Indian Academy of Sciences (India)

    de Ciencias Fisicas,. Universidad Nacional. Autonoma de Mexico. Sameen Ahmed Khan. A summary of results on synchrotron radiation is presented along with notes on its properties and applications. Quantum aspects are briefly mentioned. Synchrotron radiation facilities are described briefly with a detailed coverage of ...

  15. 3D synchrotron x-ray microtomography of paint samples

    Science.gov (United States)

    Ferreira, Ester S. B.; Boon, Jaap J.; van der Horst, Jerre; Scherrer, Nadim C.; Marone, Federica; Stampanoni, Marco

    2009-07-01

    Synchrotron based X-ray microtomography is a novel way to examine paint samples. The three dimensional distribution of pigment particles, binding media and their deterioration products as well as other features such as voids, are made visible in their original context through a computing environment without the need of physical sectioning. This avoids manipulation related artefacts. Experiments on paint chips (approximately 500 micron wide) were done on the TOMCAT beam line (TOmographic Microscopy and Coherent rAdiology experimenTs) at the Paul Scherrer Institute in Villigen, CH, using an x-ray energy of up to 40 keV. The x-ray absorption images are obtained at a resolution of 350 nm. The 3D dataset was analysed using the commercial 3D imaging software Avizo 5.1. Through this process, virtual sections of the paint sample can be obtained in any orientation. One of the topics currently under research are the ground layers of paintings by Cuno Amiet (1868- 1961), one of the most important Swiss painters of classical modernism, whose early work is currently the focus of research at the Swiss Institute for Art Research (SIK-ISEA). This technique gives access to information such as sample surface morphology, porosity, particle size distribution and even particle identification. In the case of calcium carbonate grounds for example, features like microfossils present in natural chalks, can be reconstructed and their species identified, thus potentially providing information towards the mineral origin. One further elegant feature of this technique is that a target section can be selected within the 3D data set, before exposing it to obtain chemical data. Virtual sections can then be compared with cross sections of the same samples made in the traditional way.

  16. Synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    van Steenbergen, A.

    1979-01-01

    As a result of the exponential growth of the utilization of synchrotron radiation for research in the domain of the material sciences, atomic and molecular physics, biology and technology, a major construction activity has been generated towards new dedicated electron storage rings, designed optimally for synchrotron radiation applications, also, expansion programs are underway at the existing facilities, such as DORIS, SPEAR, and VEPP. In this report the basic properties of synchrotron radiation will be discussed, a short overview will be given of the existing and new facilities, some aspects of the optimization of a structure for a synchrotron radiation source will be discussed and the addition of wigglers and undulators for spectrum enhancement will be described. Finally, some parameters of an optimized synchrotron radiation source will be given.

  17. Synchrotron radiation from protons

    International Nuclear Information System (INIS)

    Dutt, S.K.

    1992-12-01

    Synchrotron radiation from protons, though described by the same equations as the radiation from electrons, exhibits a number of interesting features on account of the parameters reached in praxis. In this presentation, we shall point out some of the features relating to (i) normal synchrotron radiation from dipoles in proton machines such as the High Energy Booster and the Superconducting Super Collider; (ii) synchrotron radiation from short dipoles, and its application to light monitors for proton machines, and (iii) synchrotron radiation from undulators in the limit when, the deflection parameter is much smaller than unity. The material for this presentation is taken largely from the work of Hofmann, Coisson, Bossart, and their collaborators, and from a paper by Kim. We shall emphasize the qualitative aspects of synchrotron radiation in the cases mentioned above, making, when possible, simple arguments for estimating the spectral and angular properties of the radiation. Detailed analyses can be found in the literature

  18. Synchrotron radiation and prospects of its applications

    Energy Technology Data Exchange (ETDEWEB)

    Kulipanov, G; Skrinskii, A

    1981-04-01

    Current and prospective applications are described of synchrotron radiation resulting from the motion of high-energy electrons or positrons in a magnetic field and covering a wide spectral range from the infrared to X-ray. The advantages of the synchrotron radiation include a big source luminance, a small angular divergence, the possibility of calculating the absolute intensity and the spectral distribution of the radiation. Special storage rings are most suitable as a source. Synchrotron radiation is applied in X-ray microscopy, energy diffractometry, atomic and molecular spectroscopy, in the structural analysis of microcrystals, very rapid diffractometry of biological objects and crystals, and in Moessbauer spectroscopy. The prospective applications include uses in metrology, medicine, X-ray lithography, elemental analysis, molecular microsurgery, and in radiation technology.

  19. Tomographic imaging system

    International Nuclear Information System (INIS)

    Hayakawa, T.; Horiba, I.; Kohno, H.; Nakaya, C.; Sekihara, K.; Shiono, H.; Tomura, T.; Yamamoto, S.; Yanaka, S.

    1980-01-01

    A tomographic imaging system comprising: irradiating means for irradating a cross-section of an object under consideration with radiation rays from plural directions; detector means for detecting the radiation rays transmitted through the cross-section of said object to produce an output signal; first memory means for storing the output signal of said detector means; and an image jreconstructing section for performing a convolution integral operation on the contents of said first memory means by means of a first weighting function to reconstruct a three-dimensional image of the cross-section of said object, said image reconstructing section including (I) second memory means for storing a second weighting function, said second weighting function being provided with a predetermined positive and negative (N-1)th order when the output signal of said detector means produced by the irradiation of the cross-section of said object from one of said plural directions is sampled by N points, the value of the (N-1)th order of said second weighting function being an integration of said first weighting function from the (N-1)th order to positive infinity and the value of -(N-1)th order of said second weighting function being an integration of said first weighting function from the -(N-1)th order to negative infinity, (II) control means for successively reading out the contents of said first and second memory means, and (III) operational means for performing multiplying and summing operations on the read-out contents of said first and second memory means, said operational means producing the product of the values fo the (N-1)th and -(N-1)th orders of said second weighting function and a component of the output signal of said detector means relating to the radiation rays free from the absorption thereof by said object

  20. TomoBank: a tomographic data repository for computational x-ray science

    Science.gov (United States)

    De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.; Joost Batenburg, K.; Ludwig, Wolfgang; Mancini, Lucia; Marone, Federica; Mokso, Rajmund; Pelt, Daniël M.; Sijbers, Jan; Rivers, Mark

    2018-03-01

    There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology have made sub-second and multi-energy tomographic data collection possible (Gibbs et al 2015 Sci. Rep. 5 11824), but have also increased the demand to develop new reconstruction methods able to handle in situ (Pelt and Batenburg 2013 IEEE Trans. Image Process. 22 5238-51) and dynamic systems (Mohan et al 2015 IEEE Trans. Comput. Imaging 1 96-111) that can be quickly incorporated in beamline production software (Gürsoy et al 2014 J. Synchrotron Radiat. 21 1188-93). The x-ray tomography data bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging datasets and their descriptors.

  1. Chemistry with synchrotron radiation

    International Nuclear Information System (INIS)

    Preses, J.; Grover, J.R.; White, M.G.; Kvick, A.

    1990-01-01

    An accidental by-product of high-energy physics, synchrotron radiation, has emerged as one of the most powerful tools for the understanding of chemical reactions. Advances made by using synchrotron radiation in physical chemistry are reviewed herein. Descriptions of experiments exploiting the many ways that synchrotron radiation can be manipulated are presented. These manipulations include intensification of the radiation and compression or shifting of its spectral structure. Combinations of the use of synchrotron radiation, which provides access to very short wavelengths and is, at the same time, continuously and easily tunable, with laser radiation, which offers much higher resolution and much more intense radiation per pulse, but is difficult to tune in the ultraviolet region of the spectra, gives the chemist a way to map a molecule's potential energy curve, to note the lengths and strengths of chemical bonds, and to predict and explain novel reactions of more complex molecules. The use of diffraction of x-rays to study the spacing of atoms in crystals is discussed. Various applications of synchrotron radiation to studies of the fluorescence of hydrocarbons and to the chiral dichroism studies of other natural products like DNA and RNA are described. Methods for enhancing synchrotron light sources by insertion devices, such as wigglers and undulators, that increase the available photo flux and construction of new sources of synchrotron radiation are mentioned

  2. Computer tomographic diagnosis of echinococcosis

    Energy Technology Data Exchange (ETDEWEB)

    Haertel, M.; Fretz, C.; Fuchs, W.A.

    1980-08-01

    The computer tomographic appearances and differential diagnosis in 22 patients with echinococcosis are described; of these, twelve were of the cystic and ten of the alveolar type. The computer tomographic appearances are characterised by the presence of daughter cysts (66%) within the sharply demarkated parasitic cyst of water density. In the absence of daughter cysts, a definite aetiological diagnosis cannot be made, although there is a tendency to clasification of the occassionally multiple echinococcus cysts. The computer tomographic appearances of advanced alveolar echinococcosis are characterised by partial collequative necrosis, with clacification around the necrotic areas (90%). The absence of CT evidence of partial necrosis and calsification of the pseudotumour makes it difficult to establish a specific diagnosis. The conclusive and non-invasive character of the procedure and its reproducibility makes computer tomography the method of choice for the diagnosis and follow-up of echinococcosis.

  3. Synchrotron radiation at Trieste

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-06-15

    The fast developing field of synchrotron radiation has its origins in the mastery of storage rings in high energy physics and is a prime example of spinoff from pure science. Intense electromagnetic radiation streams off when beams of high energy electrons are bent or shaken. This synchrotron radiation was once an annoying waste of energy in particle storage rings, but now the wheel has turned full circle, with dedicated machines supplying this radiation for a wide range of science. The astonishing growth rate in this field was highlighted at an International Conference on Synchrotron Radiation, held at the International Centre for Theoretical Physics (ICTP), Trieste, Italy from 7-11 April.

  4. National Synchrotron Light Source

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1979-01-01

    The National Synchrotron Light Source comprises two high intensity electron storage rings for the generation of intense fluxes of synchrotron radiation in the vuv wavelength domain (700 MeV e - ring) and in the x-ray wavelength domain (2.5 GeV e - ring). A description is presented of the basic facility and the characteristics of the synchrotron radiation sources. The present plans for specific beam lines will be enumerated and the planned use of beam wigglers and undulators will be discussed

  5. Synchrotron radiation at Trieste

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The fast developing field of synchrotron radiation has its origins in the mastery of storage rings in high energy physics and is a prime example of spinoff from pure science. Intense electromagnetic radiation streams off when beams of high energy electrons are bent or shaken. This synchrotron radiation was once an annoying waste of energy in particle storage rings, but now the wheel has turned full circle, with dedicated machines supplying this radiation for a wide range of science. The astonishing growth rate in this field was highlighted at an International Conference on Synchrotron Radiation, held at the International Centre for Theoretical Physics (ICTP), Trieste, Italy from 7-11 April

  6. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    International Nuclear Information System (INIS)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis

  7. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  8. National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Lazarz, N.M.

    1991-04-01

    This report discussion research being conducted at the National Synchrotron light source. In particular, this report contains operations summaries; symposia, workshops, and projects; NSLS highlights; and abstracts of science at the NSLS

  9. Uses of synchrotron radiation

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1982-01-01

    X-ray fluorescence has long been used as a technique for elemental analysis. X-ray fluorescence techniques have a number of features that make them attractive for application to biomedical samples. In the past few years synchrotron radiation x-ray sources have been developed and, because of their properties, their use can improve the sensitivity for trace element analysis by two to three orders of magnitude. Also, synchrotron radiation will make possible an x-ray microprobe with resolution in the micrometer range. The National Synchrotron Light Source (NSLS), a dedicated synchrotron radiation source recently built at Brookhaven National Laboratory, will have a facility for trace element analysis by x-ray fluorescence and will be available to all interested users

  10. The Australian synchrotron

    International Nuclear Information System (INIS)

    Farhi, R.

    2005-06-01

    This document recalls the historical aspects of the Australian Synchrotron which will be implemented in 2007. It presents then the objectives of this program, the specifications of the ring and the light lines. (A.L.B.)

  11. Inauguration of Proton Synchrotron

    CERN Multimedia

    1960-01-01

    On 5 February 1960, the Proton Synchrotron (PS) was formally inaugurated. The great Danish physicist, Niels Bohr, releases a bottle of champagne against a shielding block to launch the PS on its voyage in physics.

  12. European Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Buras, B.

    1985-01-01

    How a European Synchrotron Radiation Facility has developed into a detailed proposal recently accepted as the basis for construction of the facility at Grenoble is discussed. In November 1977, the General Assembly of the European Science Foundation (ESF) approved the report of the ESF working party on synchrotron radiation entitled Synchrotron Radiation - a Perspective View for Europe. This report contained as one of its principal recommendations that work should commence on a feasibility study for a European synchrotron radiation laboratory having a dedicated hard X-ray storage ring and appropriate advanced instrumentation. In order to prepare a feasibility study the European Science Foundation set up the Ad-hoc Committee on Synchrotron Radiation, which in turn formed two working groups: one for the machine and another for instrumentation. This feasibility study was completed in 1979 with the publication of the Blue Book describing in detail the so called 1979 European Synchrotron Radiation Facility. The heart of the facility was a 5 GeV electron storage ring and it was assumed that mainly the radiation from bending magnets will be used. The facility is described

  13. Tomographic methods in nuclear medicine

    International Nuclear Information System (INIS)

    Ahluwalia, B.D.

    1989-01-01

    This book is a review of the various approaches to tomographic imaging that have been pursued in nuclear medicine. The evolution of single photon emission computed tomography (SPECT) is discussed in detail, and the major classes of instrumentation are represented. A section on positron emission tomography is also included, but is rather brief and may serve only as a general introduction

  14. Original circuitry for TOHR tomograph

    International Nuclear Information System (INIS)

    Cuzon, J.C.; Pinot, L.

    1999-01-01

    Having industrialization in mind, a specific electronics for a high resolution tomograph is designed out of the usual standards of nuclear physics. All the information are converted in the time domain and a fast processor, in front of the data acquisition, carries out the time and energy coincidences. (authors)

  15. Laboratory soft x-ray microscopy and tomography

    International Nuclear Information System (INIS)

    Bertilson, Michael

    2011-01-01

    Soft x-ray microscopy in the water-window (λ = 2.28 nm - 4.36 nm) is based on zone-plate optics and allows high-resolution imaging of, e.g., cells and soils in their natural or near-natural environment. Three-dimensional imaging is provided via tomographic techniques, soft x-ray cryo tomography. However, soft x-ray microscopes with such capabilities have been based on large-scale synchrotron x-ray facilities, thereby limiting their accessibility for a wider scientific community. This Thesis describes the development of the Stockholm laboratory soft x-ray microscope to three-dimensional cryo tomography and to new optics-based contrast mechanisms. The microscope relies on a methanol or nitrogen liquid-jet laser-plasma source, normal-incidence multilayer or zone-plate condenser optics, in-house fabricated zone-plate objectives, and allows operation at two wavelengths in the water-window, λ = 2.48 nm and λ = 2.48 nm. With the implementation of a new state-of-the-art normal-incidence multilayer condenser for operation at λ = 2.48 nm and a tiltable cryogenic sample stage the microscope now allows imaging of dry, wet or cryo-fixed samples. This arrangement was used for the first demonstration of laboratory soft x-ray cryo microscopy and tomography. The performance of the microscope has been demonstrated in a number of experiments described in this Thesis, including, tomographic imaging with a resolution of 140 nm, cryo microscopy and tomography of various cells and parasites, and for studies of aqueous soils and clays. The Thesis also describes the development and implementation of single-element differential-interference and Zernike phase-contrast zone-plate objectives. The enhanced contrast provided by these optics reduce exposure times or lowers the dose in samples and are of major importance for harder x-ray microscopy. The implementation of a high-resolution 50 nm compound zone-plate objective for sub-25-nm resolution imaging is also described. All experiments

  16. Analytical research using synchrotron radiation based techniques

    International Nuclear Information System (INIS)

    Jha, Shambhu Nath

    2015-01-01

    There are many Synchrotron Radiation (SR) based techniques such as X-ray Absorption Spectroscopy (XAS), X-ray Fluorescence Analysis (XRF), SR-Fourier-transform Infrared (SRFTIR), Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. which are increasingly being employed worldwide in analytical research. With advent of modern synchrotron sources these analytical techniques have been further revitalized and paved ways for new techniques such as microprobe XRF and XAS, FTIR microscopy, Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. The talk will cover mainly two techniques illustrating its capability in analytical research namely XRF and XAS. XRF spectroscopy: XRF spectroscopy is an analytical technique which involves the detection of emitted characteristic X-rays following excitation of the elements within the sample. While electron, particle (protons or alpha particles), or X-ray beams can be employed as the exciting source for this analysis, the use of X-ray beams from a synchrotron source has been instrumental in the advancement of the technique in the area of microprobe XRF imaging and trace level compositional characterisation of any sample. Synchrotron radiation induced X-ray emission spectroscopy, has become competitive with the earlier microprobe and nanoprobe techniques following the advancements in manipulating and detecting these X-rays. There are two important features that contribute to the superb elemental sensitivities of microprobe SR induced XRF: (i) the absence of the continuum (Bremsstrahlung) background radiation that is a feature of spectra obtained from charged particle beams, and (ii) the increased X-ray flux on the sample associated with the use of tunable third generation synchrotron facilities. Detection sensitivities have been reported in the ppb range, with values of 10 -17 g - 10 -14 g (depending on the particular element and matrix). Keeping in mind its demand, a microprobe XRF beamline has been setup by RRCAT at Indus-2 synchrotron

  17. Future Synchrotron Radiation Sources

    CERN Document Server

    Winick, Herman

    2003-01-01

    Sources of synchrotron radiation (also called synchrotron light) and their associated research facilities have experienced a spectacular growth in number, performance, and breadth of application in the past two to three decades. In 1978 there were eleven electron storage rings used as light sources. Three of these were small rings, all below 500 mega-electron volts (MeV), dedicated to this purpose; the others, with energy up to 5 giga-electron volts (GeV), were used parasitically during the operation of the ring for high energy physics research. In addition, at that time synchrotron radiation from nine cyclic electron synchrotrons, with energy up to 5 GeV, was also used parasitically. At present no cyclic synchrotrons are used, while about 50 electron storage rings are in operation around the world as fully dedicated light sources for basic and applied research in a wide variety of fields. Among these fields are structural molecular biology, molecular environmental science, materials, analytic chemistry, micr...

  18. Australian synchrotron radiation science

    International Nuclear Information System (INIS)

    White, J.W.

    1996-01-01

    Full text: The Australian Synchrotron Radiation Program, ASRP, has been set up as a major national research facility to provide facilities for scientists and technologists in physics, chemistry, biology and materials science who need access to synchrotron radiation. Australia has a strong tradition in crystallography and structure determination covering small molecule crystallography, biological and protein crystallography, diffraction science and materials science and several strong groups are working in x-ray optics, soft x-ray and vacuum ultra-violet physics. A number of groups whose primary interest is in the structure and dynamics of surfaces, catalysts, polymer and surfactant science and colloid science are hoping to use scattering methods and, if experience in Europe, Japan and USA can be taken as a guide, many of these groups will need third generation synchrotron access. To provide for this growing community, the Australian National Beamline at the Photon Factory, Tsukuba, Japan, has been established since 1990 through a generous collaboration with Japanese colleagues, the beamline equipment being largely produced in Australia. This will be supplemented in 1997 with access to the world's most powerful synchrotron x-ray source at the Advanced Photon Source, Argonne National Laboratory, USA. Some recent experiments in surface science using neutrons as well as x-rays from the Australian National Beamline will be used to illustrate one of the challenges that synchrotron x-rays may meet

  19. Precision synchrotron radiation detectors

    International Nuclear Information System (INIS)

    Levi, M.; Rouse, F.; Butler, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab

  20. Properties of synchrotron radiation

    International Nuclear Information System (INIS)

    Materlik, G.

    1982-01-01

    This paper forms the introductory chapter to a book concerning the use of synchrotron radiation for investigation of the structure and mechanism of biological macromolecules. After a historical section, the physics of synchrotron radiation is summarized so that the most promising experiments may be extrapolated. Irradiated power and intensity, polarization and angular distribution, brilliance of a real source, and developments such as wigglers and undulators are briefly dealt with. The paper includes a tabulated compilation of proposed and operating machines in 1982, with some of their characteristics. (U.K.)

  1. Computed tomographic appearances of cherubism

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, S D; Boccardi, A; Mela, F; Romagnoli, R

    1987-01-01

    The computed tomographic (CT) aspects of six cases of cherubism are described. Through its optimal representation of the lesions, CT enabled certain characteristics of this disease to be substantiated, namely, limitation of the process to the bones of the jaw and primarily superficial development of the mandibular lesions, coupled with an unusual mandibular condylar impairment. Moreover, the composition of this series permitted investigation of the condition in its several stages of progression.

  2. Synchrotron radiation sources for photobiology and ultraviolet, visible and infrared spectroscopy

    International Nuclear Information System (INIS)

    Sutherland, J.C.

    1980-01-01

    The advantages of synchrotron radiation in several types of spectroscopy, microscopy and diffraction studies are clear. The availability of synchrotron radiation will expand rapidly in the early 1980's as experimental programs start at the new generation of dedicated storage rings

  3. Synchrotron Infrared Science: Physics, Biology, Environmental Science and Coherence

    International Nuclear Information System (INIS)

    Martin, M.C.

    2004-01-01

    Full text: In recent years, infrared microscopy and spectroscopy has greatly benefited from a bright new source of light, namely synchrotrons. Synchrotrons provide a significant improvement in brightness, and therefore spatial resolution for mapping characteristic vibrational signatures of molecular species with high signal to noise. This has opened up new scientific directions for physicists, biologists, chemists, industrial applications, forensics, and more. I will present a brief overview of the technique followed by several scientific highlights of synchrotron infrared spectromicroscopy research being performed in Berkeley. I will then turn to the future by discussing our recent understanding of coherent synchrotron radiation (CSR). We are proposing a new ring which will use CSR to provide a far-infrared (THz) source having intensities between 7 and 10 orders of magnitude higher than present broadband sources. I will motivate and discuss the exciting capabilities of this revolutionary new source

  4. Reflectometry with synchrotron radiation

    International Nuclear Information System (INIS)

    Krumrey, Michael; Cibik, Levent; Fischer, Andreas; Gottwald, Alexander; Kroth, Udo; Scholze, Frank

    2014-01-01

    The measurement of the reflectivity for VUV, XUV, and X-radiation at the PTB synchrotron radiation sources is described. The corresponding data of the used beams are presented. Results of experiments on a Cu-Ni double-layer, SiO 2 , Si, and MgF 2 are presented. (HSI)

  5. Coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Agoh, Tomonori

    2006-01-01

    This article presents basic properties of coherent synchrotron radiation (CSR) with numerical examples and introduces the reader to important aspects of CSR in future accelerators with short bunches. We show interesting features of the single bunch instability due to CSR in storage rings and discuss the longitudinal CSR field via the impedance representation. (author)

  6. Characteristics of synchrotron radiation

    International Nuclear Information System (INIS)

    Brown, G.S.

    1984-01-01

    The characteristics and production of synchrotron radiation are qualitatively discussed. The spectral properties of wigglers and undulators are briefly described. Possible applications in condensed matter physics are outlined. These include atomic and molecular studies, crystallography, impurities in solids and radiographic imaging

  7. Synchrotron radiation research

    International Nuclear Information System (INIS)

    Markus, N.

    1995-01-01

    In the many varied application fields of accelerators, synchrotron radiation ranks as one of the most valuable and widely useful tools. Synchrotron radiation is produced in multi-GeV electron synchrotrons and storage rings, and emerges tangentially in a narrow vertical fan. Synchrotron radiation has been used extensively for basic studies and, more recently, for applied research in the chemical, materials, biotechnology and pharmaceutical industries. Initially, the radiation was a byproduct of high energy physics laboratories but the high demand soon resulted in the construction of dedicated electron storage rings. The accelerator technology is now well developed and a large number of sources have been constructed, with energies ranging from about 1.5 to 8 GeV including the 6 GeV European Synchrotron Radiation Facility (ESRF) source at Grenoble, France. A modern third-generation synchrotron radiation source has an electron storage ring with a complex magnet lattice to produce ultra-low emittance beams, long straights for 'insertion devices', and 'undulator' or 'wiggler' magnets to generate radiation with particular properties. Large beam currents are necessary to give high radiation fluxes and long beam lifetimes require ultra high vacuum systems. Industrial synchrotron radiation research programmes use either Xray diffraction or spectroscopy to determine the structures of a wide range of materials. Biological and pharmaceutical applications study the functions of various proteins. With this knowledge, it is possible to design molecules to change protein behaviour for pharmaceuticals, or to configure more active proteins, such as enzymes, for industrial processes. Recent advances in molecular biology have resulted in a large increase in protein crystallography studies, with researchers using crystals which, although small and weakly diffracting, benefit from the high intensity. Examples with commercial significance include the study of

  8. French Society of Microscopy, 10. conference

    International Nuclear Information System (INIS)

    Thibault-Penisson, J.; Cremer, Ch.; Susini, J.; Kirklanda, A.I.; Rigneault, H.; Renault, O.; Bailly, A.; Zagonel, L.F.; Barrett, N.; Bogner, A.; Gauthier, C.; Jouneau, P.H.; Thollet, G.; Fuchs, G.; Basset, D.; Deconihout, B.; Vurpillot, F.; Vella, A.; Matthieu, G.; Cadel, E.; Bostel, A.; Blavette, D.; Baumeister, W.; Usson, Y.; Zaefferer, St.; Laffont, L.; Weyland, M.; Thomas, J.M.; Midgley, P.; Benlekbir, S.; Epicier, Th.; Diop, B.N.; Roux, St.; Ou, M.; Perriat, P.; Bausach, M.; Aouine, M.; Berhault, G.; Idrissi, H.; Cottevieille, M.; Jonic, S.; Larquet, E.; Svergun, D.; Vannoni, M.A.; Boisset, N.; Ersena, O.; Werckmann, J.; Ulhaq, C.; Hirlimann, Ch.; Tihay, F.; Cuong, Pham-Huu; Crucifix, C.; Schultz, P.; Jornsanoha, P.; Thollet, G.; Masenelli-Varlot, K.; Gauthier, C.; Ludwig, W.; King, A.; Johnson, G.; Gonzalves-Hoennicke, M.; Reischig, P.; Messaoudi, C.; Ibrahim, R.; Marco, S.; Klie, R.F.; Zhao, Y.; Yang, G.; Zhu, Y.; Hue, F.; Hytch, M.; Hartmann, J.M.; Bogumilowicz, Y.; Claverie, A.; Klein, H.; Alloyeau, D.; Ricolleau, C.; Langlois, C.; Le Bouar, Y.; Loiseau, A.; Colliex, C.; Stephan, O.; Kociak, M.; Tence, M.; Gloter, A.; Imhoff, D.; Walls, M.; Nelayah, J.; March, K.; Couillard, M.; Ailliot, C.; Bertin, F.; Cooper, D.; Rivallin, P.; Dumelie, N.; Benhayoune, H.; Balossier, G.; Cheynet, M.; Pokrant, S.; Tichelaar, F.; Rouviere, J.L.; Cooper, D.; Truche, R.; Chabli, A.; Debili, M.Y.; Houdellier, F.; Warot-Fonrose, B.; Hytch, M.J.; Snoeck, E.; Calmels, L.; Serin, V.; Schattschneider, P.; Jacob, D.; Cordier, P.

    2007-01-01

    This document gathers the resumes of some of the presentations made at this conference whose aim was to present the last developments and achievements of the 3 complementary microscopies: optical microscopy, electron microscopy and X-ray microscopy. The contributions have been organized around the following 12 topics: 1) new technical developments, 2) 3-dimensional imaging, 3) quantitative microscopy, 4) technical progress in photon microscopy, 5) synchrotron radiation, 6) measurements of patterns, deformations and strains, 7) materials for energy and transports, 8) nano-structures, 9) virus: structure and infection mechanisms, 10) 3-dimensional imaging for molecules, cells and cellular tissues, 11) nano-particles and colloids, and 12) liquid crystals

  9. CORNELL: Synchrotron 25

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    A recent celebration marked the twenty-fifth anniversary of the Cornell Electron Synchrotron. The major milestone in the commissioning of the synchrotron was on October 11, 1967 when Helen Edwards, Boyce McDaniel, and Maury Tigner achieved a 7 GeV beam, a worldrecord energy for electron synchrotrons at that time. Like so many advances in experimental physics, this occurred early in the morning - 3 a.m.! The transition from accelerator commissioning to high energy physics operation was extremely rapid; 7 GeV operation for data collection was routine just five weeks later. Throughout its life as a source of photon and electron beams for fixed target experiments, the synchrotron maintained energy leadership for circular electron machines. Originally designed for operation at 10 GeV, eventually it consistently provided beams for experiments at energies up to 11.6 GeV. It now operates at 5 GeV, serving as the injector for the CESR electron-positron storage ring. Robert Wilson was director of the laboratory during the design and most of the construction of the machine. He left near the end of the construction to become the first director of Fermilab and was replaced by Boyce McDaniel, who guided the laboratory from the completion of the synchrotron to the construction and early operation of CESR. Wilson recalled how the laboratory had originally proposed a 3 GeV turnkey machine to be built entirely by industry and would fit in the space previously occupied by earlier Cornell accelerators. However, members of the laboratory realized that 3 GeV would not open new physics frontiers, that the construction of the accelerator was much of the fun of doing high energy physics experiments, and that a more challenging project was needed. This led to the proposal for the 10 GeV synchrotron which was built in the ''Cornell Style'' with many of the components fabricated and nearly all of the assembly done at Cornell

  10. CORNELL: Synchrotron 25

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-03-15

    A recent celebration marked the twenty-fifth anniversary of the Cornell Electron Synchrotron. The major milestone in the commissioning of the synchrotron was on October 11, 1967 when Helen Edwards, Boyce McDaniel, and Maury Tigner achieved a 7 GeV beam, a worldrecord energy for electron synchrotrons at that time. Like so many advances in experimental physics, this occurred early in the morning - 3 a.m.! The transition from accelerator commissioning to high energy physics operation was extremely rapid; 7 GeV operation for data collection was routine just five weeks later. Throughout its life as a source of photon and electron beams for fixed target experiments, the synchrotron maintained energy leadership for circular electron machines. Originally designed for operation at 10 GeV, eventually it consistently provided beams for experiments at energies up to 11.6 GeV. It now operates at 5 GeV, serving as the injector for the CESR electron-positron storage ring. Robert Wilson was director of the laboratory during the design and most of the construction of the machine. He left near the end of the construction to become the first director of Fermilab and was replaced by Boyce McDaniel, who guided the laboratory from the completion of the synchrotron to the construction and early operation of CESR. Wilson recalled how the laboratory had originally proposed a 3 GeV turnkey machine to be built entirely by industry and would fit in the space previously occupied by earlier Cornell accelerators. However, members of the laboratory realized that 3 GeV would not open new physics frontiers, that the construction of the accelerator was much of the fun of doing high energy physics experiments, and that a more challenging project was needed. This led to the proposal for the 10 GeV synchrotron which was built in the ''Cornell Style'' with many of the components fabricated and nearly all of the assembly done at Cornell.

  11. Tomographic PIV: principles and practice

    International Nuclear Information System (INIS)

    Scarano, F

    2013-01-01

    A survey is given of the major developments in three-dimensional velocity field measurements using the tomographic particle image velocimetry (PIV) technique. The appearance of tomo-PIV dates back seven years from the present review (Elsinga et al 2005a 6th Int. Symp. PIV (Pasadena, CA)) and this approach has rapidly spread as a versatile, robust and accurate technique to investigate three-dimensional flows (Arroyo and Hinsch 2008 Topics in Applied Physics vol 112 ed A Schröder and C E Willert (Berlin: Springer) pp 127–54) and turbulence physics in particular. A considerable number of applications have been achieved over a wide range of flow problems, which requires the current status and capabilities of tomographic PIV to be reviewed. The fundamental aspects of the technique are discussed beginning from hardware considerations for volume illumination, imaging systems, their configurations and system calibration. The data processing aspects are of uppermost importance: image pre-processing, 3D object reconstruction and particle motion analysis are presented with their fundamental aspects along with the most advanced approaches. Reconstruction and cross-correlation algorithms, attaining higher measurement precision, spatial resolution or higher computational efficiency, are also discussed. The exploitation of 3D and time-resolved (4D) tomographic PIV data includes the evaluation of flow field pressure on the basis of the flow governing equation. The discussion also covers a-posteriori error analysis techniques. The most relevant applications of tomo-PIV in fluid mechanics are surveyed, covering experiments in air and water flows. In measurements in flow regimes from low-speed to supersonic, most emphasis is given to the complex 3D organization of turbulent coherent structures. (topical review)

  12. Segmentation-DrivenTomographic Reconstruction

    DEFF Research Database (Denmark)

    Kongskov, Rasmus Dalgas

    such that the segmentation subsequently can be carried out by use of a simple segmentation method, for instance just a thresholding method. We tested the advantages of going from a two-stage reconstruction method to a one stage segmentation-driven reconstruction method for the phase contrast tomography reconstruction......The tomographic reconstruction problem is concerned with creating a model of the interior of an object from some measured data, typically projections of the object. After reconstructing an object it is often desired to segment it, either automatically or manually. For computed tomography (CT...

  13. Computer tomographic examinations in epilepsy

    International Nuclear Information System (INIS)

    De Villiers, J.F.K.

    1984-01-01

    Epileptic patients that was examined at the Universitas Hospital (Bloemfontein) by means of computerized tomography for the period July 1978 - December 1980, are divided into two groups: a) Patients with general epilepsy of convulsions - 507; b) Patients with vocal or partial epilepsy - 111. The method of examination and the results for both general and vocal epilepsy are discussed. A degenerative state was found in 35% of the positive computer tomographic examinations in general epilepsy and 22% of the positive examinations for vocal epilepsy. The purpose of the article was to explain the circumstances that can be expected when a epileptic patient is examined by means of computerized tomography

  14. Ovarian metastases: Computed tomographic appearances

    International Nuclear Information System (INIS)

    Megibow, A.J.; Hulnick, D.H.; Bosniak, M.A.; Balthazar, E.J.

    1985-01-01

    Computed tomographic scans of 34 patients with ovarian metastases were reviewed to assess the radiographic appearances and to correlate these with the primary neoplasms. Primary neoplasms were located in the colon (20 patients), breast (six), stomach (five), small bowel (one), bladder (one), and Wilms tumor of the kidney (one). The radiographic appearance of the metastatic lesions could be described as predominantly cystic (14 lesions), mixed (12 lesions), or solid (seven lesions). The cystic and mixed lesions tended to be larger in overall diameter than the solid. The metastases from gastric carcinoma appeared solid in four of five cases. The metastases from the other neoplasms had variable appearances simulating primary ovarian carcinoma

  15. Applications of synchrotron radiation in biology and medicine

    International Nuclear Information System (INIS)

    Khole, V.

    1988-01-01

    This paper discusses the important role of synchrotron radiation in dealing with problems in various branches of biology and medicine, viz. molecular biology, molecular biophysics, biochemistry, cell biology, X-ray microscopy, molecular surgery, medical diagnostics (angiography, X-ray radiography, forensic medicine, element analysis), environmental biology, pollution control and photobiology. (author). 15 refs., 9 figs

  16. Precision of quantum tomographic detection of radiation

    Energy Technology Data Exchange (ETDEWEB)

    D' Ariano, G.M. (Dipartimento di Fisica ' ' Alessandro Volta' ' , Via A. Bassi 6, I-27100, Pavia (Italy) Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Via A. Bassi 6, I-27100, Pavia (Italy)); Macchiavello, Chiara (Dipartimento di Fisica ' ' Alessandro Volta' ' , Via A. Bassi 6, I-27100, Pavia (Italy)); Paris, M.G.A. (Dipartimento di Fisica ' ' Alessandro Volta' ' , Via A. Bassi 6, I-27100, Pavia (Italy))

    1994-11-21

    Homodyne tomography provides an experimental technique for reconstructing the density matrix of the radiation field. Here we analyze the tomographic precision in recovering observables like the photon number, the quadrature, and the phase. We show that tomographic reconstruction, despite providing a complete characterization of the state of the field, is generally much less efficient than conventional detection techniques. ((orig.))

  17. Precision of quantum tomographic detection of radiation

    International Nuclear Information System (INIS)

    D'Ariano, G.M.; Macchiavello, Chiara; Paris, M.G.A.

    1994-01-01

    Homodyne tomography provides an experimental technique for reconstructing the density matrix of the radiation field. Here we analyze the tomographic precision in recovering observables like the photon number, the quadrature, and the phase. We show that tomographic reconstruction, despite providing a complete characterization of the state of the field, is generally much less efficient than conventional detection techniques. ((orig.))

  18. Coronary angiography using synchrotron radiation

    International Nuclear Information System (INIS)

    Akatsuka, Takao; Hiranaka, Yukio; Takeda, Tohru; Hyodo, Kazuyuki.

    1990-01-01

    Invasive coronary angiography is the imaging technique of choice for diagnosis of ischemic heart disease. Recently, the application of synchrotron radiation in coronary angiography has been investigated in the world, with the aim of developing the noninvasive technique for visualizing the heart. In this article, backgrounds and present situation of coronary angiography using synchrotron radiation are reviewed. Firstly, visual imaging techniques of the cardiovascular system are discussed in terms of angiography and digital subtraction angiography (DSA). Conventional temporal, energy, and hybrid subtraction modes used in DSA are referred to. Secondly, the application of synchrotron radiation is presented, focusing on the property of synchrotron radiation and K-edge subtraction angiography. Two kinds of synchrotron radiation beam methods are outlined. Interpretation of image data and various subtraction procedures remain unestablished. There is much to be done before coronary angiography using synchrotron radiation comes into a clinical practice. (N.K.)

  19. French Society of Microscopy, 10. conference; Societe Francaise des Microscopies, 10. colloque

    Energy Technology Data Exchange (ETDEWEB)

    Thibault-Penisson, J; Cremer, Ch; Susini, J; Kirklanda, A I; Rigneault, H; Renault, O; Bailly, A; Zagonel, L F; Barrett, N; Bogner, A; Gauthier, C; Jouneau, P H; Thollet, G; Fuchs, G; Basset, D; Deconihout, B; Vurpillot, F; Vella, A; Matthieu, G; Cadel, E; Bostel, A; Blavette, D; Baumeister, W; Usson, Y; Zaefferer, St; Laffont, L; Weyland, M; Thomas, J M; Midgley, P; Benlekbir, S; Epicier, Th; Diop, B N; Roux, St; Ou, M; Perriat, P; Bausach, M; Aouine, M; Berhault, G; Idrissi, H; Cottevieille, M; Jonic, S; Larquet, E; Svergun, D; Vannoni, M A; Boisset, N; Ersena, O; Werckmann, J; Ulhaq, C; Hirlimann, Ch; Tihay, F; Cuong, Pham-Huu; Crucifix, C; Schultz, P; Jornsanoha, P; Thollet, G; Masenelli-Varlot, K; Gauthier, C; Ludwig, W; King, A; Johnson, G; Gonzalves-Hoennicke, M; Reischig, P; Messaoudi, C; Ibrahim, R; Marco, S; Klie, R F; Zhao, Y; Yang, G; Zhu, Y; Hue, F; Hytch, M; Hartmann, J M; Bogumilowicz, Y; Claverie, A; Klein, H; Alloyeau, D; Ricolleau, C; Langlois, C; Le Bouar, Y; Loiseau, A; Colliex, C; Stephan, O; Kociak, M; Tence, M; Gloter, A; Imhoff, D; Walls, M; Nelayah, J; March, K; Couillard, M; Ailliot, C; Bertin, F; Cooper, D; Rivallin, P; Dumelie, N; Benhayoune, H; Balossier, G; Cheynet, M; Pokrant, S; Tichelaar, F; Rouviere, J L; Cooper, D; Truche, R; Chabli, A; Debili, M Y; Houdellier, F; Warot-Fonrose, B; Hytch, M J; Snoeck, E; Calmels, L; Serin, V; Schattschneider, P; Jacob, D; Cordier, P

    2007-07-01

    This document gathers the resumes of some of the presentations made at this conference whose aim was to present the last developments and achievements of the 3 complementary microscopies: optical microscopy, electron microscopy and X-ray microscopy. The contributions have been organized around the following 12 topics: 1) new technical developments, 2) 3-dimensional imaging, 3) quantitative microscopy, 4) technical progress in photon microscopy, 5) synchrotron radiation, 6) measurements of patterns, deformations and strains, 7) materials for energy and transports, 8) nano-structures, 9) virus: structure and infection mechanisms, 10) 3-dimensional imaging for molecules, cells and cellular tissues, 11) nano-particles and colloids, and 12) liquid crystals.

  20. Analysis of cortical bone porosity using synchrotron radiation microtomography to evaluate the effects of chemotherapy

    Science.gov (United States)

    Alessio, R.; Nogueira, L. P.; Salata, C.; Mantuano, A.; Almeida, A. P.; Braz, D.; de Almeida, C. E.; Tromba, G.; Barroso, R. C.

    2015-11-01

    Microporosities play important biologic and mechanical roles on health. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to cortical bone changes. In the present work, the femur diaphysis of rats treated with chemotherapy drugs were evaluated by 3D morphometric parameters using synchrotron radiation microtomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the ELETTRA Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur diaphysis of rats.

  1. Singapore Synchrotron Light Source - Status, first results, program

    CERN Document Server

    Moser, H O; Kempson, V C; Kong, J R; Li, Z W; Nyunt, T; Qian, H J; Rossmanith, R; Tor, P H; Wilhelmi, O; Yang, P; Zheng, H W; Underhay, I J

    2003-01-01

    The Singapore Synchrotron Light Source is a general-purpose synchrotron radiation facility serving research organisations and industry. Beamlines active or coming up within 2002 include lithography for micro/nanofabrication, phase contrast imaging, surface science, and X-ray diffraction and absorption. An infrared spectro/microscopy beamline is expected to become operational in 2003. Further beamlines are under discussion with user groups. The Microtron Undulator Radiation Facility (MURF) is under development to provide brilliant VUV radiation and to prepare for subsequent development of an EUV and X-ray FEL.

  2. X-ray tomographic apparatus

    International Nuclear Information System (INIS)

    Walters, R.G.

    1982-01-01

    An x-ray tomographic system consists of a radiation source such as gamma or x radiation which produces a fan-shaped beam. The fan is wide enough to encompass the patient circle. The system further includes means for rotating the radiation source about the patient for less than a full rotation, and detectors for detecting the radiation at positions that surround the patient by 180 0 plus the angle of the fan beam plus the angle between adjacent fan detectors. Attenuation data from the detectors is sorted into detector fans of attenuation data, then processed. The convolved data is back-projected into an image memory and displayed on a video monitor

  3. Quantitative X-ray microtomography with synchrotron radiation

    International Nuclear Information System (INIS)

    Donath, T.

    2007-01-01

    Synchrotron-radiation-based computed microtomography (SR μ CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR μ CT measurements have been further improved by enhancements that were made to the SR μ CT apparatus and to the reconstruction chain. For high-resolution SR μ CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR μ CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  4. Tomographic anthropomorphic models. Pt. 1

    International Nuclear Information System (INIS)

    Veit, R.; Zankl, M.; Petoussi, N.; Mannweiler, E.; Drexler, G.; Williams, G.

    1989-01-01

    The first generation of heterogenoeous anthropomorphic mathematical models to be used in dose calculations was the MIRD-5 adult phantom, followed by the pediatric MIRD-type phantoms and by the GSF sex-specific phantoms ADAM and EVA. A new generation of realistic anthropomorphic models is now introduced. The organs and tissues of these models consist of a well defined number of volume elements (voxels), derived from computer tomographic (CT) data; consequently, these models were named voxel or tomographic models. So far two voxel models of real patients are available: one of an 8 week old baby and of a 7 year old child. For simplicity, the model of the baby will be referred to as BABY and that of the child as CHILD. In chapter 1 a brief literature review is given on the existing mathematical models and their applications. The reasons that lead to the construction of the new CT models is discussed. In chapter 2 the technique is described which allows to convert any physical object into computer files to be used for dose calculations. The technique which produces three dimensional reconstructions of high resolution is discussed. In chapter 3 the main characteristics of the models of the baby and child are given. Tables of organ masses and volumes are presented together with three dimensional images of some organs and tissues. A special mention is given to the assessment of bone marrow distribution. Chapter 4 gives a short description of the Monte Carlo code used in conjunction with the models to calculate organ and tissue doses resulting from photon exposures. Some technical details concerning the computer files which describe the models are also given. (orig./HP)

  5. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  6. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  7. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  8. Compact synchrotron radiation source

    International Nuclear Information System (INIS)

    Liu, N.; Wang, T.; Tian, J.; Lin, Y.; Chen, S.; He, W.; Hu, Y.; Li, Q.

    1985-01-01

    A compact 800 MeV synchrotron radiation source is discussed. The storage ring has a circumference of 30.3 m, two 90 degree and four 45 degree bending magnet sections, two long straight sections and four short straight sections. The radius of the bending magnet is 2.224m. The critical wave length is 24A. The injector is a 15 Mev Microtron Electrons are accelerated from 15 Mev to 800 Mev by ramping the field of the ring. The expected stored current will be around 100 ma

  9. The synchrotron radiation

    International Nuclear Information System (INIS)

    Chevallier, P.

    1994-01-01

    Synchrotron Radiation is a fantastic source of electromagnetic radiation the energy spectrum of which spreads continuously from the far infrared to hard X-rays. For this reason a wide part of the scientific community, fundamentalists as well as industry, is concerned by its use. We shall describe here the main properties of this light source and give two examples of application in the field of characterization of materials: EXAFS (Extended X-Ray Absorption Fine Structure) and X-ray fluorescence. (author). 8 figs., 21 refs

  10. Synchrotron Moessbauer reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, D.L.; Bottyan, L.; Deak, L.; Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Spiering, H. [Johannes Gutenberg Universitaet Mainz, Institut fuer Anorganische und Analytische Chemie (Germany); Dekoster, J.; Langouche, G. [K.U. Leuven, Instituut voor Kern- en Stralingsfysica (Belgium)

    2000-07-15

    Grazing incidence nuclear resonant scattering of synchrotron radiation can be applied to perform depth-selective phase analysis and to determine the isotopic and magnetic structure of thin films and multilayers. Principles and recent experiments of this new kind of reflectometry are briefly reviewed. Methodological aspects are discussed. Model calculations demonstrate how the orientations of the sublattice magnetisation in ferro- and antiferromagnetic multilayers affect time-integral and time-differential spectra. Experimental examples show the efficiency of the method in investigating finite-stacking, in-plane and out-of-plane anisotropy and spin-flop effects in magnetic multilayers.

  11. Breast tomography with synchrotron radiation: preliminary results

    International Nuclear Information System (INIS)

    Pani, Silvia; Longo, Renata; Dreossi, Diego; Montanari, Francesco; Olivo, Alessandro; Arfelli, Fulvia; Bergamaschi, Anna; Poropat, Paolo; Rigon, Luigi; Zanconati, Fabrizio; Palma, Ludovico Dalla; Castelli, Edoardo

    2004-01-01

    A system for in vivo breast imaging with monochromatic x-rays has been designed and built at the synchrotron radiation facility Elettra in Trieste (Italy) and will be operational in 2004. The system design involves the possibility of performing both planar mammography and breast tomography. In the present work, the first results obtained with a test set-up for breast tomography are shown and discussed. Tomographic images of in vitro breasts were acquired using monochromatic x-ray beams in the energy range 20-28 keV and a linear array silicon pixel detector. Tomograms were reconstructed using standard filtered backprojection algorithms; the effect of different filters was evaluated. The attenuation coefficients of fibroglandular and adipose tissue were measured, and a quantitative comparison of images acquired at different energies was performed by calculating the differential signal-to-noise ratio of fibroglandular details in adipose tissue. All images required a dose comparable to the dose delivered in clinical, conventional mammography and showed a high resolution of the breast structures without the overlapping effects that limit the visibility of the structures in 2D mammography. A quantitative evaluation of the images proves that the image quality at a given dose increases in the considered energy range and for the considered breast sizes

  12. Measuring Cavitation with Synchrotron X-Rays

    Science.gov (United States)

    Duke, Daniel; Kastengren, Alan; Powell, Chris; X-Ray Fuel Spray Group, Energy Systems Division Team

    2012-11-01

    Cavitation plays an important role in the formation of sprays from small nozzles such as those found in fuel injection systems. A sharp-edged inlet from the sac into the nozzle of a diesel fuel injector is shown to inititate a strong sheet-like cavitation along the boundary layer of the nozzle throat, which is difficult to measure and can lead to acoustic damage. To investigate this phenomenon, a diagnostic technique capable of mapping the density field of the nozzle through regions of intense cavitation is required. Available visible-light techniques are limited to qualitative observations of the outer extent of cavitation zones. However, brilliant X-rays from a synchrotron source have negligible refraction and are capable of penetrating the full extent of cavitation zones. We present the early results of a novel application of line-of-sight, time-resolved X-ray radiography on a cavitating model nozzle. Experiments were conducted at Sector 7-BM of the Advanced Photon Source. Density and vapor distribution are measured from the quantitative absorption of monochromatic X-rays. The density field can then be tomographically reconstructed from the projections. The density is then validated against a range of compressible and incompressible numerical simulations. This research was performed at the 7-BM beamline of the Advanced Photon Source. We acknowledge the support of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357 and the DOE Vehicle Technologies Program (DOE-EERE).

  13. Tomographical properties of uniformly redundant arrays

    International Nuclear Information System (INIS)

    Cannon, T.M.; Fenimore, E.E.

    1978-01-01

    Recent work in coded aperture imaging has shown that the uniformly redundant array (URA) can image distant planar radioactive sources with no artifacts. The performance of two URA apertures when used in a close-up tomographic imaging system is investigated. It is shown that a URA based on m sequences is superior to one based on quadratic residues. The m sequence array not only produces less obnoxious artifacts in tomographic imaging, but is also more resilient to some described detrimental effects of close-up imaging. It is shown that in spite of these close-up effects, tomographic depth resolution increases as the source is moved closer to the detector

  14. Synchrotron light beam and a synchrotron light experiment facility

    International Nuclear Information System (INIS)

    Ando, Masami

    1980-01-01

    In the National Laboratory for High Energy Physics, about two years ago, the requirements of synchrotron light beam in respective measuring instruments were discussed. Then, also the arrangement (lattice) of a storage ring, the nature of synchrotron light beam, a synchrotron light experiment facility and the arrangement of the beam lines were studied. During the period of two years since then, due to the changes in the circumstances, the design of the lattice was altered. Accordingly, the arrangement of the beam lines and of measuring instruments were largely changed. At this point, the results of discussions in various meetings are described, though they may still be subject to future changes, with due consideration to beam, environment and beam lines required for the design of the measuring instruments: (1) storage ring and synchrotron light beam, (2) requirements on small beam size and beam stability, (3) a synchrotron light experiment facility. (J.P.N.)

  15. Synchrotron Elettra. Status and perspectives

    International Nuclear Information System (INIS)

    Remec, I.

    1992-01-01

    Synchrotron radiation and the possibilities for its applications are shortly presented. Elettra, the third generation synchrotron, now under construction in Trieste, Italy, is briefly described and its main characteristics are given. Current activities in Slovenia, related to Elettra, are presented. (author) [sl

  16. Basis of medical accelerator. Synchrotron

    International Nuclear Information System (INIS)

    Kawachi, Kiyomitsu

    2014-01-01

    On the synchrotron as a medical accelerator, this paper introduces the basic principle, basic techniques and the like. The accelerator, when synchrotron is adopted as an ion beam radiotherapy system, is the composite accelerator composed of ion sources, injector, and synchrotron. This paper introduces the overall structure of synchrotron, and conceptually explains the basic behavior of high-frequency waves and magnetic field of synchrotron, as well as the deflection electromagnet of medical synchrotron and the operation pattern of high-frequency acceleration system. The types of synchrotron can be classified to the function combination type and function separation type, and this paper introduces the features of each type and various types of synchrotrons. It also explains beam dynamics important for ensuring the stability of beams, with a focus on the coordinate system, vertical movement, and lateral movement. In addition, it explains the incidence and outgoing of beams that are important for properly operating the accelerator, with a focus on their techniques. (A.O.)

  17. Fluorescence microscopy.

    Science.gov (United States)

    Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D

    2014-10-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.

  18. Compact Positron Tomograph for Prostate Imaging

    National Research Council Canada - National Science Library

    Huber, Jennifer

    2004-01-01

    The goal of this project is to construct a functioning compact positron tomograph, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  19. Compact Positron Tomograph for Prostate Imaging

    National Research Council Canada - National Science Library

    Huber, Jennifer S

    2005-01-01

    The goal of this project is to construct a functioning compact positron tomograph, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  20. Computed tomographic findings of intracranial gliosis

    International Nuclear Information System (INIS)

    Weisberg, L.

    1981-01-01

    The clinical and computed tomographic (CT) findings in eight patients with pathological evidence of cerebral gliosis are analyzed. CT findings do not permit differentiation of gliosis from other neoplastic and non-neoplastic conditions. (orig.)

  1. HSC5: synchrotron radiation and neutrons for cultural heritage studies

    International Nuclear Information System (INIS)

    Michel, Anne; Artioli, G.; Bleuet, P.; Cotte, M.; Tafforeau, P.; Susini, J.; Dumas, P.; Somogyl, A.; Cotte, M.; Kockelmann, W.; Kolar, J.; Areon, I.; Meden, A.; Strlie, M.; Pantos, M.; Vendrell, M.; Wess, T.; Gunneweg, J.

    2007-01-01

    Synchrotron and neutron sources offer recent and additional insight into the records of our cultural past. Over the last years, there has been an increasing demand for access to synchrotron radiation- and neutron-based techniques, and their applications in the fields of archaeological science and cultural heritage. The purpose of this Hercules Specialized Course is to give the participants an introduction to the basic principles of synchrotron radiation and neutron techniques (imaging, microscopy, diffraction, absorption and fluorescence, IR spectroscopy). The school provides cross-disciplinary examples illustrating the abilities of these techniques in a representative range of scientific cases concerning painting, archaeological artefacts, inks, pigments, fossils and the Dead Sea scrolls. This document gathers only the resumes of the lectures

  2. HSC5: synchrotron radiation and neutrons for cultural heritage studies

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Anne [Institut Neel - CNRS, 38 - Grenoble (France); Artioli, G. [Padova Univ. (Italy); Bleuet, P.; Cotte, M.; Tafforeau, P.; Susini, J. [European Synchrotron Radiation Facility, 38 - Grenoble (France); Dumas, P.; Somogyl, A. [SOLEIL Synchrotron, 91 - Gif sur Yvette (France); Cotte, M. [Centre de Recherche et de Restauration des Musees de France, UMR171, 75 - Paris (France)]|[European Synchrotron Radiation Facility, 38 - Grenoble (France); Kockelmann, W. [Science and Technology Facilities Council, Rutherford Appleton Lab. (United Kingdom); Kolar, J. [Ljubljana Univ., Morana RTD, Slovenia, Faculty of Chemistry and Chemical Technology (Slovenia); Areon, I. [Nova Gorica Univ. (Slovenia); Meden, A.; Strlie, M. [Ljubljana Univ., Faculty of Chemistry and Chemical Technology (Slovenia); Pantos, M. [Daresbury Laboratory, Warrington (United Kingdom); Vendrell, M. [Barcelona Univ., dept. of Crystallography and Mineralogy (Spain); Wess, T. [Cardiff Univ., School of Optometry and Institute of Vision (Ireland); Gunneweg, J. [Hebrew Univ., Jerusalem (Israel)

    2007-07-01

    Synchrotron and neutron sources offer recent and additional insight into the records of our cultural past. Over the last years, there has been an increasing demand for access to synchrotron radiation- and neutron-based techniques, and their applications in the fields of archaeological science and cultural heritage. The purpose of this Hercules Specialized Course is to give the participants an introduction to the basic principles of synchrotron radiation and neutron techniques (imaging, microscopy, diffraction, absorption and fluorescence, IR spectroscopy). The school provides cross-disciplinary examples illustrating the abilities of these techniques in a representative range of scientific cases concerning painting, archaeological artefacts, inks, pigments, fossils and the Dead Sea scrolls. This document gathers only the resumes of the lectures.

  3. Precision tomographic analysis of reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Deok; Lee, Chang Hee; Kim, Jong Soo; Jeong, Jwong Hwan; Nam, Ki Yong

    2001-03-01

    For the tomographical assay, search of current status, analysis of neutron beam characteristics, MCNP code simulation, sim-fuel fabrication, neutron experiment for sim-fuel, multiaxes operation system design were done. In sensitivity simulation, the reconstruction results showed the good agreement. Also, the scoping test at ANL was very helpful for actual assay. Therefore, the results are applied for HANARO tomographical system setup and consecutive next research.

  4. Precision tomographic analysis of reactor fuels

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Lee, Chang Hee; Kim, Jong Soo; Jeong, Jwong Hwan; Nam, Ki Yong

    2001-03-01

    For the tomographical assay, search of current status, analysis of neutron beam characteristics, MCNP code simulation, sim-fuel fabrication, neutron experiment for sim-fuel, multiaxes operation system design were done. In sensitivity simulation, the reconstruction results showed the good agreement. Also, the scoping test at ANL was very helpful for actual assay. Therefore, the results are applied for HANARO tomographical system setup and consecutive next research

  5. Reinterpretation of Azolla primaeva (Azollaceae, Eocene, Canada) using electron microscopy and X-ray tomographic microscopy

    NARCIS (Netherlands)

    Collinson, Margaret E.; van Konijnenburg-van Cittert, Johanna H.A.; Marone, Federica; Brain, Anthony P.R.

    Azolla primaeva (Penhallow) Arnold fertile whole plants from the lower Eocene of Driftwood Creek, Canada have been examined using LM, SEM, TEM and SRXTM methods on hand specimens and sieved residues. The new data have resulted in an emended diagnosis. The megaspore is partly covered by filosum and

  6. Proton synchrotron accelerator theory

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1977-01-01

    This is the text of a series of lectures given as part of the CERN Academic Training Programme and primarily intended for young engineers and technicians in preparation for the running-in of the 400 GeV Super Proton Synchrotron (SPS). Following the definition of basic quantities, the problems of betatron motion and the effect of momentum spread and orbital errors on the transverse motion of the beam are reviewed. Consideration is then given to multipole fields, chromaticity and non-linear resonances. After dealing with basic relations governing longitudinal beam dynamics, the space-charge, resistive-wall and other collective effects are treated, with reference to precautions in the SPS to prevent their occurrence. (Auth.)

  7. Tomographic PIV: particles versus blobs

    International Nuclear Information System (INIS)

    Champagnat, Frédéric; Cornic, Philippe; Besnerais, Guy Le; Plyer, Aurélien; Cheminet, Adam; Leclaire, Benjamin

    2014-01-01

    We present an alternative approach to tomographic particle image velocimetry (tomo-PIV) that seeks to recover nearly single voxel particles rather than blobs of extended size. The baseline of our approach is a particle-based representation of image data. An appropriate discretization of this representation yields an original linear forward model with a weight matrix built with specific samples of the system’s point spread function (PSF). Such an approach requires only a few voxels to explain the image appearance, therefore it favors much more sparsely reconstructed volumes than classic tomo-PIV. The proposed forward model is general and flexible and can be embedded in a classical multiplicative algebraic reconstruction technique (MART) or a simultaneous multiplicative algebraic reconstruction technique (SMART) inversion procedure. We show, using synthetic PIV images and by way of a large exploration of the generating conditions and a variety of performance metrics, that the model leads to better results than the classical tomo-PIV approach, in particular in the case of seeding densities greater than 0.06 particles per pixel and of PSFs characterized by a standard deviation larger than 0.8 pixels. (paper)

  8. Emerging tomographic methods within the petroleum industry

    International Nuclear Information System (INIS)

    Johansen, Geir Anton

    2013-01-01

    Since industrial process tomography was introduced as a concept almost two decades ago, the considerable progress within a large variety of sensing modalities has to a large extent been technology driven. Industrial tomography applications may be divided into three categories: 1) Laboratory systems, 2) Field equipment for diagnostics and mapping purposes, and 3) Permanently installed systems. Examples on emerging methods on all categories will be presented, either from R and D at the University of Bergen and/or our industrial partners. Most developments are within the first category, where tomographs are used to provide better understanding of various processes such as pipe flow, separators, mixers and reactors. Here tomographic data is most often used to provide better process knowledge, for reference measurements and validation and development of process models, and finally for development for instruments and process equipment. The requirement here may be either high spatial resolution or high temporal resolution, or combinations of these. Tomographic field measurements are applied to either to inspect processes or equipment on a regular base or at faulty or irregular operation, or to map multicomponent systems such petroleum reservoirs, their structure and the distribution gas, oil and water within them. The latter will only be briefly touched upon here. Tomographic methods are increasingly being used for process and equipment diagnostics. The requirements vary and solutions based on repetition of single measurements, such as in column scanning, to full tomographic systems where there is sufficiently space or access. The third category is tomographic instruments that are permanently installed in situ in a process. These need not provide full tomographic images and instruments with fewer views are often preferred to reduce complexity and increase the instrument reliability. (author)

  9. UV and vacuum-UV biological spectroscopy using synchrotron radiation

    International Nuclear Information System (INIS)

    Ito, Amando Siuiti

    1996-01-01

    Full text. Synchrotron radiation has been used as light source in the UV and VUV region for the study of many biological systems. In the time domain, measurements are made that allow the observation of dynamics and kinetics of biomolecules like proteins and peptides, using the fluorescent properties of either intrinsic or extrinsic probes. Optical activity of groups inside biomolecules allows the use of circular dichroism techniques to generate structural information and to follow processes like protein folding. Confocal scanning of synchrotron light generates microscopy resolution below 100 nm, allowing the creation of high quality three dimensional images of biological samples, and the collection of fluorescence originated from microvolumes inside the samples. We propose a station at LNLS for these three techniques: time-resolved fluorescence, circular dischroism and confocal microscopy, using UV and VUV light. (author)

  10. Synchrotron light source data book

    International Nuclear Information System (INIS)

    Murphy, J.

    1989-01-01

    The ''Synchrotron Light Source Data Book'' is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-ray Data Booklet, edited by D. Vaughan (LBL PUB-490), address the 'use' of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in 'practical units' and a brief description of many of the existing and planned light source lattices

  11. Biomedical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Kwiatek, W.M.; Galka, M.; Hanson, A.L.; Paluszkiewicz, Cz.; Cichocki, T.

    2001-01-01

    Synchrotron radiation techniques application in medical diagnostics have been presented especially for: trace element analysis in tissues, elemental mapping, chemical speciation at trace levels, chemical structure determination. Presented techniques are very useful for early cancer discovery

  12. Inverse comptonization vs. thermal synchrotron

    International Nuclear Information System (INIS)

    Fenimore, E.E.; Klebesadel, R.W.; Laros, J.G.

    1983-01-01

    There are currently two radiation mechanisms being considered for gamma-ray bursts: thermal synchrotron and inverse comptonization. They are mutually exclusive since thermal synchrotron requires a magnetic field of approx. 10 12 Gauss whereas inverse comptonization cannot produce a monotonic spectrum if the field is larger than 10 11 and is too inefficient relative to thermal synchrotron unless the field is less than 10 9 Gauss. Neither mechanism can explain completely the observed characteristics of gamma-ray bursts. However, we conclude that thermal synchrotron is more consistent with the observations if the sources are approx. 40 kpc away whereas inverse comptonization is more consistent if they are approx. 300 pc away. Unfortunately, the source distance is still not known and, thus, the radiation mechanism is still uncertain

  13. Regions compete for French synchrotron

    CERN Multimedia

    2000-01-01

    Ten regions in France have placed bids to host the planned national synchrotron Soleil. Leading contenders include a joint bid from Ile-de-France and Essonne for Orsay, offering FF 1 billion towards the construction costs (2 paragraphs).

  14. Reshuffle lifts French synchrotron hopes

    CERN Multimedia

    McCabe, H

    2000-01-01

    The sacking of Claude Allegre as research minister has raised doubts over the level of France's promised participation in the construction of Diamond but reawakened French hopes that the synchrotron Soleil may now be built (1 page).

  15. Plan and present status of synchrotron radiation applications at HESYRL

    International Nuclear Information System (INIS)

    Zhang, Y.; Su, Y.; Qian, S.; Xu, X.; Jiang, D.; Xu, C.

    1985-01-01

    An 800 MeV electron storage ring is being constructed at Hefei, China. It is a dedicated UV synchrotron light source from which 27 beam lines could be extracted to accommodate about 50 experimental stations. Four beam lines and five stations are planned and some instruments have been designed and are under construction for the first five-year plan. The proposed experiments include x-ray lithography, soft x-ray microscopy, photoelectron spectroscopy, time-resolved spectroscopy and photochemistry

  16. Macromolecular crystallography using synchrotron radiation

    International Nuclear Information System (INIS)

    Bartunik, H.D.; Phillips, J.C.; Fourme, R.

    1982-01-01

    The use of synchrotron X-ray sources in macromolecular crystallography is described. The properties of synchrotron radiation relevant to macromolecular crystallography are examined. The applications discussed include anomalous dispersion techniques, the acquisition of normal and high resolution data, and kinetic studies of structural changes in macromolecules; protein data are presented illustrating these applications. The apparatus used is described including information on the electronic detectors, the monitoring of the incident beam and crystal cooling. (U.K.)

  17. Mapping prehistoric ghosts in the synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, N.P.; Wogelius, R.A. [University of Manchester, School of Earth, Atmospheric, and Environmental Sciences, Manchester (United Kingdom); University of Manchester, Williamson Research Centre for Molecular Environmental Science, Manchester (United Kingdom); Bergmann, U. [SLAC National Accelerator Laboratory, Linac Coherent Light Source, Menlo Park, CA (United States); Larson, P. [Black Hills Institute of Geological Research, Inc., Hill City, SD (United States); Sellers, W.I. [University of Manchester, Faculty of Life Sciences, Manchester (United Kingdom); Manning, P.L. [University of Manchester, School of Earth, Atmospheric, and Environmental Sciences, Manchester (United Kingdom); University of Manchester, Williamson Research Centre for Molecular Environmental Science, Manchester (United Kingdom); University of Pennsylvania, Department of Earth and Environmental Science, Philadelphia, PA (United States)

    2013-04-15

    The detailed chemical analysis of fossils has the potential to reveal great insight to the composition, preservation and biochemistry of ancient life. Such analyses would ideally identify, quantify, and spatially resolve the chemical composition of preserved bone and soft tissue structures, but also the embedding matrix. Mapping the chemistry of a fossil in situ can place constraints on mass transfer between the enclosing matrix and the preserved organism(s), and therefore aid in distinguishing taphonomic processes from original chemical zonation remnant within the fossils themselves. Conventional analytical methods, such as scanning electron microscopy (SEM) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) have serious limitations in this case, primarily, an inability to provide large (i.e., decimeter) scale chemical maps. Additionally, vacuum chamber size and the need for destructive sampling preclude analysis of large and precious fossil specimens. However, the recent development of Synchrotron Rapid Scanning X-ray Fluorescence (SRS-XRF) at the Stanford Synchrotron Radiation Lightsource (SSRL) allows the non-destructive chemical analysis and imaging of major, minor, and trace element concentrations of large paleontological and archeological specimens in rapid scanning times. Here we present elemental maps of a fossil reptile produced using the new SRS-XRF method. Our results unequivocally show that preserved biological structures are not simply impressions or carbonized remains, but possess a remnant of the original organismal biochemistry. We show that SRS-XRF is a powerful new tool for the study of paleontological and archaeological samples. (orig.)

  18. Application of circular polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Miyahara, Tsuneaki; Kawata, Hiroshi

    1988-03-01

    The idea of using the polarizing property of light for physical experiment by controlling it variously has been known from old time, and the Faraday effect and the research by polarizing microscopy are its examples. The light emitted from the electron orbit of an accelerator has the different polarizing characteristics from those of the light of a laboratory light source, and as far as observing it within the electron orbit plane, it becomes linearly polarized light. By utilizing this property well, research is carried out at present in synchrotron experimental facilities. Recently, the technology related to the insert type light cources using permanent magnets has advanced remarkably, and circular polarized light has become to be producible. If the light like this can be obtained with the energy not only in far ultraviolet region but also to x-ray region at high luminance, new possibility should open. At the stage that the design of an insert type light source was finished, and its manufacture was started, the research on the method of evaluating the degree of circular polarization and the research on the utilization of circular polarized synchrotron radiation are earnestly carried out. In this report, the results of researches presented at the study meeting are summarized. Moreover, the design and manufacture of the beam lines for exclusive use will be carried out. (Kako, I.)

  19. Manufacturability of compact synchrotron mirrors

    Science.gov (United States)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  20. A high-throughput system for high-quality tomographic reconstruction of large datasets at Diamond Light Source.

    Science.gov (United States)

    Atwood, Robert C; Bodey, Andrew J; Price, Stephen W T; Basham, Mark; Drakopoulos, Michael

    2015-06-13

    Tomographic datasets collected at synchrotrons are becoming very large and complex, and, therefore, need to be managed efficiently. Raw images may have high pixel counts, and each pixel can be multidimensional and associated with additional data such as those derived from spectroscopy. In time-resolved studies, hundreds of tomographic datasets can be collected in sequence, yielding terabytes of data. Users of tomographic beamlines are drawn from various scientific disciplines, and many are keen to use tomographic reconstruction software that does not require a deep understanding of reconstruction principles. We have developed Savu, a reconstruction pipeline that enables users to rapidly reconstruct data to consistently create high-quality results. Savu is designed to work in an 'orthogonal' fashion, meaning that data can be converted between projection and sinogram space throughout the processing workflow as required. The Savu pipeline is modular and allows processing strategies to be optimized for users' purposes. In addition to the reconstruction algorithms themselves, it can include modules for identification of experimental problems, artefact correction, general image processing and data quality assessment. Savu is open source, open licensed and 'facility-independent': it can run on standard cluster infrastructure at any institution.

  1. Introduction to curved rotary tomographic apparatus 'TOMOREX'

    International Nuclear Information System (INIS)

    Kubota, Kazuo; Shinojima, Masayasu; Kohirasawa, Hideo; Tokui, Mitsuru

    1980-01-01

    In recent years, panorama X-ray photographic method is widely used for the X-ray diagnosis of teeth, jawbones and faces. One type based on the principle of tomography is curved surface rotary tomographic method utilizing fine-gap X-ray beam. With the synchronous rotation of an X-ray tube and a photographic film around a face, describing a U-shaped tomographic plane along a dental arch, an upper or lower jawbone is photographed. In the ''TOMOREX'' belonging to this type, is different tomographic planes are available, so that by selecting any position in advance, the part can be photographed. Furthermore, patients can be subjected to examination as laid on a stretcher. The mechanism and equipment, and the photographic method for eye sockets, cheekbones, upper jaw cavities and stereoscopic images are described. (J.P.N.)

  2. Computed tomographic findings of intracranial pyogenic abscess

    International Nuclear Information System (INIS)

    Kim, S. J.; Suh, J. H.; Park, C. Y.; Lee, K. C.; Chung, S. S.

    1982-01-01

    The early diagnosis and effective treatment of brain abscess pose a difficult clinical problem. With the advent of computed tomography, however, it appears that mortality due to intracranial abscess has significantly diminished. 54 cases of intracranial pyogenic abscess are presented. Etiologic factors and computed tomographic findings are analyzed and following result are obtained. 1. The common etiologic factors are otitis media, post operation, and head trauma, in order of frequency. 2. The most common initial computed tomographic findings of brain abscess is ring contrast enhancement with surrounding brain edema. 3. The most characteristic computed tomographic finding of ring contrast enhancement is smooth thin walled ring contrast enhancement. 4. Most of thick irregular ring contrast enhancement are abscess associated with cyanotic heart disease or poor operation. 5. The most common findings of epidural and subdural empyema is crescentic radiolucent area with thin wall contrast enhancement without surrounding brain edema in convexity of brain

  3. First experience with a mobile computed tomograph in the USSR

    International Nuclear Information System (INIS)

    Portnoj, L.M.

    1989-01-01

    Utilization experience of mobile computerized tomograph mounted in the bus is presented. Problems concerning staff, selection of medical base institutes etc are considered. Efficiency of mobile computerized tomographes in revealing different diseases is pointed out

  4. Arbitrary layer tomographic method and apparatus

    International Nuclear Information System (INIS)

    Kato, H.; Ishida, M.

    1984-01-01

    Many two-dimensional X-ray projection distribution images obtained by exposing an object to X-rays in various directions are once stored in positions different from one another in a stimulable phosphor sheet or respectively in many stimulable phosphor sheets. The stimulable phosphor sheet or sheets are then scanned with stimulating rays, and the light emitted thereby from the stimulable phosphor sheet or sheets is photoelectrically read out to obtain electric signals representing the X-ray projection distribution images. The electric signals are processed to obtain a tomographic image of an arbitrary tomographic layer of the object

  5. Synchrotron radiation X-ray microtomography and histomorphometry for evaluation of chemotherapy effects in trabecular bone structure

    International Nuclear Information System (INIS)

    Alessio, R; Almeida, A P; Braz, D; Nogueira, L P; Colaço, M V; Barroso, R C; Andrade, C B V; Salata, C; De Almeida, C E; Ferreira-Machado, S C; Tromba, G

    2014-01-01

    Three-dimensional microtomography has the potential to examine complete bones of small laboratory animals with very high resolution in a non-invasive way. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to bone changes. In the present work, the femur heads of rats treated with chemotherapy drugs were evaluated by 3D histomorphometry using synchrotron radiation microcomputed tomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur heads of rats in both analyzed groups.

  6. Synchrotron radiation X-ray microtomography and histomorphometry for evaluation of chemotherapy effects in trabecular bone structure

    Science.gov (United States)

    Alessio, R.; Nogueira, L. P.; Almeida, A. P.; Colaço, M. V.; Braz, D.; Andrade, C. B. V.; Salata, C.; Ferreira-Machado, S. C.; de Almeida, C. E.; Tromba, G.; Barroso, R. C.

    2014-04-01

    Three-dimensional microtomography has the potential to examine complete bones of small laboratory animals with very high resolution in a non-invasive way. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to bone changes. In the present work, the femur heads of rats treated with chemotherapy drugs were evaluated by 3D histomorphometry using synchrotron radiation microcomputed tomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur heads of rats in both analyzed groups.

  7. Spin dynamics in electron synchrotrons

    International Nuclear Information System (INIS)

    Schmidt, Jan Felix

    2017-01-01

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  8. Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow

    International Nuclear Information System (INIS)

    Boden, Stephan; Santos Rolo, Tomy dos; Baumbach, Tilo; Hampel, Uwe

    2014-01-01

    We report on a study to measure the three-dimensional shape of Taylor bubbles in capillaries using synchrotron radiation in conjunction with ultrafast radiographic imaging. Moving Taylor bubbles in 2-mm round and square capillaries were radiographically scanned with an ultrahigh frame rate of up to 36,000 fps and 5.6-μm pixel separation. Consecutive images were properly processed to yield 2D transmission radiographs of high contrast-to-noise ratio. Application of 3D tomographic image reconstruction disclosed the 3D bubble shape. The results provide a reference data base for development of sophisticated interface resolving CFD computations. (orig.)

  9. Three-dimensional rendering of otolith growth using phase contrast synchrotron tomography.

    Science.gov (United States)

    Mapp, J J I; Fisher, M H; Atwood, R C; Bell, G D; Greco, M K; Songer, S; Hunter, E

    2016-05-01

    A three-dimensional computer reconstruction of a plaice Pleuronectes platessa otolith is presented from data acquired by the Diamond Light synchrotron, beamline I12, X-ray source, a high energy (53-150 keV) source particularly well suited to the study of dense objects. The data allowed non-destructive rendering of otolith structure, and for the first time allows otolith annuli (internal ring structures) to be analysed in X-ray tomographic images. © 2016 The Fisheries Society of the British Isles.

  10. Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Boden, Stephan [Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Fluid Dynamics, P.O. Box 510119, Dresden (Germany); Santos Rolo, Tomy dos; Baumbach, Tilo [Karlsruhe Institute of Technology (KIT), Institute for Photon Science and Synchrotron Radiation (IPS), Eggenstein-Leopoldshafen (Germany); Hampel, Uwe [Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Fluid Dynamics, P.O. Box 510119, Dresden (Germany); Technische Universitaet Dresden (TUD), AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering, Dresden (Germany)

    2014-07-15

    We report on a study to measure the three-dimensional shape of Taylor bubbles in capillaries using synchrotron radiation in conjunction with ultrafast radiographic imaging. Moving Taylor bubbles in 2-mm round and square capillaries were radiographically scanned with an ultrahigh frame rate of up to 36,000 fps and 5.6-μm pixel separation. Consecutive images were properly processed to yield 2D transmission radiographs of high contrast-to-noise ratio. Application of 3D tomographic image reconstruction disclosed the 3D bubble shape. The results provide a reference data base for development of sophisticated interface resolving CFD computations. (orig.)

  11. Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow

    Science.gov (United States)

    Boden, Stephan; dos Santos Rolo, Tomy; Baumbach, Tilo; Hampel, Uwe

    2014-07-01

    We report on a study to measure the three-dimensional shape of Taylor bubbles in capillaries using synchrotron radiation in conjunction with ultrafast radiographic imaging. Moving Taylor bubbles in 2-mm round and square capillaries were radiographically scanned with an ultrahigh frame rate of up to 36,000 fps and 5.6-µm pixel separation. Consecutive images were properly processed to yield 2D transmission radiographs of high contrast-to-noise ratio. Application of 3D tomographic image reconstruction disclosed the 3D bubble shape. The results provide a reference data base for development of sophisticated interface resolving CFD computations.

  12. Quantitative X-ray microtomography with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Donath, T. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2007-07-01

    Synchrotron-radiation-based computed microtomography (SR{sub {mu}}CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR{sub {mu}}CT measurements have been further improved by enhancements that were made to the SR{sub {mu}}CT apparatus and to the reconstruction chain. For high-resolution SR{sub {mu}}CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR{sub {mu}}CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  13. Computed tomographic appearances of sternocostoclavicular hyperostosis

    Energy Technology Data Exchange (ETDEWEB)

    Chigira, Masaki; Shimizu, Toru (Gunma Univ. (Japan). Dept. of Orthopaedic Surgery)

    1989-08-01

    Computed tomographical analysis of sternocostoclavicular hyperostosis was performed in 27 patients. In the earliest stage hyperostosis occurred around the cartilaginous portion of the first ribs. The sternoclavicular joint space was preserved even in the late stage III of the disorder. It is also suggested that perichondritis and periostitis play important roles in the etiology of this disorder. (orig./GDG).

  14. Computed tomographic appearances of sternocostoclavicular hyperostosis

    International Nuclear Information System (INIS)

    Chigira, Masaki; Shimizu, Toru

    1989-01-01

    Computed tomographical analysis of sternocostoclavicular hyperostosis was performed in 27 patients. In the earliest stage hyperostosis occurred around the cartilaginous portion of the first ribs. The sternoclavicular joint space was preserved even in the late stage III of the disorder. It is also suggested that perichondritis and periostitis play important roles in the etiology of this disorder. (orig./GDG)

  15. Tomographic image reconstruction using training images

    DEFF Research Database (Denmark)

    Soltani, Sara; Andersen, Martin Skovgaard; Hansen, Per Christian

    2017-01-01

    We describe and examine an algorithm for tomographic image reconstruction where prior knowledge about the solution is available in the form of training images. We first construct a non-negative dictionary based on prototype elements from the training images; this problem is formulated within...

  16. Photon emission tomographic apparatus and method

    International Nuclear Information System (INIS)

    Blum, A.S.

    1983-01-01

    Tomographic imaging system employs large area, collimated scintillation detector rotated around radiation emitting subject. Detector support rotates with an inner ring inside a stationary outer ring. Counterbalanced detector support arm is forced by spring action to cause collimator face to follow body contour as detector rotates around the body, thereby reducing collimator to subject distance to improve system resolution. Includes adjustable subject support system

  17. Case Report: Unusual computed tomographic features of ...

    African Journals Online (AJOL)

    A case report of a 57-year old woman who presented with signs and symptoms of intracranial mass. Computed tomographic (CT) and clinical features were unusual and suggestive of a parasaggital Meningioma. However an accurate diagnosis of a tuberculoma was made at surgery and histopathological examination.

  18. Quantum probability measures and tomographic probability densities

    NARCIS (Netherlands)

    Amosov, GG; Man'ko, [No Value

    2004-01-01

    Using a simple relation of the Dirac delta-function to generalized the theta-function, the relationship between the tomographic probability approach and the quantum probability measure approach with the description of quantum states is discussed. The quantum state tomogram expressed in terms of the

  19. The bar coil for NMR tomograph

    International Nuclear Information System (INIS)

    Bogorodzki, P.; Piatkowski, A.; Wasielewski, J.

    1995-01-01

    The bar coil (bi-planar) for the NMR tomograph, designed for medical diagnostics, has been described. The tests of coil shown that it generates good homogenous magnetic field in a big volume what results in improving of the signal-to-noise ratio

  20. Decomposition of time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schmid, P.J.; Violato, D.; Scarano, F.

    2012-01-01

    An experimental study has been conducted on a transitional water jet at a Reynolds number of Re = 5,000. Flow fields have been obtained by means of time-resolved tomographic particle image velocimetry capturing all relevant spatial and temporal scales. The measured threedimensional flow fields have

  1. Connections model for tomographic images reconstruction

    International Nuclear Information System (INIS)

    Rodrigues, R.G.S.; Pela, C.A.; Roque, S.F. A.C.

    1998-01-01

    This paper shows an artificial neural network with an adequately topology for tomographic image reconstruction. The associated error function is derived and the learning algorithm is make. The simulated results are presented and demonstrate the existence of a generalized solution for nets with linear activation function. (Author)

  2. The synchrotron light source ROSY

    International Nuclear Information System (INIS)

    Einfeld, D.; Buettig, H.; Dienel, S.; Glaeser, W.; Goetz, T.; Guratzsch, H.; Hartmann, B.; Janssen, D.; Krug, H.; Linnemann, J.; Matz, W.; Murphy, J.B.; Neumann, W.; Oehme, W.; Picard, M.; Plesko, M.; Proehl, D.; Schlenk, R.; Tomassini, D.; Tyrroff, H.

    1994-01-01

    ROSY, a 3rd generation synchrotron light source, has been proposed to be built at the Research Center Rossendorf/Dresden in Germany. With its low emittance and optimized space for installing insertion devices ROSY will be the first synchrotron radiation source in the 3 GeV range in Europe, dedicated to materials research and industrial application. The critical wavelength of the synchrotron radiation spectra was designed to be 0.15 nm corresponding to a critical photon energy of 8.4 keV. It is proposed to use a ''modified multiple bend achromat'' (MBA) lattice in order to get a compact machine as well as a low emittance. For 3 GeV an emittance smaller than 30π nm rad can be obtained. With a fourfold symmetry and two larger straight sections within the achromatic arcs the circumference is 148 m. 23% of the circumference can be used for installing insertion devices. (orig.)

  3. Synchrotron radiation and structural proteomics

    CERN Document Server

    Pechkova, Eugenia

    2011-01-01

    This book presents an overview of the current state of research in both synchrotron radiation and structural proteomics from different laboratories worldwide. The book presents recent research results in the most advanced methods of synchrotron radiation analysis, protein micro- and nano crystallography, X-ray scattering and X-ray optics, coherent X-Ray diffraction, and laser cutting and contactless sample manipulation are described in details. The book focuses on biological applications and highlights important aspects such as radiation damage and molecular modeling.

  4. Atoms, molecules, clusters and synchrotron radiation

    International Nuclear Information System (INIS)

    Kui Rexi; Ju Xin

    1995-01-01

    The importance of synchrotron radiation, especially the third generation synchrotron radiation light source, in atomic, molecular and cluster physics is discussed and some views are presented on new methods which may become available for research in the above fields

  5. PHOTOACOUSTIC SPECTROSCOPY USING A SYNCHROTRON LIGHT SOURCE

    International Nuclear Information System (INIS)

    JACKSON, R.S.; MICHAELIAN, K.H.; HOMES, C.C.

    2001-01-01

    We have investigated the use of a synchrotron as a source for infrared photoacoustic spectroscopy. A synchrotron has an intrinsically high radiance, which is beneficial when photoacoustic spectroscopy is applied to small samples, especially at long wavelengths

  6. Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.

    Science.gov (United States)

    Asghar, Z; Requena, G; Sket, F

    2015-07-01

    The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  7. Synchrotron X-Ray Footprinting on Tour

    OpenAIRE

    Bohon, Jen; Ralston, Corie; D'Mello, Rhijuta; Gupta, Sayan; Chance, Mark R.

    2014-01-01

    Synchrotron X-ray footprinting resources were investigated at a variety of beamlines and synchrotron facilities to understand their potential for a mobile general user. Results indicate that viable resources exist at each synchrotron investigated such that a prospective user need only provide a simple flow apparatus and sample handling accessories to perform this technique.

  8. DESY: Synchrotron and storage rings

    CERN Multimedia

    1972-01-01

    An improvement programme has been under way for several years at the 7.5 GeV électron synchrotron at DESY. In particular it has been designed to increase the accelerated beam intensity, to achieve better quality of the ejected électron beams and photon beams and to improve machine reliability.

  9. Biological physics and synchrotron radiation

    International Nuclear Information System (INIS)

    Filhol, J.M.; Chavanne, J.; Weckert, E.

    2001-01-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  10. The Australian synchrotron research program

    International Nuclear Information System (INIS)

    Garrett, R.F.

    1998-01-01

    Full text: The Australian Synchrotron Research Program (ASRP) was established in 1996 under a 5 year grant from the Australian Government, and is managed by ANSTO on behalf of a consortium of Australian universities and research organisations. It has taken over the operation of the Australian National Beamline Facility (ANBF) at the Photon Factory, and has joined two CATS at the Advanced Photon Source: the Synchrotron Radiation Instrumentation CAT (SRI-CAT) and the Consortium for Advanced Radiation Sources (CARS). The ASRP thus manages a comprehensive range of synchrotron radiation research facilities for Australian science. The ANBF is a general purpose hard X-ray beamline which has been in operation at the Photon Factory since 1993. It currently caters for about 35 Australian research teams per year. The facilities available at the ANBF will be presented and the research program will be summarised. The ASRP facilities at the APS comprise the 5 sectors operated by SRI-CAT, BioCARS and ChemMatCARS. A brief description will be given of the ASRP research programs at the APS, which will considerably broaden the scope of Australian synchrotron science

  11. Tandems as injectors for synchrotrons

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1993-01-01

    This is a review on the use of tandem electrostatic accelerators for injection and fitting of synchrotrons to accelerate intense beams of heavy ions to relativistic energies. The paper emphasizes the need of operating the tandems in pulsed mode for this application. It has been experimentally demonstrated that at present this type of accelerator still provides the most reliable and best performance. (orig.)

  12. Biological physics and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Filhol, J M; Chavanne, J [European Synchrotron Radiation Facility, 38 - Grenoble (France); Weckert, E [Hasylab at Desy, Hamburg (Germany); and others

    2001-07-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  13. Synchrotron radiation in material science

    International Nuclear Information System (INIS)

    Zanotto, E.D.

    1983-01-01

    A brief review on the several experimental techniques (XRD, SAXS, EXAFS, IRRS, etc...) which, utilizing of synchrotron radiation can be applied in glass structural studies, is presented. The major part of these techniques can be also used for studies of other materials such as polymers, metals, etc... (L.C.) [pt

  14. Synchrotron Radiation and Faraday Rotation

    NARCIS (Netherlands)

    Heald, George

    2015-01-01

    Synchrotron radiation and its degree of linear polarization are powerful tracers of magnetic fields that are illuminated by cosmic ray electrons. Faraday rotation of the linearly polarized radiation is induced by intervening line-of-sight magnetic fields that are embedded in ionized plasmas. For

  15. Phase-contrast tomographic imaging using an X-ray interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Momose, A. [Hitachi Ltd, Advanced Research Lab., Saitama (Japan); Takeda, T.; Itai, Y. [Univ. of Tsukuba, Inst. of Clinical Medicine, Ibaraki (Japan); Yoneyama, A. [Hitachi Ltd, Central Resarch Lab., Tokyo (Japan); Hirano, K. [High Energy Accelerator Research Organization, Inst. of Materials Structure Science, Ibaraki (Japan)

    1998-05-01

    Apparatus for phase-contrast X-ray computed tomography using a monolithic X-ray interferometer is presented with some observational results for human breast tissues. Structures characteristic of the tissues were revealed in the phase-contrast tomograms. The procedure of image analysis consists of phase retrieval from X-ray interference patterns and tomographic image reconstruction from the retrieved phase shift. Next, feasibility of phase-contrast imaging using a two-crystal X-ray interferometer was studied aiming at in vivo observation in the future. In a preliminary study, the two-crystal X-ray interferometer was capable of generating fringes of 70% visibility using synchrotron X-rays. 35 refs.

  16. Phase-contrast tomographic imaging using an X-ray interferometer

    International Nuclear Information System (INIS)

    Momose, A.; Takeda, T.; Itai, Y.; Yoneyama, A.; Hirano, K.

    1998-01-01

    Apparatus for phase-contrast X-ray computed tomography using a monolithic X-ray interferometer is presented with some observational results for human breast tissues. Structures characteristic of the tissues were revealed in the phase-contrast tomograms. The procedure of image analysis consists of phase retrieval from X-ray interference patterns and tomographic image reconstruction from the retrieved phase shift. Next, feasibility of phase-contrast imaging using a two-crystal X-ray interferometer was studied aiming at in vivo observation in the future. In a preliminary study, the two-crystal X-ray interferometer was capable of generating fringes of 70% visibility using synchrotron X-rays

  17. Surface modification of fluorocarbon polymers by synchrotron radiation

    CERN Document Server

    Kanda, K; Matsui, S; Ideta, T; Ishigaki, H

    2003-01-01

    The surface modification of a poly (tetrafluoroethylene) sheet was carried out by synchrotron radiation in the soft X-ray region. The poly (tetrafluoroethylene) substrate was exposed to synchrotron radiation while varying the substrate temperature from room temperature to 200degC. The contact angle of the modified surfaces with a water drop decreased from 96deg to 72deg by the irradiation at room temperature, while the contact angle increased to 143deg by the irradiation at the substrate temperature of 200degC. Scanning electron microscopy suggested that this repellence was ascribable to the microstructure of the poly (tetrafluoroethylene) surface. We succeeded in controlling the wettability of the poly (tetrafluoroethylene) surface from hydrophobic to hydrophilic by irradiation of the soft X-ray light. (author)

  18. Present state and development of positron tomographs

    International Nuclear Information System (INIS)

    Allemand, R.; Gariod, R.; Laval, M.; Tournier, F.

    1979-01-01

    This document presents the main characteristics of positron tomographs and analyses the relative importance of the parameters to be taken into consideration in the design of a tomograph: on the one hand, the physical parameters linked to the measurement of the annihilation photons by time coincidence and, on the other, the geometrical and technological parameters of prime importance in minimizing the many spurious effects. The last part endeavours to show this sort of instrumentation has evolved. Using the results obtained in our laboratory by mathematical simulation, the expected advantages are presented on the picture quality of the time of flight measurement of annihilation photons. Where the physical aspects of this method are concerned, the advantage of using cesium fluoride as scintillator is demonstrated [fr

  19. The computed tomographic appearances of cherubism

    International Nuclear Information System (INIS)

    Bianchi, S.D.; Boccardi, A.; Mela, F.; Romagnoli, R.

    1987-01-01

    The computed tomographic (CT) aspects of six cases of cherubism are described. Through its optimal representation of the lesions, CT enabled certain characteristics of this disease to be substantiated, namely, limitation of the process to the bones of the jaw and primarily superficial development of the mandibular lesions, coupled with an unusual mandibular condylar impairment. Moreover, the composition of this series permitted investigation of the condition in its several stages of progression. (orig.)

  20. Tomographic scanning apparatus with ionization detector means

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification describes a tomographic scanning apparatus using a fan beam and digital output signal. Particular reference is made to the gas-pressurized ionization detector chamber, consisting of an array of side-by-side elongate ionization detection cells, the principal axis of each of the said cells being oriented along a radius extending towards the radiation source, and connection means for applying potentials across the cells for taking their output signals. (U.K.)

  1. Imaging cells and sub-cellular structures with ultrahigh resolution full-field X-ray microscopy.

    Science.gov (United States)

    Chien, C C; Tseng, P Y; Chen, H H; Hua, T E; Chen, S T; Chen, Y Y; Leng, W H; Wang, C H; Hwu, Y; Yin, G C; Liang, K S; Chen, F R; Chu, Y S; Yeh, H I; Yang, Y C; Yang, C S; Zhang, G L; Je, J H; Margaritondo, G

    2013-01-01

    Our experimental results demonstrate that full-field hard-X-ray microscopy is finally able to investigate the internal structure of cells in tissues. This result was made possible by three main factors: the use of a coherent (synchrotron) source of X-rays, the exploitation of contrast mechanisms based on the real part of the refractive index and the magnification provided by high-resolution Fresnel zone-plate objectives. We specifically obtained high-quality microradiographs of human and mouse cells with 29 nm Rayleigh spatial resolution and verified that tomographic reconstruction could be implemented with a final resolution level suitable for subcellular features. We also demonstrated that a phase retrieval method based on a wave propagation algorithm could yield good subcellular images starting from a series of defocused microradiographs. The concluding discussion compares cellular and subcellular hard-X-ray microradiology with other techniques and evaluates its potential impact on biomedical research. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Tomographic extreme-ultraviolet spectrographs: TESS.

    Science.gov (United States)

    Cotton, D M; Stephan, A; Cook, T; Vickers, J; Taylor, V; Chakrabarti, S

    2000-08-01

    We describe the system of Tomographic Extreme Ultraviolet (EUV) SpectrographS (TESS) that are the primary instruments for the Tomographic Experiment using Radiative Recombinative Ionospheric EUV and Radio Sources (TERRIERS) satellite. The spectrographs were designed to make high-sensitivity {80 counts/s)/Rayleigh [one Rayleigh is equivalent to 10(6) photons/(4pi str cm(2)s)}, line-of-sight measurements of the oi 135.6- and 91.1-nm emissions suitable for tomographic inversion. The system consists of five spectrographs, four identical nightglow instruments (for redundancy and added sensitivity), and one instrument with a smaller aperture to reduce sensitivity and increase spectral resolution for daytime operation. Each instrument has a bandpass of 80-140 nm with approximately 2- and 1-nm resolution for the night and day instruments, respectively. They utilize microchannel-plate-based two-dimensional imaging detectors with wedge-and-strip anode readouts. The instruments were designed, fabricated, and calibrated at Boston University, and the TERRIERS satellite was launched on 18 May 1999 from Vandenberg Air Force Base, California.

  3. Research using synchrotron radiation at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1982-01-01

    The National Synchrotron Light Source (NSLS) is now becoming operational with synchrotron radiation experiments beginning on the 700 MeV VUV electron storage ring. Commissioning of the 2.5 GeV x-ray storage ring has also begun with the experimental program expected to begin in 1983. The current status of the experimental program and instrumentation and the plans for future developments, will be discussed. Although some early results have been obtained on VUV beam lines no attempt will be made in this paper to describe them. Instead, an overview of the beam line characteristics will be given, with an indication of those already operational. In the oral presentation some initial experimental results will be discussed

  4. A synchrotron radiation microtomography system for the analysis of trabecular bone samples.

    Science.gov (United States)

    Salomé, M; Peyrin, F; Cloetens, P; Odet, C; Laval-Jeantet, A M; Baruchel, J; Spanne, P

    1999-10-01

    X-ray computed microtomography is particularly well suited for studying trabecular bone architecture, which requires three-dimensional (3-D) images with high spatial resolution. For this purpose, we describe a three-dimensional computed microtomography (microCT) system using synchrotron radiation, developed at ESRF. Since synchrotron radiation provides a monochromatic and high photon flux x-ray beam, it allows high resolution and a high signal-to-noise ratio imaging. The principle of the system is based on truly three-dimensional parallel tomographic acquisition. It uses a two-dimensional (2-D) CCD-based detector to record 2-D radiographs of the transmitted beam through the sample under different angles of view. The 3-D tomographic reconstruction, performed by an exact 3-D filtered backprojection algorithm, yields 3-D images with cubic voxels. The spatial resolution of the detector was experimentally measured. For the application to bone investigation, the voxel size was set to 6.65 microm, and the experimental spatial resolution was found to be 11 microm. The reconstructed linear attenuation coefficient was calibrated from hydroxyapatite phantoms. Image processing tools are being developed to extract structural parameters quantifying trabecular bone architecture from the 3-D microCT images. First results on human trabecular bone samples are presented.

  5. Hut clusters on Ge(001) surfaces studied by STM and synchrotron X-ray diffraction

    DEFF Research Database (Denmark)

    Nielsen, M.; Smilgies, D.-M.; Feidenhans'l, R.

    1996-01-01

    Nanoscale hut clusters formed on Ge(001) surfaces by depositing one monolayer of indium and annealing at temperatures between 350 and 500 degrees C were studied by scanning tunnelling microscopy and synchrotron X-ray diffraction. It was found that the hut clusters form regular arrays over...

  6. Moessbauer spectroscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Bergmann, U.

    1994-01-01

    The short pulse nature of synchrotron radiation makes it possible to perform Moessbauer spectroscopy in the time domain, i.e. instead of measuring the transmitted intensity time integrated as a function of source/absorber velocity, the intensity of the scattered radiation is measured time differential. The resulting time spectrum is essentially source independent and complications in the data analysis which are related to the radioactive source are completely removed. Furthermore, the large brightness and well defined polarization of the synchrotron radiation can, e.g., speed up the data collection and facilitate studies of polarization phenomena. To illustrate these new spectroscopic possibilities, measurements of the temperature dependence and polarization dependence of forward scattering from alpha - sup 5 sup 7 Fe nuclei are presented and discussed 26 refs., 5 figs. (author)

  7. Australian synchrotron light source - (boomerang)

    International Nuclear Information System (INIS)

    Boldeman, J.

    2001-01-01

    The Australian National Synchrotron Light Source - (Boomerang) is to be installed at the Monash University in Victoria. This report provides some background to the proposed facility and discusses aspects of a prospective design. Recently, significant effort was devoted to refining the in principle design and a lattice providing an emittance od 18 nm rad was obtained with a distributed dispersion in the straight section of 0.29m. Exhaustive studies have been made of the economic benefits that would accrue to Australia to Australia following the installation of this facility. This design is a refinement of the design concept presented to the SRI -2000, Berlin (Boldeman, Einfeld et al), to the meeting of the 4th Asian Forum and the Preliminary Design Study presented to the Australian Synchrotron Research Program

  8. Medical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1992-01-01

    Ever since the first diagnostic X-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become incrasingly important. Both in clinical medicine and basic research the use of X-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved. (orig.)

  9. Synchrotron radiation in atomic physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1998-01-01

    Much of present understanding of atomic and molecular structure and dynamics was gained through studies of photon-atom interactions. In particular, observations of the emission, absorption, and scattering of X rays have complemented particle-collision experiments in elucidating the physics of atomic inner shells. Grounded on Max von Laue's theoretical insight and the invention of the Bragg spectrometer, the field's potential underwent a step function with the development of synchrotron-radiation sources. Notably current third-generation sources have opened new horizons in atomic and molecular physics by producing radiation of wide tunability and exceedingly high intensity and polarization, narrow energy bandwidth, and sharp time structure. In this review, recent advances in synchrotron-radiation studies in atomic and molecular science are outlined. Some tempting opportunities are surveyed that arise for future studies of atomic processes, including many-body effects, aspects of fundamental photon-atom interactions, and relativistic and quantum-electrodynamic phenomena. (author)

  10. Medical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved

  11. Tomographic visualization of stress corrosion cracks in tubing

    International Nuclear Information System (INIS)

    Morris, R.A.; Kruger, R.P.; Wecksung, G.W.

    1979-06-01

    A feasibility study was conducted to determine the possibility of detecting and sizing cracks in reactor cooling water tubes using tomographic techniques. Due to time and financial constraints, only one tomographic reconstruction using the best technique available was made. The results indicate that tomographic reconstructions can, in fact, detect cracks in the tubing and might possibly be capable of measuring the depth of the cracks. Limits of detectability and sensitivity have not been determined but should be investigated in any future work

  12. Synchrotron X-radiation research

    International Nuclear Information System (INIS)

    Kabler, M.N.; Nagel, D.J.; Skelton, E.F.

    1990-05-01

    The Naval Research Laboratory (NRL) has been involved in the exploitation of X rays since the 1920s. The report gives a brief description of the generation and characteristics of synchrotron radiation, and review highlights of current research. Research examples include soft-X-ray optics, semiconductor surface passivation, surface electron dynamics, space-charge dynamics on silicon, photochemistry on GaAs, local atomic structure, crystal structures from X-ray diffraction. The report then discusses emerging research opportunities

  13. Threedimensional microfabrication using synchrotron radiation

    International Nuclear Information System (INIS)

    Ehrfeld, W.

    1990-01-01

    For fabricating microstructures with extreme structural heights a technology has been developed which is based on deep-etch lithography and subsequent replication processes. A particularly high precision is achieved if the lithographic process is carried out by means of synchrotron radiation. Electroforming and molding processes are used for the replication of microstructures from a large variety of materials. The field of application comprises sensors, electrical and optical microconnectors, components for fluid technology, microfiltration systems and novel composite materials. (author)

  14. Synchrotron/crystal sample preparation

    Science.gov (United States)

    Johnson, R. Barry

    1993-01-01

    The Center for Applied Optics (CAO) of the University of Alabama in Huntsville (UAH) prepared this final report entitled 'Synchrotron/Crystal Sample Preparation' in completion of contract NAS8-38609, Delivery Order No. 53. Hughes Danbury Optical Systems (HDOS) is manufacturing the Advanced X-ray Astrophysics Facility (AXAF) mirrors. These thin-walled, grazing incidence, Wolter Type-1 mirrors, varying in diameter from 1.2 to 0.68 meters, must be ground and polished using state-of-the-art techniques in order to prevent undue stress due to damage or the presence of crystals and inclusions. The effect of crystals on the polishing and grinding process must also be understood. This involves coating special samples of Zerodur and measuring the reflectivity of the coatings in a synchrotron system. In order to gain the understanding needed on the effect of the Zerodur crystals by the grinding and polishing process, UAH prepared glass samples by cutting, grinding, etching, and polishing as required to meet specifications for witness bars for synchrotron measurements and for investigations of crystals embedded in Zerodur. UAH then characterized these samples for subsurface damage and surface roughness and figure.

  15. Infrared microspectroscopy with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Carr, G.L.; Williams, G.P. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source

    1997-09-01

    Infrared microspectroscopy with a high brightness synchrotron source can achieve a spatial resolution approaching the diffraction limit. However, in order to realize this intrinsic source brightness at the specimen location, some care must be taken in designing the optical system. Also, when operating in diffraction limited conditions, the effective spatial resolution is no longer controlled by the apertures typically used for a conventional (geometrically defined) measurement. Instead, the spatial resolution depends on the wavelength of light and the effective apertures of the microscope`s Schwarzchild objectives. The authors have modeled the optical system from the synchrotron source up to the sample location and determined the diffraction-limited spatial distribution of light. Effects due to the dependence of the synchrotron source`s numerical aperture on wavelength, as well as the difference between transmission and reflection measurement modes, are also addressed. Lastly, they examine the benefits (when using a high brightness source) of an extrinsic germanium photoconductive detector with cone optics as a replacement for the standard MCT detector.

  16. Status of the Nanoscopium scanning nanoprobe beamline of Synchrotron Soleil

    Science.gov (United States)

    Somogyi, A.; Medjoubi, K.; Kewish, C. M.; Leroux, V.; Ribbens, M.; Baranton, G.; Polack, F.; Samama, J. P.

    2013-09-01

    The Nanoscopium 155 m-long scanning nanoprobe beamline of Synchrotron Soleil (St Aubin, France) is dedicated to quantitative multi-modal imaging. Dedicated experimental stations, working in consecutive operation mode, will provide coherent scatter imaging and spectro-microscopy techniques in the 5-20 keV energy range for various user communities. Next to fast scanning, cryogenic cooling will reduce the radiation damage of sensitive samples during the measurements. Nanoscopium is in the construction phase, the first user experiments are expected in 2014. The main characteristics of the beamline and an overview of its status are given in this contribution.

  17. Synchrotron powder diffraction on Aztec blue pigments

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, M. [European Synchrotron Radiation Facility, B.P. 220, Grenoble Cedex (France); Gutierrez-Leon, A.; Castro, G.R.; Rubio-Zuazo, J. [Spanish CRG Beamline at the European Synchrotron Radiation Facility, SpLine, B.P. 220, Grenoble Cedex (France); Solis, C. [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Mexico, D.F. (Mexico); Sanchez-Hernandez, R. [INAH Subdireccion de Laboratorios y Apoyo Academico, Mexico, D.F. (Mexico); Robles-Camacho, J. [INAH Centro Regional Michoacan, Morelia, Michoacan (Mexico); Rojas-Gaytan, J. [INAH Direccion de Salvamento Arqueologico, Naucalpan de Juarez (Mexico)

    2008-01-15

    Some samples of raw blue pigments coming from an archaeological rescue mission in downtown Mexico City have been characterized using different techniques. The samples, some recovered as a part of a ritual offering, could be assigned to the late Aztec period (XVth century). The striking characteristic of these samples is that they seem to be raw pigments prior to any use in artworks, and it was possible to collect a few {mu}g of pigment after manual grain selection under a microscopy monitoring. All pigments are made of indigo, an organic colorant locally known as anil or xiuhquilitl. The colorant is always found in combination with an inorganic matrix, studied by powder diffraction. In one case the mineral base is palygorskite, a rare clay mineral featuring micro-channels in its structure, well known as the main ingredient of the Maya blue pigment. However, other samples present the minerals sepiolite (a clay mineral of the palygorskite family) and calcite. Another sample contains barite, a mineral never reported in prehispanic paints. We present the results of characterization using high resolution powder diffraction recorded at the European Synchrotron Radiation Facility (BM25A, SpLine beamline) complemented with other techniques. All of them gave consistent results on the composition. A chemical test on resistance to acids was done, showing a high resistance for the palygorskite and eventually sepiolite compounds, in good agreement with the excellent resistance of the Maya blue. (orig.)

  18. Synchrotron powder diffraction on Aztec blue pigments

    Science.gov (United States)

    Sánchez Del Río, M.; Gutiérrez-León, A.; Castro, G. R.; Rubio-Zuazo, J.; Solís, C.; Sánchez-Hernández, R.; Robles-Camacho, J.; Rojas-Gaytán, J.

    2008-01-01

    Some samples of raw blue pigments coming from an archaeological rescue mission in downtown Mexico City have been characterized using different techniques. The samples, some recovered as a part of a ritual offering, could be assigned to the late Aztec period (XVth century). The striking characteristic of these samples is that they seem to be raw pigments prior to any use in artworks, and it was possible to collect a few μg of pigment after manual grain selection under a microscopy monitoring. All pigments are made of indigo, an organic colorant locally known as añil or xiuhquilitl. The colorant is always found in combination with an inorganic matrix, studied by powder diffraction. In one case the mineral base is palygorskite, a rare clay mineral featuring micro-channels in its structure, well known as the main ingredient of the Maya blue pigment. However, other samples present the minerals sepiolite (a clay mineral of the palygorskite family) and calcite. Another sample contains barite, a mineral never reported in prehispanic paints. We present the results of characterization using high resolution powder diffraction recorded at the European Synchrotron Radiation Facility (BM25A, SpLine beamline) complemented with other techniques. All of them gave consistent results on the composition. A chemical test on resistance to acids was done, showing a high resistance for the palygorskite and eventually sepiolite compounds, in good agreement with the excellent resistance of the Maya blue.

  19. Computed tomographic findings of traumatic intracranial lesions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seong Wook; Kim, Il Young; Lee, Byung Ho; Kim, Ki Jeoung; Yoon, Il Gyu [Soonchunhyang University College of Medicine, Seoul (Korea, Republic of)

    1985-10-15

    Traumatic intracranial lesion has been one of the most frequent and serious problem in neurosurgical pathology. Computed tomography made it possible to get prompt diagnosis and surgical intervention of intracranial lesions by its safety, fastness and accuracy. Computed tomographic scan was carried out on 1309 cases at Soonchunhyang Chunan Hospital for 15 months from October 1983 to December 1984. We have reviewed the computed tomographic scans of 264 patients which showed traumatic intracranial lesion. The result were as follows: 1. Head trauma was the most frequent diagnosed disease using computed tomographic scans (57.8%) and among 264 cases the most frequent mode of injury was traffic accident (73.9%). 2. Skull fracture was accompanied in frequency of 69.7% and it was detected in CT in 38.6%: depression fracture was more easily detected in 81%. 3. Conutercoup lesion (9.5%) was usually accompanied with temporal and occipital fracture, and it appeared in lower incidence among pediatric group. 4. Intracranial lesions of all 264 cases were generalized cerebral swelling (24.6%), subdural hematoma (22.3%), epidural hematoma (20.8%), intracerebral hematoma (6.1%), and subarachnoid hemorrhage (3.0%). 5. The shape of hematoma was usually biconvex (92.7%) in acute epidural hematoma and cresentic (100%) in acute subdural hematoma, but the most chronic the case became, they showed planoconvex and bicconvex shapes. 6. Extra-axial hematoma was getting decreased in density as time gone by. 7. Hematoma density was not in direct proportion to serum hemoglobin level as single factor.

  20. Computed tomographic findings of traumatic intracranial lesions

    International Nuclear Information System (INIS)

    Jeong, Seong Wook; Kim, Il Young; Lee, Byung Ho; Kim, Ki Jeoung; Yoon, Il Gyu

    1985-01-01

    Traumatic intracranial lesion has been one of the most frequent and serious problem in neurosurgical pathology. Computed tomography made it possible to get prompt diagnosis and surgical intervention of intracranial lesions by its safety, fastness and accuracy. Computed tomographic scan was carried out on 1309 cases at Soonchunhyang Chunan Hospital for 15 months from October 1983 to December 1984. We have reviewed the computed tomographic scans of 264 patients which showed traumatic intracranial lesion. The result were as follows: 1. Head trauma was the most frequent diagnosed disease using computed tomographic scans (57.8%) and among 264 cases the most frequent mode of injury was traffic accident (73.9%). 2. Skull fracture was accompanied in frequency of 69.7% and it was detected in CT in 38.6%: depression fracture was more easily detected in 81%. 3. Conutercoup lesion (9.5%) was usually accompanied with temporal and occipital fracture, and it appeared in lower incidence among pediatric group. 4. Intracranial lesions of all 264 cases were generalized cerebral swelling (24.6%), subdural hematoma (22.3%), epidural hematoma (20.8%), intracerebral hematoma (6.1%), and subarachnoid hemorrhage (3.0%). 5. The shape of hematoma was usually biconvex (92.7%) in acute epidural hematoma and cresentic (100%) in acute subdural hematoma, but the most chronic the case became, they showed planoconvex and bicconvex shapes. 6. Extra-axial hematoma was getting decreased in density as time gone by. 7. Hematoma density was not in direct proportion to serum hemoglobin level as single factor

  1. Computerized tomographic diagnosis of basal skull fracture

    International Nuclear Information System (INIS)

    Tanaka, Tokutaro; Shimoyama, Ichiro; Endoh, Mitsutoshi; Ninchoji, Toshiaki; Uemura, Kenichi.

    1984-01-01

    The diagnosis of basal skull fractures used to be difficult, particularly on the basis of routine skull roentgenography alone. We have now examined the diagnostic value of conventional computerized tomography in basal skull fractures. We studied 82 cases clinically diagnosed as basal skull fractures. We examined them based on at least one of the following computerized tomographic criteria for basal skull fractures: 1) fracture line(s), 2) intracranial air, 3) fluid in the paranasal sinuses, and 4) fluid in the middle ear, including the mastoid air cells. The signs of the fracture line and of the intracranial air are definite indications of basal skull fracture, but the signs of fluid in the paranasal sinuses and/or in the middle ear are not definite. When combined, however, with such other clinical signs as black eye, Battle's sign, CSF leakage, CSF findings, and profuse nasal or ear bleeding, the diagnosis is more reliable. Seventy cases (85.4%) in this series had basal skull fractures according to our computerized tomographic criteria. Among them , 26 cases (31.7%) were diagnosed with fracture lines, 17 cases (20.7%) with intracranial air, 16 cases (19.5%) with fluid in the paranasal sinuses, 10 cases (12.2%) with fluid in the middle ear, and one case (1.2%) with fluid in both. Twelve cases (14.6%) of the 82 cases clinically diagnosed as basal skull fractures could not have been diagnosed on our computerized tomographic criteria alone. We diagnosed them because of CSF leakage, CSF findings, surgical findings, etc. (author)

  2. Synchrotron Environmental Science-I Workshop Report

    International Nuclear Information System (INIS)

    1999-01-01

    Attendees of the Synchrotrons Environmental Science 1 (SES-1) workshop represented a broad spectrum of environmental science research areas and expertise in all of the current synchrotrons techniques (X-ray scattering and diffraction, X-ray absorption spectroscopy, and two- and three-dimensional X-ray imaging). These individuals came together to discuss current measurement obstacles in environmental research and, more specifically, ways to overcome such obstacles by applying synchrotrons radiation techniques. Significant obstacles in measurement affect virtually all of the research issues described. Attendees identified synchrotrons approaches of potential value in their research. A number of the environmental research studies discussed are currently being addressed with some success by synchrotron-based approaches. Nevertheless, improvements in low-Z measurement capabilities are needed to facilitate the use of synchrotrons radiation methodologies in environmental research

  3. Synchrotron Environmental Science-I Workshop Report.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-08

    Attendees of the Synchrotrons Environmental Science 1 (SES-1) workshop represented a broad spectrum of environmental science research areas and expertise in all of the current synchrotrons techniques (X-ray scattering and diffraction, X-ray absorption spectroscopy, and two- and three-dimensional X-ray imaging). These individuals came together to discuss current measurement obstacles in environmental research and, more specifically, ways to overcome such obstacles by applying synchrotrons radiation techniques. Significant obstacles in measurement affect virtually all of the research issues described. Attendees identified synchrotrons approaches of potential value in their research. A number of the environmental research studies discussed are currently being addressed with some success by synchrotron-based approaches. Nevertheless, improvements in low-Z measurement capabilities are needed to facilitate the use of synchrotrons radiation methodologies in environmental research.

  4. Computer tomographic investigation of ancient Egyptian mummies

    International Nuclear Information System (INIS)

    Huebner, K.H.; Pahl, W.M.; Tuebingen Univ.

    1981-01-01

    Radiological and computer tomographic examinations of Egyptian mummies have been carried out at the Institute of Anthropology and Human Genetics from 1975 to 1978. These have demonstrated the value of CT in medical archaeology. It enables one to study the soft tissues, the skin (if bandaged), the muscles and any organs retained in situ for magical or religious reason. Measurements of attenuation values indicate the materials which were used for mummifying the skin and organs. Characteristic examples are described and the early results of these examinations are discussed. (orig.) [de

  5. Computer tomographic investigation of ancient Egyptian mummies

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, K H; Pahl, W M

    1981-08-01

    Radiological and computer tomographic examinations of Egyptian mummies have been carried out at the Institute of Anthropology and Human Genetics from 1975 to 1978. These have demonstrated the value of CT in medical archaeology. It enables one to study the soft tissues, the skin (if bandaged), the muscles and any organs retained in situ for magical or religious reason. Measurements of attenuation values indicate the materials which were used for mummifying the skin and organs. Characteristic examples are described and the early results of these examinations are discussed.

  6. An intragastric trichobezoar: computerised tomographic appearance.

    Directory of Open Access Journals (Sweden)

    Morris B

    2000-04-01

    Full Text Available A 26-year-old lady presented with a history of abdominal pain and distension since two months. The ultrasound examination showed an epigastric mass, which was delineated as a filling defect in the stomach on barium studies. The computerised tomographic scan showed a gastric mass with pockets of air in it, without post-contrast enhancement. This case highlights the characteristic appearance on computerised tomography of a bezoar within the stomach, a feature that is not commonly described in medical literature.

  7. Computed tomographic study in children with microcephaly

    International Nuclear Information System (INIS)

    Ito, Masatoshi; Okuno, Takehiko; Mikawa, Haruki

    1989-01-01

    Computed tomographic (CT) brain scanning was performed on fifty-eight infants and children with microcephaly. CT scans were useful for detecting unsuspected brain lesions and for diagnosing underlying diseases. The head size did not correlate with the CT findings, the degree of mental retardation, or the existence of motor disturbance or epilepsy. On the other hand, the CT findings were correlated with the degree of mental retardation, and the existence of motor disturbance or epilepsy. CT scans were useful for determining the prognosis of the microcephaly. (author)

  8. Light source for synchrotron radiation x-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL)

    International Nuclear Information System (INIS)

    Zhao Jiyong; Jiang Jianhua; Tian Yulian

    1992-01-01

    Characteristics of the synchrotron radiation source for X-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL) is described, local geometrical resolution of topographies is discussed, and the diffracting intensities of white beam topography is given

  9. Support for Synchrotron Access by Environmental Scientists

    International Nuclear Information System (INIS)

    Daly, Michael; Madden, Andrew; Palumbo, Anthony; Qafoku, N.

    2006-01-01

    To support ERSP-funded scientists in all aspects of synchrotron-based research at the Advanced Photon Source (APS). This support comes in one or more of the following forms: (1) writing proposals to the APS General User (GU) program, (2) providing time at MRCAT/EnviroCAT beamlines via the membership of the Molecular Environmental Science (MES) Group in MRCAT/EnviroCAT, (3) assistance in experimental design and sample preparation, (4) support at the beamline during the synchrotron experiment, (5) analysis and interpretation of the synchrotron data, and (6) integration of synchrotron experimental results into manuscripts

  10. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Crasemann, B.; Wuilleumier, F.

    1985-01-01

    This chapter discusses applications of synchrotron light in atomic and molecular physics. Use of the radiation from storage rings has expanded and lent access to new areas of absorption and photoemission spectroscopy and scattering experiments. Techniques applied in connection with synchrotron radiation are discussed including absorption spectroscopy, photoelectron spectroscopy, fluorescence spectroscopy and X-ray scattering. Problem areas that are being studied by the techniques mentioned above are discussed. Synchrotron radiation has provided the means for measuring the threshold-excitation and interference effects that signal the breakdown of the two-step model of atomic excitation/deexcitation. Synchrotron radiation provides more means of excited-state photoionization measurements

  11. Synchrotron Radiation in Biology and Medicine

    International Nuclear Information System (INIS)

    Pelka, J.B.

    2008-01-01

    This work is focused on a present status of synchrotron radiation X-ray applications in medicine and biology to imaging, diagnostics, and radio- therapy. Properties of X-ray beams generated by synchrotron sources are compared with radiation produced by classical laboratory X-ray tubes. A list of operating and planned synchrotron facilities applicable to biomedical purposes is given, together with their basic characteristics. A concise overview of typical X-ray synchrotron techniques in biology and medicine is carried out with discussion of their specific properties and examples of typical results. (author)

  12. Experience of computed tomographic myelography and discography in cervical problem

    Energy Technology Data Exchange (ETDEWEB)

    Nakatani, Shigeru; Yamamoto, Masayuki; Uratsuji, Masaaki; Suzuki, Kunio; Matsui, Eigo [Hyogo Prefectural Awaji Hospital, Sumoto, Hyogo (Japan); Kurihara, Akira

    1983-06-01

    CTM (computed tomographic myelography) was performed on 15 cases of cervical lesions, and on 5 of them, CTD (computed tomographic discography) was also made. CTM revealed the intervertebral state, and in combination with CTD, providing more accurate information. The combined method of CTM and CTD was useful for soft disc herniation.

  13. Terahertz wave tomographic imaging with a Fresnel lens

    Institute of Scientific and Technical Information of China (English)

    S. Wang; X.-C. Zhang

    2003-01-01

    We demonstrate three-dimensional tomographic imaging using a Fresnel lens with broadband terahertz pulses. Objects at various locations along the beam propagation path are uniquely imaged on the same imaging plane using a Fresnel lens with different frequencies of the imaging beam. This procedure allows the reconstruction of an object's tomographic contrast image by assembling the frequency-dependent images.

  14. Tomographs based on non-conventional radiation sources and methods

    International Nuclear Information System (INIS)

    Barbuzza, R.; Fresno, M. del; Venere, Marcelo J.; Clausse, Alejandro; Moreno, C.

    2000-01-01

    Computer techniques for tomographic reconstruction of objects X-rayed with a compact plasma focus (PF) are presented. The implemented reconstruction algorithms are based on stochastic searching of solutions of Radon equation, using Genetic Algorithms and Monte Carlo methods. Numerical experiments using actual projections were performed concluding the feasibility of the application of both methods in tomographic reconstruction problem. (author)

  15. Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials.

    Science.gov (United States)

    Zhu, Ying; Cai, Xiaoqing; Li, Jiang; Zhong, Zengtao; Huang, Qing; Fan, Chunhai

    2014-04-01

    There have been increasing interests in studying biological effects of nanomaterials, which are nevertheless faced up with many challenges due to the nanoscale dimensions and unique chemical properties of nanomaterials. Synchrotron-based X-ray microscopy, an advanced imaging technology with high spatial resolution and excellent elemental specificity, provides a new platform for studying interactions between nanomaterials and living systems. In this article, we review the recent progress of X-ray microscopic studies on bioeffects of nanomaterials in several living systems including cells, model organisms, animals and plants. We aim to provide an overview of the state of the art, and the advantages of using synchrotron-based X-ray microscopy for characterizing in vitro and in vivo behaviors and biodistribution of nanomaterials. We also expect that the use of a combination of new synchrotron techniques should offer unprecedented opportunities for better understanding complex interactions at the nano-biological interface and accounting for unique bioeffects of nanomaterials. Synchrotron-based X-ray microscopy is a non-destructive imaging technique that enables high resolution spatial mapping of metals with elemental level detection methods. This review summarizes the current use and perspectives of this novel technique in studying the biology and tissue interactions of nanomaterials. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. The Stanford Synchrotron Radiation Laboratory, 20 years of synchrotron light

    International Nuclear Information System (INIS)

    Cantwell, K.

    1993-08-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) is now operating as a fully dedicated light source with low emittance electron optics, delivering high brightness photon beams to 25 experimental stations six to seven months per year. On October 1, 1993 SSRL became a Division of the Stanford Linear Accelerator Center, rather than an Independent Laboratory of Stanford University, so that high energy physics and synchrotron radiation now function under a single DOE contract. The SSRL division of SLAC has responsibility for operating, maintaining and improving the SPEAR accelerator complex, which includes the storage ring and a 3 GeV injector. SSRL has thirteen x-ray stations and twelve VUV/Soft x-ray stations serving its 600 users. Recently opened to users is a new spherical grating monochromator (SGM) and a multiundulator beam line. Circularly polarized capabilities are being exploited on a second SGM line. New YB 66 crystals installed in a vacuum double-crystal monochromator line have sparked new interest for Al and Mg edge studies. One of the most heavily subscribed stations is the rotation camera, which has been recently enhanced with a MAR imaging plate detector system for protein crystallography on a multipole wiggler. Under construction is a new wiggler-based structural molecular biology beam line with experimental stations for crystallography, small angle scattering and x-ray absorption spectroscopy. Plans for new developments include wiggler beam lines and associated facilities specialized for environmental research and materials processing

  17. Sensitivities in synchrotron radiation TXRF

    International Nuclear Information System (INIS)

    Pianetta, P.; Baur, K.; Brennan, S.

    2000-01-01

    This work describes the progress we achieved at the Stanford Synchrotron Radiation Laboratory (SSRL) in improving the sensitivity for both the transition metals and light elements such as Al and Na. The transition metal work has matured to the point where a facility exists at SSRL in which semiconductor companies are able to perform industrially relevant measurements at state of the art detection limits. This facility features clean wafer handling and automated data acquisition making routine analytical measurements possible. The best sensitivity demonstrated so far is 3.4 E7 atoms/cm 2 for a 5000 second count time corresponding to 7.6 E7 atoms/cm 2 for a standard 1000 second count time. This is more than a factor of 100 better than what can be achieved with conventional TXRF systems. The detection of light elements such as Al and Na is challenging due to the presence of the h stronger Si fluorescence peak. For traditional energy-dispersive detection only the tunability of synchrotron radiation to excitation energies below the Si-K absorption edge leads to an acceptable sensitivity for Al detection which is limited by a large background due to inelastic x-ray Raman scattering. An alternative approach to overcome the Raman contribution and the strong Si fluorescence is to use a wavelength-dispersive spectrometer for fluorescence detection. The benefits of such a multilayer spectrometer over a solid state detector are its higher energy resolution and greater dynamic range. This strategy allows primary excitation above the Si K absorption edge, eliminating the background due to Raman scattering, and a gracing emission geometry to guarantee high surface sensitivity. Studies testing this concept in combination with high flux synchrotron radiation are underway and first results will be presented. (author)

  18. High-energy diffraction microscopy at the advanced photon source

    DEFF Research Database (Denmark)

    Lienert, U.; Li, S. F.; Hefferan, C. M.

    2011-01-01

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ...

  19. Computerized tomographic in non-destructive testing

    International Nuclear Information System (INIS)

    Lopes, R.T.

    1988-01-01

    The process of computerized tomography has been developed for medical imaging purposes using tomographs with X-ray, and little attention has been given to others possibles applications of technique, because of its cost. As an alternative for the problem, we constructed a Tomographic System (STAC-1), using gamma-rays, for nonmedical applications. In this work we summarize the basic theory of reconstructing images using computerized tomography and we describe the considerations leading to the development of the experimental system. The method of reconstruction image implanted in the system is the filtered backprojection or convolution, with a digital filters system to carried on a pre-filtering in the projections. The experimental system is described, with details of control and the data processing. An alternative and a complementary system, using film as a detector is shown in preliminary form . This thesis discuss and shows the theorical and practical aspects, considered in the construction of the STAC-1, and also its limitations and apllications [pt

  20. Mesooptical microscope as a tomographical device

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1989-01-01

    It is shown that there are at least four regions which are common for the mesooptical microscopes, on the one hand, and for the reconstructed tomography, on the other hand. The following characteristics of the mesooptical microscope show the tomographical properties: the structure of the output data concerning the orientation and the position in space of the straight-line objects going at small angles with the perpendicular to the given tomographic plane, the behaviour of the two-dimensional fourier-transform of the straight-line object in the course of the rotation of this object with respect to the specified axis in space, the scanning algorithm of the nuclear emulsion volume by the fence-like illuminated region in the mesooptical microscope for searching for particle tracks going parallel to the optical axis of the microscope, and, finally, the fact that the mesooptical images of the straight-line particle tracks with a common vertex in the nuclear emulsion lie on the sinogram. 12 refs.; 16 figs

  1. Bone densitometry with the computer tomograph

    International Nuclear Information System (INIS)

    Weiss, T.

    1978-01-01

    This work tests the usefulness of the EMI head scanner MARK I for a quantitative detection of ossary mineral content. Twenty-three concentration levels of a aqueous K 2 HPO 4 -solution were positioned by means of a special clamping device at the EMI-scanner and examined at tubevoltages of 100, 120 and 140 kV. This produces an almost linear dependence between CT-unit and sample concentration, whereby it shows that the measured special element densities of samples with the same densities vary in dependence with the voltage. The examination of an anotomical fore-arm preperate served as a statement for the reproductability of computer tomographic densitometry at non-moving biological objects. The test of reproductability of bone densitometry measurements under clinical conditions was made on the occation of the six time examinations of the right hand fore-arm bone of a young dummy. Furthermore densitometric examination were made at the fore-arm shelton of 40 long-time dialysis patients in the age levels between 17 and 67 years. The reproductability of the technique presented here is at least not better with the EMI-head-scanner MARK I used here. A change is possible by using the new whole body tomographs. (orig./MG) [de

  2. Applications of synchrotron x-ray diffraction topography to fractography

    International Nuclear Information System (INIS)

    Bilello, J.C.

    1983-01-01

    Fractographs have been taken using a variety of probes each of which produces different types of information. Methods which have been used to examine fracture surfaces include: (a) optical microscopy, particularly interference contrast methods, (b) scanning electron microscopy (SEM), (c) SEM with electron channelling, (d) SEM with selected-area electron channelling, (e) Berg-Barrett (B-B) topography, and now (f) synchrotron x-radiation fractography (SXRF). This review concentrated on the role that x-ray methods can play in such studies. In particular, the ability to nondestructively assess the subsurface microstructure associated with the fracture to depths of the order of 5 to 10 μm becomes an important attribute for observations of a large class of semi-brittle metals, semiconductors and ceramics

  3. Synchrotron light and its uses

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1978-01-01

    It was known for a century that charged particles radiate when accelerated and that relativistic electrons in the energy range between 100 MeV and several GeV and constrained to travel in circular orbits emit concentrated, intense beams with broad continuous spectra that can cover the electromagnetic spectrum from infrared through hard x-rays. Recently the possible applications of this radiation were appreciated and electron synchrotrons and electron storage rings are now being used in many centers for studies of the properties of matter in the solid, liquid and gaseous states. 10 references

  4. Vacuum system for HIMAC synchrotrons

    International Nuclear Information System (INIS)

    Kanazawa, M.; Sudou, M.; Sato, K.

    1994-01-01

    HIMAC synchrotrons are now under construction, which require vacuum chambers of large aperture and high vacuum of about 10 -9 torr. Wide thin wall vacuum chamber of 0.3 mm thickness reinforced with ribs has been developed as the chamber at dipole magnet. We have just now started to evacuate the lower ring. The obtained average value was about 5x10 -8 torr with turbo-molecular and sputter ion pumps, and 1.1x10 -9 torr after baking. (author)

  5. Barrier rf systems in synchrotrons

    International Nuclear Information System (INIS)

    Bhat, Chandra M.

    2004-01-01

    Recently, many interesting applications of the barrier RF system in hadron synchrotrons have been realized. A remarkable example of this is the development of longitudinal momentum mining and implementation at the Fermilab Recycler for extraction of low emittance pbars for the Tevatron shots. At Fermilab, we have barrier RF systems in four different rings. In the case of Recycler Ring, all of the rf manipulations are carried out using a barrier RF system. Here, the author reviews various uses of barrier rf systems in particle accelerators including some new schemes for producing intense proton beam and possible new applications

  6. Longitudinal tune control in synchrotrons

    International Nuclear Information System (INIS)

    Colton, E.P.

    1984-01-01

    Dual rf systems that use fundamental and higher-harmonic cavities can be used to control the longitudinal tune in synchrotrons. The equations of motion and the Hamiltonian are defined for particle motion using dual rf systems. An example is considered using a second-harmonic system - it is shown, that as phi/sub s/ is increased, a substantial gain in bucket area over a single rf system can be realized by proper relative phasing of the first- and second-harmonic voltages

  7. Synchrotron radiation and fusion materials

    International Nuclear Information System (INIS)

    Nielsen, S.F.

    2009-01-01

    The development of fusion energy is approaching a stage where the capabilities of materials will be dictating the further progress and the time scale for the attainment of fusion power. EU has therefore funded the Fusion Energy Materials Science project Coordination Action (FEMaS - CA) with the intension to utilise the know-how in the materials community to help overcome the material science problems with the fusion related materials. The FEMaS project and some of the possible applications of synchrotron radiation for materials characterisation are described in this paper. (au)

  8. Diffraction-enhanced imaging at the UK synchrotron radiation source

    International Nuclear Information System (INIS)

    Ibison, M.; Cheung, K.C.; Siu, K.; Hall, C.J.; Lewis, R.A.; Hufton, A.; Wilkinson, S.J.; Rogers, K.D.; Round, A.

    2005-01-01

    The Diffraction-Enhanced Imaging (DEI) system, which shares access to Beamline 7.6 on the Daresbury Synchrotron Radiation Source (SRS), is now in its third year of existence. The system was developed under a European Commission grant PHase Analyser SYstem (PHASY), won during the Fourth Framework. Typical applications continue to be the imaging of small biological specimens, using a beam of 12-17 keV after monochromation and up to 40 mm in width and 1-2 mm in height, although it is planned to investigate other materials as opportunity permits and time becomes available for more routine scientific use. Recent improvements have been made to the optical alignment procedure for setting up the station before imaging: a small laser device can now be set up to send a beam down the X-ray path through the four crystals, and a small photodiode, which has much better signal-to-noise characteristics than the ion chamber normally used for alignment, has been trailed successfully. A 3-D tomographic reconstruction capability has recently been developed and tested for DEI projection image sets, and will be applied to future imaging work on the SRS, in conjunction with volume visualization software. The next generation of DEI system, planned to operate at up to 60 keV on an SRS wiggler station, is in its design stage; it will feature much improved mechanics and mountings, especially for angular control, and a simplified alignment procedure to facilitate the necessary sharing of the SRS station

  9. Activity report of Synchrotron Radiation Laboratory 2001

    International Nuclear Information System (INIS)

    2002-11-01

    After moved from Tanashi to Kashiwa Campus in the spring of 2000, the Synchrotron Radiation Laboratory (SRL) has been promoting the High-brilliance Light Source project, Super SOR project, in cooperation with the nationwide user group as well as with the users of the University of Tokyo. In May of 2001, the project has met with a dramatic progress. The Ministry of Education, Science, Sports and Culture organized the Advisory Board and started to discuss the future synchrotron radiation facilities in EUV and SX regime in Japan. Based on extensive discussion, they proposed the new facility consisting of a 1.8 GeV storage ring of 3rd generation type. The University of Tokyo approved to construct the proposed facility in the Kashiwa campus. The plan is supported not only by researchers in academic institutions but also bio- and chemical-industries. We strongly hope the plan will be realized in near future. On the other hand, SRL maintains a branch laboratory in the Photon Factory (PF) High Energy Accelerator Research Organization (KEK) at Tsukuba with a Revolver undulator, two beamlines and three experimental stations (BL-18A, 19A and 19B), which are and fully opened to the outside users. In the fiscal year of 2001, the operation time of the beamlines was more than 5000 hours and the number of the users was about 200. The main scientific interests and activities in the SRL at KEK-PF are directed to the electronic structures of new materials with new transport, magnetic and optical properties. The electronic structures of solid surfaces and interfaces are also intensively studied by photoelectron spectroscopy and photoelectron microscopy. The accelerator group of SRL is carrying out research works of the accelerator physics and developing the accelerator-related technology, many parts of which will be directly applied to the new light source project. This report contains the activities of the staff members of SRL and users of the three beamlines in FY2001. The status of

  10. High resolution 3D imaging of synchrotron generated microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  11. High resolution 3D imaging of synchrotron generated microbeams

    International Nuclear Information System (INIS)

    Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi

    2015-01-01

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery

  12. HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY

    International Nuclear Information System (INIS)

    FENG, H.; JONES, K.W.; MCGUIGAN, M.; SMITH, G.J.; SPILETIC, J.

    2001-01-01

    Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data

  13. HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY.

    Energy Technology Data Exchange (ETDEWEB)

    FENG,H.; JONES,K.W.; MCGUIGAN,M.; SMITH,G.J.; SPILETIC,J.

    2001-10-12

    Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data.

  14. Comparative study of the macroscopic finding, conventional tomographic imaging, and computed tomographic imaging in locating the mandibular canal

    International Nuclear Information System (INIS)

    Choi, Hang Moon; You, Dong Soo

    1995-01-01

    The purpose of this study was comparison of conventional tomography with reformatted computed tomography for dental implant in locating the mandibular canal. Five dogs were used and after conventional tomographs and fitted computed tomographs were taken, four dentist traced all films. Mandibles were sectioned with 2 mm slice thickness and the sections were then radiographed (contact radiography). Each radiograpic image was traced and linear measurements were made from mandibular canal to alveolar crest, buccal cortex, lingual cortex, and inferior border. The following results were obtained; 1. Reformatted computed tomographs were exacter than conventional tomography by alveolar crest to canal length of -0.6 mm difference between real values and radiographs 2. The average measurements of buccal cortex to mandibular canal width and lingual cortex to mandibular canal width of conventional tomographs were exacter than reformatted computed tomographs, but standard deviations were higher than reformatted computed tomographs. 3. Standard deviations of reformatted computed tomographs were lower than conventional tomographs at all comparing sites 4. At reformatted computed tomography 62.5% of the measurements performed were within ±1 mm of the true value, and at conventional tomography 24.1% were. 5. Mandibular canal invisibility was 0.8% at reformatted computed tomography and 9.2% at conventional tomography. Reformatted computed tomography has been shown to be more useful radiographic technique for assessment of the mandibular canal than conventional tomography.

  15. Possibilities and Challenges of Scanning Hard X-ray Spectro-microscopy Techniques in Material Sciences

    Directory of Open Access Journals (Sweden)

    Andrea Somogyi

    2015-06-01

    Full Text Available Scanning hard X-ray spectro-microscopic imaging opens unprecedented possibilities in the study of inhomogeneous samples at different length-scales. It gives insight into the spatial variation of the major and minor components, impurities and dopants of the sample, and their chemical and electronic states at micro- and nano-meter scales. Measuring, modelling and understanding novel properties of laterally confined structures are now attainable. The large penetration depth of hard X-rays (several keV to several 10 keV beam energy makes the study of layered and buried structures possible also in in situ and in operando conditions. The combination of different X-ray analytical techniques complementary to scanning spectro-microscopy, such as X-ray diffraction, X-ray excited optical luminescence, secondary ion mass spectrometry (SIMS and nano-SIMS, provides access to optical characteristics and strain and stress distributions. Complex sample environments (temperature, pressure, controlled atmosphere/vacuum, chemical environment are also possible and were demonstrated, and allow as well the combination with other analysis techniques (Raman spectroscopy, infrared imaging, mechanical tensile devices, etc. on precisely the very same area of the sample. The use of the coherence properties of X-rays from synchrotron sources is triggering emerging experimental imaging approaches with nanometer lateral resolution. New fast analytical possibilities pave the way towards statistically significant studies at multi- length-scales and three dimensional tomographic investigations. This paper gives an overview of these techniques and their recent achievements in the field of material sciences.

  16. The third generation French synchrotron

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    This short paper gives a concise presentation of the SOLEIL project of the LURE synchrotron radiation national laboratory at Orsay (France). This new accelerator is devoted to replace the DCI and Super ACO rings of first and second generation, respectively. The main research domains of this project concern: the micro-fluorescence and micro-diffraction characterization of materials, and in particular the electronic components; the study of matter in extreme conditions (high temperature and high pressure); the bio-crystallography; the study of aggregates; and the manufacturing of micro-instruments for micro-electronics or medical applications. SOLEIL will be equipped with special magnetic wigglers to obtain very high brightness sources. The source will be a 336 m circumference ring for 2.5 GeV electron storage, able to produce a large spectrum synchrotron radiation. The injection system will comprise a low energy-high current linear electron accelerator and two electron beam transport lines. The installation will be buried at a 4 m depth to ensure the environmental protection and to limit vibrations. (J.S.)

  17. Photoemission spectroscopy using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobayashi, K.L.I.

    1980-01-01

    It is an epoch making event for photoemission spectroscopy that the light sources of continuous wavelength from vacuum ultra-violet to X-ray region have become available by the advent of synchrotron radiation. Specifically the progress after stable intense light has become obtainable from storage rings is very significant. One of the features of these synchrotron radiation is its extreme polarization of radiating pattern. Though the elementary processes of photoemission out of solids are the basic themes, phenomenalistic 3-stage model is usually applied to the analysis of experiments. In this model, the process of photoemission is considered by dividing into three stages, namely the generation of photoelectrons due to optical transition between electron status -- the transportation of photoelectrons to solid surfaces -- breaking away from the surfaces. The spectrometers, the energy analyzers of photoelectrons, and sample-preparing room used for photoemission spectroscopy are described. Next, energy distribution curves are explained. At the end, photoelectron yield spectroscopy, CFS (constant final energy spectroscopy) and CIS (constant initial energy spectroscopy), Auger yield and interatomic Auger yield, the determination of surface structure by normal emission CIS, and surface EXAFS (extended X-ray absorption fine structure) are described. As seen above, the application specifically to surface physics is promising in the future. (Wakatsuki, Y.)

  18. Synchrotron-driven spallation sources

    CERN Document Server

    Bryant, P J

    1996-01-01

    The use of synchrotrons for pulsed neutron spallation sources is an example of scientific and technological spin-off from the accelerator development for particle physics. Accelerator-driven sources provide an alternative to the continuous-flux, nuclear reactors that currently furnish the majority of neutrons for research and development. Although the present demand for neutrons can be adequately met by the existing reactors, this situation is unlikely to continue due to the increasing severity of safety regulations and the declared policies of many countries to close down their reactors within the next decade or so. Since the demand for neutrons as a research tool is, in any case,expected to grow, there has been a corresponding interest in sources that are synchrotron-driven or linac-driven with a pulse compression ring and currently several design studies are being made. These accelerator-driven sources also have the advantage of a time structure with a high peak neutron flux. The basic requirement is for a...

  19. Sirepo for Synchrotron Radiation Workshop

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-25

    Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jinja, which is a secure and widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is the Synchrotron Radiation Workshop (SRW). SRW computes synchrotron radiation from relativistic electrons in arbitrary magnetic fields and propagates the radiation wavefronts through optical beamlines. SRW is open source and is primarily supported by Dr. Oleg Chubar of NSLS-II at Brookhaven National Laboratory.

  20. Activity report of Synchrotron Radiation Laboratory 2005

    International Nuclear Information System (INIS)

    2006-11-01

    Since 1980s, the Synchrotron Radiation Laboratory (SRL) has been promoting the 'Super-SOR' project, the new synchrotron radiation facility dedicated to sciences in vacuum ultraviolet and soft X-ray regions. The University of Tokyo considered the project as one of the most important future academic plans and strongly endorsed to construct the new facility with an electron storage ring of third generation type in the Kashiwa campus. During last year, the design of the accelerator system was slightly modified to obtain stronger support of the people in the field of bio-sciences, such as medicine, pharmacy, agriculture, etc. The energy of the storage ring was increased to 2.4 GeV, which is determined to obtain undulator radiation with sufficient brightness in X-ray region for the protein crystallography experiments. The value was also optimised to avoid considerable degradation of undulator radiation in the VUV and soft X-ray regions. However, in October last year, the president office of the University found out that the promotion of the project was very difficult for financial reasons. The budget for the new facility project is too big to be supported by a single university. The decision was intensively discussed by the International Review Committee on the Institute for Solid State Physics (ISSP), which was held at ISSP from November 14 to 16. The committee understood that the restructuring of the University system in Japan would overstrain the financial resources of the University of Tokyo and accepted the decision by the University. Presently, SRL has inclined to install beamlines using undulator radiation in other SR facilities instead of constructing a facility with a light source accelerator. At new beamlines, SRL will promote advanced materials sciences utilizing high brilliance and small emittance of synchrotron radiation which have been considered in the Super-SOR project. They are those such as microscopy and time-resolved experiments, which will only be

  1. High pressure and synchrotron radiation satellite workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  2. Synchrotron applications in wood preservation and deterioration

    Science.gov (United States)

    Barbara L. Illman

    2003-01-01

    Several non-intrusive synchrotron techniques are being used to detect and study wood decay. The techniques use high intensity synchrotron-generated X-rays to determine the atomic structure of materials with imaging, diffraction, and absorption. Some of the techniques are X-ray absorption near edge structure (XANES), X-ray fluorescence spectroscopy (XFS), X-ray...

  3. The Synchrotron Radiation Facility ESFR in Grenoble

    International Nuclear Information System (INIS)

    Haensel, R.

    1994-01-01

    The European Synchrotron Radiation Facility (ESFR) is the first synchrotron radiation source of the 3-th generation for Roentgen radiations.It permits a new series of experiments in the domains of physics, chemistry, materials studies, micromechanics, biology, medicine and crystallography. The main part of device represents the 850 meter storage ring of 6 GeV electrons. (MSA)

  4. Current status of Hiroshima Synchrotron Radiation Center

    International Nuclear Information System (INIS)

    Taniguchi, Masaki

    2000-01-01

    The Hiroshima Synchrotron Radiation Center is a common facility for both research and education in the field of synchrotron radiation science. The role of the center is to promote original research, training of young scientists, international exchange and cooperative research with neighbouring universities, public organizations and industries. (author)

  5. Infrared spectroscopy by use of synchrotron radiation

    International Nuclear Information System (INIS)

    Nanba, Takao

    1991-01-01

    During five years since the author wrote the paper on the utilization of synchrotron radiation in long wavelength region, it seems to be recognized that in synchrotron radiation, the light from infrared to milli wave can be utilized, and is considerably useful. Recently the research on coherent synchrotron radiation in this region using electron linac has been developed by Tohoku University group, and the high capability of synchrotron radiation as light source is verified. This paper is the report on the infrared spectroscopic research using incoherent synchrotron radiation obtained from the deflection electromagnet part of electron storage rings. Synchrotron radiation is high luminance white light source including from X-ray to micro wave. The example of research that the author carried out at UVSOR is reported, and the perspective in near future is mentioned. Synchrotron radiation as the light source for infrared spectroscopy, the intensity and dimensions of the light source, far infrared region and mid infrared region, far infrared high pressure spectroscopic experiment, and the heightening of luminance of synchrotron radiation as infrared light source are described. (K.I.)

  6. High pressure and synchrotron radiation satellite workshop

    International Nuclear Information System (INIS)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A.

    2006-01-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations

  7. Funding problems threaten Middle East's synchrotron

    CERN Multimedia

    McCabe, H

    1999-01-01

    Scientists will tour the Middle East to try to raise support for the Synchrotron radiation for Experimental Science and Applications in the Middle East project. The plan is to dismantle and move a decommissioned synchrotron from Berlin to the Middle East where scientists of any nationality would be able to use it (3 paragraphs).

  8. Medical applications with synchrotron radiation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T.; Itai, Y. [Univ. of Tsukuba, Inst. of Clinical Medicine, Tsukuba (Japan); Hyodo, K.; Ando, M. [KEK, Tsukuba (Japan); Akatsuka, T. [Yamagata Univ., Faculty of Engineering, Yamagata (Japan); Uyama, C. [National Cardiovascular Centre, Suita (Japan)

    1998-05-01

    In Japan, various medical applications of synchrotron X-ray imaging, such as angiography, monochromatic X-ray computed tomography (CT), radiography and radiation therapy, are being developed. In particular, coronary arteriography (CAG) is quite an important clinical application of synchrotron radiation. Using a two-dimensional imaging method, the first human intravenous CAG was carried out at KEK in May 1996; however, further improvements of image quality are required in clinical practice. On the other hand, two-dimensional aortographic CAG revealed canine coronary arteries as clearly as those on selective CAG, and coronary arteries less than 0.2 mm in diameter. Among applications of synchrotron radiation to X-ray CT, phase-contrast X-ray CT and fluorescent X-ray CT are expected to be very interesting future applications of synchrotron radiation. For actual clinical applications of synchrotron radiation, a medical beamline and a laboratory are now being constructed at SPring-8 in Harima. 55 refs.

  9. Infrared synchrotron radiation from electron storage rings

    International Nuclear Information System (INIS)

    Duncan, W.D.; Williams, G.P.

    1983-01-01

    Simple and useful approximations, valid at infrared wavelengths, to the equations for synchrotron radiation are presented and used to quantify the brightness and power advantage of current synchrotron radiation light sources over conventional infrared broadband laboratory sources. The Daresbury Synchrotron Radiation Source (SRS) and the Brookhaven National Synchrotron Light Source (vacuum ultraviolet) [NSLS(VUV)] storage rings are used as examples in the calculation of the properties of infrared synchrotron radiation. The pulsed nature of the emission is also discussed, and potential areas of application for the brightness, power, and time structure advantages are presented. The use of infrared free electron lasers and undulators on the next generation of storage ring light sources is briefly considered

  10. Protein Data Bank depositions from synchrotron sources.

    Science.gov (United States)

    Jiang, Jiansheng; Sweet, Robert M

    2004-07-01

    A survey and analysis of Protein Data Bank (PDB) depositions from international synchrotron radiation facilities, based on the latest released PDB entries, are reported. The results (http://asdp.bnl.gov/asda/Libraries/) show that worldwide, every year since 1999, more than 50% of the deposited X-ray structures have used synchrotron facilities, reaching 75% by 2003. In this web-based database, all PDB entries among individual synchrotron beamlines are archived, synchronized with the weekly PDB release. Statistics regarding the quality of experimental data and the refined model for all structures are presented, and these are analysed to reflect the impact of synchrotron sources. The results confirm the common impression that synchrotron sources extend the size of structures that can be solved with equivalent or better quality than home sources.

  11. Protein Data Bank Depositions from Synchrotron Sources

    International Nuclear Information System (INIS)

    Jiang, J.; Sweet, R.

    2004-01-01

    A survey and analysis of Protein Data Bank (PDB) depositions from international synchrotron radiation facilities, based on the latest released PDB entries, are reported. The results ( ) show that worldwide, every year since 1999, more than 50% of the deposited X-ray structures have used synchrotron facilities, reaching 75% by 2003. In this web-based database, all PDB entries among individual synchrotron beamlines are archived, synchronized with the weekly PDB release. Statistics regarding the quality of experimental data and the refined model for all structures are presented, and these are analysed to reflect the impact of synchrotron sources. The results confirm the common impression that synchrotron sources extend the size of structures that can be solved with equivalent or better quality than home sources

  12. Tomographic anthropomorphic models. Pt. 2. Organ doses from computed tomographic examinations in paediatric radiology

    International Nuclear Information System (INIS)

    Zankl, M.; Panzer, W.; Drexler, G.

    1993-11-01

    This report provides a catalogue of organ dose conversion factors resulting from computed tomographic (CT) examinations of children. Two radiation qualities and two exposure geometries were simulated as well as the use of asymmetrical beams. The use of further beam shaping devices was not considered. The organ dose conversion factors are applicable to babies at the age of ca. 2 months and to children between 5 and 7 years but can be used for other ages as well with the appropriate adjustments. For the calculations, the patients were represented by the GSF tomographic anthropomorphic models BABY and CHILD. The radiation transport in the body was simulated using a Monte Carlo method. The doses are presented as conversion factors of mean organ doses per air kerma free in air on the axis of rotation. Mean organ dose conversion factors are given per organ and per scanned body section of 1 cm height. The mean dose to an organ resulting from a particular CT examination can be estimated by summing up the contributions to the organ dose from all relevant sections. To facilitate the selection of the appropriate sections, a table is given which relates the tomographic models' coordinates to certain anatomical landmarks in the human body. (orig.)

  13. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    1980-01-01

    The objects of this invention are first to reduce the time required to obtain statistically significant data in trans-axial tomographic radioisotope scanning using a scintillation camera. Secondly, to provide a scintillation camera system to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a known radiation source without sacrificing spatial resolution. Thirdly to reduce the scanning time without loss of image clarity. The system described comprises a scintillation camera detector, means for moving this in orbit about a cranial-caudal axis relative to a patient and a collimator having septa defining apertures such that gamma rays perpendicular to the axis are admitted with high spatial resolution, parallel to the axis with low resolution. The septa may be made of strips of lead. Detailed descriptions are given. (U.K.)

  14. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    1980-01-01

    The principal problem in trans-axial tomographic radioisotope scanning is the length of time required to obtain meaningful data. Patient movement and radioisotope migration during the scanning period can cause distortion of the image. The object of this invention is to reduce the scanning time without degrading the images obtained. A system is described in which a scintillation camera detector is moved to an orbit about the cranial-caudal axis relative to the patient. A collimator is used in which lead septa are arranged so as to admit gamma rays travelling perpendicular to this axis with high spatial resolution and those travelling in the direction of the axis with low spatial resolution, thus increasing the rate of acceptance of radioactive events to contribute to the positional information obtainable without sacrificing spatial resolution. (author)

  15. Computer tomographic and sonographic diagnosis of echinococcus

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, K.; Huebener, K.H.; Klott, K.; Jenss, H.; Baehr, R. (Tuebingen Univ. (Germany, F.R.). Medizinisches Strahleninstitut und Roentgenabteilung; Tuebingen Univ. (Germany, F.R.). Medizinische Klinik; Tuebingen Univ. (Germany, F.R.). Chirurgische Klinik und Poliklinik)

    1980-05-01

    In 33 patients (18 cystic echinococci, 15 alveolar) both methods produced the following findings which could be correlated with the pathological results: single or multi-centric lesions, sharp or indefinite demarkation and abnormalities in the shape and size of the liver. The sonographic findings were analysed with respect to the echo characteristics, whereas the computer tomographically demonstrated lesions were examined densitometrically in order to show calcification. Both methods demonstrate the pathological changes satisfactorily. Computer tomography is more effective in alveolar echinococcus lesions by showing the different types of calcification, whereas sonography provides a more accurate picture of the internal structure of the cysts in cystic echinococcus. Comparison of the methods in 19 patients examined by both showed a high accuracy in each method, but sonography was relatively poor in demonstrating lesions in the spleen.

  16. Computerized tomographic scanner with shaped radiation filter

    International Nuclear Information System (INIS)

    Carlson, R.W.; Walters, R.G.

    1981-01-01

    The invention comprises a shaped filter and a filter correction circuitry for computerized tomographic scanners. The shaped filter is a generally u-shaped block of filter material which is adapted to be mounted between the source of radiation and the scan circle. The u-shaped block has a parabolic recess. The filter material may be beryllium, aluminum, sulphur, calcium, titanium, erbium, copper, and compounds including oxides and alloys thereof. The filter correction circuit comprises a first filter correction profile adding circuit for adding a first scaler valve to each intensity valve in a data line. The data line is operated on by a beam hardness correction polynomial. After the beam hardness polynomial correction operation, a second filter correction circuit adds a second filter correction profile consisting of a table of scalor values, one corresponding to each intensity reading in the data line

  17. Occult fractures of the knee: tomographic evaluation

    International Nuclear Information System (INIS)

    Apple, J.S.; Martinez, S.; Allen, N.B.; Caldwell, D.S.; Rice, J.R.

    1983-01-01

    Seven adults with painful effusions of the knee were examined for occult fractures using pluridirectional tomograph in the coronal and lateral planes. Six patients (ages 50 to 82 years) were osteopenic and gave histories ranging from none to mild trauma; one 26-year-old man was not osteopenic and had severe trauma. In all cases, routine radiographs were interpreted as negative, but tomography demonstrated a fracture. Five fractures were subchondral. Bone scans in 2 patients were positive. The authors conclude that osteopenic patients with a painful effusion of the knee should be considered to have an occult fracture. While bone scans may be helpful, tomography is recommended as the procedure of choice to define the location and extent of the fracture

  18. Axial tomographic system for radiation diagnoses

    International Nuclear Information System (INIS)

    Crowther, T.J.

    1977-01-01

    The axial tomographic scanner consists of a source of hard radiation passing a fan shaped beam through a plane layer of the body under examination, a detector, and driving systems for the sequential displacement and rotation of the radiation source and the detector. The diagnosis is made by means of a data processing system offering extensive time overlap capability of the individual system functions. The data sets from transmission or absorption are processed in three independent subsystems, i.e., the scanning system, the processing system and the display system. The systems are made up of well-known modules, e.g., Nova 1200 or Eclipse 5200. Hence, as a result of the independent design of the data system, raw data will not be lost in case of faults in some subsystem. (DG) [de

  19. Tomographic PIV behind a prosthetic heart valve

    Science.gov (United States)

    Hasler, D.; Landolt, A.; Obrist, D.

    2016-05-01

    The instantaneous three-dimensional velocity field past a bioprosthetic heart valve was measured using tomographic particle image velocimetry. Two digital cameras were used together with a mirror setup to record PIV images from four different angles. Measurements were conducted in a transparent silicone phantom with a simplified geometry of the aortic root. The refraction indices of the silicone phantom and the working fluid were matched to minimize optical distortion from the flow field to the cameras. The silicone phantom of the aorta was integrated in a flow loop driven by a piston pump. Measurements were conducted for steady and pulsatile flow conditions. Results of the instantaneous, ensemble and phase-averaged flow field are presented. The three-dimensional velocity field reveals a flow topology, which can be related to features of the aortic valve prosthesis.

  20. E-learn Computed Tomographic Angiography

    DEFF Research Database (Denmark)

    Havsteen, Inger; Christensen, Anders; Nielsen, Jens K

    2012-01-01

    BACKGROUND: Computed tomographic angiography (CTA) is widely available in emergency rooms to assess acute stroke patients. To standardize readings and educate new readers, we developed a 3-step e-learning tool based on the test-teach-retest methodology in 2 acute stroke scenarios: vascular...... occlusion and "spot sign" in acute intracerebral hemorrhage. We hypothesized that an e-learning program enhances reading skills in physicians of varying experience. METHODS: We developed an HTML-based program with a teaching segment and 2 matching test segments. Tests were taken before and after...... sign correctly 69% before versus 92% after teaching (P = .009) and reported a median self-perceived diagnostic certainty of 50% versus 75% (P = .030). Self-perceived diagnostic certainty revealed no significant increase for vascular occlusion. CONCLUSIONS: The e-learning program is a useful educational...

  1. Advanced Ultrasonic Tomograph of Children's Bones

    Science.gov (United States)

    Lasaygues, Philippe; Lefebvre, Jean-Pierre; Guillermin, Régine; Kaftandjian, Valérie; Berteau, Jean-Philippe; Pithioux, Martine; Petit, Philippe

    This study deals with the development of an experimental device for performing ultrasonic computed tomography (UCT) on bone in pediatric degrees. The children's bone tomographs obtained in this study, were based on the use of a multiplexed 2-D ring antenna (1 MHz and 3 MHz) designed for performing electronic and mechanical scanning. Although this approach is known to be a potentially valuable means of imaging objects with similar acoustical impedances, problems arise when quantitative images of more highly contrasted media such as bones are required. Various strategies and various mathematical procedures for modeling the wave propagation based on Born approximations have been developed at our laboratory, which are suitable for use with pediatric cases. Inversions of the experimental data obtained are presented.

  2. Computed tomographic findings of cerebral arterial ectasia

    International Nuclear Information System (INIS)

    Choi, Woo Suk; Ko, Young Ho; Lim, Jae Hoon

    1987-01-01

    The computed tomographic findings of cerebral arterial ectasia in 8 patients, of which 5 cases were angiographically documented, are reported. The ecstatic arteries, located predominantly in the suprasellar and interpeduncular cisterns, appeared as serpignous, tubular structures on the unenhanced scan. The enhanced CT scan demonstrated dense, sharply defined, homogeneous intraluminal enhancement. Until recently, the diagnosis of cerebral arterial ectasia was usually established by angiography. With introduction of CT it has become possible to noninvasively identify and characterize this vascular disorder and its associated intracranial complications. The vertebrobasilar dolichoectasia may be diagnosed by CT as an extra-axial lesion in the cerebellopontine angle. It enhances in a tubular fashion after intravenous injection of contrast.

  3. Computed tomographic investigations on intraventricular hematomas

    International Nuclear Information System (INIS)

    Laber-Szillat, S.

    1982-01-01

    This work investigated in 106 patients with intraventricular hematomas all the known factors which can have an influence on prognosis: age, sex, anamnesis of the patients, size, extent and localization of the intracranial bleeding, underlying angiopathy and differences between arterial and venous and spontaneous and traumatic bleedings. It was shown that the state of mind was the deciding prognostic factor, whereby viligance was the cumulative expression of all other investigated influences. A computed tomography (CT) examination is deciding in the question of operative hydrocephalus care. In 13 patients it was further shown, how clearly CT results and brain dissection allowed themselves to be compared. The computed tomographic examination method is best suited to achieve even physiological and more extensive prognostic possibilities. (orig.) [de

  4. Extinction correction and synchrotron radiation

    International Nuclear Information System (INIS)

    Suortti, P.

    1983-01-01

    The primary extinction factor ysub(p) is defined as the ratio of the integrated reflection from a coherently diffracting domain to the integrated kinematical reflection from the same domain. When ysub(p) is larger than 0.5 it may be approximated by ysub(p)= exp[-(αdelta) 2 ], where α is about 0.5 and delta the average size of the coherent domain when measured in units of the extinction length Λ, delta = D/Λ. Transfer equations are applied to symmetrical Laue diffraction, and the reflectivity per unit length, sigma(epsilon) is solved from the measured reflecting ratio as a function of the rocking angle epsilon = theta -thetasub(B). Measurements with conventional x-ray sources are made on single crystal slabs of Be and Si using AgKβ, MoKα 1 and CuKα radiation. The primary extinction factor ysub(p)(epsilon) is solved from a point-by-point comparison of two measurements where the extinction length Λ is changed by varying the polarization and/or wavelength of the x-ray beam. The results show that primary and secondary extinction are strongly correlated, and that the customary assumption of independent size and orientation distributions of crystal mosaics is unjustified. The structure factors for Be and Si show close agreement with other recent measurements and calculations. The limitations of the method are discussed in length, particularly the effects of beam divergences and incoherence of the rays in the crystal. It is concluded that under typical experimental conditions the requirements of the theory are met. Practical limitations arising from the use of characteristic wavelengths and unpolarized radiation prohibit the use of the full potential of the method. The properties of a synchrotron radiation source are compared with a conventional x-ray source, and it is demonstrated that the experimental limitations can be removed by the use of synchrotron radiation. A diffraction experiment with synchrotron radiation is outlined, as well as generalization of the

  5. High heat load synchrotron optics

    International Nuclear Information System (INIS)

    Mills, D.M.

    1993-01-01

    Third generation synchrotron radiation sources currently being constructed worldwide will produce x-ray beams of unparalleled power and power density. These high heat fluxes coupled with the stringent dimensional requirements of the x-ray optical components pose a prodigious challenge to designers of x-ray optical elements, specifically x-ray mirrors and crystal monochromators. Although certain established techniques for the cooling of high heat flux components can be directly applied to this problem, the thermal management of high heat load x-ray optical components has several unusual aspects that may ultimately lead to unique solutions. This manuscript attempts to summarize the various approaches currently being applied to this undertaking and to point out the areas of research that require further development

  6. Rapid cycling superconducting booster synchrotron

    International Nuclear Information System (INIS)

    Dinev, D.; Agapov, N.; Butenko, A.

    2001-01-01

    The existing set of Nuclotron heavy ion sources, such as duoplasmatron, polarized deuteron, laser and electron beam ion sources permits to have ion beams over a wide range of masses. The main problem for us now is to gain high intensity of accelerator particles. It can be solved by means of multiturn injection of the low current beams into the booster, acceleration up to the intermediate energies, stripping and transferring into the main ring. A design study of this accelerator - the 250 MeV/Amu Nuclotron booster synchrotron at 1 Hz repetition rate and circumference of 84 m, has been completed. The lattice dipole and quadrupole magnets have an iron yoke coils, made of hollow superconductor, are cooled by two-phase Helium flow, as well as the Nuclotron magnets. (authors)

  7. Medical application of Synchrotron Radiation

    International Nuclear Information System (INIS)

    Hyodo, Kazuyuki; Nishimura, Katsuyuki.

    1990-01-01

    The number of patients suffering from ischemic heart disease is also increasing rapidly in Japan. The standard method for assessing coronary artery diseases is the coronary angiography. Excellent images are taken by this method, however, it is an invasive method in which a catheter into a peripheral artery. The patients would obtain great benefit if the coronary arteries could be distinguished by intravenous injection of the contrast material. The K-edge subtraction method, which uses the K-edge discontinuity in the attenuation coefficient of the contrast material, is considered to be the most suitable method for coronary angiography by peripheral venous injection. Synchrotron Radiation (SR) is so intense that it allows selection of monochromatic X-rays, and studies on K-edge subtraction using SR has been started at some facilities. Recent activities K-edge subtraction method at the Accumulation Ring are briefly described here. (author)

  8. Synchrotron radiation and industrial research

    International Nuclear Information System (INIS)

    Townsend, R.P.

    1995-01-01

    Fundamental studies on the properties of many different materials are of prime importance to most industrial concerns. For Unilever, solids (crystalline and amorphous), soft solids and complex fluids are the materials of primary interest. Synchrotron radiation has proved of great value for the analysis of a variety of such materials, because the intense and highly collimated radiation source has enabled us to obtain structural information rapidly as well as in time-resolved mode. In this paper are outlined the types of materials problems faced, and how we use different techniques to elucidate structure (both short and long range order) in zeolites, amorphous solids, as well as in biomaterials such as skin and hair containing lipid phases. Both equilibrium and time-resolved studies are described. (orig.)

  9. Tomographic flow cytometry assisted by intelligent wavefronts analysis

    Science.gov (United States)

    Merola, F.; Memmolo, P.; Miccio, L.; Mugnano, M.; Ferraro, P.

    2017-06-01

    High-throughput single-cell analysis is a challenging target for implementing advanced biomedical applications. An excellent candidate for this aim is label-free tomographic phase microscopy. However, in-line tomography is very difficult to be implemented in practice, as it requires complex setup for rotating the sample and/or illuminate the cell along numerous directions [1]. We exploit random rolling of cells while they are flowing along a microfluidic channel demonstrating that it is possible to obtain in-line phase-contrast tomography by adopting strategies for intelligent wavefronts analysis thus obtaining complete retrieval of both 3D-position and orientation of rotating cells [2]. Thus, by numerical wavefront analysis a-priori knowledge of such information is no longer needed. This approach makes continuos-flow cyto-tomography suitable for practical operation in real-world, single-cell analysis and with substantial simplification of the optical system avoiding any mechanical/optical scanning of light source. Demonstration is given for different classes of biosamples, red-blood-cells (RBCs), diatom algae and fibroblast cells [3]. Accurate characterization of each type of cells is reported despite their very different nature and materials content, thus showing the proposed method can be extended, by adopting two alternate strategies of wavefront-analysis, to many classes of cells. In particular, for RBCs we furnish important parameters as 3D morphology, Corpuscular Hemoglobin (CH), Volume (V), and refractive index (RI) for each single cell in the total population [3]. This could open a new route in blood disease diagnosis, for example for the isolation and characterization of "foreign" cells in the blood stream, the so called Circulating Tumor Cells (CTC), early manifestation of metastasis.

  10. MicroXRF tomographic visualization of zinc and iron in the zebrafish embryo at the onset of the hatching period

    Energy Technology Data Exchange (ETDEWEB)

    Bourassa, Daisy; Gleber, Sophie-Charlotte; Vogt, Stefan; Shin, Chong Hyun; Fahrni, Christoph J.

    2016-01-01

    Transition metals such as zinc, copper, and iron play key roles in cellular proliferation, cell differentiation, growth, and development. Over the past decade, advances in synchrotron X-ray fluorescence instrumentation presented new opportunities for the three-dimensional mapping of trace metal distributions within intact specimens. Taking advantage of microXRF tomography, we visualized the 3D distribution of zinc and iron in a zebrafish embryo at the onset of the hatching period. The reconstructed volumetric data revealed distinct differences in the elemental distributions, with zinc predominantly localized to the yolk and yolk extension, and iron to various regions of the brain as well as the myotome extending along the dorsal side of the embryo. The data set complements an earlier tomographic study of an embryo at the pharyngula stage (24 hpf), thus offering new insights into the trace metal distribution at key stages of embryonic development.

  11. Nano-tomography of porous geological materials using focused ion beam-scanning electron microscopy

    NARCIS (Netherlands)

    Liu, Yang; King, Helen E.; van Huis, Marijn A.; Drury, Martyn R.; Plümper, Oliver

    2016-01-01

    Tomographic analysis using focused ion beam-scanning electron microscopy (FIB-SEM) provides three-dimensional information about solid materials with a resolution of a few nanometres and thus bridges the gap between X-ray and transmission electron microscopic tomography techniques. This contribution

  12. Application of synchrotron radiation to elemental analysis

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Hanson, A.L.; Hastings, J.B.; Howells, M.R.; Kraner, H.W.; Chen, J.R.

    1983-01-01

    The use of a synchrotron storage ring as a high brightness source for production of monoergic, variable energy, and highly polarized x-ray beams promises to revolutionize the field of elemental analysis. The results of exploratory work using the Cornell synchrotron facility, CHESS, will be described. Design considerations and features of the new X-Ray Microprobe Facility now under construction at the Brookhaven National Synchrotron Light Source will be presented. This facility will be used for bulk analysis and for microanalysis with an initial spatial resolution of the order of 30 μm

  13. Report of the Synchrotron Radiation Vacuum Workshop

    International Nuclear Information System (INIS)

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well

  14. Synchrotron power supply of TARN II

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi.

    1991-07-01

    The construction and performance of synchrotron power supply of TARN II are described. The 1.1 GeV synchrotron-cooler TARN II has been constructed at Institute for Nuclear Study, University of Tokyo. Constructed power supply for the dipole magnets is 600 V, 2500 A operated in the mode of trapezoid wave form with the repetition cycle of 0.1 Hz. The stability of magnetic field within 10 -3 and tracking error of 10 -4 have been attained with the aid of computer control system. First trial of synchrotron acceleration of He 2+ beam has been done up to 600 MeV in April, 1991. (author)

  15. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    International Nuclear Information System (INIS)

    Zou, C.; Li, B.; Zhang, C.; Wang, S.; Marrow, T.J.; Reinhard, C.

    2016-01-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a 'node-bond' geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1∼ 9.3% closed micropores

  16. Tomographic Approach in Three-Orthogonal-Basis Quantum Key Distribution

    International Nuclear Information System (INIS)

    Liang Wen-Ye; Yin Zhen-Qiang; Chen Hua; Li Hong-Wei; Chen Wei; Han Zheng-Fu; Wen Hao

    2015-01-01

    At present, there is an increasing awareness of some three-orthogonal-basis quantum key distribution protocols, such as, the reference-frame-independent (RFI) protocol and the six-state protocol. For secure key rate estimations of these protocols, there are two methods: one is the conventional approach, and another is the tomographic approach. However, a comparison between these two methods has not been given yet. In this work, with the general model of rotation channel, we estimate the key rate using conventional and tomographic methods respectively. Results show that conventional estimation approach in RFI protocol is equivalent to tomographic approach only in the case of that one of three orthogonal bases is always aligned. In other cases, tomographic approach performs much better than the respective conventional approaches of the RFI protocol and the six-state protocol. Furthermore, based on the experimental data, we illustrate the deep connections between tomography and conventional RFI approach representations. (paper)

  17. Radiographic test phantom for computed tomographic lung nodule analysis

    International Nuclear Information System (INIS)

    Zerhouni, E.A.

    1987-01-01

    This patent describes a method for evaluating a computed tomograph scan of a nodule in a lung of a human or non-human animal. The method comprises generating a computer tomograph of a transverse section of the animal containing lung and nodule tissue, and generating a second computer tomograph of a test phantom comprising a device which simulates the transverse section of the animal. The tissue simulating portions of the device are constructed of materials having radiographic densities substantially identical to those of the corresponding tissue in the simulated transverse section of the animal and have voids therein which simulate, in size and shape, the lung cavities in the transverse section and which contain a test reference nodule constructed of a material of predetermined radiographic density which simulates in size, shape and position within a lung cavity void of the test phantom the nodule in the transverse section of the animal and comparing the respective tomographs

  18. Computed tomographic determination of tracheal dimensions in children and adolescents

    International Nuclear Information System (INIS)

    Griscom, N.T.

    1982-01-01

    A computed tomographic system for determining the internal diameters, cross-sectional area, and length of the trachea in children and adolescents was developed. Intraluminal volumes were calculated from these measurements.The results of 18 analyses are reported

  19. Image interface in Java for tomographic reconstruction in nuclear medicine

    International Nuclear Information System (INIS)

    Andrade, M.A.; Silva, A.M. Marques da

    2004-01-01

    The aim of this study is to implement a software for tomographic reconstruction of SPECT data from Nuclear Medicine with a flexible interface design, cross-platform, written in Java. Validation tests were performed based on SPECT simulated data. The results showed that the implemented algorithms and filters agree with the theoretical context. We intend to extend the system by implementing additional tomographic reconstruction techniques and Java threads, in order to provide simultaneously image processing. (author)

  20. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs

    Science.gov (United States)

    Van Der Hilst, R.; Engdahl, R.; Spakman, W.; Nolet, G.

    1991-01-01

    The seismic tomography problem does not have a unique solution, and published tomographic images have been equivocal with regard to the deep structure of subducting slabs. An improved tomographic method, using a more realistic background Earth model and surf ace-reflected as well as direct seismic phases, shows that slabs beneath the Japan and Izu Bonin island arcs are deflected at the boundary between upper and lower mantle, whereas those beneath the northern Kuril and Mariana arcs sink into the lower mantle.

  1. Investigation of SiC crystals by means of synchrotron topography

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Tymicki, E.; Balcer, T.; Pawlowska, M.; Wieteska, K.; Malinowska, A.; Wierzbicka, E.; Grasza, K.; Graeff, W.

    2006-01-01

    The crystallographic quality of monopolytypic 6H SiC crystals grown by Physical Vapour Transport in graphite crucible was studied. The diameter of crystals was increased up to 65 mm. The crystals were investigated using several methods of characterisation including white and monochromatic beam synchrotron diffraction topography and scanning electron microscopy. Particularly useful results were obtained using back reflection white beam synchrotron section topography, which provided the intersection of the large thickness of the sample investigated. The topographs revealed a great part of macro and micropipes present in the samples, reproduced as white areas. The additional possibility offered the section topographs taken using a fine grid with the distance between the wires equal to 0.7 mm, which enabled evaluation of the lattice deformation. The scanning electron microscopy was also very useful in studying the micropipes and voids as well as in observation of the selective etching pattern. (author)

  2. From tomographic images to fault heterogeneities

    Directory of Open Access Journals (Sweden)

    A. Amato

    1994-06-01

    Full Text Available Local Earthquake Tomography (LET is a useful tool for imaging lateral heterogeneities in the upper crust. The pattern of P- and S-wave velocity anomalies, in relation to the seismicity distribution along active fault zones. can shed light on the existence of discrete seismogenic patches. Recent tomographic studies in well monitored seismic areas have shown that the regions with large seismic moment release generally correspond to high velocity zones (HVZ's. In this paper, we discuss the relationship between the seismogenic behavior of faults and the velocity structure of fault zones as inferred from seismic tomography. First, we review some recent tomographic studies in active strike-slip faults. We show examples from different segments of the San Andreas fault system (Parkfield, Loma Prieta, where detailed studies have been carried out in recent years. We also show two applications of LET to thrust faults (Coalinga, Friuli. Then, we focus on the Irpinia normal fault zone (South-Central Italy, where a Ms = 6.9 earthquake occurred in 1980 and many thousands of attershock travel time data are available. We find that earthquake hypocenters concentrate in HVZ's, whereas low velocity zones (LVZ’ s appear to be relatively aseismic. The main HVZ's along which the mainshock rupture bas propagated may correspond to velocity weakening fault regions, whereas the LVZ's are probably related to weak materials undergoing stable slip (velocity strengthening. A correlation exists between this HVZ and the area with larger coseismic slip along the fault, according to both surface evidence (a fault scarp as high as 1 m and strong ground motion waveform modeling. Smaller wave-length, low-velocity anomalies detected along the fault may be the expression of velocity strengthening sections, where aseismic slip occurs. According to our results, the rupture at the nucleation depth (~ 10-12 km is continuous for the whole fault lenoth (~ 30 km, whereas at shallow depth

  3. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  4. Radiographic and tomographic study of the elbow joint in dogs

    International Nuclear Information System (INIS)

    Sendyk-Grunkraut, Alessandra; Martin, Claudia M.; Souza, Alexandre N.A.; Patricio, Geni Cristina F.; Lorigados, Carla A.B.; Matera, Julia M.; Fonseca-Pinto, Ana C.B.C.

    2017-01-01

    Elbow dysplasia disease includes an united anconeal process, fragmented medial coronoid process, osteochondrosis of humeral trochlea, articular incongruity and degenerative joint disease. The aim of this study was to present detailed morphologic and morphometric aspects of the elbow joint in dog in clinical and correlate with radiographic and tomographic (CT) exam. Inter-observer variation for articular incongruity measurements by CT, comparative analysis in the radiographic exam, angle in ulnar notch and its comparative analysis between radiographic and tomographic agreement examination in 44 elbow of dogs with different ages were evaluated. The statistics analyses included the kappa coefficient and interclass correlation and Fischer's test and McNemar's test. It was evidenced that individual performance of each radiographic incidence had poor agreement with the tomographic exam, suggesting that the accomplishment of more than two radiograph views are needed. There was no agreement between the three evaluators in the ulnar notch angle at radiographic and tomographic exams. However, there was good/moderate agreement for articular incongruity measurement in the sagittal plane between evaluators. It was possible to conclude that none of the five radiographic incidences was better than the others for radiographic analysis because each incidence had a better identification of a particular elbow compartment; measurements at the tomographic exam to evaluate radioulnar incongruity had no reproductiveness in the frontal plane, but in sagittal plan had a good/moderate agreement between observers and the angle in ulnar notch presented no repeatability at radiographic exam and no reproductiveness at tomographic exam. (author)

  5. Gamma Ray Tomographic Scan Method for Large Scale Industrial Plants

    International Nuclear Information System (INIS)

    Moon, Jin Ho; Jung, Sung Hee; Kim, Jong Bum; Park, Jang Geun

    2011-01-01

    The gamma ray tomography systems have been used to investigate a chemical process for last decade. There have been many cases of gamma ray tomography for laboratory scale work but not many cases for industrial scale work. Non-tomographic equipment with gamma-ray sources is often used in process diagnosis. Gamma radiography, gamma column scanning and the radioisotope tracer technique are examples of gamma ray application in industries. In spite of many outdoor non-gamma ray tomographic equipment, the most of gamma ray tomographic systems still remained as indoor equipment. But, as the gamma tomography has developed, the demand on gamma tomography for real scale plants also increased. To develop the industrial scale system, we introduced the gamma-ray tomographic system with fixed detectors and rotating source. The general system configuration is similar to 4 th generation geometry. But the main effort has been made to actualize the instant installation of the system for real scale industrial plant. This work would be a first attempt to apply the 4th generation industrial gamma tomographic scanning by experimental method. The individual 0.5-inch NaI detector was used for gamma ray detection by configuring circular shape around industrial plant. This tomographic scan method can reduce mechanical complexity and require a much smaller space than a conventional CT. Those properties make it easy to get measurement data for a real scale plant

  6. Geological applications of synchrotron radiation

    Science.gov (United States)

    Henderson, C. M. B.; Cressey, G.; Redfern, S. A. T.

    1995-03-01

    Synchrotron-based, Earth sciences research carried out over the last 5 years is reviewed with special attention being given to X-ray absorption studies; X-ray diffraction and X-ray fluorescence microprobe applications are considered more briefly. A comprehensive bibliography is included. The main part of the paper summarizes recent work carried out at the Daresbury SRS. K-edge XAS studies of glasses as models for silicate melts provide information on the local structural environments of Si, Fe 2+ and Fe 3+. By analogy with synthetic "leucites" which contain Fe 2+ and Fe 3+ in tetrahedral framework sites, it seems that many model glasses also contain both oxidation states of Fe in the network, rather than as network modifiers. The structural sites occupied by the minor elements Mn, Zn and Ti in staurolite have been identified using XAFS; Mn and Zn substitute for Fe 2+ in the tetrahedral T2 site, while Ti occupies the distorted M2 octahedral site. L-edge spectroscopy is used to identify the valencies and electronic structures of Mn and Fe in minerals and the Fe 2+:Fe 3+ ratio in a natural spinel is determined. The polarized nature of the synchrotron beam is exploited in determining the Fe X-ray absorption anisotropy in single crystal tourmaline and epidote. XRD powder studies include Rietveld-refinement structure determination and compressibility studies. Synthetic "leucites" having the stoichiometry K 2MgSi 5O 12 have distinctly different structures. The dry-synthesized form is cubic Ia3d with Si and Mg fully disordered on tetrahedral framework sites, while the hydrothermally-synthesized polymorph is monoclinic P2 1/c with Si and Mg fully disordered on, respectively, 10 and 2 tetrahedral sites. The reversible tetragonal to orthorhombic phase transition in gillespite (BaFeSi 4O 10) has been studied in a diamond anvil cell using ED detection and found to occur at 1.2 ± 0.1 GPa. The anomalous compressibility observed has been interpreted in terms of ferroelastic and

  7. Stanford Synchrotron Radiation Light Source (SSRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The SSRL at SLAC National Accelerator Laboratory was built in 1974 to take and use for synchrotron studies the intense x-ray beams from the SPEAR storage ring that...

  8. Molecular photoemission studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Truesdale, C.M.

    1983-04-01

    The angular distributions of photoelectrons and Auger electrons were measured by electron spectroscopy using synchrotron radiation. The experimental results are compared with theoretical calculations to interpret the electronic behavior of photoionization for molecular systems

  9. National synchrotron light source VUV storage ring

    International Nuclear Information System (INIS)

    Blumberg, L.; Bittner, J.; Galayda, J.; Heese, R.; Krinsky, S.; Schuchman, J.; van Steenbergen, A.

    1979-01-01

    A 700 MeV electron storage ring designed for synchrotron radiation applications is described. Lattice and stability calculations are presented and the vacuum, correction and injection systems are discussed

  10. Applications of synchrotron radiation in Biophysics

    International Nuclear Information System (INIS)

    Bemski, G.

    1983-01-01

    A short introduction to the generation of the synchrotron radiation is made. Following, the applications of such a radiation in biophysics with emphasis to the study of the hemoglobin molecule are presented. (L.C.) [pt

  11. Simulation of synchrotron motion with rf noise

    International Nuclear Information System (INIS)

    Leemann, B.T.; Forest, E.; Chattopadhyay, S.

    1986-08-01

    The theoretical formulation is described that is behind an algorithm for synchrotron phase-space tracking with rf noise and some preliminary simulation results of bunch diffusion under rf noise obtained by actual tracking

  12. National Synchrotron Light Source annual report 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.; Lazarz, N.; Williams, G. (eds.)

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  13. Synchrotron light sources in developing countries

    Science.gov (United States)

    Mtingwa, Sekazi K.; Winick, Herman

    2018-03-01

    We discuss the role that synchrotron light sources, such as SESAME, could play in improving the socioeconomic conditions in developing countries. After providing a brief description of a synchrotron light source, we discuss the important role that they played in the development of several economically emerging countries. Then we describe the state of synchrotron science in South Africa and that country’s leadership role in founding the African Light Source initiative. Next, we highlight a new initiative called Lightsources for Africa, the Americas & Middle East Project, which is a global initiative led by the International Union of Pure and Applied Physics and the International Union of Crystallography, with initial funding provided by the International Council for Science. Finally, we comment on a new technology called the multibend achromat that has launched a new paradigm for the design of synchrotron light sources that should be attractive for construction in developing countries.

  14. Synchrotrons are also devoted to the society

    International Nuclear Information System (INIS)

    Gacoin, M.P.; Cornuejols, D.; Cotte, M.; Deblay, P.; Mitchell, E.P.; McCarthy, J.; Fraissard, F.

    2013-01-01

    The ESRF and the SOLEIL synchrotrons are not only scientific instruments but also active players in the cultural and economic fields. This document gathers 6 short articles. The 2 first present the actions of SOLEIL and ESRS scientific teams towards the spreading of scientific knowledge in the public. The third article is dedicated to the uses of synchrotron radiation to the study of cultural objects to learn more about their fabrication, present state or the remedial actions that could be used to renovate them. The fourth and fifth articles present the contributions of ESRF and SOLEIL to the industrial world, in fact these contributions are not limited to the research field but also appear for quality assurance or the control of aging processes. Partnerships have been signed between both synchrotrons and enterprises to develop industrial products based on instrumentation or on the use of synchrotron radiation. The last article describes the procedure to have access to both facilities. (A.C.)

  15. Synchrotrons are also devoted to society

    International Nuclear Information System (INIS)

    Gacoin, M.P.; Cornuejols, D.; Cotte, M.; Deblay, P.; Mitchell, E.P.; McCarthy, J.; Fraissard, F.

    2013-01-01

    The ESRF and the SOLEIL synchrotrons are not only scientific instruments but also active players in the cultural and economic fields. This document gathers 6 short articles. The 2 first present the actions of SOLEIL and ESRS scientific teams towards the spreading of scientific knowledge in the public. The third article is dedicated to the uses of synchrotron radiation to the study of cultural objects to learn more about their fabrication, present state or the remedial actions that could be used to renovate them. The fourth and fifth articles present the contributions of ESRF and SOLEIL to the industrial world, in fact these contributions are not limited to the research field but also appear for quality assurance or the control of aging processes. Partnerships have been signed between both synchrotrons and enterprises to develop industrial products based on instrumentation or on the use of synchrotron radiation. The last article describes the procedure to have access to both facilities. (A.C.)

  16. Evaluation of the synchrotron close orbit

    International Nuclear Information System (INIS)

    Bashmakov, Yu.A.; Karpov, V.A.

    1991-01-01

    The knowledge of the closed orbit position is an essential condition for the effective work of any accelerator. Therefore questions of calculations, measurements and controls have great importance. For example, during injection of particles into a synchrotron, the amplitudes of their betatron oscillations may become commensurable with the working region of the synchrotron. This makes one pay attention at the problem of formation of the optimum orbit with use of correcting optical elements. In addition, it is often necessary to calculate such an orbit at the end of the acceleration cycle when particles are deposited at internal targets or removed from the synchrotron. In this paper, the computation of the close orbit is reduced to a determination at an arbitrarily chosen azimuth of the eigenvector of the total transfer matrix of the synchrotron ring and to tracing with this vector desired orbit. The eigenvector is found as a result of an iteration

  17. Fiber structural analysis by synchrotron radiation

    CERN Document Server

    Kojima, J I; Kikutani, T

    2003-01-01

    Topics of fiber structural analysis by synchrotron radiation are explained. There are only three synchrotron radiation facilities in the world, SPring-8 (Super Photon ring-8) in Japan, APS (Advanced Photon Source) in U.S.A. and ESRF (European Synchrotron Radiation Facility) in France. Online measurement of melt spinning process of PET and Nylon6 is explained in detail. Polypropylene and PBO (poly-p-phenylenebenzobisoxazole) was measured by WAXD (Wide Angle X-ray Diffraction)/SAXS (Small Angle X-ray Scattering) at the same time. Some examples of measure of drawing process of fiber are described. The structure formation process of spider's thread was measured. Micro beam of X-ray of synchrotron facility was improved and it attained to 65nm small angle resolving power by 10 mu m beamsize. (S.Y.)

  18. Panel backs next-generation synchrotron

    CERN Multimedia

    Service, R F

    1999-01-01

    A key federal panel recommended continued research into development of a fourth-generation synchrotron. It would be capable of creating x-ray pulses billions of times more intense than current designs (1 page).

  19. An efficient reconstruction algorithm for differential phase-contrast tomographic images from a limited number of views

    International Nuclear Information System (INIS)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Gupta, Rajiv; Ando, Masami

    2015-01-01

    The main focus of this paper is reconstruction of tomographic phase-contrast image from a set of projections. We propose an efficient reconstruction algorithm for differential phase-contrast computed tomography that can considerably reduce the number of projections required for reconstruction. The key result underlying this research is a projection theorem that states that the second derivative of the projection set is linearly related to the Laplacian of the tomographic image. The proposed algorithm first reconstructs the Laplacian image of the phase-shift distribution from the second-derivative of the projections using total variation regularization. The second step is to obtain the phase-shift distribution by solving a Poisson equation whose source is the Laplacian image previously reconstructed under the Dirichlet condition. We demonstrate the efficacy of this algorithm using both synthetically generated simulation data and projection data acquired experimentally at a synchrotron. The experimental phase data were acquired from a human coronary artery specimen using dark-field-imaging optics pioneered by our group. Our results demonstrate that the proposed algorithm can reduce the number of projections to approximately 33% as compared with the conventional filtered backprojection method, without any detrimental effect on the image quality

  20. Heavy-ion microscopy

    International Nuclear Information System (INIS)

    Kraft, G.; Yang, T.C.H.; Richards, T.; Tobias, C.A.

    1980-01-01

    This chapter briefly describes the techniques of optical microscopy, scanning and transmission electron microscopy, soft x-ray microscopy and compares these latter techniques with heavy-ion microscopy. The resolution obtained with these various types of microscopy are compared and the influence of the etching procedure on total resolution is discussed. Several micrographs of mammalian cells are included

  1. New theoretical results in synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G. [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation)]. E-mail: bagrov@phys.tsu.ru; Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil); Tlyachev, V.B. [Tomsk Institute of High Current Electronics, Akademicheskiy Avenue 4, Tomsk (Russian Federation); Jarovoi, A.T. [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation)

    2005-11-15

    One of the remarkable features of the relativistic electron synchrotron radiation is its concentration in small angle {delta}{approx}1/{gamma} (here {gamma}-relativistic factor: {gamma}=E/mc{sup 2}, E - energy, m - electron rest mass, c - light velocity) near rotation orbit plane [V.G. Bagrov, V.A. Bordovitsyn, V.G. Bulenok, V. Ya. Epp, Kinematical projection of pulsar synchrotron radiation profiles, in: Proceedings of IV ISTC Scientific Advisory Commitee Seminar on Basic Science in ISTC Aktivities, Akademgorodok, Novosibirsk, April 23-27, 2001, p. 293-300]. This theoretically predicted and experimentally confirmed feature is peculiar to total (spectrum summarized) radiating intensity. This angular distribution property has been supposed to be (at least qualitatively) conserved and for separate spectrum synchrotron radiation components. In the work of V.G. Bagrov, V.A. Bordovitsyn, V. Ch. Zhukovskii, Development of the theory of synchrotron radiation and related processes. Synchrotron source of JINR: the perspective of research, in: The Materials of the Second International Work Conference, Dubna, April 2-6, 2001, pp. 15-30 and in Angular dependence of synchrotron radiation intensity. http://lanl.arXiv.org/abs/physics/0209097, it is shown that the angular distribution of separate synchrotron radiation spectrum components demonstrates directly inverse tendency - the angular distribution deconcentration relatively the orbit plane takes place with electron energy growth. The present work is devoted to detailed investigation of this situation. For exact quantitative estimation of angular concentration degree of synchrotron radiation the definition of radiation effective angle and deviation angle is proposed. For different polarization components of radiation the dependence of introduced characteristics was investigated as a functions of electron energy and number of spectrum component.

  2. Experimental demonstration of the KEK induction synchrotron

    International Nuclear Information System (INIS)

    Takayama, Ken; Torikai, Kota; Shimosaki, Yoshito; Kono, Tadaaki; Iwashita, Taiki; Arakida, Yoshio; Nakamura, Eiji; Shirakata, Masashi; Sueno, Takeshi; Wake, Masayoshi; Otsuka, Kazunori

    2007-01-01

    Recent progress in the KEK induction synchrotron is presented. In the recent experiment, by using a newly developed induction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV Booster ring and captured by the barrier bucket created by the induction step-voltages was accelerated to 6 GeV in the KEK proton synchrotron

  3. Early British synchrotrons, an informal history

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1997-02-01

    An historical account of the design and construction of early synchrotrons in the United Kingdom, based partly on personal reminiscences, is presented. Material is also drawn from archives at Birmingham and CERN. The document covers the period from plans for the world's first synchrotron at Malvern after the Second World War to work done at Harwell Laboratory for CERN in the period 1951-1953. (UK)

  4. Synchrotron control system of the HIMAC

    International Nuclear Information System (INIS)

    Takada, E.; Sato, K.; Itano, A.

    1994-01-01

    A structural design synopsis and the present status of the HIMAC synchrotron control system are described. The control system comprises of Timing System, (ring magnet) Power-supply Controller, Programmable Logic Controller, Static Var Compensator controller, Monitor Controller, RF control computer, Beam Transport control computer and the synchrotron main computer (denoted as CS, hereafter) that forms a local area cluster with man-machine interfacing computers, and communicates with HIMAC supervisor computer. (author)

  5. Recent Developments in Synchrotron Moessbauer Reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Deak, L.; Bottyan, L.; Major, M.; Nagy, D. L. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Spiering, H. [Johannes Gutenberg Universitaet, Mainz, Institute fuer Anorganische und Analytische Chemie (Germany); Szilagyi, E.; Tancziko, F. [KFKI Research Institute for Particle and Nuclear Physics (Hungary)

    2002-12-15

    Synchrotron Moessbauer Reflectometry (SMR), the grazing incidence nuclear resonant scattering of synchrotron radiation, can be applied to perform depth-selective phase analysis and to determine the isotopic and magnetic structure of thin films and multilayers. Principles and methodological aspects of SMR are briefly reviewed. Off-specular SMR provides information from the lateral structure of multilayers. In anti-ferromagneticly coupled systems the size of magnetic domains can be measured.

  6. National Laboratory of Synchrotron Radiation: technologic potential

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da; Rodrigues, A.R.D.

    1987-01-01

    The technological or industrial developments based on the accumulated experience by research group of condensed matter physics, in Brazil, are described. The potential of a National Laboratory of Synchrotron Radiation for personnel training, absorption and adaptation of economically important technologies for Brazil, is presented. Examples of cooperations between the Laboratory and some national interprises, and some industrial applications of the synchrotron radiation are done. (M.C.K.) [pt

  7. Launch of the I13-2 data beamline at the Diamond Light Source synchrotron

    International Nuclear Information System (INIS)

    Bodey, A J; Rau, C

    2017-01-01

    Users of the Diamond-Manchester Imaging Branchline I13-2 commonly spend many months analysing the large volumes of tomographic data generated in a single beamtime. This is due to the difficulties inherent in performing complicated, computationally-expensive analyses on large datasets with workstations of limited computing power. To improve productivity, a ‘data beamline’ was launched in January 2016. Users are scheduled for visits to the data beamline in the same way as for regular beamlines, with bookings made via the User Administration System and provision of financial support for travel and subsistence. Two high-performance graphics workstations were acquired, with sufficient RAM to enable simultaneous analysis of several tomographic volumes. Users are given high priority on Diamond’s central computing cluster for the duration of their visit, and if necessary, archived data are restored to a high-performance disk array. Within the first six months of operation, thirteen user visits were made, lasting an average of 4.5 days each. The I13-2 data beamline was the first to be launched at Diamond Light Source and, to the authors’ knowledge, the first to be formalised in this way at any synchrotron. (paper)

  8. Launch of the I13-2 data beamline at the Diamond Light Source synchrotron

    Science.gov (United States)

    Bodey, A. J.; Rau, C.

    2017-06-01

    Users of the Diamond-Manchester Imaging Branchline I13-2 commonly spend many months analysing the large volumes of tomographic data generated in a single beamtime. This is due to the difficulties inherent in performing complicated, computationally-expensive analyses on large datasets with workstations of limited computing power. To improve productivity, a ‘data beamline’ was launched in January 2016. Users are scheduled for visits to the data beamline in the same way as for regular beamlines, with bookings made via the User Administration System and provision of financial support for travel and subsistence. Two high-performance graphics workstations were acquired, with sufficient RAM to enable simultaneous analysis of several tomographic volumes. Users are given high priority on Diamond’s central computing cluster for the duration of their visit, and if necessary, archived data are restored to a high-performance disk array. Within the first six months of operation, thirteen user visits were made, lasting an average of 4.5 days each. The I13-2 data beamline was the first to be launched at Diamond Light Source and, to the authors’ knowledge, the first to be formalised in this way at any synchrotron.

  9. Synchrotron X-ray imaging applied to solar photovoltaic silicon

    International Nuclear Information System (INIS)

    Lafford, T A; Villanova, J; Plassat, N; Dubois, S; Camel, D

    2013-01-01

    Photovoltaic (PV) cell performance is dictated by the material of the cell, its quality and purity, the type, quantity, size and distribution of defects, as well as surface treatments, deposited layers and contacts. A synchrotron offers unique opportunities for a variety of complementary X-ray techniques, given the brilliance, spectrum, energy tunability and potential for (sub-) micron-sized beams. Material properties are revealed within in the bulk and at surfaces and interfaces. X-ray Diffraction Imaging (X-ray Topography), Rocking Curve Imaging and Section Topography reveal defects such as dislocations, inclusions, misorientations and strain in the bulk and at surfaces. Simultaneous measurement of micro-X-Ray Fluorescence (μ-XRF) and micro-X-ray Beam Induced Current (μ-XBIC) gives direct correlation between impurities and PV performance. Together with techniques such as microscopy and Light Beam Induced Current (LBIC) measurements, the correlation between structural properties and photovoltaic performance can be deduced, as well as the relative influence of parameters such as defect type, size, spatial distribution and density (e.g [1]). Measurements may be applied at different stages of solar cell processing in order to follow the evolution of the material and its properties through the manufacturing process. Various grades of silicon are under study, including electronic and metallurgical grades in mono-crystalline, multi-crystalline and mono-like forms. This paper aims to introduce synchrotron imaging to non-specialists, giving example results on selected solar photovoltaic silicon samples.

  10. A tomographic approach to intravenous coronary arteriography

    International Nuclear Information System (INIS)

    Ritman, E.L.; Bove, A.A.

    1986-01-01

    Coronary artery anatomy can be visualized using high speed, volume scanning X-ray CT. A single scan during a bolus injection of contrast medium provides image data for display of all angles of view of the opacified coronary arterial tree. Due to the tomographic nature of volume image data the superposition of contrast filled cardiac chambers, such as would occur in the levophase of an intravenous injection of contrast agent, can be eliminated. Data are presented which support these statements. The Dynamic Spatial Reconstructor (DSR) was used to scan a life-like radiologic phantom of an adult human thorax in which the left atrial and ventricular chambers and the major epicardial coronary arteries were opacified so as to simulate the levophase of an intravenous injection of contrast agent. A catheter filled with diluted contrast agent and with regions of luminal narrowing (i.e. 'stenoses') was advanced along a tract equivalent to a right ventricular catheterization. Ease of visualization of the catheter 'stenoses' and the accuracy with which they can be measured are presented. (Auth.)

  11. Comparison among tomographic reconstruction with limited data

    International Nuclear Information System (INIS)

    Oliveira, Eric F.; Dantas, Carlos C.; Vasconcelos, Daniel A.A.; Cadiz, Luis F.; Melo, Silvio B.

    2011-01-01

    Nowadays there is a continuing interest in applying computed tomography (CT) techniques in non-destructive testing and inspection of many industrial products. These applications of CT usually require a differentiated analysis when there are strong limitations in acquiring a sufficiently large amount of projection data. The use of a low number of tomographic data normally degrades the quality of the reconstructed image, highlighting the formation of artifacts and noise. This work investigates the reconstruction methods most commonly used (FBP, ART, SIRT, MART, SMART) and shows the performance of each one in this limited scenario. For this purpose, all methods were implemented and tested with a phantom of uniform density with well-known distribution, with measures of transmission of gamma radiation in a first generation CT scanner. The phantom is a concentric stainless steel tube coupled with a half - cylinder of aluminum. The measurements were made with an highest root mean square error, with the formation of visible artifacts. The artifacts are diminished but still visible in the ART and SIRT techniques, and the best performance was observed with the techniques MART and SMART. The technical superiority of these multiplicative methods is clearly seen in the reconstructed image quality, endorsing their application to situations of limited input data. (author)

  12. Computed tomographic findings of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Jo, In Su; Jong, Woo Yung; Lee, Jong Yul; Choi, Han Yong; Kim, Bong Ki

    1987-01-01

    With Development of Computed Tomography, detection of the Hepatocellular Carcinoma are easily performed and frequently used in the world. During 15 months, from December 1985 to February 1987, 59 patients with hepatocellular carcinoma were evaluated with computed tomography in department of radiology at Wallace Memorial Baptist Hospital. The results were as follow: 1. The most prevalent age group was 5th to 7th decades, male to female ratio was 4.9:1. 2. Classification with incidence of computed tomographic appearance of the hepatocellular carcinoma were solitary type 28 cases (48%), multinodular type 24 cases (40%), and diffuse type 7 cases (12%), Association with liver cirrhosis was noted in 22 cases (38%). 3. Inhomogenous internal consistency of hepatocellular carcinoma due to central necrosis were 35 cases (60%). Portal vein invasion by hepatocellular carcinoma was noted in 15 cases (25%), and particularly most common in diffuse type 4 cases (55%). 4. On precontrast scan, all hepatocellular carcinoma were seen as area of low density except for 3 cases(0.5%) of near isodensity which turned out to be remarkable low density on postcontrast scan. 5. In solitary type, posterior segment of right lobe was most common site of involvement 12 cases (43%). In diffuse type, bilobar involvement was most common, 6 cases (85%)

  13. Cone Beam Computed Tomographic imaging in orthodontics.

    Science.gov (United States)

    Scarfe, W C; Azevedo, B; Toghyani, S; Farman, A G

    2017-03-01

    Over the last 15 years, cone beam computed tomographic (CBCT) imaging has emerged as an important supplemental radiographic technique for orthodontic diagnosis and treatment planning, especially in situations which require an understanding of the complex anatomic relationships and surrounding structures of the maxillofacial skeleton. CBCT imaging provides unique features and advantages to enhance orthodontic practice over conventional extraoral radiographic imaging. While it is the responsibility of each practitioner to make a decision, in tandem with the patient/family, consensus-derived, evidence-based clinical guidelines are available to assist the clinician in the decision-making process. Specific recommendations provide selection guidance based on variables such as phase of treatment, clinically-assessed treatment difficulty, the presence of dental and/or skeletal modifying conditions, and pathology. CBCT imaging in orthodontics should always be considered wisely as children have conservatively, on average, a three to five times greater radiation risk compared with adults for the same exposure. The purpose of this paper is to provide an understanding of the operation of CBCT equipment as it relates to image quality and dose, highlight the benefits of the technique in orthodontic practice, and provide guidance on appropriate clinical use with respect to radiation dose and relative risk, particularly for the paediatric patient. © 2017 Australian Dental Association.

  14. Computerized tomographic studies in cerebral palsy

    International Nuclear Information System (INIS)

    Sugie, Yoko

    1981-01-01

    Computed tomographic (CT) findings in 200 children with cerebral palsy (CP) were analysed from the viewpoint of clinical manifestations, disease complications and etiological factors. CT scans of 135 cases (67.5%) were found to be abnormal and there were 14 (7%) borderline cases. The major abnormality found on CT scans was cerebral atrophy. Other important changes included focal or diffuse low density area in the brain tissue, congenital malformation, and cerebellar atrophy. From the clinical point of view, a large number of patients with spastic tetraplegia and spastic diplegia showed highly abnormal CT scans. On the other hand, in patients with spastic monoplegia, spastic paraplegia, and athetotic type, CT findings were normal or revealed only minor cerebral atrophy. Most children showing asymmetric clinical symptoms had corresponding asymmetric CT abnormalities which included ventricular enlargement, low density area in the brain tissue, and hemispherical volume. There was a significant correlation between the severity of physical impairment and the extent of CT abnormalities. Severely affected children had grossly abnormal CT scans such as hydranencephaly, polycystic change, and extensive cerebral atrophy. In the patients complicated with epilepsy, the incidence and severity of abnormal CT were higher than those of non-epileptic patients. Mentally retarded patients had variable enlargement of the subarachnoidal space depending on the severity of their mental retardation. Patients with suspected postnatal etiology also had high incidence of severe CT abnormality. CT scan is a valuable tool for evaluating patients with CP and in some cases, possible etiology of the disease may be discovered. (author)

  15. Computed tomographic findings of intracerebral cysticercosis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Kyo; Lee, Sun Wha; Kim, Ho Kyun; Ahn, Chi Yul [School of Medicine, Kyung-Hee University, Seoul (Korea, Republic of)

    1980-12-15

    Cysticercosis is a parasitic disease in which man serves as the intermediate host of Taenia Solium, the pork tapeworm. The computed tomographic findings of 25 cases of intracerebral cysticercosis proven by pathologic and/or clinical findings during past 2 years were analysed. The results were as follows; 1. The sex was 19 males and 6 females, and 56 percent of the patients were seen in fourth and fifth decades. The most common symptom was epilepsy (72%). 2. The C. T. findings in precontrast study were varied; such as ill defined low density (48%), cystic low density (20%), dilated ventricles (20%), ill defined low density with isodense nodule (18%), cystic low density with isodense mural nodule (12%) and calcification (8%). 3. The areas of involvement were 20 cases (80%) of parenchymal form, 3 cases (12%) of ventricular form and 2 cases (8%) of mixed form. 4. The contrast-enhanced 13 cases were 5 nodular, 5 ring or rim-like and 3 mixed type enhancements, while 12 cases were not enhanced. 5. C.T. scan demonstrated more precise location and extents of cerebral cysticercosis, especially in parenchymal form. It was considered to be important in determination of surgical feasibility and its approach.

  16. Distance weighting for improved tomographic reconstructions

    International Nuclear Information System (INIS)

    Koeppe, R.A.; Holden, J.E.

    1984-01-01

    An improved method for the reconstruction of emission computed axial tomography images has been developed. The method is a modification of filtered back-projection, where the back projected values are weighted to reflect the loss of formation, with distance from the camera, which is inherent in gamma camera imaging. This information loss is a result of: loss of spatial resolution with distance, attenuation, and scatter. The weighting scheme can best be described by considering the contributions of any two opposing views to the reconstruction image pixels. The weight applied to the projections of one view is set to equal the relative amount of the original activity that was initially received in that projection, assuming a uniform attenuating medium. This yields a weighting value which is a function of distance into the image with a value of one for pixels ''near the camera'', a value of .5 at the image center, and a value of zero on the opposite side. Tomographic reconstructions produced with this method show improved spatial resolution when compared to conventional 360 0 reconstructions. The improvement is in the tangential direction, where simulations have indicated a FWHM improvement of 1 to 1.5 millimeters. The resolution in the radial direction is essentially the same for both methods. Visual inspection of the reconstructed images show improved resolution and contrast

  17. Formation of tomographic images with neutrons

    International Nuclear Information System (INIS)

    Duarte, A.; Tenreiro, C; Valencia, J; Steinman, G.; Henriquez, C

    2000-01-01

    The possibility of having a non-destructive method of analysis for archaeological and paleontological samples is of interest. A special group of fossil samples has come to our attention, which because of their value should be preserved and, therefore, the availability of an indirect, non-destructive, non contaminating analytical technique is important. The strong absorption of usual kinds of radiation by a fossilized sample restricts the application of conventional methods of analysis. A type of radiation that is not completely attenuated by thick samples, in sizes that are typical in paleontology, is necessary. Neutrons may be considered as an ideal non-invasive probe with the possibility of developing a technique for the formation and analysis of images. A technique has been developed for the spatial reconstruction of the contents of a fossilized sample (tomography) with neutrons, without touching or altering the sample in any way. The neutron beam was extracted from the RECH-1 reactor belonging to the CCHEN, La Reina. The tomographic images of the contents of a fossilized egg are presented for the first time and represent views or cuts of the content as well as a set that permits the three dimensional reconstruction of the inside of the object and its subsequent animation in graphic format. This project developed a technique for taking neutron radiographs of this kind of sample including the numerical algorithms and the treatment and formation of the images (CW)

  18. Method and apparatus for producing tomographic images

    International Nuclear Information System (INIS)

    Annis, M.

    1989-01-01

    A device useful in producing a tomographic image of a selected slice of an object to be examined is described comprising: a source of penetrating radiation, sweep means for forming energy from the source into a pencil beam and repeatedly sweeping the pencil beam over a line in space to define a sweep plane, first means for supporting an object to be examined so that the pencil beam intersections the object along a path passing through the object and the selected slice, line collimating means for filtering radiation scattered by the object, the line collimating means having a field of view which intersects and sweep plane in a bounded line so that the line collimating means passes only radiation scattered by elementary volumes of the object lying along the bounded line, and line collimating means including a plurality of channels such substantially planar in form to collectively define the field of view, the channels oriented so that pencil beam sweeps along the bounded line as a function of time, and radiation detector means responsive to radiation passed by the line collimating means

  19. Computed tomographic findings of cerebral paragonimiasis

    International Nuclear Information System (INIS)

    Sung, Nak Kwan; Nam, Kyung Jin; Park, Churl Min; Eun, Chung Kie; Lee, Sun Wha

    1983-01-01

    Paragonimiasis is widely distributed in Far East and Southeast Asia, particularly in Korea. The central nervous system is the most frequent location for paragonimiasis outside the lungs. We analyzed the computed tomographic findings of 17 cases which were diagnosed pathologically and clinically as cerebral paragonimiasis. The results were as follows: 1. The ratio of male to female was 10 : 7 and about 88% of cases were under the age of 40 years. 2. The common locations of cerebral paragonimiasis were the occipital (12 cases) and temporal (11 cases) lobes. 3. Precontrast CT findings of cerebral paragonimiasis were low density with calcifications in 6 cases, low and isodensities in 4 cases, mixed densities in 3 cases, only low density in 2 cases and only calcification in 2 cases. Hydrocephalus (7 cases), mass effect (6 cases), atrophic change (6 cases) and cyst formation (3 cases) were associated. 4. The shape of calcifications in CT scan were soap-bubble or ring in 6 cases, nodular or oval in 6 cases, stipple in 4 cases and amorphous conglomerated in 2 cases. 5. The contrast -enhanced 8 cases were 5 ring or rim like, 2 nodular and 1 irregular enhancements, while 9 cases were not enhanced

  20. Collimator trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    Jaszczak, Ronald J.

    1979-01-01

    An improved collimator is provided for a scintillation camera system that employs a detector head for transaxial tomographic scanning. One object of this invention is to significantly reduce the time required to obtain statistically significant data in radioisotope scanning using a scintillation camera. Another is to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a radiation source of known strength without sacrificing spatial resolution. A further object is to reduce the necessary scanning time without degrading the images obtained. The collimator described has apertures defined by septa of different radiation transparency. The septa are aligned to provide greater radiation shielding from gamma radiation travelling within planes perpendicular to the cranial-caudal axis and less radiation shielding from gamma radiation travelling within other planes. Septa may also define apertures such that the collimator provides high spatial resolution of gamma rays traveling within planes perpendicular to the cranial-caudal axis and directed at the detector and high radiation sensitivity to gamma radiation travelling other planes and indicated at the detector. (LL)

  1. Synchrotron radiation from spherically accreting black holes

    International Nuclear Information System (INIS)

    Ipser, J.R.; Price, R.H.

    1982-01-01

    Spherical accretion onto a Schwartzchild black hole, of gas with frozen-in magnetic field, is studied numerically and analytically for a range of hole masses and accretion rates in which synchrotron emission is the dominant radiative mechanism. At small radii the equipartition of magnetic, kinetic, and gravitational energy is assumed to apply, and the gas is heated by dissipation of infalling magnetic energy, turbulent energy, etc. The models can be classified into three types: (a) synchrotron cooling negligible, (b) synchrotron cooling important but synchrotron self-absorption negligible, (c) synchrotron cooling and self-absorption important. In the first case gas temperatures become very high near the horizon but luminosity efficiencies (luminosity/mass-energy accretion rate) are low. In cases (b) and (c) the gas flow near the horizon is essentially isothermal and luminosity efficiencies are fairly high. The analysis and results for the isothermal cases (b) and (c) are valid only for moderate dissipative heating and synchrotron self-absorption. If self-absorption is very strong or if dissipated energy is comparable to infall energy, Comptonization effects, not included in the analysis, become important

  2. Starting up the Saturne synchrotron

    International Nuclear Information System (INIS)

    Salvat, M.

    1958-02-01

    Illustrated by many drawings and graphs, this report describes and comments all operations and measurements to be performed for starting up the Saturne synchrotron until particle acceleration exclusively. The author reports the study of beam as it goes out of the Van de Graaff: experiment of position and stability of the beam axis, study of beam current and geometric characteristics (calibration of the induction probe), experiment of mass separation and proton percentage, and adjustment of regulation and Van de Graaff fall law. In a second part, he reports the optics alignment and the study of optics property (installation of the different sectors, study of inflector end voltage, and influence of inflector position in the chamber). The third part addresses the examination of phenomena associated with injection: injection method and definition of the initial instant, search for injection optimum conditions, study of particle lifetime and of phenomena on the inner probe. The fourth part proposes theoretical additional elements regarding the movement of particles at the injection in the useful area, and phenomena occurring on targets and on the inner probe

  3. ROSY - Rossendorf synchrotron radiation source

    International Nuclear Information System (INIS)

    Einfeld, D.; Matz, W.

    1993-11-01

    The electron energy of the storage ring will be 3 GeV and the emitted synchrotron radiation is in the hard X-ray region with a critical energy of the spectrum of E c =8,4 keV (λ c =0,14 nm). With a natural emittance of 28 π nm rad ROSY emits high brilliance radiation. Besides the radiation from bending magnets there will be the possibility for using radiation from wigglers and undulators. For the insertion devices 8 places are foreseen four of which are located in non-dispersion-free regions. The storage ring is of fourfold symmetry, has a circumference of 148 m and is designed in a modified FODO structure. An upgrade of ROSY with superconducting bending magnets in order to shift the spectrum to higher energy can easily be done. Part I contains the scientific case and a description of the planned use of the beam lines. Part II describes the design of the storage ring and its components in more detail. (orig.) [de

  4. Use of synchrotron radiation: status and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Kulipanov, G N; Skrinskii, A N [AN SSSR, Novosibirsk. Inst. Yadernoj Fiziki

    1977-07-01

    Modern possibilities of synchrotronous radiation (SR) sources are reviewed. The ways are considered of further development and main fields of application of this class of radiation sources. A wide energy range from 10 eV to 100 keV makes it possible to overlap the whole range of characteristic atomic energies higher than that of a laser. The great brightness of SR permits experiments for a short period of time with high energy resolution Natural SR polarization helps to study spatial anisotropy of objects. Time SR modulation allows to study time characteristics of luminescence, to measure energy of photoelectrons during flight. Perspective is shown of using SR in contact microscopy, X-ray topography, projecting microscopy, scanning and holographic microscopy. Using the full spectrum, it becomes possible to use SR for X-ray structural analysis. Employment of SR for excitation of emission spectra of various elements enables study of electron structure of disperse systems. SR is widely used to investigate the mechanism of luminescence excitation in crystals in the region of vacuum ultraviolet. New possibilities are provided by time and polarization structure of SR for the Moessbauer experiments. Wide range of experiments with SR in the fields of physics, chemistry, biology provides usage of the above radiation in metrology, medicine etc.

  5. Experiments in atomic and applied physics using synchrotron radiation

    International Nuclear Information System (INIS)

    Jones, K.W.

    1987-01-01

    A diverse program in atomic and applied physics using x rays produced at the X-26 beam line at the Brookhaven National Synchrotron Light Source is in progress. The atomic physics program studies the properties of multiply-ionized atoms using the x rays for photo-excitation and ionization of neutral atoms and ion beams. The applied physics program builds on the techniques and results of the atomic physics work to develop new analytical techniques for elemental and chemical characterization of materials. The results are then used for a general experimental program in biomedical sciences, geo- and cosmochemistry, and materials sciences. The present status of the program is illustrated by describing selected experiments. Prospects for development of new experimental capabilities are discussed in terms of a heavy ion storage ring for atomic physics experiments and the feasibility of photoelectron microscopy for high spatial resolution analytical work. 21 refs., 11 figs., 2 tabs

  6. 3D Printing of Plant Golgi Stacks from Their Electron Tomographic Models.

    Science.gov (United States)

    Mai, Keith Ka Ki; Kang, Madison J; Kang, Byung-Ho

    2017-01-01

    Three-dimensional (3D) printing is an effective tool for preparing tangible 3D models from computer visualizations to assist in scientific research and education. With the recent popularization of 3D printing processes, it is now possible for individual laboratories to convert their scientific data into a physical form suitable for presentation or teaching purposes. Electron tomography is an electron microscopy method by which 3D structures of subcellular organelles or macromolecular complexes are determined at nanometer-level resolutions. Electron tomography analyses have revealed the convoluted membrane architectures of Golgi stacks, chloroplasts, and mitochondria. But the intricacy of their 3D organizations is difficult to grasp from tomographic models illustrated on computer screens. Despite the rapid development of 3D printing technologies, production of organelle models based on experimental data with 3D printing has rarely been documented. In this chapter, we present a simple guide to creating 3D prints of electron tomographic models of plant Golgi stacks using the two most accessible 3D printing technologies.

  7. Development of a X-ray micro-tomograph and its application to reservoir rocks characterization

    International Nuclear Information System (INIS)

    Ferreira de Paiva, R.

    1995-10-01

    We describe the construction and application to studies in three dimensions of a laboratory micro-tomograph for the characterisation of heterogeneous solids at the scale of a few microns. The system is based on an electron microprobe and a two dimensional X-ray detector. The use of a low beam divergence for image acquisition allows use of simple and rapid reconstruction software whilst retaining reasonable acquisition times. Spatial resolutions of better than 3 microns in radiography and 10 microns in tomography are obtained. The applications of microtomography in the petroleum industry are illustrated by the study of fibre orientation in polymer composites, of the distribution of minerals and pore space in reservoir rocks, and of the interaction of salt water with a model porous medium. A correction for X-ray beam hardening is described and used to obtain improved discrimination of the phases present in the sample. In the case of a North Sea reservoir rock we show the possibility to distinguish quartz, feldspar and in certain zone kaolinite. The representativeness of the tomographic reconstruction is demonstrated by comparing the surface of the reconstructed specimen with corresponding images obtained in scanning electron microscopy. (author). 58 refs., 10 tabs., 71 photos

  8. Tomographic sensing and localization of fluorescently labeled circulating cells in mice in vivo

    International Nuclear Information System (INIS)

    Zettergren, Eric; Swamy, Tushar; Niedre, Mark; Runnels, Judith; Lin, Charles P

    2012-01-01

    Sensing and enumeration of specific types of circulating cells in small animals is an important problem in many areas of biomedical research. Microscopy-based fluorescence in vivo flow cytometry methods have been developed previously, but these are typically limited to sampling of very small blood volumes, so that very rare circulating cells may escape detection. Recently, we described the development of a ‘diffuse fluorescence flow cytometer’ (DFFC) that allows sampling of much larger blood vessels and therefore circulating blood volumes in the hindlimb, forelimb or tail of a mouse. In this work, we extend this concept by developing and validating a method to tomographically localize circulating fluorescently labeled cells in the cross section of a tissue simulating optical flow phantom and mouse limb. This was achieved using two modulated light sources and an array of six fiber-coupled detectors that allowed rapid, high-sensitivity acquisition of full tomographic data sets at 10 Hz. These were reconstructed into two-dimensional cross-sectional images using Monte Carlo models of light propagation and the randomized algebraic reconstruction technique. We were able to obtain continuous images of moving cells in the sample cross section with 0.5 mm accuracy or better. We first demonstrated this concept in limb-mimicking optical flow photons with up to four flow channels, and then in the tails of mice with fluorescently labeled multiple myeloma cells. This approach increases the overall diagnostic utility of our DFFC instrument. (paper)

  9. Investigation of particle-functionalized tissue engineering scaffolds using X-ray tomographic microscopy

    DEFF Research Database (Denmark)

    Nygaard, J V; Andersen, M Ø; Howard, K A

    2008-01-01

    A low-density, porous chitosan/poly-(dl-lactide-co-glycolide) (PLGA) microparticle composite scaffold was produced by thermally induced phase separation followed by lyophilization, to provide a bicontinuous microstructure potentially suitable for tissue engineering and locally controlled drug...

  10. Image alignment for tomography reconstruction from synchrotron X-ray microscopic images.

    Directory of Open Access Journals (Sweden)

    Chang-Chieh Cheng

    Full Text Available A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the "projected feature points" in the sequence of images. The matched projected feature points in the x-θ plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx.

  11. Image alignment for tomography reconstruction from synchrotron X-ray microscopic images.

    Science.gov (United States)

    Cheng, Chang-Chieh; Chien, Chia-Chi; Chen, Hsiang-Hsin; Hwu, Yeukuang; Ching, Yu-Tai

    2014-01-01

    A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the "projected feature points" in the sequence of images. The matched projected feature points in the x-θ plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx.

  12. Computed tomographic findings of hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Eun, Chung Kie [Kyung Hee University College of Medicine, Seoul (Korea, Republic of)

    1982-09-15

    It is well known that CT is very useful in the evaluation of hepatocellular carcinoma. The computed tomographic findings of 56 patients diagnosed as hepatocellular carcinoma were reviewed and analyzed. The results were as follows: 1. The male to female ratio was 3 : 1 and the age ranged from 31 to 73 years with average age of 54 years. 2. Alpha-fetoprotein was positive in 19 out of 38 cases (50%). HBsAg was positive in 8 out of 33 cases (24%). 3. All lesions were seen as areas of low density except 1 case (0%) of isodensity, and 40 cases (72%) appeared to be solitary while 15 (26%) were multifocal. The low density was homogenous in 13 cases (24%) and inhomogenous in 42 cases (76%), and 18 cases out of 42 cases inhomogenous low density showed peripheal and/or central nodular enhancement. The additional findings were contour changes in 37 cases (66%), metastasis in 35 cases (63%), splenomegaly in 23 cases (42%) and ascities in 22 cases (39%). 4. In postcontrast scans, 41 cases (80%) out of 51 cases showed the change of density after contrast infusion. The presence and extent of tumors were better seen after contrast infusion in 30 cases (59%), better seen before contrast infusion in 11 cases (21%) and no significant difference before and after contrast infusion in 10 cases (20%). 5. The sites of involved lobe were right lobe in 38 cases (68%), left lobe in 5 cases (9%) and both lobes in 13 cases (23%). 6. 35 cases (63%) showed evidence of metastasis to regional lymph nodes, organ or tissues.

  13. Computed tomographic findings of cerebral paragonimiasis

    International Nuclear Information System (INIS)

    Bae, Weon Tae; Jung, Min Ki; Kang, Heoung Keun; Chung, Hyon De

    1988-01-01

    Authors analyzed the computed tomographic (CT) findings of 19 cases pathologically and clinically proven cerebral paragonimiasis that were performed at Chonnam University Hospital from April 1983 through March 1987. The results were as follows: 1. Male to female ratio was 15:4 and the most prevalent age group was 3rd decade (7 cases). The common symptoms were epileptic seizure (16 cases) and headache (12 cases). 2. The multiplicity of cerebral paragonimiasis was 7 of 19 cases and the distributions of lesion were occipital (11 cases), temporal (6 cases), frontal (5 cases) and parietal (5 cases) lobe. 3. The calcification on CT scan were single (7 cases) or multiple (7 cases) and the shape of calcification were nodular (10 cases), soap babble of ring (8 cases), and stippled (6 cases). The pattern of contrast enhancement were ring (5 cases) or nodular (1 case), and along the basal cistern (1 case with arachnoiditis). 4. 12 out of 13 cases, had long clinical symptoms over 3 years with calcifications, could be analyzed according to Valentine's vascular territory; 6 cases in PCA territory, 3 in MCA and 3 in ACA. 5. CT findings were noted according to the duration of symptoms; 5 cases, had symptoms less than 1 year, showed abscess (5 cases) and arachnoiditis (1 case) with brain edema, mass effect, hydrocephalus and contrast enhancement but no calcification in all. One case, had symptom of 1 year and 2 months, showed partially calcified granulomatous lesion with perifocal edema and contrast enhancement, 13 cases, had symptoms over 3 years, showed multiple calcification with brain atrophy (10 cases), but no contrast enhancement in all cases.

  14. Tomographic analysis of CBF in cerebral infarction

    International Nuclear Information System (INIS)

    Segawa, Hiromu; Kimura, Kazumoto; Ueda, Yuichi; Nagai, Masakatsu; Yoshimasu, Norio.

    1983-01-01

    Cerebral perfusion was examined in various types of occlusive disease by computed tomographic CBF method. The method utilized has several advantages over conventional studies using isotope, providing high resolution images in a direct relation to CT anatomy. Ten representative cases were presented from 25 consective cases of occlusive disease studied by this method. The method included inhalation of 40 to 60% xenon with serial CT scanning for 25 min. K (build-up rate), lambda (partition coefficient) and CBF values were calculated from ΔHU for each pixel and ΔXe in expired air, based on Fick's principle, and displayed on CRT as K-, lambda- and CBF-map separately. CBF for gray matter of normal control was 82 +- 11 ml/100 gm/min and that for white matter was 24 +- 5 ml/100 gm/min. The ischemic threshold for gray matter appeared to be approximately 20 ml/100 gm/min, as blood flow in focus of complete infarction was below this level. Blood flow between 20 - 30 ml/ 100 gm/min caused some change on CT, such as localized atrophy, cortical thinning, loss of distinction between gray and white matter and decreased or increased density, which were considered to be compatible with pathological changes of laminar necrosis or gliosis with neuronal loss. In a case with occlusion of middle cerebral artery with subsequent recanalization, causing hemorrhagic infarct, hyperemia was observed in the infarcted cortex that was enhanced by iodine. Periventricular lucency observed in two cases, where blood flow was decreased below threshold, could be classified as ''watershed infarction'' mainly involving white matter. In moyamoya disease, blood flow in the anterior circulation was decreased near ischemic level, whereas that in basal ganglia and territory of posterior cerebral artery was fairly preserved, which was compatible with general angiographic finding of this disease. (author)

  15. Tomographic Measurements of Longitudinal Phase Space Density

    CERN Document Server

    Hancock, S; McIntosh, E; Metcalf, M

    1999-01-01

    Tomography : the reconstruction of a two-dimensional image from a series of its one-dimensional projections is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. One of the simplest algorithms has been modified to take into account the non-linearity of large-amplitude synchrotron motion in a particle accelerator. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The algorithm was developed in Mathematica TM in order to exploit the extensive built-in functions and graphics. Subsequently, it has been recoded in Fortran 90 with the aim of reducing the execution time by at least a factor of one hundred. The choice of Fortran 90 was governed by the desire ultimately to exploit parallel architectures, but sequential compilation and execution have already largely yielded the required gain in speed. The use of the method to produce longitudinal phase space plots, animated sequences o...

  16. Tomographic apparatus and method for reconstructing planar slices from non-absorbed radiation

    International Nuclear Information System (INIS)

    1976-01-01

    In a tomographic apparatus and method for reconstructing two-dimensional planar slices from linear projections of non-absorbed radiation useful in the fields of medical radiology, microscopy, and non-destructive testing, a beam of radiation in the shape of a fan is passed through an object lying in the same quasi-plane as the object slice and non-absorbtion thereof is recorded on oppositely-situated detectors aligned with the source of radiation. There is relative rotation between the source-detector configuration and the object within the quasi-plane. Periodic values of the detected radiation are taken, convolved with certain functions, and back-projected to produce a two-dimensional output picture on a visual display illustrating a facsimile of the object slice. A series of two-dimensional pictures obtained simultaneously or serially can be combined to produce a three dimensional portrayal of the entire object

  17. The X-ray microscopy project at saga SLS

    International Nuclear Information System (INIS)

    Yasumoto, M.; Ishiguro, E.; Takemoto, K.; Kihara, H.; Kamijo, N.; Tomimasu, T.; Tsurushima, T.; Takahara, A.; Hara, K.; Chikaura, Y.

    2002-01-01

    A new high resolution X-ray microscopy project has been proposed at Saga synchrotron light source, which is a third generation synchrotron light facility in Japan. Two microscopy beamlines are planned for this project. One is a scanning microscope in the water window region, and the other is a full-field imaging microscope in the multi-keV X-ray energy region. To demonstrate the feasibility of the project, the optical layout of the scanning microscope was designed. The beamline mainly consists of a 3.5 cm periodical undulator, a varied line-spacing plane grating monochromator (600 lines/mm) and an end-station including a zone plate. Thus, the calculated X-ray properties focused on the sample position are as follows: the spot size is ∼ 70 nm, the monochromaticity is ∼2000, and the photon flux is 10 9 ∼ 10 10 photons/sec. (authors)

  18. Synchrotron radiation applications in medical research

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1995-01-01

    The medical projects employing synchrotron radiation as discussed in this paper are, for the most part, still in their infancies and no one can predict the direction in which they will develop. Both the basic research and applied medical programs are sure to be advanced at the new facilities coming on line, especially the ESRF and Spring- 8. However, success is not guaranteed. There is a lot of competition from advances in conventional imaging with the development of digital angiography, computed tomography, functional magnetic resonance imaging and ultrasound. The synchrotron programs will have to provide significant advantages over these modalities in order to be accepted by the medical profession. Advances in image processing and potentially the development of compact sources will be required in order to move the synchrotron developed imaging technologies into the clinical world. In any event, it can be expected that the images produced by the synchrotron technologies will establish ''gold standards'' to be targeted by conventional modalities. A lot more work needs to be done in order to bring synchrotron radiation therapy and surgery to the level of human studies and, subsequently, to clinical applications

  19. Metrology of reflection optics for synchrotron radiation

    International Nuclear Information System (INIS)

    Takacs, P.Z.

    1985-09-01

    Recent years have seen an almost explosive growth in the number of beam lines on new and existing synchrotron radiation facilities throughout the world. The need for optical components to utilize the unique characteristics of synchrotron radiation has increased accordingly. Unfortunately, the technology to manufacture and measure the large, smooth, exotic optical surfaces required to focus and steer the synchrotron radiation beam has not progressed as rapidly as the operational demands on these components. Most companies do not wish to become involved with a project that requires producing a single, very expensive, aspheric optic with surface roughness and figure tolerances that are beyond their capabilities to measure. This paper will review some of the experiences of the National Synchrotron Light Source in procuring grazing incidence optical components over the past several years. We will review the specification process - how it is related to the function of the optic, and how it relates to the metrology available during the manufacturing process and after delivery to the user's laboratory. We will also discuss practical aspects of our experience with new technologies, such as single point diamond turning of metal mirrors and the use of SiC as a mirror material. Recent advances in metrology instrumentation have the potential to move the measurement of surface figure and finish from the research laboratory into the optical shop, which should stimulate growth and interest in the manufacturing of optics to meet the needs of the synchrotron radiation user community

  20. Synchrotron based spallation neutron source concepts

    International Nuclear Information System (INIS)

    Cho, Y.

    1998-01-01

    During the past 20 years, rapid-cycling synchrotrons (RCS) have been used very productively to generate short-pulse thermal neutron beams for neutron scattering research by materials science communities in Japan (KENS), the UK (ISIS) and the US (IPNS). The most powerful source in existence, ISIS in the UK, delivers a 160-kW proton beam to a neutron-generating target. Several recently proposed facilities require proton beams in the MW range to produce intense short-pulse neutron beams. In some proposals, a linear accelerator provides the beam power and an accumulator ring compresses the pulse length to the required ∼ 1 micros. In others, RCS technology provides the bulk of the beam power and compresses the pulse length. Some synchrotron-based proposals achieve the desired beam power by combining two or more synchrotrons of the same energy, and others propose a combination of lower and higher energy synchrotrons. This paper presents the rationale for using RCS technology, and a discussion of the advantages and disadvantages of synchrotron-based spallation sources

  1. Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout

    Energy Technology Data Exchange (ETDEWEB)

    Stitt, C.A., E-mail: Camilla.stitt@bristol.ac.uk [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Hart, M., E-mail: oxford.mike@gmail.com [Diamond Light Source Limited, Harwell Science and Innovation Campus, Fermi Avenue, Didcot, Oxfordshire OX11 0QX (United Kingdom); Harker, N.J., E-mail: nicholas.harker@esrf.fr [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Hallam, K.R., E-mail: k.r.hallam@bristol.ac.uk [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); MacFarlane, J., E-mail: james.macfarlane@bristol.ac.uk [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Banos, A., E-mail: antonis.banos@bristol.ac.uk [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Paraskevoulakos, C., E-mail: cp13846@bristol.ac.uk [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Butcher, E., E-mail: ed.j.butcher@nnl.co.uk [National Nuclear Laboratory, Seascale, Cumbria CA20 1 PG (United Kingdom); Padovani, C., E-mail: cristiano.padovani@nda.gov.uk [Radioactive Waste Management Limited (formerly the Radioactive Waste Management Directorate of the UK Nuclear Decommissioning Authority), Curie Avenue, Didcot, Oxfordshire OX11 0RH (United Kingdom); Scott, T.B., E-mail: t.b.scott@bristol.ac.uk [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2015-03-21

    Highlights: • Unirradiated Magnox uranium was encapsulated in grout and exposed to hydrogen. • Synchrotron X-ray tomography imaged the uranium corrosion before and after exposure. • Synchrotron X-ray powder diffraction identified the corrosion products; UH{sub 3} and UO{sub 2}. • Uranium encapsulated in grout oxidised via the anoxic U + H{sub 2}O regime. • Successful in-situ, non-invasive examination of pyrophoric and radioactive material - Abstract: How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H{sub 2} corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U + H{sub 2}O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO{sub 2} and UH{sub 3}, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems.

  2. Computed Tomographic Perfusion Improves Diagnostic Power of Coronary Computed Tomographic Angiography in Women

    DEFF Research Database (Denmark)

    Penagaluri, Ashritha; Higgins, Angela Y.; Vavere, Andrea L

    2016-01-01

    laboratories. Prevalence of flow-limiting CAD defined by invasive coronary angiography equal to 50% or greater with an associated single-photon emission computed tomography myocardial perfusion imaging defect was 45% (114/252) and 23% (30/129) in males and females, respectively. Patient-based diagnostic......Background-Coronary computed tomographic angiography (CTA) and myocardial perfusion imaging (CTP) is a validated approach for detection and exclusion of flow-limiting coronary artery disease (CAD), but little data are available on gender-specific performance of these modalities. In this study, we...... aimed to evaluate the diagnostic accuracy of combined coronary CTA and CTP in detecting flow-limiting CAD in women compared with men.  Methods and Results-Three hundred and eighty-one patients who underwent both CTA-CTP and single-photon emission computed tomography myocardial perfusion imaging...

  3. Correction of ring artifacts in X-ray tomographic images

    DEFF Research Database (Denmark)

    Lyckegaard, Allan; Johnson, G.; Tafforeau, P.

    2011-01-01

    Ring artifacts are systematic intensity distortions located on concentric circles in reconstructed tomographic X-ray images. When using X-ray tomography to study for instance low-contrast grain boundaries in metals it is crucial to correct for the ring artifacts in the images as they may have...... the same intensity level as the grain boundaries and thus make it impossible to perform grain segmentation. This paper describes an implementation of a method for correcting the ring artifacts in tomographic X-ray images of simple objects such as metal samples where the object and the background...... are separable. The method is implemented in Matlab, it works with very little user interaction and may run in parallel on a cluster if applied to a whole stack of images. The strength and robustness of the method implemented will be demonstrated on three tomographic X-ray data sets: a mono-phase β...

  4. A tomograph VMEbus parallel processing data acquisition system

    International Nuclear Information System (INIS)

    Wilkinson, N.A.; Rogers, J.G.; Atkins, M.S.

    1989-01-01

    This paper describes a VME based data acquisition system suitable for the development of Positron Volume Imaging tomographs which use 3-D data for improved image resolution over slice-oriented tomographs. the data acquisition must be flexible enough to accommodate several 3-D reconstruction algorithms; hence, a software-based system is most suitable. Furthermore, because of the increased dimensions and resolution of volume imaging tomographs, the raw data event rate is greater than that of slice-oriented machines. These dual requirements are met by our data acquisition system. Flexibility is achieved through an array of processors connected over a VMEbus, operating asynchronously and in parallel. High raw data throughput is achieved using a dedicated high speed data transfer device available for the VMEbus. The device can attain a raw data rate of 2.5 million coincidence events per second for raw events which are 64 bits wide

  5. Chemical applications of synchrotron radiation: Workshop report

    International Nuclear Information System (INIS)

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases

  6. Space-charge calculations in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Machida, S.

    1993-05-01

    One obvious bottleneck of achieving high luminosity in hadron colliders, such as the Superconducting Super Collider (SSC), is the beam emittance growth, due to space-charge effects in low energy injector synchrotrons. Although space-charge effects have been recognized since the alternating-gradient synchrotron was invented, and the Laslett tune shift usually calculated to quantify these effects, our understanding of the effects is limited, especially when the Laslett tune shift becomes a large fraction of the integer. Using the Simpsons tracking code, which we developed to study emittance preservation issues in proton synchrotrons, we investigated space-charge effects in the SSC Low Energy Booster (LEB). We observed detailed dependence on parameters such as beam intensity, initial emittance, injection energy, lattice function, and longitudinal motion. A summary of those findings, as well as the tracking technique we developed for the study, are presented.

  7. Fifth school on Magnetism and Synchrotron Radiation

    CERN Document Server

    Beaurepaire, Eric; Scheurer, Fabrice; Kappler, Jean-Paul; Magnetism and Synchrotron Radiation : New Trends

    2010-01-01

    Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials. At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale. With the Fifth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.

  8. Chemical applications of synchrotron radiation: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  9. Coherent Synchrotron Radiation: Theory and Simulations

    International Nuclear Information System (INIS)

    Novokhatski, Alexander

    2012-01-01

    The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum

  10. Synchrotron environmental laboratory (SUL) at Anka

    International Nuclear Information System (INIS)

    Denecke, M.A.

    2002-01-01

    A research facility dedicated to environmental/geochemical research, the Synchrotron Environmental Laboratory (SUL), is planned to be installed and operated at ANKA. ANKA is the new synchrotron facility at the Research Centre Karlsruhe (FZK), Karlsruhe, Germany. ANKA is now in commissioning and planning operations for the fall of 2000. As the Institute for Nuclear Waste Disposal (INE) at FZK conducts a vigorous synchrotron-based research programme, INE was instrumental in the original impetus for installing such a facility at ANKA. These research activities at INE concentrate on actinide speciation in nuclear waste forms, geological media and geochemical model systems. In order for INE to direct their synchrotron research activities to ANKA, equipment and licensing required for performing experiments on actinide-containing samples is required. One great advantage of performing experiments on actinide-containing samples at ANKA is that the INE radiological laboratories lie in the near vicinity of the facility. This will minimise transport hazards and costs and allow experiments to be performed on samples whose characteristics may change with time. Experiments on radioactive samples with activities below the exemption level, according to German regulations, will be possible at ANKA at the start of operations. Licensing for work on higher levels of activity will be applied for in the future. The decades of experience in radiological work at FZK will facilitate development of procedure and equipment as prerequisites to licensing. A consortium of synchrotron radiation-user groups with environmental research interests has specified their requirements and needs for this facility. This scientific case serves as the foundation for the SUL design and is the basis for an application for federal funding. The SUL design reflects the heterogeneity and complexity of challenges facing researchers in the environmental/geochemical sciences. X-ray absorption fine structure (XAFS

  11. Overview of Industrial Synchrotron Radiation Use

    Science.gov (United States)

    Laderman, Stephen S.

    1996-03-01

    Relevant, reliable and accessible synchrotron radiation methods can play an important role in industrial activities. To date, the application of synchrotron radiation based materials characterization methods by industrial concerns has followed the path of laboratory based x-ray methods: early adoption, continuous improvement, and a high degree of specialization to meet specific goals, which may change over time. Like all x-ray methods, their applicability to segments of the biotechnology, chemical, electronics, medical and metallurgical industries arises from a need to develop sophisticated processes for precisely controlling microstructures. An increasing number of those processes are being developed in ways which can, in principle, be more effectively studied if synchrotron radiation based analyses are performed. Technical limitations confined the efforts of early synchrotron radiation users to long-range research investigations. Nowadays, progress in data collection methods, analysis algorithims, accelerator performance, and worker training, have removed many constraints. However, commercial technologies are being improved at steadily higher rates, shortening the time between research, development and manufacturing and, in many cases, blurring their distinctions. Certainly, rapid rates of innovation increase the opportunities for synchrotron radiation techniques to bring competitive advantage since they can be used to shrink development times, to maintain yields and, perhaps, as part of advanced manufacturing. At the same time, rapid rates of innovation also impose stringent criteria on the reliability and timeliness of the supporting methods. Successful conventional x-ray methods have resulted from efforts to create useful new capabilities that effectively balance such forces. Currently, synchrotron radiation users throughout the world are pursuing analogous goals.

  12. Correlated Light Microscopy and Electron Microscopy

    NARCIS (Netherlands)

    Sjollema, Klaas A.; Schnell, Ulrike; Kuipers, Jeroen; Kalicharan, Ruby; Giepmans, Ben N. G.; MullerReichert, T; Verkade, P

    2012-01-01

    Understanding where, when, and how biomolecules (inter)act is crucial to uncover fundamental mechanisms in cell biology. Recent developments in fluorescence light microscopy (FLM) allow protein imaging in living cells and at the near molecular level. However, fluorescence microscopy only reveals

  13. Generalized Row-Action Methods for Tomographic Imaging

    DEFF Research Database (Denmark)

    Andersen, Martin Skovgaard; Hansen, Per Christian

    2014-01-01

    Row-action methods play an important role in tomographic image reconstruction. Many such methods can be viewed as incremental gradient methods for minimizing a sum of a large number of convex functions, and despite their relatively poor global rate of convergence, these methods often exhibit fast...... initial convergence which is desirable in applications where a low-accuracy solution is acceptable. In this paper, we propose relaxed variants of a class of incremental proximal gradient methods, and these variants generalize many existing row-action methods for tomographic imaging. Moreover, they allow...

  14. Proposal for a national synchrotron light source

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1977-02-01

    Since 1971 discussions have been held at Brookhaven National Laboratory on the desirability of construction of a storage ring which would be used exclusively for production of intense beams of photons with wavelengths in the ultraviolet and X-ray ranges. A proposal is given which discusses in detail the machine, its characteristics, and its expected uses. The proposal includes: (1) characteristics of synchrotron radiation; (2) scientific justification for a synchrotron radiation facility; (3) facility design; (4) wiggler magnets; (5) experimental facilities; (6) buildings and utilities; (7) construction schedules, costs, and manpower; and (8) environmental assessment

  15. Challenges and opportunities in synchrotron radiation optics

    Science.gov (United States)

    Rehn, V.

    Design necessities germaine to advances in optics for experimentation with synchrotron radiation are explored. Objectives for development include improved beam-line performance using new mirror materials or coatings, filtering and order-sorting enhancement, and lower surface scattering. A summary is presented of optical systems currently in use, together with requirements imposed by storage rings and experimental design. Advances are recommended in intensity, collimation, focus, and spectral purity of synchrotron beam lines. Any new storage ring mirror is noted to be required to dissipate several hundred watts, something which polished Cu is mentioned as being capable of handling, while standard SiO2 mirrors cannot.

  16. Atomic collision experiments using pulsed synchrotron radiation

    International Nuclear Information System (INIS)

    Arikawa, Tatsuo; Watanabe, Tsutomu.

    1982-01-01

    High intensity and continuous nature of the synchrotron radiation are the properties that are fundamentally important for studies of some atomic collision experiments, and many processes have been investigated by using these characteristics. However, so far the property that the radiation is highly polarized and pulsed in time has not been exploited significantly in atomic physics. As an example of the atomic processes relevant to such polarized and pulsed features of the synchrotron radiation, collisions involving optically-allowed excited atoms and molecules will be presented. (author)

  17. 12 Experimental Techniques at Synchrotron Lightsource Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Peter L [US Department of Energy Office of Science Office Basic Energy Sciences; Rhyne, James J [US Department of Energy Office of Science Office of Basic Energy Sciences

    2015-01-01

    The unique properties of synchrotron radiation are its continuous spectrum, high flux and brightness, and high coherence, which make it an indispensable tool in the exploration of matter. The wavelengths of the emitted photons span a range of dimensions from the atomic level to biological cells, thereby providing incisive probes for advanced research in materials science, physical and chemical sciences, metrology, geosciences, environmental sciences, biosciences, medical sciences, and pharmaceutical sciences. The features of synchrotron radiation are especially well matched to the needs of nanoscience.

  18. RF control system of the HIMAC synchrotron

    International Nuclear Information System (INIS)

    Kanazawa, M.; Sato, K.; Itano, A.

    1992-01-01

    An RF control system of the HIMAC synchrotron has been constructed. In this control system we have adopted a digital feed back system with a digital synthesizer (DS). Combining a high power system, performance of the control system have been tested in a factory (Toshiba) with a simulator circuit of the synchrotron oscillation. Following this test, We had beam acceleration test with this control system at TARN-II in INS (Institute for Nuclear Study, University of Tokyo). This paper describes the RF control system and its tested results. (author)

  19. Automation and Remote Synchrotron Data Collection

    International Nuclear Information System (INIS)

    Gilski, M.

    2008-01-01

    X-ray crystallography is the natural choice for macromolecular structure determination by virtue of its accuracy, speed, and potential for further speed gains, while synchrotron radiation is indispensable because of its intensity and tuneability. Good X-ray crystallographic diffraction patterns are essential and frequently this is achievable through using the few large synchrotrons located worldwide. Beamline time on these facilities have long queues, and increasing the efficiency of utilization of these facilities will help in expediting the structure determination process. Automation and remote data collection are therefore essential steps in ensuring that macromolecular structure determination becomes a very high throughput process. (author)

  20. Bunch heating by coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Heifets, S.A.; Zolotorev, M.

    1995-10-01

    The authors discuss here effects which define the steady-state rms energy spread of a microbunch in a storage ring. It is implied that the longitudinal microwave instability is controlled by low α lattice. In this case the coherent synchrotron radiation, if exists, may be the main factor defining the bunch temperature. Another effect comes from the fact that a nonlinear momentum compaction of such lattices makes Haissinskii equation not applicable, and the coherent synchrotron radiation may effect not only bunch lengthening but the energy spread as well

  1. Technique of infrared synchrotron acceleration diagnostics

    International Nuclear Information System (INIS)

    Mal'tsev, A.A.; Mal'tsev, M.A.

    1997-01-01

    Techniques of measuring of current and geometric parameters and evaluating of energy parameters of the ring bunch of relativistic low-energy electrons have been presented. They have been based on using the synchrotron radiation effect in its infrared spectral part. Fast infrared detectors have provided radiation detection in the spectral range Δλ ≅ 0.3-45 μm. The descriptions of some data monitoring and measuring systems developed in JINR for the realization of techniques of the infrared synchrotron acceleration diagnostics have been given. Infrared optics elements specially developed have been used in these systems

  2. Preliminar plan of a machine for the synchrotron radiation production

    International Nuclear Information System (INIS)

    Moscati, G.; Takahashi, J.; Miyao, Y.

    1985-01-01

    A preliminar plan, with all the technical specifications, for the construction of a machine for the synchrotron radiation production to be done by the National Synchrotron Radiation Laboratory in Brazil is presented. (L.C.) [pt

  3. Exploring neural cell dynamics with digital holographic microscopy

    KAUST Repository

    Marquet, Pierre; Depeursinge, Christian D.; Magistretti, Pierre J.

    2013-01-01

    In this review, we summarize how the new concept of digital optics applied to the field of holographic microscopy has allowed the development of a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM) technique at the nanoscale particularly suitable for cell imaging. Particular emphasis is placed on the original biological ormation provided by the quantitative phase signal. We present the most relevant DH-QPM applications in the field of cell biology, including automated cell counts, recognition, classification, three-dimensional tracking, discrimination between physiological and pathophysiological states, and the study of cell membrane fluctuations at the nanoscale. In the last part, original results show how DH-QPM can address two important issues in the field of neurobiology, namely, multiple-site optical recording of neuronal activity and noninvasive visualization of dendritic spine dynamics resulting from a full digital holographic microscopy tomographic approach. Copyright © 2013 by Annual Reviews.

  4. Exploring neural cell dynamics with digital holographic microscopy

    KAUST Repository

    Marquet, Pierre

    2013-07-11

    In this review, we summarize how the new concept of digital optics applied to the field of holographic microscopy has allowed the development of a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM) technique at the nanoscale particularly suitable for cell imaging. Particular emphasis is placed on the original biological ormation provided by the quantitative phase signal. We present the most relevant DH-QPM applications in the field of cell biology, including automated cell counts, recognition, classification, three-dimensional tracking, discrimination between physiological and pathophysiological states, and the study of cell membrane fluctuations at the nanoscale. In the last part, original results show how DH-QPM can address two important issues in the field of neurobiology, namely, multiple-site optical recording of neuronal activity and noninvasive visualization of dendritic spine dynamics resulting from a full digital holographic microscopy tomographic approach. Copyright © 2013 by Annual Reviews.

  5. Time-resolved diffraction studies of muscle using synchrotron radiation

    International Nuclear Information System (INIS)

    Harford, Jeffrey; Squire, John

    1997-01-01

    Muscle contraction is one of those biological phenomena that we can all appreciate in our everyday lives. Sometimes it is when we are resting quietly and are aware of our heartbeat. At other times it may be when we are exerting ourselves and become short of breath, or when we exercise for a long period and our muscles start to ache. The way in which muscles produce force has exercised the minds of philosophers and scientists at least since the days of Erasistratus in the third century BC. Nowadays, of course, we know a very great deal about muscle structure, physiology and biochemistry, but we still do not know exactly what the molecular process is that produces movement. An ideal way of probing this process would be to be able to obtain signals from the relevant molecules as they actually go through their normal force-generating routine in an active muscle. The spatial dimensions involved are in the region of 1-50 nm, thus precluding the use of light microscopy, and the time regime is microseconds to milliseconds. Techniques with the appropriate spatial resolution might be electron microscopy and x-ray diffraction, but electron microscopy cannot yet be carried out on living tissue. X-ray diffraction methods can clearly have the right sort of spatial resolution, but what about recording diffraction patterns in the very short times involved (say 1 ms)? It is here that the high flux from synchrotron storage rings comes into its own. Using synchrotron radiation from, say, the SRS at the CCLRC Daresbury Laboratory it is possible to record x-ray diffraction patterns from living muscles in the millisecond time regime and to follow how these diffraction patterns change as the muscles go through typical contraction cycles. Unfortunately, x-ray diffraction is not a direct imaging method; the observed distribution of diffracted intensity needs to be interpreted in some way to give useful information on the spatial relationships of the force-generating molecules. This review

  6. What is a synchrotron and why does Australia need one?

    CERN Document Server

    Nugent, K A

    2002-01-01

    Construction of a $157 million synchrotron will soon begin in Melbourne. The author describes what this facility means for Australian science. The Australian synchrotron is a third generation device. The facility would have the capacity to do a wide range of science and technology at the same time. A number of applications, which are the priority for the Australian synchrotron project are briefly described. The huge technological spin-offs of this knowledge have made synchrotrons an attractive proposition to state governments

  7. Microsphere imaging with confocal microscopy and two photon microscopy

    International Nuclear Information System (INIS)

    Chun, Hyung Su; An, Kyung Won; Lee, Jai Hyung

    2002-01-01

    We have acquired images of polystyrene and fused-silica microsphere by using conventional optical microscopy, confocal microscopy and two-photon microscopy, and performed comparative analysis of these images. Different from conventional optical microscopy, confocal and two-photon microscopy had good optical sectioning capability. In addition, confocal microscopy and two-photon microscopy had better lateral resolution than conventional optical microscopy. These results are attributed to confocality and nonlinearity of confocal microscopy and two photon microscopy, respectively.

  8. Synchrotron radiation and free electron laser activities in Novosibirsk

    International Nuclear Information System (INIS)

    Korchuganov, V.N.; Kulipanov, G.N.; Mezentsev, N.A.; Oreshkov, A.D.; Panchenko, V.E.; Pindyurin, V.F.; Skrinskij, A.N.; Sheromov, M.A.; Vinokurov, N.A.; Zolotarev, K.V.

    1994-01-01

    The results of studies realized in the Siberian synchrotron radiation centre within the frameworks of wide program of synchrotron radiation and free electron laser research are summarized. The technical information on the VEPP-2M, VEPP-3 and VEPP-4M storage rings used as synchrotron radiation sources is given. 10 refs.; 8 figs.; 12 tabs

  9. Coherence Inherent in an Incoherent Synchrotron Radio Source ...

    Indian Academy of Sciences (India)

    It is well known that synchrotron radiation mechanism does not allow MASER type coherent emission (Pacholczyk 1970). Here we show that coherence can naturally occur in a synchrotron ... cally thick region (Fig. 1), then divides the synchrotron spectrum into an incoherent. 1A thin flat circular unleavened Indian bread.

  10. Tomographic spectral imaging: microanalysis in 3D

    International Nuclear Information System (INIS)

    Kotula, P.G.; Keenan, M.R.; Michael, J.R.

    2003-01-01

    Full text: Spectral imaging, where a series of complete x-ray spectra are typically collected from a 2D area, holds great promise for comprehensive near-surface microanalysis. There are however numerous microanalysis problems where 3D chemical information is needed as well. In the SEM, some sort of sectioning (either mechanical or with a focused ion beam (FIB) tool) followed by x-ray mapping has, in the past, been utilized in an attempt to perform 3D microanalysis. Reliance on simple mapping has the potential to miss important chemical features as well as misidentify others. In this paper we will describe the acquisition of serial-section tomographic spectral images (TSI) with a dual-beam FIB/SEM equipped with an EDS system. We will also describe the application of a modified version of our multivariate statistical analysis algorithms to TSIs. Serial sectioning was performed with a FEI DB-235 FIB/SEM. Firstly, the specimen normal was tilted to the optic axis of the FIB column and a trench was milled into the surface of the specimen. A second trench was then milled perpendicular to the first to provide visibility of the entire analysis surface to the x-ray detector. In addition, several fiducial markers were milled into the surface to allow for alignment from slice to slice. The electron column is at an angle of 52 deg to the ion column so the electron beam can 'see' the analysis surface milled by the FIB with no additional specimen tilting or rotation. Likewise the x-ray detector is at a radial angle of 45 deg to the plane of the electron and ion columns (about the electron column) and a take-off-angle of 35 deg with respect to an untilted specimen so it can 'see' the analysis surface as well with no additional sample tilting or rotation. Spectral images were acquired from regions 40 μm wide and 20μm deep for each slice. Approximately 1μm/slice was milled and 10-12 total slices were cut. Spectral images were acquired with a Thermo NORAN Vantage (Digital imaging

  11. Photonuclear physics at the Bonn synchrotrons. Present status and future plans at the Bonn synchrotron

    International Nuclear Information System (INIS)

    Mecking, B.A.

    1983-11-01

    The activities in the field of photonuclear physics at the Bonn 500 MeV and 2.5 GeV synchrotrons are reviewed. The experiments concentrate on photodisintegration and pion-photoproduction reactions on light nuclei. (orig.)

  12. Wellcome Trust backs Rutherford to host synchrotron

    CERN Document Server

    Leder, N

    1999-01-01

    The Wellcome Trust has stated its preference for the site of the new Anglo-French synchrotron to be at RAL in Oxfordshire. But the statement coincides with an announcement from the UK government that a decision on the location of 'Diamond' will be delayed to allow two new reports on the canditate sites to be commissioned (1/2 page).

  13. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Crasemann, B.

    1981-01-01

    Applications of synchrotron radiation to research in high-energy atomic physics are summarized. These lie in the areas of photoelectron spectrometry, photon scattering, x-ray absorption spectroscopy, time-resolved measurements, resonance spectroscopy and threshold excitation, and future, yet undefined studies

  14. Nuclear Bragg diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Rueffer, R.; Gerdau, E.; Grote, M.; Hollatz, R.; Roehlsberger, R.; Rueter, H.D.; Sturhahn, W.

    1990-01-01

    Nuclear Bragg diffraction with synchrotron radiation as source will become a powerful new X-ray source in the A-region. This source exceeds by now the brilliance of conventional Moessbauer sources giving hyperfine spectroscopy further momentum. As examples applications to yttrium iron garnet (YIG) and iron borate will be discussed. (author)

  15. Reflectometry with synchrotron radiation; Reflektometrie mit Synchrotronstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Krumrey, Michael [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany). Arbeitsgruppe ' Roentgenradiometrie' ; Cibik, Levent; Fischer, Andreas; Gottwald, Alexander; Kroth, Udo; Scholze, Frank

    2014-09-15

    The measurement of the reflectivity for VUV, XUV, and X-radiation at the PTB synchrotron radiation sources is described. The corresponding data of the used beams are presented. Results of experiments on a Cu-Ni double-layer, SiO{sub 2}, Si, and MgF{sub 2} are presented. (HSI)

  16. Internal magnetic target of proton synchrotron

    International Nuclear Information System (INIS)

    Gachurin, V.V.; Kats, M.M.; Kondrat'ev, L.N.; Rogal', A.D.; Rusinov, V.Yu.

    1988-01-01

    Proton extraction from a synchrotron by means of an internal target of magnetized iron is described. The particles that are aimed at the target pass directly through it and are deflected by the internal magnetic field of the target in the extraction direction. The general properties of magnetic targets are examined theoretically and a specific devices and results of its testing are described

  17. HIDE working groups: synchrotron based system: summary

    International Nuclear Information System (INIS)

    Barton, M.Q.

    1978-01-01

    A brief overview is given of the work resulting from a one-week workshop on the use of synchrotrons in heavy ion fusion, i.e., a Heavy Ion Demonstration Experiment (HIDE). Topics discussed concerned the number of beams on target, space charge limitations, choice of ion charge state, and areas identified as needing further work

  18. Overview of United States synchrotron radiation facilities

    International Nuclear Information System (INIS)

    Watson, R.E.

    1983-01-01

    There has been considerable activity within the past year involving the creation of new and the improvement of existing capabilities for research with synchrotron light. The purpose of this review is to summarize what has happened within the United States. Being a status report, some of the information necessarily has a date attached to it - the date, in this case, being early September 1983

  19. HIDE working groups. A. Synchrotron based system

    International Nuclear Information System (INIS)

    Barton, M.Q.

    1977-01-01

    A summary is given of a week's discussions on an ion source to target scenario for a synchrotron for heavy ion fusion. Topics considered include: the number of beams on the target; beam dynamics; and a number of areas explicitly identified as needing further work

  20. Materials science and technology by synchrotron radiation

    International Nuclear Information System (INIS)

    Chikawa, J.

    1990-01-01

    In the present paper, features of the Photon Factory, a facility for synchrotron research installed at the National Laboratory for High Energy Physics in Japan, are outlined, and then the impact of the advent of synchrotron radiation is discussed in relation to its outcome during the past seven years. Prospects for future development of synchrotron radiation are also presented. The facility consists of an injector linac to accelerate electrons up to 2.5 GeV and a ring to store the accelerated electrons in a closed orbit. In the Photon Factory, a 400m-long linac has been constructed for use as injector for both the Photon Factory and the TRISTAN electron-positron collider. The storage ring is operated at the same electron energy of 2.5 GeV. The present report also describes some applications of synchrotron radiation, focusing on spectroscopy (X-ray fluorescence technique and time-resolved X-ray absorption spectroscopy), diffraction and scattering (surface structure studies and protein crystallography), and photo-chemical processing. (N.K.)

  1. Synchrotron X-ray Scattering of ZnO Nanorods: Periodic Ordering and Lattice Size

    International Nuclear Information System (INIS)

    Zhu, Z.; Andelman, T.; Yin, M.; Chen, T.; Ehrlich, S.; O'Brien, S.; Osgood, Jr. R.

    2005-01-01

    We demonstrate that synchrotron x-ray powder diffraction (XRD) is a powerful technique for studying the structure and self-organization of zinc-oxide nanostructures. Zinc-oxide nanorods were prepared by a solution-growth method that resulted in uniform nanorods with 2-nm diameter and lengths in the range 10-50 nm. These nanorods were structurally characterized by a combination of small-angle and wide-angle synchrotron XRD and transmission electron microscopy (TEM). Small-angle XRD and TEM were used to investigate nanorod self-assembly and the influence of surfactant/precursor ratio on self-assembly. Wide-angle XRD was used to study the evolution of nanorod growth as a function of synthesis time and surfactant/precursor ratio

  2. Design and applications of Computed Industrial Tomographic Imaging System (CITIS)

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishna, G S; Kumar, Umesh; Datta, S S [Bhabha Atomic Research Centre, Bombay (India). Isotope Div.

    1994-12-31

    This paper highlights the design and development of a prototype Computed Tomographic (CT) imaging system and its software for image reconstruction, simulation and display. It also describes results obtained with several test specimens including Dhruva reactor uranium fuel assembly and possibility of using neutrons as well as high energy x-rays in computed tomography. 5 refs., 4 figs.

  3. Computer tomographic detection of an intraspinal arachnoidal cyst

    Energy Technology Data Exchange (ETDEWEB)

    Kuckein, D; Walter, K; Paal, G

    1981-03-01

    A 46 year old female patient who after 3-4 weeks of influenza suffered from strong headaches, vomiting and rotatory vertigo was subjected to a myelograph and then to a computerized tomographic investigation due to suspect cerebrospinal fluid. The computerized tomography is better than the myelography in diagnosing intraspinal arachnoidal cysts, however this should be preceded by most accurate possible segment location.

  4. Comparison of the practical diagnostic value of different tomographic movements

    International Nuclear Information System (INIS)

    Laehde, S.; Vuoria, P.

    1977-01-01

    The practical results of linear and circular tomography with angles of 6, 20, 30 and 45 degrees and spiral tomography were compared. The spiral proved to be suitable as a tomographic movement for different purposes. In zonography, circular movement with 6 degrees of deviation proved suitable. The linear movement presented no advantages when compared with the multidirectional movements. ( orig.) [de

  5. Computed tomographic findings in manifesting carriers of Duchenne muscular dystrophy

    NARCIS (Netherlands)

    de Visser, M.; Verbeeten, B.

    1985-01-01

    Clinical and computed tomographic (CT) findings in 3 manifesting carriers of Duchenne muscular dystrophy are reported. CT proved to be an important adjunct to the clinical examination: in all our 3 cases a decrease in density was found in various non-paretic muscles

  6. Tomographic Particle Image Velocimetry using Smartphones and Colored Shadows

    KAUST Repository

    Aguirre-Pablo, Andres A.; Alarfaj, Meshal K.; Li, Erqiang; Hernandez Sanchez, Jose Federico; Thoroddsen, Sigurdur T

    2017-01-01

    We demonstrate the viability of using four low-cost smartphone cameras to perform Tomographic PIV. We use colored shadows to imprint two or three different time-steps on the same image. The back-lighting is accomplished with three sets

  7. Computerized tomographic findings in children with head trauma in ...

    African Journals Online (AJOL)

    Objective: To describe the computerized tomographic findings in children with head trauma who presented at the University of Benin Teaching Hospital, Benin City, Nigeria. Methods: It is a retrospective review of patients aged 0 – 15 years with suspected intracranial injury (ICI) following head trauma, who presented for CT ...

  8. Pressure spectra from single-snapshot tomographic PIV

    NARCIS (Netherlands)

    Schneiders, J.F.G.; Avallone, F.; Pröbsting, S.; Ragni, D.; Scarano, F.

    2018-01-01

    The power spectral density and coherence of temporal pressure fluctuations are obtained from low-repetition-rate tomographic PIV measurements. This is achieved by extension of recent single-snapshot pressure evaluation techniques based upon the Taylor’s hypothesis (TH) of frozen turbulence and

  9. Expediting model-based optoacoustic reconstructions with tomographic symmetries

    International Nuclear Information System (INIS)

    Lutzweiler, Christian; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-01-01

    Purpose: Image quantification in optoacoustic tomography implies the use of accurate forward models of excitation, propagation, and detection of optoacoustic signals while inversions with high spatial resolution usually involve very large matrices, leading to unreasonably long computation times. The development of fast and memory efficient model-based approaches represents then an important challenge to advance on the quantitative and dynamic imaging capabilities of tomographic optoacoustic imaging. Methods: Herein, a method for simplification and acceleration of model-based inversions, relying on inherent symmetries present in common tomographic acquisition geometries, has been introduced. The method is showcased for the case of cylindrical symmetries by using polar image discretization of the time-domain optoacoustic forward model combined with efficient storage and inversion strategies. Results: The suggested methodology is shown to render fast and accurate model-based inversions in both numerical simulations andpost mortem small animal experiments. In case of a full-view detection scheme, the memory requirements are reduced by one order of magnitude while high-resolution reconstructions are achieved at video rate. Conclusions: By considering the rotational symmetry present in many tomographic optoacoustic imaging systems, the proposed methodology allows exploiting the advantages of model-based algorithms with feasible computational requirements and fast reconstruction times, so that its convenience and general applicability in optoacoustic imaging systems with tomographic symmetries is anticipated

  10. Electron microscopy for Engineers

    International Nuclear Information System (INIS)

    Jones, I P

    2009-01-01

    This paper reviews the application of (mainly) Transmission Electron Microscopy (TEM) in an engineering context. The first two sections are TEM and chemical in nature; the final three sections are more general and include aspects of Scanning Electron Microscopy (SEM).

  11. Synergistic effect of cisplatin and synchrotron irradiation on F98 gliomas growing in nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Ricard, Clement; Fernandez, Manuel [Grenoble Institut des Neurosciences, Grenoble (France); Université Joseph Fourier, Grenoble (France); Requardt, Herwig [European Synchrotron Radiation Facility, Grenoble (France); Wion, Didier [Grenoble Institut des Neurosciences, Grenoble (France); Université Joseph Fourier, Grenoble (France); Vial, Jean-Claude [Université Joseph Fourier, Grenoble (France); Laboratoire Interdisciplinaire de Physique, St Martin d’Hères (France); Segebarth, Christoph; Sanden, Boudewijn van der, E-mail: boudewijn.vandersanden@ujf-grenoble.fr [Grenoble Institut des Neurosciences, Grenoble (France); Université Joseph Fourier, Grenoble (France)

    2013-09-01

    Synchrotron photoactivation therapy of cisplatin relies on a synergistic effect of synchrotron X-rays and platinum and leads to tumor-cell-killing effects and reduction of the tumor blood perfusion. Among brain tumors, glioblastoma multiforme appears as one of the most aggressive forms of cancer with poor prognosis and no curative treatment available. Recently, a new kind of radio-chemotherapy has been developed using synchrotron irradiation for the photoactivation of molecules with high-Z elements such as cisplatin (PAT-Plat). This protocol showed a cure of 33% of rats bearing the F98 glioma but the efficiency of the treatment was only measured in terms of overall survival. Here, characterization of the effects of the PAT-Plat on tumor volume and tumor blood perfusion are proposed. Changes in these parameters may predict the overall survival. Firstly, changes in tumor growth of the F98 glioma implanted in the hindlimb of nude mice after the PAT-Plat treatment and its different modalities have been characterized. Secondly, the effects of the treatment on tumor blood perfusion have been observed by intravital two-photon microscopy. Cisplatin alone had no detectable effect on the tumor volume. A reduction of tumor growth was measured after a 15 Gy synchrotron irradiation, but the whole therapy (15 Gy irradiation + cisplatin) showed the largest decrease in tumor growth, indicating a synergistic effect of both synchrotron irradiation and cisplatin treatment. A high number of unperfused vessels (52%) were observed in the peritumoral area in comparison with untreated controls. In the PAT-Plat protocol the transient tumor growth reduction may be due to synergistic interactions of tumor-cell-killing effects and reduction of the tumor blood perfusion.

  12. Electron microscopy of surfaces

    International Nuclear Information System (INIS)

    Venables, J.A.

    1981-01-01

    Electron beam techniques used to study clean surfaces and surface processes on a microscopic scale are reviewed. Recent experimental examples and possible future developments are discussed. Special emphasis is given to (i) transmission diffraction and microscopy techniques, including atomic imaging; (ii) Auger microscopy on bulk and thin film samples; (iii) secondary electron microscopy, especially low energy secondaries for work-function imaging and photoelectron imaging; and (iv) reflection electron microscopy and diffraction. (orig.)

  13. The profile of the electron beam in the PTB synchrotron, and its influence on radiometric measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    Kaase, H.

    1976-01-01

    A simple method is described to determine the beam profile in an electron synchrotron; the measured results are compared with calculated values. Moreover, the influence of synchrotron- and betatron-oscillations on synchrotron radiation measurements is discussed, and a method is given to correct this. (orig.) [de

  14. Advanced Electron Microscopy in Materials Physics

    International Nuclear Information System (INIS)

    Zhu, Y.; Jarausch, K.

    2009-01-01

    Aberration correction has opened a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes and extending information limits. The imaging and analytical performance of these corrector-equipped microscopes affords an unprecedented opportunity to study structure-property relationships of matter at the atomic scale. This new generation of microscopes is able to retrieve high-quality structural information comparable to neutron and synchrotron x-ray experiments, but with local atomic resolution. These advances in instrumentation are accelerating the research and development of various functional materials ranging from those for energy generation, conversion, transportation and storage to those for catalysis and nano-device applications. The dramatic improvements in electron-beam illumination and detection also present a host of new challenges for the interpretation and optimization of experiments. During 7-9 November 2007, a workshop, entitled 'Aberration Corrected Electron Microscopy in Material Physics', was convened at the Center for Functional Nanomaterials, Brookhaven National Laboratories (BNL) to address these opportunities and challenges. The workshop was co-sponsored by Hitachi High Technologies, a leader in electron microscopy instrumentation, and BNL's Institute of Advanced Electron Microscopy, a leader in materials physics research using electron microscopy. The workshop featured presentations by internationally prominent scientists working at the frontiers of electron microscopy, both on developing instrumentation and applying it in materials physics. The meeting, structured to stimulate scientific exchanges and explore new capabilities, brought together ∼100 people from over 10 countries. This special issue complies many of the advances in instrument performance and materials physics reported by the invited speakers and attendees at the workshop.

  15. Dictionary of Microscopy

    Science.gov (United States)

    Heath, Julian

    2005-10-01

    The past decade has seen huge advances in the application of microscopy in all areas of science. This welcome development in microscopy has been paralleled by an expansion of the vocabulary of technical terms used in microscopy: terms have been coined for new instruments and techniques and, as microscopes reach even higher resolution, the use of terms that relate to the optical and physical principles underpinning microscopy is now commonplace. The Dictionary of Microscopy was compiled to meet this challenge and provides concise definitions of over 2,500 terms used in the fields of light microscopy, electron microscopy, scanning probe microscopy, x-ray microscopy and related techniques. Written by Dr Julian P. Heath, Editor of Microscopy and Analysis, the dictionary is intended to provide easy navigation through the microscopy terminology and to be a first point of reference for definitions of new and established terms. The Dictionary of Microscopy is an essential, accessible resource for: students who are new to the field and are learning about microscopes equipment purchasers who want an explanation of the terms used in manufacturers' literature scientists who are considering using a new microscopical technique experienced microscopists as an aide mémoire or quick source of reference librarians, the press and marketing personnel who require definitions for technical reports.

  16. Estimation of spatial uncertainties of tomographic velocity models

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, M.; Du, Z.; Querendez, E. [SINTEF Petroleum Research, Trondheim (Norway)

    2012-12-15

    This research project aims to evaluate the possibility of assessing the spatial uncertainties in tomographic velocity model building in a quantitative way. The project is intended to serve as a test of whether accurate and specific uncertainty estimates (e.g., in meters) can be obtained. The project is based on Monte Carlo-type perturbations of the velocity model as obtained from the tomographic inversion guided by diagonal and off-diagonal elements of the resolution and the covariance matrices. The implementation and testing of this method was based on the SINTEF in-house stereotomography code, using small synthetic 2D data sets. To test the method the calculation and output of the covariance and resolution matrices was implemented, and software to perform the error estimation was created. The work included the creation of 2D synthetic data sets, the implementation and testing of the software to conduct the tests (output of the covariance and resolution matrices which are not implicitly provided by stereotomography), application to synthetic data sets, analysis of the test results, and creating the final report. The results show that this method can be used to estimate the spatial errors in tomographic images quantitatively. The results agree with' the known errors for our synthetic models. However, the method can only be applied to structures in the model, where the change of seismic velocity is larger than the predicted error of the velocity parameter amplitudes. In addition, the analysis is dependent on the tomographic method, e.g., regularization and parameterization. The conducted tests were very successful and we believe that this method could be developed further to be applied to third party tomographic images.

  17. Multiscale 3D characterization with dark-field x-ray microscopy

    DEFF Research Database (Denmark)

    Simons, Hugh; Jakobsen, Anders Clemen; Ahl, Sonja Rosenlund

    2016-01-01

    Dark-field x-ray microscopy is a new way to three-dimensionally map lattice strain and orientation in crystalline matter. It is analogous to dark-field electron microscopy in that an objective lens magnifies diffracting features of the sample; however, the use of high-energy synchrotron x-rays me......, multiscale phenomena in situ is a key step toward formulating and validating multiscale models that account for the entire heterogeneity of materials....

  18. Synchrotron-based DEI for bio-imaging and DEI-CT to image phantoms with contrast agents

    International Nuclear Information System (INIS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Akatsuka, Tako; Yuasa, Tetsuya; Zhong, Zhong; Takeda, Tohoru; Gigante, Giovanni E.

    2012-01-01

    The introduction of water, physiological, or iodine as contrast agents is shown to enhance minute image features in synchrotron-based X-ray diffraction radiographic and tomographic imaging. Anatomical features of rat kidney, such as papillary ducts, ureter, renal artery and renal vein are clearly distinguishable. Olfactory bulb, olfactory tact, and descending bundles of the rat brain are visible with improved contrast. - Highlights: ► Distinguishable anatomical structures features of rat kidney and rat brain are acquired with Sy-DEI in planar mode. ► Images of a small brain phantom and cylindrical phantom are acquired in tomography mode (Sy-DEI-CT) with contrast agents. ► Sy-DEI and Sy-DEI-CT techniques provide new source of information related to biological microanatomy.

  19. 50 years of synchrotrons. Early synchrotrons in Britain, and early work for CERN. - The CERN synchrotrons. Lectures

    International Nuclear Information System (INIS)

    Lawson, J.; Brianti, G.

    1997-01-01

    In the first report, 'Early synchrotrons in Britain, and early work for CERN', John Lawson gives an extended account of the material presented at the John Adams lecture, and at the same time a revised and shortened version of RAL report 97-011, which contains fuller archival references and notes. During the period covered by this report there was extensive work in Russia, where the principle of phase stability had been discovered in 1944 by Veksler. Unfortunately, all experimental work was kept secret until Veksler's talk at the first 'Atoms for Peace' conference at Geneva in August 1955. In the second lecture, 'The CERN Synchrotrons', Giorgio Brianti outlines the history of alternating-gradient synchrotrons from 1953/54 until today. In preparing this lecture he was confronted with a vast amount of material, while the time at his disposal was not even one minute per year, implying a time compression factor close to one million. Therefore, he had to exercise drastic choices, which led him to concentrate on CERN hadron synchrotrons and colliders and leave aside the Large Electron-Positron storage ring (LEP). Indeed, LEP was the subject of the John Adams Memorial Lecture in 1990, and it may be treated again in the future in connection with its energy upgrade. Even with these severe limitations, it was impossible to do justice to the number and variety of events and to the ingenuity of the people who have carved the history of CERN and of particle physics on the magnets, radiofrequency cavities, vacuum etc., and on the record performance of our machines. (orig./WL)

  20. Tomographic findings of acute pulmonary toxoplasmosis in immunocompetent patients.

    Science.gov (United States)

    de Souza Giassi, Karina; Costa, Andre Nathan; Apanavicius, Andre; Teixeira, Fernando Bin; Fernandes, Caio Julio Cesar; Helito, Alfredo Salim; Kairalla, Ronaldo Adib

    2014-11-25

    Toxoplasmosis is one of the most common human zoonosis, and is generally benign in most of the individuals. Pulmonary involvement is common in immunocompromised subjects, but very rare in immunocompetents and there are scarce reports of tomographic findings in the literature. The aim of the study is to describe three immunocompetent patients diagnosed with acute pulmonary toxoplasmosis and their respective thoracic tomographic findings. Acute toxoplasmosis was diagnosed according to the results of serological tests suggestive of recent primary infection and the absence of an alternative etiology. From 2009 to 2013, three patients were diagnosed with acute respiratory failure secondary to acute toxoplasmosis. The patients were two female and one male, and were 38, 56 and 36 years old. Similarly they presented a two-week febrile illness and progressive dyspnea before admission. Laboratory tests demonstrated lymphocytosis, slight changes in liver enzymes and high inflammatory markers. Tomographic findings were bilateral smooth septal and peribronchovascular thickening (100%), ground-glass opacities (100%), atelectasis (33%), random nodules (33%), lymph node enlargement (33%) and pleural effusion (66%). All the patients improved their symptoms after treatment, and complete resolution of tomographic findings were found in the followup. These cases provide a unique description of the presentation and evolution of pulmonary tomographic manifestations of toxoplasmosis in immunocompetent patients. Toxoplasma pneumonia manifests with fever, dyspnea and a non-productive cough that may result in respiratory failure. In animal models, changes were described as interstitial pneumonitis with focal infiltrates of neutrophils that can finally evolve into a pattern of diffuse alveolar damage with focal necrosis. The tomographic findings are characterized as ground glass opacities, smooth septal and marked peribronchovascular thickening; and may mimic pulmonary congestion

  1. A national facility for biological cryo-electron microscopy

    International Nuclear Information System (INIS)

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback

  2. Ideas for future synchrotron light sources

    International Nuclear Information System (INIS)

    Jackson, A.; Hassenzahl, W.; Meddahi, M.

    1992-03-01

    Synchrotron light sources have advanced in the past two-to-three decades through three ''generations,'' from irritating parasitic sources on high-energy physics accelerators to dedicated electron and position storage rings of unprecedented low emittance, utilizing undulator and wiggler magnets. The evolution through these three generations followed a predicable, science-driven, course towards brighter beams of VUV- and x-radiation. The requirements of future light sources is not so clear. The limit on how emittance has certainly not been reached, and diffraction-limited sources at shorter wavelengths would be the natural progression from previous generations. However, scientists are now looking at other radiation characteristics that might better serve their needs, for example, more coherent power, fast switching polarization, ultra-short (sub-picosecond) time structure, and synchronized beams for pump-probe experiments. This paper discusses some current ideas that might drive the fourth-generation synchrotron light source

  3. Applications of Indus-1 synchrotron radiation source

    International Nuclear Information System (INIS)

    Nandedkar, R.V.

    2003-01-01

    Indus-1 is a 450 MeV electron storage ring. This is a soft X-ray and Vacuum Ultra Violet radiation source with the critical wavelength being 61 A. In this source, the first beam was stored in mid-1999 and was then made available, after initial storage and beam cleaning of the vacuum components, for beamline installation in the early 2000. Two beamlines are commissioned and are working. Other beamlines are in the advanced stage of commissioning. For Indus-1, the injection system consists of a 20 MeV classical microtron as a preinjector and a booster synchrotron that can go up to 700 MeV. For Indus-1, the injection into the storage ring is at full 450 MeV from this booster synchrotron

  4. The 400 GeV proton synchrotron

    International Nuclear Information System (INIS)

    1976-05-01

    A general account is given of the 400-GeV proton synchrotron, known as Super Proton Synchrotron (SPS), of the European Organization for Nuclear Research (CERN) at Geneva. A brief chapter on the history of the project covers the steps leading to the earlier plan for a 300-GeV accelerator at a new CERN laboratory elsewhere in Europe, abandoned in 1971 in favour of the present machine, and the progress of construction of the latter. The general features of the SPS design are outlined, illustrated by an aerial view of the CERN site, a plan of the SPS, and interior views of the SPS ring tunnel and main control room. (WSN)

  5. Materials science created by synchrotron radiation

    International Nuclear Information System (INIS)

    Oshima, Masaharu

    2015-01-01

    We survey the use of synchrotron radiation for studies on oxides. High luminosity enables the spectroscopy with high energy-resolution in soft X-ray and vacuum ultraviolet region. Element analysis is possible by examining absorption edge in the X-ray absorption spectra. Time-resolved measurements are possible due to the pulsed nature of the radiation. The radiation can bear linear or circular polarization. The feature of molecules adhered on a surface can be clarified by using linearly polarized radiation. The circularly polarized radiation, on the other hand, clarifies the magnetic structure. The structure information so far unknown can be obtained by using space- or time-coherent radiation. We show studies using synchrotron radiation on LSI gate oxide foils, variable resistance RAM, strongly correlated oxide foils, and the oxide as positive electrode of Li ion battery. (J.P.N.)

  6. The relativistic foundations of synchrotron radiation.

    Science.gov (United States)

    Margaritondo, Giorgio; Rafelski, Johann

    2017-07-01

    Special relativity (SR) determines the properties of synchrotron radiation, but the corresponding mechanisms are frequently misunderstood. Time dilation is often invoked among the causes, whereas its role would violate the principles of SR. Here it is shown that the correct explanation of the synchrotron radiation properties is provided by a combination of the Doppler shift, not dependent on time dilation effects, contrary to a common belief, and of the Lorentz transformation into the particle reference frame of the electromagnetic field of the emission-inducing device, also with no contribution from time dilation. Concluding, the reader is reminded that much, if not all, of our argument has been available since the inception of SR, a research discipline of its own standing.

  7. Propagation of synchrotron radiation through nanocapillary structures

    International Nuclear Information System (INIS)

    Bjeoumikhov, A.; Bjeoumikhova, S.; Riesemeier, H.; Radtke, M.; Wedell, R.

    2007-01-01

    The propagation of synchrotron radiation through nanocapillary structures with channel sizes of 200 nm and periods in the micrometer size has been studied experimentally. It was shown that the propagation through individual capillary channels has a mode formation character. Furthermore it was shown that during the propagation through capillary channels the coherence of synchrotron radiation is partially conserved. Interference of beams propagating through different capillary channels is observed which leads to a periodically modulated distribution of the radiation intensity in a plane far from the exit of the structure. These investigations are of high relevance for the understanding of X-ray transmission through nanocapillaries and the appearance of wave properties at this size scale

  8. Synchrotron Applications of High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF.

  9. ANKA - new horizons with synchrotron radiation

    International Nuclear Information System (INIS)

    Hagelstein, M.; Czolk, R.

    2001-01-01

    ANKA GmbH operates a state-of-the-art electron storage ring (2.5 GeV energy, 400 mA maximum current) for the production of high-intensity synchrotron radiation. The produced 'superlight' ranges from the hard X-ray to the infrared region of the electromagnetic spectrum. To use the light for microfabrication and analysis a number of modern, high quality production and experimental facilities exist on this circular (diameter about 35 m) synchrotron radiation sources. The experimental facilities are consolidated by a young, experienced and highly motivated team of experts. For the patterning of polymers by deep X-ray lithography three end-stations (so-called beamlines) are available. For analytical tasks five beamlines are established where different experiments can be made based on X-ray methods such as X-ray absorption, diffraction and fluorescence spectroscopy as well as IR-spectroscopy. (orig.)

  10. Synchrotron radiation. Basics, methods and applications

    International Nuclear Information System (INIS)

    Mobilio, Settimio; Meneghini, Carlo; Boscherini, Federico

    2015-01-01

    Synchrotron radiation is today extensively used for fundamental and applied research in many different fields of science. Its exceptional characteristics in terms of intensity, brilliance, spectral range, time structure and now also coherence pushed many experimental techniques to previously un-reachable limits, enabling the performance of experiments unbelievable only few years ago. The book gives an up-to-date overview of synchrotron radiation research today with a view to the future, starting from its generation and sources, its interaction with matter, illustrating the main experimental technique employed and provides an overview of the main fields of research in which new and innovative results are obtained. The book is addressed to PhD students and young researchers to provide both an introductory and a rather deep knowledge of the field. It will also be helpful to experienced researcher who want to approach the field in a professional way.

  11. Single-mode coherent synchrotron radiation instability

    Directory of Open Access Journals (Sweden)

    S. Heifets

    2003-06-01

    Full Text Available The microwave instability driven by the coherent synchrotron radiation (CSR has been previously studied [S. Heifets and G. V. Stupakov, Phys. Rev. ST Accel. Beams 5, 054402 (2002] neglecting effect of the shielding caused by the finite beam pipe aperture. In practice, the unstable mode can be close to the shielding threshold where the spectrum of the radiation in a toroidal beam pipe is discrete. In this paper, the CSR instability is studied in the case when it is driven by a single synchronous mode. A system of equations for the beam-wave interaction is derived and its similarity to the 1D free-electron laser theory is demonstrated. In the linear regime, the growth rate of the instability is obtained and a transition to the case of continuous spectrum is discussed. The nonlinear evolution of the single-mode instability, both with and without synchrotron damping and quantum diffusion, is also studied.

  12. Structural analysis with high brilliance synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Hideo [Japan Atomic Energy Research Inst., Kamigori, Hyogo (Japan). Kansai Research Establishment

    1997-11-01

    The research subjects in diffraction and scattering of materials with high brilliance synchrotron radiation such as SPring-8 (Super Photon ring 8 GeV) are summarized. The SPring-8 project is going well and 10 public beamlines will be opened for all users in October, 1997. Three JAERI beamlines are also under construction for researches of heavy element science, physical and structural properties under extreme conditions such as high temperature and high pressure. (author)

  13. The Australian synchrotron - a progress report

    International Nuclear Information System (INIS)

    Boldeman, J.; Jackson, A.; Seaborne, G.; Hobbs, R.; Garrett, R.

    2003-01-01

    This paper summarises progress with the development of the Australian Synchrotron. The facility is based on the Boomerang Storage Ring which has a DBA structure with 14 superperiods. The design objective was to achieve a low emittance in a relatively compact circumference that had an excellent dynamic aperture and was obust with respect to potential construction aberrations. The potential suite of beamline and instrument stations is discussed and some examples are given

  14. Trace element measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    Hanson, A.L.; Kraner, H.W.; Jones, K.W.; Gordon, B.M.; Mills, R.E.

    1982-01-01

    Aspects of the application of synchrotron radiation to trace element determinations by x-ray fluorescence have been investigated using beams from the Cornell facility, CHESS. Fluoresced x rays were detected with a Si(Li) detector placed 4 cm from the target at 90 0 to the beam. Thick samples of NBS Standard Reference Materials were used to calibrate trace element sensitivity and estimate minimum detectable limits for this method

  15. Plasma diagnostics using synchrotron radiation in tokamaks

    International Nuclear Information System (INIS)

    Fidone, I.; Giruzzi, G.; Granata, G.

    1995-09-01

    This report deal with the use of synchrotron radiation in tokamaks. The main advantage of this new method is that it enables to overcome several deficiencies, caused by cut-off, refraction, and harmonic overlap. It also makes it possible to enhance the informative contents of the familiar low harmonic scheme. The basic theory of the method is presented and illustrated by numerical applications, for plasma parameters of relevance in present and next step tokamaks. (TEC). 10 refs., 13 figs

  16. Synchrotron radiation sources in the Soviet Union

    International Nuclear Information System (INIS)

    Kapitza, S.P.

    1987-01-01

    Synchrotron radiation (SR) is now recognized to be an important instrument for experimental work in many fields of science. Recently the application of SR in medicine and industry, especially as a light source for microelectronics production have been demonstrated. Thus the development of SR sources has now grown to become a significant and independent dimension for accelerator research and technology. This article describes SR work in the Soviet Union

  17. Review of beamloading and compensation in synchrotrons

    International Nuclear Information System (INIS)

    Koscielniak, S.

    2001-10-01

    This paper discusses the theory and state-of-the-art applications of beam loading and compensation in synchrotrons. In particular it discusses the developments in the introduction of Magnetic Alloy (e.g. Finemet) cores and adoption of low Q cavities; e plus-e minus factories with very large current (e.g. KEKB, PEP II) and developments at p,p factories (e.g. LHC) and simulation codes

  18. Four-dimensional in vivo X-ray microscopy with projection-guided gating

    Science.gov (United States)

    Mokso, Rajmund; Schwyn, Daniel A.; Walker, Simon M.; Doube, Michael; Wicklein, Martina; Müller, Tonya; Stampanoni, Marco; Taylor, Graham K.; Krapp, Holger G.

    2015-03-01

    Visualizing fast micrometer scale internal movements of small animals is a key challenge for functional anatomy, physiology and biomechanics. We combine phase contrast tomographic microscopy (down to 3.3 μm voxel size) with retrospective, projection-based gating (in the order of hundreds of microseconds) to improve the spatiotemporal resolution by an order of magnitude over previous studies. We demonstrate our method by visualizing 20 three-dimensional snapshots through the 150 Hz oscillations of the blowfly flight motor.

  19. Synchrotron radiation: its characteristics and applications

    International Nuclear Information System (INIS)

    Blewett, J.P.; Chasman, R.; Green, G.K.

    1977-01-01

    It has been known for a century that charged particles radiate when accelerated and that relativistic electrons in the energy range between 100 MeV and several GeV and constrained to travel in circular orbits emit concentrated, intense beams with broad continuous spectra that can cover the electromagnetic spectrum from infrared through hard X-rays. Recently the possible applications of this radiation have been appreciated and electron synchrotrons and electron storage rings are now being used in many centers for studies of the properties of matter in the solid, liquid and gaseous states. A brief history is presented of ''synchrotron radiation'' as it is now called. The basic properties of this radiation are described and the world-wide distribution is indicated of facilities for its production. Particular attention is given to the proposed facility at Brookhaven which will be the first major installation to be dedicated only to the production and use of synchrotron radiation. Finally, typical examples are given of applications in the areas of radiation absorption studies, techniques based on scattering of radiation, and advances based on X-ray lithography

  20. Tabletop synchrotron and its unique features

    CERN Document Server

    Yamada, H

    2002-01-01

    Two synchrotrons, AURORA and MIRRORCLE, were built in Ritsumeikan University. MIRRORCLE-20 is the smallest normal conduction synchrotron (15 cm orbit radius and 1.2 m outer diameter) in the world. It uses 2/3 resonance method for electron beam incidence but is not optimized for X-ray generation. MIRRORCLE-6 shall be optimized for X-ray generation. X-ray generated by MIRRORCLE shows very flat white light, rich in hard X-ray, pulse with width changeable from a few mu s to a few ms , wide radiation angle of 25 mrad at MIRRORCLE-20 and 80 mrad at MIRRORCLE-8 and high coherence. The feature such as pulsed light and high coherence is expected to new application which photon radiation cannot practice. Imaging experiments by MIRRORCLE were carried out by Cu plate, Al plate, Teflon and acryl plate. We took a photograph of insect, electric lamp, connector, and cyclotron. New X-ray generation mechanism, X-ray strength, development of tabletop synchrotron and features of X-ray beam are explained. (S.Y.)