WorldWideScience

Sample records for synchrotron radiation beam

  1. Fast infrared detectors for beam diagnostics with synchrotron radiation

    International Nuclear Information System (INIS)

    Bocci, A.; Marcelli, A.; Pace, E.; Drago, A.; Piccinini, M.; Cestelli Guidi, M.; De Sio, A.; Sali, D.; Morini, P.; Piotrowski, J.

    2007-01-01

    Beam diagnostic is a fundamental constituent of any particle accelerators either dedicated to high-energy physics or to synchrotron radiation experiments. All storage rings emit radiations. Actually they are high brilliant sources of radiation: the synchrotron radiation emission covers from the infrared range to the X-ray domain with a pulsed structure depending on the temporal characteristics of the stored beam. The time structure of the emitted radiation is extremely useful as a tool to perform time-resolved experiments. However, this radiation can be also used for beam diagnostic to determine the beam stability and to measure the dimensions of the e - or e + beam. Because of the temporal structure of the synchrotron radiation to perform diagnostic, we need very fast detectors. Indeed, the detectors required for the diagnostics of the stored particle bunches at third generation synchrotron radiation sources and FEL need response times in the sub-ns and even ps range. To resolve the bunch length and detect bunch instabilities, X-ray and visible photon detectors may be used achieving response times of a few picoseconds. Recently, photon uncooled infrared devices optimized for the mid-IR range realized with HgCdTe semiconductors allowed to obtain sub-nanosecond response times. These devices can be used for fast detection of intense IRSR sources and for beam diagnostic. We present here preliminary experimental data of the pulsed synchrotron radiation emission of DAΦNE, the electron positron collider of the LNF laboratory of the INFN, performed with new uncooled IR detectors with a time resolution of a few hundreds of picoseconds

  2. Precision synchrotron radiation detectors

    International Nuclear Information System (INIS)

    Levi, M.; Rouse, F.; Butler, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab

  3. Stabilization of synchrotron radiation x-ray beam by MOSTAB

    CERN Document Server

    Kudo, T P; Tanida, H; Furukawa, Y; Hirono, T; Ishikawa, T; Nishino, Y

    2003-01-01

    Monochromator stabilization (MOSTAB) is a feedback control system to stabilize an x-ray beam of synchrotron radiation. It applies a feedback voltage to a piezo electric transducer attached to a double-crystal monochromator. We developed MOSTAB modules and examined their performances using SPring-8 beamlines. The x-ray beam position stabilization using MOSTAB was realized simultaneously with the x-ray beam intensity stabilization. As an example of its application, we performed EXAFS measurement with MOSTAB. (author)

  4. The profile of the electron beam in the PTB synchrotron, and its influence on radiometric measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    Kaase, H.

    1976-01-01

    A simple method is described to determine the beam profile in an electron synchrotron; the measured results are compared with calculated values. Moreover, the influence of synchrotron- and betatron-oscillations on synchrotron radiation measurements is discussed, and a method is given to correct this. (orig.) [de

  5. Synchrotron radiation research

    International Nuclear Information System (INIS)

    Markus, N.

    1995-01-01

    In the many varied application fields of accelerators, synchrotron radiation ranks as one of the most valuable and widely useful tools. Synchrotron radiation is produced in multi-GeV electron synchrotrons and storage rings, and emerges tangentially in a narrow vertical fan. Synchrotron radiation has been used extensively for basic studies and, more recently, for applied research in the chemical, materials, biotechnology and pharmaceutical industries. Initially, the radiation was a byproduct of high energy physics laboratories but the high demand soon resulted in the construction of dedicated electron storage rings. The accelerator technology is now well developed and a large number of sources have been constructed, with energies ranging from about 1.5 to 8 GeV including the 6 GeV European Synchrotron Radiation Facility (ESRF) source at Grenoble, France. A modern third-generation synchrotron radiation source has an electron storage ring with a complex magnet lattice to produce ultra-low emittance beams, long straights for 'insertion devices', and 'undulator' or 'wiggler' magnets to generate radiation with particular properties. Large beam currents are necessary to give high radiation fluxes and long beam lifetimes require ultra high vacuum systems. Industrial synchrotron radiation research programmes use either Xray diffraction or spectroscopy to determine the structures of a wide range of materials. Biological and pharmaceutical applications study the functions of various proteins. With this knowledge, it is possible to design molecules to change protein behaviour for pharmaceuticals, or to configure more active proteins, such as enzymes, for industrial processes. Recent advances in molecular biology have resulted in a large increase in protein crystallography studies, with researchers using crystals which, although small and weakly diffracting, benefit from the high intensity. Examples with commercial significance include the study of

  6. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of three used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal's photo multiplier tube (PMT)

  7. An adaptive crystal bender for high power synchrotron radiation beams

    International Nuclear Information System (INIS)

    Berman, L.E.; Hastings, J.B.

    1992-01-01

    Perfect crystal monochromators cannot diffract x-rays efficiently, nor transmit the high source brightness available at synchrotron radiation facilities, unless surface strains within the beam footprint are maintained within a few arcseconds. Insertion devices at existing synchrotron sources already produce x-ray power density levels that can induce surface slope errors of several arcseconds on silicon monochromator crystals at room temperature, no matter how well the crystal is cooled. The power density levels that will be produced by insertion devices at the third-generation sources will be as much as a factor of 100 higher still. One method of restoring ideal x-ray diffraction behavior, while coping with high power levels, involves adaptive compensation of the induced thermal strain field. The design and performance, using the X25 hybrid wiggler beam line at the National Synchrotron Light Source (NSLS), of a silicon crystal bender constructed for this purpose are described

  8. Charged particle beam monitoring by means of synchrotron radiation

    International Nuclear Information System (INIS)

    Panasyuk, V.S.; Anevskij, S.I.

    1984-01-01

    Optical methods for monitoring the number of accelerated electrons and electron energy by means of beam synchrotron radiation (SR) as well as peculiarities of SR characteristics of beams with a small radius of the orbit are considered. Optical methods for charged particle beam monitoring are shown to ensure operative and precise monitoring the number of particles and particle energy. SR sources with large axial dimensions of an electron beam have specific spectral angular and polarization characteristics. If electron angular distribution at deflection from the median plane is noticeably wider than angular distribution of SR of a certain electron, relative SR characteristics of these soUrces are calculated with high accuracy

  9. Influence of filling pattern structure on synchrotron radiation and beam spectrum at ANKA

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, Johannes; Brosi, Miriam; Bruendermann, Erik; Caselle, Michele; Blomley, Edmund; Hiller, Nicole; Kehrer, Benjamin; Mueller, Anke-Susanne; Schoenfeldt, Patrik; Schuh, Marcel; Schwarz, Markus; Siegel, Michael [Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2016-07-01

    We present the effects of the filling pattern structure in multi-bunch mode on the beam spectrum. This effects can be seen by all detectors whose resolution is better than the RF frequency, ranging from stripline and Schottky measurements to high resolution synchrotron radiation measurements. Our heterodyne measurements of the emitted coherent synchrotron radiation at 270 GHz reveal the discrete frequency harmonics around the 100'000 revolution harmonic of ANKA, the synchrotron radiation facility in Karlsruhe, Germany. Significant effects of bunch spacing, gaps between bunch trains and variations in individual bunch currents on the emitted CSR spectrum are described by theory and supported by observations.

  10. Light source for synchrotron radiation x-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL)

    International Nuclear Information System (INIS)

    Zhao Jiyong; Jiang Jianhua; Tian Yulian

    1992-01-01

    Characteristics of the synchrotron radiation source for X-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL) is described, local geometrical resolution of topographies is discussed, and the diffracting intensities of white beam topography is given

  11. Experimental studies on coherent synchrotron radiation at an emittance exchange beam line

    Science.gov (United States)

    Thangaraj, J. C. T.; Thurman-Keup, R.; Ruan, J.; Johnson, A. S.; Lumpkin, A. H.; Santucci, J.

    2012-11-01

    One of the goals of the Fermilab A0 photoinjector is to investigate experimentally the transverse to longitudinal emittance exchange (EEX) principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR) in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy-chirped beam.

  12. Synchrotron radiation at Trieste

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-06-15

    The fast developing field of synchrotron radiation has its origins in the mastery of storage rings in high energy physics and is a prime example of spinoff from pure science. Intense electromagnetic radiation streams off when beams of high energy electrons are bent or shaken. This synchrotron radiation was once an annoying waste of energy in particle storage rings, but now the wheel has turned full circle, with dedicated machines supplying this radiation for a wide range of science. The astonishing growth rate in this field was highlighted at an International Conference on Synchrotron Radiation, held at the International Centre for Theoretical Physics (ICTP), Trieste, Italy from 7-11 April.

  13. Synchrotron radiation at Trieste

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The fast developing field of synchrotron radiation has its origins in the mastery of storage rings in high energy physics and is a prime example of spinoff from pure science. Intense electromagnetic radiation streams off when beams of high energy electrons are bent or shaken. This synchrotron radiation was once an annoying waste of energy in particle storage rings, but now the wheel has turned full circle, with dedicated machines supplying this radiation for a wide range of science. The astonishing growth rate in this field was highlighted at an International Conference on Synchrotron Radiation, held at the International Centre for Theoretical Physics (ICTP), Trieste, Italy from 7-11 April

  14. Experimental studies on coherent synchrotron radiation at an emittance exchange beam line

    Directory of Open Access Journals (Sweden)

    J. C. T. Thangaraj

    2012-11-01

    Full Text Available One of the goals of the Fermilab A0 photoinjector is to investigate experimentally the transverse to longitudinal emittance exchange (EEX principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy-chirped beam.

  15. X-ray diffraction using synchrotron radiation on the G.I.L.D.A. beam line at the E.S.R.F

    Energy Technology Data Exchange (ETDEWEB)

    Balerna, A [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Meneghini, C [INFN, Laboratori Nazionali di Frascati, Rome (Italy); [INFM, Genoa (Italy); Bordoni, S [Rome Univ. ` Tor Vergata` (Italy). Dip. di Fisica; Mobilio, S [Rome Univ. III (Italy). Dip. di Fisica ` E. Amaldi`

    1996-09-01

    The aim of this lecture is to make a short introduction on Synchrotron radiation, its history and main properties. The main components of a synchrotron radiation beam line will be described. The Italian beam line, General purpose Italian beam line Line for Diffraction and Absorption (G.I.L.D.A.) at the European Synchrotron Radiation Facility (E.S.R.F.) in Grenoble will be used as an example. The G.I.L.D.A. diffractometer will be described in detail reporting also some experimental results.

  16. Coronary angiography using synchrotron radiation

    International Nuclear Information System (INIS)

    Akatsuka, Takao; Hiranaka, Yukio; Takeda, Tohru; Hyodo, Kazuyuki.

    1990-01-01

    Invasive coronary angiography is the imaging technique of choice for diagnosis of ischemic heart disease. Recently, the application of synchrotron radiation in coronary angiography has been investigated in the world, with the aim of developing the noninvasive technique for visualizing the heart. In this article, backgrounds and present situation of coronary angiography using synchrotron radiation are reviewed. Firstly, visual imaging techniques of the cardiovascular system are discussed in terms of angiography and digital subtraction angiography (DSA). Conventional temporal, energy, and hybrid subtraction modes used in DSA are referred to. Secondly, the application of synchrotron radiation is presented, focusing on the property of synchrotron radiation and K-edge subtraction angiography. Two kinds of synchrotron radiation beam methods are outlined. Interpretation of image data and various subtraction procedures remain unestablished. There is much to be done before coronary angiography using synchrotron radiation comes into a clinical practice. (N.K.)

  17. Uniform irradiation using rotational-linear scanning method for narrow synchrotron radiation beam

    International Nuclear Information System (INIS)

    Nariyama, N.; Ohnishi, S.; Odano, N.

    2004-01-01

    At SPring-8, photon intensity monitors for synchrotron radiation have been developed. Using these monitors, the responses of radiation detectors and dosimeters to monoenergetic photons can be measured. In most cases, uniform irradiation to the sample is necessary. Here, two scanning methods are proposed. One is an XZ-linear scanning method, which moves the sample simultaneously in both the X and Z direction, that is, in zigzag fashion. The other is a rotational-linear scanning method, which rotates the sample moving in the X direction. To investigate the validity of the two methods, thermoluminescent dosimeters were irradiated with a broad synchrotron-radiation beam, and the readings from the two methods were compared with that of the dosimeters fixed in the beam. The results for both scanning methods virtually agreed with that of the fixed method. The advantages of the rotational-linear scanning method are that low- and medium-dose irradiation is possible, uniformity is excellent and the load to the scanning equipment is light: hence, this method is superior to the XZ-linear scanning method for most applications. (author)

  18. Protein crystallography with a micrometre-sized synchrotron-radiation beam

    International Nuclear Information System (INIS)

    Moukhametzianov, Rouslan; Burghammer, Manfred; Edwards, Patricia C.; Petitdemange, Sebastien; Popov, Dimitri; Fransen, Maikel; McMullan, Gregory; Schertler, Gebhard F. X.; Riekel, Christian

    2008-01-01

    For the first time, protein microcrystallography has been performed with a focused synchrotron-radiation beam of 1 µm using a goniometer with a sub-micrometre sphere of confusion. The crystal structure of xylanase II has been determined with a flux density of about 3 × 10 10 photons s −1 µm −2 at the sample. For the first time, protein microcrystallography has been performed with a focused synchrotron-radiation beam of 1 µm using a goniometer with a sub-micrometre sphere of confusion. The crystal structure of xylanase II has been determined with a flux density of about 3 × 10 10 photons s −1 µm −2 at the sample. Two sets of diffraction images collected from different sized crystals were shown to comprise data of good quality, which allowed a 1.5 Å resolution xylanase II structure to be obtained. The main conclusion of this experiment is that a high-resolution diffraction pattern can be obtained from 20 µm 3 crystal volume, corresponding to about 2 × 10 8 unit cells. Despite the high irradiation dose in this case, it was possible to obtain an excellent high-resolution map and it could be concluded from the individual atomic B-factor patterns that there was no evidence of significant radiation damage. The photoelectron escape from a narrow diffraction channel is a possible reason for reduced radiation damage as indicated by Monte Carlo simulations. These results open many new opportunities in scanning protein microcrystallography and make random data collection from microcrystals a real possibility, therefore enabling structures to be solved from much smaller crystals than previously anticipated as long as the crystallites are well ordered

  19. Report of the Synchrotron Radiation Vacuum Workshop

    International Nuclear Information System (INIS)

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well

  20. Synchrotron radiation from a Helical Wiggler

    International Nuclear Information System (INIS)

    Irani, A.A.

    1979-01-01

    The use of Wiggler magnets as an improved source of synchrotron radiation from high energy electron storage rings was proposed a few years ago. Since then it has also been suggested that synchrotron radiation from Wiggler magnets placed in proton machines can be used to monitor energy, dimensions and position of the beam and that this effect is even more interesting in proton storage rings where the need to see the beam is greater. Most of the calculations carried out so far consider radiation from a single particle in a Wiggler which is appropriate when the beam is radiating incoherently. In this paper a general formalism is developed for the case when the beam radiates coherently. These results are then applied to both electron and proton storage rings. For the electron case, an expression is derived for the length of the bunch to be used as a more intense coherent radiation source. For proton machines the radiation can be used to measure energy, current, transverse dimensions and longitudinal density variations in the beam

  1. Synchrotron radiation from a helical wiggler

    International Nuclear Information System (INIS)

    Irani, A.A.

    1979-01-01

    The use of wiggler magnets as an improved source of synchrotron radiation from high energy electron storage rings was proposed a few years age. Since then it has also been suggested that synchrotron radiation from wiggler magnets placed in proton machines can be used to monitor energy, dimensions and position of the beam and that this effect is even more interesting in proton storage rings where the need to see the beam is greater. Most of the calculations carried out so far consider radiation from a single particle in a wiggler which is appropriate when the beam is radiating incoherently. A general formalism is presented for the case when the beam radiates coherently. These results are applied to both electron and proton storage rings. For the electron case, an expression is derived for the length of the bunch to use it as a more intense coherent radiation source. For proton machines the radiation can be used to measure energy, current, transverse dimensions and longitudinal density variations in the beam

  2. Visible-light beam size monitors using synchrotron radiation at CESR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.T., E-mail: sw565@cornell.edu [Cornell Laboratory for Accelerator-Based Science and Education, Cornell University, Ithaca, NY 14853 (United States); Rubin, D.L.; Conway, J.; Palmer, M.; Hartill, D. [Cornell Laboratory for Accelerator-Based Science and Education, Cornell University, Ithaca, NY 14853 (United States); Campbell, R.; Holtzapple, R. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States)

    2013-03-01

    A beam profile monitor utilizing visible synchrotron radiation (SR) from a bending magnet has been designed and installed in Cornell Electron-Positron Storage Ring (CESR). The monitor employs a double-slit interferometer to measure both the horizontal and vertical beam sizes over a wide range of beam currents. By varying the separation of the slits, beam sizes ranging from 50 to 500 μm can be measured with a resolution of approximately 5 μm. To measure larger beam size (>500 μm), direct imaging can be employed by rotating the double slits away from SR beam path. By imaging the π-polarized component of SR, a small vertical beam size (∼70 μm) was measured during an undulator test run in CESR, which was consistent with the interferometer measurement. To measure the bunch length, a beam splitter is inserted to direct a fraction of light into a streak camera setup. This beam size monitor measures the transverse and longitudinal beam sizes simultaneously, which is successfully used for intrabeam scattering studies. Detailed error analysis is discussed.

  3. Synchrotron Radiation in Biology and Medicine

    International Nuclear Information System (INIS)

    Pelka, J.B.

    2008-01-01

    This work is focused on a present status of synchrotron radiation X-ray applications in medicine and biology to imaging, diagnostics, and radio- therapy. Properties of X-ray beams generated by synchrotron sources are compared with radiation produced by classical laboratory X-ray tubes. A list of operating and planned synchrotron facilities applicable to biomedical purposes is given, together with their basic characteristics. A concise overview of typical X-ray synchrotron techniques in biology and medicine is carried out with discussion of their specific properties and examples of typical results. (author)

  4. New synchrotron radiation facility project. Panel on new synchrotron radiation facility project

    CERN Document Server

    Sato, S; Kimura, Y

    2003-01-01

    The project for constructing a new synchrotron radiation facility dedicated to the science in VUV (or EUV) and Soft X-ray (SX) region has been discussed for these two years at the Panel on New Synchrotron Radiation Facility Project. The Panel together with the Accelerator Design Working Group (WG), Beamline Design WG and Research Program WG suggested to the Ministry of Education, Science, Culture and Sports the construction of a 1.8 GeV electron storage ring suitable for 'Top-Up' operation and beamlines and monochromators designed for undulator radiation. The scientific programs proposed by nationwide scientists are summarized with their requirements of the characteristics of the beam. (author)

  5. Reflectometry with synchrotron radiation

    International Nuclear Information System (INIS)

    Krumrey, Michael; Cibik, Levent; Fischer, Andreas; Gottwald, Alexander; Kroth, Udo; Scholze, Frank

    2014-01-01

    The measurement of the reflectivity for VUV, XUV, and X-radiation at the PTB synchrotron radiation sources is described. The corresponding data of the used beams are presented. Results of experiments on a Cu-Ni double-layer, SiO 2 , Si, and MgF 2 are presented. (HSI)

  6. Development and Optimisation of the SPS and LHC beam diagnostics based on Synchrotron Radiation monitors

    CERN Document Server

    AUTHOR|(CDS)2081364; Roncarolo, Federico

    Measuring the beam transverse emittance is fundamental in every accelerator, in particular for colliders, where its precise determination is essential to maximize the luminosity and thus the performance of the colliding beams.
 Synchrotron Radiation (SR) is a versatile tool for non-destructive beam diagnostics, since its characteristics are closely related to those of the source beam. At CERN, being the only available diagnostics at high beam intensity and energy, SR monitors are exploited as the proton beam size monitor of the two higher energy machines, the Super Proton Synchrotron (SPS) and the Large Hadron Collider (LHC). The thesis work documented in this report focused on the design, development, characterization and optimization of these beam size monitors. Such studies were based on a comprehensive set of theoretical calculations, numerical simulations and experiments. A powerful simulation tool has been developed combining conventional softwares for SR simulation and optics design, thus allowing t...

  7. Radiological Considerations in the Desgin of Synchrotron Radiation Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ipe, Nisy E.

    1999-01-06

    As synchrotron radiation (SR) facilities are rapidly being designed and built all over the world, the radiological considerations should be weighed carefully at an early stage in the design of the facility. This necessitates the understanding and identification of beam losses in the machines, especially the storage ring. The potential sources of radiation are photons and neutrons from loss of injected or stored beam, gas bremsstrahlung and synchrotron radiation. Protection against radiation is achieved through the adequate design of the shielding walls of the storage ring and the synchrotron radiation beam lines. In addition safety systems such as stoppers and shutters provide protection in the forward direction for entry into the experimental enclosures. Special care needs to be exercised in the design of SR experimental enclosures to minimize radiation leakage through penetrations and gaps between doors and walls, and doors and floors.

  8. Very small beam-size measurement by a reflective synchrotron radiation interferometer

    Directory of Open Access Journals (Sweden)

    T. Naito

    2006-12-01

    Full Text Available A synchrotron radiation (SR interferometer with Herschelian reflective optics has been developed for the measurement of beams of several μm in size. In a conventional refractive SR interferometer, the dispersion effect of the objective lens limits the instrument to a smaller range of beam-size measurements. To avoid this problem, we designed a Herschelian arrangement of reflective optics for the interferometer. The effectiveness of the reflective SR interferometer was confirmed at the KEK Accelerator Test Facility (ATF damping ring. The measured vertical beam size obtained using the reflective SR interferometer was 4.7   μm and the estimated vertical emittance was 0.97×10^{-11}   m.

  9. A precision synchrotron radiation detector using phosphorescent screens

    International Nuclear Information System (INIS)

    Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Butler, J.; Wormser, G.

    1990-01-01

    A precision detector to measure synchrotron radiation beam positions has been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 μm on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. 3 refs., 5 figs., 1 tab

  10. A submicron synchrotron X-ray beam generated by capillary optics

    International Nuclear Information System (INIS)

    Engstroem, P.; Larsson, S.; Rindby, A.; Buttkewitz, A.; Garbe, S.; Gaul, G.; Knoechel, A.; Lechtenberg, F.; Deutsches Elektronen-Synchrotron

    1991-01-01

    A novel capillary optics technique for focusing synchrotron X-ray beams has been applied in an experiment performed at the DORIS storage ring at HASYLAB. This new technqiue, which utilizes the total reflection properties of X-rays inside small capillaries, has recently been applied to generate microbeams of X-rays, with a beam size down to about 10 μm using conventional X-ray tubes. The result from our recent experiment shows that capillary optics can also be used to generate a submicron beam of X-rays from a synchrotron light source. A description of the capillary unit, and the alignment procedure is given. The influence of the thermal load on the device caused by the intense flux of synchrotron radiation will be discussed. Future perspectives of the capillary techniques as applied to synchrotron radiation will be discussed. (orig.)

  11. Brain tumors and synchrotron radiation: new methods for mini-beams radiation therapy and treatment follow-up by functional imaging

    International Nuclear Information System (INIS)

    Deman, P.

    2012-01-01

    An innovative method of synchrotron radiation therapy, called mini-beams, was proposed by A. Dilmanian et al. in 2006. Mini-beams consists in tumor irradiation with monochromatic sub-millimetric x-ray beams spatially fractionated produced by a synchrotron source. To obtain a homogeneous dose in the target volume, an interleaving is realized using two orthogonal incidences. Adjacent healthy tissue is only partially irradiated by mini-beams, the areas between the beams only receive scattered radiation and therefore the energy deposited is 10 to 15 times lower than on one mini-beam axis, leading to a sparing effect of healthy tissue even when a high dose is deposited in the target volume. The thesis project is the development of this experimental method of monochromatic mini-beams, which involves the control of the irradiation geometry, the control of dosimetry and its modeling by Monte Carlo simulations. To evaluate the method, preclinical experiments on models of brain tumors implanted in rats (F98) are performed. Follow-up by anatomical and functional imaging is carried out to evaluate the effectiveness of the treatment. Functional imaging of cerebral perfusion (volume and cerebral blood flow, mean transit time of heavy elements) appears to be associated in the literature as a relevant method for monitoring prognostic. The key parameters of the cerebral vasculature are mainly studied in magnetic resonance imaging (MRI), because of the harmlessness of this imaging modality. The relation between MRI signal and contrast agent concentration is very complex and no quantitative relationship is well known. Synchrotron Radiation Computed Tomography (SRCT) is an imaging modality with performances to measure absolute contrast agent concentration very close to the theoretical limits and can be used as gold-standard. The used pharmacokinetic models need as input parameters a contrast agent concentration versus time. A comparison of perfusion measurements between MRI and SRCT

  12. The European Synchrotron Radiation Facility - an overview of planned diffraction capability

    International Nuclear Information System (INIS)

    Kvick, A.

    1991-01-01

    The European Synchrotron Radiation Facility (ESRF) is a third generation synchrotron radiation facility presently being built as a joint venture between 12 European countries in Grenoble, France. The ESRF will be a low emittance 6 GeV storage ring aimed at producing high-brilliance synchrotron radiation from 29 insertion devices and from 27 bending magnet ports. The general user program will start in the middle of 1994 with seven ESRF beam-lines. By 1999, 30 facility beam-lines as well as beam-lines built and financed by Collaborating Research Groups are scheduled to be in operation. The guidelines for the first beam-lines to be constructed as well as a survey of the diffraction oriented beam-lines built by the ESRF are given in the article. (author)

  13. Fiber structural analysis by synchrotron radiation

    CERN Document Server

    Kojima, J I; Kikutani, T

    2003-01-01

    Topics of fiber structural analysis by synchrotron radiation are explained. There are only three synchrotron radiation facilities in the world, SPring-8 (Super Photon ring-8) in Japan, APS (Advanced Photon Source) in U.S.A. and ESRF (European Synchrotron Radiation Facility) in France. Online measurement of melt spinning process of PET and Nylon6 is explained in detail. Polypropylene and PBO (poly-p-phenylenebenzobisoxazole) was measured by WAXD (Wide Angle X-ray Diffraction)/SAXS (Small Angle X-ray Scattering) at the same time. Some examples of measure of drawing process of fiber are described. The structure formation process of spider's thread was measured. Micro beam of X-ray of synchrotron facility was improved and it attained to 65nm small angle resolving power by 10 mu m beamsize. (S.Y.)

  14. Contact microscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs

  15. Impact of coherent synchrotron radiation on beam qualities in a Chicane

    International Nuclear Information System (INIS)

    Xiang Dao; Huang Wenhui; He Xiaozhong

    2004-01-01

    When the bunch goes through a Chicane, the energy will be redistributed within the bunch due to CSR (coherent synchrotron radiation), which would cause nonlinearity. Present theory states that this nonlinearity would add a huge amount to emittance growth. Based on simulation results, this paper would point out that the theory is only valid under an ideal condition that the bunch initially has no nonlinearity and under some given parameters there could be a cancellation between the nonlinearity caused by CSR and the initial nonlinearity. So under these circumstances authors can expect CSR to improve the beam quality. This paper provides a brief information about CSR and a full estimation of effects of CSR on beam qualities

  16. Synchrotron light beam and a synchrotron light experiment facility

    International Nuclear Information System (INIS)

    Ando, Masami

    1980-01-01

    In the National Laboratory for High Energy Physics, about two years ago, the requirements of synchrotron light beam in respective measuring instruments were discussed. Then, also the arrangement (lattice) of a storage ring, the nature of synchrotron light beam, a synchrotron light experiment facility and the arrangement of the beam lines were studied. During the period of two years since then, due to the changes in the circumstances, the design of the lattice was altered. Accordingly, the arrangement of the beam lines and of measuring instruments were largely changed. At this point, the results of discussions in various meetings are described, though they may still be subject to future changes, with due consideration to beam, environment and beam lines required for the design of the measuring instruments: (1) storage ring and synchrotron light beam, (2) requirements on small beam size and beam stability, (3) a synchrotron light experiment facility. (J.P.N.)

  17. Technological challenges of third generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Cornacchia, M.; Winick, H.

    1990-01-01

    New ''third generation'' synchrotron radiation research facilities are now in construction in France, Italy, Japan, Taiwan and the USA. Designs for such facilities are being developed in several other countries. Third generation facilities are based on storage rings with low electron beam emittance and space for many undulator magnets to produce radiation with extremely high brightness and coherent power. Photon beam from these rings will greatly extend present research capabilities and open up new opportunities in imaging, spectroscopy, structural and dynamic studies and other applications. The technological problems of the third generation of synchrotron radiation facilities are reviewed. These machines are designed to emit radiation of very high intensity, extreme brightness, very short pulses, and partial coherence. These performance goals put severe requirements on the quality of the electron or positron beams. Phenomena affecting the injection process and the beam lifetime are discussed. Gas desorption by synchrotron radiation and collective effects play an important role. Low emittance lattices are more sensitive to quadrupole movements and at the same time, in order not to lose the benefits of high brilliance, require tighter tolerances on the allowed movement of the photon beam source. We discuss some of the ways that should be considered to extend the performance capabilities of the facilities in the future. 14 refs., 1 fig

  18. Planning study for advanced national synchrotron-radiation facilities

    International Nuclear Information System (INIS)

    1984-01-01

    A new generation of synchrotron-radiation sources based on insertion devices offers gains in photon-beam brilliance as large as the gains that present-day synchrotron sources provided over conventional sources. This revolution in synchrotron capability and its impact on science and technology will be as significant as the original introduction of synchrotron radiation. This report recommends that insertion-device technology be pursued as our highest priority, both through the full development of insertion-device potential on existing machines and through the building of new facilities

  19. Development of a synchrotron radiation beam monitor for the Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Scarpelli, Andrea [Univ. of Ferrara (Italy)

    2016-01-01

    Nonlinear integrable optics applied to beam dynamics may mitigate multi-particle instabilities, but proof of principle experiments have never been carried out. The Integrable Optics Test Accelerator (IOTA) is an electron and proton storage ring currently being built at Fermilab, which addresses tests of nonlinear lattice elements in a real machine in addition to experiments on optical stochastic cooling and on the single-electron wave function. These experiments require an outstanding control over the lattice parameters, achievable with fast and precise beam monitoring systems. This work describes the steps for designing and building a beam monitor for IOTA based on synchrotron radiation, able to measure intensity, position and transverse cross-section beam.

  20. Impact of the Wiggler Coherent Synchrotron Radiation Impedance on the Beam Instability

    International Nuclear Information System (INIS)

    Wu, Juhao

    2003-01-01

    Coherent Synchrotron Radiation (CSR) can play an important role by not only increasing the energy spread and emittance of a beam, but also leading to a potential instability. Previous studies of the CSR induced longitudinal instability were carried out for the CSR impedance due to dipole magnets. However, many storage rings include long wigglers where a large fraction of the synchrotron radiation is emitted. This includes high-luminosity factories such as DAPHNE, PEP-II, KEK-B, and CESR-C as well as the damping rings of future linear colliders. In this paper, the instability due to the CSR impedance from a wiggler is studied assuming a large wiggler parameter K. The primary consideration is a low frequency microwave-like instability, which arises near the pipe cut-off frequency. Detailed results are presented on the growth rate and threshold for the damping rings of several linear collider designs. Finally, the optimization of the relative fraction of damping due to the wiggler systems is discussed for the damping rings

  1. Single-mode coherent synchrotron radiation instability

    Directory of Open Access Journals (Sweden)

    S. Heifets

    2003-06-01

    Full Text Available The microwave instability driven by the coherent synchrotron radiation (CSR has been previously studied [S. Heifets and G. V. Stupakov, Phys. Rev. ST Accel. Beams 5, 054402 (2002] neglecting effect of the shielding caused by the finite beam pipe aperture. In practice, the unstable mode can be close to the shielding threshold where the spectrum of the radiation in a toroidal beam pipe is discrete. In this paper, the CSR instability is studied in the case when it is driven by a single synchronous mode. A system of equations for the beam-wave interaction is derived and its similarity to the 1D free-electron laser theory is demonstrated. In the linear regime, the growth rate of the instability is obtained and a transition to the case of continuous spectrum is discussed. The nonlinear evolution of the single-mode instability, both with and without synchrotron damping and quantum diffusion, is also studied.

  2. Beam simulation of synchrotron radiation equipment. New method responsive to three dimensional magnetic field

    International Nuclear Information System (INIS)

    Tanaka, Hirofumi

    1999-01-01

    A new numerical analysis method capable of precise modeling of complex three dimensional magnetic field of superconducting wiggler and of long-term beam simulation without destroying property of Hamiltonian dynamics system was developed by using the above-mentioned method. Therefore, a fundamental design of a compact synchrotron radiation equipment with hexagonal column shape was also developed. Its main parameters had 1 GeV in energy, 36 m in circumference, 300 mA in stored current, and 184 nmrad in emittance. So as to enable to research the x-ray and vacuum UV regions, a superconducting wiggler with 7T in magnetic field strength and an undulator were set at straight section. It depends upon if beam around stable region on exciting the superconducting wiggler is wider than the required region whether this type of synchrotron radiation equipment can be realized or not. By using three orbit analysis methods containing the developed one, the circulating stable region was introduced. As a result, although shape of the stable region was different from used methods, it was found that considerably larger stable region was obtained than the required in circulation results of every three methods. That is to say, it was shown that the designed compact equipment can accumulate electron beams stably. (G.K.)

  3. The present status of a compact synchrotron radiation source LUNA of IHI

    International Nuclear Information System (INIS)

    Marushita, Motoharu; Oishi, Masaya; Takahashi, Mitsuyuki; Komatsu, Takahito; Mandai, Shinichi

    1993-01-01

    Synchrotron radiation is expected to apply to many fields of science and industry and we are specially interested in availability of SR for X-ray lithography. This paper presents the characteristics, the design parameters, the features and current status of LUNA. Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI) has developed a compact synchrotron radiation source 'LUNA' for lithography and has successfully stored beam current at full energy. LUNA consists of a 45 MeV linear accelerator as an electron injector and an 800 MeV synchrotron as a storage ring. The construction of LUNA has been completed in April 1989 at IHI Tsuchiura facility near Tsukuba. Synchrotron Radiation was first observed at December 1989. The design goal, which is to store beam current of 50 mA with the beam lifetime of over 30 minutes, has been successfully achieved in March 1991. At present the stored beam current is 80 mA with the beam lifetime of over 5 hours. (author)

  4. Macromolecular crystallography using synchrotron radiation

    International Nuclear Information System (INIS)

    Bartunik, H.D.; Phillips, J.C.; Fourme, R.

    1982-01-01

    The use of synchrotron X-ray sources in macromolecular crystallography is described. The properties of synchrotron radiation relevant to macromolecular crystallography are examined. The applications discussed include anomalous dispersion techniques, the acquisition of normal and high resolution data, and kinetic studies of structural changes in macromolecules; protein data are presented illustrating these applications. The apparatus used is described including information on the electronic detectors, the monitoring of the incident beam and crystal cooling. (U.K.)

  5. Measurement of Beam Loss at the Australian Synchrotron

    CERN Document Server

    Holzer, EB; Kastriotou, M; Boland, MJ; Jackson, PD; Rasool, RP; Schmidt, J; Welsch, CP

    2014-01-01

    The unprecedented requirements that new machines are setting on their diagnostic systems is leading to the development of new generation of devices with large dynamic range, sensitivity and time resolution. Beam loss detection is particularly challenging due to the large extension of new facilities that need to be covered with localized detector. Candidates to mitigate this problem consist of systems in which the sensitive part of the radiation detectors can be extended over long distance of beam lines. In this document we study the feasibility of a BLM system based on optical fiber as an active detector for an electron storage ring. The Australian Synchrotron (AS) comprises a 216m ring that stores electrons up to 3GeV. The Accelerator has recently claimed the world record ultra low transverse emittance (below pm rad) and its surroundings are rich in synchrotron radiation. Therefore, the AS provides beam conditions very similar to those expected in the CLIC/ILC damping rings. A qualitative benchmark of beam l...

  6. Design of a wire imaging synchrotron radiation detector

    International Nuclear Information System (INIS)

    Kent, J.; Gomez-Cadenas, J.J.; Hogan, A.; King, M.; Rowe, W.; Watson, S.; Von Zanthier, C.; Briggs, D.D.; Levi, M.

    1990-01-01

    This paper documents the design of a detector invented to measure the positions of synchrotron radiation beams for the precision energy spectrometers of the Stanford Linear Collider (SLC). The energy measurements involve the determination, on a pulse-by-pulse basis, of the separation of pairs of intense beams of synchrotron photons in the MeV energy range. The detector intercepts the beams with arrays of fine wires. The ejection of Compton recoil electrons results in charges being developed in the wires, thus enabling a determination of beam positions. 10 refs., 4 figs

  7. eBooking of beam-time over internet for beamlines of Indus synchrotron radiation sources

    International Nuclear Information System (INIS)

    Jain, Alok; Verma, Rajesh; Rajan, Alpana; Modi, M.H.; Rawat, Anil

    2015-01-01

    Users from various research labs and academic institutes carry out experiments on beamlines of two Synchrotron Radiation Sources Indus-1 and Indus-2 available at RRCAT, Indore. To carry out experimental work on beamlines of both synchrotron radiation sources, beam-time is booked over Internet by the users of beamlines using user portal designed, developed and deployed over Internet. This portal has made the process of beamtime booking fast, hassle free and paperless as manual booking of beam-time for carrying out experiment on a particular beamline is cumbersome. The portal facilitates in-charge of Indus-1 and Indus-2 beamlines to keep track of users' records, work progress and other activities linked to experiments carried on beamlines. It is important to keep record and provide statistics about the usage of the beam lines from time-to-time. The user portal for e-booking of beam-time has been developed in-house using open source software development tools. Multi-step activities of users and beamline administrators are workflow based with seamless flow of information across various modules and fully authenticated using role based mechanism for different roles of software usage. The software is in regular use since November 2013 and has helped beamline in- charges in efficiently managing various activities related to user registration, booking of beam-time, booking of Guest House, Generation of Security permits, User feedback etc. Design concept, role based authentication mechanism and features provided by the web portal are discussed in detail in this paper. (author)

  8. Metrology of reflection optics for synchrotron radiation

    International Nuclear Information System (INIS)

    Takacs, P.Z.

    1985-09-01

    Recent years have seen an almost explosive growth in the number of beam lines on new and existing synchrotron radiation facilities throughout the world. The need for optical components to utilize the unique characteristics of synchrotron radiation has increased accordingly. Unfortunately, the technology to manufacture and measure the large, smooth, exotic optical surfaces required to focus and steer the synchrotron radiation beam has not progressed as rapidly as the operational demands on these components. Most companies do not wish to become involved with a project that requires producing a single, very expensive, aspheric optic with surface roughness and figure tolerances that are beyond their capabilities to measure. This paper will review some of the experiences of the National Synchrotron Light Source in procuring grazing incidence optical components over the past several years. We will review the specification process - how it is related to the function of the optic, and how it relates to the metrology available during the manufacturing process and after delivery to the user's laboratory. We will also discuss practical aspects of our experience with new technologies, such as single point diamond turning of metal mirrors and the use of SiC as a mirror material. Recent advances in metrology instrumentation have the potential to move the measurement of surface figure and finish from the research laboratory into the optical shop, which should stimulate growth and interest in the manufacturing of optics to meet the needs of the synchrotron radiation user community

  9. Overview and perspective of materials characterization by using synchrotron radiation

    International Nuclear Information System (INIS)

    Kamitsubo, Hiromichi

    2009-01-01

    A peculiarity of techniques and the methods of synchrotron radiation are explained. It consists of five sections such as introduction, synchrotron radiation, interaction between X-ray and materials, analytical methods of materials using synchrotron radiation and perspective and problems. The second section described the principles of synchrotron orbit radiation, synchrotron light source, the main formulae and schematic drawing of undulator, and the synchrotron radiation facilities in Japan. The third section explained behavior of X-ray in materials, absorption, reflection, refraction and scattering of X-ray. The fourth section stated many analytical methods of materials; the surface diffractometer, powder diffractometer, high-energy X-ray diffraction, core-electron absorption spectroscopy, micro-beam diffraction, X-ray fluorescence, X-ray absorption fine structure (XAFS), and photoemission spectroscopy (PES). A characteristic feature of synchrotron radiation contains the large wave length ranges from infrared to X-ray, high directivity and brightness, linear (circular) polarization, pulsed light, good control and stability. The brightness spectra of Spring-8 and SAGA-LS, concept of synchrotron light source, undulator and wiggler, nine synchrotron radiation facilities in Japan, mass absorption coefficients of Cu and Au, and analysis of materials using synchrotron radiation are illustrated. (S.Y.)

  10. Discussions for the shielding materials of synchrotron radiation beamline hutches

    International Nuclear Information System (INIS)

    Asano, Y.

    2006-01-01

    Many synchrotron radiation facilities are now under operation such as E.S.R.F., APS, and S.P.ring-8. New facilities with intermediated stored electron energy are also under construction and designing such as D.I.A.M.O.N.D., S.O.L.E.I.L., and S.S.R.F.. At these third generation synchrotron radiation facilities, the beamline shielding as well as the bulk shield is very important for designing radiation safety because of intense and high energy synchrotron radiation beam. Some reasons employ lead shield wall for the synchrotron radiation beamlines. One is narrow space for the construction of many beamlines at the experimental hall, and the other is the necessary of many movable mechanisms at the beamlines, for examples. Some cases are required to shield high energy neutrons due to stored electron beam loss and photoneutrons due to gas Bremsstrahlung. Ordinary concrete and heavy concrete are coming up to shield material of synchrotron radiation beamline hutches. However, few discussions have been performed so far for the shielding materials of the hutches. In this presentation, therefore, we will discuss the characteristics of the shielding conditions including build up effect for the beamline hutches by using the ordinary concrete, heavy concrete, and lead for shielding materials with 3 GeV and 8 GeV class synchrotron radiation source. (author)

  11. Synchrotron radiation: its characteristics and applications

    International Nuclear Information System (INIS)

    Blewett, J.P.; Chasman, R.; Green, G.K.

    1977-01-01

    It has been known for a century that charged particles radiate when accelerated and that relativistic electrons in the energy range between 100 MeV and several GeV and constrained to travel in circular orbits emit concentrated, intense beams with broad continuous spectra that can cover the electromagnetic spectrum from infrared through hard X-rays. Recently the possible applications of this radiation have been appreciated and electron synchrotrons and electron storage rings are now being used in many centers for studies of the properties of matter in the solid, liquid and gaseous states. A brief history is presented of ''synchrotron radiation'' as it is now called. The basic properties of this radiation are described and the world-wide distribution is indicated of facilities for its production. Particular attention is given to the proposed facility at Brookhaven which will be the first major installation to be dedicated only to the production and use of synchrotron radiation. Finally, typical examples are given of applications in the areas of radiation absorption studies, techniques based on scattering of radiation, and advances based on X-ray lithography

  12. Analytical research using synchrotron radiation based techniques

    International Nuclear Information System (INIS)

    Jha, Shambhu Nath

    2015-01-01

    There are many Synchrotron Radiation (SR) based techniques such as X-ray Absorption Spectroscopy (XAS), X-ray Fluorescence Analysis (XRF), SR-Fourier-transform Infrared (SRFTIR), Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. which are increasingly being employed worldwide in analytical research. With advent of modern synchrotron sources these analytical techniques have been further revitalized and paved ways for new techniques such as microprobe XRF and XAS, FTIR microscopy, Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. The talk will cover mainly two techniques illustrating its capability in analytical research namely XRF and XAS. XRF spectroscopy: XRF spectroscopy is an analytical technique which involves the detection of emitted characteristic X-rays following excitation of the elements within the sample. While electron, particle (protons or alpha particles), or X-ray beams can be employed as the exciting source for this analysis, the use of X-ray beams from a synchrotron source has been instrumental in the advancement of the technique in the area of microprobe XRF imaging and trace level compositional characterisation of any sample. Synchrotron radiation induced X-ray emission spectroscopy, has become competitive with the earlier microprobe and nanoprobe techniques following the advancements in manipulating and detecting these X-rays. There are two important features that contribute to the superb elemental sensitivities of microprobe SR induced XRF: (i) the absence of the continuum (Bremsstrahlung) background radiation that is a feature of spectra obtained from charged particle beams, and (ii) the increased X-ray flux on the sample associated with the use of tunable third generation synchrotron facilities. Detection sensitivities have been reported in the ppb range, with values of 10 -17 g - 10 -14 g (depending on the particular element and matrix). Keeping in mind its demand, a microprobe XRF beamline has been setup by RRCAT at Indus-2 synchrotron

  13. Design and performance of the 40 MeV linac and beam transport system for the 1 GeV synchrotron radiation source at SORTEC

    International Nuclear Information System (INIS)

    Shiota, M.; Hiraki, A.; Mizota, M.; Iida, T.; Haraguchi, M.; Kuno, K.; Nakamura, S.; Ohno, M.; Tomimasu, T.

    1990-01-01

    A 1 Gev synchrotron radiation source (SOR) system has been installed and is now being adjusted at SORTEC corporation. This paper reports the configuration and the beam test results of the 40 MeV electron linac (pre-injector) and the beam transport line to the electron synchrotron used in this system. The output beam from the linac must be low emittance, small energy spread, and stable in energy. The beam transport line must also efficiently lead the beam from the linac to the electron synchrotron. This linac produced the beam current of 130 mA, with an energy spread of 1.3 % (FWHM), and an emittance of 0.7 πmm·mrad. The beam characteristics were verified by various beam monitors on the beam transport line. (author)

  14. Experimental investigation of dynamic pressure in a cryosorbing beam tube exposed to synchrotron radiation

    International Nuclear Information System (INIS)

    Anashin, V.V.; Malyshev, O.B.; Osipov, V.N.; Maslennikov, I.L.; Turner, W.C.

    1994-06-01

    Results of photodesorption experiments on a 4.2-K beam tube irradiated with synchrotron radiation from the VEPP-2M storage ring are being reported. The experiments have been performed on SSC1 and SSC2 beamlines. Synchrotron radiation parameters of the SSC1 beamline are the same as the SSCL 20 TeV proton collider; critical energy = 284 eV, photon intensity 1·10 16 photons/m/s. Photon intensity of the SSC2 beamline is eight times higher than intensity of the SSC1 beamline. We have used two experimental configurations to observe the density increase due to: (1) photodesorption of tightly bound molecules not previously desorbed and (2) photodesorption of weakly bound cryosorbed molecules. The two configurations used were a simple 4.2-K beam tube and a 4.2-K tube with a coaxial perforated liner. The photo-desorption coefficient of tightly bound H 2 measured on the SSC1 beamline was observed to decrease monotonically with photon exposure, reaching η4·10 -4 molecules per photon at the end of exposure (∼1·10 22 photons/m). The same experiment on the SSC2 beamline gave a similar result at photon dose 3.5·10 22 photons/m. The photodesorption coefficient of cryosorbed H 2 increased with increasing H 2 surface density, reaching η'σ w ∼7 molecules/photon at one monolayer surface density (s m ∼3·10 15 H 2 /cm 2 ), where σ w is the sticking coefficient. The liner was shown to effectively shield cryosorbed molecules from synchrotron radiation

  15. Synchrotron-radiation research

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1982-01-01

    The use of radiation from synchrotron sources has started a renaissance in materials, physics, chemistry, and biology. Synchrotron radiation has advantages over conventional x rays in that its source brightness is a thousand times greater throughout a continuous energy spectrum, and resonances are produced with specific electron energy levels. Two major synchrotron radiation sources are operated by DOE: the Stanford Synchrotron Radiation Laboratory at SLAC, and the National Synchrotron Light Source at Brookhaven

  16. Synchrotron Radiation in eRHIC Interaction Region

    CERN Document Server

    Beebe-Wang, Joanne; Montag, Christoph; Rondeau, Daniel J; Surrow, Bernd

    2005-01-01

    The eRHIC currently under study at BNL consists of an electron storage ring added to the existing RHIC complex. The interaction region of this facility has to provide the required low-beta focusing while accommodating the synchrotron radiation generated by beam separation close to the interaction point. In the current design, the synchrotron radiation caused by 10GeV electrons bent by low-beta triplet magnets will be guided through the interaction region and dumped 5m downstream. However, it is unavoidable to stop a fraction of the photons at the septum where the electron and ion vacuum system are separated. In order to protect the septum and minimize the backward scattering of the synchrotron radiation, an absorber and collimation system will be employed. In this paper, we first present the overview of the current design of the eRHIC interaction region with special emphasis on the synchrotron radiation. Then the initial design of the absorber and collimation system, including their geometrical and physical p...

  17. Research using synchrotron radiation at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1982-01-01

    The National Synchrotron Light Source (NSLS) is now becoming operational with synchrotron radiation experiments beginning on the 700 MeV VUV electron storage ring. Commissioning of the 2.5 GeV x-ray storage ring has also begun with the experimental program expected to begin in 1983. The current status of the experimental program and instrumentation and the plans for future developments, will be discussed. Although some early results have been obtained on VUV beam lines no attempt will be made in this paper to describe them. Instead, an overview of the beam line characteristics will be given, with an indication of those already operational. In the oral presentation some initial experimental results will be discussed

  18. Optical systems for synchrotron radiation. Lecture 2. Mirror systems

    International Nuclear Information System (INIS)

    Howells, M.R.

    1986-02-01

    The process of reflection of VUV and x-radiation is summarized. The functions of mirrors in synchrotron beamlines are described, which include deflection, filtration, power absorption, formation of a real image, focusing, and collimation. Fabrication of optical surfaces for synchrotron radiation beamlines are described, and include polishing of a near spherical surface as well as bending a cylindrical surface to toroidal shape. The imperfections present in mirrors, aberrations and surface figure inaccuracy, are discussed. Calculation of the thermal load of a mirror in a synchrotron radiation beam and the cooling of the mirror are covered briefly. 50 refs., 7 figs

  19. A study on radiation shielding and safety analysis for a synchrotron radiation beamline

    International Nuclear Information System (INIS)

    Asano, Yoshihiro

    2001-03-01

    Methods of shielding design and safety analysis are presented for a beam-line of synchrotron radiation. This paper consists of the shielding and safety study of synchrotron radiation with extremely intense and low energy photon below several hundreds keV, and the study for the behavior of remarkable high-energy photons up to 8 GeV, which can creep into beam-lines. A new shielding design code, STAC8 was developed to estimate the leakage dose outside the beam line hutch (an enclosure of the beam, optical elements or experimental instruments) easily and quickly with satisfactory accuracy. The code can calculate consistently from sources of synchrotron radiation to dose equivalent outside hutches with considering the build up effect and polarization effect. Validity of the code was verified by comparing its calculations with those of Monte Carlo simulations and measurement results of the doses inside the hutch of the BL14C of Photon Factory in the High Energy Accelerator Research Organization (KEK), showing good agreements. The shielding design calculations using STAC8 were carried out to apply to the practical beam-lines with the considering polarization effect and clarified the characteristics of the typical beam-line of the third generation synchrotron radiation facility, SPring-8. In addition, the shielding calculations were compared with the measurement outside the shield wall of the bending magnet beam-line of SPring-8, and showed fairly good agreement. The new shielding problems, which have usually been neglected in shielding designs for existing synchrotron radiation facilities, are clarified through the analysis of the beam-line shielding of SPring-8. The synchrotron radiation from the SPring-8 has such extremely high-intensity involving high energy photons that the scattered synchrotron radiation from the concrete floor of the hutch, the ground shine, causes a seriously high dose. The method of effective shielding is presented. For the estimation of the gas

  20. A study on radiation shielding and safety analysis for a synchrotron radiation beamline

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Yoshihiro [Japan Atomic Energy Research Inst., Kansai Research Establishment, Synchrotron Radiation Research Center, Mikazuhi, Hyogo (Japan)

    2001-03-01

    Methods of shielding design and safety analysis are presented for a beam-line of synchrotron radiation. This paper consists of the shielding and safety study of synchrotron radiation with extremely intense and low energy photon below several hundreds keV, and the study for the behavior of remarkable high-energy photons up to 8 GeV, which can creep into beam-lines. A new shielding design code, STAC8 was developed to estimate the leakage dose outside the beam line hutch (an enclosure of the beam, optical elements or experimental instruments) easily and quickly with satisfactory accuracy. The code can calculate consistently from sources of synchrotron radiation to dose equivalent outside hutches with considering the build up effect and polarization effect. Validity of the code was verified by comparing its calculations with those of Monte Carlo simulations and measurement results of the doses inside the hutch of the BL14C of Photon Factory in the High Energy Accelerator Research Organization (KEK), showing good agreements. The shielding design calculations using STAC8 were carried out to apply to the practical beam-lines with the considering polarization effect and clarified the characteristics of the typical beam-line of the third generation synchrotron radiation facility, SPring-8. In addition, the shielding calculations were compared with the measurement outside the shield wall of the bending magnet beam-line of SPring-8, and showed fairly good agreement. The new shielding problems, which have usually been neglected in shielding designs for existing synchrotron radiation facilities, are clarified through the analysis of the beam-line shielding of SPring-8. The synchrotron radiation from the SPring-8 has such extremely high-intensity involving high energy photons that the scattered synchrotron radiation from the concrete floor of the hutch, the ground shine, causes a seriously high dose. The method of effective shielding is presented. For the estimation of the gas

  1. Medical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved

  2. Medical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1992-01-01

    Ever since the first diagnostic X-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become incrasingly important. Both in clinical medicine and basic research the use of X-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved. (orig.)

  3. Synchrotron radiation

    CERN Document Server

    Kunz, C

    1974-01-01

    The production of synchrotron radiation as a by-product of circular high-energy electron (positron) accelerators or storage rings is briefly discussed. A listing of existing or planned synchrotron radiation laboratories is included. The following properties are discussed: spectrum, collimation, polarization, and intensity; a short comparison with other sources (lasers and X-ray tubes) is also given. The remainder of the paper describes the experimental installations at the Deutsches Elektronen-Synchrotron (DESY) and DORIS storage rings, presents a few typical examples out of the fields of atomic, molecular, and solid-state spectroscopy, and finishes with an outlook on the use of synchrotron radiation in molecular biology. (21 refs).

  4. Coherent Synchrotron Radiation: Theory and Simulations

    International Nuclear Information System (INIS)

    Novokhatski, Alexander

    2012-01-01

    The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum

  5. Reflectometry with synchrotron radiation; Reflektometrie mit Synchrotronstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Krumrey, Michael [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany). Arbeitsgruppe ' Roentgenradiometrie' ; Cibik, Levent; Fischer, Andreas; Gottwald, Alexander; Kroth, Udo; Scholze, Frank

    2014-09-15

    The measurement of the reflectivity for VUV, XUV, and X-radiation at the PTB synchrotron radiation sources is described. The corresponding data of the used beams are presented. Results of experiments on a Cu-Ni double-layer, SiO{sub 2}, Si, and MgF{sub 2} are presented. (HSI)

  6. Parallel beam microradiography of dental hard tissue using synchrotron radiation and X-ray image magnification

    International Nuclear Information System (INIS)

    Takagi, S.; Chow, L.C.; Brown, W.E.; Dobbyn, R.C.; Kuriyama, M.

    1984-01-01

    A novel technique utilizing a highly parallel beam of monochromatic synchrotron radiation combined with X-ray image magnification has been used to obtain microradiographs of caries lesions in relatively thick tooth sections. Preliminary results reveal structural features not previously reported. This technique holds the promise of allowing one to follow the structural changes accompanying the formation, destruction and chemical repair of mineralized tissue in real time. (orig.)

  7. MICROANALYSIS OF MATERIALS USING SYNCHROTRON RADIATION.

    Energy Technology Data Exchange (ETDEWEB)

    JONES,K.W.; FENG,H.

    2000-12-01

    High intensity synchrotron radiation produces photons with wavelengths that extend from the infrared to hard x rays with energies of hundreds of keV with uniquely high photon intensities that can be used to determine the composition and properties of materials using a variety of techniques. Most of these techniques represent extensions of earlier work performed with ordinary tube-type x-ray sources. The properties of the synchrotron source such as the continuous range of energy, high degree of photon polarization, pulsed beams, and photon flux many orders of magnitude higher than from x-ray tubes have made possible major advances in the possible chemical applications. We describe here ways that materials analyses can be made using the high intensity beams for measurements with small beam sizes and/or high detection sensitivity. The relevant characteristics of synchrotron x-ray sources are briefly summarized to give an idea of the x-ray parameters to be exploited. The experimental techniques considered include x-ray fluorescence, absorption, and diffraction. Examples of typical experimental apparatus used in these experiments are considered together with descriptions of actual applications.

  8. Synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    van Steenbergen, A.

    1979-01-01

    As a result of the exponential growth of the utilization of synchrotron radiation for research in the domain of the material sciences, atomic and molecular physics, biology and technology, a major construction activity has been generated towards new dedicated electron storage rings, designed optimally for synchrotron radiation applications, also, expansion programs are underway at the existing facilities, such as DORIS, SPEAR, and VEPP. In this report the basic properties of synchrotron radiation will be discussed, a short overview will be given of the existing and new facilities, some aspects of the optimization of a structure for a synchrotron radiation source will be discussed and the addition of wigglers and undulators for spectrum enhancement will be described. Finally, some parameters of an optimized synchrotron radiation source will be given.

  9. Trace element measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    Hanson, A.L.; Kraner, H.W.; Jones, K.W.; Gordon, B.M.; Mills, R.E.

    1982-01-01

    Aspects of the application of synchrotron radiation to trace element determinations by x-ray fluorescence have been investigated using beams from the Cornell facility, CHESS. Fluoresced x rays were detected with a Si(Li) detector placed 4 cm from the target at 90 0 to the beam. Thick samples of NBS Standard Reference Materials were used to calibrate trace element sensitivity and estimate minimum detectable limits for this method

  10. Synchrotron radiation leakage from the B-factory beam pipe

    International Nuclear Information System (INIS)

    Jenkins, T.M.; Nelson, W.R.; Ipe, N.

    1990-01-01

    The high-energy ring (HER) of the B-Factory, running at an energy of 9 GeV, generates the synchrotron spectrum when applied to a ring with the PEP bending radius. The B-Factory HER may also run at 12 GeV, producing the harder spectrum. Depending upon beam-pipe material and thickness, some of this radiation may escape and deposit energy in the surrounding material. This was originally pointed out in PEP-109 during the initial design of PEP, and subsequently verified by measurements at both PEP and PETRA at DESY. Of concern to the B Factory is magnet insulation, though other adjacent materials such as wire insulation and cooling water hoses are even more radiosensitive. Radiation damage to magnets is a function of the type of material used in the potting compound. The PEP magnets, which hopefully can be used for the high-energy ring of the B-Factory, are insulated with an epoxy composed of DER-332, DER-732, NMA and aluminum oxide. It is estimated that this epoxy compound should tolerate doses near the 10 10 rad range. To summarize the results of these calculations, 0.87 cm of copper is needed at the point of maximum dose from 12-GeV operation in order to reach the dose criterion if a rectangular beam pipe is used. The copper needs to be only 0.7-cm thick for an octagonal beam pipe and the same energy. For 9-GeV operation, an octagonal copper pipe needs only to be 0.25-cm thick. An octagonal aluminum pipe that is 0.5-cm thick also needs 0.3 cm of lead on the outside to reach the same criterion for 12-GeV operation. For 9-GeV operation, the aluminum pipe still requires a lead liner

  11. A method for measuring the time structure of synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.

    1989-08-01

    We describe a method employing a plastic scintillator coupled to a fast photomultiplier tube to generate a timing pulse from the x-ray bursts emitted from a synchrotron radiation source. This technique is useful for performing synchrotron experiments where detailed knowledge of the timing distribution is necessary, such as time resolved spectroscopy or fluorescence lifetime experiments. By digitizing the time difference between the timing signal generated on one beam crossing with the timing signal generated on the next beam crossing, the time structure of a synchrotron beam can be analyzed. Using this technique, we have investigated the single bunch time structure at the National Synchrotron Light Source (NSLS) during pilot runs in January, 1989, and found that the majority of the beam (96%) is contained in one rf bucket, while the remainder of the beam (4%) is contained in satellite rf buckets preceeding and following the main rf bucket by 19 ns. 1 ref., 4 figs

  12. The impact of coherent synchrotron radiation on the beam transport of short bunches

    International Nuclear Information System (INIS)

    Li, R.

    1999-01-01

    Designs for next-generation accelerator, such as future linear colliders and short-wavelength FEL drivers, require beams of short (mm-length or smaller) bunches and high charge (nC-regime). As such a high charge microbunch traverses magnetic bends, the curvature effect on the bunch self-interaction, by way of coherent synchrotron radiation (CSR) and space charge force, may cause serious emittance degradation. This impact of CSR on the beam transport of short bunches has raised significant concern in the design of future machines and led to extensive investigations. This paper reviews some of the recent progress in the understanding of the CSR effect, presents analysis of and computational work on the CSR impact on short bunch transport, and addresses remaining issues

  13. Beam extraction control systems of the fast-cycling synchrotron

    International Nuclear Information System (INIS)

    Toumanian, A.; Zapolski, N.; Nickogosian, V.; Ananian, A.; Kazarian, A.; Khoetsian, M.; Agababian, A.; Matevosian, A.

    1992-01-01

    A compact system controlling the extraction of different beams (gamma, electron, synchrotron radiation) in single and simultaneous operation modes at high electromagnetic disturbances level based on using one computer of IBM PC/AT type is described. (author)

  14. Study of spear as a dedicated source of synchrotron radiation

    International Nuclear Information System (INIS)

    Cerino, J.; Golde, A.; Hastings, J.; Lindau, I.; Salsburg, B.; Winick, H.; Lee, M.; Morton, P.; Garren, A.

    1977-11-01

    A study was made of the potential of SPEAR as a dedicated source of synchrotron radiation, based on the expectation that SPEAR will become increasingly available for this purpose as PEP, the 18-GeV colliding-beam storage ring now under construction by LBL and SLAC, becomes operational. A synchrotron radiation research program has been underway since May, 1974. Two beam ports capable of serving 9 simultaneous users are now operational. In single-beam multi-bunch operation high currents are possible (225 mA has been achieved and > approximately 300 mA is expected) and the electron beam emittance can be made smaller, resulting in higher source point brightness. Descriptions are given of SPEAR capabilities and of plans to expand the research capability by adding beam runs and by inserting wiggler magnets in SPEAR straight sections

  15. Propagation of synchrotron radiation through nanocapillary structures

    International Nuclear Information System (INIS)

    Bjeoumikhov, A.; Bjeoumikhova, S.; Riesemeier, H.; Radtke, M.; Wedell, R.

    2007-01-01

    The propagation of synchrotron radiation through nanocapillary structures with channel sizes of 200 nm and periods in the micrometer size has been studied experimentally. It was shown that the propagation through individual capillary channels has a mode formation character. Furthermore it was shown that during the propagation through capillary channels the coherence of synchrotron radiation is partially conserved. Interference of beams propagating through different capillary channels is observed which leads to a periodically modulated distribution of the radiation intensity in a plane far from the exit of the structure. These investigations are of high relevance for the understanding of X-ray transmission through nanocapillaries and the appearance of wave properties at this size scale

  16. Beryllium window flange for synchrotron radiation X-ray beamline fabricated by hot isostatic press method

    International Nuclear Information System (INIS)

    Asaoka, Seiji; Maezawa, Hideki; Nishida, Kiyotoshi; Sakamoto, Naoki.

    1995-01-01

    The synchrotron radiation experimental facilities in National Laboratory for High Energy Physics are the experimental facilities for joint utilization, that possess the positron storage ring of 2.5 GeV exclusively used for synchrotron radiation. Synchrotron radiation is led through a mainstay beam channel to the laboratory, and in the beam line of X-ray, it is used for experiment through the taking-out window made of beryllium. At this time, the function of the taking-out window is to shut off between the ultrahigh vacuum in the mainstay beam channel and the atmosphere, and to cut the low energy component of synchrotron radiation spectra. The experiment using X-ray is carried out mostly in the atmosphere. The design of the efficient cooling water channel which is compatible with the flange construction is important under the high thermal load of synchrotron radiation. The beryllium window flange for synchrotron radiation X-ray was made by HIP method, and the ultrahigh vacuum test, the high pressure water flow test and the actual machine test were carried out by heat cycle. The properties required for the window material, the requirement of the construction, the new development of HIP method, and the experiments for evaluating the manufactured beryllium window are described. (K.I.)

  17. Paraxial Green's functions in synchrotron radiation theory

    International Nuclear Information System (INIS)

    Geloni, G.; Saldin, E.; Scheidmiller, E.; Yurkov, M.

    2005-02-01

    This work contains a systematic treatment of single particle synchrotron radiation and some application to realistic beams with given cross section area, divergence and energy spread. Standard theory relies on several approximations whose applicability limits and accuracy are often forgotten. We begin remarking that on the one hand, a paraxial approximation can always be applied without loss of generality and with ultra relativistic accuracy. On the other hand, dominance of the acceleration field over the velocity part in the Lienard-Wiechert expressions is not always guaranteed and constitutes a separate assumption, whose applicability is discussed. Treating synchrotron radiation in paraxial approximation we derive the equation for the slow varying envelope function of the Fourier components of the electric field vector. Calculations of Synchrotron Radiation properties performed by others showed that the phase of the Fourier components of the electric field vector differs from the phase of a virtual point source. In this paper we present a systematic, analytical description of this phase shift, calculating amplitude and phase of electric field from bending magnets, short magnets, two bending magnet system separated by a straight section (edge radiation) and undulator devices. We pay particular attention to region of applicability and accuracy of approximations used. Finally, taking advantage of results of analytical calculation presented in reduced form we analyze various features of radiation from a complex insertion device (set of two undulators with a focusing triplet in between) accounting for the influence of energy spread and electron beam emittance. (orig.)

  18. Challenges and opportunities in synchrotron radiation optics

    Science.gov (United States)

    Rehn, V.

    Design necessities germaine to advances in optics for experimentation with synchrotron radiation are explored. Objectives for development include improved beam-line performance using new mirror materials or coatings, filtering and order-sorting enhancement, and lower surface scattering. A summary is presented of optical systems currently in use, together with requirements imposed by storage rings and experimental design. Advances are recommended in intensity, collimation, focus, and spectral purity of synchrotron beam lines. Any new storage ring mirror is noted to be required to dissipate several hundred watts, something which polished Cu is mentioned as being capable of handling, while standard SiO2 mirrors cannot.

  19. Monochromatization of synchrotron radiation for studies in photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Murty, P.S.

    1981-01-01

    Synchrotron radiation provides a tunable photon source which bridges the wavelength gap between HeI and AlKsub(α) radiation sources in photoelectron spectroscopy. The essential component for using synchrotron radiation is a monochromator. Some design features of the monochromators fabricated at Stanford, U.S.A., and Orsay, France, are described. The Stanford monochromator is a silicon crystal monochromator yielding 8 keV X-ray beam and is used with SPEAR storage ring facility, while the Orsay monochromator is a grazing incidence grating monochromator used for UPS studies. (M.G.B.)

  20. CAS CERN Accelerator School. Synchrotron radiation and free electron lasers. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1998-01-01

    These proceedings present the lectures given at the tenth specialised course organised by the CERN Accelerator School (CAS), the topic this time being 'Synchrotron Radiation and Free-electron Lasers'. A similar course was already given at Chester, UK in 1989 and whose proceedings were published as CERN 90-03. However, recent progress in this field has been so rapid that it became urgent to present a revised version of the course. Starting with a review of the characteristics of synchrotron radiation there follows introductory lectures on electron dynamics in storage rings, beam insertion devices, and beam current and radiation brightness limits. These themes are then developed with more detailed lectures on lattices and emittance, wigglers and undulators, current limitations, beam lifetime and quality, diagnostics and beam stability. Finally lectures are presented on linac and storage ring free-electron lasers. (orig.)

  1. X-ray energy-dispersive diffractometry using synchrotron radiation

    International Nuclear Information System (INIS)

    Buras, B.; Staun Olsen, J.; Gerward, L.

    1977-03-01

    In contrast to bremsstrahlung from X-ray tubes, synchrotron radiation is very intense, has a smooth spectrum, its polarization is well defined, and at DESY the range of useful photon energies can be extended to about 70 keV and higher. In addition the X-ray beam is very well collimated. Thus synchrotron radiation seems to be an ideal X-ray source for energy-dispersive diffractometry. This note briefly describes the experimental set up at DESY, shows examples of results, and presents the underlying 'philosophy' of the research programme. (Auth.)

  2. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  3. Synchrotron radiation applications in medical research at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1997-08-01

    In the relatively short time that synchrotrons have been available to the scientific community, their characteristic beams of UV and X-ray radiation have been applied to virtually all areas of medical science which use ionizing radiation. The ability to tune intense monochromatic beams over wide energy ranges clearly differentiates these sources from standard clinical and research tools. The tunable spectrum, high intrinsic collimation of the beams, polarization and intensity of the beams make possible in-vitro and in-vivo research and therapeutic programs not otherwise possible. From the beginning of research operation at the National Synchrotron Light Source (NSLS), many programs have been carrying out basic biomedical research. At first, the research was limited to in-vitro programs such as the x-ray microscope, circular dichroism, XAFS, protein crystallography, micro-tomography and fluorescence analysis. Later, as the coronary angiography program made plans to move its experimental phase from SSRL to the NSLS, it became clear that other in-vivo projects could also be carried out at the synchrotron. The development of SMERF (Synchrotron Medical Research Facility) on beamline X17 became the home not only for angiography but also for the MECT (Multiple Energy Computed Tomography) project for cerebral and vascular imaging. The high energy spectrum on X17 is necessary for the MRT (Microplanar Radiation Therapy) experiments. Experience with these programs and the existence of the Medical Programs Group at the NSLS led to the development of a program in synchrotron based mammography. A recent adaptation of the angiography hardware has made it possible to image human lungs (bronchography). Fig. 1 schematically depicts the broad range of active programs at the NSLS

  4. The Stanford Synchrotron Radiation Laboratory, 20 years of synchrotron light

    International Nuclear Information System (INIS)

    Cantwell, K.

    1993-08-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) is now operating as a fully dedicated light source with low emittance electron optics, delivering high brightness photon beams to 25 experimental stations six to seven months per year. On October 1, 1993 SSRL became a Division of the Stanford Linear Accelerator Center, rather than an Independent Laboratory of Stanford University, so that high energy physics and synchrotron radiation now function under a single DOE contract. The SSRL division of SLAC has responsibility for operating, maintaining and improving the SPEAR accelerator complex, which includes the storage ring and a 3 GeV injector. SSRL has thirteen x-ray stations and twelve VUV/Soft x-ray stations serving its 600 users. Recently opened to users is a new spherical grating monochromator (SGM) and a multiundulator beam line. Circularly polarized capabilities are being exploited on a second SGM line. New YB 66 crystals installed in a vacuum double-crystal monochromator line have sparked new interest for Al and Mg edge studies. One of the most heavily subscribed stations is the rotation camera, which has been recently enhanced with a MAR imaging plate detector system for protein crystallography on a multipole wiggler. Under construction is a new wiggler-based structural molecular biology beam line with experimental stations for crystallography, small angle scattering and x-ray absorption spectroscopy. Plans for new developments include wiggler beam lines and associated facilities specialized for environmental research and materials processing

  5. MQRAD, a computer code for synchrotron radiation from quadrupole magnets

    International Nuclear Information System (INIS)

    Morimoto, Teruhisa.

    1984-01-01

    The computer code, MQRAD, is developed for the calculation of the synchrotron radiation from the particles passing through quadrupole magnets at the straight section of the electron-positron colliding machine. This code computes the distributions of photon numbers and photon energies at any given points on the beam orbit. In this code, elements such as the quadrupole magnets and the drift spaces can be divided into many sub-elements in order to obtain the results with good accuracy. The synchrotron radiation produced by inserted quadrupole magnets at the interaction region of the electron-positron collider is one of the main background sources to the detector. The masking system against the synchrotron radiation at TRISTAN is very important because of the relatively high beam energy and the long straight section, which are 30 GeV and 100 meters, respectively. MQRAD has been used to design the masking system of the TOPAZ detector and the result is presented here as an example. (author)

  6. Synchrotron radiation

    International Nuclear Information System (INIS)

    Knotek, M.L.

    1987-01-01

    Synchrotron radiation has had a revolutionary effect on a broad range of scientific studies, from physics, chemistry and metallurgy to biology, medicine and geoscience. The situation during the last decade has been one of very rapid growth, there is a great vitality to the field and a capability has been given to a very broad range of scientific disciplines which was undreamed of just a decade or so ago. Here we will discuss some of the properties of synchrotron radiation that makes it so interesting and something of the sources in existence today including the National Synchrotron Light Source (NSLS). The NSLS is one of the new facilities built specifically for synchrotron radiation research and the model that was developed there for involvement of the scientific community is a good one which provides some good lessons for these facilities and others

  7. Microangiography in Living Mice Using Synchrotron Radiation

    International Nuclear Information System (INIS)

    Yuan Falei; Wang Yongting; Xie Bohua; Tang Yaohui; Guan Yongjing; Lu Haiyan; Yang Guoyuan; Xie Honglan; Du Guohao; Xiao Tiqiao

    2010-01-01

    Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-1 mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent. The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 μm/pixel. The optimal dose of contrast agent is 100 μl per injection and the injecting rate is 33 μl/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43±6.8 μm. There were no differences between LSAs from the left and right hemisphere (p<0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.

  8. Microangiography in Living Mice Using Synchrotron Radiation

    Science.gov (United States)

    Yuan, Falei; Wang, Yongting; Guan, Yongjing; Lu, Haiyan; Xie, Bohua; Tang, Yaohui; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Yang, Guo-Yuan

    2010-07-01

    Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-1 mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent. The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 μm/pixel. The optimal dose of contrast agent is 100 μl per injection and the injecting rate is 33 μl/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43±6.8 μm. There were no differences between LSAs from the left and right hemisphere (p<0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.

  9. The LBL [Lawrence Berkeley Laboratory] 1-2 GeV synchrotron radiation source

    International Nuclear Information System (INIS)

    Cornacchia, M.

    1987-03-01

    A description is presented of the conceptual design of the 1 to 2 GeV Synchrotron Radiation Source proposed for construction at Lawrence Berkeley Laboratory. This facility is designed to produce ultraviolet and soft x-ray radiation. The accelerator complex consists of an injection system (linac plus booster synchrotron) and a low-emittance storage ring optimized for insertion devices. Eleven straight sections are available for undulators and wigglers, and up to 48 photon beam lines may ultimately emanate from bending magnets. Design features of the radiation source are the high brightness of the photon beams, the very short pulses (tens of picoseconds), and the tunability of the radiation

  10. Electromagnetic Coupling Between High Intensity LHC Beams and the Synchrotron Radiation Monitor Light Extraction System

    CERN Document Server

    Andreazza, W; Bravin, E; Caspers, F; Garlasch`e, M; Gras, J; Goldblatt, A; Lefevre, T; Jones, R; Metral, E; Nosych, A; Roncarolo_, F; Salvant, B; Trad, G; Veness, R; Vollinger, C; Wendt, M

    2013-01-01

    The CERN LHC is equipped with two Synchrotron Radiation Monitor (BSRT) systems used to characterise transverse and longitudinal beam distributions. Since the end of the 2011 LHC run the light extraction system, based on a retractable mirror, has suffered deformation and mechanical failure that is correlated to the increase in beam intensity. Temperature probes have associated these observations to a strong heating of the mirror support with a dependence on the longitudinal bunch length and shape, indicating the origin as electromagnetic coupling between the beam and the structure. This paper combines all this information with the aim of characterising and improving the system in view of its upgrade during the current LHC shutdown. Beam-based observations are presented along with electromagnetic and thermomechanical simulations and complemented by laboratory measurements, including the study of the RF properties of different mirror bulk and coating materials.

  11. Synchrotron radiation

    International Nuclear Information System (INIS)

    Nave, C.; Quinn, P.; Blake, R.J.

    1988-01-01

    The paper on Synchrotron Radiation contains the appendix to the Daresbury Annual Report 1987/88. The appendix is mainly devoted to the scientific progress reports on the work at the Synchrotron Radiation Source in 1987/8. The parameters of the Experimental Stations and the index to the Scientific Reports are also included in the appendix. (U.K.)

  12. European Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Buras, B.

    1985-01-01

    How a European Synchrotron Radiation Facility has developed into a detailed proposal recently accepted as the basis for construction of the facility at Grenoble is discussed. In November 1977, the General Assembly of the European Science Foundation (ESF) approved the report of the ESF working party on synchrotron radiation entitled Synchrotron Radiation - a Perspective View for Europe. This report contained as one of its principal recommendations that work should commence on a feasibility study for a European synchrotron radiation laboratory having a dedicated hard X-ray storage ring and appropriate advanced instrumentation. In order to prepare a feasibility study the European Science Foundation set up the Ad-hoc Committee on Synchrotron Radiation, which in turn formed two working groups: one for the machine and another for instrumentation. This feasibility study was completed in 1979 with the publication of the Blue Book describing in detail the so called 1979 European Synchrotron Radiation Facility. The heart of the facility was a 5 GeV electron storage ring and it was assumed that mainly the radiation from bending magnets will be used. The facility is described

  13. Chemistry with synchrotron radiation

    International Nuclear Information System (INIS)

    Preses, J.; Grover, J.R.; White, M.G.; Kvick, A.

    1990-01-01

    An accidental by-product of high-energy physics, synchrotron radiation, has emerged as one of the most powerful tools for the understanding of chemical reactions. Advances made by using synchrotron radiation in physical chemistry are reviewed herein. Descriptions of experiments exploiting the many ways that synchrotron radiation can be manipulated are presented. These manipulations include intensification of the radiation and compression or shifting of its spectral structure. Combinations of the use of synchrotron radiation, which provides access to very short wavelengths and is, at the same time, continuously and easily tunable, with laser radiation, which offers much higher resolution and much more intense radiation per pulse, but is difficult to tune in the ultraviolet region of the spectra, gives the chemist a way to map a molecule's potential energy curve, to note the lengths and strengths of chemical bonds, and to predict and explain novel reactions of more complex molecules. The use of diffraction of x-rays to study the spacing of atoms in crystals is discussed. Various applications of synchrotron radiation to studies of the fluorescence of hydrocarbons and to the chiral dichroism studies of other natural products like DNA and RNA are described. Methods for enhancing synchrotron light sources by insertion devices, such as wigglers and undulators, that increase the available photo flux and construction of new sources of synchrotron radiation are mentioned

  14. Extinction correction and synchrotron radiation

    International Nuclear Information System (INIS)

    Suortti, P.

    1983-01-01

    The primary extinction factor ysub(p) is defined as the ratio of the integrated reflection from a coherently diffracting domain to the integrated kinematical reflection from the same domain. When ysub(p) is larger than 0.5 it may be approximated by ysub(p)= exp[-(αdelta) 2 ], where α is about 0.5 and delta the average size of the coherent domain when measured in units of the extinction length Λ, delta = D/Λ. Transfer equations are applied to symmetrical Laue diffraction, and the reflectivity per unit length, sigma(epsilon) is solved from the measured reflecting ratio as a function of the rocking angle epsilon = theta -thetasub(B). Measurements with conventional x-ray sources are made on single crystal slabs of Be and Si using AgKβ, MoKα 1 and CuKα radiation. The primary extinction factor ysub(p)(epsilon) is solved from a point-by-point comparison of two measurements where the extinction length Λ is changed by varying the polarization and/or wavelength of the x-ray beam. The results show that primary and secondary extinction are strongly correlated, and that the customary assumption of independent size and orientation distributions of crystal mosaics is unjustified. The structure factors for Be and Si show close agreement with other recent measurements and calculations. The limitations of the method are discussed in length, particularly the effects of beam divergences and incoherence of the rays in the crystal. It is concluded that under typical experimental conditions the requirements of the theory are met. Practical limitations arising from the use of characteristic wavelengths and unpolarized radiation prohibit the use of the full potential of the method. The properties of a synchrotron radiation source are compared with a conventional x-ray source, and it is demonstrated that the experimental limitations can be removed by the use of synchrotron radiation. A diffraction experiment with synchrotron radiation is outlined, as well as generalization of the

  15. Room-temperature macromolecular serial crystallography using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Francesco Stellato

    2014-07-01

    Full Text Available A new approach for collecting data from many hundreds of thousands of microcrystals using X-ray pulses from a free-electron laser has recently been developed. Referred to as serial crystallography, diffraction patterns are recorded at a constant rate as a suspension of protein crystals flows across the path of an X-ray beam. Events that by chance contain single-crystal diffraction patterns are retained, then indexed and merged to form a three-dimensional set of reflection intensities for structure determination. This approach relies upon several innovations: an intense X-ray beam; a fast detector system; a means to rapidly flow a suspension of crystals across the X-ray beam; and the computational infrastructure to process the large volume of data. Originally conceived for radiation-damage-free measurements with ultrafast X-ray pulses, the same methods can be employed with synchrotron radiation. As in powder diffraction, the averaging of thousands of observations per Bragg peak may improve the ratio of signal to noise of low-dose exposures. Here, it is shown that this paradigm can be implemented for room-temperature data collection using synchrotron radiation and exposure times of less than 3 ms. Using lysozyme microcrystals as a model system, over 40 000 single-crystal diffraction patterns were obtained and merged to produce a structural model that could be refined to 2.1 Å resolution. The resulting electron density is in excellent agreement with that obtained using standard X-ray data collection techniques. With further improvements the method is well suited for even shorter exposures at future and upgraded synchrotron radiation facilities that may deliver beams with 1000 times higher brightness than they currently produce.

  16. Applications of Synchrotron Radiation Micro Beams in Cell Micro Biology and Medicine

    CERN Document Server

    Ide-Ektessabi, Ari

    2007-01-01

    This book demonstrates the applications of synchrotron radiation in certain aspects of cell microbiology, specifically non-destructive elemental analyses, chemical-state analyses and imaging (distribution) of the elements within a cell. The basics for understanding and applications of synchrotron radiation are also described to make the contents easier to be understood for a wide group of researchers in medical and biological sciences who might not be familiar with the physics of synchrotron radiation. The two main techniques that are discussed in this book are the x-ray fluorescence spectroscopy (XRF) and the x-ray fine structure analysis (XAFS). Application of these techniques in investigations of several important scientific fields, such as neurodegeneration and other diseases related to cell malfunctioning, are demonstrated in this book.

  17. Synchrotron radiation

    International Nuclear Information System (INIS)

    Pattison, P.; Quinn, P.

    1990-01-01

    This report details the activities in synchrotron radiation and related areas at Daresbury Laboratory during 1989/90. The number and scope of the scientific reports submitted by external users and in-house staff is a reflection of the large amount of scheduled beamtime and high operating efficiency achieved at the Synchrotron Radiation Source (SRS) during the past year. Over 4000 hours of user beam were available, equivalent to about 80% of the total scheduled time. Many of the reports collected here illustrate the increasing technical complexity of the experiments now being carried out at Daresbury. Provision of the appropriate technical and scientific infrastructure and support is a continuing challenge. The development of the Materials Science Laboratory together with the existing Biological Support Laboratory will extend the range of experiments which can be carried out on the SRS. This will particularly facilitate work in which the sample must be prepared or characterised immediately before or during an experiment. The year 1989/90 has also seen a substantial upgrade of several stations, especially in the area of x-ray optics. Many of the advantages of the High Brightness Lattice can only be exploited effectively with the use of focusing optics. As the performance of these stations improves, the range of experiments which are feasible on the SRS will be extended significantly. (author)

  18. Application of white beam synchrotron radiation topography to the analysis of twins

    International Nuclear Information System (INIS)

    Yao, G.D.; Dudley, M.; Hou, S.Y.; DiSalvo, R.

    1991-01-01

    White beam synchrotron X-ray topography (WBSXRT) has been used to characterize room temperature twinning structures in lanthanum gallate and p-terphenyl single crystals. Both Laue and Bragg geometries are utilized to reveal the nature of twinning in LaGaO 3 . The geometric relationships between the twin related domains and the directions of the corresponding diffracted beams are used to establish the presence of reflection twins on (1anti 12) orth , (1anti 1anti 2) orth and (1anti 10) orth planes. Also described is the application of WBSXRT to reveal the twin law in the solution grown organic crystal p-terphenyl. The active twin plane was unambiguously determined to be (201) by determination of the orientation relationship between parent and twinned structures through Laue pattern analysis. Twin lamellae with the same twin plane were also observed. For both materials, no radiation damage was observed throughout the experiments. These results demonstrate the usefulness of WBSXRT for the study of twins. (orig.)

  19. Application of white beam synchrotron radiation topography to the analysis of twins

    Science.gov (United States)

    Yao, G.-D.; Dudley, M.; Hou, S.-Y.; DiSalvo, R.

    1991-05-01

    White beam synchrotron X-ray topography (WBSXRT) has been used to characterize room temperature twinning structures in lanthanum gallate and P-terphenyl single crystals. Both Laue and Bragg geometries are utilized to reveal the nature of twinning in LaGaO 3. The geometric relationships between the twin related domains and the directions of the corresponding diffracted beams are used to establish the presence of reflection twins on (11¯2) orth, (11¯2¯) orth and (11¯0) orth planes. Also described is the application of WBSXRT to reveal the twin law in the solution grown organic crystal p-terphenyl. The active twin plane was unambiguously determined to be (201) by determination of the orientation relationship between parent and twinned structures through Laue pattern analysis. Twin lamellae with the same twin plane were also observed. For both materials, no radiation damage was observed throughout the experiments. These results demonstrate the usefulness of WBSXRT for the study of twins.

  20. Application of white beam synchrotron radiation topography to the analysis of twins

    Energy Technology Data Exchange (ETDEWEB)

    Yao, G.D.; Dudley, M.; Hou, S.Y.; DiSalvo, R. (Dept. of Materials Science and Engineering, SUNY, Stony Brook, NY (USA))

    1991-05-01

    White beam synchrotron X-ray topography (WBSXRT) has been used to characterize room temperature twinning structures in lanthanum gallate and p-terphenyl single crystals. Both Laue and Bragg geometries are utilized to reveal the nature of twinning in LaGaO{sub 3}. The geometric relationships between the twin related domains and the directions of the corresponding diffracted beams are used to establish the presence of reflection twins on (1anti 12){sub orth}, (1anti 1anti 2){sub orth} and (1anti 10){sub orth} planes. Also described is the application of WBSXRT to reveal the twin law in the solution grown organic crystal p-terphenyl. The active twin plane was unambiguously determined to be (201) by determination of the orientation relationship between parent and twinned structures through Laue pattern analysis. Twin lamellae with the same twin plane were also observed. For both materials, no radiation damage was observed throughout the experiments. These results demonstrate the usefulness of WBSXRT for the study of twins. (orig.).

  1. Synchrotron radiation from protons

    International Nuclear Information System (INIS)

    Dutt, S.K.

    1992-12-01

    Synchrotron radiation from protons, though described by the same equations as the radiation from electrons, exhibits a number of interesting features on account of the parameters reached in praxis. In this presentation, we shall point out some of the features relating to (i) normal synchrotron radiation from dipoles in proton machines such as the High Energy Booster and the Superconducting Super Collider; (ii) synchrotron radiation from short dipoles, and its application to light monitors for proton machines, and (iii) synchrotron radiation from undulators in the limit when, the deflection parameter is much smaller than unity. The material for this presentation is taken largely from the work of Hofmann, Coisson, Bossart, and their collaborators, and from a paper by Kim. We shall emphasize the qualitative aspects of synchrotron radiation in the cases mentioned above, making, when possible, simple arguments for estimating the spectral and angular properties of the radiation. Detailed analyses can be found in the literature

  2. Design of x-ray diagnostic beam line for a synchrotron radiation source and measurement results

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Akash Deep, E-mail: akash-deep@rrcat.gov.in; Karnewar, A.K.; Ojha, A.; Shrivastava, B.B.; Holikatti, A.C.; Puntambekar, T.A.; Navathe, C.P.

    2014-08-01

    Indus-2 is a 2.5 GeV synchrotron radiation source (SRS) operational at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We have designed, developed and commissioned x-ray diagnostic beam line (X-DBL) at the Indus-2. It is based on pinhole array imaging (8–18 keV). We have derived new equations for online measurements of source position and emission angle with pinhole array optics. Measured values are compared with the measurements at an independent x-ray beam position monitor (staggered pair blade monitor) installed in the X-DBL. The measured values are close to the theoretical expected values within ±12 µm (or ±1.5 μrad) for sufficiently wide range of the beam movements. So, beside the beam size and the beam emittance, online information for the vertical position and angle is also used in the orbit steering. In this paper, the various design considerations of the X-DBL and online measurement results are presented.

  3. Applications of Indus-1 synchrotron radiation source

    International Nuclear Information System (INIS)

    Nandedkar, R.V.

    2003-01-01

    Indus-1 is a 450 MeV electron storage ring. This is a soft X-ray and Vacuum Ultra Violet radiation source with the critical wavelength being 61 A. In this source, the first beam was stored in mid-1999 and was then made available, after initial storage and beam cleaning of the vacuum components, for beamline installation in the early 2000. Two beamlines are commissioned and are working. Other beamlines are in the advanced stage of commissioning. For Indus-1, the injection system consists of a 20 MeV classical microtron as a preinjector and a booster synchrotron that can go up to 700 MeV. For Indus-1, the injection into the storage ring is at full 450 MeV from this booster synchrotron

  4. Generation of Coherent Synchrotron Radiation from JAERI-ERL

    CERN Document Server

    Hajima, R; Kikuzawa, N; Minehara, E J; Nagai, R; Nishitani, T; Sawamura, M

    2005-01-01

    An electron beam with high-average current and short bunch length can be accelerated by energy-recovery linac. Coherent synchrotron radiation (CSR) from such an electron beam will be a useful light source around millimeter wavelength. We report results from a preliminary measurement of CSR emitted from a bending magnet of JAERI-ERL. Possible enhancement of CSR power by FEL micro-bunching is also discussed.

  5. Synchrotron radiation resonance Raman spectroscopy (SR3S)

    International Nuclear Information System (INIS)

    Hester, R.E.

    1979-01-01

    The use of normal Raman spectroscopy and resonance Raman spectroscopy to study the structure of molecular species and the nature of their chemical bonds is discussed. The availability of a fully tunable radiation source (the Synchrotron Radiation Source) extending into the ultraviolet raises the possibility of using synchrotron radiation resonance Raman spectroscopy as a sensitive and specific analytical probe. The pulsed nature of the SRS beam may be exploited for time-resolved resonance Raman spectroscopy and its high degree of polarization could be very helpful in the interpretation of spectra. The possibilities are considered under the headings: intensity requirements and comparison with other sources; some applications (e.g. structure of proteins; study of iron-porphyrin unit; study of chlorophylls). (U.K.)

  6. A critical experimental test of synchrotron radiation theory with 3rd generation light source

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2016-05-01

    A recent ''beam splitting'' experiment at LCLS apparently demonstrated that after a microbunched electron beam is kicked on a large angle compared to the divergence of the FEL radiation, the microbunching wave front is readjusted along the new direction of motion of the kicked beam. Therefore, coherent radiation from an undulator placed after the kicker is emitted along the kicked direction without suppression. This strong emission of coherent undulator radiation in the kicked direction cannot be explained in the framework of conventional synchrotron radiation theory. In a previous paper we explained this puzzle. We demonstrated that, in accelerator physics, the coupling of fields and particles is based, on the one hand, on the use of results from particle dynamics treated according to the absolute time convention and, on the other hand, on the use of Maxwell equations treated according to the standard (Einstein) synchronization convention. Here lies the misconception which led to the strong qualitative disagreement between theory and experiment. After the ''beam splitting'' experiment at LCLS, it became clear that the conventional theory of synchrotron radiation cannot ensure the correct description of coherent and spontaneous emission from a kicked electron beam, nor the emission from a beam with finite angular divergence, in an undulator or a bending magnet. However, this result requires further experimental confirmation. In this publication we propose an uncomplicated and inexpensive experiment to test synchrotron radiation theory at 3rd generation light sources.

  7. A critical experimental test of synchrotron radiation theory with 3rd generation light source

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-05-15

    A recent ''beam splitting'' experiment at LCLS apparently demonstrated that after a microbunched electron beam is kicked on a large angle compared to the divergence of the FEL radiation, the microbunching wave front is readjusted along the new direction of motion of the kicked beam. Therefore, coherent radiation from an undulator placed after the kicker is emitted along the kicked direction without suppression. This strong emission of coherent undulator radiation in the kicked direction cannot be explained in the framework of conventional synchrotron radiation theory. In a previous paper we explained this puzzle. We demonstrated that, in accelerator physics, the coupling of fields and particles is based, on the one hand, on the use of results from particle dynamics treated according to the absolute time convention and, on the other hand, on the use of Maxwell equations treated according to the standard (Einstein) synchronization convention. Here lies the misconception which led to the strong qualitative disagreement between theory and experiment. After the ''beam splitting'' experiment at LCLS, it became clear that the conventional theory of synchrotron radiation cannot ensure the correct description of coherent and spontaneous emission from a kicked electron beam, nor the emission from a beam with finite angular divergence, in an undulator or a bending magnet. However, this result requires further experimental confirmation. In this publication we propose an uncomplicated and inexpensive experiment to test synchrotron radiation theory at 3rd generation light sources.

  8. Brain tumors and synchrotron radiation: Methodological developments in quantitative brain perfusion imaging and radiation therapy

    International Nuclear Information System (INIS)

    Adam, Jean-Francois

    2005-01-01

    High-grade gliomas are the most frequent type of primary brain tumors in adults. Unfortunately, the management of glioblastomas is still mainly palliative and remains a difficult challenge, despite advances in brain tumor molecular biology and in some emerging therapies. Synchrotron radiation opens fields for medical imaging and radiation therapy by using monochromatic intense x-ray beams. It is now well known that angiogenesis plays a critical role in the tumor growth process and that brain perfusion is representative of the tumor mitotic activity. Synchrotron radiation quantitative computed tomography (SRCT) is one of the most accurate techniques for measuring in vivo contrast agent concentration and thus computing precise and accurate absolute values of the brain perfusion key parameters. The methodological developments of SRCT absolute brain perfusion measurements as well as their preclinical validation are detailed in this thesis. In particular, absolute cerebral volume and blood brain barrier permeability high-resolution (pixel size 2 ) parametric maps were reported. In conventional radiotherapy, the treatment of these tumors remains a delicate challenge, because the damages to the surrounding normal brain tissue limit the amount of radiation that can be delivered. One strategy to overcome this limitation is to infuse an iodinated contrast agent to the patient during the irradiation. The contrast agent accumulates in the tumor, through the broken blood brain barrier, and the irradiation is performed with kilovoltage x rays, in tomography mode, the tumor being located at the center of rotation and the beam size adjusted to the tumor dimensions. The dose enhancement results from the photoelectric effect on the heavy element and from the irradiation geometry. Synchrotron beams, providing high intensity, tunable monochromatic x rays, are ideal for this treatment. The beam properties allow the selection of monochromatic irradiation, at the optimal energy, for a

  9. Synchrotron radiation

    International Nuclear Information System (INIS)

    Norman, D.; Walker, R.P.; Durham, P.J.; Ridley, P.A.

    1986-01-01

    The paper on synchrotron radiation is the appendix to the Daresbury (United Kingdom) annual report, 1985/86. The bulk of the volume is made up of the progress reports for the work carried out during the year under review using the Synchrotron Radiation Source (SRS) at Daresbury. The Appendix also contains: the scientific programmes at the the SRS, progress on beamlines, instrumentation and computing developments, and activities connected with accelerator development. (U.K.)

  10. Storage ring design of the 8 GeV synchrotron radiation facility (SPring-8)

    International Nuclear Information System (INIS)

    Hara, M.; Bc, S.H.; Motonaga, S.

    1990-01-01

    In Japan, RIKEN (Institute of Physical and Chemical Research) and JAERI (Japan Atomic Energy Research Institute) have organized a joint design team and started a design study for an 8 GeV synchrotron radiation X-ray source. This paper outlines the status of the design study for the 8 GeV highly brilliant synchrotron radiation X-ray source ring named Super Photon Ring (SPring-8). The facility consists of a main storage ring, a full-energy injector booster synchrotron and a pre-injector 1 GeV linac. The injector linac and synchrotron are laid outside the storage ring because to permit the use of the linac and synchrotron not only as an injector but also as an electron or positron beam source. The purpose of the facility is to provide stable photon beams with high brilliance in the X-ray region. The energy of the stored electrons (positrons) is fixed at 8 GeV to fulfill the required condition using conventional type insertion devices. (N.K.)

  11. Status report of the Cornell High Energy Synchrotron Radiation Source (CHESS)

    International Nuclear Information System (INIS)

    Batterman, B.W.

    1980-01-01

    The Wilson Laboratory at Cornell University has done pioneering work on the development of high energy synchrotrons. In the last decade the 12 GeV Wilson Synchrotron was the most energetic electron synchrotron in the world. In 1975 plans were formulated at the Wilson Laboratory to build a new electron-positron storage ring to cover the range from 4-8 GeV. The storage ring was to be constructed in the same tunnel as the present synchrotron and to use the latter as an injector for the ring. A novel injection feature was to be incorporated, namely, vernier phase compression. In this scheme, positron coalesence is to be performed by compressing a 30-60 bunch positron beam by tranferring individual bunches from the storage ring to the synchrotron and stacking back into the storage ring. This procedure takes advantage of the slight circumferential difference between the storage ring and the synchrotron. Positron beams of 10 mA have been achieved in CESR at the present time. The first colliding beam studies were performed in an October 1979 two-week running period at which time CHESS, the synchrotron radiation source associated with CESR, also had its first extended experience with synchrotron light. (orig.)

  12. Scaling behavior of circular colliders dominated by synchrotron radiation

    Science.gov (United States)

    Talman, Richard

    2015-08-01

    The scaling formulas in this paper — many of which involve approximation — apply primarily to electron colliders like CEPC or FCC-ee. The more abstract “radiation dominated” phrase in the title is intended to encourage use of the formulas — though admittedly less precisely — to proton colliders like SPPC, for which synchrotron radiation begins to dominate the design in spite of the large proton mass. Optimizing a facility having an electron-positron Higgs factory, followed decades later by a p, p collider in the same tunnel, is a formidable task. The CEPC design study constitutes an initial “constrained parameter” collider design. Here the constrained parameters include tunnel circumference, cell lengths, phase advance per cell, etc. This approach is valuable, if the constrained parameters are self-consistent and close to optimal. Jumping directly to detailed design makes it possible to develop reliable, objective cost estimates on a rapid time scale. A scaling law formulation is intended to contribute to a “ground-up” stage in the design of future circular colliders. In this more abstract approach, scaling formulas can be used to investigate ways in which the design can be better optimized. Equally important, by solving the lattice matching equations in closed form, as contrasted with running computer programs such as MAD, one can obtain better intuition concerning the fundamental parametric dependencies. The ground-up approach is made especially appropriate by the seemingly impossible task of simultaneous optimization of tunnel circumference for both electrons and protons. The fact that both colliders will be radiation dominated actually simplifies the simultaneous optimization task. All GeV scale electron accelerators are “synchrotron radiation dominated”, meaning that all beam distributions evolve within a fraction of a second to an equilibrium state in which “heating” due to radiation fluctuations is canceled by the “cooling” in

  13. Synchrotron radiation in Australia

    International Nuclear Information System (INIS)

    Garrett, R.F.

    2002-01-01

    Full text: Synchrotron radiation research in Australia is entering a new era with the commencement of the Australian synchrotron project, which will construct a 3 GeV third generation synchrotron facility at Monash University in Victoria. To date Australian scientists have used overseas facilities, primarily those managed by the Australian Synchrotron Research Program in Japan and the USA. A fast developing and maturing Australian synchrotron user program has developed around these overseas facilities. The field of synchrotron radiation and its importance to a wide range of research will be introduced and Australia's current involvement and facilities will be described. The current status and technical specifications of the Australian synchrotron will be presented. Copyright (2002) Australian X-ray Analytical Association Inc

  14. Synchrotron radiation

    International Nuclear Information System (INIS)

    Poole, M.W.; Lea, K.R.

    1982-01-01

    A report is given on the work involving the Synchrotron Radiation Division of the Daresbury Laboratory during the period January 1981 - March 1982. Development of the source, beamlines and experimental stations is described. Progress reports from individual investigators are presented which reveal the general diversity and interdisciplinary nature of the research which benefits from access to synchrotron radiation and the associated facilities. Information is given on the organisation of the Division and publications written by the staff are listed. (U.K.)

  15. Design and development of radiation absorber for sighting beam line

    International Nuclear Information System (INIS)

    Sridhar, R.; Shukla, S.K.

    2005-01-01

    During the commissioning of Indus-2 , it is necessary to view the synchrotron radiation that will be emanating from the dipole exit ports. The 10 0 beam line from dipole 11 was earmarked for sighting beam line. The synchrotron radiation power density would be around 340 watts on the photon absorber inside the radiation absorber module, at the specified beam power of Indus-2. The beam striking on this photon absorber produces x-rays and Bremsstrahlung radiation. These are to be stopped and absorbed by radiation absorber. The photon absorber and the radiation absorber are integrated in a single vacuum chamber and actuated by a pneumatic cylinder connected using a bellow. Radiation absorber was needed to isolate the diagnostic components and to protect them from radiation a well as heat when they were not in use. The paper describes the design, calculation and development of the dynamic photon cum radiation absorber. The ultimate vacuum performance is also described. (author)

  16. Synchrotron radiation

    International Nuclear Information System (INIS)

    Hallmeier, K.H.; Meisel, A.; Ranft, J.

    1982-01-01

    The physical background and the properties of synchrotron radiation are described. The radiation offers many useful applications in the fields of spectroscopy and structural investigations. Some examples are given

  17. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  18. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    International Nuclear Information System (INIS)

    Jones, Keith W.

    1999-01-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  19. Uses of synchrotron radiation

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1982-01-01

    X-ray fluorescence has long been used as a technique for elemental analysis. X-ray fluorescence techniques have a number of features that make them attractive for application to biomedical samples. In the past few years synchrotron radiation x-ray sources have been developed and, because of their properties, their use can improve the sensitivity for trace element analysis by two to three orders of magnitude. Also, synchrotron radiation will make possible an x-ray microprobe with resolution in the micrometer range. The National Synchrotron Light Source (NSLS), a dedicated synchrotron radiation source recently built at Brookhaven National Laboratory, will have a facility for trace element analysis by x-ray fluorescence and will be available to all interested users

  20. A synchrotron-based X-ray exposure station for radiation biology experiments

    International Nuclear Information System (INIS)

    Thompson, A.C.; Blakely, E.A.; Bjornstad, K.A.; Chang, P.Y.; Rosen, C.J.; Schwarz, R.I.

    2007-01-01

    Synchrotron X-ray sources enable radiation biology experiments that are difficult with conventional sources. A synchrotron source can easily deliver a monochromatic, tunable energy, highly collimated X-ray beam of well-calibrated intensity. An exposure station at beamline 10.3.1 of the Advanced Light Source (ALS) has been developed which delivers a variable energy (5-20 keV) X-ray fan beam with very sharp edges (10-90% in less than 3 μm). A series of experiments have been done with a four-well slide where a stripe (100 μm widex18 mm long) of cells in each well has been irradiated and the dose varied from well to well. With this facility we have begun a series of experiments to study cells adjacent to irradiated cells and how they respond to the damage of their neighbors. Initial results have demonstrated the advantages of using synchrotron radiation for these experiments

  1. A synchrotron-based X-ray exposure station for radiation biology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.C. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States)], E-mail: acthompson@lbl.gov; Blakely, E.A.; Bjornstad, K.A. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States); Chang, P.Y. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States); SRI International, Menlo Park, CA (United States); Rosen, C.J.; Schwarz, R.I. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States)

    2007-11-11

    Synchrotron X-ray sources enable radiation biology experiments that are difficult with conventional sources. A synchrotron source can easily deliver a monochromatic, tunable energy, highly collimated X-ray beam of well-calibrated intensity. An exposure station at beamline 10.3.1 of the Advanced Light Source (ALS) has been developed which delivers a variable energy (5-20 keV) X-ray fan beam with very sharp edges (10-90% in less than 3 {mu}m). A series of experiments have been done with a four-well slide where a stripe (100 {mu}m widex18 mm long) of cells in each well has been irradiated and the dose varied from well to well. With this facility we have begun a series of experiments to study cells adjacent to irradiated cells and how they respond to the damage of their neighbors. Initial results have demonstrated the advantages of using synchrotron radiation for these experiments.

  2. Calculation of Coherent Synchrotron Radiation Impedance for a Beam Moving in a Curved Trajectory

    Science.gov (United States)

    Zhou, Demin; Ohmi, Kazuhito; Oide, Katsunobu; Zang, Lei; Stupakov, Gennady

    2012-01-01

    Coherent synchrotron radiation (CSR) fields are generated when a bunched beam moves along a curved trajectory. A new code, named CSRZ, was developed using finite difference method to calculate the longitudinal CSR impedance for a beam moving along a curved chamber. The method adopted in the code was originated by Agoh and Yokoya [Phys. Rev. ST Accel. Beams 7 (2004) 054403]. It solves the parabolic equation in the frequency domain in a curvilinear coordinate system. The chamber considered has uniform rectangular cross-section along the beam trajectory. The code was used to investigate the properties of CSR impedance of a single or a series of bending magnets. The calculation results indicate that the shielding effect due to outer chamber wall can be well explained by a simple optical approximation model at high frequencies. The CSR fields reflected by the outer wall may interfere with each other along a series of bending magnets and lead to sharp narrow peaks in the CSR impedance. In a small storage ring, such interference effect can be significant and may cause microwave instability, according to a simple estimate of instability threshold.

  3. Computer controlled vacuum control system for synchrotron radiation beam lines

    International Nuclear Information System (INIS)

    Goldberg, S.M.; Wang, C.; Yang, J.

    1983-01-01

    The increasing number and complexity of vacuum control systems at the Stanford Synchrotron Radiation Laboratory has resulted in the need to computerize its operations in order to lower costs and increase efficiency of operation. Status signals are transmitted through digital and analog serial data links which use microprocessors to monitor vacuum status continuously. Each microprocessor has a unique address and up to 256 can be connected to the host computer over a single RS232 data line. A FORTRAN program on the host computer will request status messages and send control messages via only one RS232 line per beam line, signal the operator when a fault condition occurs, take automatic corrective actions, warn of impending valve failure, and keep a running log of all changes in vacuum status for later recall. Wiring costs are thus greatly reduced and more status conditions can be monitored without adding excessively to the complexity of the system. Operators can then obtain status reports at various locations in the lab quickly without having to read a large number of meter and LED's

  4. An x-ray microprobe using focussing optics with a synchrotron radiation source

    International Nuclear Information System (INIS)

    Thompson, A.C.; Underwood, J.H.; Wu, Y.; Giauque, R.D.

    1989-01-01

    An x-ray microprobe can be used to produce maps of the concentration of elements in a sample. Synchrotron radiation provides x-ray beams with enough intensity and collimation to make possible elemental images with femtogram sensitivity. The use of focussing x-ray mirrors made from synthetic multilayers with a synchrotron x-ray beam allows beam spot sizes of less than 10 μm /times/ 10 μm to be produced. Since minimal sample preparation is required and a vacuum environment is not necessary, there will be a wide variety of applications for such microprobes. 8 refs., 6 figs

  5. Atomic physics and synchrotron radiation: The production and accumulation of highly charged ions

    International Nuclear Information System (INIS)

    Johnson, B.M.; Meron, M.; Agagu, A.; Jones, K.W.

    1986-01-01

    Synchrotron radiation can be used to produce highly-charged ions, and to study photoexcitation and photoionization for ions of virtually any element in the periodic table. To date, with few exceptions, atomic physics studies have been limited to rare gases and a few metal vapors, and to photoexcitation energies in the VUV region of the electromagnetic spectrum. These limitations can now be overcome using photons produced by high-brightness synchrotron storage rings, such as the x-ray ring at the National Synchrotron Light Source (NSLS) at Brookhaven. Furthermore, calculations indicate that irradiation of an ion trap with an intense energetic photon beam will result in a viable source of highly-charged ions that can be given the name PHOBIS: the PHOton Beam Ion Source. Promising results, which encourage the wider systematic use of synchrotron radiation in atomic physics research, have been obtained in recent experiments on VUV photoemission and the production and storage of multiply-charged ions. 26 refs., 4 figs., 1 tab

  6. The personnel protection system for a Synchrotron Radiation Accelerator Facility: Radiation safety perspective

    International Nuclear Information System (INIS)

    Liu, J.C.

    1993-05-01

    The Personnel Protection System (PPS) at the Stanford Synchrotron Radiation Laboratory is summarized and reviewed from the radiation safety point of view. The PPS, which is designed to protect people from radiation exposure to beam operation, consists of the Access Control System (ACS) and the Beam Containment System (BCS), The ACS prevents people from being exposed to the very high radiation level inside the shielding housing (also called a PPS area). The ACS for a PPS area consists of the shielding housing and a standard entry module at every entrance. The BCS prevents people from being exposed to the radiation outside a PPS area due to normal and abnormal beam losses. The BCS consists of the shielding (shielding housing and metal shielding in local areas), beam stoppers, active current limiting devices, and an active radiation monitor system. The system elements for the ACS and BCS and the associated interlock network are described. The policies and practices in setting up the PPS are compared with some requirements in the US Department of Energy draft Order of Safety of Accelerator Facilities

  7. Synchrotron Radiation

    International Nuclear Information System (INIS)

    Asfour, F.I

    2000-01-01

    Synchrotron light is produced by electron accelerators combined with storage rings. This light is generated over a wide spectral region; from infra-red (IR) through the visible and vacuum ultraviolet (VUV), and into the X-ray region. For relativistic electrons (moving nearly with the speed of light), most radiation is concentrated in a small cone with an opening angle of 1/gamma(some 0.1 to 1 milliradian),where gamma is the electron energy in units of rest energy (typically 10 3 -10 4 ). In synchrotron radiation sources (storage rings) highly relativistic electrons are stored to travel along a circular path for many hours. Radiation is caused by transverse acceleration due to magnetic forces(bending magnets). The radiation is emitted in pulses of 10-20 picosecond, separated by some 2 nanosecond or longer separation

  8. Application of PSA techniques to synchrotron radiation source facilities

    International Nuclear Information System (INIS)

    Sanyasi Rao, V.V.S.; Vinod, G.; Vaze, K.K.; Sarkar, P.K.

    2011-01-01

    Synchrotron radiation sources are increasingly being used in research and medical applications. Various instances of overexposure in these facilities have been reported in literature. These instances have lead to the investigation of the risks associated with them with a view to minimise the risks and thereby increasing the level of safety. In nuclear industry, Probabilistic Safety Assessment (PSA) methods are widely used to assess the risk from nuclear power plants. PSA presents a systematic methodology to evaluate the likelihood of various accident scenarios and their possible consequences using fault/event tree techniques. It is proposed to extend similar approach to analyse the risk associated with synchrotron radiation sources. First step for such an analysis is establishing the failure criteria, considering the regulatory stipulations on acceptable limits of dose due to ionization radiation from normal as well as beam loss scenarios. Some possible scenarios considered in this study are (1) excessive Bremsstrahlung in the ring due to loss of vacuum, (2) Target failure due to excessively focused beam (3) mis-directed/mis-steered beam (4) beam loss and sky shine. Hazard analysis needs to cover the beam transfer line, storage ring and experimental beam line areas. Various safety provisions are in place to minimize the hazards from these facilities such as access control interlock systems, radiation shielding for storage ring and beam lines and safety shutters (for beam lines). Experimental beam line area is the most vulnerable locations that need to be critically analysed. There are multiple beam lines, that have different safety provisions and consequences from postulated beam strikes will also be different and this increases the complexity of analysis. Similar studies conducted for such experimental facilities have identified that the radiation safety interlock system, used to control access to areas inside ring and the hutches of beamline facilities has an

  9. High flux and high resolution VUV beam line for synchrotron radiation

    International Nuclear Information System (INIS)

    Wilcke, H.; Boehmer, W.; Schwentner, N.

    1982-04-01

    A beam line has been optimized for high flux and high resolution in the wavelength range from 30 nm to 300 nm. Sample chambers for luminescence spectroscopy on gaseous, liquid and solid samples and for photoelectron spectroscopy have been integrated. The synchrotron radiation from the storage ring DORIS (at DESY, Hamburg) emitted into 50 mrad in horizontal and into 2.2 mrad in vertical direction is focused by a cylindrical and a plane elliptical mirror into the entrance slit of a 2m normal incidence monochromator. The light flux from the exit slit is focused by a rotational elliptic mirror onto the sample yielding a size of the light spot of 4 x 0.15 mm 2 . The light flux at the sample reaches 7 x 10 12 photons nm -1 s -1 at 8 eV photon energy for a current of 100 mA in DORIS. A resolution of 0.007 nm has been obtained. (orig.)

  10. Ten Thousand Years of Environment Assessment Using Synchrotron Radiation Micro Beam

    Science.gov (United States)

    Shirasawa, K.; Ide-Ektessabi, A.; Koizumi, A.; Azechi, M.

    2003-08-01

    The environment surrounding human has changed through civilization and industrialization, and through these developments, problems including the pollution from heavy metals such as lead and mercury have arisen. In this study, we analyzed major and trace elements in modern and prehistoric teeth by x-ray fluorescence (XRF) analysis using synchrotron radiation micro beam, in order to assess the changes of the environment through the civilization and the industrialization and their affects to the human. It is suggested that teeth accumulate elements in the mineral phase, hydroxiapatite, during their formation, and because there are no significant turnovers, teeth are concerned to be indicators of the environment of the donor. We first analyzed the elements on the surface of tooth from modern individual and tooth from human remains of Jomon period to assess the heavy metal concentration and effect of the diagenesis. The adhering ground elements on the prehistoric teeth showed high amount of Ti, Fe, Mn and other metallic elements.

  11. Medical applications of synchrotron radiation. Ch. 10

    International Nuclear Information System (INIS)

    Giacomini, J.C.; Gordon, H.J.

    1991-01-01

    Synchrotron radiation has a number of properties which make it uniquely suited for medical diagnostic imaging. The radiation is intense and can be readily monochromatized. With these highly intense, mono-chromatized X-ray beams, iodine K-edge di-chromatography can yield images which greatly enhance the visualization of iodine containing structures. As this technology continues to improve, the possibility of performing diagnostic cardiac, neuroradiological, and other vascular examinations with minimally invasive peripheral venous injections of iodinated contrast agent becomes increasingly practical. (author). 10 refs.; 6 figs

  12. High peak current operation of x-ray free-electron laser multiple beam lines by suppressing coherent synchrotron radiation effects

    Science.gov (United States)

    Hara, Toru; Kondo, Chikara; Inagaki, Takahiro; Togawa, Kazuaki; Fukami, Kenji; Nakazawa, Shingo; Hasegawa, Taichi; Morimoto, Osamu; Yoshioka, Masamichi; Maesaka, Hirokazu; Otake, Yuji; Tanaka, Hitoshi

    2018-04-01

    The parallel operation of multiple beam lines is an important means to expand the opportunity of user experiments at x-ray free-electron laser (XFEL) facilities. At SPring-8 Angstrom free-electron laser (SACLA), the multi-beam-line operation had been tested using two beam lines, but transverse coherent synchrotron radiation (CSR) effects at a dogleg beam transport severely limited the laser performance. To suppress the CSR effects, a new beam optics based on two double bend achromat (DBA) structures was introduced for the dogleg. After the replacement of the beam optics, high peak current bunches of more than 10 kA are now stably transported through the dogleg and the laser pulse output is increased by a factor of 2-3. In the multi-beam-line operation of SACLA, the electron beam parameters, such as the beam energy and peak current, can be adjusted independently for each beam line. Thus the laser output can be optimized and wide spectral tunability is ensured for all beam lines.

  13. Synchrotron radiation spectroscopy including X-ray absorption spectroscopy and industrial applications

    International Nuclear Information System (INIS)

    Oshima, Masaharu

    2016-01-01

    Recent trends of synchrotron radiation spectroscopy, especially X-ray absorption spectroscopy for industrial applications are introduced based on our latest results for energy efficient devices such as magnetic RAM, LSI and organic FET, power generation devices such as fuel cells, and energy storage devices such as Li ion batteries. Furthermore, future prospects of spectroscopy with higher energy resolution, higher spatial resolution, higher temporal resolution and operando spectroscopy taking advantage of much brighter synchrotron radiation beam at low emittance SR rings are discussed from the view point of practical applications. (author)

  14. Coherent Synchrotron Radiation in Storage Rings

    International Nuclear Information System (INIS)

    Venturini, Marco

    2002-01-01

    We take a detour from the main theme of this volume and present a discussion of coherent synchrotron radiation (CSR) in the context of storage rings rather than single-pass systems. Interest in this topic has been revived by a series of measurements carried out at several light source facilities. There is strong evidence that the observed coherent signal is accompanied by a beam instability, possibly driven by CSR itself. In this paper we review a ''self-consistent'' model of longitudinal beam dynamics in which CSR is the only agent of collective forces. The model yields numerical solutions that appear to reproduce the main features of the observations

  15. Application of synchrotron radiation to x-ray fluorescence analysis of trace elements

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jones, K.W.; Hanson, A.L.

    1986-08-01

    The development of synchrotron radiation x-ray sources has provided the means to greatly extend the capabilities of x-ray fluorescence analysis for determinations of trace element concentrations. A brief description of synchrotron radiation properties provides a background for a discussion of the improved detection limits compared to existing x-ray fluorescence techniques. Calculated detection limits for x-ray microprobes with micrometer spatial resolutions are described and compared with experimental results beginning to appear from a number of laboratories. The current activities and future plans for a dedicated x-ray microprobe beam line at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory are presented

  16. Synchrotron radiation techniques for the characterization of Nb$_{3}$Sn superconductors

    CERN Document Server

    Scheuerlein, C; Buta, F

    2009-01-01

    The high flux of high energy x-rays that can be provided through state-of-the-art high energy synchrotron beam lines has enabled a variety of new experiments with the highly absorbing Nb$_{3}$Sn superconductors. We report different experiments with Nb$_{3}$Sn strands that have been conducted at the ID15 High Energy Scattering beam line of the European Synchrotron Radiation Facility (ESRF). Synchrotron x-ray diffraction has been used in order to monitor phase transformations during in-situ reaction heat treatments prior to Nb$_{3}$Sn formation, and to monitor Nb$_{3}$Sn growth. Fast synchrotron micro-tomography was applied to study void growth during the reaction heat treatment of Internal Tin strands. The elastic strain in the different phases of fully reacted Nb$_{3}$Sn composite conductors can be measured by high resolution x-ray diffraction during in-situ tensile tests.

  17. National Synchrotron Light Source

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1979-01-01

    The National Synchrotron Light Source comprises two high intensity electron storage rings for the generation of intense fluxes of synchrotron radiation in the vuv wavelength domain (700 MeV e - ring) and in the x-ray wavelength domain (2.5 GeV e - ring). A description is presented of the basic facility and the characteristics of the synchrotron radiation sources. The present plans for specific beam lines will be enumerated and the planned use of beam wigglers and undulators will be discussed

  18. Use of synchrotron radiation in radiation biology research

    International Nuclear Information System (INIS)

    Yamada, Takeshi

    1981-01-01

    Synchrotron radiation (SR) holds great expectation as a new research tool in the new areas of material science, because it has the continuous spectral distribution from visible light to X-ray, and its intensity is 10 2 to 10 3 times as strong as that of conventional radiation sources. In the National Laboratory for High Energy Physics, a synchrotron radiation experimental facility has been constructed, which will start operation in fiscal 1982. With this SR, the photons having the wavelength in undeveloped region from vacuum ultraviolet to soft X-ray are obtained as intense mono-wavelength light. The SR thus should contribute to the elucidation of the fundamentals in the biological action of radiation. The following matters are described: synchrotron radiation, experimental facility using SR, electron storage ring, features of SR, photon factory plan and synchrotron radiation experimental facility, utilization of SR in radiation biology field. (J.P.N.)

  19. Infrared spectroscopy by use of synchrotron radiation

    International Nuclear Information System (INIS)

    Nanba, Takao

    1991-01-01

    During five years since the author wrote the paper on the utilization of synchrotron radiation in long wavelength region, it seems to be recognized that in synchrotron radiation, the light from infrared to milli wave can be utilized, and is considerably useful. Recently the research on coherent synchrotron radiation in this region using electron linac has been developed by Tohoku University group, and the high capability of synchrotron radiation as light source is verified. This paper is the report on the infrared spectroscopic research using incoherent synchrotron radiation obtained from the deflection electromagnet part of electron storage rings. Synchrotron radiation is high luminance white light source including from X-ray to micro wave. The example of research that the author carried out at UVSOR is reported, and the perspective in near future is mentioned. Synchrotron radiation as the light source for infrared spectroscopy, the intensity and dimensions of the light source, far infrared region and mid infrared region, far infrared high pressure spectroscopic experiment, and the heightening of luminance of synchrotron radiation as infrared light source are described. (K.I.)

  20. Probing droplets with biological colloidal suspensions on smart surfaces by synchrotron radiation micro- and nano-beams

    KAUST Repository

    Marinaro, Giovanni

    2015-03-01

    Droplets with colloidal biological suspensions evaporating on substrates with defined wetting properties generate confined environments for initiating aggregation and self-assembly processes. We describe smart micro- and nanostructured surfaces, optimized for probing single droplets and residues by synchrotron radiation micro- and nanobeam diffraction techniques. Applications are presented for Ac-IVD and β-amyloid (1-42) peptides capable of forming cross-β sheet structures. Complementary synchrotron radiation FTIR microspectroscopy addresses secondary structure formation. The high synchrotron radiation source brilliance enables fast raster-scan experiments. © 2015 Elsevier Ltd.

  1. Probing droplets with biological colloidal suspensions on smart surfaces by synchrotron radiation micro- and nano-beams

    KAUST Repository

    Marinaro, Giovanni; Accardo, Angelo; Benseny-Cases, Nú ria; Burghammer, Manfred C.; Castillo-Michel, Hiram A.; Cotte, Marine; Dante, Silvia; De Angelis, Francesco De; Di Cola, Emanuela; Di Fabrizio, Enzo M.; Hauser, C.; Riekel, Christian

    2015-01-01

    Droplets with colloidal biological suspensions evaporating on substrates with defined wetting properties generate confined environments for initiating aggregation and self-assembly processes. We describe smart micro- and nanostructured surfaces, optimized for probing single droplets and residues by synchrotron radiation micro- and nanobeam diffraction techniques. Applications are presented for Ac-IVD and β-amyloid (1-42) peptides capable of forming cross-β sheet structures. Complementary synchrotron radiation FTIR microspectroscopy addresses secondary structure formation. The high synchrotron radiation source brilliance enables fast raster-scan experiments. © 2015 Elsevier Ltd.

  2. Survival Analysis of F98 Glioma Rat Cells Following Minibeam or Broad-Beam Synchrotron Radiation Therapy

    International Nuclear Information System (INIS)

    Gil, Silvia; Sarun, Sukhéna; Biete, Albert; Prezado, Yolanda; Sabés, Manel

    2011-01-01

    In the quest of a curative radiotherapy treatment for gliomas new delivery modes are being explored. At the Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF), a new spatially-fractionated technique, called Minibeam Radiation Therapy (MBRT) is under development. The aim of this work is to compare the effectiveness of MBRT and broad-beam (BB) synchrotron radiation to treat F98 glioma rat cells. A dose escalation study was performed in order to delimit the range of doses where a therapeutic effect could be expected. These results will help in the design and optimization of the forthcoming in vivo studies at the ESRF. Two hundred thousand F98 cells were seeded per well in 24-well plates, and incubated for 48 hours before being irradiated with spatially fractionated and seamless synchrotron x-rays at several doses. The percentage of each cell population (alive, early apoptotic and dead cells, where either late apoptotic as necrotic cells are included) was assessed by flow cytometry 48 hours after irradiation, whereas the metabolic activity of surviving cells was analyzed on days 3, 4, and 9 post-irradiation by using QBlue test. The endpoint (or threshold dose from which an important enhancement in the effectiveness of both radiation treatments is achieved) obtained by flow cytometry could be established just before 12 Gy in the two irradiation schemes, whilst the endpoints assessed by the QBlue reagent, taking into account the cell recovery, were set around 18 Gy in both cases. In addition, flow cytometric analysis pointed at a larger effectiveness for minibeams, due to the higher proportion of early apoptotic cells. When the valley doses in MBRT equal the dose deposited in the BB scheme, similar cell survival ratio and cell recovery were observed. However, a significant increase in the number of early apoptotic cells were found 48 hours after the minibeam radiation in comparison with the seamless mode

  3. Impact of cardio-synchronous brain pulsations on Monte Carlo calculated doses for synchrotron micro- and mini-beam radiation therapy.

    Science.gov (United States)

    Manchado de Sola, Francisco; Vilches, Manuel; Prezado, Yolanda; Lallena, Antonio M

    2018-05-15

    To assess the effects of brain movements induced by heartbeat on dose distributions in synchrotron micro- and mini-beam radiaton therapy and to develop a model to help guide decisions and planning for future clinical trials. The Monte Carlo code PENELOPE was used to simulate the irradiation of a human head phantom with a variety of micro- and mini-beam arrays, with beams narrower than 100 μm and above 500 μm, respectively, and with radiation fields of 1cm × 2cm and 2cm × 2cm. The dose in the phantom due to these beams was calculated by superposing the dose profiles obtained for a single beam of 1μm × 2cm. A parameter δ, accounting for the total displacement of the brain during the irradiation and due to the cardio-synchronous pulsation, was used to quantify the impact on peak-to-valley dose ratios and the full-width at half-maximum. The difference between the maximum (at the phantom entrance) and the minimum (at the phantom exit) values of the peak-to-valley dose ratio reduces when the parameter δ increases. The full-width at half-maximum remains almost constant with depth for any δ value. Sudden changes in the two quantities are observed at the interfaces between the various tissues (brain, skull and skin) present in the head phantom. The peak-to-valley dose ratio at the center of the head phantom reduces when δ increases, remaining above 70% of the static value only for mini-beams and δ smaller than ~ 200 μm. Optimal setups for brain treatments with synchrotron radiation micro- and mini-beam combs depend on the brain displacement due to cardio-synchronous pulsation. Peak-to-valley dose ratios larger than 90% of the maximum values obtained in the static case occur only for mini-beams and relatively large dose rates. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. The experimental apparatus for synchrotron radiation Moessbauer spectroscopy of BL11 in SPring-8

    International Nuclear Information System (INIS)

    Mitsui, T.; Kitao, S.; Zhang, X.W.; Marushita, M.; Seto, M.

    2001-01-01

    Synchrotron radiation Moessbauer spectroscopy (time spectrum of nuclear forward scattering and nuclear resonant inelastic scattering) enables us to study both the electronic state and lattice dynamics of a target material. Furthermore, the excellent properties of synchrotron radiation (polarization, pulse, small beam size) promise us the unique studies for material science. In order to progress in these studies, some experimental apparatuses were installed in BL11XU of SPring-8

  5. Improving and extending performance at synchrotron radiation facilities

    International Nuclear Information System (INIS)

    Jackson, A.

    1997-05-01

    Synchrotron radiation facilities around the world have now matured through three generations. The latest facilities have all met or exceeded their design specifications and are learning how to cope with the ever more demanding requests of the user community, especially concerning beam stability. The older facilities remain competitive by extending the unique features of their design, and by developing novel insertion devices. In this paper we survey the beam characteristics achieved at third-generation sources and explore the improvements made at earlier generation facilities

  6. New theoretical results in synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G. [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation)]. E-mail: bagrov@phys.tsu.ru; Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil); Tlyachev, V.B. [Tomsk Institute of High Current Electronics, Akademicheskiy Avenue 4, Tomsk (Russian Federation); Jarovoi, A.T. [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation)

    2005-11-15

    One of the remarkable features of the relativistic electron synchrotron radiation is its concentration in small angle {delta}{approx}1/{gamma} (here {gamma}-relativistic factor: {gamma}=E/mc{sup 2}, E - energy, m - electron rest mass, c - light velocity) near rotation orbit plane [V.G. Bagrov, V.A. Bordovitsyn, V.G. Bulenok, V. Ya. Epp, Kinematical projection of pulsar synchrotron radiation profiles, in: Proceedings of IV ISTC Scientific Advisory Commitee Seminar on Basic Science in ISTC Aktivities, Akademgorodok, Novosibirsk, April 23-27, 2001, p. 293-300]. This theoretically predicted and experimentally confirmed feature is peculiar to total (spectrum summarized) radiating intensity. This angular distribution property has been supposed to be (at least qualitatively) conserved and for separate spectrum synchrotron radiation components. In the work of V.G. Bagrov, V.A. Bordovitsyn, V. Ch. Zhukovskii, Development of the theory of synchrotron radiation and related processes. Synchrotron source of JINR: the perspective of research, in: The Materials of the Second International Work Conference, Dubna, April 2-6, 2001, pp. 15-30 and in Angular dependence of synchrotron radiation intensity. http://lanl.arXiv.org/abs/physics/0209097, it is shown that the angular distribution of separate synchrotron radiation spectrum components demonstrates directly inverse tendency - the angular distribution deconcentration relatively the orbit plane takes place with electron energy growth. The present work is devoted to detailed investigation of this situation. For exact quantitative estimation of angular concentration degree of synchrotron radiation the definition of radiation effective angle and deviation angle is proposed. For different polarization components of radiation the dependence of introduced characteristics was investigated as a functions of electron energy and number of spectrum component.

  7. Towards Establishing of National Centre of Synchrotron Radiation in Poland

    International Nuclear Information System (INIS)

    Kolodziej, J.J.; Szymonski, M.

    2004-01-01

    Synchrotron radiation facilities (SRF) are established part of contemporary world research landscape. They facilitate fast advances of life, health, and physical sciences as well as development of new technologies. The extent of synchrotron radiation (SR) use has been growing up steadily for the last two decades all over the world and it is anticipated that the growth will continue in future. Growing community of SR users has generated increasing demand for the beam-time in infrared, vacuum UV and X-ray ranges. In response, many new SR facilities are now being constructed and planned, not only in large countries of strong economy but also in developing countries. It is expected that such trends will be followed in other parts of the world. No doubt, the ''cutting edge'' of research activity will continue to create the demand for beams of higher brightness, flux and photon energy but it is predictable that the increasing fraction of research done presently with laboratory radiation sources will be shifting towards small-scale SR facilities. Several hundred Polish scientists, a meaningful fraction of all SR users, take part in experiments using synchrotron sources all over the world. Many of them belong to the Polish Synchrotron Radiation Society - an active body promoting the use of SR. Present European Union priorities include knowledge, research and innovation as the key priorities and a pillar of development and stable welfare of Europe. Poland as a new member of EU will have to conform to the EU policy. The government strategy assumes a fast increase of investments in research and development sector starting from 2005. No other scientific research installations has had such major impact on advances in science an technology as the SRF. It is obvious that the time is ripe now for establishing a National Centre of Synchrotron Radiation in Poland. Recently, several Polish educational and research institutions constituted around the idea of Polish SRF. The initiative

  8. Phase II beam lines at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1984-06-01

    The expansion of the National Synchrotron Light Source has been funded by the US Department of Energy. The Phase II program consists of both increased conventional facilities and six new beam lines. In this paper, an overview of the six beam lines which will be constructed during Phase II is presented. For five of the lines special radiation sources are necessary and the designs of four of the devices are complete. The relevant parameters of the insertion devices under construction and development are presented

  9. Shielded coherent synchrotron radiation and its possible effect in the next linear collider

    International Nuclear Information System (INIS)

    Warnock, R.L.

    1991-05-01

    Shielded coherent synchrotron radiation is discussed in two cases: (1) a beam following a curved path in a plane midway between two parallel, perfectly conducting plates, and (2) a beam circulating in a toroidal chamber with resistive walls. Wake fields and the radiated energy are computed with parameters for the high-energy bunch compressor of the Next Linear Collider. 5 refs., 4 figs., 1 tab

  10. Application of synchrotron radiation to X-ray interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M [King' s Coll., London (UK). Wheatstone Physics Lab.

    1980-05-01

    X-ray interferometry has been attempted with synchrotron radiation at Hamburg and at Orsay. Experiments will start this year at the Storage Ring Source at Daresbury. This review covers work which has already been completed and outlines the likely trends in phase sensitive X-ray polarimetry, high resolution spectroscopy (including real and imaginary-part EXAFS) and novel experiments with many-beam-case interferometers.

  11. Influence of the synchrotron radiation on particle dynamics in a rectangular undulator

    International Nuclear Information System (INIS)

    Chin, Yong Ho.

    1989-03-01

    This paper is concerned with the synchrotron radiation from an undulating electron beam in a rectangular waveguide. It is shown analytically and numerically that the radiated energy spectrum may differ significantly from the free space result when the undulator length divided by the Lorentz factor of the electron beam is larger than the transverse size of the waveguide. The undulator radiation is identified with the awake field in beam instabilities. The concepts of wake function and impedance are introduced to formulate the present problem in the same manner as the beam instability problem. It is shown that the obtained impedances satisfy the Panofsky-Wenzel theorem and other properties inevitable for wake fields. 5 refs., 2 figs

  12. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    International Nuclear Information System (INIS)

    Behrens, Christopher

    2010-02-01

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 μm to 110 μm. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 μm to 160 μm were done. (orig.)

  13. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2010-02-15

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 {mu}m to 110 {mu}m. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 {mu}m to 160 {mu}m were done. (orig.)

  14. Compact synchrotron radiation depth lithography facility

    Science.gov (United States)

    Knüppel, O.; Kadereit, D.; Neff, B.; Hormes, J.

    1992-01-01

    X-ray depth lithography allows the fabrication of plastic microstructures with heights of up to 1 mm but with the smallest possible lateral dimensions of about 1 μm. A resist is irradiated with ``white'' synchrotron radiation through a mask that is partially covered with x-ray absorbing microstructures. The plastic microstructure is then obtained by a subsequent chemical development of the irradiated resist. In order to irradiate a reasonably large resist area, the mask and the resist have to be ``scanned'' across the vertically thin beam of the synchrotron radiation. A flexible, nonexpensive and compact scanner apparatus has been built for x-ray depth lithography at the beamline BN1 at ELSA (the 3.5 GeV Electron Stretcher and Accelerator at the Physikalisches Institut of Bonn University). Measurements with an electronic water level showed that the apparatus limits the scanner-induced structure precision to not more than 0.02 μm. The whole apparatus is installed in a vacuum chamber thus allowing lithography under different process gases and pressures.

  15. MOSFET dosimetry of the radiation therapy microbeams at the European synchrotron radiation facility

    International Nuclear Information System (INIS)

    Rozenfeld, A.; Lerch, M.

    2002-01-01

    Full text: We have developed an innovative on-line MOSFET readout system for use in the quality assurance of radiation treatment beams. Recently the system has found application in areas where excellent spatial resolution is also a requirement in the quality assurance process, for example IMRT, and microbeam radiation therapy. The excellent spatial resolution is achieved by using a quadruple RADFET TM chip in 'edge on' mode. In developing this approach we have found that the system can be utilised to determine any error in the beam profile measurements due to misalignment of RADFET with respect to the radiation beam or microbeam. Using this approach will ensure that the excellent spatial resolution of the RADFET used in 'edge-on' mode is fully utilised. In this work we report on dosimetry measurements performed at the microbeam radiation therapy beamline located at the European Synchrotron Radiation Facility. The synchrotron planar array microbeam with size 10-30 μm and pitch ∼200 μm has found an important application in microbeam radiation therapy (MRT) of brain tumours in infants for whom other kinds of radiotherapy are inadequate and/or unsafe. The radiation damage from an array of parallel microbeams correlates strongly with the range of peak-valley dose ratios (PVDR), ie, the range of the ratio of the absorbed dose to tissue directly in line with the mid-plane of the microbeam to that in the mid-plane between adjacent microbeams. Novel physical dosimetry of the microbeams using the online MOSFET reader system will be presented. Comparison of the experimental results with both GaF film measurements and Monte Carlo computer-simulated dosimetry are described here for selected points in the peak and valley regions of a microbeam-irradiated tissue phantom

  16. Berkeley Lab's ALS generates femtosecond synchrotron radiation

    CERN Document Server

    Robinson, A L

    2000-01-01

    A team at Berkeley's Advanced Light Source has shown how a laser time-slicing technique provides a path to experiments with ultrafast time resolution. A Lawrence Berkeley National Laboratory team has succeeded in generating 300 fs pulses of synchrotron radiation at the ALS synchrotron radiation machine. The team's members come from the Materials Sciences Division (MSD), the Center for Beam Physics in the Accelerator and Fusion Research Division and the Advanced Light Source (ALS). Although this proof-of principle experiment made use of visible light on a borrowed beamline, the laser "time-slicing" technique at the heart of the demonstration will soon be applied in a new bend magnet beamline that was designed specially for the production of femtosecond pulses of X-rays to study long-range and local order in condensed matter with ultrafast time resolution. An undulator beamline based on the same technique has been proposed that will dramatically increase the flux and brightness. The use of X-rays to study the c...

  17. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Crasemann, B.; Wuilleumier, F.

    1985-01-01

    This chapter discusses applications of synchrotron light in atomic and molecular physics. Use of the radiation from storage rings has expanded and lent access to new areas of absorption and photoemission spectroscopy and scattering experiments. Techniques applied in connection with synchrotron radiation are discussed including absorption spectroscopy, photoelectron spectroscopy, fluorescence spectroscopy and X-ray scattering. Problem areas that are being studied by the techniques mentioned above are discussed. Synchrotron radiation has provided the means for measuring the threshold-excitation and interference effects that signal the breakdown of the two-step model of atomic excitation/deexcitation. Synchrotron radiation provides more means of excited-state photoionization measurements

  18. Study for a 6 GeV undulator based synchrotron radiation source

    International Nuclear Information System (INIS)

    Vignola, G.; Barton, M.; Blumberg, R.; Galayda, J.; Krinsky, S.; Luccio, A.; Pellegrini, C.; van Steenbergen, A.; Wang, J.

    1985-01-01

    A partial study for a 6 GeV undulator based synchrotron radiation source for production of high brightness undulator radiation, in the A region, is presented. The basic lattice adopted for the storage ring is a hybrid FODO Chasman-Green lattice, making use of gradient in the dipoles. We discuss also the e beam current limits and the injection parameters

  19. CERN PSB Beam Tests of CNAO Synchrotron's Digital LLRF

    CERN Document Server

    Angoletta, M E; De Martinis, C; Falbo, L; Findlay, A; Foglio, R; Hunt, S; Tourres, D; Vescovi, C

    2008-01-01

    The Italian National Centre for Oncological hAdrontherapy (CNAO), in its final construction phase, uses proton and carbon ion beams to treat patients affected by solid tumours. At the heart of CNAO is a 78- meter circumference synchrotron that accelerates particles to up to 400 MeV/u. The synchrotron relies on a digital LLRF system based upon Digital Signal Processors (DSPs) and Field Programmable Gate Array (FPGA). This system implements cavity servoing and beam control capabilities, such as phase and radial loops. Beam tests of the CNAO synchrotron LLRF system were carried out at CERN's Proton Synchrotron Booster (PSB) in autumn 2007, to verify the combined DSP/FPGA architecture and the beam control capabilities. For this, a prototype version of CNAO's LLRF system was adapted to the PSB requirements. This paper outlines the prototype system layout and describes the tests carried out and their results. In particular, system architecture and beam control capabilities were successfully proven by comparison wit...

  20. Top-Off Injection and Higher Currents at the Stanford Synchrotron Radiation Lightsource

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Johannes M.; Liu, James C.; Prinz, Alyssa A.; Rokni, Sayed H.; /SLAC

    2011-04-05

    The Stanford Synchrotron Radiation Lightsource (SSRL) at the SLAC National Accelerator Laboratory is a 234 m circumference storage ring for 3 GeV electrons with its synchrotron radiation serving currently 13 beamlines with about 27 experimental stations. It operated for long time with 100 mA peak current provided by usually three injections per day. In July 2009, the maximum beam current was raised to 200 mA. Over the period from June 2009 to March 2010, Top-Off operation started at every beamline. Top-Off, i.e., the injection of electrons into the storage ring with injection stoppers open, is necessary for SSRL to reach its design current of 500 mA. In the future, the maximal power of the injection current will also soon be raised from currently 1.5 W to 5 W. The Radiation Protection Department at SLAC worked with SSRL on the specifications for the safety systems for operation with Top-Off injection and higher beam currents.

  1. Synchrotron radiation calibration for soft X-ray detector

    International Nuclear Information System (INIS)

    Ning, Jiamin; Guo, Cun; Xu, Rongkun; Jiang, Shilun; Xu, Zeping; Chen, Jinchuan; Xia, Guangxin; Xue, Feibiao; Qin, Yi

    2009-04-01

    The calibration experiments were carried out to X-ray film, scintillator and transmission grating by employing the soft X-ray station at 3W1B beam-line in Beijing synchrotron Radiation Facility. The experiments presented the black intensity curve and energy response curve of soft X-ray film. And the experimental results can be used in diagnosis of X-ray radiation characterization of Z-pinch, such as in the measurement of soft X-ray Power Meter, grating spectrometer, pinhole camera and one-dimension imaging system which can ensure precision of Z-pinch results. (authors)

  2. Future Synchrotron Radiation Sources

    CERN Document Server

    Winick, Herman

    2003-01-01

    Sources of synchrotron radiation (also called synchrotron light) and their associated research facilities have experienced a spectacular growth in number, performance, and breadth of application in the past two to three decades. In 1978 there were eleven electron storage rings used as light sources. Three of these were small rings, all below 500 mega-electron volts (MeV), dedicated to this purpose; the others, with energy up to 5 giga-electron volts (GeV), were used parasitically during the operation of the ring for high energy physics research. In addition, at that time synchrotron radiation from nine cyclic electron synchrotrons, with energy up to 5 GeV, was also used parasitically. At present no cyclic synchrotrons are used, while about 50 electron storage rings are in operation around the world as fully dedicated light sources for basic and applied research in a wide variety of fields. Among these fields are structural molecular biology, molecular environmental science, materials, analytic chemistry, micr...

  3. Modular design of H - synchrotrons for radiation therapy

    Science.gov (United States)

    Martin, R. L.

    1989-04-01

    A modular synchrotron for accelerating H - ions and a proton beam delivery system are being developed for radiation therapy with protons under SBIR grants from the National Cancer Institute. The advantage proposed for accelerating H - ions and utilizing charge exchange as a slow extraction mechanism lies in enhanced control of the extracted beam current, important for beam delivery with raster scanning for 3D dose contouring of a tumor site. Under these grants prototype magnets and vacuum systems are being constructed, appropriate H - sources are being developed and beam experiments will be carried out to demonstrate some of the key issues of this concept. The status of this program is described along with a discussion of a relatively inexpensive beam delivery system and a proposed program for its development.

  4. Modular design of H- synchrotrons for radiation therapy

    International Nuclear Information System (INIS)

    Martin, R.L.

    1989-01-01

    A modular synchrotron for accelerating H - ions, and a proton beam delivery system are being developed for radiation therapy with protons under SBIR grants for the National Cancer Institute. The advantage proposed for accelerating H - ions and utilizing charge exchange as a slow extraction mechanism lies in enhanced control of the extracted beam current, important for beam delivery with raster scanning for 3D dose contouring of a tumor site. Under these grants prototype magnets and vacuum systems are being constructed, appropriate H - sources are being developed and beam experiments will be carried out to demonstrate some of the key issues of this concept. The status of this program is described along with a discussion of a relatively inexpensive beam delivery system and a proposed program for its development. (orig.)

  5. Development of highly polished, grazing incidence mirrors for synchrotron radiation beam lines at SSRL

    Energy Technology Data Exchange (ETDEWEB)

    Tirsell, K.G.; Berglin, E.J.; Fuchs, B.A.; Holdener, F.R.; Humpal, H.H.; Karpenko, V.P.; Kulkarni, S.; Fantone, S.D.

    1987-08-01

    New platinum-coated grazing incidence mirrors with low surface roughnesses have been developed to focus bending magnet radiation from the SSRL/SLAC SPEAR storage ring on the entrance slits of two Beam Line VIII grating monochromators. The first mirror in the toroidal grating monochromator (TGM) branch is a cooled SiC cylinder capable of absorbing synchrotron radiation power levels of up to 260 watts without excessive distortion. This mirror deflects the beam vertically through a 12/degree/ angle and focuses it sagitally on the TGM entrance slit plane. The second TGM optical element is a fused-silica spherical mirror with a large radius of curvature that deflects the beam vertically through an additional 12/degree/ and focuses it tangentially with 3/1 demagnification. The first mirror in our spherical grating branch is a 5/degree/-vertically deflecting, cooled SiC toroid designed to focus tangentially on the monochromator entrance slits and sagitally in the exit slits. A 4/degree/-deflecting fused silica mirror is used after the exit sites in each beam line to refocus on to the sample. For this application a thin cylinder is bent to approximate an ellipsoid. The mirrors are now installed at SSRL and performance measurements are planned. Qualitatively the focus of the TGM optics at the entrance slit plane appears very good. In this paper we discuss considerations leading to the choice of SiC for each of the two first mirrors. We present highlights of the development of these mirrors with some emphasis on SiC polishing techniques. In addition, the specialized metrology developed to produce the more difficult figure of the toroid will be described. Measured surface roughness and figure results will be presented. 19 refs., 11 figs.

  6. Development of highly polished, grazing incidence mirrors for synchrotron radiation beam lines at SSRL

    International Nuclear Information System (INIS)

    Tirsell, K.G.; Berglin, E.J.; Fuchs, B.A.; Holdener, F.R.; Humpal, H.H.; Karpenko, V.P.; Kulkarni, S.; Fantone, S.D.

    1987-08-01

    New platinum-coated grazing incidence mirrors with low surface roughnesses have been developed to focus bending magnet radiation from the SSRL/SLAC SPEAR storage ring on the entrance slits of two Beam Line VIII grating monochromators. The first mirror in the toroidal grating monochromator (TGM) branch is a cooled SiC cylinder capable of absorbing synchrotron radiation power levels of up to 260 watts without excessive distortion. This mirror deflects the beam vertically through a 12/degree/ angle and focuses it sagitally on the TGM entrance slit plane. The second TGM optical element is a fused-silica spherical mirror with a large radius of curvature that deflects the beam vertically through an additional 12/degree/ and focuses it tangentially with 3/1 demagnification. The first mirror in our spherical grating branch is a 5/degree/-vertically deflecting, cooled SiC toroid designed to focus tangentially on the monochromator entrance slits and sagitally in the exit slits. A 4/degree/-deflecting fused silica mirror is used after the exit sites in each beam line to refocus on to the sample. For this application a thin cylinder is bent to approximate an ellipsoid. The mirrors are now installed at SSRL and performance measurements are planned. Qualitatively the focus of the TGM optics at the entrance slit plane appears very good. In this paper we discuss considerations leading to the choice of SiC for each of the two first mirrors. We present highlights of the development of these mirrors with some emphasis on SiC polishing techniques. In addition, the specialized metrology developed to produce the more difficult figure of the toroid will be described. Measured surface roughness and figure results will be presented. 19 refs., 11 figs

  7. Pump-probe experiments in atoms involving laser and synchrotron radiation: an overview

    International Nuclear Information System (INIS)

    Wuilleumier, F J; Meyer, M

    2006-01-01

    The combined use of laser and synchrotron radiations for atomic photoionization studies started in the early 1980s. The strong potential of these pump-probe experiments to gain information on excited atomic states is illustrated through some exemplary studies. The first series of experiments carried out with the early synchrotron sources, from 1960 to about 1995, are reviewed, including photoionization of unpolarized and polarized excited atoms, and time-resolved laser-synchrotron studies. With the most advanced generation of synchrotron sources, a whole new class of pump-probe experiments benefiting from the high brightness of the new synchrotron beams has been developed since 1996. A detailed review of these studies as well as possible future applications of pump-probe experiments using third generation synchrotron sources and free electron lasers is presented. (topical review)

  8. Synchrotron radiation

    International Nuclear Information System (INIS)

    Helliwell, J.R.; Walker, R.P.

    1985-01-01

    A detailed account of the research work associated with the Synchrotron Radiation Source at Daresbury Laboratory, United Kingdom, in 1984/85, is presented in the Appendix to the Laboratory's Annual Report. (U.K.)

  9. Better Efficacy of Synchrotron Spatially Microfractionated Radiation Therapy Than Uniform Radiation Therapy on Glioma

    International Nuclear Information System (INIS)

    Bouchet, Audrey; Bräuer-Krisch, Elke; Prezado, Yolanda; El Atifi, Michèle; Rogalev, Léonid; Le Clec'h, Céline; Laissue, Jean Albert; Pelletier, Laurent; Le Duc, Géraldine

    2016-01-01

    Purpose: Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident, highly focused synchrotron beam into arrays of parallel microbeams, typically a few tens of microns wide and depositing several hundred grays. This irradiation modality was shown to have a high therapeutic impact on tumors, especially in intracranial locations. However, mechanisms responsible for such a property are not fully understood. Methods and Materials: Thanks to recent progress in dosimetry, we compared the effect of MRT and synchrotron broad beam (BB) radiation therapy delivered at comparable doses (equivalent to MRT valley dose) on tumor growth control and on classical radiobiological functions by histologic evaluation and/or transcriptomic analysis. Results: MRT significantly improved survival of rats bearing 9L intracranial glioma compared with BB radiation therapy delivered at a comparable dose (P<.001); the efficacy of MRT and BB radiation therapy was similar when the MRT dose was half that of BB. The greater efficacy of MRT was not correlated with a difference in cell proliferation (Mki67 and proliferating cell nuclear antigen) or in transcriptomic stimulation of angiogenesis (vascular endothelial growth factor A or tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 2) but was correlated with a higher cell death rate (factor for apoptosis signals) and higher recruitment of macrophages (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and CD68 transcripts) a few days after MRT. Conclusions: These results show the superiority of MRT over BB radiation therapy when applied at comparable doses, suggesting that spatial fractionation is responsible for a specific and particularly efficient tissue response. The higher induction of cell death and immune cell activation in brain tumors treated by MRT may be involved in such responses.

  10. Better Efficacy of Synchrotron Spatially Microfractionated Radiation Therapy Than Uniform Radiation Therapy on Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Bouchet, Audrey, E-mail: audrey.m.bouchet@gmail.com [Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble (France); Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble (France); Bräuer-Krisch, Elke; Prezado, Yolanda [Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble (France); El Atifi, Michèle [Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble (France); Grenoble University Hospital, Grenoble (France); Rogalev, Léonid; Le Clec' h, Céline [Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble (France); Laissue, Jean Albert [University of Bern, Bern (Switzerland); Pelletier, Laurent, E-mail: laurent.pelletier@ujf-grenoble.fr [Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble (France); Grenoble University Hospital, Grenoble (France); Le Duc, Géraldine [Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble (France)

    2016-08-01

    Purpose: Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident, highly focused synchrotron beam into arrays of parallel microbeams, typically a few tens of microns wide and depositing several hundred grays. This irradiation modality was shown to have a high therapeutic impact on tumors, especially in intracranial locations. However, mechanisms responsible for such a property are not fully understood. Methods and Materials: Thanks to recent progress in dosimetry, we compared the effect of MRT and synchrotron broad beam (BB) radiation therapy delivered at comparable doses (equivalent to MRT valley dose) on tumor growth control and on classical radiobiological functions by histologic evaluation and/or transcriptomic analysis. Results: MRT significantly improved survival of rats bearing 9L intracranial glioma compared with BB radiation therapy delivered at a comparable dose (P<.001); the efficacy of MRT and BB radiation therapy was similar when the MRT dose was half that of BB. The greater efficacy of MRT was not correlated with a difference in cell proliferation (Mki67 and proliferating cell nuclear antigen) or in transcriptomic stimulation of angiogenesis (vascular endothelial growth factor A or tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 2) but was correlated with a higher cell death rate (factor for apoptosis signals) and higher recruitment of macrophages (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and CD68 transcripts) a few days after MRT. Conclusions: These results show the superiority of MRT over BB radiation therapy when applied at comparable doses, suggesting that spatial fractionation is responsible for a specific and particularly efficient tissue response. The higher induction of cell death and immune cell activation in brain tumors treated by MRT may be involved in such responses.

  11. Electron beam instrumentation techniques using coherent radiation

    International Nuclear Information System (INIS)

    Wang, D.X.

    1997-01-01

    Much progress has been made on coherent radiation research since coherent synchrotron radiation was first observed in 1989. The use of coherent radiation as a bunch length diagnostic tool has been studied by several groups. In this paper, brief introductions to coherent radiation and far-infrared measurement are given, the progress and status of their beam diagnostic application are reviewed, different techniques are described, and their advantages and limitations are discussed

  12. Three-dimensional monochromatic x-ray computed tomography using synchrotron radiation

    Science.gov (United States)

    Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Katsuyuki; Uyama, Chikao

    1998-08-01

    We describe a technique of 3D computed tomography (3D CT) using monochromatic x rays generated by synchrotron radiation, which performs a direct reconstruction of a 3D volume image of an object from its cone-beam projections. For the development, we propose a practical scanning orbit of the x-ray source to obtain complete 3D information on an object, and its corresponding 3D image reconstruction algorithm. The validity and usefulness of the proposed scanning orbit and reconstruction algorithm were confirmed by computer simulation studies. Based on these investigations, we have developed a prototype 3D monochromatic x-ray CT using synchrotron radiation, which provides exact 3D reconstruction and material-selective imaging by using the K-edge energy subtraction technique.

  13. Stanford Synchrotron Radiation Laboratory activity report for 1987

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, S.; Cantwell, K. [eds.

    1988-12-31

    During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

  14. Infrared synchrotron radiation from electron storage rings

    International Nuclear Information System (INIS)

    Duncan, W.D.; Williams, G.P.

    1983-01-01

    Simple and useful approximations, valid at infrared wavelengths, to the equations for synchrotron radiation are presented and used to quantify the brightness and power advantage of current synchrotron radiation light sources over conventional infrared broadband laboratory sources. The Daresbury Synchrotron Radiation Source (SRS) and the Brookhaven National Synchrotron Light Source (vacuum ultraviolet) [NSLS(VUV)] storage rings are used as examples in the calculation of the properties of infrared synchrotron radiation. The pulsed nature of the emission is also discussed, and potential areas of application for the brightness, power, and time structure advantages are presented. The use of infrared free electron lasers and undulators on the next generation of storage ring light sources is briefly considered

  15. Stanford Synchrotron Radiation Laboratory activity report for 1986

    Energy Technology Data Exchange (ETDEWEB)

    Cantwell, K. [ed.

    1987-12-31

    1986 was another year of major advances for SSRL as the ultimate capabilities of PEP as a synchrotron radiation source became more apparent and a second PEP beam line was initiated, while effective development and utilization of SPEAR proceeded. Given these various PEP developments, SSRL abandoned its plans for a separate diffraction limited ring, as they abandoned their plans for a 6--7 GeV ring of the APS type last year. It has become increasingly apparent that SSRL should concentrate on developing SPEAR and PEP as synchrotron radiation sources. Consequently, initial planning for a 3 GeV booster synchrotron injector for SPEAR was performed in 1986, with a proposal to the Department of Energy resulting. As described in Chapter 2, the New Rings Group and the Machine Physics Group were combined into one Accelerator Physics Group. This group is focusing mainly on the improvement of SPEAR`s operating conditions and on planning for the conversion of PEP into a fourth generation x-ray source. Considerable emphasis is also being given to the training of accelerator physics graduate students. At the same time, several improvements of SSRL`s existing facilities were made. These are described in Chapter 3. Chapter 4 describes new SSRL beam lines being commissioned. Chapter 5 discusses SSRL`s present construction projects. Chapter 6 discusses a number of projects presently underway in the engineering division. Chapter 7 describes SSRL`s advisory panels while Chapter 8 discusses SSRL`s overall organization. Chapter 9 describes the experimental progress reports.

  16. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    International Nuclear Information System (INIS)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis

  17. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  18. Microfabrication of high quality polytetrafluoroethylene films by synchrotron radiation

    International Nuclear Information System (INIS)

    Yoshida, A.; Matsumoto, E.; Yamada, H.; Okada, H.; Wakahara, A.

    2003-01-01

    We deposited polytetrafluoroethylene (PTFE) thin films both from the PTFE target by using synchrotron radiation (SR) beam and from PTFE emulsion by spin-coat process. The X-ray diffraction analyses showed a sharp peak due to (1 0 0) PTFE crystalline part, and only C-F 2 bonding was found in Fourier transform infrared spectrophotometer spectra. From electron spectroscopy for chemical analysis measurements, no impurities were found. The fabricated PTFE films were easily etched by SR beam on the limited area of the surface on a microscale through a suitably patterned mask

  19. ROSY - Rossendorf synchrotron radiation source

    International Nuclear Information System (INIS)

    Einfeld, D.; Matz, W.

    1993-11-01

    The electron energy of the storage ring will be 3 GeV and the emitted synchrotron radiation is in the hard X-ray region with a critical energy of the spectrum of E c =8,4 keV (λ c =0,14 nm). With a natural emittance of 28 π nm rad ROSY emits high brilliance radiation. Besides the radiation from bending magnets there will be the possibility for using radiation from wigglers and undulators. For the insertion devices 8 places are foreseen four of which are located in non-dispersion-free regions. The storage ring is of fourfold symmetry, has a circumference of 148 m and is designed in a modified FODO structure. An upgrade of ROSY with superconducting bending magnets in order to shift the spectrum to higher energy can easily be done. Part I contains the scientific case and a description of the planned use of the beam lines. Part II describes the design of the storage ring and its components in more detail. (orig.) [de

  20. X-ray stress measurement by use of synchrotron radiation source

    International Nuclear Information System (INIS)

    Yoshioka, Yasuo; Matsui, Hisaaki; Moro-oka, Toshimasa; Hasegawa, Ken-ichi; Nakajima, Tetsuo.

    1986-01-01

    In the field of X-ray stress measurement of polycrystalline materials, a diffraction plane at higher Bragg angle has to be selected in order to obtain the precise value of stress. However, the stress measurement on an optional (hkl) plane desired is not always possible because the X-ray beam exited from a metal target has a dispersive wave length. Recently, we have been able to use the synchrotron radiation source (SR) as an excellent X-ray source. In Japan, the facility of synchrotron radiation (Photon Factory, PF) was constructed in the National Laboratory for High Energy Physics (KEK) at Tsukuba academic city. The use of this SR enables the stress measurements on many (hkl) planes with high accuracy in the higher Bragg angle region by providing an X-ray beam having an optional wave length. We have started the X-ray stress analysis by use of the synchrotron radiation source. This paper reports the system of measurement and some results of preliminaly experiments. Since a monochromatic X-ray beam is required for the stress measurement, we used a beam line which consists of a double crystal monochrometer and a focusing mirror. X-rays between 4 KeV (λ = 0.31 nm) and 10 KeV (λ = 0.12 nm) are available with this optical system. We adopted a constant Bragg angle of 2θ = 154 deg for all the diffraction planes. A PSPC having a carbon fiber anode is made and used as a detector with the use of a fast digital signal processor. We could observe the diffraction profiles from (200), (211), (220), (310) and (321) crystal plane of alpha iron, respectively, and the residual stresses in these planes except the (200) plane were measured with high accuracy in a short time. Such feature especially suits the stress analysis of the material which has preferred orientation or stress gradient. (author)

  1. Synchrotrons: biomedical applications of the most versatile radiation source of all

    International Nuclear Information System (INIS)

    Lewis, R.

    2003-01-01

    Synchrotrons are the brightest and most versatile sources of radiation that have ever been devised. The spectrum extends from the infra-red to hard X-rays and the application range is just as wide. Applications range from radiotherapy to archaeology and from genomics to mineral identification. For a property of particle accelerators that was for many years seen as a problem, the transformation has been remarkable. There are now more than 50 synchrotron facilities worldwide and the number is still growing rapidly. Some 25 years after the first dedicated machines came into operation, Australia is about to enter the field with a national facility being built at Monash University in Melbourne. The largest impact of synchrotrons has been in the X-ray region of the spectrum where the performance gain over conventional sources is many orders of magnitude. In fact synchrotrons are the only significant improvement in X-ray production since the rotating anode was first marketed in 1929. The possibilities opened up by the availability of monochromatic, tightly collimated beams of enormous intensity has impacted on practically every area of science. Following a brief overview of synchrotron radiation production, the various prominent techniques that synchrotron radiation has made possible will be reviewed. Particular emphasis will be placed on the biomedical applications which include; 1. advanced imaging techniques exploiting X-ray phase contrast 2. radiotherapy using microbeams 3. structural biology 4. elemental, chemical and molecular structure mapping of live wet samples

  2. Statistical optics approach to the design of beamlines for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-04-15

    In this paper we analyze the image formation problem for undulator radiation through an optical system, accounting for the influence of the electron beam emittance. On the one hand, image formation with Synchrotron Radiation is governed by the laws of Statistical Optics. On the other hand, the widely used Gaussian-Shell model cannot be applied to describe the coherence properties of X-ray beams from third generation Synchrotron Radiation sources. As a result, a more rigorous analysis of coherence properties is required. We propose a technique to explicitly calculate the cross-spectral density of an undulator source, that we subsequently propagate through an optical imaging system. At first we focus on the case of an ideal lens with a non-limiting pupil aperture. Our theory, which makes consistent use of dimensionless analysis, also allows treatment and physical understanding of many asymptotes of the parameter space, together with their applicability region. Particular emphasis is given to the asymptotic situation when the horizontal emittance is much larger than the radiation wavelength, which is relevant for third generation Synchrotron Radiation sources. First principle calculations of undulator radiation characteristics (i.e. ten-dimensional integrals) are then reduced to one-dimensional convolutions of analytical functions with universal functions specific for undulator radiation sources. We also consider the imaging problem for a non-ideal lens in presence of abberations and a limiting pupil aperture, which increases the dimension of the convolution from one to three. In particular we give emphasis to cases when the intensity at the observation plane can be presented as a convolution of an impulse response function and the intensity from an ideal lens. Our results may be used in practical cases as well as in benchmarks for numerical methods.

  3. Synchrotron white beam topographic studies of gallium arsenide crystals

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Wieteska, K.; Graeff, W.

    1997-01-01

    A series of samples cut out from different types of gallium arsenide crystals with low dislocation density were studied by means of white beam synchrotron topography. The investigation was performed with transmission and black-reflection projection methods and transmission section method. Some of topographs in transmission geometry provided a very high sensitivity suitable for revealing small precipitates. The transmission section images significantly differed depending on the wavelength and absorption. In some cases a distinct Pendelloesung fringes and fine details of dislocation and precipitates images were observed. It was possible to reproduce the character of these images by means of numerical simulation based on integration of Takagi-Taupin equations. Due to more convenient choice of radiation, synchrotron back-reflection projection topography provided much better visibility of dislocations than analogous realized with conventional X-ray sources. (author)

  4. Synchrotron radiation

    International Nuclear Information System (INIS)

    Farge, Y.

    1982-01-01

    Synchrotron radiation is produced by electrons accelerated near the velocity of light in storage rings, which are used for high energy Physics experiments. The radiation light exhibits a wide spread continuous spectrum ranging from 01 nanometre to radiofrequency. This radiation is characterized by high power (several kilowatts) and intense brightness. The paper recalls the emission laws and the distinctive properties of the radiation, and gives some of the numerous applications in research, such as molecular spectroscopy, X ray diffraction by heavy proteins and X ray microlithography in LVSI circuit making [fr

  5. Study of beam dynamics at cooler synchrotron TARN-II

    International Nuclear Information System (INIS)

    Watanabe, S.; Katayama, T.; Watanabe, T.; Yoshizawa, M.; Tomizawa, M.; Chida, K.; Arakaki, Y.; Noda, K.; Kanazawa, M.

    1992-08-01

    Several kinds of beam diagnostic instruments, have been developed at cooler-synchrotron TARN-II. These are intended to study beam dynamics at low beam current of several microamperes and then have high sensitivity of good S/N ratio. In addition, the acceleration system, especially low level RF system, has been improved to attain the maximum beam energy. With the successful performance of these instrumentations, the study of beam dynamics are presently being carried out. For example, the synchrotron acceleration of the light ions was achieved up to 220 MeV/u without any beam loss. (author)

  6. Synchrotron radiation A general overview and a review of storage rings, research facilities, and insertion devices

    International Nuclear Information System (INIS)

    Winick, H.

    1989-01-01

    Synchrotron radiation, the electromagnetic radiation given off by electrons in circular motion, is revolutionizing many branches of science and technology by offering beams of vacuum ultraviolet light and x rays of immense flux and brightness. In the past decade there has been an explosion of interest in these applications leading activity to construct new research facilities based on advanced storage rings and insertion device sources. Applications include basic and applied research in biology, chemistry, medicine, and physics plus many areas of technology. In this article we present a general overview of the field of synchrotron radiation research, its history, the present status and future prospects of storage rings and research facilities, and the development of wiggler and undulator insertion devices as sources of synchrotron radiation

  7. Ultrafast molecular dynamics illuminated with synchrotron radiation

    International Nuclear Information System (INIS)

    Bozek, John D.; Miron, Catalin

    2015-01-01

    Highlights: • Ultrafast molecular dynamics probed with synchrotron radiation. • Core-excitation as probe of ultrafast dynamics through core-hole lifetime. • Review of experimental and theoretical methods in ultrafast dynamics using core-level excitation. - Abstract: Synchrotron radiation is a powerful tool for studying molecular dynamics in small molecules in spite of the absence of natural matching between the X-ray pulse duration and the time scale of nuclear motion. Promoting core level electrons to unoccupied molecular orbitals simultaneously initiates two ultrafast processes, nuclear dynamics on the potential energy surfaces of the highly excited neutral intermediate state of the molecule on the one hand and an ultrafast electronic decay of the intermediate excited state to a cationic final state, characterized by a core hole lifetime. The similar time scales of these processes enable core excited pump-probe-type experiments to be performed with long duration X-ray pulses from a synchrotron source. Recent results obtained at the PLIEADES beamline concerning ultrafast dissociation of core excited states and molecular potential energy curve mapping facilitated by changes in the geometry of the short-lived intermediate core excited state are reviewed. High brightness X-ray beams combined with state-of-the art electron and ion-electron coincidence spectrometers and highly sophisticated theoretical methods are required to conduct these experiments and to achieve a full understanding of the experimental results.

  8. Atoms, molecules, clusters and synchrotron radiation

    International Nuclear Information System (INIS)

    Kui Rexi; Ju Xin

    1995-01-01

    The importance of synchrotron radiation, especially the third generation synchrotron radiation light source, in atomic, molecular and cluster physics is discussed and some views are presented on new methods which may become available for research in the above fields

  9. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    International Nuclear Information System (INIS)

    Cantwell, K.; St. Pierre, M.

    1992-01-01

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included

  10. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cantwell, K.; St. Pierre, M. [eds.

    1992-12-31

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

  11. EXAFS-spectroscopy on synchrotron radiation beam

    CERN Document Server

    Aksenov, V L; Kuzmin, A Y; Purans, Y

    2001-01-01

    In the review the basis theoretical principles of EXAFS spectroscopy are given, as one of principal directions of an absorption spectroscopy permitting with a high accuracy to gain parameters of the short-range order in multicomponent amorphous and quasi-crystal mediums. The methods of the analysis of EXAFS spectra with allowance of effects of multiply scattering are featured. The exposition of the experimental set-ups, which realize the method of EXAFS spectroscopy on beams of SR, requirement of the monochromatization of radiation beams are given. For investigation of phase transition and external effects the energy-dispersive EXAFS spectrometer is creating at the National center of SR Kurchatov Institute which can measure the EXAFS spectrum with a time resolution 3-5 ms. The experimental results on investigation (by the EXAFS spectroscopy method) of oxides of tungsten and molybdenum are given, which have unique property: the variable valence of an ion of metal is depending on external action. The most inter...

  12. Experience with synchrotron radiation sources

    International Nuclear Information System (INIS)

    Krinsky, S.

    1987-01-01

    The development of synchrotron radiation sources is discussed, emphasizing characteristics important for x-ray microscopy. Bending magnets, wigglers and undulators are considered as sources of radiation. Operating experience at the national Synchrotron Light Source on the VUV and XRAY storage rings is reviewed, with particular consideration given to achieved current and lifetime, transverse bunch dimensions, and orbit stability. 6 refs., 3 figs

  13. A synchrotron radiation study of strontium titanate

    International Nuclear Information System (INIS)

    Maslen, E.N.; Spadaccini, N.; Ito, T.; Marumo, F.; Satow, Y.

    1995-01-01

    Electron deformation densities Δρ for SrTiO 3 have been determined from diffraction data measured using focused synchrotron radiation with λ = 0.7000 (2) A at the Photon Factory, KEK, Japan. Corrections for secondary extinction were estimated from the variation of diffraction intensity with path length, and checked from the λ-dependence of the strong intensities indicated by measurements using a weaker parallel beam with λ = 0.5000 (2) A. The 0.7 A study is more precise than earlier analyses with Mo Kα radiation. The difference density near the Ti nucleus is mildly anisotropic, and the Δρ topography is similar to those for closed-shell atoms in related perovskite structures. (orig.)

  14. Generic radiation safety design for SSRL synchrotron radiation beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C. [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States)]. E-mail: james@slac.stanford.edu; Fasso, Alberto [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Khater, Hesham [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Prinz, Alyssa [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Rokni, Sayed [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States)

    2006-12-15

    To allow for a conservative, simple, uniform, consistent, efficient radiation safety design for all SSRL beamlines, a generic approach has been developed, considering both synchrotron radiation (SR) and gas bremsstrahlung (GB) hazards. To develop the methodology and rules needed for generic beamline design, analytic models, the STAC8 code, and the FLUKA Monte Carlo code were used to pre-calculate sets of curves and tables that can be looked up for each beamline safety design. Conservative beam parameters and standard targets and geometries were used in the calculations. This paper presents the SPEAR3 beamline parameters that were considered in the design, the safety design considerations, and the main pre-calculated results that are needed for generic shielding design. In the end, the rules and practices for generic SSRL beamline design are summarized.

  15. Simulation of equivalent dose due to accidental electron beam loss in Indus-1 and Indus-2 synchrotron radiation sources using FLUKA code

    International Nuclear Information System (INIS)

    Sahani, P.K.; Dev, Vipin; Singh, Gurnam; Haridas, G.; Thakkar, K.K.; Sarkar, P.K.; Sharma, D.N.

    2008-01-01

    Indus-1 and Indus-2 are two Synchrotron radiation sources at Raja Ramanna Centre for Advanced Technology (RRCAT), India. Stored electron energy in Indus-1 and Indus-2 are 450MeV and 2.5GeV respectively. During operation of storage ring, accidental electron beam loss may occur in addition to normal beam losses. The Bremsstrahlung radiation produced due to the beam losses creates a major radiation hazard in these high energy electron accelerators. FLUKA, the Monte Carlo radiation transport code is used to simulate the accidental beam loss. The simulation was carried out to estimate the equivalent dose likely to be received by a trapped person closer to the storage ring. Depth dose profile in water phantom for 450MeV and 2.5GeV electron beam is generated, from which percentage energy absorbed in 30cm water phantom (analogous to human body) is calculated. The simulation showed the percentage energy deposition in the phantom is about 19% for 450MeV electron and 4.3% for 2.5GeV electron. The dose build up factor in 30cm water phantom for 450MeV and 2.5GeV electron beam are found to be 1.85 and 2.94 respectively. Based on the depth dose profile, dose equivalent index of 0.026Sv and 1.08Sv are likely to be received by the trapped person near the storage ring in Indus-1 and Indus-2 respectively. (author)

  16. Medical applications with synchrotron radiation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T.; Itai, Y. [Univ. of Tsukuba, Inst. of Clinical Medicine, Tsukuba (Japan); Hyodo, K.; Ando, M. [KEK, Tsukuba (Japan); Akatsuka, T. [Yamagata Univ., Faculty of Engineering, Yamagata (Japan); Uyama, C. [National Cardiovascular Centre, Suita (Japan)

    1998-05-01

    In Japan, various medical applications of synchrotron X-ray imaging, such as angiography, monochromatic X-ray computed tomography (CT), radiography and radiation therapy, are being developed. In particular, coronary arteriography (CAG) is quite an important clinical application of synchrotron radiation. Using a two-dimensional imaging method, the first human intravenous CAG was carried out at KEK in May 1996; however, further improvements of image quality are required in clinical practice. On the other hand, two-dimensional aortographic CAG revealed canine coronary arteries as clearly as those on selective CAG, and coronary arteries less than 0.2 mm in diameter. Among applications of synchrotron radiation to X-ray CT, phase-contrast X-ray CT and fluorescent X-ray CT are expected to be very interesting future applications of synchrotron radiation. For actual clinical applications of synchrotron radiation, a medical beamline and a laboratory are now being constructed at SPring-8 in Harima. 55 refs.

  17. Synchrotron radiation and structural proteomics

    CERN Document Server

    Pechkova, Eugenia

    2011-01-01

    This book presents an overview of the current state of research in both synchrotron radiation and structural proteomics from different laboratories worldwide. The book presents recent research results in the most advanced methods of synchrotron radiation analysis, protein micro- and nano crystallography, X-ray scattering and X-ray optics, coherent X-Ray diffraction, and laser cutting and contactless sample manipulation are described in details. The book focuses on biological applications and highlights important aspects such as radiation damage and molecular modeling.

  18. Overview of Industrial Synchrotron Radiation Use

    Science.gov (United States)

    Laderman, Stephen S.

    1996-03-01

    Relevant, reliable and accessible synchrotron radiation methods can play an important role in industrial activities. To date, the application of synchrotron radiation based materials characterization methods by industrial concerns has followed the path of laboratory based x-ray methods: early adoption, continuous improvement, and a high degree of specialization to meet specific goals, which may change over time. Like all x-ray methods, their applicability to segments of the biotechnology, chemical, electronics, medical and metallurgical industries arises from a need to develop sophisticated processes for precisely controlling microstructures. An increasing number of those processes are being developed in ways which can, in principle, be more effectively studied if synchrotron radiation based analyses are performed. Technical limitations confined the efforts of early synchrotron radiation users to long-range research investigations. Nowadays, progress in data collection methods, analysis algorithims, accelerator performance, and worker training, have removed many constraints. However, commercial technologies are being improved at steadily higher rates, shortening the time between research, development and manufacturing and, in many cases, blurring their distinctions. Certainly, rapid rates of innovation increase the opportunities for synchrotron radiation techniques to bring competitive advantage since they can be used to shrink development times, to maintain yields and, perhaps, as part of advanced manufacturing. At the same time, rapid rates of innovation also impose stringent criteria on the reliability and timeliness of the supporting methods. Successful conventional x-ray methods have resulted from efforts to create useful new capabilities that effectively balance such forces. Currently, synchrotron radiation users throughout the world are pursuing analogous goals.

  19. Effects of synchrotron radiation spectrum energy on polymethyl methacrylate photosensitivity to deep x-ray lithography

    International Nuclear Information System (INIS)

    Mekaru, Harutaka; Utsumi, Yuichi; Hattori, Tadashi

    2003-01-01

    Since X-ray lithography requires a high photon flux to achieve deep resist exposure, a synchrotron radiation beam, which is not monochromatized, is generally used as a light source. If the synchrotron radiation beam is monochromatized, photon flux will decrease rapidly. Because of this reason, the wavelength dependence of the resist sensitivity has not been investigated for deep X-ray lithography. Measuring the spectrum of a white beam with a Si solid-state detector (SSD) is difficult because a white beam has a high intensity and an SSD has a high sensitivity. We were able to measure the spectrum and the photocurrent of a white beam from a beam line used for deep X-ray lithography by keeping the ring current below 0.05 mA. We evaluated the characteristics of the output beam based on the measured spectrum and photocurrent, and used them to investigate the relationship between the total exposure energy and the dose-processing depth with polymethyl methacrylate (PMMA). We found that it is possible to guess the processing depth of PMMA from the total exposure energy in deep X-ray lithography. (author)

  20. 3D IMAGING USING COHERENT SYNCHROTRON RADIATION

    Directory of Open Access Journals (Sweden)

    Peter Cloetens

    2011-05-01

    Full Text Available Three dimensional imaging is becoming a standard tool for medical, scientific and industrial applications. The use of modem synchrotron radiation sources for monochromatic beam micro-tomography provides several new features. Along with enhanced signal-to-noise ratio and improved spatial resolution, these include the possibility of quantitative measurements, the easy incorporation of special sample environment devices for in-situ experiments, and a simple implementation of phase imaging. These 3D approaches overcome some of the limitations of 2D measurements. They require new tools for image analysis.

  1. Synchrotron accelerator technology for proton beam therapy with high accuracy

    International Nuclear Information System (INIS)

    Hiramoto, Kazuo

    2009-01-01

    Proton beam therapy was applied at the beginning to head and neck cancers, but it is now extended to prostate, lung and liver cancers. Thus the need for a pencil beam scanning method is increasing. With this method radiation dose concentration property of the proton beam will be further intensified. Hitachi group has supplied a pencil beam scanning therapy system as the first one for M. D. Anderson Hospital in United States, and it has been operational since May 2008. Hitachi group has been developing proton therapy system to correspond high-accuracy proton therapy to concentrate the dose in the diseased part which is located with various depths, and which sometimes has complicated shape. The author described here on the synchrotron accelerator technology that is an important element for constituting the proton therapy system. (K.Y.)

  2. Comparison of Design and Practices for Radiation Safety among Five Synchrotron Radiation Facilities

    International Nuclear Information System (INIS)

    Liu, James C.; Rokni, Sayed H.; SLAC; Asano, Yoshihiro; JAERI-RIKEN, Hyogo; Casey, William R.; Brookhaven; Donahue, Richard J.

    2005-01-01

    There are more and more third-generation synchrotron radiation (SR) facilities in the world that utilize low emittance electron (or positron) beam circulating in a storage ring to generate synchrotron light for various types of experiments. A storage ring based SR facility consists of an injector, a storage ring, and many SR beamlines. When compared to other types of accelerator facilities, the design and practices for radiation safety of storage ring and SR beamlines are unique to SR facilities. Unlike many other accelerator facilities, the storage ring and beamlines of a SR facility are generally above ground with users and workers occupying the experimental floor frequently. The users are generally non-radiation workers and do not wear dosimeters, though basic facility safety training is required. Thus, the shielding design typically aims for an annual dose limit of 100 mrem over 2000 h without the need for administrative control for radiation hazards. On the other hand, for operational and cost considerations, the concrete ring wall (both lateral and ratchet walls) is often desired to be no more than a few feet thick (with an even thinner roof). Most SR facilities have similar operation modes and beam parameters (both injection and stored) for storage ring and SR beamlines. The facility typically operates almost full year with one-month start-up period, 10-month science program for experiments (with short accelerator physics studies and routine maintenance during the period of science program), and a month-long shutdown period. A typical operational mode for science program consists of long periods of circulating stored beam (which decays with a lifetime in tens of hours), interposed with short injection events (in minutes) to fill the stored current. The stored beam energy ranges from a few hundreds MeV to 10 GeV with a low injection beam power (generally less than 10 watts). The injection beam energy can be the same as, or lower than, the stored beam energy

  3. Properties of synchrotron radiation

    International Nuclear Information System (INIS)

    Materlik, G.

    1982-01-01

    This paper forms the introductory chapter to a book concerning the use of synchrotron radiation for investigation of the structure and mechanism of biological macromolecules. After a historical section, the physics of synchrotron radiation is summarized so that the most promising experiments may be extrapolated. Irradiated power and intensity, polarization and angular distribution, brilliance of a real source, and developments such as wigglers and undulators are briefly dealt with. The paper includes a tabulated compilation of proposed and operating machines in 1982, with some of their characteristics. (U.K.)

  4. Bursts of Coherent Synchrotron Radiation in Electron Storage Rings: a Dynamical Model

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Marco

    2002-09-17

    Evidence of coherent synchrotron radiation (CSR) has been reported recently at the electron storage rings of several light source facilities. The main features of the observations are (i) a radiation wavelength short compared to the nominal bunch length, and (ii) a coherent signal showing recurrent bursts of duration much shorter than the radiation damping time, but with spacing equal to a substantial fraction of the damping time. We present a model of beam longitudinal dynamics that reproduces these features.

  5. Calculation of collective effects and beam lifetimes for the LBL [Lawrence Berkeley Laboratory] 1-2 GeV synchrotron radiation source

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Zisman, M.S.

    1987-03-01

    In designing a third-generation high brightness synchrotron radiation source, attention must be paid to the various collective effects that can influence beam performance. We report on calculations, performed with the code ZAP, of the bunch length, the transverse emittance and the beam lifetime (from both Touschek and gas scattering) for our 1-2 GeV storage ring. In addition, we estimate the growth times for both longitudinal and transverse coupled bunch instabilities. Bunch lengths of about 20 ps should be obtainable and intrabeam scattering emittance growth is small. For a limiting undulator gap of 1 cm and residual gas pressure of 1n Torr, the beam lifetime is about 5 hours in the single-bunch mode; in the multibunch mode, lifetimes in excess of 6 hours are expected. These results indicate that all performance goals for the facility should be achievable

  6. Two dimensional model for coherent synchrotron radiation

    Science.gov (United States)

    Huang, Chengkun; Kwan, Thomas J. T.; Carlsten, Bruce E.

    2013-01-01

    Understanding coherent synchrotron radiation (CSR) effects in a bunch compressor requires an accurate model accounting for the realistic beam shape and parameters. We extend the well-known 1D CSR analytic model into two dimensions and develop a simple numerical model based on the Liénard-Wiechert formula for the CSR field of a coasting beam. This CSR numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in the space charge field calculation present in a 1D model. Good agreement is obtained with 1D CSR analytic result for free electron laser (FEL) related beam parameters but it can also give a more accurate result for low-energy/large spot size beams and off-axis/transient fields. This 2D CSR model can be used for understanding the limitation of various 1D models and for benchmarking fully electromagnetic multidimensional particle-in-cell simulations for self-consistent CSR modeling.

  7. Monte Carlo simulations of ultra high vacuum and synchrotron radiation for particle accelerators

    CERN Document Server

    AUTHOR|(CDS)2082330; Leonid, Rivkin

    With preparation of Hi-Lumi LHC fully underway, and the FCC machines under study, accelerators will reach unprecedented energies and along with it very large amount of synchrotron radiation (SR). This will desorb photoelectrons and molecules from accelerator walls, which contribute to electron cloud buildup and increase the residual pressure - both effects reducing the beam lifetime. In current accelerators these two effects are among the principal limiting factors, therefore precise calculation of synchrotron radiation and pressure properties are very important, desirably in the early design phase. This PhD project shows the modernization and a major upgrade of two codes, Molflow and Synrad, originally written by R. Kersevan in the 1990s, which are based on the test-particle Monte Carlo method and allow ultra-high vacuum and synchrotron radiation calculations. The new versions contain new physics, and are built as an all-in-one package - available to the public. Existing vacuum calculation methods are overvi...

  8. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections

  9. Absorbed dose determination in kilovoltage X-ray synchrotron radiation using alanine dosimeters.

    Science.gov (United States)

    Butler, D J; Lye, J E; Wright, T E; Crossley, D; Sharpe, P H G; Stevenson, A W; Livingstone, J; Crosbie, J C

    2016-12-01

    Alanine dosimeters from the National Physical Laboratory (NPL) in the UK were irradiated using kilovoltage synchrotron radiation at the imaging and medical beam line (IMBL) at the Australian Synchrotron. A 20 × 20 mm 2 area was irradiated by scanning the phantom containing the alanine through the 1 mm × 20 mm beam at a constant velocity. The polychromatic beam had an average energy of 95 keV and nominal absorbed dose to water rate of 250 Gy/s. The absorbed dose to water in the solid water phantom was first determined using a PTW Model 31014 PinPoint ionization chamber traceable to a graphite calorimeter. The alanine was read out at NPL using correction factors determined for 60 Co, traceable to NPL standards, and a published energy correction was applied to correct for the effect of the synchrotron beam quality. The ratio of the doses determined by alanine at NPL and those determined at the synchrotron was 0.975 (standard uncertainty 0.042) when alanine energy correction factors published by Waldeland et al. (Waldeland E, Hole E O, Sagstuen E and Malinen E, Med. Phys. 2010, 37, 3569) were used, and 0.996 (standard uncertainty 0.031) when factors by Anton et al. (Anton M, Büermann L., Phys Med Biol. 2015 60 6113-29) were used. The results provide additional verification of the IMBL dosimetry.

  10. X-ray optics, a vital aspect of work with synchrotron radiation

    International Nuclear Information System (INIS)

    Bilderback, D.H.

    1986-01-01

    The kind of optical components that have been developed over the centuries to make use of visible light won't work for x-rays. New ways must be found to manipulate the much shorter-wavelength x-ray beams to produce effects similar to those achieved with such familiar devices as mirrors, lenses, prisms, and gratings. This is the province of the field of x-ray optics. One challenge is to design optical elements that can focus, disperse, or reflect beams in the x-ray region of the electromagnetic spectrum, where wavelengths are about a thousand times shorter than those in the region of visible light. A second problem is encountered in using the intense, high-energy x-radiation from a synchrotron: how to make the desired beam accessible to a user who is conducting an experiment in a shielded enclosure many meters away from the synchrotron storage ring. Depending on the application, one might want to pick out a single wavelength from the broad spectrum available from the synchrotron, or isolate a narrow band of wavelengths. Then the beam must be collimated. When samples to be exposed are of millimeter dimension or smaller, it may be desirable to increase the intensity by focusing the x-ray beam horizontally and vertically. All these manipulations are analogous to those done with visible light, but the shape and form of the optical components can be quite different

  11. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    Energy Technology Data Exchange (ETDEWEB)

    Sei, Norihiro, E-mail: sei.n@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Zen, Heishun; Ohgaki, Hideaki [Institute for Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-10-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR. - Highlights: • We have developed intense coherent synchrotron radiation (CSR) at KU-FEL. • The elevation angle of the CSR was correctly measured by a new technique. • The CSR power extracted to the air was 55 μJ per 7 μs macropulse. • It was demonstrated that an energy slit was effective to improve the CSR properties.

  12. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    International Nuclear Information System (INIS)

    Sei, Norihiro; Zen, Heishun; Ohgaki, Hideaki

    2016-01-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR. - Highlights: • We have developed intense coherent synchrotron radiation (CSR) at KU-FEL. • The elevation angle of the CSR was correctly measured by a new technique. • The CSR power extracted to the air was 55 μJ per 7 μs macropulse. • It was demonstrated that an energy slit was effective to improve the CSR properties.

  13. National Synchrotron Light Source: vacuum system for National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Schuchman, J.C.; Godel, J.B.; Jordan, W.; Oversluizen, T.

    1978-01-01

    The National Synchrotron Light Source (NSLS), a 24 million dollar project under construction at Brookhaven National Laboratory (BNL), is a research facility dedicated to the production of synchrotron radiation. Synchrotron radiation is that radiation produced by the acceleration of charged particles at near the speed of light. This facility will provide a continuous spectrum of radiation from the vacuum ultraviolet to the hard x-ray range. The radiation will be highly intense, 100% polarized, extremely well collimated and will have a pulsed time structure. The radiation will be produced in two electron storage rings at energies of 700 MeV and 2.5 GeV, respectively. A maximum of one ampere at 2 GeV, or one-half ampere at 2.5 GeV, of electron beam will be stored

  14. A preliminary clinic dosimetry study for synchrotron radiation therapy at SSRF

    International Nuclear Information System (INIS)

    Li Zhaobin; Shi Zeliang; Zhang Qing; Wang Yong; Fu Shen

    2013-01-01

    Synchrotron radiation (SR) represents a unique and innovative anti-cancer treatment due to its unique physical features, including high flux density, and tunable and collimated radiation generation. The aim of this work is to assess the dosimetric properties of SR in Shanghai Synchrotron Radiation Facility (SSRF) for potential applications to clinical radiation oncology. The experiments were performed with 34 and 50 keV X-rays on the BL13W biomedical beamline of SSRF and the 6 MV X-rays from ARTISTE linac for the dosimetry study. The percentage depth dose (PDD) and the surface dose of the SR X-rays and the 6 MV photon beams were performed in solid water phantom with Gafchromic EBT3 films. All curves are normalized to the maximum calculated dose, The depth of full dose buildup is about 10 μm deeper for the monoenergetic X-ray beams of 34 and 50 keV. The beam transmits through the phantom, with a linear attenuation coefficient. The profile in the horizontal plane shows that the dose distribution is uniform within the facula, while the vertical profile shows a Gaussian distribution of the dose. The penumbra is less than 0.2 mm in the horizontal profile. Gafchromic EBT film may be a useful and convenient tool for dose measurement and quality control for the high space and density resolution. It is therefore important to gain a thorough understanding about the physical features of SR before this novel technology can be applied to clinical practice. (authors)

  15. Time-resolved experiments in the frequency domain using synchrotron radiation (invited)

    Science.gov (United States)

    De Stasio, Gelsomina; Giusti, A. M.; Parasassi, T.; Ravagnan, G.; Sapora, O.

    1992-01-01

    PLASTIQUE is the only synchrotron radiation beam line in the world that performs time-resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and the dynamics of molecules. This technique measures fluorescence lifetimes with picosecond resolution in the near UV spectral range. Such accurate measurements are rendered possible by taking phase and modulation data, and by the advantages of the cross-correlation technique. A successful experiment demonstrated the radiation damage induced by low doses of radiation on rabbit blood cell membranes.

  16. Quantitative X-ray microtomography with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Donath, T. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2007-07-01

    Synchrotron-radiation-based computed microtomography (SR{sub {mu}}CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR{sub {mu}}CT measurements have been further improved by enhancements that were made to the SR{sub {mu}}CT apparatus and to the reconstruction chain. For high-resolution SR{sub {mu}}CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR{sub {mu}}CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  17. Quantitative X-ray microtomography with synchrotron radiation

    International Nuclear Information System (INIS)

    Donath, T.

    2007-01-01

    Synchrotron-radiation-based computed microtomography (SR μ CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR μ CT measurements have been further improved by enhancements that were made to the SR μ CT apparatus and to the reconstruction chain. For high-resolution SR μ CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR μ CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  18. Synchrotron radiation applications in biophysics and medicine

    International Nuclear Information System (INIS)

    Burattini, E.

    1985-01-01

    The peculiar properties of synchrotron radiation are briefly summarized. A short review on the possible applications of synchrotron radiation in two important fields like Biophysics and Medicine is presented. Details are given on experiments both in progress and carried out in many synchrotron radiation facilities, all over the world, using different techniques like X-ray absorption and fluorescence spectroscopy, X-ray fluorescence microanalysis, X-ray microscopy and digital subtraction angiography. Some news about the photon-activation therapy are briefly reported too

  19. Limitations on plasma acceleration due to synchrotron losses

    International Nuclear Information System (INIS)

    Barletta, W.A.; Lee, E.P.; Bonifacio, R.; De Salvo, L.

    1999-01-01

    In this letter we consider the effect of synchrotron radiation losses due to the betatron motion of the electron beam in its self-induced magnetic field in a plasma accelerator taking into account the charge neutralization factor. The most favorable case is where the plasma density is smaller than the beam density. The contrary regime is strongly disfavored by the synchrotron radiation loss for beams with characteristics for TeV energies. In both cases we find that upon increasing the plasma density the synchrotron losses kill the acceleration process, so that there are limitations on the maximum allowable plasma density

  20. Installation and thermal design of synchrotron radiation beam ports at SPEAR

    International Nuclear Information System (INIS)

    Jako, C.; Hower, N.; Simon, T.

    1979-01-01

    With SPEAR operating at 3.7 GeV, 38.3 mA and radiating a total of 50 kW, the maximum crotch temperature was calculated to be 105 0 C. The value obtained by extrapolation of experimental data was 80 0 C. The discrepancy between the two figures is due, in part, to the inherent limitation of temperature measurements in the presence of a high thermal gradient, and, in part, to the assumptions made in the analysis. It can be concluded, however, that the temperature at the crotch surface resulting from the synchrotron radiation is comfortably below the 185 0 C limit and that the total radiated power can be raised to at least 75 kW without exceeding this limit

  1. Applications of pixellated GaAs X-ray detectors in a synchrotron radiation beam

    CERN Document Server

    Watt, J; Campbell, M; Mathieson, K; Mikulec, B; O'Shea, V; Passmore, M S; Schwarz, C; Smith, K M; Whitehill, C

    2001-01-01

    Hybrid semiconductor pixel detectors are being investigated as imaging devices for radiography and synchrotron radiation beam applications. Based on previous work in the CERN RD19 and the UK IMPACT collaborations, a photon counting GaAs pixel detector (PCD) has been used in an X-ray powder diffraction experiment. The device consists of a 200 mu m thick SI-LEC GaAs detector patterned in a 64*64 array of 170 mu m pitch square pixels, bump-bonded to readout electronics operating in single photon counting mode. Intensity peaks in the powder diffraction pattern of KNbO/sub 3/ have been resolved and compared with results using the standard scintillator, and a PCD predecessor (the Omega 3). The PCD shows improved speed, dynamic range, 2-D information and comparable spatial resolution to the standard scintillator based systems. It also overcomes the severe dead time limitations of the Omega 3 by using a shutter based acquisition mode. A brief demonstration of the possibilities of the system for dental radiography and...

  2. Corrosion by photochemical reaction due to synchrotron radiation in TRISTAN vacuum system

    International Nuclear Information System (INIS)

    Momose, Takashi; Ishimaru, Hajime

    1989-01-01

    In the electron-positron collision ring (TMR) in the National Laboratory for High Energy Physics, the operation at the beam energy of 30 GeV is carried out. The critical energy of synchrotron radiation corresponding to this energy is 243 keV which is the highest in the world. Consequently, the radiation damage of various substances due to this radiation has become the problem. From the viewpoint that the TMR is the vacuum system totally made of aluminum alloy for the first time in the world, the problem peculiar to aluminum alloy and the related problem of material damage and the countermeasures are discussed. Beam energy and attenuation length, the radiation dose in the TMR tunnel, the beam current-time product of TMR, the examples of radiation damage such as the atmosphere in TAR, the atmosphere in TMR, the aluminum bellows, aluminum chamber and lead radiation shield in TMR, the aluminum beam line in the atmosphere of TAR, the heat-insulating kapton film with vacuum deposited aluminum films, Teflon and polystyrene insulators, the stainless steel terminals and cables for position monitors, the O-rings for gate valves, polyvinyl chloride and so on are reported. (K.I.)

  3. High Intensity Beam Issues in the CERN Proton Synchrotron

    CERN Document Server

    Aumon, Sandra; Rivkin, Leonid

    This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of its performance to match the future requirements. Beam instabilities driven by transverse impedance and aperture restrictions are important issues for the operation and for the High-Luminosity LHC upgrade which foresees an intensity increase delivered by the injectors. The main subject of the thesis concerns the study of a fast transverse instability occurring at transition energy. The proton beams crossing this energy range are particularly sensitive to wake forces because of the slow synchrotron motion. This instability can cause a strong vertical emittance blow-up and severe losses in less than a synchrotron period. Experimental observations show that the particles at the peak density of the beam longitudinal distribution oscillate in the vertical plane du...

  4. The pressure behaviour of actinides via synchrotron radiation

    International Nuclear Information System (INIS)

    Haire, R.G.; Heathman, S.; Le Bihan, T.; Lindbaum, A.

    2002-01-01

    Various aspects of performing high-pressure studies with radioactive f-elements using synchrotrons as sources of X-rays are discussed. For ultra-high pressures, intense well-focused beams of 10 to 30 microns in diameter and a single wavelength of 0.3 to 0.7 angstrom are desired for angle dispersive diffraction measurements. Special considerations are necessary for the studies of transuranium elements under pressure at synchrotron facilities. Normally, with these actinides the pressure cells are prepared off-site and shipped to the synchrotron for study. Approved containment techniques must be provided to assure there is not a potential for the release of sample material. The goal of these high-pressure studies is to explore the fundamental science occurring as pressure is applied to the actinide samples. One of the primary effects of pressure is to reduce interatomic distances, and the goal is to ascertain the changes in bonding and electronic nature of the system that result as atoms and electronic orbitals are forced closer together. Concepts of the science being pursued with these f-elements are outlined. A brief discussion of the behaviour of americium metal under pressure performed recently at the ESRF is provided as an example of the high-pressure research being performed with synchrotron radiation. Also discussed here is the important role synchrotrons play and the techniques/procedures employed in high-pressure studies with actinides. (authors)

  5. Stanford Synchrotron Radiation Laboratory. Activity report for 1989

    International Nuclear Information System (INIS)

    1996-01-01

    The April, 1990 SPEAR synchrotron radiation run was one of the two or three best in SSRL's history. High currents were accumulated, ramping went easily, lifetimes were long, beam dumps were infrequent and the average current was 42.9 milliamps. In the one month of operation, 63 different experiments involving 208 scientists from 50 institutions received beam. The end-of-run summary forms completed by the experimenters indicated high levels of user satisfaction with the beam quality and with the outstanding support received from the SSRL technical and scientific staffs. These fine experimental conditions result largely from the SPEAR repairs and improvements performed during the past year and described in Section I. Also quite significant was Max Cornacchia's leadership of the SLAG staff. SPEAR's performance this past April stands in marked contrast to that of the January-March, 1989 run which is also described in Section I. It is, we hope, a harbinger of the operation which will be provided in FY '91, when the SPEAR injector project is completed and SPEAR is fully dedicated to synchrotron radiation research. Over the coming years, SSRL intends to give highest priority to increasing the effectiveness of SPEAR and its various beam lines. The beam line and facility improvements performed during 1989 are described in Section III. In order to concentrate effort on SSRL's three highest priorities prior to the March-April run: (1) to have a successful run, (2) to complete and commission the injector, and (3) to prepare to operate, maintain and improve the SPEAR/injector system, SSRL was reorganized. In the new organization, all the technical staff is contained in three groups: Accelerator Research and Operations Division, Injector Project and Photon Research and Operations Division, as described in Section IV. In spite of the limited effectiveness of the January-March, 1989 run, SSRL's users made significant scientific progress, as described in Section V of this report

  6. Stanford Synchrotron Radiation Laboratory. Activity report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The April, 1990 SPEAR synchrotron radiation run was one of the two or three best in SSRL`s history. High currents were accumulated, ramping went easily, lifetimes were long, beam dumps were infrequent and the average current was 42.9 milliamps. In the one month of operation, 63 different experiments involving 208 scientists from 50 institutions received beam. The end-of-run summary forms completed by the experimenters indicated high levels of user satisfaction with the beam quality and with the outstanding support received from the SSRL technical and scientific staffs. These fine experimental conditions result largely from the SPEAR repairs and improvements performed during the past year and described in Section I. Also quite significant was Max Cornacchia`s leadership of the SLAG staff. SPEAR`s performance this past April stands in marked contrast to that of the January-March, 1989 run which is also described in Section I. It is, we hope, a harbinger of the operation which will be provided in FY `91, when the SPEAR injector project is completed and SPEAR is fully dedicated to synchrotron radiation research. Over the coming years, SSRL intends to give highest priority to increasing the effectiveness of SPEAR and its various beam lines. The beam line and facility improvements performed during 1989 are described in Section III. In order to concentrate effort on SSRL`s three highest priorities prior to the March-April run: (1) to have a successful run, (2) to complete and commission the injector, and (3) to prepare to operate, maintain and improve the SPEAR/injector system, SSRL was reorganized. In the new organization, all the technical staff is contained in three groups: Accelerator Research and Operations Division, Injector Project and Photon Research and Operations Division, as described in Section IV. In spite of the limited effectiveness of the January-March, 1989 run, SSRL`s users made significant scientific progress, as described in Section V of this report.

  7. Design report on the SSCL prototype 80 K Synchrotron Radiation Liner System

    International Nuclear Information System (INIS)

    Shu, Q.S.; Barts, T.; Chou, W.

    1993-09-01

    This report documents the effort to develop a viable design for an SSC prototype 80 K Synchrotron Radiation Liner System. This liner is designed to be tested in the Superconducting Super Collider Accelerator Systems String Test (ASST) facility. The liner is one method under consideration to minimize the presence of photodesorbed gases in the particle beam line vacuum environment. Secondly, the liner is aimed at improving the Collider cryogenic thermal efficiency which would allow a potential luminosity upgrade. The SSC Collider is the first proton superconducting accelerator designed to operate at an energy of 20 TeV (each beam) and a beam current of 72 mA. The Collider will produce a synchrotron power of 0.14 W/m and a total of 18 kW into 4.2 K for the two rings. This radiated power may trigger a serious impact of photodesorbed gases on the operational availability of the Collider. The interaction between beam particle and photodesorbed gases may greatly reduce the beam lifetime and the scattered beam power may lead to quenching of the superconducting magnets. Collider availability may be unacceptable if this concern is not properly addressed. The liner is one method under consideration to minimize the presence of photodesorbed gases in the particle beam line vacuum. Secondly, the liner is aimed improving the Collider's cryogenic thermal efficiency which would allow a potential luminosity upgrade. The ultimate goal is to require no more than one machine warm up per year for vacuum maintenance during operation of the SSC Collider

  8. Design report on the SSCL prototype 80 K Synchrotron Radiation Liner System

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Q.S.; Barts, T.; Chou, W. [and others

    1993-09-01

    This report documents the effort to develop a viable design for an SSC prototype 80 K Synchrotron Radiation Liner System. This liner is designed to be tested in the Superconducting Super Collider Accelerator Systems String Test (ASST) facility. The liner is one method under consideration to minimize the presence of photodesorbed gases in the particle beam line vacuum environment. Secondly, the liner is aimed at improving the Collider cryogenic thermal efficiency which would allow a potential luminosity upgrade. The SSC Collider is the first proton superconducting accelerator designed to operate at an energy of 20 TeV (each beam) and a beam current of 72 mA. The Collider will produce a synchrotron power of 0.14 W/m and a total of 18 kW into 4.2 K for the two rings. This radiated power may trigger a serious impact of photodesorbed gases on the operational availability of the Collider. The interaction between beam particle and photodesorbed gases may greatly reduce the beam lifetime and the scattered beam power may lead to quenching of the superconducting magnets. Collider availability may be unacceptable if this concern is not properly addressed. The liner is one method under consideration to minimize the presence of photodesorbed gases in the particle beam line vacuum. Secondly, the liner is aimed improving the Collider`s cryogenic thermal efficiency which would allow a potential luminosity upgrade. The ultimate goal is to require no more than one machine warm up per year for vacuum maintenance during operation of the SSC Collider.

  9. Spin dynamics in electron synchrotrons

    International Nuclear Information System (INIS)

    Schmidt, Jan Felix

    2017-01-01

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  10. The fundamental parameter method applied to X-ray fluorescence analysis with synchrotron radiation

    Science.gov (United States)

    Pantenburg, F. J.; Beier, T.; Hennrich, F.; Mommsen, H.

    1992-05-01

    Quantitative X-ray fluorescence analysis applying the fundamental parameter method is usually restricted to monochromatic excitation sources. It is shown here, that such analyses can be performed as well with a white synchrotron radiation spectrum. To determine absolute elemental concentration values it is necessary to know the spectral distribution of this spectrum. A newly designed and tested experimental setup, which uses the synchrotron radiation emitted from electrons in a bending magnet of ELSA (electron stretcher accelerator of the university of Bonn) is presented. The determination of the exciting spectrum, described by the given electron beam parameters, is limited due to uncertainties in the vertical electron beam size and divergence. We describe a method which allows us to determine the relative and absolute spectral distributions needed for accurate analysis. First test measurements of different alloys and standards of known composition demonstrate that it is possible to determine exact concentration values in bulk and trace element analysis.

  11. Australian synchrotron radiation science

    International Nuclear Information System (INIS)

    White, J.W.

    1996-01-01

    Full text: The Australian Synchrotron Radiation Program, ASRP, has been set up as a major national research facility to provide facilities for scientists and technologists in physics, chemistry, biology and materials science who need access to synchrotron radiation. Australia has a strong tradition in crystallography and structure determination covering small molecule crystallography, biological and protein crystallography, diffraction science and materials science and several strong groups are working in x-ray optics, soft x-ray and vacuum ultra-violet physics. A number of groups whose primary interest is in the structure and dynamics of surfaces, catalysts, polymer and surfactant science and colloid science are hoping to use scattering methods and, if experience in Europe, Japan and USA can be taken as a guide, many of these groups will need third generation synchrotron access. To provide for this growing community, the Australian National Beamline at the Photon Factory, Tsukuba, Japan, has been established since 1990 through a generous collaboration with Japanese colleagues, the beamline equipment being largely produced in Australia. This will be supplemented in 1997 with access to the world's most powerful synchrotron x-ray source at the Advanced Photon Source, Argonne National Laboratory, USA. Some recent experiments in surface science using neutrons as well as x-rays from the Australian National Beamline will be used to illustrate one of the challenges that synchrotron x-rays may meet

  12. Coherent Synchrotron Radiation effect in damping rings

    International Nuclear Information System (INIS)

    Raubenheimer, T

    2004-01-01

    Coherent Synchrotron Radiation (CSR) can play an important role by not only increasing the energy spread and emittance of a beam, but also leading to a potential instability. Previous studies of the CSR induced longitudinal instability were carried out for the CSR impedance due to dipole magnets. In this paper, the instability due to the CSR impedance from a wiggler is studied assuming a large wiggler parameter K. The primary consideration is a low frequency microwave-like instability in the damping rings of several linear collider projects. The threshold is determined by the instability with the longest possible wavelength

  13. Synchrotron white beam topography studies of SrLaGaO4 crystals

    International Nuclear Information System (INIS)

    Wieteska, K.; Wierzchowski, W.; Graeff, W.; Lefeld-Sosnowska, M.; Pajaczkowska, A.; Wierzbicka, E.; Malinowska, A.

    2005-01-01

    Strontium lantanum gallate SrLaGaO 4 tetragonal single crystal was investigated by white beam synchrotron radiation topography. Projection and section topographs were taken in back reflection and transmission geometry. The central 'core' crystal region was practically free of defects; only one extended 'oval' defect with strong boundary contrast was observed. The strong white-black contrasts connected with elongated volume defects and cracks were observed in surrounding the 'core' region

  14. X-ray diffraction microtomography using synchrotron radiation

    CERN Document Server

    Barroso, R C; Jesus, E F O; Oliveira, L F

    2001-01-01

    The X-ray diffraction computed tomography technique is based on the interference phenomena of the coherent scatter. For low-momentum transfer, it is most probable that the scattering interaction will be coherent. A selective discrimination of a given element in a scanned specimen can be realized by fixing the Bragg angle which produces an interference peak and then, to carry out the computed tomography in the standard mode. The image reconstructed exalts the presence of this element with respect to other ones in a sample. This work reports the feasibility of a non-destructive synchrotron radiation X-ray diffraction imaging technique. This research was performed at the X-ray Diffraction beam line of the National Synchrotron Light Laboratory (LNLS) in Brazil. The coherent scattering properties of different tissue and bone substitute materials were evaluated. Furthermore, diffraction patterns of some polycrystalline solids were studied due to industrial and environmental human exposure to these metals. The obtai...

  15. Extracted-beam-detection system around synchrotron saturne

    International Nuclear Information System (INIS)

    Anne, Remy; Milleret, Gerard; Giuliani, Arlette; Lefol, Andre; Perret, Robert; Poupard, Joseph; Trogno, Andre; Van den Bossche, Maurice; N'Guyen Sieu Viet.

    1977-07-01

    The extracted-beam-detection system working around the synchrotron Saturne is presented. The whole system is composed of about forty multiwire chambers used for beam tuning and providing beams profiles. Optic beam parameters such as position, divergence, dimension, emittance can be easily measured, or calculated with a program running on a computer. They are working in large range intensity beams (10 2 to 5.10 11 p/cm 2 /s of protons, alpha particles, deutons, pions, tritons and electrons [fr

  16. Materials research and beam line operation utilizing NSLS [National Synchrotron Light Source]: Progress report

    International Nuclear Information System (INIS)

    Liedl, G.L.

    1987-10-01

    MATRIX is a group of scientists who have common interests in utilizing x-ray synchrotron radiation for materials research. This group has developed a specialized beam line (X-18A) for x-ray scattering studies at the National Synchrotron Light Source (NSLS). The beam line was designed to optimize experimental conditions for diffuse scattering and surface/interface studies. An extension of diffuse scattering to provide better quantitative data has been shown as well as a unique application to the solution of the phase problem. In the x-ray surface scattering area the first reported experiment to illustrate the capabilities for studying monolayers on water was performed. Current beam line upgrade projects are also described. In addition to a change to a UHV system and improvements dictated by operational experience, two new systems are described, a unique small angle scattering chamber (SAXS) for dynamic studies of nucleation and growth and a surface scattering chamber. 5 figs

  17. Beam conditioner for free electron lasers and synchrotrons

    International Nuclear Information System (INIS)

    Liu, H.; Neil, G.R.

    1998-01-01

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM 10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs

  18. Focusing of white synchrotron radiation using large-acceptance cylindrical refractive lenses made of single – crystal diamond

    Energy Technology Data Exchange (ETDEWEB)

    Polikarpov, M., E-mail: polikarpov.maxim@mail.ru [Immanuel Kant Baltic Federal University, Nevskogo 14a, 23600 Kaliningrad (Russian Federation); Snigireva, I. [European Synchrotron Radiation Facility, 71 avenue des Martyrs, Grenoble 38043 (France); Snigirev, A. [Immanuel Kant Baltic Federal University, Nevskogo 14a, 23600 Kaliningrad (Russian Federation); European Synchrotron Radiation Facility, 71 avenue des Martyrs, Grenoble 38043 (France)

    2016-07-27

    Large-aperture cylindrical refractive lenses were manufactured by laser cutting of single-crystal diamond. Five linear single lenses with apertures of 1 mm and the depth of the structure of 1.2 mm were fabricated and tested at the ESRF ID06 beamline performing the focusing of white-beam synchrotron radiation. Uniform linear focus was stable during hours of exposure, representing such lenses as pre-focusing and collimating devices suitable for the front-end sections of today synchrotron radiation sources.

  19. Focusing of white synchrotron radiation using large-acceptance cylindrical refractive lenses made of single – crystal diamond

    International Nuclear Information System (INIS)

    Polikarpov, M.; Snigireva, I.; Snigirev, A.

    2016-01-01

    Large-aperture cylindrical refractive lenses were manufactured by laser cutting of single-crystal diamond. Five linear single lenses with apertures of 1 mm and the depth of the structure of 1.2 mm were fabricated and tested at the ESRF ID06 beamline performing the focusing of white-beam synchrotron radiation. Uniform linear focus was stable during hours of exposure, representing such lenses as pre-focusing and collimating devices suitable for the front-end sections of today synchrotron radiation sources.

  20. The Synchrotron Radiation Facility ESFR in Grenoble

    International Nuclear Information System (INIS)

    Haensel, R.

    1994-01-01

    The European Synchrotron Radiation Facility (ESFR) is the first synchrotron radiation source of the 3-th generation for Roentgen radiations.It permits a new series of experiments in the domains of physics, chemistry, materials studies, micromechanics, biology, medicine and crystallography. The main part of device represents the 850 meter storage ring of 6 GeV electrons. (MSA)

  1. Brightness of synchrotron radiation from wigglers

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2014-12-01

    According to literature, while calculating the brightness of synchrotron radiation from wigglers, one needs to account for the so called 'depth-of-field' effects. In fact, the particle beam cross section varies along the wiggler. It is usually stated that the effective photon source size increases accordingly, while the brightness is reduced. Here we claim that this is a misconception originating from an analysis of the wiggler source based on geometrical arguments, regarded as almost self-evident. According to electrodynamics, depth-of-field effects do not exist: we demonstrate this statement both theoretically and numerically, using a well-known first-principle computer code. This fact shows that under the usually accepted approximations, the description of the wiggler brightness turns out to be inconsistent even qualitatively. Therefore, there is a need for a well-defined procedure for computing the brightness from a wiggler source. We accomplish this task based on the use of a Wigner function formalism. In the geometrical optics limit computations can be performed analytically. Within this limit, we restrict ourselves to the case of the beam size-dominated regime, which is typical for synchrotron radiation facilities in the X-ray wavelength range. We give a direct demonstration of the fact that the apparent horizontal source size is broadened in proportion to the beamline opening angle and to the length of the wiggler. While this effect is well-understood, a direct proof appears not to have been given elsewhere. We consider the problem of the calculation of the wiggler source size by means of numerical simulations alone, which play the same role of an experiment. We report a significant numerical disagreement between exact calculations and approximations currently used in literature.

  2. Synchrotron radiation and prospects of its applications

    Energy Technology Data Exchange (ETDEWEB)

    Kulipanov, G; Skrinskii, A

    1981-04-01

    Current and prospective applications are described of synchrotron radiation resulting from the motion of high-energy electrons or positrons in a magnetic field and covering a wide spectral range from the infrared to X-ray. The advantages of the synchrotron radiation include a big source luminance, a small angular divergence, the possibility of calculating the absolute intensity and the spectral distribution of the radiation. Special storage rings are most suitable as a source. Synchrotron radiation is applied in X-ray microscopy, energy diffractometry, atomic and molecular spectroscopy, in the structural analysis of microcrystals, very rapid diffractometry of biological objects and crystals, and in Moessbauer spectroscopy. The prospective applications include uses in metrology, medicine, X-ray lithography, elemental analysis, molecular microsurgery, and in radiation technology.

  3. Experimental Study of Coherent Synchrotron Radiation in the Emittance Exchange Line at the A0-Photoinjector

    Science.gov (United States)

    Thangaraj, Jayakar C. T.; Thurman-Keup, R.; Johnson, A.; Lumpkin, A. H.; Edwards, H.; Ruan, J.; Santucci, J.; Sun, Y. E.; Church, M.; Piot, P.

    2010-11-01

    Next generation accelerators will require a high current, low emittance beam with a low energy spread. Such accelerators will employ advanced beam conditioning systems such as emittance exchangers to manipulate high brightness beams. One of the goals of the Fermilab A0 photoinjector is to investigate the transverse to longitudinal emittance exchange principle. Coherent synchrotron radiation could limit high current operation of the emittance exchanger. In this paper, we report on the preliminary experimental and simulation study of the coherent synchroton radiation (CSR) in the emittance exchange line at the A0 photoinjector.

  4. Adaptation of spectral distribution of synchrotron radiation to X-ray depth lithography

    International Nuclear Information System (INIS)

    Maid, B.; Ehrfeld, W.; Hormes, J.; Mohr, J.; Muenchmeyer, D.

    1989-05-01

    Plastic microstructures with extremly high aspect ratios can be fabricated by X-ray depth lithography with synchrotron radiation. In order to minimize the expenditure in terms of irradiation the spectrum of the synchrotron radiation source has to be adapted to the irradiation task. It is characterized by the height of the microstructure and the maximum admissible dose ratio permitting the resist to develop in the depth without destruction of the surface as a result of radiation damage. Expenditure in terms of irradiation is minimum if an ideal sharp cutoff filter, profiting from the maximum permissible dose ratio, filters out the long-waved portion of the spectrum without attenuating the intensity of the short-waved portion of the spectrum. By the example of a typical resist-developer system the location of the filter edge was determined at different structural heights for the Bonn synchrotron and the ELSA electron stretching facility (Bonn). To be capable of building the ideal sharp cutoff filter, the thickness of an absorber was adapted for different materials in such a way that the maximum permissible dose ratio was obtained. If a thin reflector foil is used which is hit by glazing radiation, the expenditure in terms of irradiation can be reduced because of the steeper filter characteristic of resists with small maximum dose ratios. The short-waved transmitted beam is used for irradiation, with the filter edge set by the angle between the foil and the beam. The technical feasibility of a reflection filter was demonstrated on the model of a reflector foil consisting of 30 nm titanium on 7.5 μm polyimide substrate by transmission measurements performed at different angles. (orig./HP) [de

  5. TXRF with synchrotron radiation. Analysis of Ni on Si-wafer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wobrauschek, P [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria); Kregsamer, P [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria); Ladisich, W [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria); Streli, C [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria); Pahlke, S [Wacker Chemitronic GmbH, D-84479 Burghausen (Germany); Fabry, L [Wacker Chemitronic GmbH, D-84479 Burghausen (Germany); Garbe, S [Institut fuer Anorg. u. Angew. Chemie, Universitaet Hamburg, Martin-Luther King-Pl.6, D-20146 Hamburg (Germany); Haller, M [Institut fuer Anorg. u. Angew. Chemie, Universitaet Hamburg, Martin-Luther King-Pl.6, D-20146 Hamburg (Germany); Knoechel, A [Institut fuer Anorg. u. Angew. Chemie, Universitaet Hamburg, Martin-Luther King-Pl.6, D-20146 Hamburg (Germany); Radtke, M [Institut fuer Anorg. u. Angew. Chemie, Universitaet Hamburg, Martin-Luther King-Pl.6, D-20146 Hamburg (Germany)

    1995-09-11

    SR-TXRF (Synchrotron Radiation excited Total Reflection X-ray Fluorescence Analysis) with monoenergetic radiation produced by a W/C multilayer monochromator has been applied to the analysis of Ni on a Si-wafer surface. An intentionally contaminated wafer with 100 pg has been used to determine the detection limits. 13 fg have been achieved for Ni at a beam current of 73 mA and extrapolated to 1000 s. This technique simulates the sample preparation technique of Vapour Phase Decomposition (VPD) on a wafer surface. (orig.).

  6. TXRF with synchrotron radiation. Analysis of Ni on Si-wafer surfaces

    International Nuclear Information System (INIS)

    Wobrauschek, P.; Kregsamer, P.; Ladisich, W.; Streli, C.; Pahlke, S.; Fabry, L.; Garbe, S.; Haller, M.; Knoechel, A.; Radtke, M.

    1995-01-01

    SR-TXRF (Synchrotron Radiation excited Total Reflection X-ray Fluorescence Analysis) with monoenergetic radiation produced by a W/C multilayer monochromator has been applied to the analysis of Ni on a Si-wafer surface. An intentionally contaminated wafer with 100 pg has been used to determine the detection limits. 13 fg have been achieved for Ni at a beam current of 73 mA and extrapolated to 1000 s. This technique simulates the sample preparation technique of Vapour Phase Decomposition (VPD) on a wafer surface. (orig.)

  7. Techniques for materials research with synchrotron radiation x-rays

    International Nuclear Information System (INIS)

    Bowen, D.K.

    1983-01-01

    A brief introductory survey is presented of the properties and generation of synchrotron radiation and the main techniques developed so far for its application to materials problems. Headings are:synchrotron radiation; X-ray techniques in synchrotron radiation (powder diffraction; X-ray scattering; EXAFS (Extended X-ray Absorption Fine Structure); X-ray fluorescent analysis; microradiography; white radiation topography; double crystal topography); future developments. (U.K.)

  8. Modular design of H/sup /minus// synchrotrons for radiation therapy

    International Nuclear Information System (INIS)

    Martin, R.L.

    1988-01-01

    A modular synchrotron for accelerating H/sup /minus// ions, and a proton beam delivery system are being developed for radiation therapy with protons under SBIR grants from the National Cancer Institute. The advantage proposed for accelerating H/sup /minus// ions and utilizing change exchange as a slow extraction mechanism lies in enhanced control for the extracted beam current, important for beam delivery with raster scanning for 3D dose contouring of a tumor site. Under these grants prototype magnets and vacuum systems are being constructed, appropriate H/sup /minus// sources are being developed and beam experiments will be carried out to demonstrate some of the key issues of this concept. The status of this program is described along with a discussion of a relatively inexpensive beam delivery system and a proposed program for its development. 3 refs

  9. Synchrotron radiation sources: general features and vacuum system

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1985-01-01

    In the last years the electron or positron storage rings, which were until 1970 only used for high energy physics experiments, begun to be built in several countries exclusively as electromagnetic radiation source (synchrotron radiation). The sources are generally made up by injector (linear accelerator or microtron), 'booster' (synchrotron), storage ring, insertions ('Wigglers' and ondulators) and light lines. The interest by these sources are due to the high intensity, large spectrum (from infrared to the X-rays), polarization and pulsed structure of the produced radiation. For the ultra-vacuum obtainement, necessary for the functioning storage rings (p=10 -9 Torr), several special procedures are used. In Brazil the Synchrotron Radiation National Laboratory of the CNPq worked out a conceptual project of synchrotron radiation source, whose execution should begin by the construction of the several components prototypes. (L.C.) [pt

  10. The LBL 1-2 GeV synchrotron radiation source

    International Nuclear Information System (INIS)

    Selph, F.B.

    1987-06-01

    The design of the 1 to 2 GeV Synchrotron Radiation Source to be built at the Lawrence Berkeley Laboratory is described. The goal of this facility is to provide very high brightness photon beams in the ultraviolet and soft x-ray regions. The photon energy range to be served is from 0.5 eV to 10 keV, with the brightest beams available in the 1 eV to 1 keV interval. For time-resolved experiments, beam pulses of a few tens of picoseconds will be available. Emphasis will be on the use of undulators and wigglers to produce high quality, intense beams. Initially, four of the former and one of the latter devices will be installed, with six long straight sections left open for future installations. In addition, provision is being made for 48 beamlines from bending magnets. The storage ring is optimized for operation at 1.5 GeV, with a maximum energy of 1.9 GeV. The injection system includes a 1.5 GeV booster synchrotron for full energy injection at the nominal operating energy of the storage ring. Filling time for the maximum storage ring intensity of 400 mA is about 2 minutes, and beam lifetime will be about 6 hours. Attention has been given to the extraordinary requirements for beam stability, and to the need to independently control photon beam alignment. Typical rms beam size in insertion regions is 201 μm horizontal, and 38 μm vertical. The manner in which this design achieves very high spectral brightness from undulators and wigglers, while maintaining a modest value for the beam current, will be described. Primarily, this requires that the design of the lattice, the arrangement of bending magnets, focusing quadrupoles and straight sections, be done with this in mind

  11. Use of a synchrotron radiation x-ray microprobe for elemental analysis at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1980-01-01

    The National Synchrotron Light Source (NSLS) is a facility consisting of a 700 MeV and a 2.5 GeV electron storage ring and dedicated to providing synchrotron radiation in the energy range from the vacuum ultraviolet to high energy x rays. Some of the properties of synchrotron radiation that contribute to its usefulness for x-ray fluorescence are: a continuous, tunable energy spectrum, strong collimation in the horizontal plane, high polarization in the storage ring plane, and relatively low energy deposition. The highest priority is for the development of an x-ray microprobe beam line capable of trace analysis in the parts per million range with spatial resolution as low as one micrometer. An eventual capability for bulk sample analysis is also planned with sensitivities in the more favorable cases beings low as 50 parts per billion in dry biological tissue. The microprobe technique has application to a variety of fields including the geological, medical, materials and environmental sciences. Examples of investigations include multielemental trace analysis across grain boundaries for the study of diffusion and cooling processes in geological and materials sciences samples; in leukocytes and other types of individual cells for studying the relationship between trace element concentrations and disease or nutrition; and in individual particles in air pollution samples

  12. Synchrotron radiation and free electron laser activities in Novosibirsk

    International Nuclear Information System (INIS)

    Korchuganov, V.N.; Kulipanov, G.N.; Mezentsev, N.A.; Oreshkov, A.D.; Panchenko, V.E.; Pindyurin, V.F.; Skrinskij, A.N.; Sheromov, M.A.; Vinokurov, N.A.; Zolotarev, K.V.

    1994-01-01

    The results of studies realized in the Siberian synchrotron radiation centre within the frameworks of wide program of synchrotron radiation and free electron laser research are summarized. The technical information on the VEPP-2M, VEPP-3 and VEPP-4M storage rings used as synchrotron radiation sources is given. 10 refs.; 8 figs.; 12 tabs

  13. Current status of Hiroshima Synchrotron Radiation Center

    International Nuclear Information System (INIS)

    Taniguchi, Masaki

    2000-01-01

    The Hiroshima Synchrotron Radiation Center is a common facility for both research and education in the field of synchrotron radiation science. The role of the center is to promote original research, training of young scientists, international exchange and cooperative research with neighbouring universities, public organizations and industries. (author)

  14. Stanford Synchrotron Radiation Laboratory. Activity report for 1988

    Energy Technology Data Exchange (ETDEWEB)

    Cantwell, K. [ed.

    1996-01-01

    For SSRL operations, 1988 was a year of stark contrasts. The first extended PEP parasitic running since the construction of our two beam lines on that storage ring took place in November and December. Four experiments discussed below, were performed and detailed operational procedures which allowed synchrotron radiation an high energy users to coexist were established. SSRL anticipates that there will be significant amounts of beam time when PEP is run again for high energy physics. On the other hand, activity on SPEAR consisted of brief parasitic running on the VUV lines in December when the ring was operated at 1.85 GeV for colliding beam experiments. There was no dedicated SPEAR running throughout the entire calendar year. This is the first time since dedicated SPEAR operation was initiated in 1980 that there was no such running. The decision was motivated by both cost and performance factors, as discussed in Section 1 of this report. Fortunately, SLAC and SSRL have reached an agreement on SPEAR and PEP dedicated time charges which eliminates the cost volatility which was so important in the cancellation of the June-July dedicated SPEAR run. As discussed in Section 2, the 3 GeV SPEAR injector construction is proceeding on budget and on schedule. The injector will overcome the difficulties associated with the SLC-era constraint of only two injections per day. SSR and SLAC have also embarked on a program to upgrade SPEAR to achieve high reliability and performance. As a consequence, SSRL`s users may anticipate a highly effective SPEAR by 1991, at the latest. At that time, SPEAR is expected to be fully dedicated to synchrotron radiation research and operated by SSRL. Also contained in this report is a discussion of the improvements to SSRL`s experimental facilities and highlights of the experiments of the past year.

  15. Stanford Synchrotron Radiation Laboratory. Activity report for 1988

    International Nuclear Information System (INIS)

    Cantwell, K.

    1996-01-01

    For SSRL operations, 1988 was a year of stark contrasts. The first extended PEP parasitic running since the construction of our two beam lines on that storage ring took place in November and December. Four experiments discussed below, were performed and detailed operational procedures which allowed synchrotron radiation an high energy users to coexist were established. SSRL anticipates that there will be significant amounts of beam time when PEP is run again for high energy physics. On the other hand, activity on SPEAR consisted of brief parasitic running on the VUV lines in December when the ring was operated at 1.85 GeV for colliding beam experiments. There was no dedicated SPEAR running throughout the entire calendar year. This is the first time since dedicated SPEAR operation was initiated in 1980 that there was no such running. The decision was motivated by both cost and performance factors, as discussed in Section 1 of this report. Fortunately, SLAC and SSRL have reached an agreement on SPEAR and PEP dedicated time charges which eliminates the cost volatility which was so important in the cancellation of the June-July dedicated SPEAR run. As discussed in Section 2, the 3 GeV SPEAR injector construction is proceeding on budget and on schedule. The injector will overcome the difficulties associated with the SLC-era constraint of only two injections per day. SSR and SLAC have also embarked on a program to upgrade SPEAR to achieve high reliability and performance. As a consequence, SSRL's users may anticipate a highly effective SPEAR by 1991, at the latest. At that time, SPEAR is expected to be fully dedicated to synchrotron radiation research and operated by SSRL. Also contained in this report is a discussion of the improvements to SSRL's experimental facilities and highlights of the experiments of the past year

  16. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Vylet, Vaclav; /Jefferson Lab

    2009-12-11

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  17. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    International Nuclear Information System (INIS)

    Liu, James C.; Rokni, Sayed H.; Vylet, Vaclav

    2009-01-01

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power (∼ 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  18. Optical and x-ray imaging of electron beams using synchrotron emission

    International Nuclear Information System (INIS)

    Wilke, M.

    1995-01-01

    In the case of very low emittance electron and positron storage ring beams, it is impossible to make intrusive measurements of beam properties without increasing the emittance and possibly disrupting the beam. In cases where electron or positron beams have high average power densities (such as free electron laser linacs), intrusive probes such as wires and optical transition radiation screens or Cherenkov emitting screens can be easily damaged or destroyed. The optical and x-ray emissions from the bends in the storage rings and often from linac bending magnets can be used to image the beam profile to obtain emittance information about the beam. The techniques, advantages and limitations of using both optical and x-ray synchrotron emission to measure beam properties are discussed and the possibility of single bunch imaging is considered. The properties of suitable imagers and converters such as phosphors are described. Examples of previous, existing and planned applications are given where available, including a pinhole imaging system currently being designed for the Advanced Photon Source at Argonne National Laboratory

  19. Optical and x-ray imaging of electron beams using synchrotron emission

    International Nuclear Information System (INIS)

    Wilke, M.D.

    1994-01-01

    In the case of very low eniittance electron and positron storage ring beams, it is impossible to make intrusive measurements of beam properties without increasing the emittance and possibly disrupting the beam. In cases where electron or positron beams have high average power densities (such as free electron laser linacs), intrusive probes such as wires and optical transition radiation screens or Cherenkov emitting screens can be easily damaged or destroyed. The optical and x-ray emissions from the bends in the storage rings and often from linac bending magnets can be used to image the beam profile to obtain emittance information about the beam. The techniques, advantages and limitations of using both optical and x-ray synchrotron emission to measure beam properties are discussed and the possibility of single bunch imaging is considered. The properties of suitable imagers and converters such as phosphors are described. Examples of previous, existing and planned applications are given where available, including a pinhole imaging system currently being designed for the Advanced Photon Source at Argonne National Laboratory

  20. Development and optimization of the LHC and the SPS beam diagnostics based on synchrotron radiation monitoring

    International Nuclear Information System (INIS)

    Trad, Georges

    2015-01-01

    Measuring the beam transverse emittance is fundamental in every accelerator, in particular for colliders, where its precise determination is essential to maximize the luminosity and thus the performance of the colliding beams. Synchrotron Radiation (SR) is a versatile tool for non-destructive beam diagnostics, since its characteristics are closely related to those of the source beam. At CERN, being the only available diagnostics at high beam intensity and energy, SR monitors are exploited as the proton beam size monitor of the two higher energy machines, the Super Proton Synchrotron (SPS) and the Large Hadron Collider (LHC). The thesis work documented in this report focused on the design, development, characterization and optimization of these beam size monitors. Such studies were based on a comprehensive set of theoretical calculations, numerical simulations and experiments. A powerful simulation tool has been developed combining conventional softwares for SR simulation and optics design, thus allowing the description of an SR monitor from its source up to the detector. The simulations were confirmed by direct observations, and a detailed performance studies of the operational SR imaging monitor in the LHC, where different techniques for experimentally validating the system were applied, such as cross-calibrations with the wire scanners at low intensity (that are considered as a reference) and direct comparison with beam sizes de-convoluted from the LHC luminosity measurements. In 2015, the beam sizes to be measured with the further increase of the LHC beam energy to 7 TeV will decrease down to ∼190 μm. In these conditions, the SR imaging technique was found at its limits of applicability since the error on the beam size determination is proportional to the ratio of the system resolution and the measured beam size. Therefore, various solutions were probed to improve the system's performance such as the choice of one light polarization, the reduction of

  1. Real world issues for the new soft x-ray synchrotron sources

    International Nuclear Information System (INIS)

    Kincaid, B.M.

    1991-05-01

    A new generation of synchrotron radiation light sources covering the VUV, soft x-ray and hard x-ray spectral regions is under construction in several countries. They are designed specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce high-brightness near-diffraction-limited synchrotron radiation beams. An introduction to the properties of undulator radiation is followed by a discussion of some of the challenges to be faced at the new facilities. Examples of predicted undulator output from the Advanced Light Source, a third generation 1--2 GeV storage ring optimized for undulator use, are used to highlight differences from present synchrotron radiation sources, including high beam power, partial coherence, harmonics, and other unusual spectral and angular properties of undulator radiation. 8 refs., 2 figs

  2. White beam synchrotron fractography of molybdenum and niobium single crystals

    International Nuclear Information System (INIS)

    Bilello, J.C.; Hmelo, A.B.

    1983-01-01

    It has been demonstrated that a White Beam Synchrotron reflection technique can be used to characterize the fracture surface of Mo and Nb single crystals. This technique when used in conjunction with Berg-Barrett (or in the future monochromatic synchrotron topography) gives detailed information which correlates the internal defect structure to the cleavage surface morphology. In particular, synchrotron fractography has revealed the full extent of the plastic zone associated with a precursor crack, has clearly identified the nature of the initial crack where more than one precursor could have existed, and give detailed information on the extent of twinning and microtwinning. In comparison with other fractography methods for such semi-brittle metals the White Beam Synchrotron method not only achieves rapid data collection, but also provides internal defect structure correlation non-destructively. (author)

  3. Diamond detectors for synchrotron radiation X-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    De Sio, A. [Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Roma (Italy); Department of Astronomy and Space Science, Universita di Firenze, L.go E. Fermi 2, 50125 Firenze (Italy)], E-mail: desio@arcetri.astro.it; Pace, E. [Department of Astronomy and Space Science, Universita di Firenze, L.go E. Fermi 2, 50125 Firenze (Italy); INFN, Sezione di Firenze, v. G. Sansone 1, Sesto Fiorentino, Firenze (Italy); Cinque, G.; Marcelli, A. [Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Roma (Italy); Achard, J.; Tallaire, A. [LIMHP-CNRS, University of Paris XIII, 99 Avenue JB Clement, 93430 Villetaneuse (France)

    2007-07-15

    Due to its unique physical properties, diamond is a very appealing material for the development of electronic devices and sensors. Its wide band gap (5.5 eV) endows diamond based devices with low thermal noise, low dark current levels and, in the case of radiation detectors, high visible-to-X-ray signal discrimination (visible blindness) as well as high sensitivity to energies greater than the band gap. Furthermore, due to its radiation hardness diamond is very interesting for applications in extreme environments, or as monitor of high fluency radiation beams. In this work the use of diamond based detectors for X-ray sensing is discussed. On purpose, some photo-conductors based on different diamond types have been tested at the DAFNE-L synchrotron radiation laboratory at Frascati. X-ray sensitivity spectra, linearity and stability of the response of these diamond devices have been measured in order to evidence the promising performance of such devices.

  4. Diamond detectors for synchrotron radiation X-ray applications

    International Nuclear Information System (INIS)

    De Sio, A.; Pace, E.; Cinque, G.; Marcelli, A.; Achard, J.; Tallaire, A.

    2007-01-01

    Due to its unique physical properties, diamond is a very appealing material for the development of electronic devices and sensors. Its wide band gap (5.5 eV) endows diamond based devices with low thermal noise, low dark current levels and, in the case of radiation detectors, high visible-to-X-ray signal discrimination (visible blindness) as well as high sensitivity to energies greater than the band gap. Furthermore, due to its radiation hardness diamond is very interesting for applications in extreme environments, or as monitor of high fluency radiation beams. In this work the use of diamond based detectors for X-ray sensing is discussed. On purpose, some photo-conductors based on different diamond types have been tested at the DAFNE-L synchrotron radiation laboratory at Frascati. X-ray sensitivity spectra, linearity and stability of the response of these diamond devices have been measured in order to evidence the promising performance of such devices

  5. A method for ultrashort electron pulse-shape measurement using coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Geloni, G.; Yurkov, M.V.

    2003-03-01

    In this paper we discuss a method for nondestructive measurements of the longitudinal profile of sub-picosecond electron bunches for X-ray free electron lasers (XFELs). The method is based on the detection of the coherent synchrotron radiation (CSR) spectrum produced by a bunch passing a dipole magnet system. This work also contains a systematic treatment of synchrotron radiation theory which lies at the basis of CSR. Standard theory of synchrotron radiation uses several approximations whose applicability limits are often forgotten: here we present a systematic discussion about these assumptions. Properties of coherent synchrotron radiation from an electron moving along an arc of a circle are then derived and discussed. We describe also an effective and practical diagnostic technique based on the utilization of an electromagnetic undulator to record the energy of the coherent radiation pulse into the central cone. This measurement must be repeated many times with different undulator resonant frequencies in order to reconstruct the modulus of the bunch form-factor. The retrieval of the bunch profile function from these data is performed by means of deconvolution techniques: for the present work we take advantage of a constrained deconvolution method. We illustrate with numerical examples the potential of the proposed method for electron beam diagnostics at the TESLA test facility (TTF) accelerator. Here we choose, for emphasis, experiments aimed at the measure of the strongly non-Gaussian electron bunch profile in the TTF femtosecond-mode operation. We demonstrate that a tandem combination of a picosecond streak camera and a CSR spectrometer can be used to extract shape information from electron bunches with a narrow leading peak and a long tail. (orig.)

  6. SLC energy spectrum monitor using synchrotron radiation

    International Nuclear Information System (INIS)

    Seeman, J.; Brunk, W.; Early, R.; Ross, M.; Tillmann, E.; Walz, D.

    1986-01-01

    The SLAC linac is being upgraded for the use in the SLAC Linear Collider (SLC). The improved linac must accelerate electron and positron bunches from 1.2 GeV to 50 GeV while producing output energy spectra of about 0.2%. The energy spectra must be maintained during operation to provide for good beam transmission and to minimize chromatic effects in the SLC ARCs and Final Focus. The energy spectra of these beams are determined by the bunch length and intensity, the RF phase and waveform and the intra-bunch longitudinal wakefields. A non-destructive energy spectrum monitor has been designed using a vertical wiggler magnet located downstream of the horizontal beam splitter at the end of the SLC linac. It produces synchrotron radiation which is viewed in an off-axis x-ray position sensitive detector. The expected resolution is 0.08 %. The design considerations of this monitor are presented. A pair of these monitors is under construction with an installation data set for late summer 1986

  7. SLC energy spectrum monitor using synchrotron radiation

    International Nuclear Information System (INIS)

    Seeman, J.; Brunk, W.; Early, R.; Ross, M.; Tillmann, E.; Walz, D.

    1986-04-01

    The SLAC Linac is being upgraded for the use in the SLAC Linear Collider (SLC). The improved Linac must accelerate electron and positron bunches from 1.2 GeV to 50 GeV while producing output energy spectra of about 0.2%. The energy spectra must be maintained during operation to provide for good beam transmission and to minimize chromatic effects in the SLC ARCs and Final Focus. the energy spectra of these beams are determined by the bunch length and intensity, the RF phase and waveform and the intra-bunch longitudinal wakefields. A non-destructive energy spectrum monitor has been designed using a vertical wiggler magnet located downstream of the horizontal beam splitter at the end of the SLC Linac. It produces synchrotron radiation which is viewed in an off-axis x-ray position sensitive detector. The expected resolution is 0.08%. The design considerations of this monitor are presented in this paper. A pair of these monitors is under construction with an installation date set for late summer 1986. 5 refs., 6 figs

  8. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    International Nuclear Information System (INIS)

    Nasr, Amgad

    2012-01-01

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N 2 , Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  9. The synchrotron and its related technology for ion beam therapy

    International Nuclear Information System (INIS)

    Hiramoto, Kazuo; Umezawa, Masumi; Saito, Kazuyoshi; Tootake, Satoshi; Nishiuchi, Hideaki; Hara, Shigemistu; Tanaka, Masanobu; Matsuda, Koji; Sakurabata, Hiroaki; Moriyama, Kunio

    2007-01-01

    Hitachi has developed several new technologies for the synchrotron and its related system to realize reliable and flexible operation of a proton therapy system. Especially important among them are a non-resonant RF acceleration cavity using FINEMET core with multiple power feeding and radio frequency driven beam extraction technique (RF-DE) for a synchrotron. Various treatment operations such as variable acceleration energy or respiration gating became possible and simple due to the above technique. For beam transport, a beam steering method for the beam, using transfer matrix realizes quick and precise correction of the beam orbit. A compact microwave ion source has also been developed for the injector to obtain further higher reliability and availability. Most of these technologies are also effective to enhance the reliability and flexibility of other ion beam therapy systems

  10. Operational experience with synchrotron light interferometers for CEBAF experimental beam lines

    Energy Technology Data Exchange (ETDEWEB)

    Pavel Chevtsov

    2006-10-24

    Beam size and energy spread monitoring systems based on Synchrotron Light Interferometers (SLI) have been in operations at Jefferson Lab for several years. A non-invasive nature and a very high (a few mm) resolution of SLI make these instruments valuable beam diagnostic tools for the CEBAF accelerator. This presentation describes the evolution of the Synchrotron Light Interferometer at Jefferson Lab and highlights our extensive experience in the installation and operation of the SLI for CEBAF experimental beam lines.

  11. Heat transfer issues in high-heat-load synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Mills, D.M.

    1994-09-01

    In this paper, a short description of the synchrotron radiation x-ray sources and the associated power loads is given, followed by a brief description of typical synchrotron components and their heat load. It is emphasized that the design goals for most of these components is to limit (a) temperature, (b) stresses, or (c) strains in the system. Each design calls for a different geometry, material selection, and cooling scheme. Cooling schemes that have been utilized so far are primarily single phase and include simple macrochannel cooling, microchannel cooling, contact cooling, pin-post cooling, porous-flow cooling, jet cooling, etc. Water, liquid metals, and various cryogenic coolants have been used. Because the trend in x-ray beam development is towards brighter (i.e., more powerful) beams and assuming that no radical changes in the design of x-ray generating machines occurs in the next few years, it is fair to state that the utilization of various effective cooling schemes and, in particular, two-phase flow (e.g., subcooled boiling) warrants further investigation. This, however, requires a thorough examination of stability and reliability of two-phase flows for high-heat-flux components operating in ultrahigh vacuum with stringent reliability requirements

  12. Materials science created by synchrotron radiation

    International Nuclear Information System (INIS)

    Oshima, Masaharu

    2015-01-01

    We survey the use of synchrotron radiation for studies on oxides. High luminosity enables the spectroscopy with high energy-resolution in soft X-ray and vacuum ultraviolet region. Element analysis is possible by examining absorption edge in the X-ray absorption spectra. Time-resolved measurements are possible due to the pulsed nature of the radiation. The radiation can bear linear or circular polarization. The feature of molecules adhered on a surface can be clarified by using linearly polarized radiation. The circularly polarized radiation, on the other hand, clarifies the magnetic structure. The structure information so far unknown can be obtained by using space- or time-coherent radiation. We show studies using synchrotron radiation on LSI gate oxide foils, variable resistance RAM, strongly correlated oxide foils, and the oxide as positive electrode of Li ion battery. (J.P.N.)

  13. Low frequency interference between short synchrotron radiation sources

    Directory of Open Access Journals (Sweden)

    F. Méot

    2001-06-01

    Full Text Available A recently developed analytical formalism describing low frequency far-field synchrotron radiation (SR is applied to the calculation of spectral angular radiation densities from interfering short sources (edge, short magnet. This is illustrated by analytical calculation of synchrotron radiation from various assemblies of short dipoles, including an “isolated” highest density infrared SR source.

  14. Raster microdiffraction with synchrotron radiation of hydrated biopolymers with nanometre step-resolution: case study of starch granules

    International Nuclear Information System (INIS)

    Riekel, C.; Burghammer, M.; Davies, R. J.; Di Cola, E.; König, C.; Lemke, H.T.; Putaux, J.-L.; Schöder, S.

    2010-01-01

    Radiation damage propagation was examined in starch granules by synchrotron radiation micro- and nano-diffraction techniques from cryo- to room temperatures. Careful dose limitation allowed raster-diffraction experiments with 500 nm step resolution to be performed. X-ray radiation damage propagation is explored for hydrated starch granules in order to reduce the step resolution in raster-microdiffraction experiments to the nanometre range. Radiation damage was induced by synchrotron radiation microbeams of 5, 1 and 0.3 µm size with ∼0.1 nm wavelength in B-type potato, Canna edulis and Phajus grandifolius starch granules. A total loss of crystallinity of granules immersed in water was found at a dose of ∼1.3 photons nm −3 . The temperature dependence of radiation damage suggests that primary radiation damage prevails up to about 120 K while secondary radiation damage becomes effective at higher temperatures. Primary radiation damage remains confined to the beam track at 100 K. Propagation of radiation damage beyond the beam track at room temperature is assumed to be due to reactive species generated principally by water radiolysis induced by photoelectrons. By careful dose selection during data collection, raster scans with 500 nm step-resolution could be performed for granules immersed in water

  15. Third generation synchrotron radiation applied to materials science

    International Nuclear Information System (INIS)

    Kaufmann, E.N.; Yun, W.

    1993-01-01

    Utility of synchrotron radiation for characterization of materials and ramifications of availability of new third-generation, high-energy, high-intensity sources of synchrotron radiation are discussed. Examples are given of power of x-ray analysis techniques to be expected with these new machines

  16. Installation of a Synchrotron Radiation Beamline Facility at the J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices for the Science and Engineering Alliance. Phase I and II. Final Report

    International Nuclear Information System (INIS)

    Gooden, R.

    2000-01-01

    The Johnston Center presents a unique opportunity for scientists and engineers at southern institutions to initiate and carry out original research using synchrotron radiation ranging from visible light to hard x-rays. The Science and Engineering Alliance proposes to carry out a comprehensive new synchrotron radiation research initiative at CAMD in carefully phased steps of increasing risks. (1) materials research on existing CAMD beam lines and end stations; (2) design, construction and installation of end stations on existing CAMD beam lines, and research with this new instrumentation; (3) design, construction and operation of dedicated synchrotron radiation beam lines that covers the full spectral range of the CAMD storage ring and expanded research in the new facility

  17. In situ visualization of thermal distortions of synchrotron radiation optics

    International Nuclear Information System (INIS)

    Revesz, P.; Kazimirov, A.; Bazarov, I.

    2007-01-01

    We have developed a new in situ method to measure heating-induced distortions of the surface of the first monochromator crystal exposed to high-power white synchrotron radiation beam. The method is based on recording the image of a stationary grid of dots captured by a CCD camera as reflected from the surface of a crystal with and without a heat load. The three-dimensional surface profile (heat bump) is then reconstructed from the distortions of the original pattern. In experiments performed at the CHESS A2 wiggler beam line we measured the heat bumps with the heights of up to 600 nm produced by a wiggler beam with total power in the range of 15-60 W incident on the (1 1 1) Si crystal at various angles between 3 deg. and 15 deg

  18. Combining scanning tunneling microscopy and synchrotron radiation for high-resolution imaging and spectroscopy with chemical, electronic, and magnetic contrast

    International Nuclear Information System (INIS)

    Cummings, M.L.; Chien, T.Y.; Preissner, C.; Madhavan, V.; Diesing, D.; Bode, M.; Freeland, J.W.; Rose, V.

    2012-01-01

    The combination of high-brilliance synchrotron radiation with scanning tunneling microscopy opens the path to high-resolution imaging with chemical, electronic, and magnetic contrast. Here, the design and experimental results of an in-situ synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system are presented. The system is designed to allow monochromatic synchrotron radiation to enter the chamber, illuminating the sample with x-ray radiation, while an insulator-coated tip (metallic tip apex open for tunneling, electron collection) is scanned over the surface. A unique feature of the SXSTM is the STM mount assembly, designed with a two free-flex pivot, providing an angular degree of freedom for the alignment of the tip and sample with respect to the incoming x-ray beam. The system designed successfully demonstrates the ability to resolve atomic-scale corrugations. In addition, experiments with synchrotron x-ray radiation validate the SXSTM system as an accurate analysis technique for the study of local magnetic and chemical properties on sample surfaces. The SXSTM system's capabilities have the potential to broaden and deepen the general understanding of surface phenomena by adding elemental contrast to the high-resolution of STM. -- Highlights: ► Synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system designed. ► Unique STM mount design allows angular DOF for tip alignment with x-ray beam. ► System demonstrates ability to resolve atomic corrugations on HOPG. ► Studies show chemical sensitivity with STM tip from photocurrent and tunneling. ► Results show system's ability to study local magnetic (XMCD) properties on Fe films.

  19. Moessbauer spectroscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Bergmann, U.

    1994-01-01

    The short pulse nature of synchrotron radiation makes it possible to perform Moessbauer spectroscopy in the time domain, i.e. instead of measuring the transmitted intensity time integrated as a function of source/absorber velocity, the intensity of the scattered radiation is measured time differential. The resulting time spectrum is essentially source independent and complications in the data analysis which are related to the radioactive source are completely removed. Furthermore, the large brightness and well defined polarization of the synchrotron radiation can, e.g., speed up the data collection and facilitate studies of polarization phenomena. To illustrate these new spectroscopic possibilities, measurements of the temperature dependence and polarization dependence of forward scattering from alpha - sup 5 sup 7 Fe nuclei are presented and discussed 26 refs., 5 figs. (author)

  20. Synchrotron-radiation experiments with recoil ions

    International Nuclear Information System (INIS)

    Levin, J.C.

    1989-01-01

    Studies of atoms, ions and molecules with synchrotron radiation have generally focused on measurements of properties of the electrons ejected during, or after, the photoionization process. Much can also be learned, however, about the atomic or molecular relaxation process by studies of the residual ions or molecular fragments following inner-shell photoionization. Measurements are reported of mean kinetic energies of highly charged argon, krypton, and xenon recoil ions produced by vacancy cascades following inner-shell photoionization using white and monochromatic synchrotron x radiation. Energies are much lower than for the same charge-state ions produced by charged-particle impact. The results may be applicable to design of future angle-resolved ion-atom collision experiments. Photoion charge distributions are presented and compared with other measurements and calculations. Related experiments with synchrotron-radiation produced recoil ion, including photoionization of stored ions and measurement of shakeoff in near-threshold excitation, are briefly discussed. 24 refs., 6 figs., 1 tab

  1. High-brightness electron beams for production of high intensity, coherent radiation for scientific and industrial applications

    International Nuclear Information System (INIS)

    Kim, K.-J.

    1999-01-01

    Relativistic electron beams with high six-dimensional phase space densities, i.e., high-brightness beams, are the basis for efficient generation of intense and coherent radiation beams for advanced scientific and industrial applications. The remarkable progress in synchrotrons radiation facilities from the first generation to the current, third-generation capability illustrates this point. With the recent development of the high-brightness electron gun based on laser-driven rf photocathodes, linacs have become another important option for high-brightness electron beams. With linacs of about 100 MeV, megawatt-class infrared free-electron lasers can be designed for industrial applications such as power beaming. With linacs of about 10 GeV, 1- angstrom x-ray beams with brightness and time resolution exceeding by several orders of magnitude the current synchrotrons radiation sources can be generated based on self-amplified spontaneous emission. Scattering of a high-brightness electron beam by high power laser beams is emerging as a compact method of generating short-pulse, bright x-rays. In the high-energy frontier, photons of TeV quantum energy could be generated by scattering laser beams with TeV electron beams in future linear colliders

  2. Terahertz Coherent Synchrotron Radiation from Femtosecond Laser Modulation of the Electron Beam at the Advanced Light Source

    CERN Document Server

    Byrd, John; Martin, Michael C; Robin, David; Sannibale, Fernando; Schönlein, Robert W; Zholents, Alexander; Zolotorev, Max S

    2005-01-01

    At the Advanced Light Source (ALS), the "femtoslicing" beamline is in operation since 1999 for the production of x-ray synchrotron radiation pulses with femtosecond duration. The mechanism used for generating the short x-ray pulses induces at the same time temporary structures in the electron bunch longitudinal distribution with very short characteristic length. Such structures emit intense coherent synchrotron radiation (CSR) in the terahertz frequency range. This CSR, whose measured intensity is routinely used as a diagnostics for the tune-up of the femtoslicing experiments, represents a potential source of terahertz radiation with very interesting features. Several measurements have been performed for its characterization and in this paper an updated description of the experimental results and of their interpretation is presented.

  3. Soft X-ray diffractometer for synchrotron radiation

    CERN Document Server

    Gau, T S; Liu, K Y; Chung, C H; Chen, C K; Lai, S C; Shu, C H; Huang, Y S; Chao, C H; Lee, Y R; Chen, C T; Chang, S L

    2001-01-01

    An ultra-high vacuum soft X-ray diffractometer has been constructed and commissioned at the Synchrotron Radiation Research Center (SRRC) to investigate materials structures in mesoscale. The diffractometer, housed in a UHV tank, consists of a 6-circle goniometer, together with the systems for beam-collimation, signal detection, vacuum, and control panels. The kappa-phi (cursive,open) Greek-psi goniostat is adopted for the sample orientation. Crystal samples can be rotated along a given reciprocal lattice vector by using psi scan. Two orthogonal axes, gamma (or 2 theta) and delta, are used to move the detector. The detector is a semiconductor pin diode, which can be used in UHV ambient. This 6-circle goniometer allows for sample scanning of a wide range in the momentum space. The motors used for goniometer rotation and slit selection are UHV compatible. The UHV tank is placed on an XYZ table capable of positioning the center of the goniometer onto the incident beam. Test experiments have been carried on the 1-...

  4. Helical magnetized wiggler for synchrotron radiation laser

    International Nuclear Information System (INIS)

    Wang Mei; Park, S.Y.; Hirshfield, J.L.

    1999-01-01

    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude

  5. Helical magnetized wiggler for synchrotron radiation laser

    CERN Document Server

    Wang Mei; Hirshfield, J L

    1999-01-01

    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude.

  6. Synchrotron Radiation and Faraday Rotation

    NARCIS (Netherlands)

    Heald, George

    2015-01-01

    Synchrotron radiation and its degree of linear polarization are powerful tracers of magnetic fields that are illuminated by cosmic ray electrons. Faraday rotation of the linearly polarized radiation is induced by intervening line-of-sight magnetic fields that are embedded in ionized plasmas. For

  7. Compensating effect of the coherent synchrotron radiation in bunch compressors

    Science.gov (United States)

    Jing, Yichao; Hao, Yue; Litvinenko, Vladimir N.

    2013-06-01

    Typical bunch compression for a high-gain free-electron laser (FEL) requires a large compression ratio. Frequently, this compression is distributed in multiple stages along the beam transport line. However, for a high-gain FEL driven by an energy recovery linac (ERL), compression must be accomplished in a single strong compressor located at the beam line’s end; otherwise the electron beam would be affected severely by coherent synchrotron radiation (CSR) in the ERL’s arcs. In such a scheme, the CSR originating from the strong compressors could greatly degrade the quality of the electron beam. In this paper, we present our design for a bunch compressor that will limit the effect of CSR on the e-beam’s quality. We discuss our findings from a study of such a compressor, and detail its potential for an FEL driven by a multipass ERL developed for the electron-Relativistic Heavy Ion Collider.

  8. Synchrotron radiation applications in medical research

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1995-01-01

    The medical projects employing synchrotron radiation as discussed in this paper are, for the most part, still in their infancies and no one can predict the direction in which they will develop. Both the basic research and applied medical programs are sure to be advanced at the new facilities coming on line, especially the ESRF and Spring- 8. However, success is not guaranteed. There is a lot of competition from advances in conventional imaging with the development of digital angiography, computed tomography, functional magnetic resonance imaging and ultrasound. The synchrotron programs will have to provide significant advantages over these modalities in order to be accepted by the medical profession. Advances in image processing and potentially the development of compact sources will be required in order to move the synchrotron developed imaging technologies into the clinical world. In any event, it can be expected that the images produced by the synchrotron technologies will establish ''gold standards'' to be targeted by conventional modalities. A lot more work needs to be done in order to bring synchrotron radiation therapy and surgery to the level of human studies and, subsequently, to clinical applications

  9. Beam-plasma interaction in a synchrotron-cooler ring

    International Nuclear Information System (INIS)

    Itahashi, T.

    1989-01-01

    We propose a plasma target installed in the synchrotron-cooler ring in order to study the beam-plasma interaction. Various types of beam diagnostic devices and precise techniques developed for stochastic cooling and rf-stacking in the storage ring would be a powerful tool to approach the problems concerning the plasma behavior induced by the beam, such as plasma lens effect, anomalous stopping power and plasma instability. (author)

  10. The synchrotron radiation

    International Nuclear Information System (INIS)

    Chevallier, P.

    1994-01-01

    Synchrotron Radiation is a fantastic source of electromagnetic radiation the energy spectrum of which spreads continuously from the far infrared to hard X-rays. For this reason a wide part of the scientific community, fundamentalists as well as industry, is concerned by its use. We shall describe here the main properties of this light source and give two examples of application in the field of characterization of materials: EXAFS (Extended X-Ray Absorption Fine Structure) and X-ray fluorescence. (author). 8 figs., 21 refs

  11. Atomic collision experiments using pulsed synchrotron radiation

    International Nuclear Information System (INIS)

    Arikawa, Tatsuo; Watanabe, Tsutomu.

    1982-01-01

    High intensity and continuous nature of the synchrotron radiation are the properties that are fundamentally important for studies of some atomic collision experiments, and many processes have been investigated by using these characteristics. However, so far the property that the radiation is highly polarized and pulsed in time has not been exploited significantly in atomic physics. As an example of the atomic processes relevant to such polarized and pulsed features of the synchrotron radiation, collisions involving optically-allowed excited atoms and molecules will be presented. (author)

  12. Coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Agoh, Tomonori

    2006-01-01

    This article presents basic properties of coherent synchrotron radiation (CSR) with numerical examples and introduces the reader to important aspects of CSR in future accelerators with short bunches. We show interesting features of the single bunch instability due to CSR in storage rings and discuss the longitudinal CSR field via the impedance representation. (author)

  13. Beam model for non-planar orbits in synchrotrons

    International Nuclear Information System (INIS)

    Month, M.

    1984-01-01

    A framework has been developed for a beam model in the case of synchrotron orbits not confined to a plane. An appropriate moving reference system for the analysis of beam stability has been introduced. As examples of strong perturbations to median plane symmetry, two geometries for the overpass for the Tevatron collider are considered

  14. Numerical calculation of beam coupling impedances in synchrotron accelerators

    International Nuclear Information System (INIS)

    Haenichen, Lukas

    2016-01-01

    Beams of charged particles are of interest in various fields of research including particle and nuclear physics, material and medical science and many more. In synchrotron accelerators the accelerating section is passed periodically. A closed loop trajectory is enforced, by increasing the frequency of the accelerating electric field and the magnitude of the dipolar magnetic guide field synchronously. A synchrotron therefore consists of a circular assembly of various beamline elements which serve the purposes of accelerating and guiding the particle beam. For the flawless operation of such a machine it has to be assured that the particles perform a controlled motion along predefined trajectories. Amongst others, the fulfillment of the corresponding stability criteria is in close conjuction with the so-called beam coupling impedances which are an important figure of merit for collective effects in synchrotron accelerators. This work focuses on analytical and numerical methods for the calculation of beam coupling impedances. One of the primary objectives is to gain a better understanding of the electrodynamics related to charged particle beams, furthermore to recapitulate the mathematical description of charged particle beams in both time and frequency domain and finally establish the links between actual physics and numerical modeling. Analytical methods are usually restricted to symmetrical geometry and may solely serve for the approximate determination of the field distribution in real geometries or to validate certain numerical methods. More accurate prognosis is only possible with three-dimensional simulation models. Numerical simulation techniques have been established in the second half of the last century accompanying the evolution of many particle accelerators. Classical time domain codes were the prevailing simulation tools where the actual process of the particle motion sequence is reproduced. For the present case of a heavy ion synchrotron accelerator

  15. Numerical calculation of beam coupling impedances in synchrotron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Haenichen, Lukas

    2016-07-01

    Beams of charged particles are of interest in various fields of research including particle and nuclear physics, material and medical science and many more. In synchrotron accelerators the accelerating section is passed periodically. A closed loop trajectory is enforced, by increasing the frequency of the accelerating electric field and the magnitude of the dipolar magnetic guide field synchronously. A synchrotron therefore consists of a circular assembly of various beamline elements which serve the purposes of accelerating and guiding the particle beam. For the flawless operation of such a machine it has to be assured that the particles perform a controlled motion along predefined trajectories. Amongst others, the fulfillment of the corresponding stability criteria is in close conjuction with the so-called beam coupling impedances which are an important figure of merit for collective effects in synchrotron accelerators. This work focuses on analytical and numerical methods for the calculation of beam coupling impedances. One of the primary objectives is to gain a better understanding of the electrodynamics related to charged particle beams, furthermore to recapitulate the mathematical description of charged particle beams in both time and frequency domain and finally establish the links between actual physics and numerical modeling. Analytical methods are usually restricted to symmetrical geometry and may solely serve for the approximate determination of the field distribution in real geometries or to validate certain numerical methods. More accurate prognosis is only possible with three-dimensional simulation models. Numerical simulation techniques have been established in the second half of the last century accompanying the evolution of many particle accelerators. Classical time domain codes were the prevailing simulation tools where the actual process of the particle motion sequence is reproduced. For the present case of a heavy ion synchrotron accelerator

  16. The application of synchrotron radiation to X-ray lithography

    International Nuclear Information System (INIS)

    Spiller, E.; Eastman, D.E.; Feder, R.; Grobman, W.D.; Gudat, W.; Topalian, J.

    1976-06-01

    Synchrotron radiation from the German electron synchrotron DESY in Hamburg has been used for X-ray lithograpgy. Replications of different master patterns (for magnetic bubble devices, fresnel zone plates, etc.) were made using various wavelengths and exposures. High quality lines down to 500 A wide have been reproduced using very soft X-rays. The sensitivities of X-ray resists have been evaluated over a wide range of exposures. Various critical factors (heating, radiation damage, etc.) involved with X-ray lithography using synchrotron radiation have been studied. General considerations of storage ring sources designed as radiation sources for X-ray lithography are discussed, together with a comparison with X-ray tube sources. The general conclusion is that X-ray lithography using synchrotron radiation offers considerable promise as a process for forming high quality sub-micron images with exposure times as short as a few seconds. (orig.) [de

  17. A synchrotron radiation facility for x-ray astronomy

    DEFF Research Database (Denmark)

    Hall, C.J.; Lewis, R.A.; Christensen, Finn Erland

    1997-01-01

    A proposal for an x-ray optics test facility based at a synchrotron radiation source is presented. The facility would incorporate a clean preparation area, and a large evacuable test area. The advantages of using a synchrotron as the source of the test radiation are discussed. These include the a...

  18. Synchrotron white beam topography studies of SrLaGaO{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wieteska, K. [Institute of Atomic Energy, 05-400 Otwock-Swierk (Poland); Wierzchowski, W. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)]. E-mail: wierzc_w@sp.itme.edu.pl; Graeff, W. [HASYLAB at DESY, Notkestr. 85, 22603 Hamburg (Germany); Lefeld-Sosnowska, M. [Institute of Experimental Physics, University of Warsaw, Hoza 69, 00-681 Warsaw (Poland); Pajaczkowska, A. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Wierzbicka, E. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Institute of Experimental Physics, University of Warsaw, Hoza 69, 00-681 Warsaw (Poland); Malinowska, A. [Institute of Experimental Physics, University of Warsaw, Hoza 69, 00-681 Warsaw (Poland); Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)

    2005-09-29

    Strontium lantanum gallate SrLaGaO{sub 4} tetragonal single crystal was investigated by white beam synchrotron radiation topography. Projection and section topographs were taken in back reflection and transmission geometry. The central 'core' crystal region was practically free of defects; only one extended 'oval' defect with strong boundary contrast was observed. The strong white-black contrasts connected with elongated volume defects and cracks were observed in surrounding the 'core' region.

  19. Materials science and technology by synchrotron radiation

    International Nuclear Information System (INIS)

    Chikawa, J.

    1990-01-01

    In the present paper, features of the Photon Factory, a facility for synchrotron research installed at the National Laboratory for High Energy Physics in Japan, are outlined, and then the impact of the advent of synchrotron radiation is discussed in relation to its outcome during the past seven years. Prospects for future development of synchrotron radiation are also presented. The facility consists of an injector linac to accelerate electrons up to 2.5 GeV and a ring to store the accelerated electrons in a closed orbit. In the Photon Factory, a 400m-long linac has been constructed for use as injector for both the Photon Factory and the TRISTAN electron-positron collider. The storage ring is operated at the same electron energy of 2.5 GeV. The present report also describes some applications of synchrotron radiation, focusing on spectroscopy (X-ray fluorescence technique and time-resolved X-ray absorption spectroscopy), diffraction and scattering (surface structure studies and protein crystallography), and photo-chemical processing. (N.K.)

  20. Auditory bones obtained by synchrotron radiation computed tomography at SPring-8

    International Nuclear Information System (INIS)

    Hashimoto, E.; Sugiyama, H.; Maksimenko, A.

    2005-01-01

    A series tomograms and 3D reconstructions of the inner structure of the human auditory bone were obtained for the first time by employing absorption X-ray computed tomography using a synchrotron radiation. The experiment was performed at the very long transport channel beam line BL29XUL, where X-ray were available at 1000m from the source point. This method is great worth to making anatomically auditory structure observations without bursting the specimens. (author)

  1. National Laboratory of Synchrotron Radiation: technologic potential

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da; Rodrigues, A.R.D.

    1987-01-01

    The technological or industrial developments based on the accumulated experience by research group of condensed matter physics, in Brazil, are described. The potential of a National Laboratory of Synchrotron Radiation for personnel training, absorption and adaptation of economically important technologies for Brazil, is presented. Examples of cooperations between the Laboratory and some national interprises, and some industrial applications of the synchrotron radiation are done. (M.C.K.) [pt

  2. Bunch heating by coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Heifets, S.A.; Zolotorev, M.

    1995-10-01

    The authors discuss here effects which define the steady-state rms energy spread of a microbunch in a storage ring. It is implied that the longitudinal microwave instability is controlled by low α lattice. In this case the coherent synchrotron radiation, if exists, may be the main factor defining the bunch temperature. Another effect comes from the fact that a nonlinear momentum compaction of such lattices makes Haissinskii equation not applicable, and the coherent synchrotron radiation may effect not only bunch lengthening but the energy spread as well

  3. Photoionization studies of atoms and molecules using synchrotron radiation

    International Nuclear Information System (INIS)

    Lindle, D.W.

    1988-01-01

    Photoionization studies of free atoms and molecules have undergone considerable development in the past decade, in large part due to the use of synchrotron radiation. The tunability of synchrotron radiation has permitted the study of photoionization processes near valence-and core-level ionization thresholds for atoms and molecules throught the Periodic Table. A general illustration of these types of study will be presented, with emphasis on a few of the more promising new directions in atomic and molecular physics being pursued with synchrotron radiation. (author) [pt

  4. Application of synchrotron radiation to elemental analysis

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Hanson, A.L.; Hastings, J.B.; Howells, M.R.; Kraner, H.W.; Chen, J.R.

    1983-01-01

    The use of a synchrotron storage ring as a high brightness source for production of monoergic, variable energy, and highly polarized x-ray beams promises to revolutionize the field of elemental analysis. The results of exploratory work using the Cornell synchrotron facility, CHESS, will be described. Design considerations and features of the new X-Ray Microprobe Facility now under construction at the Brookhaven National Synchrotron Light Source will be presented. This facility will be used for bulk analysis and for microanalysis with an initial spatial resolution of the order of 30 μm

  5. Characteristics of synchrotron radiation

    International Nuclear Information System (INIS)

    Brown, G.S.

    1984-01-01

    The characteristics and production of synchrotron radiation are qualitatively discussed. The spectral properties of wigglers and undulators are briefly described. Possible applications in condensed matter physics are outlined. These include atomic and molecular studies, crystallography, impurities in solids and radiographic imaging

  6. Stanford Synchrotron Radiation Light Source (SSRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The SSRL at SLAC National Accelerator Laboratory was built in 1974 to take and use for synchrotron studies the intense x-ray beams from the SPEAR storage ring that...

  7. Effect of quantum fluctuations of synchrotron radiation on the dynamics of particles in high-energy microtrons

    International Nuclear Information System (INIS)

    Bessonov, E.G.

    1987-01-01

    Crosbie has demonstrated numerically that the effect of quantum fluctuation of synchrotron radiation on the beam emittance becomes significant in microtrons for an energy of more than 1 GeV. In this paper the authors give analytic expressions that describe this phenomenon and analyze these expressions

  8. Synchrotron radiation: a new perspectives for structure examinations

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Kozhakhmetov, S.K.; Turkebaev, T.Eh.

    2001-01-01

    An important task of radiation material testing is manufacture of multifunctional, stable and cheap materials with designed properties. A materials successful operation in an extemal conditions (high temperatures and pressures, high radiation fluences and charged particles, and etc.) imply an joint decision of physical, chemical, mechanical and other problems. The decision of these problems includes at least examination for structural, phase content, oxidation stability, thermal stability, mechanical strength, thin-film-coverings controlled synthesis (both the passivating and the catalytic) compatible with main matrix, and etc. Synchrotron radiation sources application for these problems are highly perspective. Solution of a set of problems on structural examinations for a materials exposed to high radiation fluences and operating in extemal condition is planning with use of the DELSY third generation synchrotron radiation source constructing at the Joint Institute for Nuclear Research (Dubna). In the paper the principal parameters of the DELSY synchrotron radiation source are given

  9. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, Amgad

    2012-07-18

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N{sub 2}, Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  10. Fifth school on Magnetism and Synchrotron Radiation

    CERN Document Server

    Beaurepaire, Eric; Scheurer, Fabrice; Kappler, Jean-Paul; Magnetism and Synchrotron Radiation : New Trends

    2010-01-01

    Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials. At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale. With the Fifth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.

  11. Applications of synchrotron radiation in Biophysics

    International Nuclear Information System (INIS)

    Bemski, G.

    1983-01-01

    A short introduction to the generation of the synchrotron radiation is made. Following, the applications of such a radiation in biophysics with emphasis to the study of the hemoglobin molecule are presented. (L.C.) [pt

  12. Synchrotron radiation facilities at DESY, a status report

    International Nuclear Information System (INIS)

    Koch, E.E.

    1979-12-01

    A short summary of the developments which have led to the present extensive use of Synchrotron Radiation at DESY is presented and a description of the Synchrotron Radiation facilities presently available and under development is given with emphasis on the new HASYLAB project at the storage ring DORIS. (orig.) 891 HSI/orig. 892 MKO

  13. Spin dynamics in electron synchrotrons; Spindynamik in Elektronensynchrotronen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jan Felix

    2017-07-14

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  14. A synchrotron radiation microtomography system for the analysis of trabecular bone samples.

    Science.gov (United States)

    Salomé, M; Peyrin, F; Cloetens, P; Odet, C; Laval-Jeantet, A M; Baruchel, J; Spanne, P

    1999-10-01

    X-ray computed microtomography is particularly well suited for studying trabecular bone architecture, which requires three-dimensional (3-D) images with high spatial resolution. For this purpose, we describe a three-dimensional computed microtomography (microCT) system using synchrotron radiation, developed at ESRF. Since synchrotron radiation provides a monochromatic and high photon flux x-ray beam, it allows high resolution and a high signal-to-noise ratio imaging. The principle of the system is based on truly three-dimensional parallel tomographic acquisition. It uses a two-dimensional (2-D) CCD-based detector to record 2-D radiographs of the transmitted beam through the sample under different angles of view. The 3-D tomographic reconstruction, performed by an exact 3-D filtered backprojection algorithm, yields 3-D images with cubic voxels. The spatial resolution of the detector was experimentally measured. For the application to bone investigation, the voxel size was set to 6.65 microm, and the experimental spatial resolution was found to be 11 microm. The reconstructed linear attenuation coefficient was calibrated from hydroxyapatite phantoms. Image processing tools are being developed to extract structural parameters quantifying trabecular bone architecture from the 3-D microCT images. First results on human trabecular bone samples are presented.

  15. Coherent synchrotron radiation experiments for the LCLS

    International Nuclear Information System (INIS)

    Carlsten, B.E.; Russell, S.J.

    1998-01-01

    The authors describe a coherent synchrotron radiation experiment planned at Los Alamos to support the design of the Linac Coherent Light Source (LCLS) x-ray FEL. Preliminary simulations of the LCLS compressors show that a clever tuning strategy can be used to minimize the electron's beam emittance growth due to noninertial space-charge forces by employing a delicate cancellation of these forces. The purpose of the Los Alamos experiment, using a sub-picosecond chicane compressor, is to benchmark these simulations tools. In this paper, the authors present detailed numerical simulations of the experiment, and point out unique signatures of this effect that are measurable. As predicted previously, the largest emittance growths and induced energy spreads result from the nonradiative components of this space-charge force

  16. Radiative cooling of relativistic electron beams

    International Nuclear Information System (INIS)

    Huang, Z.

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored

  17. Radiative cooling of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhirong [Stanford Univ., CA (United States)

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored.

  18. Synchrotron radiation in atomic physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1998-01-01

    Much of present understanding of atomic and molecular structure and dynamics was gained through studies of photon-atom interactions. In particular, observations of the emission, absorption, and scattering of X rays have complemented particle-collision experiments in elucidating the physics of atomic inner shells. Grounded on Max von Laue's theoretical insight and the invention of the Bragg spectrometer, the field's potential underwent a step function with the development of synchrotron-radiation sources. Notably current third-generation sources have opened new horizons in atomic and molecular physics by producing radiation of wide tunability and exceedingly high intensity and polarization, narrow energy bandwidth, and sharp time structure. In this review, recent advances in synchrotron-radiation studies in atomic and molecular science are outlined. Some tempting opportunities are surveyed that arise for future studies of atomic processes, including many-body effects, aspects of fundamental photon-atom interactions, and relativistic and quantum-electrodynamic phenomena. (author)

  19. Electron beam depolarization in a damping ring

    International Nuclear Information System (INIS)

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms

  20. Synchrotron radiation in art and archaeology SRA 2005

    International Nuclear Information System (INIS)

    Pollard, A.M.; Janssens, K.; Artioli, G.; Young, M.L.; Casadio, F.; Schnepp, S.; Marvin, J.; Dunand, D.C.; Almer, J.; Fezzaa, K.; Lee, W.K.; Haeffner, D.R.; Reguer, S.; Dillmann, Ph.; Mirambet, F.; Susini, J.; Lagarde, P.; Pradell, T.; Molera, J.; Brunetti, B.; D'acapito, F.; Maurizio, C.; Mazzoldi, P.; Padovani, S.; Sgamellotti, A.; Garges, F.; Etcheverry, M.P.; Flank, A.M.; Lagarde, P.; Marcus, M.A.; Scheidegger, A.M.; Grolimund, D.; Pallot-Frossard, I.; Smith, A.D.; Jones, M.; Gliozzo, E.; Memmi-Turbanti, I.; Molera, J.; Vendrell, M.; Mcconachie, G.; Skinner, T.; Kirkman, I.W.; Pantos, E.; Wallert, A.; Kanngiesser, B.; Hahn, O.; Wilke, M.; NekaT, B.; Malzer, W.; Erko, A.; Chalmin, E.; Vignaud, C.; Farges, F.; Susini, J.; Menu, M.; Sandstrom, M.; Cotte, M.; Kennedy, C.J.; Wess, T.J.; Muller, M.; Murphy, B.; Roberts, M.A.; Burghammer, M.; Riekel, C.; Gunneweg, J.; Pantos, E.; Dik, J.; Tafforeau, P.; Boistel, R.; Boller, E.; Bravin, A.; Brunet, M.; Chaimanee, Y.; Cloetens, P.; Feist, M.; Hoszowska, J.; Jaeger, J.J.; Kay, R.F.; Lazzari, V.; Marivaux, L.; Nel, A.; Nemoz, C.; Thibault, X.; Vignaud, P.; Zabler, S.; Sciau, P.; Goudeau, P.; Tamura, N.; Doormee, E.; Kockelmann, W.; Adriaens, A.; Ryck, I. de; Leyssens, K.; Hochleitner, B.; Schreiner, M.; Drakopoulos, M.; Snigireva, I.; Snigirev, A.; Sanchez Del Rio, M.; Martinetto, P.; Dooryhee, E.; Suarez, M.; Sodo, A.; Reyes-Valerio, C.; Haro Poniatowski, E.; Picquart, M.; Lima, E.; Reguera, E.; Gunneweg, J.; Reiche, I.; Berger, A.; Bevers, H.; Duval, A.

    2005-01-01

    Materials - bones, artifacts, artwork,.... - lie at the heart of both archaeology and art conservation. Synchrotron radiation techniques provide powerful ways to interrogate these records of our physical and cultural past. In this workshop we will discuss and explore the current and potential applications of synchrotron radiation science to problems in archaeology and art conservation. This document gathers the abstracts of the presentations

  1. Synchrotron radiation in art and archaeology SRA 2005

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, A M; Janssens, K; Artioli, G; Young, M L; Casadio, F; Schnepp, S; Marvin, J; Dunand, D C; Almer, J; Fezzaa, K; Lee, W K; Haeffner, D R; Reguer, S; Dillmann, Ph; Mirambet, F; Susini, J; Lagarde, P; Pradell, T; Molera, J; Brunetti, B; D' acapito, F; Maurizio, C; Mazzoldi, P; Padovani, S; Sgamellotti, A; Garges, F; Etcheverry, M P; Flank, A M; Lagarde, P; Marcus, M A; Scheidegger, A M; Grolimund, D; Pallot-Frossard, I; Smith, A D; Jones, M; Gliozzo, E; Memmi-Turbanti, I; Molera, J; Vendrell, M; Mcconachie, G; Skinner, T; Kirkman, I W; Pantos, E; Wallert, A; Kanngiesser, B; Hahn, O; Wilke, M; NekaT, B; Malzer, W; Erko, A; Chalmin, E; Vignaud, C; Farges, F; Susini, J; Menu, M; Sandstrom, M; Cotte, M; Kennedy, C J; Wess, T J; Muller, M; Murphy, B; Roberts, M A; Burghammer, M; Riekel, C; Gunneweg, J; Pantos, E; Dik, J; Tafforeau, P; Boistel, R; Boller, E; Bravin, A; Brunet, M; Chaimanee, Y; Cloetens, P; Feist, M; Hoszowska, J; Jaeger, J J; Kay, R F; Lazzari, V; Marivaux, L; Nel, A; Nemoz, C; Thibault, X; Vignaud, P; Zabler, S; Sciau, P; Goudeau, P; Tamura, N; Doormee, E; Kockelmann, W; Adriaens, A; Ryck, I de; Leyssens, K; Hochleitner, B; Schreiner, M; Drakopoulos, M; Snigireva, I; Snigirev, A; Sanchez Del Rio, M; Martinetto, P; Dooryhee, E; Suarez, M; Sodo, A; Reyes-Valerio, C; Haro Poniatowski, E; Picquart, M; Lima, E; Reguera, E; Gunneweg, J; Reiche, I; Berger, A; Bevers, H; Duval, A

    2005-07-01

    Materials - bones, artifacts, artwork,.... - lie at the heart of both archaeology and art conservation. Synchrotron radiation techniques provide powerful ways to interrogate these records of our physical and cultural past. In this workshop we will discuss and explore the current and potential applications of synchrotron radiation science to problems in archaeology and art conservation. This document gathers the abstracts of the presentations.

  2. The status of the first infrared beamline at Shanghai Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Ji, Te; Tong, Yajun; Zhu, Huachun; Zhang, Zengyan; Peng, Weiwei; Chen, Min; Xiao, Tiqiao; Xu, Hongjie

    2015-01-01

    Construction of the first infrared beamline BL01B1 at Shanghai Synchrotron Radiation Facility (SSRF) was completed at the end of 2013. The IR beamline collects both edge radiation (ER) and bending magnet radiation (BMR) from a port, providing a solid angle of 40 mrad and 20 mrad in the horizontal and vertical directions, respectively. The optical layout of the infrared beamline and the design of the extraction mirror are described in this paper. A calculation of the beam propagation has been used to optimize the parameters of the optical components. The photon flux and spatial resolution have been measured at the end-station, and the experimental results are in good agreement with the theoretical calculation

  3. The status of the first infrared beamline at Shanghai Synchrotron Radiation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Te; Tong, Yajun; Zhu, Huachun; Zhang, Zengyan; Peng, Weiwei; Chen, Min, E-mail: chenmin@sinap.ac.cn; Xiao, Tiqiao; Xu, Hongjie

    2015-07-11

    Construction of the first infrared beamline BL01B1 at Shanghai Synchrotron Radiation Facility (SSRF) was completed at the end of 2013. The IR beamline collects both edge radiation (ER) and bending magnet radiation (BMR) from a port, providing a solid angle of 40 mrad and 20 mrad in the horizontal and vertical directions, respectively. The optical layout of the infrared beamline and the design of the extraction mirror are described in this paper. A calculation of the beam propagation has been used to optimize the parameters of the optical components. The photon flux and spatial resolution have been measured at the end-station, and the experimental results are in good agreement with the theoretical calculation.

  4. The status of the first infrared beamline at Shanghai Synchrotron Radiation Facility

    Science.gov (United States)

    Ji, Te; Tong, Yajun; Zhu, Huachun; Zhang, Zengyan; Peng, Weiwei; Chen, Min; Xiao, Tiqiao; Xu, Hongjie

    2015-07-01

    Construction of the first infrared beamline BL01B1 at Shanghai Synchrotron Radiation Facility (SSRF) was completed at the end of 2013. The IR beamline collects both edge radiation (ER) and bending magnet radiation (BMR) from a port, providing a solid angle of 40 mrad and 20 mrad in the horizontal and vertical directions, respectively. The optical layout of the infrared beamline and the design of the extraction mirror are described in this paper. A calculation of the beam propagation has been used to optimize the parameters of the optical components. The photon flux and spatial resolution have been measured at the end-station, and the experimental results are in good agreement with the theoretical calculation.

  5. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    Science.gov (United States)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  6. Intense synchrotron radiation from a magnetically compressed relativistic electron layer

    International Nuclear Information System (INIS)

    Shearer, J.W.; Nowak, D.A.; Garelis, E.; Condit, W.C.

    1975-10-01

    Using a simple model of a relativistic electron layer rotating in an axial magnetic field, energy gain by an increasing magnetic field and energy loss by synchrotron radiation were considered. For a typical example, initial conditions were approximately 8 MeV electron in approximately 14 kG magnetic field, at a layer radius of approximately 20 mm, and final conditions were approximately 4 MG magnetic field approximately 100 MeV electron layer energy at a layer radius of approximately 1.0 mm. In the final state, the intense 1-10 keV synchrotron radiation imposes an electron energy loss time constant of approximately 100 nanoseconds. In order to achieve these conditions in practice, the magnetic field must be compressed by an imploding conducting liner; preferably two flying rings in order to allow the synchrotron radiation to escape through the midplane. The synchrotron radiation loss rate imposes a lower limit to the liner implosion velocity required to achieve a given final electron energy (approximately 1 cm/μsec in the above example). In addition, if the electron ring can be made sufficiently strong (field reversed), the synchrotron radiation would be a unique source of high intensity soft x-radiation

  7. Coherent synchrotron radiation by an electron linear accelerator

    International Nuclear Information System (INIS)

    Nakazato, T.; Oyamada, M.; Niimura, N.

    1990-01-01

    Coherent effects in synchrotron radiation (SR) have been observed for the first time from 180 MeV short electron bunches of 1.7 mm using the Tohoku 300 MeV Linac. The intensity of the coherent SR was about 10 5 times as strong as that of incoherent SR at wavelengths of 0.33 to 2.0 mm. This enhancement factor roughly corresponds to the number of electrons in a bunch. The SR intensity showed a quadratic dependence on the electron beam current. The radiation was mainly polarized in the orbital plane. The possibility of induced rf in a vacuum chamber was excluded experimentally. An electron linear accelerator will be applied to a strong light source from infrared to millimeter wavelengths instead of the storage rings. The bunch length of shorter than 1 mm can be observed by the spectrum measurement of coherent SR. (author)

  8. Design and construction of the prototype synchrotron radiation detector

    CERN Document Server

    Anderhub, H; Baetzner, D; Baumgartner, S; Biland, A; Camps, C; Capell, M; Commichau, V; Djambazov, L; Fanchiang, Y J; Flügge, G; Fritschi, M; Grimm, O; Hangarter, K; Hofer, H; Horisberger, Urs; Kan, R; Kaestli, W; Kenney, G P; Kim, G N; Kim, K S; Koutsenko, V F; Kraeber, M; Kuipers, J; Lebedev, A; Lee, M W; Lee, S C; Lewis, R; Lustermann, W; Pauss, Felicitas; Rauber, T; Ren, D; Ren, Z L; Röser, U; Son, D; Ting, Samuel C C; Tiwari, A N; Viertel, Gert M; Gunten, H V; Wicki, S W; Wang, T S; Yang, J; Zimmermann, B

    2002-01-01

    The Prototype Synchrotron Radiation Detector (PSRD) is a small-scale experiment designed to measure the rate of low-energy charged particles and photons in near the Earth's orbit. It is a precursor to the Synchrotron Radiation Detector (SRD), a proposed addition to the upgraded version of the Alpha Magnetic Spectrometer (AMS-02). The SRD will use the Earth's magnetic field to identify the charge sign of electrons and positrons with energies above 1 TeV by detecting the synchrotron radiation they emit in this field. The differential energy spectrum of these particles is astrophysically interesting and not well covered by the remaining components of AMS-02. Precise measurements of this spectrum offer the possibility to gain information on the acceleration mechanism and characteristics of all cosmic rays in our galactic neighbourhood. The SRD will discriminate against protons as they radiate only weakly. Both the number and energy of the synchrotron photons that the SRD needs to detect are small. The identificat...

  9. Vertical beam size measurement in the CESR-TA e{sup +}e{sup −} storage ring using x-rays from synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J.P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M.P.; Fontes, E. [Cornell University, Ithaca, NY 14853 (United States); Heltsley, B.K., E-mail: bkh2@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Hopkins, W.; Lyndaker, A.; Peterson, D.P.; Rider, N.T.; Rubin, D.L.; Savino, J.; Seeley, R.; Shanks, J. [Cornell University, Ithaca, NY 14853 (United States); Flanagan, J.W. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)

    2014-06-01

    We describe the construction and operation of an X-ray beam size monitor (xBSM), a device measuring e{sup +} and e{sup −} beam sizes in the CESR-TA storage ring using synchrotron radiation. The device can measure vertical beam sizes of 10–100μm on a turn-by-turn, bunch-by-bunch basis at e{sup ±} beam energies of ∼2GeV. At such beam energies the xBSM images X-rays of ϵ≈1–10keV (λ≈0.1–1nm) that emerge from a hard-bend magnet through a single- or multiple-slit (coded aperture) optical element onto an array of 32 InGaAs photodiodes with 50μm pitch. Beamlines and detectors are entirely in-vacuum, enabling single-shot beam size measurement down to below 0.1 mA (2.5×10{sup 9} particles) per bunch and inter-bunch spacing of as little as 4 ns. At E{sub b}=2.1GeV, systematic precision of ∼1μm is achieved for a beam size of ∼12μm; this is expected to scale as ∝1/σ{sub b} and ∝1/E{sub b}. Achieving this precision requires comprehensive alignment and calibration of the detector, optical elements, and X-ray beam. Data from the xBSM have been used to extract characteristics of beam oscillations on long and short timescales, and to make detailed studies of low-emittance tuning, intra-beam scattering, electron cloud effects, and multi-bunch instabilities.

  10. Preliminar plan of a machine for the synchrotron radiation production

    International Nuclear Information System (INIS)

    Moscati, G.; Takahashi, J.; Miyao, Y.

    1985-01-01

    A preliminar plan, with all the technical specifications, for the construction of a machine for the synchrotron radiation production to be done by the National Synchrotron Radiation Laboratory in Brazil is presented. (L.C.) [pt

  11. Interest of synchrotron radiation for the therapy of brain tumors: methodology and preclinical applications

    International Nuclear Information System (INIS)

    Regnard, P.

    2007-12-01

    Microbeam radiation (M.R.T.) and stereotactic synchrotron radiation therapy (S.S.R.T.) are innovative techniques currently developed at the european Synchrotron radiation facility. these techniques led to promising, but rarely reproduced, results. the use of different tumoral models for each techniques limit comparisons. M.R.T. experiments on rats bearing 9L tumors 14 days after implantation displayed a double median survival time ( from 20 to 40 days) with a 200 μm spacing irradiation, while a 100 μm spacing irradiation tripled this median (67 days) but damaged normal tissue. the impact of the device dividing synchrotron beam into micro-beams, named multi sit collimator, was also demonstrated. combination of drugs with M.R.T. irradiation was tested. promising results (median survival time: 40 days and 30% of long term survivors) were obtained with an intratumoral injection of gadolinium coupled with a crossing M.R.T. irradiation at 460 Gy. Moreover, earlier M.R.T. irradiation (tumor at D10) quadrupled the median survival time (79 days) with 30% of long term survivors. A new imaging device to target the tumor before irradiation and an adapted collimator will increase the M.R.T. results. As the differences existing between tumoral models used in M.R.T. (9L models) and in S.S.R.T. (F98 models) are major, M.R.T./S.S.R.T. comparative experiments were realised on these two models. Results showed that the two techniques have the same efficacy on F98 model and that the M.R.T. is more effective on 9L model. This can help to define adapted tumor type for these techniques. (author)

  12. X-ray fluorescence in Member States (India): Micro-beam X-ray fluorescence spectroscopy using Indus-2 synchrotron radiation facility: beamline BL-16

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, M. K.; Lodha, G. S.; Deb, S.K., E-mail: mktiwari@rrcat.gov.in [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (MP) (India)

    2014-02-15

    Indus-1 and Indus-2, are India’s national synchrotron radiation facilities located at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore. Indus-1 is a 450 MeV electron storage ring which provides synchrotron radiation in the VUV soft x-ray range with a critical wavelength of 61 Å whereas Indus-2 is a 2.5 GeV, 300 mA synchrotron radiation machine with a critical wavelength of 2 Å for its bending magnet source. The Indus-2 is at present operating at 2.5 GeV, 100 mA in round-theclock operation mode. Both synchrotron sources exist in the same premises of RRCAT, Indore and have very good air/rail connectivities with major cities of India. The RRCAT centre also fosters research and development activities in the fields of particle accelerators, Lasers and related advanced technologies like cryogenics, ultra high vacuum, superconducting cavities, RF power, magnet and their application in different fields of science, thus the centre provides a unique platform covering a wide range of experiments for the synchrotron users in the Indian subcontinent.

  13. Injector system design of the 8 GeV synchrotron radiation facility (SPring-8)

    International Nuclear Information System (INIS)

    Harami, T.; Yokomizo, H.; Ohtsuka, H.

    1990-01-01

    The 8 GeV synchrotron radiation facility, named SPring-8, which will be constructed at Nishi-harima in Hyogo-ken, is designed jointly by JAERI (Japan Atomic Energy Research Institute and RIKEN (Institute of Physical and Chemical Research) under the supervision of Science and Technology Agency (STA) of the Japanese government. The facility provides photon in the X-ray and hard X-ray domains with high flux and high brilliance. The major characteristics of the storage ring are the low emittance and the large number of straight sections. Combining the low emittance beam with long insertion devices, several orders of magnitude improvement in intensity and brightness are expected. The injector system of SPring-8 is composed of a linac and a synchrotron. Not only electrons but positrons can be accelerated by the linac. These particles are injected into the synchrotron and further accelerated to 8 GeV. (N.K.)

  14. Application of circular polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Miyahara, Tsuneaki; Kawata, Hiroshi

    1988-03-01

    The idea of using the polarizing property of light for physical experiment by controlling it variously has been known from old time, and the Faraday effect and the research by polarizing microscopy are its examples. The light emitted from the electron orbit of an accelerator has the different polarizing characteristics from those of the light of a laboratory light source, and as far as observing it within the electron orbit plane, it becomes linearly polarized light. By utilizing this property well, research is carried out at present in synchrotron experimental facilities. Recently, the technology related to the insert type light cources using permanent magnets has advanced remarkably, and circular polarized light has become to be producible. If the light like this can be obtained with the energy not only in far ultraviolet region but also to x-ray region at high luminance, new possibility should open. At the stage that the design of an insert type light source was finished, and its manufacture was started, the research on the method of evaluating the degree of circular polarization and the research on the utilization of circular polarized synchrotron radiation are earnestly carried out. In this report, the results of researches presented at the study meeting are summarized. Moreover, the design and manufacture of the beam lines for exclusive use will be carried out. (Kako, I.)

  15. Hard alpha-keratin degradation inside a tissue under high flux X-ray synchrotron micro-beam: a multi-scale time-resolved study.

    Science.gov (United States)

    Leccia, Emilie; Gourrier, Aurélien; Doucet, Jean; Briki, Fatma

    2010-04-01

    X-rays interact strongly with biological organisms. Synchrotron radiation sources deliver very intense X-ray photon fluxes within micro- or submicro cross-section beams, resulting in doses larger than the MGy. The relevance of synchrotron radiation analyses of biological materials is therefore questionable since such doses, million times higher than the ones used in radiotherapy, can cause huge damages in tissues, with regard to not only DNA, but also proteic and lipid organizations. Very few data concerning the effect of very high X-ray doses in tissues are available in the literature. We present here an analysis of the structural phenomena which occur when the model tissue of human hair is irradiated by a synchrotron X-ray micro-beam. The choice of hair is supported by its hierarchical and partially ordered keratin structure which can be analysed inside the tissue by X-ray diffraction. To assess the damages caused by hard X-ray micro-beams (1 microm(2) cross-section), short exposure time scattering SAXS/WAXS patterns have been recorded at beamline ID13 (ESRF) after various irradiation times. Various modifications of the scattering patterns are observed, they provide fine insight of the radiation damages at various hierarchical levels and also unexpectedly provide information about the stability of the various hierarchical structural levels. It appears that the molecular level, i.e. the alpha helices which are stabilized by hydrogen bonds and the alpha-helical coiled coils which are stabilized by hydrophobic interactions, is more sensitive to radiation than the supramolecular architecture of the keratin filament and the filament packing within the keratin associated proteins matrix, which is stabilized by disulphide bonds. (c) 2009 Elsevier Inc. All rights reserved.

  16. Individual particle analysis of coarse air suspended particulate material by synchrotron radiation X-ray micro fluorescence

    International Nuclear Information System (INIS)

    Moreira, Silvana; Melo Junior, Ariston; Vives, Ana Elisa S. de; Nascimento Filho, Virgilio F.

    2005-01-01

    The purpose of this work is evaluate the size of individual particles present in the air suspended particulate material collected in Campinas, Sao Paulo State, and analyze quantitatively the particles using the synchrotron radiation X-ray micro fluorescence (μ-SRXRF) associated with the fundamental parameter method to correct attenuation/absorption effects by the matrix. The particles analyzed have size between 50-10 μm and to perform the spatial distribution a white beam of synchrotron radiation condensed by a conical capillary (13 μm diameter) was used. For the quantitative analysis punctual measures in thin films standards in Mylar subtract were performed. The elements detected were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. (author)

  17. Individual particle analysis of coarse air suspended particulate material by synchrotron radiation X-ray micro fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Melo Junior, Ariston [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Perez, Carlos Alberto [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)]. E-mail: perez@lnls.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br

    2005-07-01

    The purpose of this work is evaluate the size of individual particles present in the air suspended particulate material collected in Campinas, Sao Paulo State, and analyze quantitatively the particles using the synchrotron radiation X-ray micro fluorescence ({mu}-SRXRF) associated with the fundamental parameter method to correct attenuation/absorption effects by the matrix. The particles analyzed have size between 50-10 {mu}m and to perform the spatial distribution a white beam of synchrotron radiation condensed by a conical capillary (13 {mu}m diameter) was used. For the quantitative analysis punctual measures in thin films standards in Mylar subtract were performed. The elements detected were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. (author)

  18. Modelisation of synchrotron radiation losses in realistic tokamak plasmas

    International Nuclear Information System (INIS)

    Albajar, F.; Johner, J.; Granata, G.

    2000-08-01

    Synchrotron radiation losses become significant in the power balance of high-temperature plasmas envisaged for next step tokamaks. Due to the complexity of the exact calculation, these losses are usually roughly estimated with expressions derived from a plasma description using simplifying assumptions on the geometry, radiation absorption, and density and temperature profiles. In the present article, the complete formulation of the transport of synchrotron radiation is performed for realistic conditions of toroidal plasma geometry with elongated cross-section, using an exact method for the calculation of the absorption coefficient, and for arbitrary shapes of density and temperature profiles. The effects of toroidicity and temperature profile on synchrotron radiation losses are analyzed in detail. In particular, when the electron temperature profile is almost flat in the plasma center, as for example in ITB confinement regimes, synchrotron losses are found to be much stronger than in the case where the profile is represented by its best generalized parabolic approximation, though both cases give approximately the same thermal energy contents. Such an effect is not included in present approximate expressions. Finally, we propose a seven-variable fit for the fast calculation of synchrotron radiation losses. This fit is derived from a large database, which has been generated using a code implementing the complete formulation and optimized for massively parallel computing. (author)

  19. Synchrotron radiation, a powerful tool in research and technological development. Basic principles

    International Nuclear Information System (INIS)

    Jimenez M, J.

    2001-01-01

    The basic principles of synchrotron radiation emission in electron accelerators are presented. The main characteristics of synchrotron radiation, together with the physical principles that describe its interaction with different materials are also discussed. Different areas in which the development of synchrotron radiation has made a major impact are given. (Author)

  20. Biomedical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Kwiatek, W.M.; Galka, M.; Hanson, A.L.; Paluszkiewicz, Cz.; Cichocki, T.

    2001-01-01

    Synchrotron radiation techniques application in medical diagnostics have been presented especially for: trace element analysis in tissues, elemental mapping, chemical speciation at trace levels, chemical structure determination. Presented techniques are very useful for early cancer discovery

  1. Aharonov-Bohm effect in cyclotron and synchrotron radiations

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G.; Gitman, D.M. E-mail: gitman@fma.if.usp.br; Levin, A.; Tlyachev, V.B

    2001-07-02

    We study the impact of Aharonov-Bohm solenoid on the radiation of a charged particle moving in a constant uniform magnetic field. With this aim in view, exact solutions of Klein-Gordon and Dirac equations are found in the magnetic-solenoid field. Using such solutions, we calculate exactly all the characteristics of one-photon spontaneous radiation both for spinless and spinning particle. Considering non-relativistic and relativistic approximations, we analyze cyclotron and synchrotron radiations in detail. Radiation peculiarities caused by the presence of the solenoid may be considered as a manifestation of Aharonov-Bohm effect in the radiation. In particular, it is shown that new spectral lines appear in the radiation spectrum. Due to angular distribution peculiarities of the radiation intensity, these lines can in principle be isolated from basic cyclotron and synchrotron radiation spectra.

  2. Aharonov-Bohm effect in cyclotron and synchrotron radiations

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Levin, A.; Tlyachev, V.B.

    2001-01-01

    We study the impact of Aharonov-Bohm solenoid on the radiation of a charged particle moving in a constant uniform magnetic field. With this aim in view, exact solutions of Klein-Gordon and Dirac equations are found in the magnetic-solenoid field. Using such solutions, we calculate exactly all the characteristics of one-photon spontaneous radiation both for spinless and spinning particle. Considering non-relativistic and relativistic approximations, we analyze cyclotron and synchrotron radiations in detail. Radiation peculiarities caused by the presence of the solenoid may be considered as a manifestation of Aharonov-Bohm effect in the radiation. In particular, it is shown that new spectral lines appear in the radiation spectrum. Due to angular distribution peculiarities of the radiation intensity, these lines can in principle be isolated from basic cyclotron and synchrotron radiation spectra

  3. Fundamentals of Coherent Synchrotron Radiation in Storage Rings

    International Nuclear Information System (INIS)

    Sannibale, F.; Byrd, J.M.; Loftsdottir, A.; Martin, M.C.; Venturini, M.

    2004-01-01

    We present the fundamental concepts for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The analysis includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use these concepts to optimize the performance of a source for CSR emission

  4. Chemical applications of synchrotron radiation: Workshop report

    International Nuclear Information System (INIS)

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases

  5. Chemical applications of synchrotron radiation: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  6. Initial scientific uses of coherent synchrotron radiation inelectron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Basov, D.N.; Feikes, J.; Fried, D.; Holldack, K.; Hubers, H.W.; Kuske, P.; Martin, M.C.; Pavlov, S.G.; Schade, U.; Singley, E.J.; Wustefeld, G.

    2004-11-23

    The production of stable, high power, coherent synchrotron radiation at sub-terahertz frequency at the electron storage ring BESSY opens a new region in the electromagnetic spectrum to explore physical properties of materials. Just as conventional synchrotron radiation has been a boon to x-ray science, coherent synchrotron radiation may lead to many new innovations and discoveries in THz physics. With this new accelerator-based radiation source we have been able to extend traditional infrared measurements down into the experimentally poorly accessible sub-THz frequency range. The feasibility of using the coherent synchrotron radiation in scientific applications was demonstrated in a series of experiments: We investigated shallow single acceptor transitions in stressed and unstressed Ge:Ga by means of photoconductance measurements below 1 THz. We have directly measured the Josephson plasma resonance in optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} for the first time and finally we succeeded to confine the sub-THz radiation for spectral near-field imaging on biological samples such as leaves and human teeth.

  7. Schemes of Superradiant Emission from Electron Beams and "Spin-Flip Emission of Radiation"

    CERN Document Server

    Gover, A

    2005-01-01

    A unified analysis for Superradiant emission from bunched electron beams in various kinds of radiation scheme is presented. Radiation schemes that can be described by the formulation include Pre-bunched FEL (PB-FEL), Coherent Synchrotron Radiation (CSR), Smith-Purcell Radiation, Cerenkov-Radiation, Transition-Radiation and more. The theory is based on mode excitation formulation - either discrete or continuous (the latter - in open structures). The discrete mode formulation permits simple evaluation of the spatially coherent power and spectral power of the source. These figures of merit of the radiation source are useful for characterizing and comparing the performance of different radiation schemes. When the bunched electron beam emits superradiantly, these parameters scale like the square of the number of electrons, orders of magnitude more than spontaneous emission. The formulation applies to emission from single electron bunches, periodically bunched beams, or emission from a finite number of bunches in a...

  8. Nanofocusing optics for synchrotron radiation made from polycrystalline diamond.

    Science.gov (United States)

    Fox, O J L; Alianelli, L; Malik, A M; Pape, I; May, P W; Sawhney, K J S

    2014-04-07

    Diamond possesses many extreme properties that make it an ideal material for fabricating nanofocusing x-ray optics. Refractive lenses made from diamond are able to focus x-ray radiation with high efficiency but without compromising the brilliance of the beam. Electron-beam lithography and deep reactive-ion etching of silicon substrates have been used in a transfer-molding technique to fabricate diamond optics with vertical and smooth sidewalls. Latest generation compound refractive lenses have seen an improvement in the quality and uniformity of the optical structures, resulting in an increase in their focusing ability. Synchrotron beamline tests of two recent lens arrays, corresponding to two different diamond morphologies, are described. Focal line-widths down to 210 nm, using a nanocrystalline diamond lens array and a beam energy of E = 11 keV, and 230 nm, using a microcrystalline diamond lens at E = 15 keV, have been measured using the Diamond Light Source Ltd. B16 beamline. This focusing prowess is combined with relatively high transmission through the lenses compared with silicon refractive designs and other diffractive optics.

  9. Fast betatron tune controller for circulating beam in a synchrotron

    International Nuclear Information System (INIS)

    Endo, Takuyuki; Hatanaka, Kichiji; Sato, Kenji

    1997-01-01

    When rf quadrupole (RFQ) electric field is applied to the circulating beam in a synchrotron, an equation of motion is reduced to Mathieu's Equation. A new analytical method to obtain an approximate solution has been developed, while a numerical computation was usually applied. Translating the behavior of approximate solution into terms of an RFQ electric field and betatron oscillation, a fast tune control can be achieved by rapid tuning of both amplitude and frequency of rf voltage. This process could be applied to suppress a tune shift caused by a space charge effect and to control a slow beam extraction with a low ripple. We have started another analytical computation using Hamiltonian with perturbation of RFQ and the results of this computation also suggest that it is applicable to slow beam extraction. The fast tune controller has been constructed and the beam test will be performed at HIMAC synchrotron in cooperation of RCNP and NIRS. (author)

  10. Spin analysis of photoelectrons by using synchrotron radiation

    International Nuclear Information System (INIS)

    Yagishita, Akira

    1983-03-01

    This report is the proceedings of a workshop on ''Spin analysis of photoelectrons by using synchrotron radiation'' held at National Laboratory for High Energy Physics on October 21, 1982. The purpose of this workshop was to examine the feasibility of the experiment on the spin analysis of photoelectrons at the photon factory which has started the operation in 1982. The workshop covered the following subjects on the spin analysis of photoelectrons and on the detectors for spin polarization; the experiment and the theory on the spin analysis of photoelectrons emitted from gas and solid, the detectors for measuring the spin polarization of electron beam, the test experiment on a Mott detector, and further problems. The proceedings contain five papers related to the above subjects. (Asami, T.)

  11. Synchrotron radiation sources: their properties and applications for VUV and X-ray spectroscopy

    International Nuclear Information System (INIS)

    Koch, E.E.

    1976-09-01

    Synchrotron radiation from accelerators and storage rings offers far reaching possibilities for many fields of basic and applied physics. The properties of synchrotron radiation, existing and planned synchrotron radiation facilities, as well as instrumental aspects are discussed. In order to illustrate the usefulness of the synchrotron radiation sources a few highlights from atomic, molelucar, and solid state spectroscopy are presented and examples from x-ray experiments and from the field of applied physics are given. (orig.) [de

  12. High energy x-ray synchrotron radiation analysis of residual stress distribution of shot-peened steels

    International Nuclear Information System (INIS)

    Tanaka, Keisuke; Akiniwa, Yoshiaki; Kimachi, Hirohisa; Suzuki, Kenji; Yanase, Etsuya; Nishio, Kouji; Kusumi, Yukihiro

    2001-01-01

    A high energy X-ray beam from synchrotron radiation source SPring-8 was used to determine the residual stress distribution beneath the shot-peened surface of carbon steel plates. By using the monochromatic X-ray beam with an energy of 72 keV, the relation between 2θ and sin 2 ψ was obtained by the side-inclination method upto sin 2 ψ = 0.9. The distribution of the residual stress was determined from the non-linearity of the relation between 2θ and sin 2 ψ. (author)

  13. Thermal analysis of injection beam dump of high-intensity rapid-cycling synchrotron in J-PARC

    Science.gov (United States)

    Kamiya, J.; Saha, P. K.; Yamamoto, K.; Kinsho, M.; Nihei, T.

    2017-10-01

    The beam dump at the beam injection area in the J-PARC 3-GeV rapid cycling synchrotron (RCS) accepts beams that pass through the charge exchange foil without ideal electron stripping during the multi-turn beam injection. The injection beam dump consists of the beam pipe, beam stopper, radiation shield, and cooling mechanism. The ideal beam power into the injection beam dump is 400 W in the case of design RCS extraction beam power of 1 MW with a healthy foil, which has 99.7 % charge stripping efficiency. On the other hand, as a radiation generator, the RCS is permitted to be operated with maximum average beam power of 4 kW into the injection beam dump based on the radiation shielding calculation, in consideration of lower charge stripping efficiency due to the foil deterioration. In this research, to evaluate the health of the RCS injection beam dump system from the perspective of the heat generation, a thermal analysis was performed based on the actual configuration with sufficiently large region, including the surrounding concrete and soil. The calculated temperature and heat flux density distribution showed the validity of the mesh spacing and model range. The calculation result showed that the dumped 4 kW beam causes the temperature to increase up to 330, 400, and 140 °C at the beam pipe, beam stopper, and radiation shield, respectively. Although these high temperatures induce stress in the constituent materials, the calculated stress values were lower than the ultimate tensile strength of each material. Transient temperature analysis of the beam stopper, which simulated the sudden break of the charge stripper foil, demonstrated that one bunched beam pulse with the maximum beam power does not lead to a serious rise in the temperature of the beam stopper. Furthermore, from the measured outgassing rate of stainless steel at high temperature, the rise in beam line pressure due to additive outgassing from the heated beam pipe was estimated to have a negligible

  14. Performances of synchrotron radiation microbeam focused by monolithic half focusing polycapillary X-ray lens

    International Nuclear Information System (INIS)

    Sun Tianxi; Liu Zhiguo; He Bo; Wei Shiqiang; Xie Yaning; Liu Tao; Hu Tiandou; Ding Xunliang

    2007-01-01

    A monolithic half focusing polycapillary X-ray lens (MHFPXRL) composed of 289,000 capillaries is used to produce a synchrotron radiation microbeam. The energy dependence of the output focal distance, focal spot size, transmission efficiency, vertical beam position, and gain in flux density of this microbeam is studied in detail. There is a slight change in the output focal distance of the MHFPXRL when the X-ray energies change

  15. Measurement of spherical compound refractive X-ray lens at ANKA synchrotron radiation source

    International Nuclear Information System (INIS)

    Dudchik, Yu.I.; Simon, R.; Baumbach, T.

    2007-01-01

    Parameters of compound refractive X-ray lens were measured at ANKA synchrotron radiation source. The lens consists of 224 spherical concave epoxy microlenses formed inside glass capillary. The curvature radius of individual microlens is equal to 100 microns. Measured were: X-ray focal spot, lens focal length and gain in intensity. The energy of X-ray beam was equal to 12 keV and 14 keV. It is shown that when X-ray lens is used, the gain in intensity of the X-ray beam in some cases may exceed value of 100. Tested lens is suitable to focus X-rays into, at least, 2-microns in size spot. (authors)

  16. Synchrotron x-ray fluorescence and extended x-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Chen, J.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kraner, H.W.; Chao, E.C.T.; Minkin, J.A.

    1984-01-01

    The advent of dedicated synchrotron radiation sources has led to a significant increase in activity in many areas of science dealing with the interaction of x-rays with matter. Synchrotron radiation provides intense, linearly polarized, naturally collimated, continuously tunable photon beams, which are used to determine not only the elemental composition of a complex, polyatomic, dilute material but also the chemical form of the elements with improved accuracy. Examples of the application of synchrotron radiation include experiments in synchrotron x-ray fluorescence (SXRF) analysis and extended x-ray absorption fine structure (EXAFS) analysis. New synchrotron radiation x-ray microprobes for elemental analysis in the parts per billion range are under construction at several laboratories. 76 references, 24 figures

  17. National Synchrotron Light Source safety-analysis report

    International Nuclear Information System (INIS)

    Batchelor, K.

    1982-07-01

    This document covers all of the safety issues relating to the design and operation of the storage rings and injection system of the National Synchrotron Light Source. The building systems for fire protection, access and egress are described together with air and other gaseous control or venting systems. Details of shielding against prompt bremstrahlung radiation and synchrotron radiation are described and the administrative requirements to be satisfied for operation of a beam line at the facility are given

  18. Synchrotron radiation laboratories at the Bonn electron accelerators. a status report

    Science.gov (United States)

    Hormes, J.

    1987-07-01

    At the Physikalisches Institut of the University in Bonn experiments with synchrotron radiation were carried out ever since 1962. At the moment (June 1986) all work takes place in the SR-laboratory at the 2.5 GeV synchrotron. A 3.5 GeV stretcher ring (ELSA) is under construction and will come into operation at the end of 1986. This accelerator will also run as a storage ring for synchrotron radiation experiments and a laboratory to be used at this machine is also under consideration. The SR experiments which are carried out in Bonn try to take advantage of the fact that we are still using a high energy synchrotron for our work. Besides basic research also applied work is done using synchrotron radiation even as a production tool for X-ray lithography.

  19. Calibration of beam position monitor for the SPring-8 synchrotron

    International Nuclear Information System (INIS)

    Aoki, Tsuyoshi; Yonehara, Hiroto; Suzuki, Hiromitsu

    1995-01-01

    Beam position monitors (BPMs) for SPring-8 synchrotron were already designed and manufactured. 80-BPMs were successfully calibrated for the beam position measurement. In this paper, we introduce the structure of BPMs, the electronics of signal detection system and the calibration system, and the results of calibration are reported. (author)

  20. Superconducting NbN detectors for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Alexei; Richter, Heiko; Huebers, Heinz-Wilhelm [DLR, Instiute of Planetary Research, Berlin (Germany); Ilin, Konstantin; Siegel, Michael [Institute of Micro- and Nanoelectronic Systems, University of Karlsruhe (Germany)

    2009-07-01

    We present development of a special type of hot-electron bolometers that is designed to optimally detect pulsed synchrotron radiation in the terahertz frequency range. The enlarged log-spiral antenna makes it possible to sense the low-frequency part of the spectrum in coherent and non-coherent regime. The device follows the layout of a typical HEB mixer. The radiation is coupled quasioptically with the 6-mm elliptical silicon lens. The bolometer has the noise equivalent power 2 nW per square root Hz and responds to a few picoseconds long radiation pulse with the electric pulse having full width at half maximum of 160 ps. We present results obtained with this type of detector at different synchrotron facilities and discuss possible improvements of the detector performance.

  1. Synchrotron radiation losses in Engineering Test Reactors (ETRs)

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1987-11-01

    In next-generation Engineering Test Reactors (ETRs), one major objective is envisioned to be a long-pulse or steady-state burn using noninductive current drive. At the high temperatures needed for efficient current drive, synchrotron radiation could represent a large power loss, especially if wall reflectivity (R) is very low. Many INTOR-class ETR designs [Fusion Engineering Reactor (FER), Next European Torus (NET), OTR, Tokamak Ignition/Burn Engineering Reactor (TIBER), etc.] call for carbon-covered surfaces for which wall reflectivity is uncertain. Global radiation losses are estimated for these devices using empirical expressions given by Trubnikov (and others). Various operating scenarios are evaluated under the assumption that the plasma performance is limited by either the density limit (typical of the ignition phase) or the beta limit (typical of the current drive phase). For a case with ≥90% wall reflectivity, synchrotron radiation is not a significant contribution to the overall energy balance (the ratio of synchrotron to alpha power is less than 10 to 20%, even at ∼ 30 keV) and thus should not adversely alter performance in these devices. In extreme cases with 0% wall reflectivity, the ratio of synchrotron radiation to alpha power may approach 30 to 60% (depending on the device and limiting operating scenario), adversely affecting the performance characteristics. 12 refs., 7 tabs

  2. High pressure and synchrotron radiation satellite workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  3. High pressure and synchrotron radiation satellite workshop

    International Nuclear Information System (INIS)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A.

    2006-01-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations

  4. The relativistic foundations of synchrotron radiation.

    Science.gov (United States)

    Margaritondo, Giorgio; Rafelski, Johann

    2017-07-01

    Special relativity (SR) determines the properties of synchrotron radiation, but the corresponding mechanisms are frequently misunderstood. Time dilation is often invoked among the causes, whereas its role would violate the principles of SR. Here it is shown that the correct explanation of the synchrotron radiation properties is provided by a combination of the Doppler shift, not dependent on time dilation effects, contrary to a common belief, and of the Lorentz transformation into the particle reference frame of the electromagnetic field of the emission-inducing device, also with no contribution from time dilation. Concluding, the reader is reminded that much, if not all, of our argument has been available since the inception of SR, a research discipline of its own standing.

  5. Beam stability in synchrotrons with digital transverse feedback systems in dependence on beam tunes

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.

    2011-01-01

    The beam stability problem in synchrotrons with a digital transverse feedback system (TFS) is studied. The TFS damper kicker (DK) corrects the transverse momentum of a bunch in proportion to its displacement from the closed orbit measured at the location of the beam position monitor (BPM). It is shown that the area and configuration of the beam stability separatrix depend on the beam tune, the feedback gain, the phase balance between the phase advance from BPM to DK and the phase response of the feedback chain at the betatron frequency

  6. Filter and window assemblies for high power insertion device synchrotron radiation sources

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Viccaro, P.J.; Kuzay, T.M.

    1992-01-01

    The powerful beams of x-ray radiation generated by insertion devices at high power synchrotron facilities deposit substantial amounts of localized heat in the front end and optical components that they intercept. X-ray beams from undulator sources, in particular, are confined to very narrow solid angles and therefore impose very high absorbed heat fluxes. This paper is devoted to a detailed study of the design of windows for the Advanced Photon Source undulators and wigglers, emphasizing alternative design concepts, material considerations, and cooling techniques necessary for handling the high heat load of the insertion devices. Various designs are thermally and structurally analyzed by numerically simulating full-power operating conditions. This analysis also has relevance to the design and development of other beam line components which are subjected to the high heat loads of insertion devices

  7. Beer analysis by synchrotron radiation total reflection X-ray fluorescence (SR-TXRF)

    International Nuclear Information System (INIS)

    Moreira, Silvana; Vives, Ana Elisa S. de; Nascimento Filho, Virgilio F.; Zucchi, Orgheda L.D.A.

    2005-01-01

    In this work the concentrations of P, S, Cl, K, Ca, Mn, Fe, Zn and Br in twenty-nine brands of national and international beers were determined by Synchrotron Radiation Total Reflection X-Ray Fluorescence analysis (SR-TXRF). The results were compared with the limits established by the Brazilian Legislation and the nutritive values established by National Agricultural Library (NAL). The measurements were performed at the X-ray Fluorescence Beamline at Synchrotron Light Source Laboratory, in Campinas, Sao Paulo, Brazil, using a polychromatic beam for excitation. A small volume of 5 μL of sample beers containing just an internal standard, used to correct geometry effects, were analyzed without any pre-treatment. The measuring time was 100 s and the detection limits obtained varied from 1μg.L -1 for Mn and Fe to 15μg.L -1 for P. (author)

  8. Excitation of nuclear states by synchrotron radiation

    International Nuclear Information System (INIS)

    Olariu, Albert

    2003-01-01

    We study the excitation of nuclear states by gamma ray beams of energy up to 200 keV produced as synchrotron radiation. We consider the possibility to populate an excited state |i> in two steps, from the ground state |g> to an intermediary state |n> which decays by gamma emission or internal conversion to a lower state |i>. The aim of this study is to establish that the probability P 2 of the two-step transition |g> → |n> → |i> should be greater than the probability P 1 of the direct transition |g> → |i>. The probabilities P 1 and P 2 correspond to a radiation pulse of duration equal to the half-time of the state |i>. We have written a computer program in C++ which computes the probability P 2 , the ratio P 2 /P 1 and the rate C 2 of the two-step transitions for any nuclei and different configurations of states. The program uses a database which contains information on the energy levels, half-lives, spins and parities of nuclear states and on the relative intensities of the nuclear transitions. If the half-lives or the relative intensities are not known the program uses the Weisskopf estimates for the transition half-lives. An interpolation program of internal conversion coefficients has also been used. We listed the values obtained for P 2 , P 2 /P 1 and C 2 in a number of cases in which P 2 is significant from the 2900 considered cases. The states |i> and |n> have the energies E i and E n , the corresponding half-lives being t i and t n . The spectral density of the synchrotron radiation has been considered to be 10 12 photons cm -2 s -1 eV -1 . We listed only the cases for which the relative intensities of the transitions from levels |n> and |i> to lower states are known. The calculations carried out in this study allowed us to identify nuclei for which P 2 has relatively great values. In the listed cases P 2 /P 1 >>1, so that the two-step excitation by synchrotron radiation is more efficient than the direct excitation |g> → |i>. For a sample having 10

  9. Preliminary studies of the quickly pulsed synchrotron involved in the Beta-Beam project; Etudes preliminaires du synchrotron rapidement pulse du projet Beta-Beam

    Energy Technology Data Exchange (ETDEWEB)

    Lachaize, A

    2007-07-01

    This study presents a quickly-pulsed synchrotron able to accelerate He{sup 6} and Ne{sup 18} beams from 100 MeV/u till 3.5 GeV (proton equivalent) The accelerator is made up of 48 bending dipoles and 42 focusing quadrupoles. The design of the HF accelerating system, the bunch injection and the correction of errors in beam dynamics are dealt with.

  10. DOE/DMS workshop on future synchrotron VUV and x-ray beam Lines

    International Nuclear Information System (INIS)

    Green, P.H.

    1992-03-01

    This document contains an overview of the participating DOE Laboratory beam line interests and the projected science to be addressed on these beam lines, both at new and existing synchrotron facilities. The scientific programs associated with present and planned synchrotron research by DOE Laboratories are discussed in chapters titled ''VUV and Soft X-Ray Research'' and ''Hard X-Ray Research.'' This research encompasses a broad range of the nation's scientific and technical research needs from fundamental to applied, in areas including environmental, biological, and physical sciences; new materials; and energy-related technologies. The projected cost of this proposed construction has been provided in tabular form using a uniform format so that anticipated DOE and outside funding agency contributions for construction and for research and development can be determined. The cost figures are, of course, subject to uncertainties of detailed design requirements and the availability of facility-designed generic components and outside vendors. The report also contains a compendium (as submitted by the beam line proposers) of the design capabilities, the anticipated costs, and the scientific programs of projected beam line construction at the four synchrotron facilities. A summary of the projected cost of these beam lines to be requested of DOE is compiled

  11. Shielding calculation of slow extracted beam facility at KEK proton synchrotron

    International Nuclear Information System (INIS)

    Hirabayashi, Hiromi; Katoh, Kazuaki

    1978-01-01

    The KEK proton synchrotron has two external beam lines, i.e. a fast extracted beam line for a bubble chamber and a slow extracted beam line for counter experiments. The maximum total intensity of the slow beam is estimated as 5 x 10 12 protons per sec. For beam losses along the line, shielding calculation was made, and on the basis of these results, adequacy of the current shielding construction plans was discussed. (Mori, K.)

  12. Experiment for dose measurement during beam killing at Indus-1 synchrotron radiation source

    International Nuclear Information System (INIS)

    Nayak, M.K.; Dev, Vipin; Haridas, G.; Thakkar, K.K.; Sarkar, P.K.; Sharma, D.N.

    2006-01-01

    Experimental measurement of radiation dose likely to be received by an occupational worker in the experimental hall of Indus-1 during accidental beam killing was carried out. Various accidental beam-killing scenarios were experimentally simulated for the measurement. The measurement was carried out using direct reading dosimeters. Result shows that in the event of accidental beam killing, dose likely to be received by an occupational worker outside the shield is negligible. (author)

  13. Physics fundamentals and biological effects of synchrotron radiation therapy

    International Nuclear Information System (INIS)

    Prezado, Y.

    2010-01-01

    The main goal of radiation therapy is to deposit a curative dose in the tumor without exceeding the tolerances in the nearby healthy tissues. For some radioresistant tumors, like gliomas, requiring high doses for complete sterilization, the major obstacle for curative treatment with ionizing radiation remains the limited tolerance of the surrounding healthy tissue. This limitation is particularly severe for brain tumors and, especially important in children, due to the high risk of complications in the development of the central nervous system. In addition, the treatment of tumors close to an organ at risk, like the spinal cord, is also restricted. One possible solution is the development of new radiation therapy techniques exploiting radically different irradiation modes and modifying, in this way, the biological equivalent doses. This is the case of synchrotron radiation therapy (SRT). In this work the three new radiation therapy techniques under development at the European Synchrotron Radiation Facility (ESRF), in Grenoble (France) will be described, namely: synchrotron stereotactic radiation therapy (SSRT), microbeam radiation therapy (MRT) and minibeam radiation therapy. The promising results in the treatment of the high grade brain tumors obtained in preclinical studies have paved the way to the clinical trials. The first patients are expected in the fall of 2010. (Author).

  14. Surface, interface and bulk materials characterization using Indus synchrotron sources

    International Nuclear Information System (INIS)

    Phase, Deodatta M.

    2014-01-01

    Synchrotron radiation sources, providing intense, polarized and stable beams of ultra violet, soft and hard x-ray photons, are having great impact on physics, chemistry, biology, materials science and other areas research. In particular synchrotron radiation has revolutionized materials characterization techniques by enhancing its capabilities for investigating the structural, electronic and magnetic properties of solids. The availability of synchrotron sources and necessary instrumentation has led to considerable improvements in spectral resolution and intensities. As a result, application scope of different materials characterization techniques has tremendously increased particularly in the analysis of solid surfaces, interfaces and bulk materials. The Indian synchrotron storage ring, Indus-1 and Indus-2 are in operation at RRCAT, Indore. The UGC-DAE CSR with the help of university scientist had designed and developed an angle integrated photoelectron spectroscopy (AlPES) beam line on Indus-1 storage ring of 450 MeV and polarized light beam line for soft x-ray absorption spectroscopy (SXAS) on Indus-2 storage ring of 2.5 GeV. (author)

  15. Electron beam spectrum monitor using synchrotron light

    International Nuclear Information System (INIS)

    Reagan, D.; Hostetler, T.E.

    1979-03-01

    This instrument shows the positions, widths, and shapes of momentum spectra of SLAC beams. It uses synchrotron light produced when the beam is deflected by a magnet. Some of the light is focused on the face of an image splitter consisting of acrylic light pipes. The light pipes illuminate twelve photomultiplier tubes. Pulses from the PM tubes are integrated, multiplexed, and displayed on an oscilloscope. The resolution of the instrument is usually better than 0.2%. It has some advantages over the secondary emitter foil spectrum monitors (SEM's) currently in use at SLAC. It need never be put out of service to avoid disturbing the beam. It is as sensitive as the most sensitive SLAC SEM. (Its performance has been optimized for high-current beams; it can easily be made much more sensitive.) It provides information on a pulse-to-pulse basis and, with better cables, could indicate electron beam pulse shapes

  16. A polarimeter for GeV protons of recirculating synchrotron beams

    CERN Document Server

    Bauer, F

    1999-01-01

    A polarimeter for use in recirculating beams of proton synchrotrons with energies from 300 MeV up to several GeV has been developed. The polarimetry is based on the asymmetry measurement of elastic p->p scattering on an internal CH sub 2 fiber target. The forward going protons are detected with two scintillator systems on either side of the beam pipe close to the angle THETA sub f of maximum analyzing power A sub N. Each one operates in coincidence with a broad (DELTA THETA sub b =21.4 deg. ), segmented detector system for the recoil proton of kinematically varying direction THETA sub b; this position resolution is also used for a concurrent measurement of the p->C and nonelastic p->p background. The CH sub 2 fiber can be replaced by a carbon fiber for detailed background studies; 'false' asymmetries are accounted for with a rotation of the polarimeter around the beam axis. Polarimetry has been performed in the internal beam of the Cooler Synchrotron COSY at fixed energies as well as during proton acceleratio...

  17. Nonlinear momentum compaction and coherent synchrotron radiation at the metrology light source. Low-α commissioning and development

    International Nuclear Information System (INIS)

    Ries, Markus

    2014-01-01

    Short pulses of synchrotron radiation are becoming an increasingly demanded tool in various fields of science. The generation of short synchrotron radiation pulses can be accomplished by different accelerator-based approaches such as free electron lasers, energy recovery linacs or electron storage rings. Linear accelerator driven free electron lasers are capable of generating intense pulses in the femtosecond regime at moderate repetition rates. In comparison, electron storage rings generate pulses of lower intensity with the advantage of large repetition rates. However, electron storage rings rely on radiation emitted by the same bunch(es) every turn, which are present in an equilibrium state. Thus making the electron storage ring a yet unchallenged source of short synchrotron radiation pulses in terms of stability and reproducibility. In addition, storage rings are capable to serve a large number of users simultaneously. In general, it is possible to distinguish the user community of short pulses at electron storage rings. The first user group is interested in time-resolution applying incoherent synchrotron radiation up to the X-ray regime. The second user group makes use of coherent synchrotron radiation emitted by short bunches at wavelengths large compared to the bunch dimensions, which commonly applies up to the THz-regime. Both user groups are interested in the high average power and stability available at electron storage rings. However, there is a current limitation for stable short bunch operation of electron storage rings, which is due to an instability driven by the emission of coherent synchrotron radiation. The subject of this thesis is the operation of an electron storage ring at a low momentum compaction to generate short electron bunches as a source for coherent synchrotron radiation. For this purpose the Metrology Light Source is ideally suited, as it is the first light source designed with the ability to adjust the three leading orders of the

  18. Development of the protein crystallography by synchrotron radiation

    International Nuclear Information System (INIS)

    Yamamoto, Masaki

    2014-01-01

    Since crystal structure determination of the first protein by Kendrew in 1959, protein crystallography developed into the leading role of the protein structure study by various technology developments. Especially the utilization of synchrotron radiation from the 1990s brought innovative progress of protein crystallography on the data quality and the phasing method and had expanded the samples targets including membrane proteins and suprarmolecular complexes. Here I give the outline of the history and the future prospects of the protein crystallography from the role of synchrotron radiation. (author)

  19. An angle-resolved, wavelength-dispersive x-ray fluorescence spectrometer for depth profile analysis of ion-implanted semiconductors using synchrotron radiation

    Science.gov (United States)

    Schmitt, W.; Hormes, J.; Kuetgens, U.; Gries, W. H.

    1992-01-01

    An apparatus for angle-resolved, wavelength-dispersive x-ray fluorescence spectroscopy with synchrotron radiation has been built and tested at the beam line BN2 of the Bonn electron stretcher and accelerator (ELSA). The apparatus is to be used for nondestructive depth profile analysis of ion-implanted semiconductors as part of the multinational Versailles Project of Advanced Materials and Standards (VAMAS) project on ion-implanted reference materials. In particular, the centroid depths of depth profiles of various implants is to be determined by use of the angle-resolved signal ratio technique. First results of measurements on implants of phosphorus (100 keV, 1016 cm-2) and sulfur (200 keV, 1014 cm-2) in silicon wafers using ``white'' synchrotron radiation are presented and suggest that it should be generally possible to measure the centroid depth of an implant at dose densities as low as 1014 cm-2. Some of the apparative and technical requirements are discussed which are peculiar to the use of synchrotron radiation in general and to the use of nonmonochromatized radiation in particular.

  20. An angle-resolved, wavelength-dispersive x-ray fluorescence spectrometer for depth profile analysis of ion-implanted semiconductors using synchrotron radiation

    International Nuclear Information System (INIS)

    Schmitt, W.; Hormes, J.; Kuetgens, U.; Gries, W.H.

    1992-01-01

    An apparatus for angle-resolved, wavelength-dispersive x-ray fluorescence spectroscopy with synchrotron radiation has been built and tested at the beam line BN2 of the Bonn electron stretcher and accelerator (ELSA). The apparatus is to be used for nondestructive depth profile analysis of ion-implanted semiconductors as part of the multinational Versailles Project of Advanced Materials and Standards (VAMAS) project on ion-implanted reference materials. In particular, the centroid depths of depth profiles of various implants is to be determined by use of the angle-resolved signal ratio technique. First results of measurements on implants of phosphorus (100 keV, 10 16 cm -2 ) and sulfur (200 keV, 10 14 cm -2 ) in silicon wafers using ''white'' synchrotron radiation are presented and suggest that it should be generally possible to measure the centroid depth of an implant at dose densities as low as 10 14 cm -2 . Some of the apparative and technical requirements are discussed which are peculiar to the use of synchrotron radiation in general and to the use of nonmonochromatized radiation in particular

  1. Visualizing Electron Beam Dynamics and Instabilities with Synchrotron Radiation at the APS

    CERN Document Server

    Yang Bing Xin

    2005-01-01

    The Advanced Photon Source (APS) is a third generation hard x-ray source serving a large user community. In order to characterize the high-brilliance beams, the APS diagnostics beamlines have been developed into a full photon diagnostics suite. We will describe the design and capabilities of the APS visible light imaging line, the bend magnet x-ray pinhole camera, and a unique diagnostics undulator beamline. Their primary functions are to support the APS user operations by providing information on beam sizes (20 - 100 micrometers), divergence (3 – 25 microradians), and bunch length (20 – 50 ps). Through the use of examples, we will show how these complementary imaging tools are used to visualize the electron dynamics and investigate beam instabilities. Special emphasis will be put on the use of undulator radiation, which is uniquely suitable for time-resolved imaging of electron beam with high spatial resolution, and for measurements of longitudinal beam properties such as beam energy spread...

  2. Synchrotron radiation and x-ray topography. Part II. Examples of some applications

    International Nuclear Information System (INIS)

    Bilello, J.C.

    1985-01-01

    Synchrotron x-radiation topography is a powerful tool for studying defects in ''bulk'' metals and alloys. The general features of this technique, including both advantages and disadvantages, have been discussed in Part I of this review. This second report concentrates on some applications of the white beam topography method to studies of flow and fracture of materials and indicates fruitful areas for possible future application. Research investigations on cleavage surfaces of some bcc and hcp metals and alloys are reviewed and contrasted to other more usual methods of studying the morphology of the resulting microstructures

  3. Molecular photoemission studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Truesdale, C.M.

    1983-04-01

    The angular distributions of photoelectrons and Auger electrons were measured by electron spectroscopy using synchrotron radiation. The experimental results are compared with theoretical calculations to interpret the electronic behavior of photoionization for molecular systems

  4. Synchrotron radiation sources for photobiology and ultraviolet, visible and infrared spectroscopy

    International Nuclear Information System (INIS)

    Sutherland, J.C.

    1980-01-01

    The advantages of synchrotron radiation in several types of spectroscopy, microscopy and diffraction studies are clear. The availability of synchrotron radiation will expand rapidly in the early 1980's as experimental programs start at the new generation of dedicated storage rings

  5. A guide to using the BL-6A2 synchrotron facilities at the photon factory, Tsukuba, Japan

    International Nuclear Information System (INIS)

    1992-08-01

    The Photon Factory (PF) consists of a 2.5 GeV electron/positron linear accelerator, a 2.5 GeV storage ring as a dedicated synchrotron light source, beam lines and experimental stations, to serve users synchrotron radiation (SR) for experiment. The 2.5 GeV linear accelerator is used as an injector for both PF ring and the accumulating ring (AR). It is currently capable of injecting positrons or electrons. The AR has been partly used as a high energy synchrotron radiation source from its bending magnets, and partly augmented with a new insertion device to produce elliptically polarized radiation. It has been operated for the users of synchrotron radiation at the energy from 5.8 to 6.5 GeV. With the electron beam in the storage ring for SR research, the instability of the beam is inevitable arising from ions or charged dust trapped by the beam. Therefore, positrons are used instead of electrons in order to completely overcome the difficulty. The wiggler produces vertically polarized radiation in the range of photon energy. The superconducting NbTi is well suitable to obtain high magnetic field. (K.I.)

  6. Synchrotron radiation and biomedical imaging

    International Nuclear Information System (INIS)

    Luccio, A.

    1986-08-01

    In this lecture we describe the characteristics of Synchrotron radiation as a source of X rays. We discuss the properties of SR arc sources, wigglers, undulators and the use of backscattering of laser light. Applications to angiography, X ray microscopy and tomography are reviewed. 16 refs., 23 figs

  7. Static and transient beam loading of a synchrotron

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Weng, W.T.

    1992-01-01

    In a synchrotron, when the beam induced current is comparable to the driver current, the RF cavity is subjected to beam loading perturbation and corrective steps have to be implemented to regain beam stability. In this paper, the static and transient beam loading will be studied. We first discuss the static beam loading, which includes the cavity detuning condition, the stability condition, and the generator power dissipation. The beam current induced beam phase deviation is used as criterion to study the transient beam loading. The upgraded and the old AGS RF system parameters are used as an example to demonstrate how to choose cavity and generator parameters to satisfy the stability requirements under the beam loading. The dynamic models for the beam loading with beam control, and the beam loading with fast power amplifier feedback are presented and analyzed. It is shown that the beam phase and radial feedbacks alone are insufficient for the transient beam loading compensation, but the fast power amplifier feedback can provide effective correction on the beam loading. The limitation of the fast feedback and the beam loading with tuning and AVC loops are also discussed

  8. Optical substrate materials for synchrotron radiation beamlines

    International Nuclear Information System (INIS)

    Howells, M.R.; Paquin, R.A.

    1997-06-01

    The authors consider the materials choices available for making optical substrates for synchrotron radiation beam lines. They find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors they explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. They conclude that metals are best from an engineering and cost standpoint while the ceramics are best from a polishing standpoint. They then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, Glidcop trademark, aluminum, precipitation-hardening stainless steel, mild steel, invar and superinvar. Finally they summarize conclusions and propose ideas for further research

  9. A concept of a new undulator that will generate irrational higher harmonics in synchrotron radiation

    International Nuclear Information System (INIS)

    Hashimoto, Shinya; Sasaki, Shigemi

    1994-03-01

    A preliminary consideration has been made on an undulator with magnetic poles quasi-periodically aligned along the path of electron beams to discriminate the rational higher harmonics of radiation that are harmful in some synchrotron radiation experiments. The harmonics with irrational ratios in energy generated by the undulator is never simultaneously reflected by a crystal monochromator in the same orientation. A combination of the new undulator and high-resolution crystal monochromator is expected to be very useful on beamlines of high energy radiation in which X-ray mirrors are useless because of too small critical angles of total reflection. Further, a possibility of manufacturing the new undulator has been discussed. (author)

  10. Fast microwave detection system for coherent synchrotron radiation study at KEK: Accelerator test facility

    International Nuclear Information System (INIS)

    Aryshev, A.; Araki, S.; Karataev, P.; Naito, T.; Terunuma, N.; Urakawa, J.

    2007-01-01

    A fast room temperature microwave detection system based on the Schottky Barrier-diode detector was created at the KEK ATF (Accelerator Test Facility). It was tested using Coherent Synchrotron Radiation (CSR) generated by the 1.28 GeV electron beam in the damping ring. The speed performance of the detection system was checked by observing the CSR from a multi-bunch (2.8 ns bunch separation time) beam. The theoretical estimations of CSR power yield from an edge of bending magnet as well as new injection tuning method are presented. A very high sensitivity of CSR power yield to the longitudinal electron distribution in a bunch is discussed

  11. ''Use of synchrotron radiation in France: present status and perspectives''

    International Nuclear Information System (INIS)

    Thiry, P.

    1996-01-01

    LURE (laboratory for the use of electromagnetic radiation) plays an important role as a research center, as a synchrotron radiation producer and as a leading pole about new light source studies. The necessity to maintain LURE at a high level of technological competitiveness implies to build a new facility called SOLEIL. This article describes the present equipment of LURE, its activity fields and draws the prospect of synchrotron radiation in France. (A.C.)

  12. 1994 activity report: Stanford Synchrotron Radiation Laboratory

    International Nuclear Information System (INIS)

    Cantwell, K.; Dunn, L.

    1994-01-01

    The SSRL facility delivered 89% of the scheduled user beam to 25 experimental stations during 6.5 months of user running. Users from private industry were involved in 31% of these experiments. The SPEAR accelerator ran very well with no major component failures and an unscheduled down time of only 2.9%. In addition to this increased reliability, there was a significant improvement in the stability of the beam. The enhancements to the SPEAR orbit as part of a concerted three-year program were particularly noticeable to users. The standard deviation of beam movement (both planes) in the last part of the run was 80 microns, major progress toward the ultimate goal of 50-micron stability. This was a significant improvement from the previous year when the movement was 400 microns in the horizontal and 200 microns in the vertical. A new accelerator Personal Protection System (PPS), built with full redundancy and providing protection from both radiation exposure and electrical hazards, was installed in 1994. It is not possible to describe in this summary all of the scientific experimentation which was performed during the run. However, the flavor of current research projects and the many significant accomplishments can be realized by the following highlights: A multinational collaboration performed several experiments involving x-ray scattering from nuclear resonances; Studies related to nuclear waste remediation by groups from Los Alamos National Laboratory and Pacific Northwest Laboratories continued in 1994; Diffraction data sets for a number of important protein crystals were obtained; During the past two years a collaboration consisting of groups from Hewlett Packard, Intel, Fisons Instruments and SSRL has been exploring the utility of synchrotron radiation for total reflection x-ray fluorescence (TRXRF); and High-resolution angle-resolved photoemission experiments have continued to generate exciting new results from highly correlated and magnetic materials

  13. 1994 activity report: Stanford Synchrotron Radiation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cantwell, K.; Dunn, L. [eds.

    1994-01-01

    The SSRL facility delivered 89% of the scheduled user beam to 25 experimental stations during 6.5 months of user running. Users from private industry were involved in 31% of these experiments. The SPEAR accelerator ran very well with no major component failures and an unscheduled down time of only 2.9%. In addition to this increased reliability, there was a significant improvement in the stability of the beam. The enhancements to the SPEAR orbit as part of a concerted three-year program were particularly noticeable to users. The standard deviation of beam movement (both planes) in the last part of the run was 80 microns, major progress toward the ultimate goal of 50-micron stability. This was a significant improvement from the previous year when the movement was 400 microns in the horizontal and 200 microns in the vertical. A new accelerator Personal Protection System (PPS), built with full redundancy and providing protection from both radiation exposure and electrical hazards, was installed in 1994. It is not possible to describe in this summary all of the scientific experimentation which was performed during the run. However, the flavor of current research projects and the many significant accomplishments can be realized by the following highlights: A multinational collaboration performed several experiments involving x-ray scattering from nuclear resonances; Studies related to nuclear waste remediation by groups from Los Alamos National Laboratory and Pacific Northwest Laboratories continued in 1994; Diffraction data sets for a number of important protein crystals were obtained; During the past two years a collaboration consisting of groups from Hewlett Packard, Intel, Fisons Instruments and SSRL has been exploring the utility of synchrotron radiation for total reflection x-ray fluorescence (TRXRF); and High-resolution angle-resolved photoemission experiments have continued to generate exciting new results from highly correlated and magnetic materials.

  14. Proceedings of the Meeting on Techniques and Applications of Synchrotron Radiation

    International Nuclear Information System (INIS)

    1983-01-01

    Several techniques and applications of the synchrotron radiation used in Physics, Biophysics and Chemistry are extensively discussed. The major part of the subjects of the works treat with the possible implantation of a national synchrotron radiation laboratory in Brazil. (L.C.) [pt

  15. Synchrotron radiation from spherically accreting black holes

    International Nuclear Information System (INIS)

    Ipser, J.R.; Price, R.H.

    1982-01-01

    Spherical accretion onto a Schwartzchild black hole, of gas with frozen-in magnetic field, is studied numerically and analytically for a range of hole masses and accretion rates in which synchrotron emission is the dominant radiative mechanism. At small radii the equipartition of magnetic, kinetic, and gravitational energy is assumed to apply, and the gas is heated by dissipation of infalling magnetic energy, turbulent energy, etc. The models can be classified into three types: (a) synchrotron cooling negligible, (b) synchrotron cooling important but synchrotron self-absorption negligible, (c) synchrotron cooling and self-absorption important. In the first case gas temperatures become very high near the horizon but luminosity efficiencies (luminosity/mass-energy accretion rate) are low. In cases (b) and (c) the gas flow near the horizon is essentially isothermal and luminosity efficiencies are fairly high. The analysis and results for the isothermal cases (b) and (c) are valid only for moderate dissipative heating and synchrotron self-absorption. If self-absorption is very strong or if dissipated energy is comparable to infall energy, Comptonization effects, not included in the analysis, become important

  16. Biological physics and synchrotron radiation

    International Nuclear Information System (INIS)

    Filhol, J.M.; Chavanne, J.; Weckert, E.

    2001-01-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  17. Biological physics and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Filhol, J M; Chavanne, J [European Synchrotron Radiation Facility, 38 - Grenoble (France); Weckert, E [Hasylab at Desy, Hamburg (Germany); and others

    2001-07-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  18. Synchrotron radiation in material science

    International Nuclear Information System (INIS)

    Zanotto, E.D.

    1983-01-01

    A brief review on the several experimental techniques (XRD, SAXS, EXAFS, IRRS, etc...) which, utilizing of synchrotron radiation can be applied in glass structural studies, is presented. The major part of these techniques can be also used for studies of other materials such as polymers, metals, etc... (L.C.) [pt

  19. Optical and mechanical design of the extended x-ray absorption fine structure (EXAFS) beam-line at Indus-II synchrotron source

    International Nuclear Information System (INIS)

    Das, N.C.; Jha, S.N.; Bhattacharyya, D.; Sinha, A.K.; Mishra, V.K.; Verma, Vishnu; Ghosh, A.K.

    2002-11-01

    An extended x-ray absorption fine structure (EXAFS) beam line for x-ray absorption studies using energy dispersive geometry and position sensitive detector is being designed for the INDUS-II Synchrotron source. The beam line would be used for doing x-ray absorption experiments involving measurements of fme structures above the absorption edge of different species of atoms in a material The results of the above experiments would lead to the determination of different important structural parameters of materials viz.. inter-atomic distance. co-ordination number, degree of disorder and radial distribution function etc. The optical design of the beam line has been completed based on the working principle that a single crystal bent in the shape of an ellipse by a crystal bender would act as a dispersing as well as focusing element. The mechanical design of the beam line including the crystal bender has also been completed and discussed here. Calculations have been done to detennine the temperature profile on the different components of the beam line under exposure to synchrotron radiation and proper cooling channels have been designed to bring down the heat load on the components. (author)

  20. Tabletop synchrotron and its unique features

    CERN Document Server

    Yamada, H

    2002-01-01

    Two synchrotrons, AURORA and MIRRORCLE, were built in Ritsumeikan University. MIRRORCLE-20 is the smallest normal conduction synchrotron (15 cm orbit radius and 1.2 m outer diameter) in the world. It uses 2/3 resonance method for electron beam incidence but is not optimized for X-ray generation. MIRRORCLE-6 shall be optimized for X-ray generation. X-ray generated by MIRRORCLE shows very flat white light, rich in hard X-ray, pulse with width changeable from a few mu s to a few ms , wide radiation angle of 25 mrad at MIRRORCLE-20 and 80 mrad at MIRRORCLE-8 and high coherence. The feature such as pulsed light and high coherence is expected to new application which photon radiation cannot practice. Imaging experiments by MIRRORCLE were carried out by Cu plate, Al plate, Teflon and acryl plate. We took a photograph of insect, electric lamp, connector, and cyclotron. New X-ray generation mechanism, X-ray strength, development of tabletop synchrotron and features of X-ray beam are explained. (S.Y.)

  1. Tabletop synchrotron and its unique features

    International Nuclear Information System (INIS)

    Yamada, Hironari

    2002-01-01

    Two synchrotrons, AURORA and MIRRORCLE, were built in Ritsumeikan University. MIRRORCLE-20 is the smallest normal conduction synchrotron (15 cm orbit radius and 1.2 m outer diameter) in the world. It uses 2/3 resonance method for electron beam incidence but is not optimized for X-ray generation. MIRRORCLE-6 shall be optimized for X-ray generation. X-ray generated by MIRRORCLE shows very flat white light, rich in hard X-ray, pulse with width changeable from a few μs to a few ms , wide radiation angle of 25 mrad at MIRRORCLE-20 and 80 mrad at MIRRORCLE-8 and high coherence. The feature such as pulsed light and high coherence is expected to new application which photon radiation cannot practice. Imaging experiments by MIRRORCLE were carried out by Cu plate, Al plate, Teflon and acryl plate. We took a photograph of insect, electric lamp, connector, and cyclotron. New X-ray generation mechanism, X-ray strength, development of tabletop synchrotron and features of X-ray beam are explained. (S.Y.)

  2. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices

    Science.gov (United States)

    Antonelli, M.; Di Fraia, M.; Carrato, S.; Cautero, G.; Menk, R. H.; Jark, W. H.; Ganbold, T.; Biasiol, G.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2013-12-01

    Simultaneous photon-beam position and intensity monitoring is becoming of increasing importance for new-generation synchrotron radiation sources and free-electron lasers (FEL). Thus, novel concepts of beam diagnostics are required in order to keep such beams under control. From this perspective diamond is a promising material for the production of semitransparent in situ photon beam monitors, which can withstand the high dose rates occurring in such radiation facilities. Here, we report on the development of freestanding, single-crystal chemical-vapor-deposited diamond detectors with segmented electrodes. Due to their direct, low-energy band gap, InGaAs quantum well devices operated at room temperature may also be used as fast detectors for photons ranging from visible to X-ray. These features are valuable in low-energy and time-resolved FEL applications. In particular, a novel segmented InGaAs/InAlAs device has been developed and will be discussed. Dedicated measurements carried out on both these devices at the Elettra Synchrotron show their capability to monitor the position and the intensity of the photon beam with bunch-by-bunch temporal performances. Furthermore, preliminary tests have been performed on diamond detectors at the Fermi FEL, extracting quantitative intensity and position information for 100-fs-wide FEL pulses with a photon energy of 28.8 eV.

  3. Measuring the momentum distribution of the unpaired spin electrons in ferromagnets using synchrotron radiation

    International Nuclear Information System (INIS)

    Mills, D.M.

    1988-12-01

    The dominant term in the x-ray Compton cross-section of an electron is the interaction of the photon and the electron's charge. Platzman and Tsoar many years ago pointed out that there is also an interaction between an x-ray and the electron's spin and in principle this interaction can give information on the momentum distribution of the unpaired spin electrons in the solid. Unfortunately, the spin sensitive term is not only small compared to the charge term, but in addition couples to the photons in first order only with that components of the x-ray beam that is circularly polarized. A lack of intense sources of circularly polarized x-rays combined with the relative small size of the spin sensitive term makes measurements of the momentum distributions of unpaired spin electrons difficult, resulting in little experiment progress initially made in spin or magnetic Compton scattering. In the past several years, interest in spin sensitive Compton scattering has been revived due in large part to the availability of intense beams of high energy photons from synchrotron radiation sources. The radiation from storage ring sources has well defined polarization states; highly linearly polarized in the orbital plane and elliptically polarized above and below the plane of the orbit of the circulating particles. The high flux and unique polarization properties of synchrotron radiation sources have greatly facilitated measurements of the momentum distributions of the unpaired spin electrons in ferromagnetic solids. Recent results of the work of several groups will be presented, along with some thoughts on the impact that the next generation of storage rings, such as the Advanced Photon Source, and insertion devices specifically designed to produce circularly polarized x-ray beams will have on the field of magnetic Compton scattering. 21 refs., 6 figs

  4. Beer analysis by synchrotron radiation total reflection X-ray fluorescence (SR-TXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br; Zucchi, Orgheda L.D.A. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas de Ribeirao Preto]. E-mail: olzucchi@fcfrp.usp.br

    2005-07-01

    In this work the concentrations of P, S, Cl, K, Ca, Mn, Fe, Zn and Br in twenty-nine brands of national and international beers were determined by Synchrotron Radiation Total Reflection X-Ray Fluorescence analysis (SR-TXRF). The results were compared with the limits established by the Brazilian Legislation and the nutritive values established by National Agricultural Library (NAL). The measurements were performed at the X-ray Fluorescence Beamline at Synchrotron Light Source Laboratory, in Campinas, Sao Paulo, Brazil, using a polychromatic beam for excitation. A small volume of 5 {mu}L of sample beers containing just an internal standard, used to correct geometry effects, were analyzed without any pre-treatment. The measuring time was 100 s and the detection limits obtained varied from 1{mu}g.L{sup -1} for Mn and Fe to 15{mu}g.L{sup -1} for P. (author)

  5. Terahertz Coherent Synchrotron Radiation from Femtosecond Laser Modulation of the Electron Beam at the Advanced Light Source

    International Nuclear Information System (INIS)

    Byrd, John M.; Hao, Zhao; Martin, Michael C.; Robin, David S.; Sannibale, Fernando; Schoenlein, Robert W.; Zholents, Alexander A.; Zolotorev, Max S.

    2005-01-01

    At the Advanced Light Source (ALS), the ''femtoslicing'' beamline is in operation since 1999 for the production of x-ray synchrotron radiation pulses with femtosecond duration. The mechanism used for generating the short x-ray pulses induces at the same time temporary structures in the electron bunch longitudinal distribution with very short characteristic length. Such structures emit intense coherent synchrotron radiation (CSR) in the terahertz frequency range. These CSR pulses were first observed at the ALS, and the measurement of their intensity is now routinely used as a diagnostics for the tune-up of the femtoslicing x-ray experiments. At the same time, these CSR pulses synchronous with the modulating laser, represent a potential source of terahertz radiation with very interesting features. Several measurements have been performed for their characterization and in this paper we present an updated description of the experimental results and of their interpretation. In particular, we include more data on the interesting interaction, previously observed at the ALS, between the slicing and the microbunching instability (MBI), where under particular circumstances, the slicing seems to trigger the onset of the instability

  6. Interest of synchrotron radiation for the therapy of brain tumors: methodology and preclinical applications; Interet du rayonnement synchrotron dans la therapie des tumeurs cerebrales: methodologie et applications precliniques

    Energy Technology Data Exchange (ETDEWEB)

    Regnard, P

    2007-12-15

    Microbeam radiation (M.R.T.) and stereotactic synchrotron radiation therapy (S.S.R.T.) are innovative techniques currently developed at the european Synchrotron radiation facility. these techniques led to promising, but rarely reproduced, results. the use of different tumoral models for each techniques limit comparisons. M.R.T. experiments on rats bearing 9L tumors 14 days after implantation displayed a double median survival time ( from 20 to 40 days) with a 200 {mu}m spacing irradiation, while a 100 {mu}m spacing irradiation tripled this median (67 days) but damaged normal tissue. the impact of the device dividing synchrotron beam into micro-beams, named multi sit collimator, was also demonstrated. combination of drugs with M.R.T. irradiation was tested. promising results (median survival time: 40 days and 30% of long term survivors) were obtained with an intratumoral injection of gadolinium coupled with a crossing M.R.T. irradiation at 460 Gy. Moreover, earlier M.R.T. irradiation (tumor at D10) quadrupled the median survival time (79 days) with 30% of long term survivors. A new imaging device to target the tumor before irradiation and an adapted collimator will increase the M.R.T. results. As the differences existing between tumoral models used in M.R.T. (9L models) and in S.S.R.T. (F98 models) are major, M.R.T./S.S.R.T. comparative experiments were realised on these two models. Results showed that the two techniques have the same efficacy on F98 model and that the M.R.T. is more effective on 9L model. This can help to define adapted tumor type for these techniques. (author)

  7. ANKA - new horizons with synchrotron radiation

    International Nuclear Information System (INIS)

    Hagelstein, M.; Czolk, R.

    2001-01-01

    ANKA GmbH operates a state-of-the-art electron storage ring (2.5 GeV energy, 400 mA maximum current) for the production of high-intensity synchrotron radiation. The produced 'superlight' ranges from the hard X-ray to the infrared region of the electromagnetic spectrum. To use the light for microfabrication and analysis a number of modern, high quality production and experimental facilities exist on this circular (diameter about 35 m) synchrotron radiation sources. The experimental facilities are consolidated by a young, experienced and highly motivated team of experts. For the patterning of polymers by deep X-ray lithography three end-stations (so-called beamlines) are available. For analytical tasks five beamlines are established where different experiments can be made based on X-ray methods such as X-ray absorption, diffraction and fluorescence spectroscopy as well as IR-spectroscopy. (orig.)

  8. The uses of synchrotron radiation sources for elemental and chemical microanalysis

    Science.gov (United States)

    Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Jones, K.W.; Rivers, M.L.; Sutton, S.R.

    1990-01-01

    Synchrotron radiation sources offer important features for the analysis of a material. Among these features is the ability to determine both the elemental composition of the material and the chemical state of its elements. For microscopic analysis synchrotron X-ray fluorescence (SXRF) microprobes now offer spatial resolutions of 10 ??m with minimum detection limits in the 1-10 ppm range depending on the nature of the sample and the synchrotron source used. This paper describes the properties of synchrotron radiation and their importance for elemental analysis, existing synchrotron facilities and those under construction that are optimum for SXRF microanalysis, and a number of applications including the high energy excitation of the K lines of heavy elements, microtomography, and XANES and EXAFS spectroscopies. ?? 1990.

  9. Synchrotron radiation: appendix to the Daresbury annual report 1990/91

    International Nuclear Information System (INIS)

    1991-01-01

    This Appendix to the Annual Report of the Daresbury Laboratory of the United Kingdom Science and Engineering Research Council contains the 1990 Annual Report of the Synchrotron Radiation Facilities Committee, specifications for the beamlines and stations, the index for the synchrotron radiation user reports, the reports themselves and the list of publications detailing work performed on the Synchrotron Radiation Source. By far the largest part of the Appendix is taken up with the user reports for the period 1990 to 1991. They include reports on structural determination of sodium methyl, an investigation of DNA-Binding Proteins, monitoring of vital processes in live cells, the structure of semiconductor interfaces, the structure and properties of glasses and soft x-ray absorption spectroscopy of liquid samples. (author)

  10. Photoemission spectroscopy using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobayashi, K.L.I.

    1980-01-01

    It is an epoch making event for photoemission spectroscopy that the light sources of continuous wavelength from vacuum ultra-violet to X-ray region have become available by the advent of synchrotron radiation. Specifically the progress after stable intense light has become obtainable from storage rings is very significant. One of the features of these synchrotron radiation is its extreme polarization of radiating pattern. Though the elementary processes of photoemission out of solids are the basic themes, phenomenalistic 3-stage model is usually applied to the analysis of experiments. In this model, the process of photoemission is considered by dividing into three stages, namely the generation of photoelectrons due to optical transition between electron status -- the transportation of photoelectrons to solid surfaces -- breaking away from the surfaces. The spectrometers, the energy analyzers of photoelectrons, and sample-preparing room used for photoemission spectroscopy are described. Next, energy distribution curves are explained. At the end, photoelectron yield spectroscopy, CFS (constant final energy spectroscopy) and CIS (constant initial energy spectroscopy), Auger yield and interatomic Auger yield, the determination of surface structure by normal emission CIS, and surface EXAFS (extended X-ray absorption fine structure) are described. As seen above, the application specifically to surface physics is promising in the future. (Wakatsuki, Y.)

  11. Sirepo for Synchrotron Radiation Workshop

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-25

    Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jinja, which is a secure and widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is the Synchrotron Radiation Workshop (SRW). SRW computes synchrotron radiation from relativistic electrons in arbitrary magnetic fields and propagates the radiation wavefronts through optical beamlines. SRW is open source and is primarily supported by Dr. Oleg Chubar of NSLS-II at Brookhaven National Laboratory.

  12. Time-resolved hard x-ray studies using third-generation synchrotron radiation sources (abstract)

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    The third-generation, high-brilliance, synchrotron radiation sources currently under construction will usher in a new era of x-ray research in the physical, chemical, and biological sciences. One of the most exciting areas of experimentation will be the extension of static x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high-brilliance, variable spectral bandwidth, and large particle beam energies of these sources make them ideal for hard x-ray, time-resolved studies. The primary focus of this presentation will be on the novel instrumentation required for time-resolved studies such as optics which can increase the flux on the sample or disperse the x-ray beam, detectors and electronics for parallel data collection, and methods for altering the natural time structure of the radiation. This work is supported by the U.S. Department of Energy, BES-Materials Science, under Contract No. W-31-109-ENG-38

  13. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, Gennady; Zhou, Demin

    2016-04-21

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.

  14. Monitoring elastic strain and damage by neutron and synchrotron beams

    International Nuclear Information System (INIS)

    Withers, P.J.

    2001-01-01

    Large-scale neutron and synchrotron X-ray facilities have been providing important information for physicists and chemists for many decades. Increasingly, materials engineers are finding that they can also provide them with important information non-destructively. Highly penetrating neutron and X-ray synchrotron beams provide the materials engineer with a means of obtaining information about the state of stress and damage deep within materials. In this paper the principles underlying the elastic strain measurement and damage characterization techniques are introduced. (orig.)

  15. Proposal for a national synchrotron light source

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1977-02-01

    Since 1971 discussions have been held at Brookhaven National Laboratory on the desirability of construction of a storage ring which would be used exclusively for production of intense beams of photons with wavelengths in the ultraviolet and X-ray ranges. A proposal is given which discusses in detail the machine, its characteristics, and its expected uses. The proposal includes: (1) characteristics of synchrotron radiation; (2) scientific justification for a synchrotron radiation facility; (3) facility design; (4) wiggler magnets; (5) experimental facilities; (6) buildings and utilities; (7) construction schedules, costs, and manpower; and (8) environmental assessment

  16. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    Science.gov (United States)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  17. Research of synchrotron radiation by virtual photon and compton scattering

    International Nuclear Information System (INIS)

    Meng Xianzhu

    2005-01-01

    This paper presents a new theory to explain the synchrotron radiation. When charged particle does circular motion in the accelerator, the magnetic field of the accelerator can be taken as periodic, and equivalent to virtual photon. By Compton scattering of virtual photon and charged particle, the virtual photon can be transformed into photon to radiate out. According to this theory, the formula of photon wavelength in synchrotron radiation is found out, and the calculation results of wavelength is consonant with experimental data. (author)

  18. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Crasemann, B.

    1981-01-01

    Applications of synchrotron radiation to research in high-energy atomic physics are summarized. These lie in the areas of photoelectron spectrometry, photon scattering, x-ray absorption spectroscopy, time-resolved measurements, resonance spectroscopy and threshold excitation, and future, yet undefined studies

  19. Sensitivities in synchrotron radiation TXRF

    International Nuclear Information System (INIS)

    Pianetta, P.; Baur, K.; Brennan, S.

    2000-01-01

    This work describes the progress we achieved at the Stanford Synchrotron Radiation Laboratory (SSRL) in improving the sensitivity for both the transition metals and light elements such as Al and Na. The transition metal work has matured to the point where a facility exists at SSRL in which semiconductor companies are able to perform industrially relevant measurements at state of the art detection limits. This facility features clean wafer handling and automated data acquisition making routine analytical measurements possible. The best sensitivity demonstrated so far is 3.4 E7 atoms/cm 2 for a 5000 second count time corresponding to 7.6 E7 atoms/cm 2 for a standard 1000 second count time. This is more than a factor of 100 better than what can be achieved with conventional TXRF systems. The detection of light elements such as Al and Na is challenging due to the presence of the h stronger Si fluorescence peak. For traditional energy-dispersive detection only the tunability of synchrotron radiation to excitation energies below the Si-K absorption edge leads to an acceptable sensitivity for Al detection which is limited by a large background due to inelastic x-ray Raman scattering. An alternative approach to overcome the Raman contribution and the strong Si fluorescence is to use a wavelength-dispersive spectrometer for fluorescence detection. The benefits of such a multilayer spectrometer over a solid state detector are its higher energy resolution and greater dynamic range. This strategy allows primary excitation above the Si K absorption edge, eliminating the background due to Raman scattering, and a gracing emission geometry to guarantee high surface sensitivity. Studies testing this concept in combination with high flux synchrotron radiation are underway and first results will be presented. (author)

  20. Development of a silicon microstrip detector with single photon sensitivity for fast dynamic diffraction experiments at a synchrotron radiation beam

    Science.gov (United States)

    Arakcheev, A.; Aulchenko, V.; Kudashkin, D.; Shekhtman, L.; Tolochko, B.; Zhulanov, V.

    2017-06-01

    Time-resolved experiments on the diffraction of synchrotron radiation (SR) from crystalline materials provide information on the evolution of a material structure after a heat, electron beam or plasma interaction with a sample under study. Changes in the material structure happen within a microsecond scale and a detector with corresponding parameters is needed. The SR channel 8 of the VEPP-4M storage ring provides radiation from the 7-pole wiggler that allows to reach several tens photons within one μs from a tungsten crystal for the most intensive diffraction peak. In order to perform experiments that allow to measure the evolution of tungsten crystalline structure under the impact of powerful laser beam, a new detector is developed, that can provide information about the distribution of a scattered SR flux in space and its evolution in time at a microsecond scale. The detector is based on the silicon p-in-n microstrip sensor with DC-coupled metal strips. The sensor contains 1024 30 mm long strips with a 50 μm pitch. 64 strips are bonded to the front-end electronics based on APC128 ASICs. The APC128 ASIC contains 128 channels that consist of a low noise integrator with 32 analogue memory cells each. The integrator equivalent noise charge is about 2000 electrons and thus the signal from individual photons with energy above 40 keV can be observed. The signal can be stored at the analogue memory with 10 MHz rate. The first measurements with the beam scattered from a tungsten crystal with energy near 60 keV demonstrated the capability of this prototype to observe the spatial distribution of the photon flux with the intensity from below one photon per channel up to 0~10 photons per channel with a frame rate from 10 kHz up to 1 MHz.

  1. Techniques of production and analysis of polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    The use of the unique polarization properties of synchrotron radiation in the hard x-ray spectral region (E>3 KeV) is becoming increasingly important to many synchrotron radiation researchers. The radiation emitted from bending magnets and conventional (planar) insertion devices (IDs) is highly linearly polarized in the plane of the particle's orbit. Elliptically polarized x-rays can also be obtained by going off axis on a bending magnet source, albeit with considerable loss of flux. The polarization properties of synchrotron radiation can be further tailored to the researcher's specific needs through the use of specialized insertion devices such as helical and crossed undulators and asymmetrical wigglers. Even with the possibility of producing a specific polarization, there is still the need to develop x-ray optical components which can manipulate the polarization for both analysis and further modification of the polarization state. A survey of techniques for producing and analyzing both linear and circular polarized x-rays will be presented with emphasis on those techniques which rely on single crystal optical components

  2. Recent developments in photoelectron dynamics using synchrotron radiation

    International Nuclear Information System (INIS)

    Carlson, T.A.; Krause, M.O.; Taylor, J.W.; Keller, P.R.; Piancastelli, M.N.; Grimm, F.A.; Whitley, T.A.

    1982-01-01

    Through a collaborative effort of members of the Oak Ridge National Laboratory and Universities of Wisconsin and Tennessee, a comprehensive study of atoms and molecules using angle-resolved photoelectron spectroscopy and synchrotron radiation is underway at the Synchrotron Radiation Center, Stoughton, Wisconsin. Over 50 molecules and atoms have been investigated. These results, coupled with theory, aim at a better understanding of the dynamics of photoionization and of the wave functions that control these processes. In particular, attention is given to the following topics: metal atomic vapors, generalization of molecular orbital types, autoionization, shape resonances, core shell effects, satellite structure, and the Cooper minimum

  3. Setup for angle-resolved electron spectrometry using monochromatised synchrotron radiation

    International Nuclear Information System (INIS)

    Derenbach, H.; Franke, C.; Malutzki, R.; Wachter, A.; Schmidt, V.

    1987-01-01

    An apparatus is described which is well suited for angle-resolved electron spectrometry of free atoms and molecules using monochromatised synchrotron radiation. Two variations are presented, one for room temperature gaseous species, the other for metallic vapours. The analyser is of the cylindrical mirror type, designed, however, so as to accept with one sector the entire source volume independently of the photon beam diameter. It can be equipped with a positon-sensitive detector instead of a channeltron, which extends its potentiality. The system consists of up to three cylindrical mirror sector analysers (CMAs) where a double-sector CMA can be rotated around the photon beam direction, allowing angular distribution measurements, and another sector CMA is mounted in a fixed position providing a signal for reference purposes. A detailed description and experimental tests are given for the performance of the CMA, i.e. its imaging properties, resolution and transmissions, as well as for possible instrumental asymmetries affecting angle-resolved experiments. (orig.)

  4. Array element of a space-based synchrotron radiation detector

    International Nuclear Information System (INIS)

    Lee, M.W.; Commichau, S.C.; Kim, G.N.; Son, D.; Viertel, G.M.

    2006-01-01

    A synchrotron radiation detector (SRD) has been proposed as part of the Alpha Magnetic Spectrometer experiment on the International Space Station to study cosmic ray electrons and positrons in the TeV energy range. The SRD will identify these particles by detecting their emission of synchrotron radiation in the Earth's magnetic field. This article reports on the study of key technical parameters for the array elements which form the SRD, including the choice of the detecting medium, the sensor and the readout system

  5. The uses of synchrotron radiation sources for elemental and chemical microanalysis

    International Nuclear Information System (INIS)

    Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Jones, K.W.; Rivers, M.L.; Sutton, S.R.

    1989-08-01

    Synchrotron radiation sources offer important features for the analysis of a material. Among these features is the ability to determine both the elemental composition of the material and the chemical state of its elements. For microscopic analysis synchrotron x-ray fluorescence (SXRF) microprobes now offer spatial resolutions of 10μm with minimum detection limits in the 1--10 ppM range depending on the nature of the sample and the synchrotron source used. This paper describes the properties of synchrotron radiation and their importance for elemental analysis, existing synchrotron facilities and those under construction that are optimum for SXRF microanalysis, and a number of applications including the high energy excitation of the K lines of heavy elements, microtomography, and XANES and EXAFS spectroscopies. 45 refs., 8 figs., 1 tab

  6. Analysis of signal to background ratio in synchrotron radiation X-ray fluorescence

    International Nuclear Information System (INIS)

    Sakurai, Kenji; Gohshi, Yohichi; Iida, Atsuo.

    1988-01-01

    The signal to background (S/B) ratio in energy dispersive X-ray fluorescence using synchrotron radiation (SR) was quantitatively analyzed. The S/B ratio, which has been significantly improved by taking advantage of the polarized nature of SR, was found to be strongly dependent on geometrical factors of the measurement system. From the analysis on the origin of the scattered background, the dependence of the S/B ratio on the geometry was quantitatively explained, mainly by the polarization properties of SR. Experimental conditions could be optimized by adjusting the degree of polarization of the incident beam and the detector solid angle. (author)

  7. Introduction. From a first-generation synchrotron radiation to an x-ray free electron laser

    International Nuclear Information System (INIS)

    Mizuki, Jun'ichiro

    2013-01-01

    The fruitful and remarkable research results in materials science during the past more than ten years have been continuously obtained by the advent of synchrotron radiation (SR) sources, especially the third-generation SR source. This is easily understood by considering that the SR beams provide not only five to ten orders of magnitude brilliance more in the continuum vacuum ultraviolet and X-ray regions of the electromagnetic spectrum than conventional sources, but also natural collimation, high polarization, pulsed time structure and high stability. In this paper we present a brief history of SR sources, especially in Japan to know how the SR sources developed, and a view of the future research direction regarding the use of SR beams. (author)

  8. Synchrotron radiation. Basics, methods and applications

    International Nuclear Information System (INIS)

    Mobilio, Settimio; Meneghini, Carlo; Boscherini, Federico

    2015-01-01

    Synchrotron radiation is today extensively used for fundamental and applied research in many different fields of science. Its exceptional characteristics in terms of intensity, brilliance, spectral range, time structure and now also coherence pushed many experimental techniques to previously un-reachable limits, enabling the performance of experiments unbelievable only few years ago. The book gives an up-to-date overview of synchrotron radiation research today with a view to the future, starting from its generation and sources, its interaction with matter, illustrating the main experimental technique employed and provides an overview of the main fields of research in which new and innovative results are obtained. The book is addressed to PhD students and young researchers to provide both an introductory and a rather deep knowledge of the field. It will also be helpful to experienced researcher who want to approach the field in a professional way.

  9. National synchrotron light source basic design and project status

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1981-01-01

    A summary description and the basic design parameters of the National Synchrotron Light Source, a facility for the generation of intense synchrotron radiation in the vuv and x-ray range is presented, the parameters of the sources are given, the presently planned facility beam lines are tabulated and the status of the project is indicated

  10. Simulations of X-ray synchrotron beams using the EGS4 code system in medical applications

    International Nuclear Information System (INIS)

    Orion, I.; Henn, A.; Sagi, I.; Dilmanian, F.A.; Pena, L.; Rosenfeld, A.B.

    2001-01-01

    X-ray synchrotron beams are commonly used in biological and medical research. The availability of intense, polarized low-energy photons from the synchrotron beams provides a high dose transfer to biological materials. The EGS4 code system, which includes the photoelectron angular distribution, electron motion inside a magnetic field, and the LSCAT package, found to be the appropriate Monte Carlo code for synchrotron-produced X-ray simulations. The LSCAT package was developed in 1995 for the EGS4 code to contain the routines to simulate the linear polarization, the bound Compton, and the incoherent scattering functions. Three medical applications were demonstrated using the EGS4 Monte Carlo code as a proficient simulation code system for the synchrotron low-energy X-ray source. (orig.)

  11. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chuyu [Peking Univ., Beijing (China)

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measure photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the

  12. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    International Nuclear Information System (INIS)

    Liu, Chuyu

    2012-01-01

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as 'organs of sense' or 'eyes of the accelerator.' Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measure photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the

  13. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy?

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, K.; Adams, F. [Universitaire Instelling Antwerpen, Antwerp (Belgium). Dept. of Chemistry; Rivers, M.L.; Jones, K.W. [Brookhaven National Lab., Upton, NY (United States)

    1992-10-01

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ({mu}-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  14. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, K.; Adams, F. (Universitaire Instelling Antwerpen, Antwerp (Belgium). Dept. of Chemistry); Rivers, M.L.; Jones, K.W. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ([mu]-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  15. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy?

    International Nuclear Information System (INIS)

    Janssens, K.; Adams, F.

    1992-01-01

    Synchrotron Radiation induced X-ray micro Fluorescence analysis (μ-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed

  16. Stability of high-brilliance synchrotron radiation sources

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1989-12-01

    This paper discusses the following topics: characteristics of synchrotron radiation sources; stability of the orbits; orbit control; nonlinear dynamic stability; and coherent stability and control. 1 ref., 5 figs., 1 tab

  17. Thresholds of a bunched beam longitudinal instability in proton synchrotrons

    International Nuclear Information System (INIS)

    Balbekov, V.I.; Ivanov, S.V.

    1986-01-01

    The formulas and graphs for calculating instability thresholds arising during the interaction of a bunched proton beam with narrow-band resonator are given. The instabilities of three types with oscillations of a definite multipolarity, oscillations of some bound multipoles and with microwave oscillations arising as a result of addition of a great number of multipoles. The analysis of the above data shows that the increase of oscillations nonlinearity is accompanied by the growth of instability threshold only in the zone of separated and weakly bound multipoles. The increase of spread of synchrotron frequencies reduces the zone separated multipoles owing to which the microwave bunch instability can be caused by more and more low-frequency resonators. In the microwave zone practically there is no stabilizing effect of synchrotron frequencies spread. The instability threshold of the bunched beam now - where exceeds the microwave level

  18. Recent Progress of the Synchrotron Radiation Calculation Code SPECTRA

    International Nuclear Information System (INIS)

    Tanaka, T.; Kitamura, H.

    2007-01-01

    SPECTRA is a computer software to calculate optical properties of synchrotron radiation (SR) emitted by electrons passing through magnetic devices such as bending magnets, wigglers and undulators. It has been used to design various devices in the SR beamline, such as high heat-load components in the front-end section and optical elements in the optics hutch. In addition, the electron beam quality can be estimated by comparison between the measured and calculated properties of SR. Since the first announcement, numerous improvements have been made to SPECTRA to achieve less computation time with higher numerical accuracy. In addition, a number of functions have been added to follow the user's demand. In this paper, recent progress of SPECTRA is presented and details of the new functions are explained together with several examples

  19. Terahertz Coherent Synchrotron Radiation in the MIT-Bates South Hall Ring

    CERN Document Server

    Wang, Fuhua; Cheever, Dan; Farkhondeh, Manouchehr; Franklin, Wilbur; Graves, William; Ihloff, Ernie; Podobedov, Boris; Sannibale, Fernando; Tschalär, C; Wang, Defa; Wang, Dong; Zwart, Townsend; van der Laan, Jan

    2005-01-01

    We investigate the terahertz coherent synchrotron radiation (CSR) potential of the South Hall Ring (SHR) at MIT-Bates Linear Accelerator Center. The SHR is equipped with a unique single cavity, 2.856 GHz RF system. The high RF frequency is advantageous for producing short bunch length and for having higher bunch current threshold to generate stable CSR. Combining with other techniques such as external pulse stacking cavity, femtosecond laser slicing, the potential for generating ultra-stable, high power, broadband terahertz CSR is very attractive. Beam dynamics issues related to short bunch length operation, and may associated with the high frequency RF system, such as multi-bunch instability are concerned. They could affect bunch length, bunch intensity and beam stability. The SHR is ideal for experimental exploration of these problems. Results of initial test of low momentum compaction lattice and bunch length measurements are presented and compared to expectations.

  20. A multiple CCD X-ray detector and its first operation with synchrotron radiation X-ray beam

    CERN Document Server

    Suzuki, M; Kumasaka, T; Sato, K; Toyokawa, H; Aries, I F; Jerram, P A; Ueki, T

    1999-01-01

    A 4x4 array structure of 16 identical CCD X-ray detector modules, called the multiple CCD X-ray detector system (MCCDX), was submitted to its first synchrotron radiation experiment at the protein crystallography station of the RIKEN beamline (BL45XU) at the SPring-8 facility. An X-ray diffraction pattern of cholesterol powder was specifically taken in order to investigate the overall system performance.

  1. Synchrotron X-radiation research

    International Nuclear Information System (INIS)

    Kabler, M.N.; Nagel, D.J.; Skelton, E.F.

    1990-05-01

    The Naval Research Laboratory (NRL) has been involved in the exploitation of X rays since the 1920s. The report gives a brief description of the generation and characteristics of synchrotron radiation, and review highlights of current research. Research examples include soft-X-ray optics, semiconductor surface passivation, surface electron dynamics, space-charge dynamics on silicon, photochemistry on GaAs, local atomic structure, crystal structures from X-ray diffraction. The report then discusses emerging research opportunities

  2. Formation of a single-bunch beam in the booster synchrotron at SPring-8

    CERN Document Server

    Suzuki, H; Ego, H; Hara, M; Hosoda, N; Kawashima, Y; Ohashi, Y; Ohshima, T; Tani, N; Yabashi, M; Yonehara, H

    2000-01-01

    In order to fill a radio frequency (rf) bucket with an electron beam in the storage ring at SPring-8, an rf knockout system was installed in the booster synchrotron. With this system, the energy of the electron beam injected from the linac was increased from 1 to 8 GeV. The time width of multi-bunch beams from the linac operated at 2856 MHz rf can be selected as 1 or 40 ns. The beam injected from the linac is distributed in rf buckets of the booster synchrotron operated at 508.58 MHz rf. To fill a single rf bucket with a beam, the rf knockout system is operated at a minimum beam energy of 1 GeV. By using the rf knockout system, the electron beam is effectively kept in a single rf bucket. Then the beam is injected into a targeted rf bucket in the storage ring with a precise timing system. The beam intensity of satellite rf buckets in the storage ring was measured with a photon counting method and determined to be 10 sup - sup 6 less than that of the main rf bucket. In this paper, we describe the rf knockout sy...

  3. Ideas for future synchrotron light sources

    International Nuclear Information System (INIS)

    Jackson, A.; Hassenzahl, W.; Meddahi, M.

    1992-03-01

    Synchrotron light sources have advanced in the past two-to-three decades through three ''generations,'' from irritating parasitic sources on high-energy physics accelerators to dedicated electron and position storage rings of unprecedented low emittance, utilizing undulator and wiggler magnets. The evolution through these three generations followed a predicable, science-driven, course towards brighter beams of VUV- and x-radiation. The requirements of future light sources is not so clear. The limit on how emittance has certainly not been reached, and diffraction-limited sources at shorter wavelengths would be the natural progression from previous generations. However, scientists are now looking at other radiation characteristics that might better serve their needs, for example, more coherent power, fast switching polarization, ultra-short (sub-picosecond) time structure, and synchronized beams for pump-probe experiments. This paper discusses some current ideas that might drive the fourth-generation synchrotron light source

  4. Possibility of coherent hard x-ray production by pumping with synchrotron radiation and low energy photons. Period covered: November 17, 1976--August 16, 1977

    International Nuclear Information System (INIS)

    Csonka, P.L.

    1977-01-01

    Coherent x-rays in the keV range could be produced by pumping a suitable gas with synchrotron radiation in combination with low energy photon beams in the presence of appropriately arranged mirrors. With a wiggler magnet placed in the low beta section of the PEP machine to be constructed at Stanford, 1020 eV coherent photons could be produced from Ne. Appropriate synchrotron radiation will produce a highly ionized cool gas. Low energy photons modify the outer electron structure of ions to enhance lasing: they modify the lifetime of the inverted state, counterbalance unwanted collisionally induced transitions, reduce Stark line broadening

  5. Efficiency of Synchrotron Radiation from Rotation-powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kisaka, Shota [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa, 252-5258 (Japan); Tanaka, Shuta J., E-mail: kisaka@phys.aoyama.ac.jp, E-mail: sjtanaka@center.konan-u.ac.jp [Department of Physics, Konan University, Kobe, Hyogo, 658-8501 (Japan)

    2017-03-01

    Synchrotron radiation is widely considered to be the origin of the pulsed non-thermal emissions from rotation-powered pulsars in optical and X-ray bands. In this paper, we study the synchrotron radiation emitted by the created electron and positron pairs in the pulsar magnetosphere to constrain the energy conversion efficiency from the Poynting flux to the particle energy flux. We model two pair creation processes, two-photon collision, which efficiently works in young γ -ray pulsars (≲10{sup 6} year), and magnetic pair creation, which is the dominant process to supply pairs in old pulsars (≳10{sup 6} year). Using the analytical model, we derive the maximum synchrotron luminosity as a function of the energy conversion efficiency. From the comparison with observations, we find that the energy conversion efficiency to the accelerated particles should be an order of unity in the magnetosphere, even though we make a number of the optimistic assumptions to enlarge the synchrotron luminosity. In order to explain the luminosity of the non-thermal X-ray/optical emission from pulsars with low spin-down luminosity L {sub sd} ≲ 10{sup 34} erg s{sup −1}, non-dipole magnetic field components should be dominant at the emission region. For the γ -ray pulsars with L {sub sd} ≲ 10{sup 35} erg s{sup −1}, observed γ -ray to X-ray and optical flux ratios are much higher than the flux ratio between curvature and the synchrotron radiations. We discuss some possibilities such as the coexistence of multiple accelerators in the magnetosphere as suggested from the recent numerical simulation results. The obtained maximum luminosity would be useful to select observational targets in X-ray and optical bands.

  6. High precision mirror alignment mechanism for use in synchrotron radiation beamlines

    International Nuclear Information System (INIS)

    Verma, Adu; Srivastava, P.K.; Das, Suraj; Nookaraju, Mogali

    2009-01-01

    The performance of a synchrotron radiation beamline is highly depends on parameters, crucially on the manufacturing accuracies of the optical elements and very good alignment of optical elements in the beam path. To develop a synchrotron beamline the misalignment effects have to be estimated and the mechanical components that hold optical elements have to be designed and developed within the specified tolerance limits. The translational inaccuracies result in shifting the image spot, which affect the flux throughput. The misorientation errors i.e. the rotation of optical elements about their mean position affects the image quality. The horizontal misorientation i.e. the rotation of an optical element about an axis passing through its centre and perpendicular to the plane containing the mirror has the most sever effect on the spectral resolution of the beamline, because of an increase in the dispersive spot size at the image plane. The design development and testing of a high precision mirror alignment mechanism is reported in this abstract. Though this mirror alignment mechanism is developed for the X-ray diffraction beamline on synchrotron radiation source Indus-2, 2.5 GeV, 300 mA, the design is general purpose and can be adapted for any other synchrotron facility or a similar ultra high vacuum environment. The mirror alignment mechanism is based on a constrained kinematic chain which provides the angular motions about three co-ordinate axes in the range of 0 to ±1° with the backlash free resolution of 1 arc second. The linear motions in three orthogonal directions are performed by other kinematic mounts in the range of 0 to ± 10 mm with a fine adjustment of 10 μm. The motions are transferred from air to ultra high vacuum through bellows. The ultra high vacuum chamber has been designed, fabricated and tested as per the ASME code. The rotational motions of the mirror alignment mechanism has been tested using a laser interferometer. (author)

  7. Experimental investigations of synchrotron radiation at the onset of the quantum regime

    DEFF Research Database (Denmark)

    Andersen, Kristoffer; Knudsen, Helge; Uggerhøj, Ulrik Ingerslev

    2012-01-01

    The classical description of synchrotron radiation fails at large Lorentz factors, $\\gamma$, for relativistic electrons crossing strong transverse magnetic fields $B$. In the rest frame of the electron this field is comparable to the so-called critical field $B_0 = 4.414\\cdot10^9$ T. For $\\chi = ......-field quantum electrodynamics, the experimental results are also relevant for the design of future linear colliders where beamstrahlung - a closely related process - may limit the achievable luminosity....... = \\gamma B/B_0 \\simeq 1$ quantum corrections are essential for the description of synchrotron radiation to conserve energy. With electrons of energies 10-150 GeV penetrating a germanium single crystal along the $\\langle110\\rangle$ axis, we have experimentally investigated the transition from the regime...... where classical synchrotron radiation is an adequate description, to the regime where the emission drastically changes character; not only in magnitude, but also in spectral shape. The spectrum can only be described by quantum synchrotron radiation formulas. Apart from being a test of strong...

  8. Experimental investigations of synchrotron radiation at the onset of the quantum regime

    DEFF Research Database (Denmark)

    Andersen, Kristoffer; Uggerhøj, Ulrik Ingerslev

    The classical description of synchrotron radiation fails at large Lorentz factors for relativistic electrons crossing strong transverse magnetic fields. In the rest frame of the electron this field is comparable to the so-called critical field of 4.414*109 T. When the Lorentz factor times the mag......-field quantum electrodynamics, the experimental results are also relevant for the design of future linear colliders where beamstrahlung - a closely related process - may limit the achievable luminosity....... the magnetic field is comparable to the critical field, quantum corrections are essential for the description of synchrotron radiation to conserve energy. With electrons of energies 10-150 GeV penetrating a germanium single crystal along the axis, we have experimentally investigated the transition from...... the regime where classical synchrotron radiation is an adequate description, to the regime where the emission drastically changes character; not only in magnitude, but also in spectral shape. The spectrum can only be described by quantum synchrotron radiation formulas. Apart from being a test of strong...

  9. High energy synchrotron radiation. A new probe for condensed matter research

    International Nuclear Information System (INIS)

    Schneider, J.R.; Bouchard, R.; Brueckel, T.; Lippert, M.; Neumann, H.B.; Poulsen, H.F.; Ruett, U.; Schmidt, T.; Zimmermann, M. von

    1994-01-01

    The absorption of 150 keV synchrotron radiation in matter is weak and, as normally done with neutrons, bulk properties are studied in large samples. However, the k-space resolution obtained with a Triple Crystal Diffractometer (TCD) for high energy synchrotron radiation is about one order of magnitude better than in high resolution neutron diffraction. The technique has been applied to measure the structure factor S(Q) of amorphous solids up to momentum transfers of the order of 32 A -1 , to study the intermediate range Ortho-II ordering in large, high quality YBa 2 Cu 3 O 6.5 single crystals and for investigations of the defect scattering from annealed Czochralski grown silicon crystals. Magnetic superlattice reflections have been measured in MnF 2 demonstrating the potential of the technique for high resolution studies of ground state bulk antiferromagnetism. Recently the question of two length scales in the critical scattering at the 100 K phase transition in SrTiO 3 was studied. At the PETRA storage ring, which serves as an accumulator for the HERA electron-proton-ring at DESY and which can be operated up to electron energies of 12 GeV, an undulator beam line is currently under construction and should be available in summer 1995. It opens up exciting new research opportunities for photon energies from about 20 to 150 keV. (orig.)

  10. HSC5: synchrotron radiation and neutrons for cultural heritage studies

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Anne [Institut Neel - CNRS, 38 - Grenoble (France); Artioli, G. [Padova Univ. (Italy); Bleuet, P.; Cotte, M.; Tafforeau, P.; Susini, J. [European Synchrotron Radiation Facility, 38 - Grenoble (France); Dumas, P.; Somogyl, A. [SOLEIL Synchrotron, 91 - Gif sur Yvette (France); Cotte, M. [Centre de Recherche et de Restauration des Musees de France, UMR171, 75 - Paris (France)]|[European Synchrotron Radiation Facility, 38 - Grenoble (France); Kockelmann, W. [Science and Technology Facilities Council, Rutherford Appleton Lab. (United Kingdom); Kolar, J. [Ljubljana Univ., Morana RTD, Slovenia, Faculty of Chemistry and Chemical Technology (Slovenia); Areon, I. [Nova Gorica Univ. (Slovenia); Meden, A.; Strlie, M. [Ljubljana Univ., Faculty of Chemistry and Chemical Technology (Slovenia); Pantos, M. [Daresbury Laboratory, Warrington (United Kingdom); Vendrell, M. [Barcelona Univ., dept. of Crystallography and Mineralogy (Spain); Wess, T. [Cardiff Univ., School of Optometry and Institute of Vision (Ireland); Gunneweg, J. [Hebrew Univ., Jerusalem (Israel)

    2007-07-01

    Synchrotron and neutron sources offer recent and additional insight into the records of our cultural past. Over the last years, there has been an increasing demand for access to synchrotron radiation- and neutron-based techniques, and their applications in the fields of archaeological science and cultural heritage. The purpose of this Hercules Specialized Course is to give the participants an introduction to the basic principles of synchrotron radiation and neutron techniques (imaging, microscopy, diffraction, absorption and fluorescence, IR spectroscopy). The school provides cross-disciplinary examples illustrating the abilities of these techniques in a representative range of scientific cases concerning painting, archaeological artefacts, inks, pigments, fossils and the Dead Sea scrolls. This document gathers only the resumes of the lectures.

  11. HSC5: synchrotron radiation and neutrons for cultural heritage studies

    International Nuclear Information System (INIS)

    Michel, Anne; Artioli, G.; Bleuet, P.; Cotte, M.; Tafforeau, P.; Susini, J.; Dumas, P.; Somogyl, A.; Cotte, M.; Kockelmann, W.; Kolar, J.; Areon, I.; Meden, A.; Strlie, M.; Pantos, M.; Vendrell, M.; Wess, T.; Gunneweg, J.

    2007-01-01

    Synchrotron and neutron sources offer recent and additional insight into the records of our cultural past. Over the last years, there has been an increasing demand for access to synchrotron radiation- and neutron-based techniques, and their applications in the fields of archaeological science and cultural heritage. The purpose of this Hercules Specialized Course is to give the participants an introduction to the basic principles of synchrotron radiation and neutron techniques (imaging, microscopy, diffraction, absorption and fluorescence, IR spectroscopy). The school provides cross-disciplinary examples illustrating the abilities of these techniques in a representative range of scientific cases concerning painting, archaeological artefacts, inks, pigments, fossils and the Dead Sea scrolls. This document gathers only the resumes of the lectures

  12. Synchrotron light sources: The search for quantum chaos

    International Nuclear Information System (INIS)

    Schlachter, Fred

    2001-01-01

    A storage ring is a specialized synchrotron in which a stored beam of relativistic electrons produces radiation in the vuv and x-ray regions of the spectrum. High-brightness radiation is used at the ALS to study doubly excited autoionizing states of the helium atom in the search for quantum chaos

  13. Advances in beam position monitoring methods at GSI synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rahul; Reiter, Andreas; Forck, Peter; Kowina, Piotr; Lang, Kevin; Miedzik, Piotr [GSI, Darmstadt (Germany)

    2016-07-01

    At the GSI synchrotron facilities, capacitive beam pick-up signals for position evaluation are immediately digitized within the acquisition electronics due to availability of reliable, fast and high resolution ADCs. The signal processing aspects are therefore fully dealt with in the digital domain. Novel digital techniques for asynchronous and synchronous (bunch-by-bunch) beam position estimation have been developed at GSI SIS-18 and CRYRING as part of FAIR development program. This contribution will highlight the advancements and its impact on the operational ease and high availability of the BPM systems.

  14. Longitudinal tracking studies for a high intensity proton synchrotron

    International Nuclear Information System (INIS)

    Lessner, E.; Cho, Y.; Harkay, K.; Symon, K.

    1995-01-01

    Results from longitudinal tracking studies for a high intensity proton synchrotron designed for a 1-MW spallation source are presented. The machine delivers a proton beam of 0.5 mA time-averaged current at a repetition rate of 30 Hz. The accelerator is designed to have radiation levels that allow hands-on-maintenance. However, the high beam intensity causes strong space charge fields whose effects may lead to particle loss and longitudinal instabilities. The space charge fields modify the particle distribution, distort the stable bucket area and reduce the rf linear restoring force. Tracking simulations were conducted to analyze the space charge effects on the dynamics of the injection and acceleration processes and means to circumvent them. The tracking studies led to the establishment of the injected beam parameters and rf voltage program that minimized beam loss and longitudinal instabilities. Similar studies for a 10-GeV synchrotron that uses the 2-GeV synchrotron as its injector are also discussed

  15. Synchrotron radiation. 4. Analyses of biological samples using synchrotron radiation. 3. Research on radiation damage to DNA using synchrotron radiation

    International Nuclear Information System (INIS)

    Takakura, Kaoru

    1998-01-01

    This review described how the synchrotron radiation (SR) is used to solve problems unknown hitherto in radiation biology. Historically, the target substance of UV light in bacterial death was suggested to be nucleic acid in 1930. Researches on the radiation damage to DNA were begun at around 1960 and have mainly used UV light, X-ray and γray. Soft X-ray and vacuum UV whose energy covering from several eV to scores of keV have not been used since UV and X-ray lack the energy of this range. This is one of reasons why detailed process leading to radiation-induced death, carcinogenicity and mutation has not been known hitherto. RS possesses wide range of energy, i.e., from UV to hard X-ray, of high intensity, which is helpful for studying the unknown problems. The RS studies were begun in nineteen-seventies. Those include the action spectrum studies and atomic target studies. In the former, the course of the effect, e.g., the mechanism of DNA double strand breakage, can be elucidated. In the latter, photon of known energy can be irradiated to the specified atom like phosphorus in DNA which elucidating the precise physicochemical process of the breakage. Use of RS in these studies is thought still meaningful in future. (K.H.) 62 refs

  16. Nuclear Bragg diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Rueffer, R.; Gerdau, E.; Grote, M.; Hollatz, R.; Roehlsberger, R.; Rueter, H.D.; Sturhahn, W.

    1990-01-01

    Nuclear Bragg diffraction with synchrotron radiation as source will become a powerful new X-ray source in the A-region. This source exceeds by now the brilliance of conventional Moessbauer sources giving hyperfine spectroscopy further momentum. As examples applications to yttrium iron garnet (YIG) and iron borate will be discussed. (author)

  17. Metals determination in wood treated by synchrotron radiation X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Vives, Ana Elisa Sirito de; Medeiros, Jean Gabriel da Silva; Tomazello Filho, Mario

    2005-01-01

    The paper describes the use of X-Ray fluorescence analysis for distribution and quantification of metals in the hardwood (Eucalyptus sp) and softwood (Pinus sp) treated with CCA (copper-chromium-arsenic). The sapwood/heartwood for hardwood sample and the growth-rings for softwood sample were analyzed. The samples were scanned in 320 mm steps in the vertical direction. For excitation of the elements a white beam synchrotron radiation of ∼ 320 x 180 mm was employed and for the X-ray detection a Si(Li) semiconductor detector. The elements K, Ca, Cr, Mn, Cu, Zn and As were determined. Fundamental parameters were used to quantify the elements concentrations. (author)

  18. Photo absorption studies of polyatomic molecules using Indus 1 synchrotron radiation source

    International Nuclear Information System (INIS)

    Saraswathy, P.; Sunanda, K.; Aparna, S.; Rajashekar, B.N.; Das, N.C.

    2004-06-01

    The Photophysics beamline is a medium resolution beamline designed for carrying out photo absorption and fluorescence experiments using the synchrotron radiation source Indus-l. This beamline has been commissioned recently and is in operation. An experimental setup for gas phase absorption studies has been developed and installed. Absorption spectra of a few polyatomicmolecules viz. benzene, ammonia, carbon disulphide and acetone were recorded in the wavelength region 1500 -3000 A. The results from this study indicated the satisfactory performance of the beam line as well as the experimental setup. Details of the first set of absorption experiments carried out are discussed in this report. (author)

  19. Metals determination in wood treated by synchrotron radiation X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vives, Ana Elisa Sirito de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Silva, Richard Maximiliano da Cunha [Centro de Energia Nuclear na Agricultura, Piracicaba, SP (Brazil)]. E-mail: maxcunha@cena.usp.br; Medeiros, Jean Gabriel da Silva; Tomazello Filho, Mario [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz]. E-mail: jeangm@esalq.usp.br; mtomazel@esalq.usp.br; Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mail: Silvana@fec.unicamp.br; Zucchi, Orgheda Luiza Araujo Domingues [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Barroso, Regina Cely [Universidade do Estado, Rio de Janeiro, RJ (Brazil)]. E-mail: cely@uerj.br

    2005-07-01

    The paper describes the use of X-Ray fluorescence analysis for distribution and quantification of metals in the hardwood (Eucalyptus sp) and softwood (Pinus sp) treated with CCA (copper-chromium-arsenic). The sapwood/heartwood for hardwood sample and the growth-rings for softwood sample were analyzed. The samples were scanned in 320 mm steps in the vertical direction. For excitation of the elements a white beam synchrotron radiation of {approx} 320 x 180 mm was employed and for the X-ray detection a Si(Li) semiconductor detector. The elements K, Ca, Cr, Mn, Cu, Zn and As were determined. Fundamental parameters were used to quantify the elements concentrations. (author)

  20. Time Resolved Detection of Infrared Synchrotron Radiation at DAΦNE

    International Nuclear Information System (INIS)

    Bocci, A.; Marcelli, A.; Drago, A.; Guidi, M. Cestelli; Pace, E.; Piccinini, M.; Sali, D.; Morini, P.; Piotrowski, J.

    2007-01-01

    Synchrotron radiation is characterized by a very wide spectral emission from IR to X-ray wavelengths and a pulsed structure that is a function of the source time structure. In a storage ring, the typical temporal distance between two bunches, whose duration is a few hundreds of picoseconds, is on the nanosecond scale. Therefore, synchrotron radiation sources are a very powerful tools to perform time-resolved experiments that however need extremely fast detectors. Uncooled IR devices optimized for the mid-IR range with sub-nanosecond response time, are now available and can be used for fast detection of intense IR sources such as synchrotron radiation storage rings. We present here different measurements of the pulsed synchrotron radiation emission at DAΦNE (Double Annular Φ-factory for Nice Experiments), the collider of the Laboratori Nazionali of Frascati (LNF) of the Istituto Nazionale di Fisica Nucleare (INFN), performed with very fast uncooled infrared detectors with a time resolution of a few hundreds of picoseconds. We resolved the emission time structure of the electron bunches of the DAΦNE collider when it works in a normal condition for high energy physics experiments with both photovoltaic and photoconductive detectors. Such a technology should pave the way to new diagnostic methods in storage rings, monitoring also source instabilities and bunch dynamics

  1. Construction and maintenance of SUNY facilities at the National Synchrotron Light Source. Progress report, 1 July 1982-1 July 1983

    International Nuclear Information System (INIS)

    Bigeleisen, J.

    1983-01-01

    Experimental facilities on the X-21 beam line at the National Synchrotron Light Source are described, and synchrotron radiation experiments performed by PRT members are discussed. The report includes a description of the beam line development stages and the experimental equipment

  2. X-radiation damage of hydrated lecithin membranes detected by real-time X-ray diffraction using wiggler-enhanced synchrotron radiation as the ionizing radiation source

    International Nuclear Information System (INIS)

    Caffrey, M.; Cornell Univ., Ithaca, NY

    1984-01-01

    Radiation damage of hydrated lecithin membranes brought about by exposure to wiggler-derived synchrotron radiation at 8.3 keV (1.5 A) is reported. Considerable damage was observed with exposures under 1 h at an incident flux density of 3 x 10 10 photons s -1 mm -2 , corresponding to a cumulative radiation dose of <= 10 MRad. Damage was so dramatic as to be initially observed while making real-time X-ray diffraction measurements on the sample. The damaging effects of 8.3 keV X-rays on dispersions of dipalmitoyllecithin and lecithin derived from hen egg yolk are as follows: (1) marked changes were noted in the X-ray diffraction behaviour, indicating disruption of membrane stacking. (2) Chemical breakdown of lecithin was observed. (3) The X-ray beam visibly damaged the sample and changed the appearance of the lipid dispersion, when viewed under the light microscope. Considering the importance of X-ray diffraction as a structural probe and the anticipated use of synchrotron radiation in studies involving membranes, the problem of radiation damage must be duly recognized. Furthermore, since dipalmitoyllecithin, the major lipid used in the present study, is a relatively stable compound, it is not unreasonable to expect that X-ray damage may be a problem with other less stable biological and non-biological materials. These results serve to emphasize that whenever a high intensity X-ray source is used, radiation damage can be a problem and that the sensitivity of the sample must always be evaluated under the conditions of measurement. (orig.)

  3. Position monitor of SR beam on XAFS experimental station in BSRF

    International Nuclear Information System (INIS)

    Chen Xianneng; Xie Yaning; Hu Tiandou; Jin Yalan; Huang Daxian

    1995-01-01

    A monitor of density and position of SR (Synchrotron Radiation) beam is built on XAFS (X-ray Absorption Fine Structure) experimental station in BSRF (Beijing Synchrotron Radiation Facility). It is composed of the beam slit and its drivers, weak current amplifiers, computing amplifier for coordinate of the beam position and display with RS-232 interface. The equipment can be used for other measurement fields related with current and voltage

  4. Time-resolved materials science opportunities using synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by ∼tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities

  5. Application of synchrotron radiation for elemental microanalysis of human central nervous system tissue

    Energy Technology Data Exchange (ETDEWEB)

    Szczerbowska-Boruchowska, M.; Lankosz, M.; Ostachowicz, J. [Mining University, Dept. of Radipmetry, Faculty of Physics and Nuclear Techniques, Krakow (Poland); Adamek, D.; Krygowska-Wajs, A.; Tomik, B.; Szczudlik, A. [Jagiellonian University, Institute of Neurology, Collegium Medicum, Krakow (Poland); Simionovici, A.; Bohic, S. [European Synchrotron Radiation Facility ESRF, 38 - Grenoble (France)

    2002-08-01

    The pathogenesis of two neuro-degenerative diseases i.e, Parkinson's Disease (PD) and amyotrophic lateral sclerosis (ALS) are still not known. It is supposed that disturbance of metal ions homeostasis may promote degeneration and atrophy of neurons. As a preliminary study, the quantitative and topographic elemental analysis of selected parts of human brain and spinal cord was performed using synchrotron microbeam-X ray fluorescence ({mu}-SXRF) technique. The samples were taken during the autopsy from patients with PD, ALS and from patients died due to non-neurological conditions events. X-ray fluorescence imaging showed that increased concentration of selected elements are observed in neurons perikaryal parts in compare with surrounding area. Moreover, comparable analysis showed significant differences in accumulation of selected elements between the pathological and control case. The investigations indicate that micro-beam of synchrotron radiation can be satisfactory applied for analysis of central nervous system tissue providing useful information about distribution and contents of elements at the single cell level. (authors)

  6. Advanced development of catalysts by using the high-brilliance synchrotron radiation in SPring-8

    International Nuclear Information System (INIS)

    2006-10-01

    The advanced development of catalysts by using the high-brilliance synchrotron radiation in SPring-8 is described: (1) the industrial use of SPring-8, (2) the analytical methods of catalyst using SPring-8 (XAFS, powder X-ray diffraction, thin film X-ray scattering, X-ray imaging, infrared analysis, X-ray fluorescence analysis, and photoelectron spectroscopy etc.), (3) the history of synchrotron radiation and catalyst investigations, (4) the new advanced measuring methods of catalyst using synchrotron radiation (various X-ray spectroscopic methods, and application of XAFS to highly-disperse systems of catalyst), and (5) the new advanced development of catalysts using synchrotron radiation and its applications (motor-car catalysts, light catalysts, fuel cells, nanotechnology, and trace amounts of catalyst in wastes). (M.H.)

  7. Feasibility study of a periodic arc compressor in the presence of coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Di Mitri, S.

    2016-01-01

    The advent of short electron bunches in high brightness linear accelerators has raised the awareness of the accelerator community to the degradation of the beam transverse emittance by coherent synchrotron radiation (CSR) emitted in magnetic bunch length compressors, transfer lines and turnaround arcs. Beam optics control has been proposed to mitigate that CSR effect. In this article, we enlarge on the existing literature by reviewing the validity of the linear optics approach in a periodic, achromatic arc compressor. We then study the dependence of the CSR-perturbed emittance to beam optics, mean energy, and bunch charge. The analytical findings are compared with particle tracking results. Practical considerations on CSR-induced energy loss and nonlinear particle dynamics are included. As a result, we identify the range of parameters that allows feasibility of an arc compressor for driving, for example, a free electron laser or a linear collider.

  8. Feasibility study of a periodic arc compressor in the presence of coherent synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Di Mitri, S.

    2016-01-11

    The advent of short electron bunches in high brightness linear accelerators has raised the awareness of the accelerator community to the degradation of the beam transverse emittance by coherent synchrotron radiation (CSR) emitted in magnetic bunch length compressors, transfer lines and turnaround arcs. Beam optics control has been proposed to mitigate that CSR effect. In this article, we enlarge on the existing literature by reviewing the validity of the linear optics approach in a periodic, achromatic arc compressor. We then study the dependence of the CSR-perturbed emittance to beam optics, mean energy, and bunch charge. The analytical findings are compared with particle tracking results. Practical considerations on CSR-induced energy loss and nonlinear particle dynamics are included. As a result, we identify the range of parameters that allows feasibility of an arc compressor for driving, for example, a free electron laser or a linear collider.

  9. Surface modification of fluorocarbon polymers by synchrotron radiation

    CERN Document Server

    Kanda, K; Matsui, S; Ideta, T; Ishigaki, H

    2003-01-01

    The surface modification of a poly (tetrafluoroethylene) sheet was carried out by synchrotron radiation in the soft X-ray region. The poly (tetrafluoroethylene) substrate was exposed to synchrotron radiation while varying the substrate temperature from room temperature to 200degC. The contact angle of the modified surfaces with a water drop decreased from 96deg to 72deg by the irradiation at room temperature, while the contact angle increased to 143deg by the irradiation at the substrate temperature of 200degC. Scanning electron microscopy suggested that this repellence was ascribable to the microstructure of the poly (tetrafluoroethylene) surface. We succeeded in controlling the wettability of the poly (tetrafluoroethylene) surface from hydrophobic to hydrophilic by irradiation of the soft X-ray light. (author)

  10. Compact synchrotron radiation source

    International Nuclear Information System (INIS)

    Liu, N.; Wang, T.; Tian, J.; Lin, Y.; Chen, S.; He, W.; Hu, Y.; Li, Q.

    1985-01-01

    A compact 800 MeV synchrotron radiation source is discussed. The storage ring has a circumference of 30.3 m, two 90 degree and four 45 degree bending magnet sections, two long straight sections and four short straight sections. The radius of the bending magnet is 2.224m. The critical wave length is 24A. The injector is a 15 Mev Microtron Electrons are accelerated from 15 Mev to 800 Mev by ramping the field of the ring. The expected stored current will be around 100 ma

  11. Synchrotron radiation XRF microprobe study of human bone tumor slice

    International Nuclear Information System (INIS)

    Huang Yuying; Zhao Limin; Wang Zhouguang; Shao Hanru; Li Guangcheng; Wu Yingrong; He Wei; Lu Jianxin; He Rongguo

    1999-01-01

    The experimental apparatus of X-ray fluorescence (XRF) microprobe analysis at Beijing Synchrotron Radiation Facility (BSRF) is described. Using the bovine liver as the standard reference, the minimum detection limit (MDL) of trace element was measured to determine the capability of biological sample analysis by synchrotron radiation XRF microprobe. The relative change of the content of the major or trace element in the normal and tumor part of human bone tissue slice was investigated. The experimental result relation to the clinical medicine was also discussed. (author)

  12. Absorption coefficient measurrement of monochromatized synchrotron radiation at 0.65 - 1.3 A interval for some biological objects

    International Nuclear Information System (INIS)

    Avakian, Ts.M.; Karabekov, I.P.; Martirossian, M.A.

    1977-01-01

    The results of the measurement of absorption coefficients for some biological objects such as pea (Pissum sativum), wheat (Triticum aestivum), tobacco (Nicotiana-tabacum-α) seeds, as well as the distilled water are presented. The measurement has been carried out on the Erevan Physical Institute Electron Accelerator synchrotron radiation beam. The good agreement of experimental and calculated data for water confirms the accuracy of the results related to other objects

  13. Handbook on synchrotron radiation, v.2

    CERN Document Server

    1987-01-01

    Volume 2 of this series concentrates on the use of synchrotron radiation which covers that region of the electromagnetic spectrum which extends from about 10eV to 3keV in photon energy and is essentially the region where the radiation is strongly absorbed by atmospheric gases. It therefore has to make extensive use of a high vacuum to transport the radiation to the workstation where the presence of hard X-rays can cause extensive damage to both the optics and the targets used in the experimental rigs. The topics chosen for this volume have been limited to the disciplines of physics and chemi

  14. Molecular environmental science and synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.E. Jr. [Stanford Univ., CA (United States)

    1995-12-31

    Molecular environmental science is a relatively new field but focuses on the chemical and physical forms of toxic and/or radioactive contaminants in soils, sediments, man-made waste forms, natural waters, and the atmosphere; their possible reactions with inorganic and organic compounds, plants, and organisms in the environment; and the molecular-level factors that control their toxicity, bioavailability, and transport. The chemical speciation of a contaminant is a major factor in determining its behavior in the environment, and synchrotron-based X-ray absorption fine structure (XAFS) spectroscopy is one of the spectroscopies of choice to quantitatively determine speciation of heavy metal contaminants in situ without selective extraction or other sample treatment. The use of high-flux insertion device beam lines at synchrotron sources and multi-element array detectors has permitted XAFS studies of metals such as Se and As in natural soils at concentration levels as low as 50 ppm. The X-ray absorption near edge structure of these metals is particularly useful in determining their oxidation state. Examples of such studies will be presented, and new insertion device beam lines under development at SSRL and the Advanced Photon Source for molecular environmental science applications will be discussed.

  15. Synchrotron-based multiple-beam FTIR chemical imaging of a multi-layered polymer in transmission and reflection: towards cultural heritage applications

    Science.gov (United States)

    Unger, Miriam; Mattson, Eric; Schmidt Patterson, Catherine; Alavi, Zahrasadet; Carson, David; Hirschmugl, Carol J.

    2013-04-01

    IRENI (infrared environmental imaging) is a recently commissioned Fourier transform infrared (FTIR) chemical imaging beamline at the Synchrotron Radiation Center in Madison, WI, USA. This novel beamline extracts 320 mrad of radiation, horizontally, from one bending magnet. The optical transport separates and recombines the beam into 12 parallel collimated beams to illuminate a commercial FTIR microspectrometer (Bruker Hyperion 3000) equipped with a focal plane array detector where single pixels in the detector image a projected sample area of either 0.54×0.54 μm2 or 2×2 μm2, depending in the measurement geometry. The 12 beams are partially overlapped and defocused, similar to wide-field microscopy, homogeneously illuminating a relatively large sample area compared to single-beam arrangements. Both transmission and reflection geometries are used to examine a model cross section from a layered polymer material. The compromises for sample preparation and measurement strategies are discussed, and the chemical composition and spatial definition of the layers are distinguished in chemical images generated from data sets. Deconvolution methods that may allow more detailed data analysis are also discussed.

  16. Research in atomic and applied physics using a 6-GeV synchrotron source

    International Nuclear Information System (INIS)

    Jones, K.W.

    1985-12-01

    The Division of Atomic and Applied Physics in the Department of Applied Science at Brookhaven National Laboratory conducts a broad program of research using ion beams and synchrotron radiation for experiments in atomic physics and nuclear analytical techniques and applications. Many of the experiments would benefit greatly from the use of high energy, high intensity photon beams from a 6-GeV synchrotron source. A survey of some of the specific scientific possibilities is presented

  17. Sensitivity of transient synchrotron radiation to tokamak plasma parameters

    International Nuclear Information System (INIS)

    Fisch, N.J.; Kritz, A.H.

    1988-12-01

    Synchrotron radiation from a hot plasma can inform on certain plasma parameters. The dependence on plasma parameters is particularly sensitive for the transient radiation response to a brief, deliberate, perturbation of hot plasma electrons. We investigate how such a radiation response can be used to diagnose a variety of plasma parameters in a tokamak. 18 refs., 13 figs

  18. A Model Describing Stable Coherent Synchrotron Radiation in Storage Rings

    International Nuclear Information System (INIS)

    Sannibale, F.

    2004-01-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission

  19. A model describing stable coherent synchrotron radiation in storage rings

    International Nuclear Information System (INIS)

    Sannibale, F.; Byrd, J.M.; Loftsdottir, A.; Venturini, M.; Abo-Bakr, M.; Feikes, J.; Holldack, K.; Kuske, P.; Wuestefeld, G.; Huebers, H.-W.; Warnock, R.

    2004-01-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission

  20. Basis of medical accelerator. Synchrotron

    International Nuclear Information System (INIS)

    Kawachi, Kiyomitsu

    2014-01-01

    On the synchrotron as a medical accelerator, this paper introduces the basic principle, basic techniques and the like. The accelerator, when synchrotron is adopted as an ion beam radiotherapy system, is the composite accelerator composed of ion sources, injector, and synchrotron. This paper introduces the overall structure of synchrotron, and conceptually explains the basic behavior of high-frequency waves and magnetic field of synchrotron, as well as the deflection electromagnet of medical synchrotron and the operation pattern of high-frequency acceleration system. The types of synchrotron can be classified to the function combination type and function separation type, and this paper introduces the features of each type and various types of synchrotrons. It also explains beam dynamics important for ensuring the stability of beams, with a focus on the coordinate system, vertical movement, and lateral movement. In addition, it explains the incidence and outgoing of beams that are important for properly operating the accelerator, with a focus on their techniques. (A.O.)

  1. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter.

    Science.gov (United States)

    Harty, P D; Lye, J E; Ramanathan, G; Butler, D J; Hall, C J; Stevenson, A W; Johnston, P N

    2014-05-01

    The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50 Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3.9%. The good agreement of

  2. Numerical Calculation of Coherent Synchrotron Radiation Effects Using TraFiC4

    International Nuclear Information System (INIS)

    Kabel, Andreas C.

    2000-01-01

    Coherent synchrotron radiation (CSR) occurs when short bunches travel on strongly bent trajectories. Its effects on high-quality beams can be severe and are well understood qualitatively. For quantitative results, however, one has to rely on numerical methods. There exist several simulation codes utilizing different approaches. The authors describe in some detail the code TraFiC 4 developed at DESY for design and analysis purposes, which approaches the problem from first principles and solves the equations of motion either perturbatively or self-consistently. They present some calculational results and comparison with experimental data. Also, they give examples of how the code can be used to design beamlines with minimal emittance growth due to CSR

  3. Report of preliminary investigations on the next-generation large-scale synchrotron radiation facility projects

    International Nuclear Information System (INIS)

    1990-01-01

    The Special Committee for Future Project of the Japanese Society for Synchrotron Radiation Research investigated the construction-projects of the large-scaled synchrotron radiation facilities which are presently in progress in Japan. As a result, the following both projects are considered the very valuable research-project which will carry the development of Japan's next-generation synchrotron radiation science: 1. the 8 GeV synchrotron radiation facilities (SPring-8) projected to be constructed by Japan Atomic Energy Research Institute and the Institute of Physical and Chemical Research under the sponsorship of Science Technology Agency at Harima Science Park City, Hyogo Pref., Japan. 2. The project to utilize the Tristan Main Ring (MR) of the National Laboratory for High Energy Physics as the radiation source. Both projects are unique in research theme and technological approach, and complemental each other. Therefore it has been concluded that both projects should be aided and ratified by the Society. (M.T.)

  4. Implementation of electron beam position measurement algorithm and embedded web server using MCS-51 microcontroller for Booster Synchrotron

    International Nuclear Information System (INIS)

    Shrivastava, B.B.; Chouhan, Manish; Puntambekar, T.A.; Tiwari, A.N.

    2015-01-01

    The Booster Synchrotron at RRCAT caters as Injector Machine for Indus-1 and Indus-2 with the repetition rate of 1Hz. In Booster Synchrotron, energy of electron bunches are increased from 20 MeV to 450 MeV (in ∼ 280 ms) and 550 MeV (in ∼ 340 ms ) for Indus-1 and Indus-2 respectively. An algorithm for microcontroller based beam position measurement system has been developed for the Booster Synchrotron to measure the fast changes in the beam position of electron bunches during energy ramping. In this paper, software implementation in microcontroller and its optimization to achieve beam position update rate of 1 kHz is discussed. (author)

  5. Partial coherence and imperfect optics at a synchrotron radiation source modeled by wavefront propagation

    Science.gov (United States)

    Laundy, David; Alcock, Simon G.; Alianelli, Lucia; Sutter, John P.; Sawhney, Kawal J. S.; Chubar, Oleg

    2014-09-01

    A full wave propagation of X-rays from source to sample at a storage ring beamline requires simulation of the electron beam source and optical elements in the beamline. The finite emittance source causes the appearance of partial coherence in the wave field. Consequently, the wavefront cannot be treated exactly with fully coherent wave propagation or fully incoherent ray tracing. We have used the wavefront code Synchrotron Radiation Workshop (SRW) to perform partially coherent wavefront propagation using a parallel computing cluster at the Diamond Light Source. Measured mirror profiles have been used to correct the wavefront for surface errors.

  6. Lung cancer and angiogenesis imaging using synchrotron radiation

    International Nuclear Information System (INIS)

    Liu Xiaoxia; Zhao Jun; Xu, Lisa X; Sun Jianqi; Gu Xiang; Liu Ping; Xiao Tiqiao

    2010-01-01

    Early detection of lung cancer is the key to a cure, but a difficult task using conventional x-ray imaging. In the present study, synchrotron radiation in-line phase-contrast imaging was used to study lung cancer. Lewis lung cancer and 4T1 breast tumor metastasis in the lung were imaged, and the differences were clearly shown in comparison to normal lung tissue. The effect of the object-detector distance and the energy level on the phase-contrast difference was investigated and found to be in good agreement with the theory of in-line phase-contrast imaging. Moreover, 3D image reconstruction of lung tumor angiogenesis was obtained for the first time using a contrast agent, demonstrating the feasibility of micro-angiography with synchrotron radiation for imaging tumor angiogenesis deep inside the body.

  7. Development of a scanning tunneling microscope combined with a synchrotron radiation light source

    International Nuclear Information System (INIS)

    Hasegawa, Yukio; Okuda, Taichi; Eguchi, Toyoaki; Matsushima, Takeshi; Harasawa, Ayumi; Akiyama, Kotone; Kinoshita, Toyohiko

    2005-01-01

    We have developed a scanning tunneling microscope (STM) combined with a synchrotron-radiation light source (SR-STM) aiming at elemental analysis in a spatial resolution of STM. Using SR-STM atomically resolved STM images under the irradiation and also X-ray adsorption spectra clearly showing an adsorption edge of a substrate were successfully obtained by detecting photo-emitted electrons with the STM tip. In order to focus the probing area of the photo-induced current, a glass-coated metal tip sharpened with focused ion beam was used as a probe. The present situation and prospects of the instrument are discussed in this review. (author)

  8. An assessment of research opportunities and the need for synchrotron radiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The workshop focused on six topics, all of which are areas of active research: (1) speciation, reactivity and mobility of contaminants in aqueous systems, (2) the role of surfaces and interfaces in molecular environmental science, (3) the role of solid phases in molecular environmental science, (4) molecular biological processes affecting speciation, reactivity, and mobility of contaminants in the environment, (5) molecular constraints on macroscopic- and field-scale processes, and (6) synchrotron radiation facilities and molecular environmental sciences. These topics span a range of important issues in molecular environmental science. They focus on the basic knowledge required for understanding contaminant transport and fate and for the development of science-based remediation and waste management technologies. Each topic was assigned to a working group charged with discussing recent research accomplishments, significant research opportunities, methods required for obtaining molecular-scale information on environmental contaminants and processes, and the value of synchrotron x-ray methods relative to other methods in providing this information. A special working group on synchrotron radiation facilities was convened to provide technical information about experimental facilities at the four DOE-supported synchrotron radiation sources in the US (NSLS, SSRL, AS and UPS) and synchrotron- based methods available for molecular environmental science research. Similar information on the NSF-funded Cornell High Energy synchrotron Source (CHESS) was obtained after the workshop was held.

  9. An assessment of research opportunities and the need for synchrotron radiation facilities

    International Nuclear Information System (INIS)

    1995-01-01

    The workshop focused on six topics, all of which are areas of active research: (1) speciation, reactivity and mobility of contaminants in aqueous systems, (2) the role of surfaces and interfaces in molecular environmental science, (3) the role of solid phases in molecular environmental science, (4) molecular biological processes affecting speciation, reactivity, and mobility of contaminants in the environment, (5) molecular constraints on macroscopic- and field-scale processes, and (6) synchrotron radiation facilities and molecular environmental sciences. These topics span a range of important issues in molecular environmental science. They focus on the basic knowledge required for understanding contaminant transport and fate and for the development of science-based remediation and waste management technologies. Each topic was assigned to a working group charged with discussing recent research accomplishments, significant research opportunities, methods required for obtaining molecular-scale information on environmental contaminants and processes, and the value of synchrotron x-ray methods relative to other methods in providing this information. A special working group on synchrotron radiation facilities was convened to provide technical information about experimental facilities at the four DOE-supported synchrotron radiation sources in the US (NSLS, SSRL, AS and UPS) and synchrotron- based methods available for molecular environmental science research. Similar information on the NSF-funded Cornell High Energy synchrotron Source (CHESS) was obtained after the workshop was held

  10. 3 GeV Booster Synchrotron Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Helmut

    2009-06-02

    Synchrotron light cna be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material science, biology, and medicine.

  11. Study of the initial processes of radiation effects using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobayashi, Katsumi

    1990-01-01

    Necessity for the research of production mechanisms of molecular damages in biological system and usefulness of monochromatic soft X-ray in these studies are described. Synchrotron radiation are introduced as a strong light source with continuous spectrum. Practically, it is the only light source in soft X-ray and vacuum UV region. Development of irradiation apparatus for radiation biology and recent results using various biological systems are reviewed. (author)

  12. Threedimensional microfabrication using synchrotron radiation

    International Nuclear Information System (INIS)

    Ehrfeld, W.

    1990-01-01

    For fabricating microstructures with extreme structural heights a technology has been developed which is based on deep-etch lithography and subsequent replication processes. A particularly high precision is achieved if the lithographic process is carried out by means of synchrotron radiation. Electroforming and molding processes are used for the replication of microstructures from a large variety of materials. The field of application comprises sensors, electrical and optical microconnectors, components for fluid technology, microfiltration systems and novel composite materials. (author)

  13. Dependence of effective spectrum width of synchrotron radiation on particle energy

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Institute of High Current Electronics, Tomsk (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); P.N. Lebedev Physical Institute, Moscow (Russian Federation); Levin, A.D. [University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Loginov, A.S.; Saprykin, A.D. [Tomsk State University, Department of Physics, Tomsk (Russian Federation)

    2017-05-15

    In the classical theory of synchrotron radiation, for the exact quantitative characterization of spectral properties, the concept of effective spectral width is introduced. In the first part of our work, published in EJPC 75 (2015), the effective spectral width as a function of the energy E of the radiating particle was obtained only in the ultra-relativistic approximation. In this article, which can be considered as a natural continuation of this work, a complete investigation is presented of the dependence of the effective width of the synchrotron radiation spectrum on energy for any values of E and for all the polarization components of the radiation. Numerical calculations were carried out for an effective width not exceeding 100 harmonics. (orig.)

  14. Specific chemical and structural damage to proteins produced by synchrotron radiation.

    Science.gov (United States)

    Weik, M; Ravelli, R B; Kryger, G; McSweeney, S; Raves, M L; Harel, M; Gros, P; Silman, I; Kroon, J; Sussman, J L

    2000-01-18

    Radiation damage is an inherent problem in x-ray crystallography. It usually is presumed to be nonspecific and manifested as a gradual decay in the overall quality of data obtained for a given crystal as data collection proceeds. Based on third-generation synchrotron x-ray data, collected at cryogenic temperatures, we show for the enzymes Torpedo californica acetylcholinesterase and hen egg white lysozyme that synchrotron radiation also can cause highly specific damage. Disulfide bridges break, and carboxyl groups of acidic residues lose their definition. Highly exposed carboxyls, and those in the active site of both enzymes, appear particularly susceptible. The catalytic triad residue, His-440, in acetylcholinesterase, also appears to be much more sensitive to radiation damage than other histidine residues. Our findings have direct practical implications for routine x-ray data collection at high-energy synchrotron sources. Furthermore, they provide a direct approach for studying the radiation chemistry of proteins and nucleic acids at a detailed, structural level and also may yield information concerning putative "weak links" in a given biological macromolecule, which may be of structural and functional significance.

  15. Gravitational perturbation theory and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, R A [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany). Inst. fuer Astrophysik

    1975-01-01

    This article presents methods and results for a gravitational perturbation theory which treats massless fields as linearized perturbations of an arbitrary gravitational vacuum background spacetime. The formalism is outlined for perturbations of type (22) spacetimes. As an application, high-frequency radiation emitted by particles moving approximately on relativistic circular geodesic orbits is computed. More precisely, the test particle assumption is made; throughout it is therefore assumed that the reaction of the radiation on the particle motion is negligible. In particular, these orbits are studied in the gravitational field of a spherically symmetric (Schwarzschild-) black hole as well as of a rotating (Kerr-) black hole. In this model, the outgoing radiation is highly focussed and of much higher fequency than the orbital frequency, i.e. one is dealing with 'gravitational synchrotron radiation'.

  16. Optical components and systems for synchrotron radiation: an introduction

    International Nuclear Information System (INIS)

    Howells, M.R.

    1981-01-01

    A brief description of the nature and origins of synchrotron radiation is given with special reference to its geometrical optical properties and the use of storage rings as light souces. The geographical distribution of SR sources in the world is reviewed and some discussion of the level of experimental activity is given. Estimates of future levels of experimental activity are also made both for existing storage rings and those planned for the future. Calculations of the approximate number of mirrors and gratings that will be required are offered. Some general considerations are outlined showing how synchrotron radiation optical systems couple to the light source and indicating which parameters need to be maximized for best overall performance

  17. Francois Garin: Pioneer work in catalysis through synchrotron radiation

    International Nuclear Information System (INIS)

    Bazin, Dominique

    2014-01-01

    Starting from the late seventies, the progressively increased availability of beamlines dedicated to X-ray absorption spectroscopy allowed the execution of experiments in chemistry. In this manuscript, I describe the contribution of Francois Garin at the frontier of heterogeneous catalysis and synchrotron radiation. Working at LURE as a scientific in charge of a beamline dedicated to X-ray absorption spectroscopy during almost twenty years and thus, having the opportunity to discuss with research groups working in heterogeneous catalysis in Europe as well as in the United States, it was quite easy to show that his work is clearly at the origin of current research in heterogeneous catalysis, not only in France, but in different synchrotron radiation centres. (authors)

  18. Design of kicker magnet and power supply unit for synchrotron beam injection

    International Nuclear Information System (INIS)

    Wang, Ju.

    1991-03-01

    To inject beams from the positron accumulator ring (PAR) into the synchrotron, a pulsed kicker magnet is used. The specifications of this kicker magnet and the power supply unit are listed and discussed in this report

  19. Vlasov treatment of coherent synchrotron radiation from arbitrary planar orbits

    International Nuclear Information System (INIS)

    Warnock, R.; Bassi, G.; Ellison, J.A.

    2006-01-01

    We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates which represent the vacuum chamber. Our goal is to follow the time evolution of the phase space distribution by solving the Vlasov-Maxwell equations in the time domain. This should provide simulations with lower numerical noise than the macro-particle method, and allow one to study such issues as emittance degradation and microbunching due to CSR in bunch compressors. The fields excited by the bunch are computed in the laboratory frame from a new formula that leads to much simpler computations than usual methods. The nonlinear Vlasov equation, formulated in the interaction picture, is integrated in the beam frame by approximating the Perron-Frobenius operator. For application to a chicane bunch compressor we take steps to deal with energy chirp

  20. Total and available metal contents in sediments by synchrotron radiation total reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Moreira, Silvana; Sobrinho, Gilmar A.; Jesus, Edgar F.O. de; Lopes, Ricardo T.

    2002-01-01

    In this work the total and available contents of Al, Si, Cl, K, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Ba, Ce and Pb in sediments from river Atibaia were determined by Synchrotron Radiation Total Reflection X-Ray Fluorescence technique. The detection limits for K series varies from 200 ng.mL -1 for Al to 2 ng.mL -1 for Zn while for L series the value varies from 20 ng.mL -1 for Ba to 10 ng.mL -1 for Pb. The samples were submitted to two different processes, in order to obtain the total and biological available metal contents. The information about metal content is a important parameter for a correct evaluation about the hydrologic cycle in Piracicaba basin. All the measure were carried out at the National Synchrotron Light Laboratory, Campinas, SP, Brazil, using a white beam for excitation. (author)