WorldWideScience

Sample records for synchrotron medical research

  1. Synchrotron radiation applications in medical research

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1995-01-01

    The medical projects employing synchrotron radiation as discussed in this paper are, for the most part, still in their infancies and no one can predict the direction in which they will develop. Both the basic research and applied medical programs are sure to be advanced at the new facilities coming on line, especially the ESRF and Spring- 8. However, success is not guaranteed. There is a lot of competition from advances in conventional imaging with the development of digital angiography, computed tomography, functional magnetic resonance imaging and ultrasound. The synchrotron programs will have to provide significant advantages over these modalities in order to be accepted by the medical profession. Advances in image processing and potentially the development of compact sources will be required in order to move the synchrotron developed imaging technologies into the clinical world. In any event, it can be expected that the images produced by the synchrotron technologies will establish ''gold standards'' to be targeted by conventional modalities. A lot more work needs to be done in order to bring synchrotron radiation therapy and surgery to the level of human studies and, subsequently, to clinical applications

  2. Synchrotron radiation applications in medical research at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1997-08-01

    In the relatively short time that synchrotrons have been available to the scientific community, their characteristic beams of UV and X-ray radiation have been applied to virtually all areas of medical science which use ionizing radiation. The ability to tune intense monochromatic beams over wide energy ranges clearly differentiates these sources from standard clinical and research tools. The tunable spectrum, high intrinsic collimation of the beams, polarization and intensity of the beams make possible in-vitro and in-vivo research and therapeutic programs not otherwise possible. From the beginning of research operation at the National Synchrotron Light Source (NSLS), many programs have been carrying out basic biomedical research. At first, the research was limited to in-vitro programs such as the x-ray microscope, circular dichroism, XAFS, protein crystallography, micro-tomography and fluorescence analysis. Later, as the coronary angiography program made plans to move its experimental phase from SSRL to the NSLS, it became clear that other in-vivo projects could also be carried out at the synchrotron. The development of SMERF (Synchrotron Medical Research Facility) on beamline X17 became the home not only for angiography but also for the MECT (Multiple Energy Computed Tomography) project for cerebral and vascular imaging. The high energy spectrum on X17 is necessary for the MRT (Microplanar Radiation Therapy) experiments. Experience with these programs and the existence of the Medical Programs Group at the NSLS led to the development of a program in synchrotron based mammography. A recent adaptation of the angiography hardware has made it possible to image human lungs (bronchography). Fig. 1 schematically depicts the broad range of active programs at the NSLS

  3. Safety Analysis Report: X17B2 beamline Synchrotron Medical Research Facility

    International Nuclear Information System (INIS)

    Gmuer, N.F.; Thomlinson, W.

    1990-02-01

    This report contains a safety analysis for the X17B2 beamline synchrotron medical research facility. Health hazards, risk assessment and building systems are discussed. Reference is made to transvenous coronary angiography

  4. National synchrotron light source medical personnel protection interlock

    International Nuclear Information System (INIS)

    Buda, S.; Gmur, N.F.; Larson, R.; Thomlinson, W.

    1998-01-01

    This report is founded on reports written in April 1987 by Robert Hettel for angiography operations at the Stanford Synchrotron Research Laboratory (SSRL) and a subsequent report covering angiography operations at the National Synchrotron Light Source (NSLS); BNL Informal Report 47681, June 1992. The latter report has now been rewritten in order to accurately reflect the design and installation of a new medical safety system at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). Known originally as the Angiography Personnel Protection Interlock (APPI), this system has been modified to incorporate other medical imaging research programs on the same beamline and thus the name has been changed to the more generic Medical Personnel Protection Interlock (MPPI). This report will deal almost exclusively with the human imaging (angiography, bronchography, mammography) aspects of the safety system, but will briefly explain the modular aspects of the system allowing other medical experiments to be incorporated

  5. NATIONAL SYNCHROTRON LIGHT SOURCE MEDICAL PERSONNEL PROTECTION INTERLOCK

    Energy Technology Data Exchange (ETDEWEB)

    BUDA,S.; GMUR,N.F.; LARSON,R.; THOMLINSON,W.

    1998-11-03

    This report is founded on reports written in April 1987 by Robert Hettel for angiography operations at the Stanford Synchrotron Research Laboratory (SSRL) and a subsequent report covering angiography operations at the National Synchrotron Light Source (NSLS); BNL Informal Report 47681, June 1992. The latter report has now been rewritten in order to accurately reflect the design and installation of a new medical safety system at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). Known originally as the Angiography Personnel Protection Interlock (APPI), this system has been modified to incorporate other medical imaging research programs on the same beamline and thus the name has been changed to the more generic Medical Personnel Protection Interlock (MPPI). This report will deal almost exclusively with the human imaging (angiography, bronchography, mammography) aspects of the safety system, but will briefly explain the modular aspects of the system allowing other medical experiments to be incorporated.

  6. Basis of medical accelerator. Synchrotron

    International Nuclear Information System (INIS)

    Kawachi, Kiyomitsu

    2014-01-01

    On the synchrotron as a medical accelerator, this paper introduces the basic principle, basic techniques and the like. The accelerator, when synchrotron is adopted as an ion beam radiotherapy system, is the composite accelerator composed of ion sources, injector, and synchrotron. This paper introduces the overall structure of synchrotron, and conceptually explains the basic behavior of high-frequency waves and magnetic field of synchrotron, as well as the deflection electromagnet of medical synchrotron and the operation pattern of high-frequency acceleration system. The types of synchrotron can be classified to the function combination type and function separation type, and this paper introduces the features of each type and various types of synchrotrons. It also explains beam dynamics important for ensuring the stability of beams, with a focus on the coordinate system, vertical movement, and lateral movement. In addition, it explains the incidence and outgoing of beams that are important for properly operating the accelerator, with a focus on their techniques. (A.O.)

  7. Synchrotrons and their applications in medical imaging and therapy

    International Nuclear Information System (INIS)

    Lewis, R.

    2004-01-01

    Full text: Australasia's first synchrotron is being built on the campus of Monash University near Melbourne. Is it of any relevance to the medical imaging and radiation therapy communities? The answer is an unequivocal yes. Synchrotrons overcome many of the problems with conventional X-ray sources and as a result make it possible to demonstrate extraordinary advances in both X-ray imaging and indeed in radio-therapy. Synchrotron imaging offers us a window into what is possible and the results are spectacular. Specific examples include lung images that reveal alveolar structure and computed tomography of single cells. For therapy treatments are being pioneered that seem to be effective on high grade gliomas. An overview of the status of medical applications using synchrotrons will be given and the proposed Australian medical imaging and therapy facilities will be described and some of the proposed research highlighted. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  8. Medical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved

  9. Medical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1992-01-01

    Ever since the first diagnostic X-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become incrasingly important. Both in clinical medicine and basic research the use of X-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved. (orig.)

  10. National Synchrotron Light Source medical personnel protection interlock

    Energy Technology Data Exchange (ETDEWEB)

    Buda, S.; Gmuer, N.F.; Larson, R.; Thomlinson, W.

    1998-11-01

    This report is founded on reports written in April 1987 by Robert Hettel for angiography operations at the Stanford Synchrotron Research Laboratory (SSRL) and a subsequent report covering angiography operations at the National Synchrotron Light Source (NSLS); BNL Informal Report 47681, June 1992. The latter report has now been rewritten in order to accurately reflect the design and installation of a new medical safety system at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). Known originally as the Angiography Personnel Protection Interlock (APPI), this system has been modified to incorporate other medical imaging research programs on the same beamline and thus the name has been changed to the more generic Medical Personnel Protection Interlock (MPPI). This report will deal almost exclusively with the human imaging (angiography, bronchography, mammography) aspects of the safety system, but will briefly explain the modular aspects of the system allowing other medical experiments to be incorporated. This MPPI report is organized such that the level of detail changes from a general overview to detailed engineering drawings of the hardware system. The general overview is presented in Section 1.0, MPPI Operational Mode and Procedures. The various MPPI components are described in detail in Section 2.0. Section 3.0 presents some simplified logic diagrams and accompanying text. This section was written to allow readers to become familiar with the logic system without having to work through the entire set of detailed engineering drawings listed in the Appendix. Detailed logic specifications are given in Section 4.0. The Appendix also contains copies of the current MPPI interlock test procedures for Setup and Patient Modes.

  11. Medical applications with synchrotron radiation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T.; Itai, Y. [Univ. of Tsukuba, Inst. of Clinical Medicine, Tsukuba (Japan); Hyodo, K.; Ando, M. [KEK, Tsukuba (Japan); Akatsuka, T. [Yamagata Univ., Faculty of Engineering, Yamagata (Japan); Uyama, C. [National Cardiovascular Centre, Suita (Japan)

    1998-05-01

    In Japan, various medical applications of synchrotron X-ray imaging, such as angiography, monochromatic X-ray computed tomography (CT), radiography and radiation therapy, are being developed. In particular, coronary arteriography (CAG) is quite an important clinical application of synchrotron radiation. Using a two-dimensional imaging method, the first human intravenous CAG was carried out at KEK in May 1996; however, further improvements of image quality are required in clinical practice. On the other hand, two-dimensional aortographic CAG revealed canine coronary arteries as clearly as those on selective CAG, and coronary arteries less than 0.2 mm in diameter. Among applications of synchrotron radiation to X-ray CT, phase-contrast X-ray CT and fluorescent X-ray CT are expected to be very interesting future applications of synchrotron radiation. For actual clinical applications of synchrotron radiation, a medical beamline and a laboratory are now being constructed at SPring-8 in Harima. 55 refs.

  12. Synchrotron radiation research

    International Nuclear Information System (INIS)

    Markus, N.

    1995-01-01

    In the many varied application fields of accelerators, synchrotron radiation ranks as one of the most valuable and widely useful tools. Synchrotron radiation is produced in multi-GeV electron synchrotrons and storage rings, and emerges tangentially in a narrow vertical fan. Synchrotron radiation has been used extensively for basic studies and, more recently, for applied research in the chemical, materials, biotechnology and pharmaceutical industries. Initially, the radiation was a byproduct of high energy physics laboratories but the high demand soon resulted in the construction of dedicated electron storage rings. The accelerator technology is now well developed and a large number of sources have been constructed, with energies ranging from about 1.5 to 8 GeV including the 6 GeV European Synchrotron Radiation Facility (ESRF) source at Grenoble, France. A modern third-generation synchrotron radiation source has an electron storage ring with a complex magnet lattice to produce ultra-low emittance beams, long straights for 'insertion devices', and 'undulator' or 'wiggler' magnets to generate radiation with particular properties. Large beam currents are necessary to give high radiation fluxes and long beam lifetimes require ultra high vacuum systems. Industrial synchrotron radiation research programmes use either Xray diffraction or spectroscopy to determine the structures of a wide range of materials. Biological and pharmaceutical applications study the functions of various proteins. With this knowledge, it is possible to design molecules to change protein behaviour for pharmaceuticals, or to configure more active proteins, such as enzymes, for industrial processes. Recent advances in molecular biology have resulted in a large increase in protein crystallography studies, with researchers using crystals which, although small and weakly diffracting, benefit from the high intensity. Examples with commercial significance include the study of

  13. Medical applications of synchrotron radiation in Australia

    International Nuclear Information System (INIS)

    Lewis, R.A.

    2005-01-01

    The Australian synchrotron is being built at Monash University near Melbourne. The 3 GeV machine is well-suited to the mid X-ray region and will have nine beamlines in its initial phase. The high level of biomedical research in Australia has led to the demand for a beamline capable of supporting medical research in both imaging and therapy. The design features for a versatile imaging and hard X-ray beamline capable of operating in the energy range 10-120 keV are outlined here together with a short review of some of the science that is envisaged

  14. Simulations of X-ray synchrotron beams using the EGS4 code system in medical applications

    International Nuclear Information System (INIS)

    Orion, I.; Henn, A.; Sagi, I.; Dilmanian, F.A.; Pena, L.; Rosenfeld, A.B.

    2001-01-01

    X-ray synchrotron beams are commonly used in biological and medical research. The availability of intense, polarized low-energy photons from the synchrotron beams provides a high dose transfer to biological materials. The EGS4 code system, which includes the photoelectron angular distribution, electron motion inside a magnetic field, and the LSCAT package, found to be the appropriate Monte Carlo code for synchrotron-produced X-ray simulations. The LSCAT package was developed in 1995 for the EGS4 code to contain the routines to simulate the linear polarization, the bound Compton, and the incoherent scattering functions. Three medical applications were demonstrated using the EGS4 Monte Carlo code as a proficient simulation code system for the synchrotron low-energy X-ray source. (orig.)

  15. The Australian synchrotron research program

    International Nuclear Information System (INIS)

    Garrett, R.F.

    1998-01-01

    Full text: The Australian Synchrotron Research Program (ASRP) was established in 1996 under a 5 year grant from the Australian Government, and is managed by ANSTO on behalf of a consortium of Australian universities and research organisations. It has taken over the operation of the Australian National Beamline Facility (ANBF) at the Photon Factory, and has joined two CATS at the Advanced Photon Source: the Synchrotron Radiation Instrumentation CAT (SRI-CAT) and the Consortium for Advanced Radiation Sources (CARS). The ASRP thus manages a comprehensive range of synchrotron radiation research facilities for Australian science. The ANBF is a general purpose hard X-ray beamline which has been in operation at the Photon Factory since 1993. It currently caters for about 35 Australian research teams per year. The facilities available at the ANBF will be presented and the research program will be summarised. The ASRP facilities at the APS comprise the 5 sectors operated by SRI-CAT, BioCARS and ChemMatCARS. A brief description will be given of the ASRP research programs at the APS, which will considerably broaden the scope of Australian synchrotron science

  16. K-edge subtraction synchrotron X-ray imaging in bio-medical research.

    Science.gov (United States)

    Thomlinson, W; Elleaume, H; Porra, L; Suortti, P

    2018-05-01

    High contrast in X-ray medical imaging, while maintaining acceptable radiation dose levels to the patient, has long been a goal. One of the most promising methods is that of K-edge subtraction imaging. This technique, first advanced as long ago as 1953 by B. Jacobson, uses the large difference in the absorption coefficient of elements at energies above and below the K-edge. Two images, one taken above the edge and one below the edge, are subtracted leaving, ideally, only the image of the distribution of the target element. This paper reviews the development of the KES techniques and technology as applied to bio-medical imaging from the early low-power tube sources of X-rays to the latest high-power synchrotron sources. Applications to coronary angiography, functional lung imaging and bone growth are highlighted. A vision of possible imaging with new compact sources is presented. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Synchrotron-radiation research

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1982-01-01

    The use of radiation from synchrotron sources has started a renaissance in materials, physics, chemistry, and biology. Synchrotron radiation has advantages over conventional x rays in that its source brightness is a thousand times greater throughout a continuous energy spectrum, and resonances are produced with specific electron energy levels. Two major synchrotron radiation sources are operated by DOE: the Stanford Synchrotron Radiation Laboratory at SLAC, and the National Synchrotron Light Source at Brookhaven

  18. Beam Characterisation of the Australian Synchrotron Imaging and medical beamline for microbeam radiotherapy research

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Midgley, S.; Lewis, R.A.; Ackerly, T.L.

    2010-01-01

    Full text: Microbeam radiotherapy (MRT) has been developed at synchrotrons around the world over the last two decades. Previous studies have shown normal tissue to be extremely tolerant to MRT at doses normally considered toxic in conventional radiotherapy whilst having a palliative and even curative effect on animal tumours. Our MRT research team has attempted to characterise the beam spectrum of the imaging and medical beamline (TMBL) at the Australian Synchrotron. We also carried out film dosimetry to quantify the peak-to-valley dose ratio for three fixed geometry MRT collimators. The source of X-rays on the IMBL is a 1.4 T wiggler at a distance of 20 m from the sample stage. In vacuo and in-air metal absorbers were used to remove soft X-rays hardening the beam to between 30 and 160 keY. Filters used were 1.5 mm C, 2.5 mm AI, 0.5 mm Be and 0.75 mm Cu. Free air ion chamber measurements and half value layer measurements in conjunction with predictions from a theoretical model based upon a spectrum calculator derived a mean energy of the microbeam of 57 keV with a half value layer of approximately 0.29 mm Cu. The measured air kerma rate was 120 Gy/s. Measurements of the MRT beams created with tungsten/kapton multi-slit collimators on radiographic films were compared with Monte Carlo simulations of the microbeam arrays. The peak-to-valley-dose ratios were found to be 3-4 times lower than predicted by the Monte Carlo model. Imperfections in the manufacturing of the collimators may explain the observed discrepancy. (author)

  19. Synchrotron X-radiation research

    International Nuclear Information System (INIS)

    Kabler, M.N.; Nagel, D.J.; Skelton, E.F.

    1990-05-01

    The Naval Research Laboratory (NRL) has been involved in the exploitation of X rays since the 1920s. The report gives a brief description of the generation and characteristics of synchrotron radiation, and review highlights of current research. Research examples include soft-X-ray optics, semiconductor surface passivation, surface electron dynamics, space-charge dynamics on silicon, photochemistry on GaAs, local atomic structure, crystal structures from X-ray diffraction. The report then discusses emerging research opportunities

  20. The Imaging and Medical Beam Line at the Australian Synchrotron

    Science.gov (United States)

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton; Campbell, Colin

    2010-07-01

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the `Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stem cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1—monochromatic and white—to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.

  1. Analytical research using synchrotron radiation based techniques

    International Nuclear Information System (INIS)

    Jha, Shambhu Nath

    2015-01-01

    There are many Synchrotron Radiation (SR) based techniques such as X-ray Absorption Spectroscopy (XAS), X-ray Fluorescence Analysis (XRF), SR-Fourier-transform Infrared (SRFTIR), Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. which are increasingly being employed worldwide in analytical research. With advent of modern synchrotron sources these analytical techniques have been further revitalized and paved ways for new techniques such as microprobe XRF and XAS, FTIR microscopy, Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. The talk will cover mainly two techniques illustrating its capability in analytical research namely XRF and XAS. XRF spectroscopy: XRF spectroscopy is an analytical technique which involves the detection of emitted characteristic X-rays following excitation of the elements within the sample. While electron, particle (protons or alpha particles), or X-ray beams can be employed as the exciting source for this analysis, the use of X-ray beams from a synchrotron source has been instrumental in the advancement of the technique in the area of microprobe XRF imaging and trace level compositional characterisation of any sample. Synchrotron radiation induced X-ray emission spectroscopy, has become competitive with the earlier microprobe and nanoprobe techniques following the advancements in manipulating and detecting these X-rays. There are two important features that contribute to the superb elemental sensitivities of microprobe SR induced XRF: (i) the absence of the continuum (Bremsstrahlung) background radiation that is a feature of spectra obtained from charged particle beams, and (ii) the increased X-ray flux on the sample associated with the use of tunable third generation synchrotron facilities. Detection sensitivities have been reported in the ppb range, with values of 10 -17 g - 10 -14 g (depending on the particular element and matrix). Keeping in mind its demand, a microprobe XRF beamline has been setup by RRCAT at Indus-2 synchrotron

  2. Industrial research enhancement program at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Wang Jun; Nasta, Kathleen; Kao, Chi-Chang

    2011-01-01

    Industrial research has attracted more and more attention recently at synchrotron facilities. Bringing the state-of-the-art research capabilities provided by these facilities to the industrial user community will help this community to improve their products and processing methods, to foster competition and build the economy. The National Synchrotron Light Source (NSLS) has a long and celebrated history in research partnerships with industry since its inception more than 25 years ago, and both industry and the facility have benefited tremendously from these partnerships. Over the years, the ways in which industrial research is conducted at synchrotron facilities have evolved significantly, and a new paradigm of collaboration between industry and facilities is clearly needed to address this changing situation. In this presentation, the discussion will focus on an enhancement plan recently implemented at the NSLS to address industrial users' concerns and needs. The goal of NSLS Industrial Program Enhancement plan is to encourage greater use of synchrotron tools by industry researchers, improve access to NSLS beamlines by industrial researchers and facilitate research collaborations between industrial researchers and NSLS staff as well as researchers from university and government laboratories. Examples of recent developments in these areas will be presented.

  3. Medical applications of synchrotron radiation. Ch. 10

    International Nuclear Information System (INIS)

    Giacomini, J.C.; Gordon, H.J.

    1991-01-01

    Synchrotron radiation has a number of properties which make it uniquely suited for medical diagnostic imaging. The radiation is intense and can be readily monochromatized. With these highly intense, mono-chromatized X-ray beams, iodine K-edge di-chromatography can yield images which greatly enhance the visualization of iodine containing structures. As this technology continues to improve, the possibility of performing diagnostic cardiac, neuroradiological, and other vascular examinations with minimally invasive peripheral venous injections of iodinated contrast agent becomes increasingly practical. (author). 10 refs.; 6 figs

  4. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Crasemann, B.

    1981-01-01

    Applications of synchrotron radiation to research in high-energy atomic physics are summarized. These lie in the areas of photoelectron spectrometry, photon scattering, x-ray absorption spectroscopy, time-resolved measurements, resonance spectroscopy and threshold excitation, and future, yet undefined studies

  5. Use of synchrotron radiation in radiation biology research

    International Nuclear Information System (INIS)

    Yamada, Takeshi

    1981-01-01

    Synchrotron radiation (SR) holds great expectation as a new research tool in the new areas of material science, because it has the continuous spectral distribution from visible light to X-ray, and its intensity is 10 2 to 10 3 times as strong as that of conventional radiation sources. In the National Laboratory for High Energy Physics, a synchrotron radiation experimental facility has been constructed, which will start operation in fiscal 1982. With this SR, the photons having the wavelength in undeveloped region from vacuum ultraviolet to soft X-ray are obtained as intense mono-wavelength light. The SR thus should contribute to the elucidation of the fundamentals in the biological action of radiation. The following matters are described: synchrotron radiation, experimental facility using SR, electron storage ring, features of SR, photon factory plan and synchrotron radiation experimental facility, utilization of SR in radiation biology field. (J.P.N.)

  6. Transvenous coronary angiography in humans with synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1994-01-01

    The transvenous coronary angiography project at the National Synchrotron Light Source (NSLS) is presently undergoing a significant upgrade to the hardware and software in the synchrotron medical facility. When completed, the project will have reached a level of maturity in the imaging technology which will allow the research team to begin to concentrate on medical research programs. This paper will review the status of the project and imaging technology and will discuss the current upgrades and future advanced technology initiatives. The advantages of using the radiation from a synchrotron, over that from a standard x-ray source, were the motivation for the project. A total of 23 human imaging sessions have been carried out with in the project. The primary goals have been to establish the imaging parameters and protocol necessary to obtain clinically useful images

  7. Transvenous coronary angiography in humans with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Thomlinson, W.

    1994-10-01

    The transvenous coronary angiography project at the National Synchrotron Light Source (NSLS) is presently undergoing a significant upgrade to the hardware and software in the synchrotron medical facility. When completed, the project will have reached a level of maturity in the imaging technology which will allow the research team to begin to concentrate on medical research programs. This paper will review the status of the project and imaging technology and will discuss the current upgrades and future advanced technology initiatives. The advantages of using the radiation from a synchrotron, over that from a standard x-ray source, were the motivation for the project. A total of 23 human imaging sessions have been carried out with in the project. The primary goals have been to establish the imaging parameters and protocol necessary to obtain clinically useful images.

  8. An assessment of research opportunities and the need for synchrotron radiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The workshop focused on six topics, all of which are areas of active research: (1) speciation, reactivity and mobility of contaminants in aqueous systems, (2) the role of surfaces and interfaces in molecular environmental science, (3) the role of solid phases in molecular environmental science, (4) molecular biological processes affecting speciation, reactivity, and mobility of contaminants in the environment, (5) molecular constraints on macroscopic- and field-scale processes, and (6) synchrotron radiation facilities and molecular environmental sciences. These topics span a range of important issues in molecular environmental science. They focus on the basic knowledge required for understanding contaminant transport and fate and for the development of science-based remediation and waste management technologies. Each topic was assigned to a working group charged with discussing recent research accomplishments, significant research opportunities, methods required for obtaining molecular-scale information on environmental contaminants and processes, and the value of synchrotron x-ray methods relative to other methods in providing this information. A special working group on synchrotron radiation facilities was convened to provide technical information about experimental facilities at the four DOE-supported synchrotron radiation sources in the US (NSLS, SSRL, AS and UPS) and synchrotron- based methods available for molecular environmental science research. Similar information on the NSF-funded Cornell High Energy synchrotron Source (CHESS) was obtained after the workshop was held.

  9. An assessment of research opportunities and the need for synchrotron radiation facilities

    International Nuclear Information System (INIS)

    1995-01-01

    The workshop focused on six topics, all of which are areas of active research: (1) speciation, reactivity and mobility of contaminants in aqueous systems, (2) the role of surfaces and interfaces in molecular environmental science, (3) the role of solid phases in molecular environmental science, (4) molecular biological processes affecting speciation, reactivity, and mobility of contaminants in the environment, (5) molecular constraints on macroscopic- and field-scale processes, and (6) synchrotron radiation facilities and molecular environmental sciences. These topics span a range of important issues in molecular environmental science. They focus on the basic knowledge required for understanding contaminant transport and fate and for the development of science-based remediation and waste management technologies. Each topic was assigned to a working group charged with discussing recent research accomplishments, significant research opportunities, methods required for obtaining molecular-scale information on environmental contaminants and processes, and the value of synchrotron x-ray methods relative to other methods in providing this information. A special working group on synchrotron radiation facilities was convened to provide technical information about experimental facilities at the four DOE-supported synchrotron radiation sources in the US (NSLS, SSRL, AS and UPS) and synchrotron- based methods available for molecular environmental science research. Similar information on the NSF-funded Cornell High Energy synchrotron Source (CHESS) was obtained after the workshop was held

  10. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Crasemann, B.; Wuilleumier, F.

    1985-01-01

    This chapter discusses applications of synchrotron light in atomic and molecular physics. Use of the radiation from storage rings has expanded and lent access to new areas of absorption and photoemission spectroscopy and scattering experiments. Techniques applied in connection with synchrotron radiation are discussed including absorption spectroscopy, photoelectron spectroscopy, fluorescence spectroscopy and X-ray scattering. Problem areas that are being studied by the techniques mentioned above are discussed. Synchrotron radiation has provided the means for measuring the threshold-excitation and interference effects that signal the breakdown of the two-step model of atomic excitation/deexcitation. Synchrotron radiation provides more means of excited-state photoionization measurements

  11. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguang [Columbia Univ., New York, NY; Frenkel, Anatoly [Yeshiva Univ., New York, NY (United States); Rodriguez, Jose [Brookhaven National Lab. (BNL), Upton, NY (United States); Adzic, Radoslav [Brookhaven National Lab. (BNL), Upton, NY (United States); Bare, Simon R. [UOP LLC, Des Plaines, IL (United States); Hulbert, Steve L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karim, Ayman [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mullins, David R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Overbury, Steve [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, and to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.

  12. Synchrotron radiation use in some researchs in program in Brazil

    International Nuclear Information System (INIS)

    Caticha-Ellis, S.

    1983-01-01

    Physical and biological applications of the synchrotron radiation in some pure and applied research programs in progress in Brazil are presented, in special those related with crystallografic research. (L.C.) [pt

  13. Research by industry at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    1995-05-01

    The world's foremost facility for research using x-rays and ultraviolet and infrared radiation, is operated by the National Synchrotron Light Source dept. This pamphlet described the participating research teams that built most of the beam lines, various techniques for studying materials, treatment of materials, and various industrial research (catalysis, pharmaceuticals, etc.)

  14. 12 Experimental Techniques at Synchrotron Lightsource Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Peter L [US Department of Energy Office of Science Office Basic Energy Sciences; Rhyne, James J [US Department of Energy Office of Science Office of Basic Energy Sciences

    2015-01-01

    The unique properties of synchrotron radiation are its continuous spectrum, high flux and brightness, and high coherence, which make it an indispensable tool in the exploration of matter. The wavelengths of the emitted photons span a range of dimensions from the atomic level to biological cells, thereby providing incisive probes for advanced research in materials science, physical and chemical sciences, metrology, geosciences, environmental sciences, biosciences, medical sciences, and pharmaceutical sciences. The features of synchrotron radiation are especially well matched to the needs of nanoscience.

  15. Synchrotron radiation in Australia

    International Nuclear Information System (INIS)

    Garrett, R.F.

    2002-01-01

    Full text: Synchrotron radiation research in Australia is entering a new era with the commencement of the Australian synchrotron project, which will construct a 3 GeV third generation synchrotron facility at Monash University in Victoria. To date Australian scientists have used overseas facilities, primarily those managed by the Australian Synchrotron Research Program in Japan and the USA. A fast developing and maturing Australian synchrotron user program has developed around these overseas facilities. The field of synchrotron radiation and its importance to a wide range of research will be introduced and Australia's current involvement and facilities will be described. The current status and technical specifications of the Australian synchrotron will be presented. Copyright (2002) Australian X-ray Analytical Association Inc

  16. Electron beam ion sources for use in second generation synchrotrons for medical particle therapy

    Science.gov (United States)

    Zschornack, G.; Ritter, E.; Schmidt, M.; Schwan, A.

    2014-02-01

    Cyclotrons and first generation synchrotrons are the commonly applied accelerators in medical particle therapy nowadays. Next generation accelerators such as Rapid Cycling Medical Synchrotrons (RCMS), direct drive accelerators, or dielectric wall accelerators have the potential to improve the existing accelerator techniques in this field. Innovative accelerator concepts for medical particle therapy can benefit from ion sources which meet their special requirements. In the present paper we report on measurements with a superconducting Electron Beam Ion Source, the Dresden EBIS-SC, under the aspect of application in combination with RCMS as a well proven technology. The measurements indicate that this ion source can offer significant advantages for medical particle therapy. We show that a superconducting EBIS can deliver ion pulses of medically relevant ions such as protons, C4 + and C6 + ions with intensities and frequencies required for RCMS [S. Peggs and T. Satogata, "A survey of Hadron therapy accelerator technology," in Proceedings of PAC07, BNL-79826- 2008-CP, Albuquerque, New Mexico, USA, 2007; A. Garonna, U. Amaldi et al., "Cyclinac medical accelerators using pulsed C6 +/H+_2 ion sources," in Proceedings of EBIST 2010, Stockholm, Sweden, July 2010]. Ion extraction spectra as well as individual ion pulses have been measured. For example, we report on the generation of proton pulses with up to 3 × 109 protons per pulse and with frequencies of up to 1000 Hz at electron beam currents of 600 mA.

  17. Overview of Industrial Synchrotron Radiation Use

    Science.gov (United States)

    Laderman, Stephen S.

    1996-03-01

    Relevant, reliable and accessible synchrotron radiation methods can play an important role in industrial activities. To date, the application of synchrotron radiation based materials characterization methods by industrial concerns has followed the path of laboratory based x-ray methods: early adoption, continuous improvement, and a high degree of specialization to meet specific goals, which may change over time. Like all x-ray methods, their applicability to segments of the biotechnology, chemical, electronics, medical and metallurgical industries arises from a need to develop sophisticated processes for precisely controlling microstructures. An increasing number of those processes are being developed in ways which can, in principle, be more effectively studied if synchrotron radiation based analyses are performed. Technical limitations confined the efforts of early synchrotron radiation users to long-range research investigations. Nowadays, progress in data collection methods, analysis algorithims, accelerator performance, and worker training, have removed many constraints. However, commercial technologies are being improved at steadily higher rates, shortening the time between research, development and manufacturing and, in many cases, blurring their distinctions. Certainly, rapid rates of innovation increase the opportunities for synchrotron radiation techniques to bring competitive advantage since they can be used to shrink development times, to maintain yields and, perhaps, as part of advanced manufacturing. At the same time, rapid rates of innovation also impose stringent criteria on the reliability and timeliness of the supporting methods. Successful conventional x-ray methods have resulted from efforts to create useful new capabilities that effectively balance such forces. Currently, synchrotron radiation users throughout the world are pursuing analogous goals.

  18. European research platform IPANEMA at the SOLEIL synchrotron for ancient and historical materials

    International Nuclear Information System (INIS)

    Bertrand, L.; Languille, M.A.; Cohen, S.X.; Robinet, L.; Josse, W.; Gervais, C.; Leroy, S.; Bernard, D.; Le Pennec, E.; Doucet, J.; Schoder, S.

    2011-01-01

    IPANEMA, a research platform devoted to ancient and historical materials (archaeology, cultural heritage, palaeontology and past environments), is currently being set up at the synchrotron facility SOLEIL (Saint-Aubin, France; SOLEIL opened to users in January 2008). The new platform is open to French, European and international users. The activities of the platform are centred on two main fields: increased support to synchrotron projects on ancient materials and methodological research. The IPANEMA team currently occupies temporary premises at SOLEIL, but the platform comprises construction of a new building that will comply with conservation and environmental standards and of a hard X-ray imaging beamline today in its conceptual design phase, named PUMA. Since 2008, the team has supported synchrotron works at SOLEIL and at European synchrotron facilities on a range of topics including pigment degradation in paintings, composition of musical instrument varnishes, and provenancing of medieval archaeological ferrous artefacts. Once the platform is fully operational, user support will primarily take place within medium-term research projects for 'hosted' scientists, PhDs and post-docs. IPANEMA methodological research is focused on advanced two-dimensional/ three-dimensional imaging and spectroscopy and statistical image analysis, both optimized for ancient materials. (authors)

  19. Science research with high-brilliance synchrotron light source

    International Nuclear Information System (INIS)

    Sanyal, Milan K.

    2013-01-01

    Synchrotron-science has changed dramatically since the development of high brilliance electron accelerator-based light sources in 1990s. In the last twenty years or so, several such facilities have come up, particularly in developed countries, as material characterizations in relevant atmosphere and protein crystallography with tiny-crystals have strong implications in industrial competitiveness. Moreover several new techniques have been developed recently over the entire spectral range of emitted light, from infra-red to high energy X-rays, which have altered our basic understanding of various materials like biomaterials, nanomaterials, soft-matter and semiconductor quantum structures. In addition, rapid development of various X-ray imaging techniques for nondestructive evaluation of compositional/structural homogeneity of engineering materials with nanometer resolution will have tremendous impact in manufacturing industries. As India becomes a developed country, it must have access to such an advanced synchrotron facility in the country that enables knowledge generation in the ever-expanding fields of design-characterization-production of advanced materials and modern medicines. Development of such state-of-the art facility will also enable us to carry out frontier-basic-research in our own country and help us to retain and bring back Indian talents to India. Here we shall discuss briefly the characteristics of a high brilliance synchrotron source and outline the nature of basic and applied science research that can be done with such a state-of-the-art facility. (author)

  20. K-Edge Subtraction Angiography with Synchrotron X-Rays

    International Nuclear Information System (INIS)

    Giacomini, John C.

    1996-01-01

    The purpose of this project was to utilize dual energy, monochromatic X-rays produced from synchrotrons radiation in order to obtain noninvasive medical imaging. The application of synchrotrons radiation to medical imaging is based on the principle of iodine dichromography, first described by Bertil Jacobson of the Karolinska Institute in 1953. Medical imaging using synchrotrons radiation and K-edge dichromography was pioneered at Stanford University under the leadership of Dr. Ed Rubenstein, and the late Nobel Laureate in Physics, Dr. Robert Hofstadter. With progressive refinements in hardware, clinical-quality images were obtained of human coronary arteries utilizing peripheral injections of iodinated contrast agent. These images even now are far superior to those being presented by investigators using MRI as an imaging tool for coronary arteries. However, new supplies and instruments in the cardiac catheterization laboratory have served to transform coronary angiography into an outpatient procedure, with relatively little morbidity. We extended the principles learned with coronary angiography to noninvasive imaging of the human bronchial tree. For these images, we utilized xenon as the contrast agent, as it has a K-edge very similar to that of iodine. In this case, there is no true competing diagnostic test, and pulmonary neoplasm is an enormous public health concern. In early experiments, we demonstrated remarkably clear images of the human bronchial tree. These images have been shown internationally; however, funding difficulties primarily with the Department of Energy have not allowed for progression of this promising avenue of research. One potential criticism of the project is that in order to obtain these images, we utilized national laboratories. Some have questioned whether this would lead to a practical imaging modality. However, we have shown that the technology exists to allow for construction of a miniature storage ring, with a superconducting

  1. Electron synchrotron as the most appropriate investment into research and development

    Czech Academy of Sciences Publication Activity Database

    Kozubek, Stanislav

    2008-01-01

    Roč. 15, 1a (2008), s11-s12 ISSN 1211-5894 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : electron Synchrotron * research and development * structural funds of EU Subject RIV: BO - Biophysics

  2. Synchrotron Environmental Science-I Workshop Report

    International Nuclear Information System (INIS)

    1999-01-01

    Attendees of the Synchrotrons Environmental Science 1 (SES-1) workshop represented a broad spectrum of environmental science research areas and expertise in all of the current synchrotrons techniques (X-ray scattering and diffraction, X-ray absorption spectroscopy, and two- and three-dimensional X-ray imaging). These individuals came together to discuss current measurement obstacles in environmental research and, more specifically, ways to overcome such obstacles by applying synchrotrons radiation techniques. Significant obstacles in measurement affect virtually all of the research issues described. Attendees identified synchrotrons approaches of potential value in their research. A number of the environmental research studies discussed are currently being addressed with some success by synchrotron-based approaches. Nevertheless, improvements in low-Z measurement capabilities are needed to facilitate the use of synchrotrons radiation methodologies in environmental research

  3. Synchrotron Environmental Science-I Workshop Report.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-08

    Attendees of the Synchrotrons Environmental Science 1 (SES-1) workshop represented a broad spectrum of environmental science research areas and expertise in all of the current synchrotrons techniques (X-ray scattering and diffraction, X-ray absorption spectroscopy, and two- and three-dimensional X-ray imaging). These individuals came together to discuss current measurement obstacles in environmental research and, more specifically, ways to overcome such obstacles by applying synchrotrons radiation techniques. Significant obstacles in measurement affect virtually all of the research issues described. Attendees identified synchrotrons approaches of potential value in their research. A number of the environmental research studies discussed are currently being addressed with some success by synchrotron-based approaches. Nevertheless, improvements in low-Z measurement capabilities are needed to facilitate the use of synchrotrons radiation methodologies in environmental research.

  4. Research using synchrotron radiation at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1982-01-01

    The National Synchrotron Light Source (NSLS) is now becoming operational with synchrotron radiation experiments beginning on the 700 MeV VUV electron storage ring. Commissioning of the 2.5 GeV x-ray storage ring has also begun with the experimental program expected to begin in 1983. The current status of the experimental program and instrumentation and the plans for future developments, will be discussed. Although some early results have been obtained on VUV beam lines no attempt will be made in this paper to describe them. Instead, an overview of the beam line characteristics will be given, with an indication of those already operational. In the oral presentation some initial experimental results will be discussed

  5. Applications of synchrotron X-rays in microelectronics industry research

    International Nuclear Information System (INIS)

    Jordan-Sweet, Jean L.; Detavernier, Christophe; Lavoie, Christian; Mooney, Patricia M.; Toney, Michael F.

    2005-01-01

    The high flux and density of X-rays produced at synchrotrons provide the microelectronics industry with a powerful probe of the structure and behavior of a wide array of solid materials that are being developed for use in devices of the future. They also are of great use in determining why currently-used materials and processes sometimes fail. This paper describes the X20 X-ray beamline facility operated by IBM at the National Synchrotron Light Source, and presents a series of three industry challenges and results that illustrate the variety of techniques used and problems addressed. The value of this research ranges from solving short-term, technically specific problems to increasing our academic understanding of materials in general. Techniques discussed include high-resolution diffraction, time-resolved diffraction, texture measurements, and grazing-incidence diffraction

  6. K-Edge Subtraction Angiography with Synchrotron X-Rays; TOPICAL

    International Nuclear Information System (INIS)

    Giacomini, John C.

    1996-01-01

    The purpose of this project was to utilize dual energy, monochromatic X-rays produced from synchrotrons radiation in order to obtain noninvasive medical imaging. The application of synchrotrons radiation to medical imaging is based on the principle of iodine dichromography, first described by Bertil Jacobson of the Karolinska Institute in 1953. Medical imaging using synchrotrons radiation and K-edge dichromography was pioneered at Stanford University under the leadership of Dr. Ed Rubenstein, and the late Nobel Laureate in Physics, Dr. Robert Hofstadter. With progressive refinements in hardware, clinical-quality images were obtained of human coronary arteries utilizing peripheral injections of iodinated contrast agent. These images even now are far superior to those being presented by investigators using MRI as an imaging tool for coronary arteries. However, new supplies and instruments in the cardiac catheterization laboratory have served to transform coronary angiography into an outpatient procedure, with relatively little morbidity. We extended the principles learned with coronary angiography to noninvasive imaging of the human bronchial tree. For these images, we utilized xenon as the contrast agent, as it has a K-edge very similar to that of iodine. In this case, there is no true competing diagnostic test, and pulmonary neoplasm is an enormous public health concern. In early experiments, we demonstrated remarkably clear images of the human bronchial tree. These images have been shown internationally; however, funding difficulties primarily with the Department of Energy have not allowed for progression of this promising avenue of research. One potential criticism of the project is that in order to obtain these images, we utilized national laboratories. Some have questioned whether this would lead to a practical imaging modality. However, we have shown that the technology exists to allow for construction of a miniature storage ring, with a superconducting

  7. Synchrotron radiation A general overview and a review of storage rings, research facilities, and insertion devices

    International Nuclear Information System (INIS)

    Winick, H.

    1989-01-01

    Synchrotron radiation, the electromagnetic radiation given off by electrons in circular motion, is revolutionizing many branches of science and technology by offering beams of vacuum ultraviolet light and x rays of immense flux and brightness. In the past decade there has been an explosion of interest in these applications leading activity to construct new research facilities based on advanced storage rings and insertion device sources. Applications include basic and applied research in biology, chemistry, medicine, and physics plus many areas of technology. In this article we present a general overview of the field of synchrotron radiation research, its history, the present status and future prospects of storage rings and research facilities, and the development of wiggler and undulator insertion devices as sources of synchrotron radiation

  8. Future Synchrotron Radiation Sources

    CERN Document Server

    Winick, Herman

    2003-01-01

    Sources of synchrotron radiation (also called synchrotron light) and their associated research facilities have experienced a spectacular growth in number, performance, and breadth of application in the past two to three decades. In 1978 there were eleven electron storage rings used as light sources. Three of these were small rings, all below 500 mega-electron volts (MeV), dedicated to this purpose; the others, with energy up to 5 giga-electron volts (GeV), were used parasitically during the operation of the ring for high energy physics research. In addition, at that time synchrotron radiation from nine cyclic electron synchrotrons, with energy up to 5 GeV, was also used parasitically. At present no cyclic synchrotrons are used, while about 50 electron storage rings are in operation around the world as fully dedicated light sources for basic and applied research in a wide variety of fields. Among these fields are structural molecular biology, molecular environmental science, materials, analytic chemistry, micr...

  9. Research in atomic and applied physics using a 6-GeV synchrotron source

    International Nuclear Information System (INIS)

    Jones, K.W.

    1985-12-01

    The Division of Atomic and Applied Physics in the Department of Applied Science at Brookhaven National Laboratory conducts a broad program of research using ion beams and synchrotron radiation for experiments in atomic physics and nuclear analytical techniques and applications. Many of the experiments would benefit greatly from the use of high energy, high intensity photon beams from a 6-GeV synchrotron source. A survey of some of the specific scientific possibilities is presented

  10. Techniques for materials research with synchrotron radiation x-rays

    International Nuclear Information System (INIS)

    Bowen, D.K.

    1983-01-01

    A brief introductory survey is presented of the properties and generation of synchrotron radiation and the main techniques developed so far for its application to materials problems. Headings are:synchrotron radiation; X-ray techniques in synchrotron radiation (powder diffraction; X-ray scattering; EXAFS (Extended X-ray Absorption Fine Structure); X-ray fluorescent analysis; microradiography; white radiation topography; double crystal topography); future developments. (U.K.)

  11. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter.

    Science.gov (United States)

    Harty, P D; Lye, J E; Ramanathan, G; Butler, D J; Hall, C J; Stevenson, A W; Johnston, P N

    2014-05-01

    The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50 Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3.9%. The good agreement of

  12. Synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    van Steenbergen, A.

    1979-01-01

    As a result of the exponential growth of the utilization of synchrotron radiation for research in the domain of the material sciences, atomic and molecular physics, biology and technology, a major construction activity has been generated towards new dedicated electron storage rings, designed optimally for synchrotron radiation applications, also, expansion programs are underway at the existing facilities, such as DORIS, SPEAR, and VEPP. In this report the basic properties of synchrotron radiation will be discussed, a short overview will be given of the existing and new facilities, some aspects of the optimization of a structure for a synchrotron radiation source will be discussed and the addition of wigglers and undulators for spectrum enhancement will be described. Finally, some parameters of an optimized synchrotron radiation source will be given.

  13. A feasibility study of X-ray phase-contrast mammographic tomography at the Imaging and Medical beamline of the Australian Synchrotron.

    Science.gov (United States)

    Nesterets, Yakov I; Gureyev, Timur E; Mayo, Sheridan C; Stevenson, Andrew W; Thompson, Darren; Brown, Jeremy M C; Kitchen, Marcus J; Pavlov, Konstantin M; Lockie, Darren; Brun, Francesco; Tromba, Giuliana

    2015-11-01

    Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses.

  14. Research on atmospheric corrosion of steel using synchrotron radiation

    International Nuclear Information System (INIS)

    Yamashita, M.; Uchida, H.; Konishi, H.; Mizuki, J.

    2004-01-01

    Correlation between local structure around Cr in the protective rust layer on weathering steel and protective performance of the rust layer is presented as an example of corrosion research using synchrotron radiation which has recently been applied in various research fields as a useful tool. In addition, in situ observation of initial process of rust formation on steel is also mentioned. It was pointed out by considering the X-ray absorption fine structure spectra that the nanostructure of the protective rust layer on weathering steel primarily comprises of small Cr-goethite crystals containing surface adsorbed and/or intergranular CrO x 3-2X complex anions. This CrO x 3-2X explains the protective performance of the rust layer originated by dense aggregation of fine crystals with cation selectivity of the Cr-goethite. It is very advantageous to employ white X-rays for in situ observation of rusting process of a carbon steel covered with electrolyte thin films because rust structure might change very quickly. This in situ observation revealed the effect of ion species on the change in rust phase during wet/dry repeating. It can be said that application of synchrotron radiation on corrosion research is so useful to understand the nanostructure of surface oxides which closely relate to corrosion behavior of metals and alloys. (author)

  15. Synchrotron radiation

    International Nuclear Information System (INIS)

    Knotek, M.L.

    1987-01-01

    Synchrotron radiation has had a revolutionary effect on a broad range of scientific studies, from physics, chemistry and metallurgy to biology, medicine and geoscience. The situation during the last decade has been one of very rapid growth, there is a great vitality to the field and a capability has been given to a very broad range of scientific disciplines which was undreamed of just a decade or so ago. Here we will discuss some of the properties of synchrotron radiation that makes it so interesting and something of the sources in existence today including the National Synchrotron Light Source (NSLS). The NSLS is one of the new facilities built specifically for synchrotron radiation research and the model that was developed there for involvement of the scientific community is a good one which provides some good lessons for these facilities and others

  16. Infrared spectroscopy by use of synchrotron radiation

    International Nuclear Information System (INIS)

    Nanba, Takao

    1991-01-01

    During five years since the author wrote the paper on the utilization of synchrotron radiation in long wavelength region, it seems to be recognized that in synchrotron radiation, the light from infrared to milli wave can be utilized, and is considerably useful. Recently the research on coherent synchrotron radiation in this region using electron linac has been developed by Tohoku University group, and the high capability of synchrotron radiation as light source is verified. This paper is the report on the infrared spectroscopic research using incoherent synchrotron radiation obtained from the deflection electromagnet part of electron storage rings. Synchrotron radiation is high luminance white light source including from X-ray to micro wave. The example of research that the author carried out at UVSOR is reported, and the perspective in near future is mentioned. Synchrotron radiation as the light source for infrared spectroscopy, the intensity and dimensions of the light source, far infrared region and mid infrared region, far infrared high pressure spectroscopic experiment, and the heightening of luminance of synchrotron radiation as infrared light source are described. (K.I.)

  17. Applications of Synchrotron Radiation Micro Beams in Cell Micro Biology and Medicine

    CERN Document Server

    Ide-Ektessabi, Ari

    2007-01-01

    This book demonstrates the applications of synchrotron radiation in certain aspects of cell microbiology, specifically non-destructive elemental analyses, chemical-state analyses and imaging (distribution) of the elements within a cell. The basics for understanding and applications of synchrotron radiation are also described to make the contents easier to be understood for a wide group of researchers in medical and biological sciences who might not be familiar with the physics of synchrotron radiation. The two main techniques that are discussed in this book are the x-ray fluorescence spectroscopy (XRF) and the x-ray fine structure analysis (XAFS). Application of these techniques in investigations of several important scientific fields, such as neurodegeneration and other diseases related to cell malfunctioning, are demonstrated in this book.

  18. K-Edge Subtraction Angiography with Synchrotron X-Rays

    CERN Document Server

    Giacomini, J C

    1996-01-01

    The purpose of this project was to utilize dual energy, monochromatic X-rays produced from synchrotrons radiation in order to obtain noninvasive medical imaging. The application of synchrotrons radiation to medical imaging is based on the principle of iodine dichromography, first described by Bertil Jacobson of the Karolinska Institute in 1953. Medical imaging using synchrotrons radiation and K-edge dichromography was pioneered at Stanford University under the leadership of Dr. Ed Rubenstein, and the late Nobel Laureate in Physics, Dr. Robert Hofstadter. With progressive refinements in hardware, clinical-quality images were obtained of human coronary arteries utilizing peripheral injections of iodinated contrast agent. These images even now are far superior to those being presented by investigators using MRI as an imaging tool for coronary arteries. However, new supplies and instruments in the cardiac catheterization laboratory have served to transform coronary angiography into an outpatient procedure, with r...

  19. Synchrotron Physics and Industry: new opportunities for technology transfer

    International Nuclear Information System (INIS)

    Williams, P.

    2002-01-01

    Full text: In 1979, with the opening in the UK of the world's first dedicated synchrotron light source, the SRS, experimental science in virtually every discipline underwent what amounted to a major revolution. The unique nature of synchrotron radiation, with its intensity, brightness, polarization, time structure and energy spectrum offer an unequalled probe of matter in all its states. The decades since have seen the development of a wide range of associated experimental techniques which harness the power of this radiation, including photoemission, EXAFS, spectroscopy, imaging and, of course, protein crystallography. These in turn have been applied to studies from surface science to molecular biology. The advances using synchrotron radiation throughout the 1980s and '90s naturally had a major impact on fundamental research, particularly in unraveling the structures of large proteins and in understanding the properties of semiconductors and surfaces. Much of this work could not have been accomplished without access to one of the world's increasing number of synchrotron facilities, of which there are now approaching 100. However, industrial awareness of the opportunities afforded by the use of synchrotron radiation was restricted to the handful of major multinational corporations, primarily in Europe, the USA and Japan, whose fundamental research staff had access. While there were major programmes in certain specific areas, such as X-ray lithography for semiconductor LSI fabrication, the general level of industrial involvement was low. But today, this is changing. In protein crystallography, for example, the use of synchrotron radiation in structure determination puts the 1PX' technique on the same level as NMR in terms of its routine utility. It has become an essential tool to drug designers in biopharmaceuticals, where access to the structural data is increasingly thought of almost as a service, rather than fundamental research. Pioneering work on medical imaging

  20. Synchrotron radiation research facility conceptual design report

    International Nuclear Information System (INIS)

    1976-06-01

    A report is presented to define, in general outline, the extent and proportions, the type of construction, the schedule for accomplishment, and the estimated cost for a new Synchrotron Radiation Facility, as proposed to the Energy Research and Development Administration by the Brookhaven National Laboratory. The report is concerned only indirectly with the scientific and technological justification for undertaking this project; the latter is addressed explicitly in separate documents. The report does consider user requirements, however, in order to establish a basis for design development. Preliminary drawings, outline specifications, estimated cost data, and other descriptive material are included as supporting documentation on the current status of the project in this preconstruction phase

  1. Manufacturability of compact synchrotron mirrors

    Science.gov (United States)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  2. Synchrotron radiation

    International Nuclear Information System (INIS)

    Poole, M.W.; Lea, K.R.

    1982-01-01

    A report is given on the work involving the Synchrotron Radiation Division of the Daresbury Laboratory during the period January 1981 - March 1982. Development of the source, beamlines and experimental stations is described. Progress reports from individual investigators are presented which reveal the general diversity and interdisciplinary nature of the research which benefits from access to synchrotron radiation and the associated facilities. Information is given on the organisation of the Division and publications written by the staff are listed. (U.K.)

  3. The third generation French synchrotron

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    This short paper gives a concise presentation of the SOLEIL project of the LURE synchrotron radiation national laboratory at Orsay (France). This new accelerator is devoted to replace the DCI and Super ACO rings of first and second generation, respectively. The main research domains of this project concern: the micro-fluorescence and micro-diffraction characterization of materials, and in particular the electronic components; the study of matter in extreme conditions (high temperature and high pressure); the bio-crystallography; the study of aggregates; and the manufacturing of micro-instruments for micro-electronics or medical applications. SOLEIL will be equipped with special magnetic wigglers to obtain very high brightness sources. The source will be a 336 m circumference ring for 2.5 GeV electron storage, able to produce a large spectrum synchrotron radiation. The injection system will comprise a low energy-high current linear electron accelerator and two electron beam transport lines. The installation will be buried at a 4 m depth to ensure the environmental protection and to limit vibrations. (J.S.)

  4. Biomedical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Kwiatek, W.M.; Galka, M.; Hanson, A.L.; Paluszkiewicz, Cz.; Cichocki, T.

    2001-01-01

    Synchrotron radiation techniques application in medical diagnostics have been presented especially for: trace element analysis in tissues, elemental mapping, chemical speciation at trace levels, chemical structure determination. Presented techniques are very useful for early cancer discovery

  5. Deutsches Elektronen-Synchrotron DESY. Scientific annual report 1995

    International Nuclear Information System (INIS)

    1996-06-01

    As a result of the symbiosis between particle physics and synchrotron radiation research, the spectrum of research done at DESY is extraordinarily large, from research on elementary particles to solid state and surface physics, geosciences, chemistry and materials research up to molecular biology and medical diagnostics. This programme is unique in Europe. In 1995, research work was done by nearly 3000 scientists from 280 different institutions in 35 countries. About 1200 of these scientists were experts in particle physics. DESY is also one of the most important national research centers of Germany: The experimental facilities of HERA and DORIS III are used by about 1700 scientists from more than 90 German universities and research institutions. The annual report deals with research, machines and operation. (orig./DG) [de

  6. Simulations of Various Driving Mechanisms for the 3rd Order Resonant Extraction from the MedAustron Medical Synchrotron

    CERN Document Server

    Feldbauer, G; Dorda, U

    2011-01-01

    The MedAustron medical synchrotron is based on the CERN-PIMMS design and its technical implementation by CNAO [1]. This document elaborates on studies performed on the baseline betatron-core driven extraction method and investigates the feasibility of alternative resonance driving mechanisms like RF-knockout, RF-noise and the lattice tune. Single particle tracking results are presented, explained and compared to analytical results.

  7. Current status of Hiroshima Synchrotron Radiation Center

    International Nuclear Information System (INIS)

    Taniguchi, Masaki

    2000-01-01

    The Hiroshima Synchrotron Radiation Center is a common facility for both research and education in the field of synchrotron radiation science. The role of the center is to promote original research, training of young scientists, international exchange and cooperative research with neighbouring universities, public organizations and industries. (author)

  8. Materials research utilizing NSLS [National Synchrotron Light Source]: Progress report

    International Nuclear Information System (INIS)

    Liedl, G.L.

    1986-08-01

    Research was conducted using NSLS synchrotron radiation on the following: decomposition kinetics of a supersaturated Ni-Si alloy, hexane monolayers on graphite, layering of Fe(CO) 5 on graphite, charge density waves, aging of Al-Li, superlattices in ternary MBE-grown semiconductor films, phase transformation in Cu-Be and Al-Zn, microstructural changes in complex alloys, diffuse x-ray scattering, ion conduction in Ag-Ge-Se glass, organic monolayers of the Langmuir Blodgett type, and residual stress in coating

  9. Historical overview of the synchrotron radiation research in Japan. From the view point of creative works in the development of light sources and related technology

    International Nuclear Information System (INIS)

    Kamitsubo, Hiromichi

    2007-01-01

    Synchrotron radiation research in Japan started in early 1960's when the first electron synchrotron was commissioned at the Institute of Nuclear Study (INS), University of Tokyo (UT). This review covers the parasite use of the INS electron synchrotron and research works done at the light sources in Japan such as SOR-RING, Photon Factory (KEK-PF) Accumulator Ring (KEK-AR), and SPring-8. History of synchrotron radiation research in Japan was overviewed by paying attention to the creative works in the development of light sources and related technology, as well as the pioneering works on the development of experimental techniques and methods. At present there are more than ten synchrotron radiation sources are in operation and the number of their users, especially users from industries in Japan is increasing very rapidly and the research fields of users are also developing. Accordingly the synchrotron radiation facility becomes more and more indispensable facility in the society in Japan. (author)

  10. Synchrotron radiation

    International Nuclear Information System (INIS)

    Helliwell, J.R.; Walker, R.P.

    1985-01-01

    A detailed account of the research work associated with the Synchrotron Radiation Source at Daresbury Laboratory, United Kingdom, in 1984/85, is presented in the Appendix to the Laboratory's Annual Report. (U.K.)

  11. A novel DC Magnetron sputtering facility for space research and synchrotron radiation optics

    DEFF Research Database (Denmark)

    Hussain, A.M.; Christensen, Finn Erland; Pareschi, G.

    1998-01-01

    A new DC magnetron sputtering facility has been build up at the Danish Space Research Institute (DSRI), specially designed to enable uniform coatings of large area curved optics, such as Wolter-I mirror optics used in space telescopes and curved optics used in synchrotron radiation facilities...

  12. Synchrotron environmental laboratory (SUL) at Anka

    International Nuclear Information System (INIS)

    Denecke, M.A.

    2002-01-01

    A research facility dedicated to environmental/geochemical research, the Synchrotron Environmental Laboratory (SUL), is planned to be installed and operated at ANKA. ANKA is the new synchrotron facility at the Research Centre Karlsruhe (FZK), Karlsruhe, Germany. ANKA is now in commissioning and planning operations for the fall of 2000. As the Institute for Nuclear Waste Disposal (INE) at FZK conducts a vigorous synchrotron-based research programme, INE was instrumental in the original impetus for installing such a facility at ANKA. These research activities at INE concentrate on actinide speciation in nuclear waste forms, geological media and geochemical model systems. In order for INE to direct their synchrotron research activities to ANKA, equipment and licensing required for performing experiments on actinide-containing samples is required. One great advantage of performing experiments on actinide-containing samples at ANKA is that the INE radiological laboratories lie in the near vicinity of the facility. This will minimise transport hazards and costs and allow experiments to be performed on samples whose characteristics may change with time. Experiments on radioactive samples with activities below the exemption level, according to German regulations, will be possible at ANKA at the start of operations. Licensing for work on higher levels of activity will be applied for in the future. The decades of experience in radiological work at FZK will facilitate development of procedure and equipment as prerequisites to licensing. A consortium of synchrotron radiation-user groups with environmental research interests has specified their requirements and needs for this facility. This scientific case serves as the foundation for the SUL design and is the basis for an application for federal funding. The SUL design reflects the heterogeneity and complexity of challenges facing researchers in the environmental/geochemical sciences. X-ray absorption fine structure (XAFS

  13. Synchrotron radiation, a powerful tool in research and technological development. Basic principles

    International Nuclear Information System (INIS)

    Jimenez M, J.

    2001-01-01

    The basic principles of synchrotron radiation emission in electron accelerators are presented. The main characteristics of synchrotron radiation, together with the physical principles that describe its interaction with different materials are also discussed. Different areas in which the development of synchrotron radiation has made a major impact are given. (Author)

  14. Design of a compact synchrotron light source for medical applications at NIRS

    International Nuclear Information System (INIS)

    Torikoshi, M.; Endo, M.; Kumada, M.; Noda, K.; Yamada, S.; Kawachi, K.

    1998-01-01

    A synchrotron light source dedicated to medical applications is required to be compact for installation in limited spaces at hospitals. The NIRS storage ring, with a circumference of 44.8 m, is designed to accelerate electrons up to 1.8 GeV and to store a beam of 400 mA. The ring is composed of superconducting bending magnets for downsizing. A beam of 300 MeV is injected into the ring from a microtron operated at an L-band RF frequency. There are two superconducting multipole wigglers with nine poles and a maximum field of 8 T, which can produce a photon flux of about 1.4 x 10 13 photons s -1 mrad -1 (0.1% bandwidth) -1 at 33 keV used for coronary angiography

  15. Atoms, molecules, clusters and synchrotron radiation

    International Nuclear Information System (INIS)

    Kui Rexi; Ju Xin

    1995-01-01

    The importance of synchrotron radiation, especially the third generation synchrotron radiation light source, in atomic, molecular and cluster physics is discussed and some views are presented on new methods which may become available for research in the above fields

  16. National Synchrotron Light Source: vacuum system for National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Schuchman, J.C.; Godel, J.B.; Jordan, W.; Oversluizen, T.

    1978-01-01

    The National Synchrotron Light Source (NSLS), a 24 million dollar project under construction at Brookhaven National Laboratory (BNL), is a research facility dedicated to the production of synchrotron radiation. Synchrotron radiation is that radiation produced by the acceleration of charged particles at near the speed of light. This facility will provide a continuous spectrum of radiation from the vacuum ultraviolet to the hard x-ray range. The radiation will be highly intense, 100% polarized, extremely well collimated and will have a pulsed time structure. The radiation will be produced in two electron storage rings at energies of 700 MeV and 2.5 GeV, respectively. A maximum of one ampere at 2 GeV, or one-half ampere at 2.5 GeV, of electron beam will be stored

  17. Synchrotron radiation and structural proteomics

    CERN Document Server

    Pechkova, Eugenia

    2011-01-01

    This book presents an overview of the current state of research in both synchrotron radiation and structural proteomics from different laboratories worldwide. The book presents recent research results in the most advanced methods of synchrotron radiation analysis, protein micro- and nano crystallography, X-ray scattering and X-ray optics, coherent X-Ray diffraction, and laser cutting and contactless sample manipulation are described in details. The book focuses on biological applications and highlights important aspects such as radiation damage and molecular modeling.

  18. Medical application of Synchrotron Radiation

    International Nuclear Information System (INIS)

    Hyodo, Kazuyuki; Nishimura, Katsuyuki.

    1990-01-01

    The number of patients suffering from ischemic heart disease is also increasing rapidly in Japan. The standard method for assessing coronary artery diseases is the coronary angiography. Excellent images are taken by this method, however, it is an invasive method in which a catheter into a peripheral artery. The patients would obtain great benefit if the coronary arteries could be distinguished by intravenous injection of the contrast material. The K-edge subtraction method, which uses the K-edge discontinuity in the attenuation coefficient of the contrast material, is considered to be the most suitable method for coronary angiography by peripheral venous injection. Synchrotron Radiation (SR) is so intense that it allows selection of monochromatic X-rays, and studies on K-edge subtraction using SR has been started at some facilities. Recent activities K-edge subtraction method at the Accumulation Ring are briefly described here. (author)

  19. Support for Synchrotron Access by Environmental Scientists

    International Nuclear Information System (INIS)

    Daly, Michael; Madden, Andrew; Palumbo, Anthony; Qafoku, N.

    2006-01-01

    To support ERSP-funded scientists in all aspects of synchrotron-based research at the Advanced Photon Source (APS). This support comes in one or more of the following forms: (1) writing proposals to the APS General User (GU) program, (2) providing time at MRCAT/EnviroCAT beamlines via the membership of the Molecular Environmental Science (MES) Group in MRCAT/EnviroCAT, (3) assistance in experimental design and sample preparation, (4) support at the beamline during the synchrotron experiment, (5) analysis and interpretation of the synchrotron data, and (6) integration of synchrotron experimental results into manuscripts

  20. Biological physics and synchrotron radiation

    International Nuclear Information System (INIS)

    Filhol, J.M.; Chavanne, J.; Weckert, E.

    2001-01-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  1. Biological physics and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Filhol, J M; Chavanne, J [European Synchrotron Radiation Facility, 38 - Grenoble (France); Weckert, E [Hasylab at Desy, Hamburg (Germany); and others

    2001-07-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  2. Assessment of neural networks training strategies for histomorphometric analysis of synchrotron radiation medical images

    International Nuclear Information System (INIS)

    Alvarenga de Moura Meneses, Anderson; Gomes Pinheiro, Christiano Jorge; Rancoita, Paola; Schaul, Tom; Gambardella, Luca Maria; Schirru, Roberto; Barroso, Regina Cely; Oliveira, Luis Fernando de

    2010-01-01

    Micro-computed tomography (μCT) obtained by synchrotron radiation (SR) enables magnified images with a high space resolution that might be used as a non-invasive and non-destructive technique for the quantitative analysis of medical images, in particular the histomorphometry (HMM) of bony mass. In the preprocessing of such images, conventional operations such as binarization and morphological filtering are used before calculating the stereological parameters related, for example, to the trabecular bone microarchitecture. However, there is no standardization of methods for HMM based on μCT images, especially the ones obtained with SR X-ray. Notwithstanding the several uses of artificial neural networks (ANNs) in medical imaging, their application to the HMM of SR-μCT medical images is still incipient, despite the potential of both techniques. The contribution of this paper is the assessment and comparison of well-known training algorithms as well as the proposal of training strategies (combinations of training algorithms, sub-image kernel and symmetry information) for feed-forward ANNs in the task of bone pixels recognition in SR-μCT medical images. For a quantitative comparison, the results of a cross validation and a statistical analysis of the results for 36 training strategies are presented. The ANNs demonstrated both very low mean square errors in the validation, and good quality segmentation of the image of interest for application to HMM in SR-μCT medical images.

  3. Assessment of neural networks training strategies for histomorphometric analysis of synchrotron radiation medical images

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga de Moura Meneses, Anderson, E-mail: ameneses@lmp.ufrj.b [Federal University of Rio de Janeiro, COPPE, Nuclear Engineering Program, CP 68509, CEP 21.941-972, Rio de Janeiro, RJ (Brazil); IDSIA (Dalle Molle Institute for Artificial Intelligence), University of Lugano (Switzerland); Gomes Pinheiro, Christiano Jorge [State University of Rio de Janeiro, RJ (Brazil); Rancoita, Paola [IDSIA (Dalle Molle Institute for Artificial Intelligence), University of Lugano (Switzerland); Mathematics Department, Universita degli Studi di Milano (Italy); Schaul, Tom; Gambardella, Luca Maria [IDSIA (Dalle Molle Institute for Artificial Intelligence), University of Lugano (Switzerland); Schirru, Roberto [Federal University of Rio de Janeiro, COPPE, Nuclear Engineering Program, CP 68509, CEP 21.941-972, Rio de Janeiro, RJ (Brazil); Barroso, Regina Cely; Oliveira, Luis Fernando de [State University of Rio de Janeiro, RJ (Brazil)

    2010-09-21

    Micro-computed tomography ({mu}CT) obtained by synchrotron radiation (SR) enables magnified images with a high space resolution that might be used as a non-invasive and non-destructive technique for the quantitative analysis of medical images, in particular the histomorphometry (HMM) of bony mass. In the preprocessing of such images, conventional operations such as binarization and morphological filtering are used before calculating the stereological parameters related, for example, to the trabecular bone microarchitecture. However, there is no standardization of methods for HMM based on {mu}CT images, especially the ones obtained with SR X-ray. Notwithstanding the several uses of artificial neural networks (ANNs) in medical imaging, their application to the HMM of SR-{mu}CT medical images is still incipient, despite the potential of both techniques. The contribution of this paper is the assessment and comparison of well-known training algorithms as well as the proposal of training strategies (combinations of training algorithms, sub-image kernel and symmetry information) for feed-forward ANNs in the task of bone pixels recognition in SR-{mu}CT medical images. For a quantitative comparison, the results of a cross validation and a statistical analysis of the results for 36 training strategies are presented. The ANNs demonstrated both very low mean square errors in the validation, and good quality segmentation of the image of interest for application to HMM in SR-{mu}CT medical images.

  4. Dual energy CT at the synchrotron: A piglet model for neurovascular research

    International Nuclear Information System (INIS)

    Schueltke, Elisabeth; Kelly, Michael E.; Nemoz, Christian; Fiedler, Stefan; Ogieglo, Lissa; Crawford, Paul; Paterson, Jessica; Beavis, Cole; Esteve, Francois; Brochard, Thierry; Renier, Michel; Requardt, Herwig; Dallery, Dominique; Le Duc, Geraldine; Meguro, Kotoo

    2011-01-01

    Background: Although the quality of imaging techniques available for neurovascular angiography in the hospital environment has significantly improved over the last decades, the equipment used for clinical work is not always suited for neurovascular research in animal models. We have previously investigated the suitability of synchrotron-based K-edge digital subtraction angiography (KEDSA) after intravenous injection of iodinated contrast agent for neurovascular angiography in radiography mode in both rabbit and pig models. We now have used the KEDSA technique for the acquisition of three-dimensional images and dual energy CT. Materials and methods: All experiments were conducted at the biomedical beamline ID 17 of the European Synchrotron Radiation Facility (ESRF). A solid state germanium (Ge) detector was used for the acquisition of image pairs at 33.0 and 33.3 keV. Three-dimensional images were reconstructed from an image series containing 60 single images taken throughout a full rotation of 360 o . CT images were reconstructed from two half-acquisitions with 720 projections each. Results: The small detector field of view was a limiting factor in our experiments. Nevertheless, we were able to show that dual energy CT using the KEDSA technique available at ID 17 is suitable for neurovascular research in animal models.

  5. Dual energy CT at the synchrotron: a piglet model for neurovascular research.

    Science.gov (United States)

    Schültke, Elisabeth; Kelly, Michael E; Nemoz, Christian; Fiedler, Stefan; Ogieglo, Lissa; Crawford, Paul; Paterson, Jessica; Beavis, Cole; Esteve, Francois; Brochard, Thierry; Renier, Michel; Requardt, Herwig; Dallery, Dominique; Le Duc, Geraldine; Meguro, Kotoo

    2011-08-01

    Although the quality of imaging techniques available for neurovascular angiography in the hospital environment has significantly improved over the last decades, the equipment used for clinical work is not always suited for neurovascular research in animal models. We have previously investigated the suitability of synchrotron-based K-edge digital subtraction angiography (KEDSA) after intravenous injection of iodinated contrast agent for neurovascular angiography in radiography mode in both rabbit and pig models. We now have used the KEDSA technique for the acquisition of three-dimensional images and dual energy CT. All experiments were conducted at the biomedical beamline ID 17 of the European Synchrotron Radiation Facility (ESRF). A solid state germanium (Ge) detector was used for the acquisition of image pairs at 33.0 and 33.3 keV. Three-dimensional images were reconstructed from an image series containing 60 single images taken throughout a full rotation of 360°. CT images were reconstructed from two half-acquisitions with 720 projections each. The small detector field of view was a limiting factor in our experiments. Nevertheless, we were able to show that dual energy CT using the KEDSA technique available at ID 17 is suitable for neurovascular research in animal models. Copyright © 2010. Published by Elsevier Ireland Ltd.

  6. Contact microscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs

  7. Research of synchrotron radiation by virtual photon and compton scattering

    International Nuclear Information System (INIS)

    Meng Xianzhu

    2005-01-01

    This paper presents a new theory to explain the synchrotron radiation. When charged particle does circular motion in the accelerator, the magnetic field of the accelerator can be taken as periodic, and equivalent to virtual photon. By Compton scattering of virtual photon and charged particle, the virtual photon can be transformed into photon to radiate out. According to this theory, the formula of photon wavelength in synchrotron radiation is found out, and the calculation results of wavelength is consonant with experimental data. (author)

  8. Synchrotron radiation X-ray microfluorescence techniques

    Indian Academy of Sciences (India)

    Synchrotron X-ray imaging systems with fluorescence techniques was developed for biomedical researches in Brazilian Synchrotron Laboratory. An X-ray fluorescence microtomography system was implemented to analyse human prostate and breast samples and an X-ray microfluorescence system was implemented to ...

  9. Recent research in flaxseed (oil seed) on molecular structure and metabolic characteristics of protein, heat processing-induced effect and nutrition with advanced synchrotron-based molecular techniques.

    Science.gov (United States)

    Doiron, Kevin J; Yu, Peiqiang

    2017-01-02

    Advanced synchrotron radiation-based infrared microspectroscopy is able to reveal feed and food structure feature at cellular and molecular levels and simultaneously provides composition, structure, environment, and chemistry within intact tissue. However, to date, this advanced synchrotron-based technique is still seldom known to food and feed scientists. This article aims to provide detailed background for flaxseed (oil seed) protein research and then review recent progress and development in flaxseed research in ruminant nutrition in the areas of (1) dietary inclusion of flaxseed in rations; (2) heat processing effect; (3) assessing dietary protein; (4) synchrotron-based Fourier transform infrared microspectroscopy as a tool of nutritive evaluation within cellular and subcellular dimensions; (5) recent synchrotron applications in flaxseed research on a molecular basis. The information described in this paper gives better insight in flaxseed research progress and update.

  10. Optoelectronic Picosecond Detection of Synchrotron X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Stephen M. [Purdue Univ., West Lafayette, IN (United States)

    2017-08-04

    The goal of this research program was to develop a detector that would measure x-ray time profiles with picosecond resolution. This was specifically aimed for use at x-ray synchrotrons, where x-ray pulse profiles have Gaussian time spreads of 50-100 ps (FWHM), so the successful development of such a detector with picosecond resolution would permit x-ray synchrotron studies to break through the pulse width barrier. That is, synchrotron time-resolved studies are currently limited to pump-probe studies that cannot reveal dynamics faster than ~50 ps, whereas the proposed detector would push this into the physically important 1 ps domain. The results of this research effort, described in detail below, are twofold: 1) the original plan to rely on converting electronic signals from a semiconductor sensor into an optical signal proved to be insufficient for generating signals with the necessary time resolution and sensitivity to be widely applicable; and 2) an all-optical method was discovered whereby the x-rays are directly absorbed in an optoelectronic material, lithium tantalate, which can then be probed by laser pulses with the desired picosecond sensitivity for detection of synchrotron x-rays. This research program has also produced new fundamental understanding of the interaction of x-rays and optical lasers in materials that has now created a viable path for true picosecond detection of synchrotron x-rays.

  11. The synchrotron light source ROSY

    International Nuclear Information System (INIS)

    Einfeld, D.; Buettig, H.; Dienel, S.; Glaeser, W.; Goetz, T.; Guratzsch, H.; Hartmann, B.; Janssen, D.; Krug, H.; Linnemann, J.; Matz, W.; Murphy, J.B.; Neumann, W.; Oehme, W.; Picard, M.; Plesko, M.; Proehl, D.; Schlenk, R.; Tomassini, D.; Tyrroff, H.

    1994-01-01

    ROSY, a 3rd generation synchrotron light source, has been proposed to be built at the Research Center Rossendorf/Dresden in Germany. With its low emittance and optimized space for installing insertion devices ROSY will be the first synchrotron radiation source in the 3 GeV range in Europe, dedicated to materials research and industrial application. The critical wavelength of the synchrotron radiation spectra was designed to be 0.15 nm corresponding to a critical photon energy of 8.4 keV. It is proposed to use a ''modified multiple bend achromat'' (MBA) lattice in order to get a compact machine as well as a low emittance. For 3 GeV an emittance smaller than 30π nm rad can be obtained. With a fourfold symmetry and two larger straight sections within the achromatic arcs the circumference is 148 m. 23% of the circumference can be used for installing insertion devices. (orig.)

  12. Australian synchrotron radiation science

    International Nuclear Information System (INIS)

    White, J.W.

    1996-01-01

    Full text: The Australian Synchrotron Radiation Program, ASRP, has been set up as a major national research facility to provide facilities for scientists and technologists in physics, chemistry, biology and materials science who need access to synchrotron radiation. Australia has a strong tradition in crystallography and structure determination covering small molecule crystallography, biological and protein crystallography, diffraction science and materials science and several strong groups are working in x-ray optics, soft x-ray and vacuum ultra-violet physics. A number of groups whose primary interest is in the structure and dynamics of surfaces, catalysts, polymer and surfactant science and colloid science are hoping to use scattering methods and, if experience in Europe, Japan and USA can be taken as a guide, many of these groups will need third generation synchrotron access. To provide for this growing community, the Australian National Beamline at the Photon Factory, Tsukuba, Japan, has been established since 1990 through a generous collaboration with Japanese colleagues, the beamline equipment being largely produced in Australia. This will be supplemented in 1997 with access to the world's most powerful synchrotron x-ray source at the Advanced Photon Source, Argonne National Laboratory, USA. Some recent experiments in surface science using neutrons as well as x-rays from the Australian National Beamline will be used to illustrate one of the challenges that synchrotron x-rays may meet

  13. Synchrotron X-ray scattering study on stratum corneum of skin. Toward applied research based upon basic research

    International Nuclear Information System (INIS)

    Hatta, Ichiro; Ohta, Noboru; Yagi, Naoto

    2008-01-01

    On considering the applied research on stratum corneum of skin, it is indispensable to know the structure at the molecular level. However, there is even now in a controversy among the researchers who are performing its X-ray scattering study. Here we introduce our solution for the two problems: One is the correlation between the lamellar structures and hydrocarbon-chain packings in intercellular lipid matrix and the other is the existence of water layers in the short lamellar structure. These studies have become possible for the first time by making good use of synchrotron small-angle/wide-angle X-ray diffraction. Based upon the structural evidence, we can further carry out the applied research in stratum corneum. (author)

  14. Synchrotron light

    International Nuclear Information System (INIS)

    2001-01-01

    'Synchrotron Light' is an interactive and detailed introduction to the physics and technology of the generation of coherent radiation from accelerators as well as to its widespread high-tech applications in science, medicine and engineering. The topics covered are the interaction of light and matter, the technology of synchrotron light sources, spectroscopy, imaging, scattering and diffraction of X-rays, and applications to materials science, biology, biochemistry, medicine, chemistry, food and pharmaceutical technology. All synchrotron light facilities are introduced with their home-page addresses. 'Synchrotron Light' provides an instructive and comprehensive multimedia learning tool for students, experienced practitioners and novices wishing to apply synchrotron radiation in their future work. Its multiple-entry points permit an easy exploration of the CD-Rom according to the users knowledge and interest. 2-D and 3-D animations and virtual reconstruction with computer-generated images guide visitors into the scientific and technical world of a synchrotron and into the applications of synchrotron radiation. This bilingual (English and French) CD-Rom can be used for self-teaching and in courses at various levels in physics, chemistry, engineering, and biology. (author)

  15. Synchrotron radiation and free electron laser activities in Novosibirsk

    International Nuclear Information System (INIS)

    Korchuganov, V.N.; Kulipanov, G.N.; Mezentsev, N.A.; Oreshkov, A.D.; Panchenko, V.E.; Pindyurin, V.F.; Skrinskij, A.N.; Sheromov, M.A.; Vinokurov, N.A.; Zolotarev, K.V.

    1994-01-01

    The results of studies realized in the Siberian synchrotron radiation centre within the frameworks of wide program of synchrotron radiation and free electron laser research are summarized. The technical information on the VEPP-2M, VEPP-3 and VEPP-4M storage rings used as synchrotron radiation sources is given. 10 refs.; 8 figs.; 12 tabs

  16. National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Lazarz, N.M.

    1991-04-01

    This report discussion research being conducted at the National Synchrotron light source. In particular, this report contains operations summaries; symposia, workshops, and projects; NSLS highlights; and abstracts of science at the NSLS

  17. Historical development of synchrotron x-ray diffraction topography

    International Nuclear Information System (INIS)

    Kawado, Seiji

    2011-01-01

    After a short history of X-ray diffraction topography, from the early stage of laboratory X-ray topography to recent synchrotron-radiation applications, is described, the development of science and technology for the synchrotron X-ray topography and its industrial applications are reviewed in more detail. In addition, the recent trend to synchrotron topography research is clarified on the basis of several data obtained from 256 papers which have been published since 2000. (author)

  18. Synchrotron based spallation neutron source concepts

    International Nuclear Information System (INIS)

    Cho, Y.

    1998-01-01

    During the past 20 years, rapid-cycling synchrotrons (RCS) have been used very productively to generate short-pulse thermal neutron beams for neutron scattering research by materials science communities in Japan (KENS), the UK (ISIS) and the US (IPNS). The most powerful source in existence, ISIS in the UK, delivers a 160-kW proton beam to a neutron-generating target. Several recently proposed facilities require proton beams in the MW range to produce intense short-pulse neutron beams. In some proposals, a linear accelerator provides the beam power and an accumulator ring compresses the pulse length to the required ∼ 1 micros. In others, RCS technology provides the bulk of the beam power and compresses the pulse length. Some synchrotron-based proposals achieve the desired beam power by combining two or more synchrotrons of the same energy, and others propose a combination of lower and higher energy synchrotrons. This paper presents the rationale for using RCS technology, and a discussion of the advantages and disadvantages of synchrotron-based spallation sources

  19. Synchrotron radiation and industrial research

    International Nuclear Information System (INIS)

    Townsend, R.P.

    1995-01-01

    Fundamental studies on the properties of many different materials are of prime importance to most industrial concerns. For Unilever, solids (crystalline and amorphous), soft solids and complex fluids are the materials of primary interest. Synchrotron radiation has proved of great value for the analysis of a variety of such materials, because the intense and highly collimated radiation source has enabled us to obtain structural information rapidly as well as in time-resolved mode. In this paper are outlined the types of materials problems faced, and how we use different techniques to elucidate structure (both short and long range order) in zeolites, amorphous solids, as well as in biomaterials such as skin and hair containing lipid phases. Both equilibrium and time-resolved studies are described. (orig.)

  20. New synchrotron radiation facility project. Panel on new synchrotron radiation facility project

    CERN Document Server

    Sato, S; Kimura, Y

    2003-01-01

    The project for constructing a new synchrotron radiation facility dedicated to the science in VUV (or EUV) and Soft X-ray (SX) region has been discussed for these two years at the Panel on New Synchrotron Radiation Facility Project. The Panel together with the Accelerator Design Working Group (WG), Beamline Design WG and Research Program WG suggested to the Ministry of Education, Science, Culture and Sports the construction of a 1.8 GeV electron storage ring suitable for 'Top-Up' operation and beamlines and monochromators designed for undulator radiation. The scientific programs proposed by nationwide scientists are summarized with their requirements of the characteristics of the beam. (author)

  1. Synchrotron radiation

    CERN Document Server

    Kunz, C

    1974-01-01

    The production of synchrotron radiation as a by-product of circular high-energy electron (positron) accelerators or storage rings is briefly discussed. A listing of existing or planned synchrotron radiation laboratories is included. The following properties are discussed: spectrum, collimation, polarization, and intensity; a short comparison with other sources (lasers and X-ray tubes) is also given. The remainder of the paper describes the experimental installations at the Deutsches Elektronen-Synchrotron (DESY) and DORIS storage rings, presents a few typical examples out of the fields of atomic, molecular, and solid-state spectroscopy, and finishes with an outlook on the use of synchrotron radiation in molecular biology. (21 refs).

  2. New theoretical results in synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G. [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation)]. E-mail: bagrov@phys.tsu.ru; Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil); Tlyachev, V.B. [Tomsk Institute of High Current Electronics, Akademicheskiy Avenue 4, Tomsk (Russian Federation); Jarovoi, A.T. [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation)

    2005-11-15

    One of the remarkable features of the relativistic electron synchrotron radiation is its concentration in small angle {delta}{approx}1/{gamma} (here {gamma}-relativistic factor: {gamma}=E/mc{sup 2}, E - energy, m - electron rest mass, c - light velocity) near rotation orbit plane [V.G. Bagrov, V.A. Bordovitsyn, V.G. Bulenok, V. Ya. Epp, Kinematical projection of pulsar synchrotron radiation profiles, in: Proceedings of IV ISTC Scientific Advisory Commitee Seminar on Basic Science in ISTC Aktivities, Akademgorodok, Novosibirsk, April 23-27, 2001, p. 293-300]. This theoretically predicted and experimentally confirmed feature is peculiar to total (spectrum summarized) radiating intensity. This angular distribution property has been supposed to be (at least qualitatively) conserved and for separate spectrum synchrotron radiation components. In the work of V.G. Bagrov, V.A. Bordovitsyn, V. Ch. Zhukovskii, Development of the theory of synchrotron radiation and related processes. Synchrotron source of JINR: the perspective of research, in: The Materials of the Second International Work Conference, Dubna, April 2-6, 2001, pp. 15-30 and in Angular dependence of synchrotron radiation intensity. http://lanl.arXiv.org/abs/physics/0209097, it is shown that the angular distribution of separate synchrotron radiation spectrum components demonstrates directly inverse tendency - the angular distribution deconcentration relatively the orbit plane takes place with electron energy growth. The present work is devoted to detailed investigation of this situation. For exact quantitative estimation of angular concentration degree of synchrotron radiation the definition of radiation effective angle and deviation angle is proposed. For different polarization components of radiation the dependence of introduced characteristics was investigated as a functions of electron energy and number of spectrum component.

  3. A compact proton synchrotron with a combined function lattice dedicated for medical use

    International Nuclear Information System (INIS)

    Hiramoto, Kazuo; Hirota, Jun-ichi; Norimine, Tetsurou; Nishi, Masatsugu; Katane, Mamoru; Sakurabata, Hiroaki; Noda, Akira; Iwashita, Yoshihisa; Inoue, Makoto.

    1995-01-01

    A proton synchrotron for cancer therapy is presented. The combined function lattice is employed to reduce the size of the synchrotron and make the control to be simple. The present synchrotron employs an RF acceleration cavity of the untuned type, in which higher RF voltage is applied to the acceleration gap with a rather low input power by feeding the RF power to each ferrite respectively. In the beam extraction, the transverse perturbation of the radio frequency is applied to make the beam diffuse and reach the separatrix of the nonlinear resonance. This scheme realizes a simple and low emittance beam extraction with a high duty factor. Furthermore, a new irradiation scheme for treatment is presented in which the proton beam is defocused in the deflecting plane of the bending magnets of the treatment gantry and scanned normal to the deflecting plane. Since the scatterers are not employed, loss of the beam can be significantly reduced. (author)

  4. Characteristics of a betatron core for extraction in a proton-ion medical synchrotron

    CERN Document Server

    Badano, L

    1997-01-01

    Medical synchrotrons for radiation therapy require a very stable extraction of the beam over a period of about one second. The techniques for applying resonant extraction to achieve this long spill can be classified into two groups, those that move the resonance and those that move the beam. The latter has the great advantage of keeping all lattice functions, and hence the resonance conditions, constant. The present report examines the possibility of using a betatron core to accelerate the waiting ion beam by induction into the resonance. The working principle, the proposed characteristics and the expected performances of this device are discussed. The betatron core is a smooth high-inductance device compared to the small quadrupole lenses that are normally used to move the resonance and is therefore better suited to delivering a very smooth spill. The large stored energy in a betatron core compared to a small quadrupole is also a safety feature since it responds less quickly to transients that could send lar...

  5. Research with neutron and synchrotron radiation on aerospace and automotive materials and components

    Energy Technology Data Exchange (ETDEWEB)

    Kaysser, Wolfgang; Abetz, Volker; Huber, Norbert; Kainer, Karl Ulrich; Pyczak, Florian; Schreyer, Andreas; Staron, Peter [Helmholtz-Zentrum Geesthacht Zentrum fuer Material und Kuestenforschung, Geesthacht (Germany); Esslinger, Joerg [MTU Aero Engines GmbH, Muenchen (Germany); Klassen, Thomas [Helmholtz-Zentrum Geesthacht Zentrum fuer Material und Kuestenforschung, Geesthacht (Germany); Helmut Schmidt Universitaet, Hamburg (Germany)

    2011-08-15

    Characterization with neutrons and synchrotron radiation has yielded essential contributions to the research and development of automotive and aerospace materials, processing methods, and components. This review mainly emphasises developments related to commercial passenger airplanes and light-duty cars. Improved and partly new materials for the reduction of airframe weight and joining by laser-beam welding and friction stir welding are ongoing areas of assessment. Chemical reactions, microstructure development, and residual stresses are frequently measured. Polymers and polymer matrix composites often require special experimental techniques. The thrust-to-weight ratio of aero-engines is increasing due to the improved design of components and the use of innovative materials. Investigations on superalloys, {gamma}-TiAl, and thermal barrier coatings are described in some detail. A discussion of the use of neutron and synchrotron diffraction in automotive applications covers the analysis of surface effects with respect to lubricants and wear, as well as the investigation of microstructure development, deformation, and fatigue behavior of materials, welds and components. Special steels, Al and Mg alloys are discussed and residual stresses in automotive components such as gears or crankshafts are described. Applications of characterization methods on membranes for polymeric membrane fuel cells and on nanocrystalline metal hydrides for hydrogen storage are shown. The degradation of railway tracks after long-term use is taken as an example for the application of synchrotron methods to transport systems beyond the commercial aircraft and light duty passenger car. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Materials research and beam line operation utilizing NSLS [National Synchrotron Light Source]: Progress report

    International Nuclear Information System (INIS)

    Liedl, G.L.

    1987-10-01

    MATRIX is a group of scientists who have common interests in utilizing x-ray synchrotron radiation for materials research. This group has developed a specialized beam line (X-18A) for x-ray scattering studies at the National Synchrotron Light Source (NSLS). The beam line was designed to optimize experimental conditions for diffuse scattering and surface/interface studies. An extension of diffuse scattering to provide better quantitative data has been shown as well as a unique application to the solution of the phase problem. In the x-ray surface scattering area the first reported experiment to illustrate the capabilities for studying monolayers on water was performed. Current beam line upgrade projects are also described. In addition to a change to a UHV system and improvements dictated by operational experience, two new systems are described, a unique small angle scattering chamber (SAXS) for dynamic studies of nucleation and growth and a surface scattering chamber. 5 figs

  7. Synchrotrons are also devoted to society

    International Nuclear Information System (INIS)

    Gacoin, M.P.; Cornuejols, D.; Cotte, M.; Deblay, P.; Mitchell, E.P.; McCarthy, J.; Fraissard, F.

    2013-01-01

    The ESRF and the SOLEIL synchrotrons are not only scientific instruments but also active players in the cultural and economic fields. This document gathers 6 short articles. The 2 first present the actions of SOLEIL and ESRS scientific teams towards the spreading of scientific knowledge in the public. The third article is dedicated to the uses of synchrotron radiation to the study of cultural objects to learn more about their fabrication, present state or the remedial actions that could be used to renovate them. The fourth and fifth articles present the contributions of ESRF and SOLEIL to the industrial world, in fact these contributions are not limited to the research field but also appear for quality assurance or the control of aging processes. Partnerships have been signed between both synchrotrons and enterprises to develop industrial products based on instrumentation or on the use of synchrotron radiation. The last article describes the procedure to have access to both facilities. (A.C.)

  8. Fifth school on Magnetism and Synchrotron Radiation

    CERN Document Server

    Beaurepaire, Eric; Scheurer, Fabrice; Kappler, Jean-Paul; Magnetism and Synchrotron Radiation : New Trends

    2010-01-01

    Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials. At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale. With the Fifth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.

  9. High energy synchrotron radiation. A new probe for condensed matter research

    International Nuclear Information System (INIS)

    Schneider, J.R.; Bouchard, R.; Brueckel, T.; Lippert, M.; Neumann, H.B.; Poulsen, H.F.; Ruett, U.; Schmidt, T.; Zimmermann, M. von

    1994-01-01

    The absorption of 150 keV synchrotron radiation in matter is weak and, as normally done with neutrons, bulk properties are studied in large samples. However, the k-space resolution obtained with a Triple Crystal Diffractometer (TCD) for high energy synchrotron radiation is about one order of magnitude better than in high resolution neutron diffraction. The technique has been applied to measure the structure factor S(Q) of amorphous solids up to momentum transfers of the order of 32 A -1 , to study the intermediate range Ortho-II ordering in large, high quality YBa 2 Cu 3 O 6.5 single crystals and for investigations of the defect scattering from annealed Czochralski grown silicon crystals. Magnetic superlattice reflections have been measured in MnF 2 demonstrating the potential of the technique for high resolution studies of ground state bulk antiferromagnetism. Recently the question of two length scales in the critical scattering at the 100 K phase transition in SrTiO 3 was studied. At the PETRA storage ring, which serves as an accumulator for the HERA electron-proton-ring at DESY and which can be operated up to electron energies of 12 GeV, an undulator beam line is currently under construction and should be available in summer 1995. It opens up exciting new research opportunities for photon energies from about 20 to 150 keV. (orig.)

  10. MedAustron – Non-Clinical Research Opportunities

    International Nuclear Information System (INIS)

    Schreiner, T.

    2013-01-01

    MedAustron is a synchrotron based light-ion beam therapy centre for cancer treatment as well as for clinical and non-clinical research, currently in the construction phase in Wiener Neustadt. Whilst the choice of basic machine parameters was driven by medical requirements, the accelerator complex design was also optimised to offer flexibility for research operation. The potential of the synchrotron is being exploited to increase the maximum proton energy far beyond the medical needs to up to 800 MeV, for experimental physics applications, mainly in the areas of proton scattering and detector research. The accelerator layout allows for the installation of up to four ion source-spectrometer units, to provide various ion types besides the clinical used protons and carbon ions. To decouple research and medical operation, a dedicated irradiation room for non-clinical research was included providing two isocentres for the installation of different experiments. This presentation provides a status overview over the whole project and highlights the non-clinical research opportunities at MedAustron. (author)

  11. Synchrotron light beam and a synchrotron light experiment facility

    International Nuclear Information System (INIS)

    Ando, Masami

    1980-01-01

    In the National Laboratory for High Energy Physics, about two years ago, the requirements of synchrotron light beam in respective measuring instruments were discussed. Then, also the arrangement (lattice) of a storage ring, the nature of synchrotron light beam, a synchrotron light experiment facility and the arrangement of the beam lines were studied. During the period of two years since then, due to the changes in the circumstances, the design of the lattice was altered. Accordingly, the arrangement of the beam lines and of measuring instruments were largely changed. At this point, the results of discussions in various meetings are described, though they may still be subject to future changes, with due consideration to beam, environment and beam lines required for the design of the measuring instruments: (1) storage ring and synchrotron light beam, (2) requirements on small beam size and beam stability, (3) a synchrotron light experiment facility. (J.P.N.)

  12. Highland Medical Research Journal

    African Journals Online (AJOL)

    The aim of the Highland Medical Research Journal is to publish scientific research in various fields of medical science and to communicate such research findings to the larger world community. It aims to promote cooperation and understanding amoungst workers in various fields of medical science.

  13. Panel backs next-generation synchrotron

    CERN Multimedia

    Service, R F

    1999-01-01

    A key federal panel recommended continued research into development of a fourth-generation synchrotron. It would be capable of creating x-ray pulses billions of times more intense than current designs (1 page).

  14. Synchrotron radiation. Basics, methods and applications

    International Nuclear Information System (INIS)

    Mobilio, Settimio; Meneghini, Carlo; Boscherini, Federico

    2015-01-01

    Synchrotron radiation is today extensively used for fundamental and applied research in many different fields of science. Its exceptional characteristics in terms of intensity, brilliance, spectral range, time structure and now also coherence pushed many experimental techniques to previously un-reachable limits, enabling the performance of experiments unbelievable only few years ago. The book gives an up-to-date overview of synchrotron radiation research today with a view to the future, starting from its generation and sources, its interaction with matter, illustrating the main experimental technique employed and provides an overview of the main fields of research in which new and innovative results are obtained. The book is addressed to PhD students and young researchers to provide both an introductory and a rather deep knowledge of the field. It will also be helpful to experienced researcher who want to approach the field in a professional way.

  15. [Research in medical education

    DEFF Research Database (Denmark)

    Ringsted, Charlotte Vibeke

    2008-01-01

    Research in medical education is a relatively new discipline. Over the past 30 years, the discipline has experienced a tremendous growth, which is reflected in an increase in the number of publications in both medical education journals and medical science journals. However, recent reviews...... of articles on medical education studies indicate a need for improvement of the quality of medical education research in order to contribute to the advancement of educational practice as well as educational research. In particular, there is a need to embed studies in a conceptual theoretical framework...

  16. Synchrotron radiation in transactinium research report of the workshop

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe[sub 2] and U-S; the laser plasma laboratory light source: a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.

  17. Synchrotron radiation in transactinium research report of the workshop

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe{sub 2} and U-S; the laser plasma laboratory light source: a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.

  18. Synchrotron radiation in transactinium research report of the workshop

    International Nuclear Information System (INIS)

    1992-11-01

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe 2 and U-S; the laser plasma laboratory light source: a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials

  19. Large-scale User Facility Imaging and Scattering Techniques to Facilitate Basic Medical Research

    International Nuclear Information System (INIS)

    Miller, Stephen D.; Bilheux, Jean-Christophe; Gleason, Shaun Scott; Nichols, Trent L.; Bingham, Philip R.; Green, Mark L.

    2011-01-01

    Conceptually, modern medical imaging can be traced back to the late 1960's and into the early 1970's with the advent of computed tomography . This pioneering work was done by 1979 Nobel Prize winners Godfrey Hounsfield and Allan McLeod Cormack which evolved into the first prototype Computed Tomography (CT) scanner in 1971 and became commercially available in 1972. Unique to the CT scanner was the ability to utilize X-ray projections taken at regular angular increments from which reconstructed three-dimensional (3D) images could be produced. It is interesting to note that the mathematics to realize tomographic images was developed in 1917 by the Austrian mathematician Johann Radon who produced the mathematical relationships to derive 3D images from projections - known today as the Radon Transform . The confluence of newly advancing technologies, particularly in the areas of detectors, X-ray tubes, and computers combined with the earlier derived mathematical concepts ushered in a new era in diagnostic medicine via medical imaging (Beckmann, 2006). Occurring separately but at a similar time as the development of the CT scanner were efforts at the national level within the United States to produce user facilities to support scientific discovery based upon experimentation. Basic Energy Sciences within the United States Department of Energy currently supports 9 major user facilities along with 5 nanoscale science research centers dedicated to measurement sciences and experimental techniques supporting a very broad range of scientific disciplines. Tracing back the active user facilities, the Stanford Synchrotron Radiation Lightsource (SSRL) a SLAC National Accelerator Laboratory was built in 1974 and it was realized that its intense x-ray beam could be used to study protein molecular structure. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was commissioned in 1982 and currently has 60 x-ray beamlines optimized for a number of different

  20. National Laboratory of Synchrotron Radiation: technologic potential

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da; Rodrigues, A.R.D.

    1987-01-01

    The technological or industrial developments based on the accumulated experience by research group of condensed matter physics, in Brazil, are described. The potential of a National Laboratory of Synchrotron Radiation for personnel training, absorption and adaptation of economically important technologies for Brazil, is presented. Examples of cooperations between the Laboratory and some national interprises, and some industrial applications of the synchrotron radiation are done. (M.C.K.) [pt

  1. Clinical step onward with X-ray dark-field imaging and perspective view of medical applications of synchrotron radiation in Japan

    International Nuclear Information System (INIS)

    Ando, M.; Hashimoto, E.; Hashizume, H.; Hyodo, K.; Inoue, H.; Kunisada, T.; Maksimenko, A.; Mori, K.; Rubenstein, E.; Roberson, J.; Shimao, D.; Sugiyama, H.; Takeda, K.; Toyofuku, F.; Ueno, E.; Umetani, K.; Wada, H.; Pattanasiriwisawa, W.

    2005-01-01

    This paper reports, the application of synchrotron radiation to basic medicine at SPring-8 involving instrumentation and medical application of imaging and scattering. Emphasis should be laid on X-ray dark-field imaging (DFI) whose goal is clinical diagnosis of organs that have been invisible by ordinary techniques. Development of this technique is under way both at SPring-8 and KEK. The X-ray optics of DFI comprises a Bragg asymmetric monochro-collimator and a Laue case analyzer with a diffraction index of 440 using the X-ray energy of 35keV (λ=0.0354nm) in a parallel position. This analyzer that can provide with 80mmx80mm view size has 2.15mm thickness. At present the spatial resolution is around 5-10μm. Visibility of some organs such as soft bone tissue at excised human femoral head and breast cancer tissue is under test. This preliminary test shows that the DFI seems feasible in clinical diagnosis. Furthermore, a perspective view of application of synchrotron radiation to clinical medicine in Japan will be given

  2. Synchrotron-driven spallation sources

    CERN Document Server

    Bryant, P J

    1996-01-01

    The use of synchrotrons for pulsed neutron spallation sources is an example of scientific and technological spin-off from the accelerator development for particle physics. Accelerator-driven sources provide an alternative to the continuous-flux, nuclear reactors that currently furnish the majority of neutrons for research and development. Although the present demand for neutrons can be adequately met by the existing reactors, this situation is unlikely to continue due to the increasing severity of safety regulations and the declared policies of many countries to close down their reactors within the next decade or so. Since the demand for neutrons as a research tool is, in any case,expected to grow, there has been a corresponding interest in sources that are synchrotron-driven or linac-driven with a pulse compression ring and currently several design studies are being made. These accelerator-driven sources also have the advantage of a time structure with a high peak neutron flux. The basic requirement is for a...

  3. 3 GeV Booster Synchrotron Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Helmut

    2009-06-02

    Synchrotron light cna be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material science, biology, and medicine.

  4. The national synchrotron: ray of hope or ring of fire?

    International Nuclear Information System (INIS)

    Hollis, T.

    2002-01-01

    While most agree the synchrotron will be a boost for Australian science, the author reports on concerns about the cost of building and operating the project Biotech industry representatives want to know how that $100 million will be used and want to see the government's justification for pouring more than a third of its total technology budget for 2001/2 into the synchrotron. They, and the opposition, also want to know where the private money will come from to make up the balance or whether the state will ultimately have to pitch in the rest itself. Indeed, an Auditor-General's report released last week warned of the need for comprehensive financial risk management of the facility. The National Synchrotron, to be built at Monash University, will be a hollow ring of about 60 metres diameter and initially housing nine beamlines, each capable of performing independent experiments simultaneously. According to Dr Richard Garrett, director of the Australian Synchrotron Research Program (http://www.ansto.gov.au/natfac/asrp.html) projection reports had indicated the local synchrotron user community would expand from about 350 researchers today to about 1200 by the time the National Synchrotron is built, with demand steadily increasing in the years following its completion

  5. Reshuffle lifts French synchrotron hopes

    CERN Multimedia

    McCabe, H

    2000-01-01

    The sacking of Claude Allegre as research minister has raised doubts over the level of France's promised participation in the construction of Diamond but reawakened French hopes that the synchrotron Soleil may now be built (1 page).

  6. Polymer research at synchrotron radiation sources: symposium proceedings

    International Nuclear Information System (INIS)

    Russell, T.P.; Goland, A.N.

    1985-01-01

    The twenty-two papers are arranged into eleven sessions entitled: general overviews; time-resolved x-ray scattering; studies using fluorescence, ion-containing polymers; time-resolved x-ray scattering; novel applications of synchrotron radiation; phase transitions in polymers; x-ray diffraction on polymers; recent detector advances; complementary light, x-ray and neutron studies; and neutron scattering studies. Seven of the papers are processed separately; three of the remainder have been previously processed

  7. Status and schedule of J-PARC 50 GeV synchrotron

    International Nuclear Information System (INIS)

    Oogoe, Takao; Yoshioka, Masakazu; Kobayashi, Hitoshi; Takeuchi, Yasunori; Shirakata, Masashi; Shirakabe, Yoshihisa; Kuniyasu, Yuu; Oki, Hiroshi; Takiyama, Youichi

    2005-01-01

    Japan Proton Accelerator Research Complex (J-PARC) is the research complex based on three high intensity proton Accelerators: a linac, a 3 GeV synchrotron (RCS), and a 50 GeV synchrotron (MR). The construction of the MR started in 2002, and its beam commissioning is scheduled in January of 2008. The accelerator tunnel of the J-PARC 50 GeV Synchrotron is still under construction, and will be completed at the end of 2006. Installation of accelerator-components is scheduled to start in July 2005 in parallel with civil and utility construction. This document describes how to install accelerator components in the tunnel and civil engineering of the tunnel. (author)

  8. Medical applications of accelerators

    CERN Document Server

    Rossi, Sandro

    1998-01-01

    At Present, about five thousands accelerators are devoted to biomedical applications. They are mainly used in radiotherapy, research and medical radioisotopes production. In this framework oncological hadron-therapy deserves particular attention since it represents a field in rapid evolution thanks to the joint efforts of laboratories with long experiences in particle physics. It is the case of CERN where the design of an optimised synchrotron for medical applications has been pursued. These lectures present these activities with particular attention to the new developments which are scientifically interesting and/or economically promising.

  9. Synchrotrons are also devoted to the society

    International Nuclear Information System (INIS)

    Gacoin, M.P.; Cornuejols, D.; Cotte, M.; Deblay, P.; Mitchell, E.P.; McCarthy, J.; Fraissard, F.

    2013-01-01

    The ESRF and the SOLEIL synchrotrons are not only scientific instruments but also active players in the cultural and economic fields. This document gathers 6 short articles. The 2 first present the actions of SOLEIL and ESRS scientific teams towards the spreading of scientific knowledge in the public. The third article is dedicated to the uses of synchrotron radiation to the study of cultural objects to learn more about their fabrication, present state or the remedial actions that could be used to renovate them. The fourth and fifth articles present the contributions of ESRF and SOLEIL to the industrial world, in fact these contributions are not limited to the research field but also appear for quality assurance or the control of aging processes. Partnerships have been signed between both synchrotrons and enterprises to develop industrial products based on instrumentation or on the use of synchrotron radiation. The last article describes the procedure to have access to both facilities. (A.C.)

  10. The physics design of the Australian synchrotron storage ring

    International Nuclear Information System (INIS)

    Boldeman, J.W.; Einfeld, D.

    2004-01-01

    This paper describes the physics design of the Australian Synchrotron Storage Ring--Boomerang, which is currently under construction on a site adjacent to Monash University in Melbourne, Victoria. It also includes brief historical notes on the development of the proposal, some background material on the Australian synchrotron research community and preliminary information on possible research programs on the new facility. The facility itself is now in the early stages of construction under the leadership of Seaborne and Jackson

  11. Report of the evaluation by the ad hoc review committee on advanced photon and synchrotron radiation research. In-advance evaluation in fiscal year 2001

    International Nuclear Information System (INIS)

    2001-11-01

    The Research Evaluation Committee, which consisted of 13 members from outside of the Japan Atomic Energy Research Institute (JAERI), set up an Ad Hoc Review Committee on Advanced Photon and Synchrotron Radiation Research in accordance with the 'Fundamental Guideline for the Evaluation of Research and Development (R and D) at JAERI' and its subsidiary regulations in order to evaluate the adequacy of the R and D programs to be implemented for five years starting in Fiscal Year 2002 at Advanced Photon Research Center and at Synchrotron Radiation Research Center in Kansai Research Establishment of JAERI. The Ad Hoc Review Committee consisted of ten specialists from outside of JAERI. The Ad Hoc Review Committee conducted its activities from May to July 2001. The evaluation was performed on the basis of the materials submitted in advanced and of the oral presentations made at the Ad Hoc Review Committee meeting which was held on June 21, 2001, in line with the items, viewpoints, and criteria for the evaluation specified by the Research Evaluation Committee. The result of the evaluation by the Ad Hoc Review Committee was submitted to the Research Evaluation Committee, and was judged to be appropriate at its meeting held on July 12, 2001. This report describes the result of the evaluation by the Ad Hoc Review Committee on Advanced Photon and Synchrotron Radiation Research. (author)

  12. Polymer research at synchrotron radiation sources: symposium proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Russell, T.P.; Goland, A.N. (eds.)

    1985-01-01

    The twenty-two papers are arranged into eleven sessions entitled: general overviews; time-resolved x-ray scattering; studies using fluorescence, ion-containing polymers; time-resolved x-ray scattering; novel applications of synchrotron radiation; phase transitions in polymers; x-ray diffraction on polymers; recent detector advances; complementary light, x-ray and neutron studies; and neutron scattering studies. Seven of the papers are processed separately; three of the remainder have been previously processed. (DLC)

  13. High resolution 3D imaging of synchrotron generated microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  14. High resolution 3D imaging of synchrotron generated microbeams

    International Nuclear Information System (INIS)

    Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi

    2015-01-01

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery

  15. Use of a synchrotron radiation x-ray microprobe for elemental analysis at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1980-01-01

    The National Synchrotron Light Source (NSLS) is a facility consisting of a 700 MeV and a 2.5 GeV electron storage ring and dedicated to providing synchrotron radiation in the energy range from the vacuum ultraviolet to high energy x rays. Some of the properties of synchrotron radiation that contribute to its usefulness for x-ray fluorescence are: a continuous, tunable energy spectrum, strong collimation in the horizontal plane, high polarization in the storage ring plane, and relatively low energy deposition. The highest priority is for the development of an x-ray microprobe beam line capable of trace analysis in the parts per million range with spatial resolution as low as one micrometer. An eventual capability for bulk sample analysis is also planned with sensitivities in the more favorable cases beings low as 50 parts per billion in dry biological tissue. The microprobe technique has application to a variety of fields including the geological, medical, materials and environmental sciences. Examples of investigations include multielemental trace analysis across grain boundaries for the study of diffusion and cooling processes in geological and materials sciences samples; in leukocytes and other types of individual cells for studying the relationship between trace element concentrations and disease or nutrition; and in individual particles in air pollution samples

  16. Applications of synchrotron radiation in biology and medicine

    International Nuclear Information System (INIS)

    Khole, V.

    1988-01-01

    This paper discusses the important role of synchrotron radiation in dealing with problems in various branches of biology and medicine, viz. molecular biology, molecular biophysics, biochemistry, cell biology, X-ray microscopy, molecular surgery, medical diagnostics (angiography, X-ray radiography, forensic medicine, element analysis), environmental biology, pollution control and photobiology. (author). 15 refs., 9 figs

  17. Research Associate | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES - Research Associate III Dr. Zbigniew Dauter is the head investigator of the Synchrotron Radiation Research Section (SRRS) of CCR’s Macromolecular Crystallography Laboratory. The Synchrotron Radiation Research Section is located at Argonne National Laboratory, Argonne, Illinois; this is the site of the largest U.S. synchrotron facility. The SRRS uses X-ray diffraction technique to solve crystal structures of various proteins and nucleic acids of biological and medical relevance. The section is also specializing in analyzing crystal structures at extremely high resolution and accuracy and in developing methods of effective diffraction data collection and in using weak anomalous dispersion effects to solve structures of macromolecules. The areas of expertise are: Structural and molecular biology Macromolecular crystallography Diffraction data collection Dr. Dauter requires research support in these areas, and the individual will engage in the purification and preparation of samples, crystallize proteins using various techniques, and derivatize them with heavy atoms/anomalous scatterers, and establish conditions for cryogenic freezing. Individual will also participate in diffraction data collection at the Advanced Photon Source. In addition, the candidate will perform spectroscopic and chromatographic analyses of protein and nucleic acid samples in the context of their purity, oligomeric state and photophysical properties.

  18. X-ray phase contrast imaging: From synchrotrons to conventional sources

    International Nuclear Information System (INIS)

    Olivo, A.; Castelli, E.

    2014-01-01

    Phase-based approaches can revolutionize X-ray imaging and remove its main limitation: poor image contrast arising from low attenuation differences. They exploit the unit decrement of the real part of the refractive index, typically 1000 times larger than the imaginary part driving attenuation. This increases the contrast of all details, and enables the detection of features classically considered 'X-ray invisible'. Following pioneering experiments dating back to the mid-sixties, X-ray phase contrast imaging 'exploded' in the mid-nineties, when third generation synchrotron sources became more widely available. Applications were proposed in fields as diverse as material science, palaeontology, biology, food science, cultural heritage preservation, and many others. Among these applications, medicine has been constantly considered the most important; among medical applications, mammography is arguably the one that attracted most attention. Applications to mammography were pioneered by the SYRMEP (SYnchrotron Radiation for MEdical Physics) group in Trieste, which was already active in the area through a combination of innovative ways to do imaging at synchrotrons and development of novel X-ray detectors. This pioneering phase led to the only clinical experience of phase contrast mammography on human patients, and spawned a number of ideas as to how these advances could be translated into clinical practice.

  19. Plant-based food and feed protein structure changes induced by gene-transformation, heating and bio-ethanol processing: a synchrotron-based molecular structure and nutrition research program.

    Science.gov (United States)

    Yu, Peiqiang

    2010-11-01

    Unlike traditional "wet" analytical methods which during processing for analysis often result in destruction or alteration of the intrinsic protein structures, advanced synchrotron radiation-based Fourier transform infrared microspectroscopy has been developed as a rapid and nondestructive and bioanalytical technique. This cutting-edge synchrotron-based bioanalytical technology, taking advantages of synchrotron light brightness (million times brighter than sun), is capable of exploring the molecular chemistry or structure of a biological tissue without destruction inherent structures at ultra-spatial resolutions. In this article, a novel approach is introduced to show the potential of the advanced synchrotron-based analytical technology, which can be used to study plant-based food or feed protein molecular structure in relation to nutrient utilization and availability. Recent progress was reported on using synchrotron-based bioanalytical technique synchrotron radiation-based Fourier transform infrared microspectroscopy and diffused reflectance infrared Fourier transform spectroscopy to detect the effects of gene-transformation (Application 1), autoclaving (Application 2), and bio-ethanol processing (Application 3) on plant-based food and feed protein structure changes on a molecular basis. The synchrotron-based technology provides a new approach for plant-based protein structure research at ultra-spatial resolutions at cellular and molecular levels.

  20. Numerical calculation of beam coupling impedances in synchrotron accelerators

    International Nuclear Information System (INIS)

    Haenichen, Lukas

    2016-01-01

    Beams of charged particles are of interest in various fields of research including particle and nuclear physics, material and medical science and many more. In synchrotron accelerators the accelerating section is passed periodically. A closed loop trajectory is enforced, by increasing the frequency of the accelerating electric field and the magnitude of the dipolar magnetic guide field synchronously. A synchrotron therefore consists of a circular assembly of various beamline elements which serve the purposes of accelerating and guiding the particle beam. For the flawless operation of such a machine it has to be assured that the particles perform a controlled motion along predefined trajectories. Amongst others, the fulfillment of the corresponding stability criteria is in close conjuction with the so-called beam coupling impedances which are an important figure of merit for collective effects in synchrotron accelerators. This work focuses on analytical and numerical methods for the calculation of beam coupling impedances. One of the primary objectives is to gain a better understanding of the electrodynamics related to charged particle beams, furthermore to recapitulate the mathematical description of charged particle beams in both time and frequency domain and finally establish the links between actual physics and numerical modeling. Analytical methods are usually restricted to symmetrical geometry and may solely serve for the approximate determination of the field distribution in real geometries or to validate certain numerical methods. More accurate prognosis is only possible with three-dimensional simulation models. Numerical simulation techniques have been established in the second half of the last century accompanying the evolution of many particle accelerators. Classical time domain codes were the prevailing simulation tools where the actual process of the particle motion sequence is reproduced. For the present case of a heavy ion synchrotron accelerator

  1. Numerical calculation of beam coupling impedances in synchrotron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Haenichen, Lukas

    2016-07-01

    Beams of charged particles are of interest in various fields of research including particle and nuclear physics, material and medical science and many more. In synchrotron accelerators the accelerating section is passed periodically. A closed loop trajectory is enforced, by increasing the frequency of the accelerating electric field and the magnitude of the dipolar magnetic guide field synchronously. A synchrotron therefore consists of a circular assembly of various beamline elements which serve the purposes of accelerating and guiding the particle beam. For the flawless operation of such a machine it has to be assured that the particles perform a controlled motion along predefined trajectories. Amongst others, the fulfillment of the corresponding stability criteria is in close conjuction with the so-called beam coupling impedances which are an important figure of merit for collective effects in synchrotron accelerators. This work focuses on analytical and numerical methods for the calculation of beam coupling impedances. One of the primary objectives is to gain a better understanding of the electrodynamics related to charged particle beams, furthermore to recapitulate the mathematical description of charged particle beams in both time and frequency domain and finally establish the links between actual physics and numerical modeling. Analytical methods are usually restricted to symmetrical geometry and may solely serve for the approximate determination of the field distribution in real geometries or to validate certain numerical methods. More accurate prognosis is only possible with three-dimensional simulation models. Numerical simulation techniques have been established in the second half of the last century accompanying the evolution of many particle accelerators. Classical time domain codes were the prevailing simulation tools where the actual process of the particle motion sequence is reproduced. For the present case of a heavy ion synchrotron accelerator

  2. Research with stored ions produced using synchrotron radiation

    International Nuclear Information System (INIS)

    Church, D.A.; Kravis, S.D.; Meron, M.; Johnson, B.M.; Jones, K.W.; Sellin, I.A.; O, C.S.; Levin, J.C.; Short, R.T.

    1987-01-01

    A distribution of argon ion charge states has been produced by inner shell photoionization of argon atoms using x-ray synchrotron radiation. These ions were stored in a Penning ion trap at moderate to very low well depths, and analog-detected yielding narrow charge-to-mass spectrum linewidths. Estimates of ion densities indicated that ion-ion collisional energy transfer should be rapid, leading to thermalization. Measurements using variants of this novel stored, multi-charged ion gas are considered

  3. Growth Disparity between Medical Research and Medical Services ...

    Indian Academy of Sciences (India)

    Growth Disparity between Medical Research and Medical Services in India. British rulers opened hospitals for modern medicine; medical colleges; nurses schools etc. in the 19th century to the joyous welcome of natives. During the same period, they set up Indian Research Fund Association two years ahead of the MRC of ...

  4. Materials science and technology by synchrotron radiation

    International Nuclear Information System (INIS)

    Chikawa, J.

    1990-01-01

    In the present paper, features of the Photon Factory, a facility for synchrotron research installed at the National Laboratory for High Energy Physics in Japan, are outlined, and then the impact of the advent of synchrotron radiation is discussed in relation to its outcome during the past seven years. Prospects for future development of synchrotron radiation are also presented. The facility consists of an injector linac to accelerate electrons up to 2.5 GeV and a ring to store the accelerated electrons in a closed orbit. In the Photon Factory, a 400m-long linac has been constructed for use as injector for both the Photon Factory and the TRISTAN electron-positron collider. The storage ring is operated at the same electron energy of 2.5 GeV. The present report also describes some applications of synchrotron radiation, focusing on spectroscopy (X-ray fluorescence technique and time-resolved X-ray absorption spectroscopy), diffraction and scattering (surface structure studies and protein crystallography), and photo-chemical processing. (N.K.)

  5. Chemical applications of synchrotron radiation: Workshop report

    International Nuclear Information System (INIS)

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases

  6. Chemical applications of synchrotron radiation: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  7. Understanding Medical Research

    Science.gov (United States)

    ... you hear about the results of a new medical research study. Sometimes the results of one study ... when reading or listening to reports of new medical findings. Some questions that can help you evaluate ...

  8. Advances and synergy of high pressure sciences at synchrotron sources

    International Nuclear Information System (INIS)

    Liu, H.; Ehm, L.; Duffy, T.; Crichton, W.; Aoki, K.

    2009-01-01

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  9. Synchrotron radiation

    International Nuclear Information System (INIS)

    Nave, C.; Quinn, P.; Blake, R.J.

    1988-01-01

    The paper on Synchrotron Radiation contains the appendix to the Daresbury Annual Report 1987/88. The appendix is mainly devoted to the scientific progress reports on the work at the Synchrotron Radiation Source in 1987/8. The parameters of the Experimental Stations and the index to the Scientific Reports are also included in the appendix. (U.K.)

  10. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  11. European Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Buras, B.

    1985-01-01

    How a European Synchrotron Radiation Facility has developed into a detailed proposal recently accepted as the basis for construction of the facility at Grenoble is discussed. In November 1977, the General Assembly of the European Science Foundation (ESF) approved the report of the ESF working party on synchrotron radiation entitled Synchrotron Radiation - a Perspective View for Europe. This report contained as one of its principal recommendations that work should commence on a feasibility study for a European synchrotron radiation laboratory having a dedicated hard X-ray storage ring and appropriate advanced instrumentation. In order to prepare a feasibility study the European Science Foundation set up the Ad-hoc Committee on Synchrotron Radiation, which in turn formed two working groups: one for the machine and another for instrumentation. This feasibility study was completed in 1979 with the publication of the Blue Book describing in detail the so called 1979 European Synchrotron Radiation Facility. The heart of the facility was a 5 GeV electron storage ring and it was assumed that mainly the radiation from bending magnets will be used. The facility is described

  12. Report of preliminary investigations on the next-generation large-scale synchrotron radiation facility projects

    International Nuclear Information System (INIS)

    1990-01-01

    The Special Committee for Future Project of the Japanese Society for Synchrotron Radiation Research investigated the construction-projects of the large-scaled synchrotron radiation facilities which are presently in progress in Japan. As a result, the following both projects are considered the very valuable research-project which will carry the development of Japan's next-generation synchrotron radiation science: 1. the 8 GeV synchrotron radiation facilities (SPring-8) projected to be constructed by Japan Atomic Energy Research Institute and the Institute of Physical and Chemical Research under the sponsorship of Science Technology Agency at Harima Science Park City, Hyogo Pref., Japan. 2. The project to utilize the Tristan Main Ring (MR) of the National Laboratory for High Energy Physics as the radiation source. Both projects are unique in research theme and technological approach, and complemental each other. Therefore it has been concluded that both projects should be aided and ratified by the Society. (M.T.)

  13. Synchrotron radiation laboratories at the Bonn electron accelerators. a status report

    Science.gov (United States)

    Hormes, J.

    1987-07-01

    At the Physikalisches Institut of the University in Bonn experiments with synchrotron radiation were carried out ever since 1962. At the moment (June 1986) all work takes place in the SR-laboratory at the 2.5 GeV synchrotron. A 3.5 GeV stretcher ring (ELSA) is under construction and will come into operation at the end of 1986. This accelerator will also run as a storage ring for synchrotron radiation experiments and a laboratory to be used at this machine is also under consideration. The SR experiments which are carried out in Bonn try to take advantage of the fact that we are still using a high energy synchrotron for our work. Besides basic research also applied work is done using synchrotron radiation even as a production tool for X-ray lithography.

  14. Synchrotron radiation. 4. Analyses of biological samples using synchrotron radiation. 3. Research on radiation damage to DNA using synchrotron radiation

    International Nuclear Information System (INIS)

    Takakura, Kaoru

    1998-01-01

    This review described how the synchrotron radiation (SR) is used to solve problems unknown hitherto in radiation biology. Historically, the target substance of UV light in bacterial death was suggested to be nucleic acid in 1930. Researches on the radiation damage to DNA were begun at around 1960 and have mainly used UV light, X-ray and γray. Soft X-ray and vacuum UV whose energy covering from several eV to scores of keV have not been used since UV and X-ray lack the energy of this range. This is one of reasons why detailed process leading to radiation-induced death, carcinogenicity and mutation has not been known hitherto. RS possesses wide range of energy, i.e., from UV to hard X-ray, of high intensity, which is helpful for studying the unknown problems. The RS studies were begun in nineteen-seventies. Those include the action spectrum studies and atomic target studies. In the former, the course of the effect, e.g., the mechanism of DNA double strand breakage, can be elucidated. In the latter, photon of known energy can be irradiated to the specified atom like phosphorus in DNA which elucidating the precise physicochemical process of the breakage. Use of RS in these studies is thought still meaningful in future. (K.H.) 62 refs

  15. Synchrotron radiation

    International Nuclear Information System (INIS)

    Farge, Y.

    1982-01-01

    Synchrotron radiation is produced by electrons accelerated near the velocity of light in storage rings, which are used for high energy Physics experiments. The radiation light exhibits a wide spread continuous spectrum ranging from 01 nanometre to radiofrequency. This radiation is characterized by high power (several kilowatts) and intense brightness. The paper recalls the emission laws and the distinctive properties of the radiation, and gives some of the numerous applications in research, such as molecular spectroscopy, X ray diffraction by heavy proteins and X ray microlithography in LVSI circuit making [fr

  16. Spectroscopy with synchrotron radiation sources: challenges and opportunities

    International Nuclear Information System (INIS)

    Jagatap, B.N.

    2011-01-01

    Spectroscopy and energetics of atoms, molecules and cluster in ultra-violate (UV), vacuum ultra-violate (VUV) and soft X-ray region is one of the frontier topics of research today, These high energy photons allow us to prepare atomic and molecular systems in energy levels far away from their ground levels; the energy region that is characterized by the complex and highly degenerate energy level structure and multiple channels for reaction and energy dissipation. In this talk we provide a bird's eye view of the progress in this area, with a particular emphasis on spectroscopy research using Indian synchrotron sources. We shall also cover the avenues for collaborative research on Indus synchrotron sources, and the challenges and opportunities that await the Indian spectroscopy community

  17. Regression methods for medical research

    CERN Document Server

    Tai, Bee Choo

    2013-01-01

    Regression Methods for Medical Research provides medical researchers with the skills they need to critically read and interpret research using more advanced statistical methods. The statistical requirements of interpreting and publishing in medical journals, together with rapid changes in science and technology, increasingly demands an understanding of more complex and sophisticated analytic procedures.The text explains the application of statistical models to a wide variety of practical medical investigative studies and clinical trials. Regression methods are used to appropriately answer the

  18. Physics and technology challenges of ultra low emittance synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Krinsky, S.

    1991-01-01

    There is a great activity throughout the world in the development of synchrotron radiation facilities to serve as sources for basic and applied research. We discuss some of the the opportunities and challenges presented by the development of ever higher brightness synchrotron radiation sources. 39 refs.

  19. Chemistry with synchrotron radiation

    International Nuclear Information System (INIS)

    Preses, J.; Grover, J.R.; White, M.G.; Kvick, A.

    1990-01-01

    An accidental by-product of high-energy physics, synchrotron radiation, has emerged as one of the most powerful tools for the understanding of chemical reactions. Advances made by using synchrotron radiation in physical chemistry are reviewed herein. Descriptions of experiments exploiting the many ways that synchrotron radiation can be manipulated are presented. These manipulations include intensification of the radiation and compression or shifting of its spectral structure. Combinations of the use of synchrotron radiation, which provides access to very short wavelengths and is, at the same time, continuously and easily tunable, with laser radiation, which offers much higher resolution and much more intense radiation per pulse, but is difficult to tune in the ultraviolet region of the spectra, gives the chemist a way to map a molecule's potential energy curve, to note the lengths and strengths of chemical bonds, and to predict and explain novel reactions of more complex molecules. The use of diffraction of x-rays to study the spacing of atoms in crystals is discussed. Various applications of synchrotron radiation to studies of the fluorescence of hydrocarbons and to the chiral dichroism studies of other natural products like DNA and RNA are described. Methods for enhancing synchrotron light sources by insertion devices, such as wigglers and undulators, that increase the available photo flux and construction of new sources of synchrotron radiation are mentioned

  20. Operation of the Australian Store.Synchrotron for macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Grischa R. [Monash University, Clayton, Victoria 3800 (Australia); Aragão, David; Mudie, Nathan J.; Caradoc-Davies, Tom T. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); McGowan, Sheena; Bertling, Philip J.; Groenewegen, David; Quenette, Stevan M. [Monash University, Clayton, Victoria 3800 (Australia); Bond, Charles S. [The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia (Australia); Buckle, Ashley M. [Monash University, Clayton, Victoria 3800 (Australia); Androulakis, Steve, E-mail: steve.androulakis@monash.edu [Monash Bioinformatics Platform, Monash University, Clayton, Victoria 3800 (Australia)

    2014-10-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community.

  1. Operation of the Australian Store.Synchrotron for macromolecular crystallography

    International Nuclear Information System (INIS)

    Meyer, Grischa R.; Aragão, David; Mudie, Nathan J.; Caradoc-Davies, Tom T.; McGowan, Sheena; Bertling, Philip J.; Groenewegen, David; Quenette, Stevan M.; Bond, Charles S.; Buckle, Ashley M.; Androulakis, Steve

    2014-01-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community

  2. Relativistic Turbulence with Strong Synchrotron and Synchrotron-Self-Compton Cooling

    Science.gov (United States)

    Uzdensky, D. A.

    2018-03-01

    Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae, hot accretion flows onto black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent. The plasma in these environments is often so hot that synchrotron and inverse-Compton (IC) radiative cooling becomes important. In this paper we investigate the general thermodynamic and radiative properties (and hence the observational appearance) of an optically thin relativistically hot plasma stirred by driven magnetohydrodynamic (MHD) turbulence and cooled by radiation. We find that if the system reaches a statistical equilibrium where turbulent heating is balanced by radiative cooling, the effective electron temperature tends to attain a universal value θ = kT_e/m_e c^2 ˜ 1/√{τ_T}, where τT = neσTL ≪ 1 is the system's Thomson optical depth, essentially independent of the strength of turbulent driving and hence of the magnetic field. This is because both MHD turbulent dissipation and synchrotron cooling are proportional to the magnetic energy density. We also find that synchrotron self-Compton (SSC) cooling and perhaps a few higher-order IC components are automatically comparable to synchrotron in this regime. The overall broadband radiation spectrum then consists of several distinct components (synchrotron, SSC, etc.), well separated in photon energy (by a factor ˜ τ_T^{-1}) and roughly equal in power. The number of IC peaks is checked by Klein-Nishina effects and depends logarithmically on τT and the magnetic field. We also examine the limitations due to synchrotron self-absorption, explore applications to Crab PWN and blazar jets, and discuss links to radiative magnetic reconnection.

  3. Photoemission studies using laboratory and synchrotron sources

    International Nuclear Information System (INIS)

    Phase, D.M.

    2012-01-01

    Synchrotron radiation sources, providing intense, polarized and stable beams of ultra violet soft and hard X-ray photons, are having great impact on physics, chemistry, biology materials science and other areas research. In particular synchrotron radiation has revolutionized photoelectron spectroscopy by enhancing its capabilities for investigating the electronic properties of solids. The first Indian synchrotron storage ring, Indus- 1 is in operation at RRCAT, Indore. The UGC-DAE CSR with the help of university scientist had designed and developed an angle integrated photoelectron spectroscopy (PES) beamline on this 450 MeV storage ring. A storage ring of this kind is most suitable for investigation in the energy range from few electron volts to around five hundred electron volts. In this lecture we will describe the details of PES beamline and its experimental station. Till date the different university users carried out photoemission measurements on variety of samples. Some of the spectra recorded by users will be presented in order to show the capability of this beamline. In the later part we will report a review of our recent research work carried out on dilute magnetic thin films using this beamline. (author)

  4. Storage ring design of the 8 GeV synchrotron radiation facility (SPring-8)

    International Nuclear Information System (INIS)

    Hara, M.; Bc, S.H.; Motonaga, S.

    1990-01-01

    In Japan, RIKEN (Institute of Physical and Chemical Research) and JAERI (Japan Atomic Energy Research Institute) have organized a joint design team and started a design study for an 8 GeV synchrotron radiation X-ray source. This paper outlines the status of the design study for the 8 GeV highly brilliant synchrotron radiation X-ray source ring named Super Photon Ring (SPring-8). The facility consists of a main storage ring, a full-energy injector booster synchrotron and a pre-injector 1 GeV linac. The injector linac and synchrotron are laid outside the storage ring because to permit the use of the linac and synchrotron not only as an injector but also as an electron or positron beam source. The purpose of the facility is to provide stable photon beams with high brilliance in the X-ray region. The energy of the stored electrons (positrons) is fixed at 8 GeV to fulfill the required condition using conventional type insertion devices. (N.K.)

  5. Synchrotron Infrared Science: Physics, Biology, Environmental Science and Coherence

    International Nuclear Information System (INIS)

    Martin, M.C.

    2004-01-01

    Full text: In recent years, infrared microscopy and spectroscopy has greatly benefited from a bright new source of light, namely synchrotrons. Synchrotrons provide a significant improvement in brightness, and therefore spatial resolution for mapping characteristic vibrational signatures of molecular species with high signal to noise. This has opened up new scientific directions for physicists, biologists, chemists, industrial applications, forensics, and more. I will present a brief overview of the technique followed by several scientific highlights of synchrotron infrared spectromicroscopy research being performed in Berkeley. I will then turn to the future by discussing our recent understanding of coherent synchrotron radiation (CSR). We are proposing a new ring which will use CSR to provide a far-infrared (THz) source having intensities between 7 and 10 orders of magnitude higher than present broadband sources. I will motivate and discuss the exciting capabilities of this revolutionary new source

  6. Time-resolved materials science opportunities using synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by ∼tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities

  7. Brookhaven highlights. Report on research, October 1, 1992--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.S.; Belford, M.; Cohen, A.; Greenberg, D.; Seubert, L. [eds.

    1993-12-31

    This report highlights the research activities of Brookhaven National Laboratory during the period dating from October 1, 1992 through September 30, 1993. There are contributions to the report from different programs and departments within the laboratory. These include technology transfer, RHIC, Alternating Gradient Synchrotron, physics, biology, national synchrotron light source, applied science, medical science, advanced technology, chemistry, reactor physics, safety and environmental protection, instrumentation, and computing and communications.

  8. Synchrotron radiation from protons

    International Nuclear Information System (INIS)

    Dutt, S.K.

    1992-12-01

    Synchrotron radiation from protons, though described by the same equations as the radiation from electrons, exhibits a number of interesting features on account of the parameters reached in praxis. In this presentation, we shall point out some of the features relating to (i) normal synchrotron radiation from dipoles in proton machines such as the High Energy Booster and the Superconducting Super Collider; (ii) synchrotron radiation from short dipoles, and its application to light monitors for proton machines, and (iii) synchrotron radiation from undulators in the limit when, the deflection parameter is much smaller than unity. The material for this presentation is taken largely from the work of Hofmann, Coisson, Bossart, and their collaborators, and from a paper by Kim. We shall emphasize the qualitative aspects of synchrotron radiation in the cases mentioned above, making, when possible, simple arguments for estimating the spectral and angular properties of the radiation. Detailed analyses can be found in the literature

  9. Medical education research in GCC countries.

    Science.gov (United States)

    Meo, Sultan Ayoub; Hassan, Asim; Aqil, Mansoor; Usmani, Adnan Mahmood

    2015-02-01

    Medical education is an essential domain to produce physicians with high standards of medical knowledge, skills and professionalism in medical practice. This study aimed to investigate the research progress and prospects of GCC countries in medical education during the period 1996-2013. In this study, the research papers published in various global scientific journals during the period 1996-2013 were accessed. We recorded the total number of research documents having an affiliation with GCC Countries including Saudi Arabia, Bahrain, Kuwait, Qatar, United Arab Emirates and Oman. The main source for information was Institute of Scientific Information (ISI) Web of Science, Thomson Reuters. In ISI-Web of Science, Saudi Arabia contributed 40797 research papers, Kuwait 1666, United Arab Emirates 3045, Qatar 4265, Bahrain 1666 and Oman 4848 research papers. However, in Medical Education only Saudi Arabia contributed 323 (0.79%) research papers, Kuwait 52 (0.03%), United Arab Emirates 41(0.01%), Qatar 37(0.008%), Bahrain 28 (0.06%) and Oman 22 (0.45%) research papers in in ISI indexed journals. In medical education the Hirsch index (h-index) of Saudi Arabia is 14, United Arab Emirates 14, Kuwait 11, Qatar 8, Bahrain 8 and Oman 5. GCC countries produced very little research in medical education during the period 1996-2013. They must improve their research outcomes in medical education to produce better physicians to enhance the standards in medical practice in the region.

  10. Using mixed methods research in medical education: basic guidelines for researchers.

    Science.gov (United States)

    Schifferdecker, Karen E; Reed, Virginia A

    2009-07-01

    Mixed methods research involves the collection, analysis and integration of both qualitative and quantitative data in a single study. The benefits of a mixed methods approach are particularly evident when studying new questions or complex initiatives and interactions, which is often the case in medical education research. Basic guidelines for when to use mixed methods research and how to design a mixed methods study in medical education research are not readily available. The purpose of this paper is to remedy that situation by providing an overview of mixed methods research, research design models relevant for medical education research, examples of each research design model in medical education research, and basic guidelines for medical education researchers interested in mixed methods research. Mixed methods may prove superior in increasing the integrity and applicability of findings when studying new or complex initiatives and interactions in medical education research. They deserve an increased presence and recognition in medical education research.

  11. Metrology of reflection optics for synchrotron radiation

    International Nuclear Information System (INIS)

    Takacs, P.Z.

    1985-09-01

    Recent years have seen an almost explosive growth in the number of beam lines on new and existing synchrotron radiation facilities throughout the world. The need for optical components to utilize the unique characteristics of synchrotron radiation has increased accordingly. Unfortunately, the technology to manufacture and measure the large, smooth, exotic optical surfaces required to focus and steer the synchrotron radiation beam has not progressed as rapidly as the operational demands on these components. Most companies do not wish to become involved with a project that requires producing a single, very expensive, aspheric optic with surface roughness and figure tolerances that are beyond their capabilities to measure. This paper will review some of the experiences of the National Synchrotron Light Source in procuring grazing incidence optical components over the past several years. We will review the specification process - how it is related to the function of the optic, and how it relates to the metrology available during the manufacturing process and after delivery to the user's laboratory. We will also discuss practical aspects of our experience with new technologies, such as single point diamond turning of metal mirrors and the use of SiC as a mirror material. Recent advances in metrology instrumentation have the potential to move the measurement of surface figure and finish from the research laboratory into the optical shop, which should stimulate growth and interest in the manufacturing of optics to meet the needs of the synchrotron radiation user community

  12. Coronary angiography using synchrotron radiation

    International Nuclear Information System (INIS)

    Akatsuka, Takao; Hiranaka, Yukio; Takeda, Tohru; Hyodo, Kazuyuki.

    1990-01-01

    Invasive coronary angiography is the imaging technique of choice for diagnosis of ischemic heart disease. Recently, the application of synchrotron radiation in coronary angiography has been investigated in the world, with the aim of developing the noninvasive technique for visualizing the heart. In this article, backgrounds and present situation of coronary angiography using synchrotron radiation are reviewed. Firstly, visual imaging techniques of the cardiovascular system are discussed in terms of angiography and digital subtraction angiography (DSA). Conventional temporal, energy, and hybrid subtraction modes used in DSA are referred to. Secondly, the application of synchrotron radiation is presented, focusing on the property of synchrotron radiation and K-edge subtraction angiography. Two kinds of synchrotron radiation beam methods are outlined. Interpretation of image data and various subtraction procedures remain unestablished. There is much to be done before coronary angiography using synchrotron radiation comes into a clinical practice. (N.K.)

  13. Uses of synchrotron radiation

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1982-01-01

    X-ray fluorescence has long been used as a technique for elemental analysis. X-ray fluorescence techniques have a number of features that make them attractive for application to biomedical samples. In the past few years synchrotron radiation x-ray sources have been developed and, because of their properties, their use can improve the sensitivity for trace element analysis by two to three orders of magnitude. Also, synchrotron radiation will make possible an x-ray microprobe with resolution in the micrometer range. The National Synchrotron Light Source (NSLS), a dedicated synchrotron radiation source recently built at Brookhaven National Laboratory, will have a facility for trace element analysis by x-ray fluorescence and will be available to all interested users

  14. Comparative effectiveness research and medical informatics.

    Science.gov (United States)

    D'Avolio, Leonard W; Farwell, Wildon R; Fiore, Louis D

    2010-12-01

    As is the case for environmental, ecological, astronomical, and other sciences, medical practice and research finds itself in a tsunami of data. This data deluge, due primarily to the introduction of digitalization in routine medical care and medical research, affords the opportunity for improved patient care and scientific discovery. Medical informatics is the subdiscipline of medicine created to make greater use of information in order to improve healthcare. The 4 areas of medical informatics research (information access, structure, analysis, and interaction) are used as a framework to discuss the overlap in information needs of comparative effectiveness research and potential contributions of medical informatics. Examples of progress from the medical informatics literature and the Veterans Affairs Healthcare System are provided. Published by Elsevier Inc.

  15. Australian synchrotron light source - (boomerang)

    International Nuclear Information System (INIS)

    Boldeman, J.

    2001-01-01

    The Australian National Synchrotron Light Source - (Boomerang) is to be installed at the Monash University in Victoria. This report provides some background to the proposed facility and discusses aspects of a prospective design. Recently, significant effort was devoted to refining the in principle design and a lattice providing an emittance od 18 nm rad was obtained with a distributed dispersion in the straight section of 0.29m. Exhaustive studies have been made of the economic benefits that would accrue to Australia to Australia following the installation of this facility. This design is a refinement of the design concept presented to the SRI -2000, Berlin (Boldeman, Einfeld et al), to the meeting of the 4th Asian Forum and the Preliminary Design Study presented to the Australian Synchrotron Research Program

  16. Synchrotron radiation

    International Nuclear Information System (INIS)

    Norman, D.; Walker, R.P.; Durham, P.J.; Ridley, P.A.

    1986-01-01

    The paper on synchrotron radiation is the appendix to the Daresbury (United Kingdom) annual report, 1985/86. The bulk of the volume is made up of the progress reports for the work carried out during the year under review using the Synchrotron Radiation Source (SRS) at Daresbury. The Appendix also contains: the scientific programmes at the the SRS, progress on beamlines, instrumentation and computing developments, and activities connected with accelerator development. (U.K.)

  17. The 400 GeV proton synchrotron

    International Nuclear Information System (INIS)

    1976-05-01

    A general account is given of the 400-GeV proton synchrotron, known as Super Proton Synchrotron (SPS), of the European Organization for Nuclear Research (CERN) at Geneva. A brief chapter on the history of the project covers the steps leading to the earlier plan for a 300-GeV accelerator at a new CERN laboratory elsewhere in Europe, abandoned in 1971 in favour of the present machine, and the progress of construction of the latter. The general features of the SPS design are outlined, illustrated by an aerial view of the CERN site, a plan of the SPS, and interior views of the SPS ring tunnel and main control room. (WSN)

  18. Singapore Synchrotron Light Source - Status, first results, program

    CERN Document Server

    Moser, H O; Kempson, V C; Kong, J R; Li, Z W; Nyunt, T; Qian, H J; Rossmanith, R; Tor, P H; Wilhelmi, O; Yang, P; Zheng, H W; Underhay, I J

    2003-01-01

    The Singapore Synchrotron Light Source is a general-purpose synchrotron radiation facility serving research organisations and industry. Beamlines active or coming up within 2002 include lithography for micro/nanofabrication, phase contrast imaging, surface science, and X-ray diffraction and absorption. An infrared spectro/microscopy beamline is expected to become operational in 2003. Further beamlines are under discussion with user groups. The Microtron Undulator Radiation Facility (MURF) is under development to provide brilliant VUV radiation and to prepare for subsequent development of an EUV and X-ray FEL.

  19. Supporting medical education research quality: the Association of American Medical Colleges' Medical Education Research Certificate program.

    Science.gov (United States)

    Gruppen, Larry D; Yoder, Ernie; Frye, Ann; Perkowski, Linda C; Mavis, Brian

    2011-01-01

    The quality of the medical education research (MER) reported in the literature has been frequently criticized. Numerous reasons have been provided for these shortcomings, including the level of research training and experience of many medical school faculty. The faculty development required to improve MER can take various forms. This article describes the Medical Education Research Certificate (MERC) program, a national faculty development program that focuses exclusively on MER. Sponsored by the Association of American Medical Colleges and led by a committee of established medical education researchers from across the United States, the MERC program is built on a set of 11 interactive workshops offered at various times and places across the United States. MERC participants can customize the program by selecting six workshops from this set to fulfill requirements for certification. This article describes the history, operations, current organization, and evaluation of the program. Key elements of the program's success include alignment of program content and focus with needs identified by prospective users, flexibility in program organization and logistics to fit participant schedules, an emphasis on practical application of MER principles in the context of the participants' activities and interests, consistency in program content and format to ensure standards of quality, and a sustainable financial model. The relationship between the national MERC program and local faculty development initiatives is also described. The success of the MERC program suggests that it may be a possible model for nationally disseminated faculty development programs in other domains.

  20. Hard X-ray synchrotron light source for industrial and materials research applications

    International Nuclear Information System (INIS)

    Lehr, H.; Ehrfeld, W.; Moser, H.O.; Schmidt, M.; Herminghaus, H.

    1992-01-01

    The requirements for industrial production or for an industry-related analytical environment is demonstrated for the case of the proposed hard X-ray synchrotron light source. The source is intended to provide radiation mainly for deep X-ray lithography as part of the LIGA-process in microfabrication, and for analytical and diagnostic purposes in materials research and microtechnology. It offers up to 48 bending magnet beamlines with a characteristic wavelength of 2 A. An electron energy of 2.5 GeV and normal conducting magnets will be used. A FODO lattice with a beam emittance of 3x10 -7 m rad and four dispersion-free straight sections to accommodate insertion devices, injection elements and RF structures has been designed. (R.P.) 5 refs.; 4 figs.; 1 tab

  1. MedAustron - Ion-Beam Therapy and Research Center

    International Nuclear Information System (INIS)

    Schreiner, Thomas; Seemann, Rolf

    2015-01-01

    MedAustron is a synchrotron-based light-ion beam therapy center for cancer treatment as well as for clinical and non-clinical research, currently in the commissioning phase in Wiener Neustadt, Austria. Recently, the first proton beam was transported successfully to one of the four irradiation rooms. Whilst the choice of basic machine parameters was driven by medical requirements, i.e. 60 MeV protons and 120 MeV/A to 400 MeV/A carbon ions, the accelerator complex design was also optimized to offer flexibility for research operation. The potential of the synchrotron is being exploited to increase the maximum proton energy far beyond the medical needs to up to 800 MeV, for experimental physics applications, mainly in the areas of proton scattering and detector research. The accelerator layout allows for the installation of up to four ion source-spectrometer units, to provide various ion types besides the clinical used protons and carbon ions. Besides experimental physics, the two main non-clinical research disciplines are medical radiation physics and radiation biology. To decouple research and medical operation, a dedicated irradiation room for non-clinical research was included providing the installation of different experiments. In addition, several labs have been equipped with appropriate devices for preparing and analyzing radio-biological samples. This presentation gives a status overview over the whole project and highlights the non-clinical research opportunities at MedAustron. (Author)

  2. Proceedings of the XIII International School and Symposium on Synchrotron Radiation in Natural Science 2016, Ustroń-Jaszowiec, Poland

    Science.gov (United States)

    Kozak, Maciej; Kwiatek, Wojciech M.; Piszora, Paweł

    2017-11-01

    This special issue of Nuclear Instruments and Methods in Physics Research Section B of Nuclear Instruments and Methods in Physics Research was prepared to present recent achievements in synchrotron radiation science and mark the 25th anniversary of the Polish Synchrotron Radiation Society (PSRS) which fell in 2016. It presents selected papers submitted after the 13th International School and Symposium on Synchrotron Radiation in Natural Science (ISSRNS 2016) which was organized by PSRS in cooperation with the Adam Mickiewicz University. It is worth noting that PSRS is probably one of the earliest founded scientific societies focused on promoting the use of synchrotron radiation research (for details visit the PSRS home page: http://www.synchrotron.org.pl.

  3. Research-oriented medical education for graduate medical students.

    Science.gov (United States)

    Deo, Madhav G

    2013-01-01

    In most parts of the world, medical education is predominantly geared to create service personnel for medical and health services. Training in research is ignored, which is a major handicap for students who are motivated to do research. The main objective of this study was to develop, for such students, a cost-effective 'in-study' research training module that could be adopted even by medical colleges, which have a modest research infrastructure, in different regions of India. Short-duration workshops on the clinical and laboratory medicine research methods including clinical protocol development were held in different parts of India to facilitate participation of students from various regions. Nine workshops covering the entire country were conducted between July 2010 and December 2011. Participation was voluntary and by invitation only to the recipients of the Indian Council of Medical Research-Short-term Studentship programme (ICMR- STS), which was taken as an index of students' research motivation. Faculty was drawn from the medical institutions in the region. All expenses on students, including their travel, and that of the faculty were borne by the academy. Impact of the workshop was judged by the performance of the participants in pre- and post-workshop tests with multiple-choice questions (MCQs) containing the same set of questions. There was no negative marking. Anonymous student feedback was obtained using a questionnaire. Forty-one per cent of the 1009 invited students attended the workshops. These workshops had a positive impact on the participants. Only 20% students could pass and just 2.3% scored >80% marks in the pre-workshop test. There was a three-fold increase in the pass percentage and over 20% of the participants scored >80% marks (A grade) in the post-workshop test. The difference between the pre- and post- workshop performance was statistically significant at all the centres. In the feedback from participants, the workshop received an average

  4. Early synchrotron design in the UK, 1945-50

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1994-01-01

    In 1945 it was decided to initiate a programme of synchrotron development under the aegis of the newly formed Atomic Energy Research Establishment at Harwell. The work was carried out at Malvern, in premises used during the war for radar research, mainly by scientists transferred shortly after the end of the war. Two 30 MeV machines were designed and constructed there, partly for use in physics research, and partly as prototypes for larger machines to be built in Glasgow and Oxford. The most notable achievement was the conversion of a small American betatron by Goward and Barnes to become the world's first synchrotron in 1946. The activities of the Malvern team during the five year period from 1945 are described; extensive references to the published literature and laboratory reports are made, but other material not recorded elsewhere is described. (author)

  5. The pressure behaviour of actinides via synchrotron radiation

    International Nuclear Information System (INIS)

    Haire, R.G.; Heathman, S.; Le Bihan, T.; Lindbaum, A.

    2002-01-01

    Various aspects of performing high-pressure studies with radioactive f-elements using synchrotrons as sources of X-rays are discussed. For ultra-high pressures, intense well-focused beams of 10 to 30 microns in diameter and a single wavelength of 0.3 to 0.7 angstrom are desired for angle dispersive diffraction measurements. Special considerations are necessary for the studies of transuranium elements under pressure at synchrotron facilities. Normally, with these actinides the pressure cells are prepared off-site and shipped to the synchrotron for study. Approved containment techniques must be provided to assure there is not a potential for the release of sample material. The goal of these high-pressure studies is to explore the fundamental science occurring as pressure is applied to the actinide samples. One of the primary effects of pressure is to reduce interatomic distances, and the goal is to ascertain the changes in bonding and electronic nature of the system that result as atoms and electronic orbitals are forced closer together. Concepts of the science being pursued with these f-elements are outlined. A brief discussion of the behaviour of americium metal under pressure performed recently at the ESRF is provided as an example of the high-pressure research being performed with synchrotron radiation. Also discussed here is the important role synchrotrons play and the techniques/procedures employed in high-pressure studies with actinides. (authors)

  6. X-ray energy-dispersive diffractometry using synchrotron radiation

    International Nuclear Information System (INIS)

    Buras, B.; Staun Olsen, J.; Gerward, L.

    1977-03-01

    In contrast to bremsstrahlung from X-ray tubes, synchrotron radiation is very intense, has a smooth spectrum, its polarization is well defined, and at DESY the range of useful photon energies can be extended to about 70 keV and higher. In addition the X-ray beam is very well collimated. Thus synchrotron radiation seems to be an ideal X-ray source for energy-dispersive diffractometry. This note briefly describes the experimental set up at DESY, shows examples of results, and presents the underlying 'philosophy' of the research programme. (Auth.)

  7. Analysis of cortical bone porosity using synchrotron radiation microtomography to evaluate the effects of chemotherapy

    Science.gov (United States)

    Alessio, R.; Nogueira, L. P.; Salata, C.; Mantuano, A.; Almeida, A. P.; Braz, D.; de Almeida, C. E.; Tromba, G.; Barroso, R. C.

    2015-11-01

    Microporosities play important biologic and mechanical roles on health. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to cortical bone changes. In the present work, the femur diaphysis of rats treated with chemotherapy drugs were evaluated by 3D morphometric parameters using synchrotron radiation microtomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the ELETTRA Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur diaphysis of rats.

  8. National Synchrotron Light Source

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1979-01-01

    The National Synchrotron Light Source comprises two high intensity electron storage rings for the generation of intense fluxes of synchrotron radiation in the vuv wavelength domain (700 MeV e - ring) and in the x-ray wavelength domain (2.5 GeV e - ring). A description is presented of the basic facility and the characteristics of the synchrotron radiation sources. The present plans for specific beam lines will be enumerated and the planned use of beam wigglers and undulators will be discussed

  9. Crowdsourced 'R&D' and medical research.

    Science.gov (United States)

    Callaghan, Christian William

    2015-09-01

    Crowdsourced R&D, a research methodology increasingly applied to medical research, has properties well suited to large-scale medical data collection and analysis, as well as enabling rapid research responses to crises such as disease outbreaks. Multidisciplinary literature offers diverse perspectives of crowdsourced R&D as a useful large-scale medical data collection and research problem-solving methodology. Crowdsourced R&D has demonstrated 'proof of concept' in a host of different biomedical research applications. A wide range of quality and ethical issues relate to crowdsourced R&D. The rapid growth in applications of crowdsourced R&D in medical research is predicted by an increasing body of multidisciplinary theory. Further research in areas such as artificial intelligence may allow better coordination and management of the high volumes of medical data and problem-solving inputs generated by the crowdsourced R&D process. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. The relativistic foundations of synchrotron radiation.

    Science.gov (United States)

    Margaritondo, Giorgio; Rafelski, Johann

    2017-07-01

    Special relativity (SR) determines the properties of synchrotron radiation, but the corresponding mechanisms are frequently misunderstood. Time dilation is often invoked among the causes, whereas its role would violate the principles of SR. Here it is shown that the correct explanation of the synchrotron radiation properties is provided by a combination of the Doppler shift, not dependent on time dilation effects, contrary to a common belief, and of the Lorentz transformation into the particle reference frame of the electromagnetic field of the emission-inducing device, also with no contribution from time dilation. Concluding, the reader is reminded that much, if not all, of our argument has been available since the inception of SR, a research discipline of its own standing.

  11. SYNCHROTRON HEATING BY A FAST RADIO BURST IN A SELF-ABSORBED SYNCHROTRON NEBULA AND ITS OBSERVATIONAL SIGNATURE

    International Nuclear Information System (INIS)

    Yang, Yuan-Pei; Dai, Zi-Gao; Zhang, Bing

    2016-01-01

    Fast radio bursts (FRBs) are mysterious transient sources. If extragalactic, as suggested by their relative large dispersion measures, their brightness temperatures must be extremely high. Some FRB models (e.g., young pulsar model, magnetar giant flare model, or supra-massive neutron star collapse model) suggest that they may be associated with a synchrotron nebula. Here we study a synchrotron-heating process by an FRB in a self-absorbed synchrotron nebula. If the FRB frequency is below the synchrotron self-absorption frequency of the nebula, electrons in the nebula would absorb FRB photons, leading to a harder electron spectrum and enhanced self-absorbed synchrotron emission. In the meantime, the FRB flux is absorbed by the nebula electrons. We calculate the spectra of FRB-heated synchrotron nebulae, and show that the nebula spectra would show a significant hump in several decades near the self-absorption frequency. Identifying such a spectral feature would reveal an embedded FRB in a synchrotron nebula

  12. SYNCHROTRON HEATING BY A FAST RADIO BURST IN A SELF-ABSORBED SYNCHROTRON NEBULA AND ITS OBSERVATIONAL SIGNATURE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuan-Pei; Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Zhang, Bing, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2016-03-01

    Fast radio bursts (FRBs) are mysterious transient sources. If extragalactic, as suggested by their relative large dispersion measures, their brightness temperatures must be extremely high. Some FRB models (e.g., young pulsar model, magnetar giant flare model, or supra-massive neutron star collapse model) suggest that they may be associated with a synchrotron nebula. Here we study a synchrotron-heating process by an FRB in a self-absorbed synchrotron nebula. If the FRB frequency is below the synchrotron self-absorption frequency of the nebula, electrons in the nebula would absorb FRB photons, leading to a harder electron spectrum and enhanced self-absorbed synchrotron emission. In the meantime, the FRB flux is absorbed by the nebula electrons. We calculate the spectra of FRB-heated synchrotron nebulae, and show that the nebula spectra would show a significant hump in several decades near the self-absorption frequency. Identifying such a spectral feature would reveal an embedded FRB in a synchrotron nebula.

  13. Techniques of production and analysis of polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    The use of the unique polarization properties of synchrotron radiation in the hard x-ray spectral region (E>3 KeV) is becoming increasingly important to many synchrotron radiation researchers. The radiation emitted from bending magnets and conventional (planar) insertion devices (IDs) is highly linearly polarized in the plane of the particle's orbit. Elliptically polarized x-rays can also be obtained by going off axis on a bending magnet source, albeit with considerable loss of flux. The polarization properties of synchrotron radiation can be further tailored to the researcher's specific needs through the use of specialized insertion devices such as helical and crossed undulators and asymmetrical wigglers. Even with the possibility of producing a specific polarization, there is still the need to develop x-ray optical components which can manipulate the polarization for both analysis and further modification of the polarization state. A survey of techniques for producing and analyzing both linear and circular polarized x-rays will be presented with emphasis on those techniques which rely on single crystal optical components

  14. Advanced Accelerators for Medical Applications

    Science.gov (United States)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  15. Education and training program for graduate school student with synchrotron radiation facility

    International Nuclear Information System (INIS)

    Harada, Isao; Ikeda, Naoshi; Yokoya, Takayoshi

    2008-01-01

    We report the education and training program for graduate students of Graduate School of Natural Science and Technology Okayama University made at synchrotron facilities, SPring-8 and HiSOR. This program is a joint course of graduate school lecture and synchrotron facility training with company researchers, that was authorized by the Ministry of Education, Culture, Sports, Science and Technology. The purpose of this program is the development of human resources who can understand the potential ability of synchrotron experiment. We report our plan and actual activity of the training program. (author)

  16. Francois Garin: Pioneer work in catalysis through synchrotron radiation

    International Nuclear Information System (INIS)

    Bazin, Dominique

    2014-01-01

    Starting from the late seventies, the progressively increased availability of beamlines dedicated to X-ray absorption spectroscopy allowed the execution of experiments in chemistry. In this manuscript, I describe the contribution of Francois Garin at the frontier of heterogeneous catalysis and synchrotron radiation. Working at LURE as a scientific in charge of a beamline dedicated to X-ray absorption spectroscopy during almost twenty years and thus, having the opportunity to discuss with research groups working in heterogeneous catalysis in Europe as well as in the United States, it was quite easy to show that his work is clearly at the origin of current research in heterogeneous catalysis, not only in France, but in different synchrotron radiation centres. (authors)

  17. Guidelines for Reporting Medical Research

    DEFF Research Database (Denmark)

    Johansen, Mathilde; Thomsen, Simon Francis

    2016-01-01

    As a response to a low quality of reporting of medical research, guidelines for several different types of study design have been developed to secure accurate reporting and transparency for reviewers and readers from the scientific community. Herein, we review and discuss the six most widely...... accepted and used guidelines: PRISMA, CONSORT, STROBE, MOOSE, STARD, and SPIRIT. It is concluded that the implementation of these guidelines has led to only a moderate improvement in the quality of the reporting of medical research. There is still much work to be done to achieve accurate and transparent...... reporting of medical research findings....

  18. ''Use of synchrotron radiation in France: present status and perspectives''

    International Nuclear Information System (INIS)

    Thiry, P.

    1996-01-01

    LURE (laboratory for the use of electromagnetic radiation) plays an important role as a research center, as a synchrotron radiation producer and as a leading pole about new light source studies. The necessity to maintain LURE at a high level of technological competitiveness implies to build a new facility called SOLEIL. This article describes the present equipment of LURE, its activity fields and draws the prospect of synchrotron radiation in France. (A.C.)

  19. Putting synchrotron radiation to work: New opportunities for industrial R ampersand D

    International Nuclear Information System (INIS)

    1991-03-01

    This paper describes the basic categories of experimental techniques that have been successfully exploited at existing synchrotron facilities or, in some cases, that are expected to join the research armamentarium at the next-generation synchrotron sources now under construction, such as the ALS. In each case, a selection of typical industrial applications is noted

  20. Fraud and deceit in medical research

    Directory of Open Access Journals (Sweden)

    Umran Sarwar

    2012-01-01

    Full Text Available Publication of medical research is the cornerstone for the propagation and dissemination of medical knowledge, culminating in significant effects on the health of the world′s population. However, instances of individuals and institutions subverting the ethos of honesty and integrity on which medical research is built in order to advance personal ambitions have been well documented. Many definitions to describe this unethical behavior have been postulated, although the most descriptive is the "FFP" (fabrication, falsification, and plagiarism model put forward by the United States′ Office of Research Integrity. Research misconduct has many ramifications of which the world′s media are all too keen to demonstrate. Many high-profile cases the world over have demonstrated this lack of ethics when performing medical research. Many esteemed professionals and highly regarded world institutions have succumbed to the ambitions of a few, who for personal gains, have behaved unethically in pursuit of their own ideals. Although institutions have been set up to directly confront these issues, it would appear that a lot more is still required on the part of journals and their editors to combat this behavioral pattern. Individuals starting out at very junior positions in medical research ought to be taught the basics of medical research ethics so that populations are not failed by the very people they are turning to for assistance at times of need. This article provides a review of many of the issues of research misconduct and allows the reader to reflect and think through their own experiences of research. This hopefully will allow individuals to start asking questions on, what is an often, a poorly discussed topic in medical research.

  1. The national synchrotron ray of hope or ring of fire?

    CERN Document Server

    Hollis, T

    2002-01-01

    While most agree the synchrotron will be a boost for Australian science, the author reports on concerns about the cost of building and operating the project Biotech industry representatives want to know how that $100 million will be used and want to see the government's justification for pouring more than a third of its total technology budget for 2001/2 into the synchrotron. They, and the opposition, also want to know where the private money will come from to make up the balance or whether the state will ultimately have to pitch in the rest itself. Indeed, an Auditor-General's report released last week warned of the need for comprehensive financial risk management of the facility. The National Synchrotron, to be built at Monash University, will be a hollow ring of about 60 metres diameter and initially housing nine beamlines, each capable of performing independent experiments simultaneously. According to Dr Richard Garrett, director of the Australian Synchrotron Research Program (http://www.ansto.gov.au/natf...

  2. Nuclear medicine. Medical technology research

    International Nuclear Information System (INIS)

    Lerch, H.; Jigalin, A.

    2005-01-01

    Aim, method: the scientific publications in the 2003 and 2004 issues of the journal Nuklearmedizin were analyzed retrospectively with regard to the proportion of medical technology research. Results: out of a total of 73 articles examined, 9 (12%) were classified as medical technology research, that is, 8/15 of the original papers (16%) and one of the case reports (5%). Of these 9 articles, 44% (4/9) focused on the combination of molecular and morphological imaging with direct technical appliance or information technology solutions. Conclusion: medical technology research is limited in the journal's catchment area. The reason for this is related to the interdependency between divergent development dynamics in the medical technology industry's locations, the many years that the area of scintigraphic technology has been underrepresented, research policy particularly in discrepancies in the promotion of molecular imaging and a policy in which health is not perceived as a predominantly good and positive economic factor, but more as a curb to economic development. (orig.)

  3. CORNELL: Synchrotron 25

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    A recent celebration marked the twenty-fifth anniversary of the Cornell Electron Synchrotron. The major milestone in the commissioning of the synchrotron was on October 11, 1967 when Helen Edwards, Boyce McDaniel, and Maury Tigner achieved a 7 GeV beam, a worldrecord energy for electron synchrotrons at that time. Like so many advances in experimental physics, this occurred early in the morning - 3 a.m.! The transition from accelerator commissioning to high energy physics operation was extremely rapid; 7 GeV operation for data collection was routine just five weeks later. Throughout its life as a source of photon and electron beams for fixed target experiments, the synchrotron maintained energy leadership for circular electron machines. Originally designed for operation at 10 GeV, eventually it consistently provided beams for experiments at energies up to 11.6 GeV. It now operates at 5 GeV, serving as the injector for the CESR electron-positron storage ring. Robert Wilson was director of the laboratory during the design and most of the construction of the machine. He left near the end of the construction to become the first director of Fermilab and was replaced by Boyce McDaniel, who guided the laboratory from the completion of the synchrotron to the construction and early operation of CESR. Wilson recalled how the laboratory had originally proposed a 3 GeV turnkey machine to be built entirely by industry and would fit in the space previously occupied by earlier Cornell accelerators. However, members of the laboratory realized that 3 GeV would not open new physics frontiers, that the construction of the accelerator was much of the fun of doing high energy physics experiments, and that a more challenging project was needed. This led to the proposal for the 10 GeV synchrotron which was built in the ''Cornell Style'' with many of the components fabricated and nearly all of the assembly done at Cornell

  4. CORNELL: Synchrotron 25

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-03-15

    A recent celebration marked the twenty-fifth anniversary of the Cornell Electron Synchrotron. The major milestone in the commissioning of the synchrotron was on October 11, 1967 when Helen Edwards, Boyce McDaniel, and Maury Tigner achieved a 7 GeV beam, a worldrecord energy for electron synchrotrons at that time. Like so many advances in experimental physics, this occurred early in the morning - 3 a.m.! The transition from accelerator commissioning to high energy physics operation was extremely rapid; 7 GeV operation for data collection was routine just five weeks later. Throughout its life as a source of photon and electron beams for fixed target experiments, the synchrotron maintained energy leadership for circular electron machines. Originally designed for operation at 10 GeV, eventually it consistently provided beams for experiments at energies up to 11.6 GeV. It now operates at 5 GeV, serving as the injector for the CESR electron-positron storage ring. Robert Wilson was director of the laboratory during the design and most of the construction of the machine. He left near the end of the construction to become the first director of Fermilab and was replaced by Boyce McDaniel, who guided the laboratory from the completion of the synchrotron to the construction and early operation of CESR. Wilson recalled how the laboratory had originally proposed a 3 GeV turnkey machine to be built entirely by industry and would fit in the space previously occupied by earlier Cornell accelerators. However, members of the laboratory realized that 3 GeV would not open new physics frontiers, that the construction of the accelerator was much of the fun of doing high energy physics experiments, and that a more challenging project was needed. This led to the proposal for the 10 GeV synchrotron which was built in the ''Cornell Style'' with many of the components fabricated and nearly all of the assembly done at Cornell.

  5. Application of circular polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Miyahara, Tsuneaki; Kawata, Hiroshi

    1988-03-01

    The idea of using the polarizing property of light for physical experiment by controlling it variously has been known from old time, and the Faraday effect and the research by polarizing microscopy are its examples. The light emitted from the electron orbit of an accelerator has the different polarizing characteristics from those of the light of a laboratory light source, and as far as observing it within the electron orbit plane, it becomes linearly polarized light. By utilizing this property well, research is carried out at present in synchrotron experimental facilities. Recently, the technology related to the insert type light cources using permanent magnets has advanced remarkably, and circular polarized light has become to be producible. If the light like this can be obtained with the energy not only in far ultraviolet region but also to x-ray region at high luminance, new possibility should open. At the stage that the design of an insert type light source was finished, and its manufacture was started, the research on the method of evaluating the degree of circular polarization and the research on the utilization of circular polarized synchrotron radiation are earnestly carried out. In this report, the results of researches presented at the study meeting are summarized. Moreover, the design and manufacture of the beam lines for exclusive use will be carried out. (Kako, I.)

  6. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams

    Directory of Open Access Journals (Sweden)

    Rahman WN

    2014-05-01

    Full Text Available Wan Nordiana Rahman,1,2 Stéphanie Corde,3,4 Naoto Yagi,5 Siti Aishah Abdul Aziz,1 Nathan Annabell,2 Moshi Geso21School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia; 2Division of Medical Radiation, School of Medical Sciences, Royal Melbourne Institute of Technology, Bundoora, VIC, 3Radiation Oncology, Prince of Wales Hospital, High Street, Randwick, 4Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia; 5Japanese Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, JapanAbstract: Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30–100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3

  7. 50 Years of synchrotrons Adams' Memorial lecture

    CERN Document Server

    Lawson, J D; CERN. Geneva

    1996-01-01

    Fifty years ago Frank Goward of the Atomic Energy Research Establishment Group at Malvern converted a small American betatron to make the worldÕs first synchrotron. At the same time Marcus Oliphant was planning to build at Birmingham a large proton machine with a ring magnet and variable magnetic field. Ideas for this had come to him during night-shifts tending the electromagnetic separators at Oak Ridge during the war. Some seven years later, in 1953, a group gathered together in Geneva to build the PS. A major contributor to the design work which had made this possible was John Adams. An account of some of the achievements in these eventful years will be presented. CERN has built nine synchrotrons/colliders and two temporary test rings. Eight machines are still running. The review will start with the PS, the first proton synchrotron based on the alternating gradient principle invented in 1952 at BNL. The design work of the PS team, under the enlightened leadership of J.B. Adams, and the construction of the...

  8. Current research at NBS using synchrotron radiation at SURF-II

    International Nuclear Information System (INIS)

    Parr, A.C.; Rakowsky, G.; Ederer, D.L.; Stockbauer, R.L.; West, J.B.; Dehmer, J.L.

    1980-01-01

    The National Bureau of Standards (NBS) Synchrotron Ultraviolet Radiation Facility (SURF-II) is used in conjunction with a high flux normal incidence monochromator for angle resolved wavelength dependent photoelectron studies. The recent work has concentrated on studies of the effect of shape resonances on molecular vibrational intensity distributions as well as the effects of autoionization upon the vibrational intensity distributions over narrow wavelength regions. Results for CO, N 2 , Ar and Xe will be discussed

  9. The World of Synchrotrons

    Indian Academy of Sciences (India)

    de Ciencias Fisicas,. Universidad Nacional. Autonoma de Mexico. Sameen Ahmed Khan. A summary of results on synchrotron radiation is presented along with notes on its properties and applications. Quantum aspects are briefly mentioned. Synchrotron radiation facilities are described briefly with a detailed coverage of ...

  10. Report of the second workshop on synchrotron radiation sources for x-ray lithography

    International Nuclear Information System (INIS)

    Barton, M.Q.; Craft, B.; Williams, G.P.

    1986-01-01

    The reported workshop is part of an effort to implement a US-based x-ray lithography program. Presentations include designs for three storage rings (one superconducting and two conventional) and an overview of a complete lithography program. The background of the effort described, the need for synchrotron radiation, and the international competition in the area are discussed briefly. The technical feasibility of x-ray lithography is discussed, and synchrotron performance specifications and construction options are given, as well as a near-term plan. It is recommended that a prototype synchrotron source be built as soon as possible, and that a research and development plan on critical technologies which could improve cost effectiveness of the synchrotron source be established. It is further recommended that a small number of second generation prototype synchrotrons be distributed to IC manufacturing centers to expedite commercialization

  11. TomoPy: a framework for the analysis of synchrotron tomographic data

    International Nuclear Information System (INIS)

    Gürsoy, Doǧa; De Carlo, Francesco; Xiao, Xianghui; Jacobsen, Chris

    2014-01-01

    A collaborative framework for the analysis of synchrotron tomographic data which has the potential to unify the effort of different facilities and beamlines performing similar tasks is described. The proposed Python-based framework is open-source, platform- and data-format-independent, has multiprocessing capability and supports functional programming that many researchers prefer. Analysis of tomographic datasets at synchrotron light sources (including X-ray transmission tomography, X-ray fluorescence microscopy and X-ray diffraction tomography) is becoming progressively more challenging due to the increasing data acquisition rates that new technologies in X-ray sources and detectors enable. The next generation of synchrotron facilities that are currently under design or construction throughout the world will provide diffraction-limited X-ray sources and are expected to boost the current data rates by several orders of magnitude, stressing the need for the development and integration of efficient analysis tools. Here an attempt to provide a collaborative framework for the analysis of synchrotron tomographic data that has the potential to unify the effort of different facilities and beamlines performing similar tasks is described in detail. The proposed Python-based framework is open-source, platform- and data-format-independent, has multiprocessing capability and supports procedural programming that many researchers prefer. This collaborative platform could affect all major synchrotron facilities where new effort is now dedicated to developing new tools that can be deployed at the facility for real-time processing, as well as distributed to users for off-site data processing

  12. TomoPy: a framework for the analysis of synchrotron tomographic data

    Energy Technology Data Exchange (ETDEWEB)

    Gürsoy, Doǧa, E-mail: dgursoy@aps.anl.gov; De Carlo, Francesco; Xiao, Xianghui; Jacobsen, Chris [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837 (United States)

    2014-08-01

    A collaborative framework for the analysis of synchrotron tomographic data which has the potential to unify the effort of different facilities and beamlines performing similar tasks is described. The proposed Python-based framework is open-source, platform- and data-format-independent, has multiprocessing capability and supports functional programming that many researchers prefer. Analysis of tomographic datasets at synchrotron light sources (including X-ray transmission tomography, X-ray fluorescence microscopy and X-ray diffraction tomography) is becoming progressively more challenging due to the increasing data acquisition rates that new technologies in X-ray sources and detectors enable. The next generation of synchrotron facilities that are currently under design or construction throughout the world will provide diffraction-limited X-ray sources and are expected to boost the current data rates by several orders of magnitude, stressing the need for the development and integration of efficient analysis tools. Here an attempt to provide a collaborative framework for the analysis of synchrotron tomographic data that has the potential to unify the effort of different facilities and beamlines performing similar tasks is described in detail. The proposed Python-based framework is open-source, platform- and data-format-independent, has multiprocessing capability and supports procedural programming that many researchers prefer. This collaborative platform could affect all major synchrotron facilities where new effort is now dedicated to developing new tools that can be deployed at the facility for real-time processing, as well as distributed to users for off-site data processing.

  13. Synchrotron light source data book

    International Nuclear Information System (INIS)

    Murphy, J.

    1989-01-01

    The ''Synchrotron Light Source Data Book'' is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-ray Data Booklet, edited by D. Vaughan (LBL PUB-490), address the 'use' of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in 'practical units' and a brief description of many of the existing and planned light source lattices

  14. Implementation of the medical research curriculum in graduate medical school.

    Science.gov (United States)

    Park, Kwi Hwa; Kim, Tae-Hee; Chung, Wook-Jin

    2011-06-01

    The purpose of this study was to analyze the effect of the medical research curriculum on the students' satisfaction and the research self-efficacy. The curriculum was implemented to 79 graduate medical school students who entered in 2007 and 2008. This curriculum is implemented through 3 years consisting of 5 different sub-courses: Research design, Research ethics, Medical statistics, Writing medical paper, and Presentation. The effect of this program was measured with 2 self-administered surveys to students: the course satisfaction survey and the self-efficacy inventories. The Research Self-Efficacy Scale consisted of 18 items from 4 categories: Research design, Research ethics, Data analysis, and Result presentation. The descriptive statistics, paired t-test, and analysis of covariance (ANCOVA) were implemented. The average point of satisfaction of the course was 2.74 out of 4, which told us that students generally satisfied with the course. The frequencies of tutoring for research course were 2 or 3 times on average and each session of tutorial lasted 1.5 to 2 hours. The research self-efficacy in three categories (Research design, Research ethics, and Result presentation) increased significantly (presearch paper writing at undergraduate level. The curriculum showed positive results in cultivating research self-efficacy of students. There is a need for improvement of the class of Statistical analysis as students reported that it was difficult.

  15. Synchrotron radiation: a new perspectives for structure examinations

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Kozhakhmetov, S.K.; Turkebaev, T.Eh.

    2001-01-01

    An important task of radiation material testing is manufacture of multifunctional, stable and cheap materials with designed properties. A materials successful operation in an extemal conditions (high temperatures and pressures, high radiation fluences and charged particles, and etc.) imply an joint decision of physical, chemical, mechanical and other problems. The decision of these problems includes at least examination for structural, phase content, oxidation stability, thermal stability, mechanical strength, thin-film-coverings controlled synthesis (both the passivating and the catalytic) compatible with main matrix, and etc. Synchrotron radiation sources application for these problems are highly perspective. Solution of a set of problems on structural examinations for a materials exposed to high radiation fluences and operating in extemal condition is planning with use of the DELSY third generation synchrotron radiation source constructing at the Joint Institute for Nuclear Research (Dubna). In the paper the principal parameters of the DELSY synchrotron radiation source are given

  16. Synchrotron radiation: appendix to the Daresbury annual report 1990/91

    International Nuclear Information System (INIS)

    1991-01-01

    This Appendix to the Annual Report of the Daresbury Laboratory of the United Kingdom Science and Engineering Research Council contains the 1990 Annual Report of the Synchrotron Radiation Facilities Committee, specifications for the beamlines and stations, the index for the synchrotron radiation user reports, the reports themselves and the list of publications detailing work performed on the Synchrotron Radiation Source. By far the largest part of the Appendix is taken up with the user reports for the period 1990 to 1991. They include reports on structural determination of sodium methyl, an investigation of DNA-Binding Proteins, monitoring of vital processes in live cells, the structure of semiconductor interfaces, the structure and properties of glasses and soft x-ray absorption spectroscopy of liquid samples. (author)

  17. Applications of synchrotron-based X-ray fluorescence technique in materials science-possibilities at INDUS-2

    International Nuclear Information System (INIS)

    Tiwari, Manoj K.

    2016-01-01

    X-ray fluorescence (XRF) spectroscopy has seen remarkable progress over the last few decades. Numerous applications in basic and applied sciences demonstrate its importance. Various advantages of XRF technique have motivated us to construct a microfocus XRF beamline (BL-16) on Indus-2 national synchrotron radiation facility. The BL-16 beamline offers a wide range of usages - both from research laboratories and industries; and for researchers working in diverse fields. Apart from the fields of pure sciences like physics and chemistry, the beamline provides an attractive platform to exercise material science applications, interdisciplinary applied sciences like medical, forensic and environmental studies etc. In addition to micro-XRF characterization, BL-16 beamline allows a user to perform studies using other advanced synchrotron based experimental methodologies, viz; grazing incidence X-ray fluorescence (GIXRF) analysis, chemical speciation, near-edge absorption spectroscopy and X-ray reflectivity studies of thin layered materials etc. The combined XRR-GIXRF analysis feature of the BL-16 beamline offers a novel capability to perform GIXRF assisted depth resolved X-ray studies to investigate chemical state and electronic structure of the thin nano-structured materials. The design aspects and various salient features of the BL-16 beamline X-ray reflectometer will be presented along with the measured performance. (author)

  18. JHF synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The Japan Hadron Facility (JHF) consists of two synchrotrons and an injector linac. First, we will present a brief review of the specifications and lattice of the synchrotrons; one is 3 GeV booster and the other is 50 GeV main ring. Secondly, some detailed results of design study will be discussed, together with the present status of the R and D programs in progress. Among them, an estimate of beam loss is one of critical issues in beam dynamics. The development of a high gradient RF cavity is also crucial for a high intensity machine. (author)

  19. 3D IMAGING USING COHERENT SYNCHROTRON RADIATION

    Directory of Open Access Journals (Sweden)

    Peter Cloetens

    2011-05-01

    Full Text Available Three dimensional imaging is becoming a standard tool for medical, scientific and industrial applications. The use of modem synchrotron radiation sources for monochromatic beam micro-tomography provides several new features. Along with enhanced signal-to-noise ratio and improved spatial resolution, these include the possibility of quantitative measurements, the easy incorporation of special sample environment devices for in-situ experiments, and a simple implementation of phase imaging. These 3D approaches overcome some of the limitations of 2D measurements. They require new tools for image analysis.

  20. Construction of a synchrotron radiation research laboratory in Thailand

    International Nuclear Information System (INIS)

    Ishii, Takehiko

    2005-01-01

    Various obstacles encountered during the course of the construction of the synchrotron radiation facilities in Thailand are described. First background information such as the brief history, the purpose of the project, and the human resources development are mentioned. Then difficulty in promoting the new project is described. Some serious problems having emerged and been overcome in the accelerator construction are mentioned. They are non-uniform floor subsidence, the broken injection timing system, the breaking of newly built vacuum chambers, the unstable operation of the linac, and electrical shortage between layers of coils of quadrupole magnets. (author)

  1. Synchrotron-based FTIR spectromicroscopy: Cytotoxicity and heating considerations

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2002-12-13

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

  2. Synchrotron-based FTIR spectromicroscopy Cytotoxicity and heating considerations

    CERN Document Server

    Holman, H Y N; McKinney, W R

    2002-01-01

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

  3. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    International Nuclear Information System (INIS)

    Cantwell, K.; St. Pierre, M.

    1992-01-01

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included

  4. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cantwell, K.; St. Pierre, M. [eds.

    1992-12-31

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

  5. Sesame Synchrotron Light for Experimental Sciences and Application in the Middle East

    International Nuclear Information System (INIS)

    El-Khalafawy, T.A.

    2003-01-01

    Anew international center for synchrotron radiation for research excellence for scientists from throughout the Middle East as well as other parts of the world could do for science what CERN has done for science in Europe. SESAME Project (Synchrotron Light for Experimental Sciences and Application in the Middle East ) under the umbrella for UNESCO establish the first major international research center as a cooperative venture by the scientists and governments of the Middle East, opened to all qualified scientists. It will be propeller for the regional economy while promoting the peaceful development of science and technology in the Middle East. SESAME will have as its centerpiece a synchrotron radiation based on a gift from Germany of the 0.8 GeV BESSYI storage ring and injector system which stopped operation at the end of November 1999

  6. Inverse comptonization vs. thermal synchrotron

    International Nuclear Information System (INIS)

    Fenimore, E.E.; Klebesadel, R.W.; Laros, J.G.

    1983-01-01

    There are currently two radiation mechanisms being considered for gamma-ray bursts: thermal synchrotron and inverse comptonization. They are mutually exclusive since thermal synchrotron requires a magnetic field of approx. 10 12 Gauss whereas inverse comptonization cannot produce a monotonic spectrum if the field is larger than 10 11 and is too inefficient relative to thermal synchrotron unless the field is less than 10 9 Gauss. Neither mechanism can explain completely the observed characteristics of gamma-ray bursts. However, we conclude that thermal synchrotron is more consistent with the observations if the sources are approx. 40 kpc away whereas inverse comptonization is more consistent if they are approx. 300 pc away. Unfortunately, the source distance is still not known and, thus, the radiation mechanism is still uncertain

  7. Synchrotron radiation at Trieste

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-06-15

    The fast developing field of synchrotron radiation has its origins in the mastery of storage rings in high energy physics and is a prime example of spinoff from pure science. Intense electromagnetic radiation streams off when beams of high energy electrons are bent or shaken. This synchrotron radiation was once an annoying waste of energy in particle storage rings, but now the wheel has turned full circle, with dedicated machines supplying this radiation for a wide range of science. The astonishing growth rate in this field was highlighted at an International Conference on Synchrotron Radiation, held at the International Centre for Theoretical Physics (ICTP), Trieste, Italy from 7-11 April.

  8. Synchrotron radiation at Trieste

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The fast developing field of synchrotron radiation has its origins in the mastery of storage rings in high energy physics and is a prime example of spinoff from pure science. Intense electromagnetic radiation streams off when beams of high energy electrons are bent or shaken. This synchrotron radiation was once an annoying waste of energy in particle storage rings, but now the wheel has turned full circle, with dedicated machines supplying this radiation for a wide range of science. The astonishing growth rate in this field was highlighted at an International Conference on Synchrotron Radiation, held at the International Centre for Theoretical Physics (ICTP), Trieste, Italy from 7-11 April

  9. Archives of Medical and Biomedical Research

    African Journals Online (AJOL)

    Archives of Medical and Biomedical Research is the official journal of the International Association of Medical and Biomedical Researchers (IAMBR) and the Society for Free Radical Research Africa (SFRR-Africa). It is an internationally peer reviewed, open access and multidisciplinary journal aimed at publishing original ...

  10. Synchrotron Radiation in Biology and Medicine

    International Nuclear Information System (INIS)

    Pelka, J.B.

    2008-01-01

    This work is focused on a present status of synchrotron radiation X-ray applications in medicine and biology to imaging, diagnostics, and radio- therapy. Properties of X-ray beams generated by synchrotron sources are compared with radiation produced by classical laboratory X-ray tubes. A list of operating and planned synchrotron facilities applicable to biomedical purposes is given, together with their basic characteristics. A concise overview of typical X-ray synchrotron techniques in biology and medicine is carried out with discussion of their specific properties and examples of typical results. (author)

  11. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  12. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    International Nuclear Information System (INIS)

    Jones, Keith W.

    1999-01-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  13. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    International Nuclear Information System (INIS)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis

  14. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  15. Grounded Theory in Medical Education Research.

    Science.gov (United States)

    Tavakol, Mohsen; Torabi, Sima; Akbar Zeinaloo, Ali

    2006-12-01

    The grounded theory method provides a systematic way to generate theoretical constructs or concepts that illuminate psychosocial processes common to individual who have a similar experience of the phenomenon under investigation. There has been an increase in the number of published research reports that use the grounded theory method. However, there has been less medical education research, which is based on the grounded theory tradition. The purpose of this paper is to introduce basic tenants of qualitative research paradigm with specific reference to ground theory. The paper aims to encourage readers to think how they might possibly use the grounded theory method in medical education research and to apply such a method to their own areas of interest. The important features of a grounded theory as well as its implications for medical education research are explored. Data collection and analysis are also discussed. It seems to be reasonable to incorporate knowledge of this kind in medical education research.

  16. Operation of the Australian Store.Synchrotron for macromolecular crystallography.

    Science.gov (United States)

    Meyer, Grischa R; Aragão, David; Mudie, Nathan J; Caradoc-Davies, Tom T; McGowan, Sheena; Bertling, Philip J; Groenewegen, David; Quenette, Stevan M; Bond, Charles S; Buckle, Ashley M; Androulakis, Steve

    2014-10-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community.

  17. CHESS-the Cornell High Energy Synchrotron Source

    International Nuclear Information System (INIS)

    Batterman, B.W.; Cornell Univ., Ithaca, NY

    1980-01-01

    The Wilson Laboratory at Cornell University has done pioneering work on development of high energy synchrotrons. In the last decade, the 12 GeV synchrotron has been the most energetic electron synchrotron in the world. In 1975 plans were formulated to build a 4-8 GeV storage ring in the same tunnel as the synchrotron and to use the latter as the injector for the storage ring. This small radius (the normal bend magnets have R = 87 m), coupled with the relatively high electron energy of the storage ring, makes these magnets potent sources of synchrotron radiation. In June of 1978 the National Science Foundation funded a project to create CHESS, the Cornell High Energy Synchrotron Source. (orig./FKS)

  18. Synchrotron light: A success story over six decades

    International Nuclear Information System (INIS)

    Margaritondo, G.

    2017-01-01

    Synchrotron radiation research continues to be a major factor in the progress of science and technology, as it has been for more than half a century. We present different aspects of its history, starting with an unconventional approach: a fictional version, which should bring to light the reasons that make this field so broadly important. Then, we narrate the real history from three different points of view: the progress of electron accelerators, the evolution of synchrotron-based experiments, and the human factors. Finally, we discuss the present situation, characterized by the arrival of a new generation of sources with exceptional performances: the x-ray free electron lasers (x-FEL's).

  19. PROCEEDINGS ON SYNCHROTRON RADIATION: China Spallation Neutron Source - an overview of application prospects

    Science.gov (United States)

    Wei, Jie; Fu, Shi-Nian; Tang, Jing-Yu; Tao, Ju-Zhou; Wang, Ding-Sheng; Wang, Fang-Wei; Wang, Sheng

    2009-11-01

    The China Spallation Neutron Source (CSNS) is an accelerator-based multidisciplinary user facility to be constructed in Dongguan, Guangdong, China. The CSNS complex consists of an H- linear accelerator, a rapid cycling synchrotron accelerating the beam to 1.6 GeV, a solid-tungsten target station, and instruments for spallation neutron applications. The facility operates at 25 Hz repetition rate with an initial design beam power of 120 kW and is upgradeable to 500 kW. Construction of the CSNS project will lay the foundation of a leading national research center based on advanced proton-accelerator technology, pulsed neutron-scattering technology, and related programs including muon, fast neutron, and proton applications as well as medical therapy and accelerator-driven subcritical reactor (ADS) applications to serve China's strategic needs in scientific research and technological innovation for the next 30 plus years.

  20. Medical Science and Research in Iran.

    Science.gov (United States)

    Akhondzadeh, Shahin; Ebadifar, Asghar; Baradaran Eftekhari, Monir; Falahat, Katayoun

    2017-11-01

    During the last 3 decades, Iran has experienced a rapid population growth and at the same time the health of Iranian people has improved greatly. This achievement was mainly due to training and availability of health manpower, well organized public health network and medical science and research improvement. In this article, we aimed to report the relevant data about the medical science and research situation in Iran and compare them with other countries. In this study, after reviewing science development and research indicators in medical sciences with participation of key stakeholders, we selected 3 main hybrid indexes consisting of "Research and Development (R&D) expenditures," "Personnel in Science and Technology sector" and "knowledge generation" for evaluation of medical science and research situation. Data was extracted from reliable databases. Over the past decade, Iran has achieved significant success in medical sciences and for the first time in 2015 based on Scopus index, Iran ranked first in the number of published scientific papers and number of citations in the region and among all Islamic countries. Also, 2% of the world's publications belong to Iran. Regarding innovation, the number of Iranian patents submitted to the United States Patent and Trademark Office (USPTO) was 3 and 43 in 2008 and 2013, respectively. In these years, the number of personnel in science and technology sectors including post graduate students, researchers and academic members in universities of medical sciences (UMSs) have increased. The female students in medical sciences field account for about twothirds of all students. Also, women comprise about one-third of faculty members. Since 5 years ago, Iran has had growth in science and technology parks. These achievements were attained in spite of the fact that research spending in Iran was still very low (0.5% of gross domestic product [GDP]) due to economic hardships and sanctions. Medical science and research development has

  1. Synchrotron X-Ray Footprinting on Tour

    OpenAIRE

    Bohon, Jen; Ralston, Corie; D'Mello, Rhijuta; Gupta, Sayan; Chance, Mark R.

    2014-01-01

    Synchrotron X-ray footprinting resources were investigated at a variety of beamlines and synchrotron facilities to understand their potential for a mobile general user. Results indicate that viable resources exist at each synchrotron investigated such that a prospective user need only provide a simple flow apparatus and sample handling accessories to perform this technique.

  2. DOE/DMS workshop on future synchrotron VUV and x-ray beam Lines

    International Nuclear Information System (INIS)

    Green, P.H.

    1992-03-01

    This document contains an overview of the participating DOE Laboratory beam line interests and the projected science to be addressed on these beam lines, both at new and existing synchrotron facilities. The scientific programs associated with present and planned synchrotron research by DOE Laboratories are discussed in chapters titled ''VUV and Soft X-Ray Research'' and ''Hard X-Ray Research.'' This research encompasses a broad range of the nation's scientific and technical research needs from fundamental to applied, in areas including environmental, biological, and physical sciences; new materials; and energy-related technologies. The projected cost of this proposed construction has been provided in tabular form using a uniform format so that anticipated DOE and outside funding agency contributions for construction and for research and development can be determined. The cost figures are, of course, subject to uncertainties of detailed design requirements and the availability of facility-designed generic components and outside vendors. The report also contains a compendium (as submitted by the beam line proposers) of the design capabilities, the anticipated costs, and the scientific programs of projected beam line construction at the four synchrotron facilities. A summary of the projected cost of these beam lines to be requested of DOE is compiled

  3. Surface, interface and bulk materials characterization using Indus synchrotron sources

    International Nuclear Information System (INIS)

    Phase, Deodatta M.

    2014-01-01

    Synchrotron radiation sources, providing intense, polarized and stable beams of ultra violet, soft and hard x-ray photons, are having great impact on physics, chemistry, biology, materials science and other areas research. In particular synchrotron radiation has revolutionized materials characterization techniques by enhancing its capabilities for investigating the structural, electronic and magnetic properties of solids. The availability of synchrotron sources and necessary instrumentation has led to considerable improvements in spectral resolution and intensities. As a result, application scope of different materials characterization techniques has tremendously increased particularly in the analysis of solid surfaces, interfaces and bulk materials. The Indian synchrotron storage ring, Indus-1 and Indus-2 are in operation at RRCAT, Indore. The UGC-DAE CSR with the help of university scientist had designed and developed an angle integrated photoelectron spectroscopy (AlPES) beam line on Indus-1 storage ring of 450 MeV and polarized light beam line for soft x-ray absorption spectroscopy (SXAS) on Indus-2 storage ring of 2.5 GeV. (author)

  4. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    International Nuclear Information System (INIS)

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-01-01

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  5. Solid state spectroscopy by using of far-infrared synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nanba, Takao [Kobe Univ. (Japan). Faculty of Science

    1996-07-01

    If the spectroscopic system corresponding to the wavelength region required for experiment is installed, the light source with continuous wavelength is to be obtainable by synchrotron radiation. This report is that of the research on solid state spectroscopy using the ordinary incoherent synchrotron radiation which is obtained from the deflection electromagnet parts of electron storage ring. At present in the world, the facilities which can be utilized in far-infrared spectroscopy region are five, including the UVSOR of Molecular Science Research Institute in Japan. The optical arrangement of the measuring system of the UVSOR is shown. The spectrum distribution of the light passing through the pinholes with different diameter in the place of setting samples was compared in case of the UVSOR and a high pressure mercury lamp, and it was shown that synchrotron radiation has high luminance. The researches on solid state spectroscopy carried out in the above mentioned five facilities are enumerated. In this paper, the high pressure spectroscopic experiment which has been carried out at the UVSOR is reported. The observation of the phase transition of fine particles and the surface phonons of fine particles are described. As fine particle size became smaller, the critical pressure at which phase transition occurred was high. (K.I.)

  6. Medical applications in a nuclear research centre

    International Nuclear Information System (INIS)

    Vanhavere, F.; Eggermont, G.

    2001-01-01

    In these days of public aversion to nuclear power, it can be important to point at the medical applications of ionising radiation. Not only the general public, but also the authorities and research centres have to be aware of these medical applications, which are not without risk for public health. Now that funding for nuclear research is declining, an opening to the medical world can give new opportunities to a nuclear research centre. A lot of research could be done where the tools developed for the nuclear power world are very useful. Even new applications for the research reactors like BNCT (boron neutron capture therapy) can be envisaged for the near future. In this contribution an overview will be given of the different techniques used in the medical world with ionising radiation. The specific example of the Belgian Nuclear Research Centre will be given where the mission statement was changed to include a certain number of medical research topics. (authors)

  7. SOFT: a synthetic synchrotron diagnostic for runaway electrons

    Science.gov (United States)

    Hoppe, M.; Embréus, O.; Tinguely, R. A.; Granetz, R. S.; Stahl, A.; Fülöp, T.

    2018-02-01

    Improved understanding of the dynamics of runaway electrons can be obtained by measurement and interpretation of their synchrotron radiation emission. Models for synchrotron radiation emitted by relativistic electrons are well established, but the question of how various geometric effects—such as magnetic field inhomogeneity and camera placement—influence the synchrotron measurements and their interpretation remains open. In this paper we address this issue by simulating synchrotron images and spectra using the new synthetic synchrotron diagnostic tool SOFT (Synchrotron-detecting Orbit Following Toolkit). We identify the key parameters influencing the synchrotron radiation spot and present scans in those parameters. Using a runaway electron distribution function obtained by Fokker-Planck simulations for parameters from an Alcator C-Mod discharge, we demonstrate that the corresponding synchrotron image is well-reproduced by SOFT simulations, and we explain how it can be understood in terms of the parameter scans. Geometric effects are shown to significantly influence the synchrotron spectrum, and we show that inherent inconsistencies in a simple emission model (i.e. not modeling detection) can lead to incorrect interpretation of the images.

  8. Obtaining laser safety at a synchrotron radiation user facility: The Advanced Light Source

    International Nuclear Information System (INIS)

    Barat, K.

    1996-01-01

    The Advanced Light Source (ALS) is a US national facility for scientific research and development located at the Lawrence Berkeley National Laboratory in California. The ALS delivers the world's brightest synchrotron radiation in the far ultraviolet and soft X-ray regions of the spectrum. As a user facility it is available to researchers from industry, academia, and laboratories from around the world. Subsequently, a wide range of safety concerns become involved. This article relates not only to synchrotron facilities but to any user facility. A growing number of US centers are attracting organizations and individuals to use the equipment on site, for a fee. This includes synchrotron radiation and/or free electron facilities, specialty research centers, and laser job shops. Personnel coming to such a facility bring with them a broad spectrum of safety cultures. Upon entering, the guests must accommodate to the host facility safety procedures. This article describes a successful method to deal with that responsibility

  9. A survey of medical diagnostic imaging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today`s more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  10. A survey of medical diagnostic imaging technologies

    International Nuclear Information System (INIS)

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today's more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities

  11. Deutsches Elektronen-Synchrotron DESY. Scientific annual report 1993

    International Nuclear Information System (INIS)

    1994-05-01

    The main event in 1993 was the commissioning start-up of DESY as synchrotron radiation source. The annual report covers activities in research (also DESY-Zeuthen), machinery, central data processing, development, and operation. There is much interest in international cooperation. (orig.) [de

  12. Medical Informatics Education & Research in Greece.

    Science.gov (United States)

    Chouvarda, I; Maglaveras, N

    2015-08-13

    This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated.

  13. Transition of Research into Medical Practice

    Science.gov (United States)

    Polk, James D.; Johnson-Throop, Kathy A.

    2010-01-01

    This slide presentation reviews the process of transforming medical research into practical medicine for astronauts and for every day people. Several examples of medical practices that started in space medical research and then were proved useful in other settings: Actigraphy, bone density scanning, the use of Potassium Citrate as a countermeasure used to lessen the risk of kidney stone formation, and ultrasound uses in remote and telemedicine,

  14. Towards Establishing of National Centre of Synchrotron Radiation in Poland

    International Nuclear Information System (INIS)

    Kolodziej, J.J.; Szymonski, M.

    2004-01-01

    Synchrotron radiation facilities (SRF) are established part of contemporary world research landscape. They facilitate fast advances of life, health, and physical sciences as well as development of new technologies. The extent of synchrotron radiation (SR) use has been growing up steadily for the last two decades all over the world and it is anticipated that the growth will continue in future. Growing community of SR users has generated increasing demand for the beam-time in infrared, vacuum UV and X-ray ranges. In response, many new SR facilities are now being constructed and planned, not only in large countries of strong economy but also in developing countries. It is expected that such trends will be followed in other parts of the world. No doubt, the ''cutting edge'' of research activity will continue to create the demand for beams of higher brightness, flux and photon energy but it is predictable that the increasing fraction of research done presently with laboratory radiation sources will be shifting towards small-scale SR facilities. Several hundred Polish scientists, a meaningful fraction of all SR users, take part in experiments using synchrotron sources all over the world. Many of them belong to the Polish Synchrotron Radiation Society - an active body promoting the use of SR. Present European Union priorities include knowledge, research and innovation as the key priorities and a pillar of development and stable welfare of Europe. Poland as a new member of EU will have to conform to the EU policy. The government strategy assumes a fast increase of investments in research and development sector starting from 2005. No other scientific research installations has had such major impact on advances in science an technology as the SRF. It is obvious that the time is ripe now for establishing a National Centre of Synchrotron Radiation in Poland. Recently, several Polish educational and research institutions constituted around the idea of Polish SRF. The initiative

  15. Technological challenges of third generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Cornacchia, M.; Winick, H.

    1990-01-01

    New ''third generation'' synchrotron radiation research facilities are now in construction in France, Italy, Japan, Taiwan and the USA. Designs for such facilities are being developed in several other countries. Third generation facilities are based on storage rings with low electron beam emittance and space for many undulator magnets to produce radiation with extremely high brightness and coherent power. Photon beam from these rings will greatly extend present research capabilities and open up new opportunities in imaging, spectroscopy, structural and dynamic studies and other applications. The technological problems of the third generation of synchrotron radiation facilities are reviewed. These machines are designed to emit radiation of very high intensity, extreme brightness, very short pulses, and partial coherence. These performance goals put severe requirements on the quality of the electron or positron beams. Phenomena affecting the injection process and the beam lifetime are discussed. Gas desorption by synchrotron radiation and collective effects play an important role. Low emittance lattices are more sensitive to quadrupole movements and at the same time, in order not to lose the benefits of high brilliance, require tighter tolerances on the allowed movement of the photon beam source. We discuss some of the ways that should be considered to extend the performance capabilities of the facilities in the future. 14 refs., 1 fig

  16. 50 years of synchrotrons. Early synchrotrons in Britain, and early work for CERN. - The CERN synchrotrons. Lectures

    International Nuclear Information System (INIS)

    Lawson, J.; Brianti, G.

    1997-01-01

    In the first report, 'Early synchrotrons in Britain, and early work for CERN', John Lawson gives an extended account of the material presented at the John Adams lecture, and at the same time a revised and shortened version of RAL report 97-011, which contains fuller archival references and notes. During the period covered by this report there was extensive work in Russia, where the principle of phase stability had been discovered in 1944 by Veksler. Unfortunately, all experimental work was kept secret until Veksler's talk at the first 'Atoms for Peace' conference at Geneva in August 1955. In the second lecture, 'The CERN Synchrotrons', Giorgio Brianti outlines the history of alternating-gradient synchrotrons from 1953/54 until today. In preparing this lecture he was confronted with a vast amount of material, while the time at his disposal was not even one minute per year, implying a time compression factor close to one million. Therefore, he had to exercise drastic choices, which led him to concentrate on CERN hadron synchrotrons and colliders and leave aside the Large Electron-Positron storage ring (LEP). Indeed, LEP was the subject of the John Adams Memorial Lecture in 1990, and it may be treated again in the future in connection with its energy upgrade. Even with these severe limitations, it was impossible to do justice to the number and variety of events and to the ingenuity of the people who have carved the history of CERN and of particle physics on the magnets, radiofrequency cavities, vacuum etc., and on the record performance of our machines. (orig./WL)

  17. Atomic physics at high brilliance synchrotron sources: Proceedings

    International Nuclear Information System (INIS)

    Berry, G.; Cowan, P.; Gemmell, D.

    1994-08-01

    This report contains papers on the following topics: present status of SPring-8 and the atomic physics undulator beamline; recent photoabsorption measurements in the rare gases and alkalis in the 3 to 15 keV proton energy region; atomic and molecular physics at LURE; experiments on atoms, ions and small molecules using the new generation of synchrotron radiation sources; soft x-ray fluorescence spectroscopy using tunable synchrotron radiation; soft x-ray fluorescence spectroscopy excited by synchrotron radiation: Inelastic and resonant scattering near threshold; outer-shell photoionization of ions; overview of the APS BESSRC beamline development; the advanced light source: Research opportunities in atomic and molecular physics; Photoionization of the Ba + ion by 4d shell excitation; decay dynamics of inner-shell excited atoms and molecules; absorption of atomic Ca, Cr, Mn and Cu; High-resolution photoelectron studies of resonant molecular photoionization; radiative and radiationless resonant raman scattering by synchrotron radiation; auger spectrometry of atoms and molecules; some thoughts of future experiments with the new generation of storage rings; Electron spectroscopy studies of argon K-shell excitation and vacancy cascades; ionization of atoms by high energy photons; ion coincidence spectroscopy on rare gas atoms and small molecules after photoexcitation at energies of several keV; an EBIS for use with synchrotron radiation photoionization of multiply charged ions and PHOBIS; gamma-2e coincidence measurements the wave of the future in inner-shell electron spectroscopy; recoil momentum spectroscopy in ion-atom and photon-atom collisions; a study of compton ionization of helium; future perspectives of photoionization studies at high photon energies; and status report on the advanced photon source. These papers have been cataloged separately elsewhere

  18. Light source for synchrotron radiation x-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL)

    International Nuclear Information System (INIS)

    Zhao Jiyong; Jiang Jianhua; Tian Yulian

    1992-01-01

    Characteristics of the synchrotron radiation source for X-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL) is described, local geometrical resolution of topographies is discussed, and the diffracting intensities of white beam topography is given

  19. The European Synchrotron Radiation Facility - an overview of planned diffraction capability

    International Nuclear Information System (INIS)

    Kvick, A.

    1991-01-01

    The European Synchrotron Radiation Facility (ESRF) is a third generation synchrotron radiation facility presently being built as a joint venture between 12 European countries in Grenoble, France. The ESRF will be a low emittance 6 GeV storage ring aimed at producing high-brilliance synchrotron radiation from 29 insertion devices and from 27 bending magnet ports. The general user program will start in the middle of 1994 with seven ESRF beam-lines. By 1999, 30 facility beam-lines as well as beam-lines built and financed by Collaborating Research Groups are scheduled to be in operation. The guidelines for the first beam-lines to be constructed as well as a survey of the diffraction oriented beam-lines built by the ESRF are given in the article. (author)

  20. Structural analysis with high brilliance synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Hideo [Japan Atomic Energy Research Inst., Kamigori, Hyogo (Japan). Kansai Research Establishment

    1997-11-01

    The research subjects in diffraction and scattering of materials with high brilliance synchrotron radiation such as SPring-8 (Super Photon ring 8 GeV) are summarized. The SPring-8 project is going well and 10 public beamlines will be opened for all users in October, 1997. Three JAERI beamlines are also under construction for researches of heavy element science, physical and structural properties under extreme conditions such as high temperature and high pressure. (author)

  1. Synchrotron radiation X-ray microtomography and histomorphometry for evaluation of chemotherapy effects in trabecular bone structure

    International Nuclear Information System (INIS)

    Alessio, R; Almeida, A P; Braz, D; Nogueira, L P; Colaço, M V; Barroso, R C; Andrade, C B V; Salata, C; De Almeida, C E; Ferreira-Machado, S C; Tromba, G

    2014-01-01

    Three-dimensional microtomography has the potential to examine complete bones of small laboratory animals with very high resolution in a non-invasive way. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to bone changes. In the present work, the femur heads of rats treated with chemotherapy drugs were evaluated by 3D histomorphometry using synchrotron radiation microcomputed tomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur heads of rats in both analyzed groups.

  2. Synchrotron radiation X-ray microtomography and histomorphometry for evaluation of chemotherapy effects in trabecular bone structure

    Science.gov (United States)

    Alessio, R.; Nogueira, L. P.; Almeida, A. P.; Colaço, M. V.; Braz, D.; Andrade, C. B. V.; Salata, C.; Ferreira-Machado, S. C.; de Almeida, C. E.; Tromba, G.; Barroso, R. C.

    2014-04-01

    Three-dimensional microtomography has the potential to examine complete bones of small laboratory animals with very high resolution in a non-invasive way. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to bone changes. In the present work, the femur heads of rats treated with chemotherapy drugs were evaluated by 3D histomorphometry using synchrotron radiation microcomputed tomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur heads of rats in both analyzed groups.

  3. Precision synchrotron radiation detectors

    International Nuclear Information System (INIS)

    Levi, M.; Rouse, F.; Butler, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab

  4. Highly-stabilized power supply for synchrotron accelerators. High speed, low ripple power supply

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kenji [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Kumada, Masayuki; Fukami, Kenji; Koseki, Shoichiro; Kubo, Hiroshi; Kanazawa, Toru

    1997-02-01

    In synchrotron accelerators, in order to utilize high energy beam effectively, those are operated by repeating acceleration and taking-out at short period. In order to accelerate by maintaining beam track stable, the tracking performance with the error less than 10{sup -3} in the follow-up of current is required for the power supply. Further, in order to maintain the intensity and uniformity of beam when it is taken out, very low ripple is required for output current. The power supply having such characteristics has been developed, and applied to the HIMAC and the SPring-8. As the examples of the application of synchrotrons, the accelerators for medical treatment and the generation of synchrotron radiation are described. As to the power supply for the deflection magnets and quadrupole magnets of synchrotron accelerators, the specifications of the main power supply, the method of reducing ripple, the method of improving tracking, and active filter control are reported. As to the test results, the measurement of current ripple and tracking error is shown. The lowering of ripple was enabled by common mode filter and the symmetrical connection of electromagnets, and high speed response was realized by the compensation for delay with active filter. (K.I.)

  5. National Synchrotron Light Source angiography personnel protection interlock

    International Nuclear Information System (INIS)

    Gmuer, N.; Larson, R.; Thomlinson, W.

    1992-06-01

    This document has been written to describe the safety system operation at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). The angiography exposure process involves scanning a patient up and down through dual fixed-position x-ray beams; exposure is controlled by opening and closing a fast-acting Safety Shutter mechanism at precise times in relation to the up and down motion of the scan chair. The fast-acting Safety Shutter mechanism is the primary radiation-stopping element protecting the patient while the chair is at rest and while it is reversing directions during the scan. Its fail-safe and fast operation is essential for the safety of the patient. Operation of X17B2 as a human subject angiography station necessitates the implementation of a personnel protection interlock system that, in conjunction with the Safety Shutters: permits safe access to the patient exposure area while the synchrotron radiation beam is illuminating the upstream dual energy monochromator; allows a patient to be imaged by the monochromatized beam under the supervision of a Responsible Physician, with scan chair motion and precision shutter actuation regulated by an angiography control computer, while providing a suitable number of safeguards against accidental radiation exposure; has different modes of operation to accommodate equipment set-up, test, and calibration; and patient exposure; and ensures the quick extinction of the beam if a potentially unsafe condition is detected. The interlock system which performs these safety functions is called the Angiography Personnel Protection Interlock (APPI). The APPI Document is organized such that the level of detail changes from a general overview to detailed engineering drawings of the hardware system

  6. National Synchrotron Light Source angiography personnel protection interlock

    Energy Technology Data Exchange (ETDEWEB)

    Gmuer, N.; Larson, R.; Thomlinson, W.

    1992-06-01

    This document has been written to describe the safety system operation at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). The angiography exposure process involves scanning a patient up and down through dual fixed-position x-ray beams; exposure is controlled by opening and closing a fast-acting Safety Shutter mechanism at precise times in relation to the up and down motion of the scan chair. The fast-acting Safety Shutter mechanism is the primary radiation-stopping element protecting the patient while the chair is at rest and while it is reversing directions during the scan. Its fail-safe and fast operation is essential for the safety of the patient. Operation of X17B2 as a human subject angiography station necessitates the implementation of a personnel protection interlock system that, in conjunction with the Safety Shutters: permits safe access to the patient exposure area while the synchrotron radiation beam is illuminating the upstream dual energy monochromator; allows a patient to be imaged by the monochromatized beam under the supervision of a Responsible Physician, with scan chair motion and precision shutter actuation regulated by an angiography control computer, while providing a suitable number of safeguards against accidental radiation exposure; has different modes of operation to accommodate equipment set-up, test, and calibration; and patient exposure; and ensures the quick extinction of the beam if a potentially unsafe condition is detected. The interlock system which performs these safety functions is called the Angiography Personnel Protection Interlock (APPI). The APPI Document is organized such that the level of detail changes from a general overview to detailed engineering drawings of the hardware system.

  7. Infrared synchrotron radiation from electron storage rings

    International Nuclear Information System (INIS)

    Duncan, W.D.; Williams, G.P.

    1983-01-01

    Simple and useful approximations, valid at infrared wavelengths, to the equations for synchrotron radiation are presented and used to quantify the brightness and power advantage of current synchrotron radiation light sources over conventional infrared broadband laboratory sources. The Daresbury Synchrotron Radiation Source (SRS) and the Brookhaven National Synchrotron Light Source (vacuum ultraviolet) [NSLS(VUV)] storage rings are used as examples in the calculation of the properties of infrared synchrotron radiation. The pulsed nature of the emission is also discussed, and potential areas of application for the brightness, power, and time structure advantages are presented. The use of infrared free electron lasers and undulators on the next generation of storage ring light sources is briefly considered

  8. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    Science.gov (United States)

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece.

  9. Synchrotron Elettra. Status and perspectives

    International Nuclear Information System (INIS)

    Remec, I.

    1992-01-01

    Synchrotron radiation and the possibilities for its applications are shortly presented. Elettra, the third generation synchrotron, now under construction in Trieste, Italy, is briefly described and its main characteristics are given. Current activities in Slovenia, related to Elettra, are presented. (author) [sl

  10. Synchrotron radiation

    International Nuclear Information System (INIS)

    Hallmeier, K.H.; Meisel, A.; Ranft, J.

    1982-01-01

    The physical background and the properties of synchrotron radiation are described. The radiation offers many useful applications in the fields of spectroscopy and structural investigations. Some examples are given

  11. Qualitative research methods for medical educators.

    Science.gov (United States)

    Hanson, Janice L; Balmer, Dorene F; Giardino, Angelo P

    2011-01-01

    This paper provides a primer for qualitative research in medical education. Our aim is to equip readers with a basic understanding of qualitative research and prepare them to judge the goodness of fit between qualitative research and their own research questions. We provide an overview of the reasons for choosing a qualitative research approach and potential benefits of using these methods for systematic investigation. We discuss developing qualitative research questions, grounding research in a philosophical framework, and applying rigorous methods of data collection, sampling, and analysis. We also address methods to establish the trustworthiness of a qualitative study and introduce the reader to ethical concerns that warrant special attention when planning qualitative research. We conclude with a worksheet that readers may use for designing a qualitative study. Medical educators ask many questions that carefully designed qualitative research would address effectively. Careful attention to the design of qualitative studies will help to ensure credible answers that will illuminate many of the issues, challenges, and quandaries that arise while doing the work of medical education. Copyright © 2011 Academic Pediatric Association. All rights reserved.

  12. Protein Data Bank Depositions from Synchrotron Sources

    International Nuclear Information System (INIS)

    Jiang, J.; Sweet, R.

    2004-01-01

    A survey and analysis of Protein Data Bank (PDB) depositions from international synchrotron radiation facilities, based on the latest released PDB entries, are reported. The results ( ) show that worldwide, every year since 1999, more than 50% of the deposited X-ray structures have used synchrotron facilities, reaching 75% by 2003. In this web-based database, all PDB entries among individual synchrotron beamlines are archived, synchronized with the weekly PDB release. Statistics regarding the quality of experimental data and the refined model for all structures are presented, and these are analysed to reflect the impact of synchrotron sources. The results confirm the common impression that synchrotron sources extend the size of structures that can be solved with equivalent or better quality than home sources

  13. The Stanford Synchrotron Radiation Laboratory, 20 years of synchrotron light

    International Nuclear Information System (INIS)

    Cantwell, K.

    1993-08-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) is now operating as a fully dedicated light source with low emittance electron optics, delivering high brightness photon beams to 25 experimental stations six to seven months per year. On October 1, 1993 SSRL became a Division of the Stanford Linear Accelerator Center, rather than an Independent Laboratory of Stanford University, so that high energy physics and synchrotron radiation now function under a single DOE contract. The SSRL division of SLAC has responsibility for operating, maintaining and improving the SPEAR accelerator complex, which includes the storage ring and a 3 GeV injector. SSRL has thirteen x-ray stations and twelve VUV/Soft x-ray stations serving its 600 users. Recently opened to users is a new spherical grating monochromator (SGM) and a multiundulator beam line. Circularly polarized capabilities are being exploited on a second SGM line. New YB 66 crystals installed in a vacuum double-crystal monochromator line have sparked new interest for Al and Mg edge studies. One of the most heavily subscribed stations is the rotation camera, which has been recently enhanced with a MAR imaging plate detector system for protein crystallography on a multipole wiggler. Under construction is a new wiggler-based structural molecular biology beam line with experimental stations for crystallography, small angle scattering and x-ray absorption spectroscopy. Plans for new developments include wiggler beam lines and associated facilities specialized for environmental research and materials processing

  14. The profile of the electron beam in the PTB synchrotron, and its influence on radiometric measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    Kaase, H.

    1976-01-01

    A simple method is described to determine the beam profile in an electron synchrotron; the measured results are compared with calculated values. Moreover, the influence of synchrotron- and betatron-oscillations on synchrotron radiation measurements is discussed, and a method is given to correct this. (orig.) [de

  15. A survey of medical diagnostic imaging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today's more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  16. Injector system design of the 8 GeV synchrotron radiation facility (SPring-8)

    International Nuclear Information System (INIS)

    Harami, T.; Yokomizo, H.; Ohtsuka, H.

    1990-01-01

    The 8 GeV synchrotron radiation facility, named SPring-8, which will be constructed at Nishi-harima in Hyogo-ken, is designed jointly by JAERI (Japan Atomic Energy Research Institute and RIKEN (Institute of Physical and Chemical Research) under the supervision of Science and Technology Agency (STA) of the Japanese government. The facility provides photon in the X-ray and hard X-ray domains with high flux and high brilliance. The major characteristics of the storage ring are the low emittance and the large number of straight sections. Combining the low emittance beam with long insertion devices, several orders of magnitude improvement in intensity and brightness are expected. The injector system of SPring-8 is composed of a linac and a synchrotron. Not only electrons but positrons can be accelerated by the linac. These particles are injected into the synchrotron and further accelerated to 8 GeV. (N.K.)

  17. Protein Data Bank depositions from synchrotron sources.

    Science.gov (United States)

    Jiang, Jiansheng; Sweet, Robert M

    2004-07-01

    A survey and analysis of Protein Data Bank (PDB) depositions from international synchrotron radiation facilities, based on the latest released PDB entries, are reported. The results (http://asdp.bnl.gov/asda/Libraries/) show that worldwide, every year since 1999, more than 50% of the deposited X-ray structures have used synchrotron facilities, reaching 75% by 2003. In this web-based database, all PDB entries among individual synchrotron beamlines are archived, synchronized with the weekly PDB release. Statistics regarding the quality of experimental data and the refined model for all structures are presented, and these are analysed to reflect the impact of synchrotron sources. The results confirm the common impression that synchrotron sources extend the size of structures that can be solved with equivalent or better quality than home sources.

  18. Histomorphometric quantification of human pathological bones from synchrotron radiation 3D computed microtomography

    International Nuclear Information System (INIS)

    Nogueira, Liebert P.; Braz, Delson

    2011-01-01

    Conventional bone histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed microtomography is a noninvasive technique, which can be used to evaluate histomorphometric indices in trabecular bones (BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp). In this technique, the output 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. In this work, histomorphometric quantification using synchrotron 3D X-ray computed microtomography was performed to quantify pathological samples of human bone. Samples of human bones were cut into small blocks (8 mm x 8 mm x 10 mm) with a precision saw and then imaged. The computed microtomographies were obtained at SYRMEP (Synchrotron Radiation for MEdical Physics) beamline, at ELETTRA synchrotron radiation facility (Italy). The obtained 3D images yielded excellent resolution and details of intra-trabecular bone structures, including marrow present inside trabeculae. Histomorphometric quantification was compared to literature as well. (author)

  19. Synchrotron radiation from spherically accreting black holes

    International Nuclear Information System (INIS)

    Ipser, J.R.; Price, R.H.

    1982-01-01

    Spherical accretion onto a Schwartzchild black hole, of gas with frozen-in magnetic field, is studied numerically and analytically for a range of hole masses and accretion rates in which synchrotron emission is the dominant radiative mechanism. At small radii the equipartition of magnetic, kinetic, and gravitational energy is assumed to apply, and the gas is heated by dissipation of infalling magnetic energy, turbulent energy, etc. The models can be classified into three types: (a) synchrotron cooling negligible, (b) synchrotron cooling important but synchrotron self-absorption negligible, (c) synchrotron cooling and self-absorption important. In the first case gas temperatures become very high near the horizon but luminosity efficiencies (luminosity/mass-energy accretion rate) are low. In cases (b) and (c) the gas flow near the horizon is essentially isothermal and luminosity efficiencies are fairly high. The analysis and results for the isothermal cases (b) and (c) are valid only for moderate dissipative heating and synchrotron self-absorption. If self-absorption is very strong or if dissipated energy is comparable to infall energy, Comptonization effects, not included in the analysis, become important

  20. Spin dynamics in electron synchrotrons

    International Nuclear Information System (INIS)

    Schmidt, Jan Felix

    2017-01-01

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  1. Synchrotron Radiation

    International Nuclear Information System (INIS)

    Asfour, F.I

    2000-01-01

    Synchrotron light is produced by electron accelerators combined with storage rings. This light is generated over a wide spectral region; from infra-red (IR) through the visible and vacuum ultraviolet (VUV), and into the X-ray region. For relativistic electrons (moving nearly with the speed of light), most radiation is concentrated in a small cone with an opening angle of 1/gamma(some 0.1 to 1 milliradian),where gamma is the electron energy in units of rest energy (typically 10 3 -10 4 ). In synchrotron radiation sources (storage rings) highly relativistic electrons are stored to travel along a circular path for many hours. Radiation is caused by transverse acceleration due to magnetic forces(bending magnets). The radiation is emitted in pulses of 10-20 picosecond, separated by some 2 nanosecond or longer separation

  2. Fiber structural analysis by synchrotron radiation

    CERN Document Server

    Kojima, J I; Kikutani, T

    2003-01-01

    Topics of fiber structural analysis by synchrotron radiation are explained. There are only three synchrotron radiation facilities in the world, SPring-8 (Super Photon ring-8) in Japan, APS (Advanced Photon Source) in U.S.A. and ESRF (European Synchrotron Radiation Facility) in France. Online measurement of melt spinning process of PET and Nylon6 is explained in detail. Polypropylene and PBO (poly-p-phenylenebenzobisoxazole) was measured by WAXD (Wide Angle X-ray Diffraction)/SAXS (Small Angle X-ray Scattering) at the same time. Some examples of measure of drawing process of fiber are described. The structure formation process of spider's thread was measured. Micro beam of X-ray of synchrotron facility was improved and it attained to 65nm small angle resolving power by 10 mu m beamsize. (S.Y.)

  3. Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging

    International Nuclear Information System (INIS)

    Donnelley, Martin; Parsons, David; Morgan, Kaye; Siu, Karen

    2010-01-01

    Imaging and Medical Beamline at the Australian Synchrotron.Overcoming these challenges has permitted increasingly sophisticated imaging of animals with synchrotron X-rays, and we expect a bright future for these techniques.

  4. Absorbed dose determination in kilovoltage X-ray synchrotron radiation using alanine dosimeters.

    Science.gov (United States)

    Butler, D J; Lye, J E; Wright, T E; Crossley, D; Sharpe, P H G; Stevenson, A W; Livingstone, J; Crosbie, J C

    2016-12-01

    Alanine dosimeters from the National Physical Laboratory (NPL) in the UK were irradiated using kilovoltage synchrotron radiation at the imaging and medical beam line (IMBL) at the Australian Synchrotron. A 20 × 20 mm 2 area was irradiated by scanning the phantom containing the alanine through the 1 mm × 20 mm beam at a constant velocity. The polychromatic beam had an average energy of 95 keV and nominal absorbed dose to water rate of 250 Gy/s. The absorbed dose to water in the solid water phantom was first determined using a PTW Model 31014 PinPoint ionization chamber traceable to a graphite calorimeter. The alanine was read out at NPL using correction factors determined for 60 Co, traceable to NPL standards, and a published energy correction was applied to correct for the effect of the synchrotron beam quality. The ratio of the doses determined by alanine at NPL and those determined at the synchrotron was 0.975 (standard uncertainty 0.042) when alanine energy correction factors published by Waldeland et al. (Waldeland E, Hole E O, Sagstuen E and Malinen E, Med. Phys. 2010, 37, 3569) were used, and 0.996 (standard uncertainty 0.031) when factors by Anton et al. (Anton M, Büermann L., Phys Med Biol. 2015 60 6113-29) were used. The results provide additional verification of the IMBL dosimetry.

  5. Improving medical students’ participation in research

    Directory of Open Access Journals (Sweden)

    Menon R

    2018-01-01

    Full Text Available Rahul Menon, Vishnou Mourougavelou, Arjun MenonFaculty of Medicine, Imperial College London, London, UKWe read with great interest the review by Siddaiah-Subramanya et al1 regarding the difficulty for medical students to participate in research, in developing countries. From our own experience as medical students, we agree that organizational factors, adequacy of knowledge, and variability in “attitudes” may all contribute to difficulty in participating in research. Nevertheless, we propose that the introduction of research projects, which may be part of an intercalated degree, could help improve medical students’ involvement in research.Author's replyManjunath Siddaiah-Subramanya,1,2 Harveen Singh,3 Kor Woi Tiang1,21Department of Surgery, Logan Hospital, Meadowbrook, 2Department of Medicine, Griffith University, Nathan, 3Department of Gastroenterology, Lady Cilento Children’s Hospital, Brisbane, QLD, Australia We would like to thank Menon et al for the letter in response to our article.1 We note that an overarching theme in the letter is the situation in countries where research at medical school could be improved. In the letter, Menon et al have brought out a couple of important issues: one is that the problem is multifactorial, and the other is the fact that opportunities and encouragement need to be provided to the students so that they could get more involved in research.View the original paper by Siddaiah-Subramanya and colleagues.

  6. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Liu, Y; Nelson, J; Andrews, J C; Pianetta, P; Holzner, C

    2013-01-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented. (paper)

  7. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    Science.gov (United States)

    Liu, Y.; Nelson, J.; Holzner, C.; Andrews, J. C.; Pianetta, P.

    2013-12-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented.

  8. Contributions to advances in blend pellet products (BPP) research on molecular structure and molecular nutrition interaction by advanced synchrotron and globar molecular (Micro)spectroscopy.

    Science.gov (United States)

    Guevara-Oquendo, Víctor H; Zhang, Huihua; Yu, Peiqiang

    2018-04-13

    To date, advanced synchrotron-based and globar-sourced techniques are almost unknown to food and feed scientists. There has been little application of these advanced techniques to study blend pellet products at a molecular level. This article aims to provide recent research on advanced synchrotron and globar vibrational molecular spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction. How processing induced molecular structure changes in relation to nutrient availability and utilization of the blend pellet products. The study reviews Utilization of co-product components for blend pellet product in North America; Utilization and benefits of inclusion of pulse screenings; Utilization of additives in blend pellet products; Application of pellet processing in blend pellet products; Conventional evaluation techniques and methods for blend pellet products. The study focus on recent applications of cutting-edge vibrational molecular spectroscopy for molecular structure and molecular structure association with nutrient utilization in blend pellet products. The information described in this article gives better insight on how advanced molecular (micro)spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction.

  9. Perspectives for medical informatics. Reusing the electronic medical record for clinical research.

    Science.gov (United States)

    Prokosch, H U; Ganslandt, T

    2009-01-01

    Even though today most university hospitals have already implemented commercial hospital information systems and started to build up comprehensive electronic medical records, reuse of such data for data warehousing and research purposes is still very rare. Given this situation, the focus of this paper is to present an overview on exemplary projects, which have already tackled this challenge, reflect on current initiatives within the United States of America and the European Union to establish IT infrastructures for clinical and translational research, and draw attention to new challenges in this area. This paper does not intend to provide a fully comprehensive review on all the issues of clinical routine data reuse. It is based, however, on a presentation of a large variety of historical, but also most recent activities in data warehousing, data retrieval and linking medical informatics with translational research. The article presents an overview of the various international approaches to this issue and illustrates concepts and solutions which have been published, thus giving an impression of activities pursued in this field of medical informatics. Further, problems and open questions, which have also been named in the literature, are presented and three challenges (to establish comprehensive clinical data warehouses, to establish professional IT infrastructure applications supporting clinical trial data capture and to integrate medical record systems and clinical trial databases) related to this area of medical informatics are identified and presented. Translational biomedical research with the aim "to integrate bedside and biology" and to bridge the gap between clinical care and medical research today and in the years to come, provides a large and interesting field for medical informatics researchers. Especially the need for integrating clinical research projects with data repositories built up during documentation of routine clinical care, today still leaves

  10. Study of spear as a dedicated source of synchrotron radiation

    International Nuclear Information System (INIS)

    Cerino, J.; Golde, A.; Hastings, J.; Lindau, I.; Salsburg, B.; Winick, H.; Lee, M.; Morton, P.; Garren, A.

    1977-11-01

    A study was made of the potential of SPEAR as a dedicated source of synchrotron radiation, based on the expectation that SPEAR will become increasingly available for this purpose as PEP, the 18-GeV colliding-beam storage ring now under construction by LBL and SLAC, becomes operational. A synchrotron radiation research program has been underway since May, 1974. Two beam ports capable of serving 9 simultaneous users are now operational. In single-beam multi-bunch operation high currents are possible (225 mA has been achieved and > approximately 300 mA is expected) and the electron beam emittance can be made smaller, resulting in higher source point brightness. Descriptions are given of SPEAR capabilities and of plans to expand the research capability by adding beam runs and by inserting wiggler magnets in SPEAR straight sections

  11. Atomic physics and synchrotron radiation: The production and accumulation of highly charged ions

    International Nuclear Information System (INIS)

    Johnson, B.M.; Meron, M.; Agagu, A.; Jones, K.W.

    1986-01-01

    Synchrotron radiation can be used to produce highly-charged ions, and to study photoexcitation and photoionization for ions of virtually any element in the periodic table. To date, with few exceptions, atomic physics studies have been limited to rare gases and a few metal vapors, and to photoexcitation energies in the VUV region of the electromagnetic spectrum. These limitations can now be overcome using photons produced by high-brightness synchrotron storage rings, such as the x-ray ring at the National Synchrotron Light Source (NSLS) at Brookhaven. Furthermore, calculations indicate that irradiation of an ion trap with an intense energetic photon beam will result in a viable source of highly-charged ions that can be given the name PHOBIS: the PHOton Beam Ion Source. Promising results, which encourage the wider systematic use of synchrotron radiation in atomic physics research, have been obtained in recent experiments on VUV photoemission and the production and storage of multiply-charged ions. 26 refs., 4 figs., 1 tab

  12. Synchrotron radiation

    International Nuclear Information System (INIS)

    Seddon, E.A.; Reid, R.J.

    1992-01-01

    Work at the Daresbury SRS has of necessity been interrupted this year (1991/92) due to the incorporation of Wiggler II. However, considerable beamtime was awarded before the shutdown and the major part of this appendix is concerned with the progress reports of the research undertaken then. The reports have been organised under the following broad headings: Molecular Science (19 papers), Surface and Materials Science (169 papers), Biological Science (85 papers), Instrumental and Technique Developments (13 papers) and Accelerator Physics (3 papers). It is hoped that in time the number of contributions on accelerator physics will grow to reflect the in-house activity on, for example, accelerator improvement and design. The research reports are preceded by the Annual Report of the Synchrotron Radiation Facilities Committee, which outlines the research highlights identified by that Committee (also included are details of the current membership of the SRFC and the chairmen of the Beamtime Allocation Panels). Following the reports are the specifications for the beamlines and stations. This year Section 3 contains 289 reports (nearly 100 more than last year) and the number of publications, generated by scientists and engineers who have used or are associated with Daresbury Laboratory facilities, has topped 500 for the first time. (author)

  13. Overview of United States synchrotron radiation facilities

    International Nuclear Information System (INIS)

    Watson, R.E.

    1983-01-01

    There has been considerable activity within the past year involving the creation of new and the improvement of existing capabilities for research with synchrotron light. The purpose of this review is to summarize what has happened within the United States. Being a status report, some of the information necessarily has a date attached to it - the date, in this case, being early September 1983

  14. Effect of two Howard Hughes Medical Institute research training programs for medical students on the likelihood of pursuing research careers.

    Science.gov (United States)

    Fang, Di; Meyer, Roger E

    2003-12-01

    To assess the effect of Howard Hughes Medical Institute's (HHMI) two one-year research training programs for medical students on the awardees' research careers. Awardees of the HHMI Cloister Program who graduated between 1987 and 1995 and awardees of the HHMI Medical Fellows Program who graduated between 1991 and 1995 were compared with unsuccessful applicants to the programs and MD-PhD students who graduated during the same periods. Logistic regression analyses were conducted to assess research career outcomes while controlling for academic and demographic variables that could affect selection to the programs. Participation in both HHMI programs increased the likelihood of receiving National Institutes of Health postdoctoral support. Participation in the Cloister Program also increased the likelihood of receiving a faculty appointment with research responsibility at a medical school. In addition, awardees of the Medical Fellows Program were not significantly less likely than Medical Scientist Training Program (MSTP) and non-MSTP MD-PhD program participants to receive a National Institutes of Health postdoctoral award, and awardees of the Cloister Program were not significantly less likely than non-MSTP MD-PhD students to receive a faculty appointment with research responsibility. Women and underrepresented minority students were proportionally represented among awardees of the two HHMI programs whereas they were relatively underrepresented in MD-PhD programs. The one-year intensive research training supported by the HHMI training programs appears to provide an effective imprinting experience on medical students' research careers and to be an attractive strategy for training physician-scientists.

  15. Experience with synchrotron radiation sources

    International Nuclear Information System (INIS)

    Krinsky, S.

    1987-01-01

    The development of synchrotron radiation sources is discussed, emphasizing characteristics important for x-ray microscopy. Bending magnets, wigglers and undulators are considered as sources of radiation. Operating experience at the national Synchrotron Light Source on the VUV and XRAY storage rings is reviewed, with particular consideration given to achieved current and lifetime, transverse bunch dimensions, and orbit stability. 6 refs., 3 figs

  16. Coherence Inherent in an Incoherent Synchrotron Radio Source ...

    Indian Academy of Sciences (India)

    It is well known that synchrotron radiation mechanism does not allow MASER type coherent emission (Pacholczyk 1970). Here we show that coherence can naturally occur in a synchrotron ... cally thick region (Fig. 1), then divides the synchrotron spectrum into an incoherent. 1A thin flat circular unleavened Indian bread.

  17. Synchrotron light sources in developing countries

    Science.gov (United States)

    Mtingwa, Sekazi K.; Winick, Herman

    2018-03-01

    We discuss the role that synchrotron light sources, such as SESAME, could play in improving the socioeconomic conditions in developing countries. After providing a brief description of a synchrotron light source, we discuss the important role that they played in the development of several economically emerging countries. Then we describe the state of synchrotron science in South Africa and that country’s leadership role in founding the African Light Source initiative. Next, we highlight a new initiative called Lightsources for Africa, the Americas & Middle East Project, which is a global initiative led by the International Union of Pure and Applied Physics and the International Union of Crystallography, with initial funding provided by the International Council for Science. Finally, we comment on a new technology called the multibend achromat that has launched a new paradigm for the design of synchrotron light sources that should be attractive for construction in developing countries.

  18. Planning study for advanced national synchrotron-radiation facilities

    International Nuclear Information System (INIS)

    1984-01-01

    A new generation of synchrotron-radiation sources based on insertion devices offers gains in photon-beam brilliance as large as the gains that present-day synchrotron sources provided over conventional sources. This revolution in synchrotron capability and its impact on science and technology will be as significant as the original introduction of synchrotron radiation. This report recommends that insertion-device technology be pursued as our highest priority, both through the full development of insertion-device potential on existing machines and through the building of new facilities

  19. Japan's contribution to nuclear medical research

    International Nuclear Information System (INIS)

    Rahman, M.; Sakamoto, Junichi; Fukui, Tsuguya

    2002-01-01

    We investigated the degree of Japan's contribution to the nuclear medical research in the last decade. Articles published in 1991-2000 in highly reputed nuclear medical journals were accessed through the MEDLINE database. The number of articles having affiliation with a Japanese institution was counted along with publication year. In addition, shares of top-ranking countries were determined along with their trends over time. Of the total number of articles (7,788), Japan's share of articles in selected nuclear medical journals was 11.4% (889 articles) and ranked 2nd in the world after the USA (2,645 articles). The recent increase in the share was statistically significant for Japan (p=0.02, test for trend). Japan's share in nuclear medical research output is much higher than that in other biomedical fields. (author)

  20. Research in medical education: balancing service and science.

    Science.gov (United States)

    Albert, Mathieu; Hodges, Brian; Regehr, Glenn

    2007-02-01

    Since the latter part of the 1990's, the English-speaking medical education community has been engaged in a debate concerning the types of research that should have priority. To shed light on this debate and to better understand its implications for the practice of research, 23 semi-structured interviews were conducted with "influential figures" from the community. The results were analyzed using the concept of "field" developed by the sociologist Pierre Bourdieu. The results reveal that a large majority of these influential figures believe that research in medical education continues to be of insufficient quality despite the progress that has taken place over the past 2 decades. According to this group, studies tend to be both redundant and opportunistic, and researchers tend to have limited understanding of both theory and methodological practice from the social sciences. Three factors were identified by the participants to explain the current problems in research: the working conditions of researchers, budgetary restraints in financing research in medical education, and the conception of research in the medical environment. Two principal means for improving research are presented: intensifying collaboration between PhD's and clinicians, and encouraging the diversification of perspectives brought to bear on research in medical education.

  1. Nanopositioning techniques development for synchrotron radiation instrumentation applications at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu Deming

    2010-01-01

    At modern synchrotron radiation sources and beamlines, high-precision positioning techniques present a significant opportunity to support state-of-the-art synchrotron radiation research. Meanwhile, the required instrument positioning performance and capabilities, such as resolution, dynamic range, repeatability, speed, and multiple axes synchronization are exceeding the limit of commercial availability. This paper presents the current nanopositioning techniques developed for the Argonne Center for Nanoscale Materials (CNM)/Advanced Photon Source (APS) hard x-ray nanoprobe and high-resolution x-ray monochromators and analyzers for the APS X-ray Operations and Research (XOR) beamlines. Future nanopositioning techniques to be developed for the APS renewal project will also be discussed.

  2. Overview and perspective of materials characterization by using synchrotron radiation

    International Nuclear Information System (INIS)

    Kamitsubo, Hiromichi

    2009-01-01

    A peculiarity of techniques and the methods of synchrotron radiation are explained. It consists of five sections such as introduction, synchrotron radiation, interaction between X-ray and materials, analytical methods of materials using synchrotron radiation and perspective and problems. The second section described the principles of synchrotron orbit radiation, synchrotron light source, the main formulae and schematic drawing of undulator, and the synchrotron radiation facilities in Japan. The third section explained behavior of X-ray in materials, absorption, reflection, refraction and scattering of X-ray. The fourth section stated many analytical methods of materials; the surface diffractometer, powder diffractometer, high-energy X-ray diffraction, core-electron absorption spectroscopy, micro-beam diffraction, X-ray fluorescence, X-ray absorption fine structure (XAFS), and photoemission spectroscopy (PES). A characteristic feature of synchrotron radiation contains the large wave length ranges from infrared to X-ray, high directivity and brightness, linear (circular) polarization, pulsed light, good control and stability. The brightness spectra of Spring-8 and SAGA-LS, concept of synchrotron light source, undulator and wiggler, nine synchrotron radiation facilities in Japan, mass absorption coefficients of Cu and Au, and analysis of materials using synchrotron radiation are illustrated. (S.Y.)

  3. Changing opinions about research by Saudi medical students

    Directory of Open Access Journals (Sweden)

    Abulaban A

    2017-08-01

    Full Text Available Ahmad Abulaban, Abdulrahman Alharbi, Osama BinDajam, Mohammed Al Jarbou, Hatem Alharbi, Faiz Alanazi, Khalid Aldamiri, Ahmed Althobaiti, Abdulla Al Sayyari Department of Medicine, Division of Neurology, King Saud bin-Abdulaziz University for Health Sciences, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia Objective: The objective of this study was to investigate and compare the opinions and attitudes of medical students toward medical research in five Saudi universities and examine the changes observed in these opinions and attitudes in one of these universities over a period of time.Methods: This is a cross-sectional study conducted among medical students in five Saudi universities. This study was based on a survey undertaken in 2015. The survey consisted of five questions inquiring about the opinions and attitudes of medical students toward medical research. The same survey was carried out 8 years earlier in one of these universities (King Abdulaziz University [KAU], and the results obtained during the two periods (2007 and 2015 were compared.Results: A convenient sample of 924 students was selected from five Saudi universities. Ninety-five (10.3% of the medical students were not aware of the usefulness and importance scientific research will have on their future careers. A total of 409 (44.3% stated that they had no knowledge on how to conduct scientific research. On the other hand, a vast majority of medical students (98.1% expressed a willingness and interest to participate in scientific research if provided with an opportunity. The percentage of students from KAU strongly agreeing to participate in research rose from 33.1% in 2007 to 81.5% in 2015 (P=0.001. Of all the students surveyed, 431 (46.6% had participated in scientific research as undergraduates.Conclusion: Most students in five Saudi universities expressed enthusiasm for participating in a research project, but only a few of them had

  4. 3D histomorphometric quantification of trabecular bones by computed microtomography using synchrotron radiation.

    Science.gov (United States)

    Nogueira, L P; Braz, D; Barroso, R C; Oliveira, L F; Pinheiro, C J G; Dreossi, D; Tromba, G

    2010-12-01

    Conventional bone histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed microtomography is a non-invasive technique, which can be used to evaluate histomorphometric indices in trabecular bones (BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp). In this technique, 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. In this work, histomorphometric quantification using synchrotron 3D X-ray computed microtomography was performed to quantify the bone structure at different skeletal sites as well as to investigate the effects of bone diseases on quantitative understanding of bone architecture. The images were obtained at Synchrotron Radiation for MEdical Physics (SYRMEP) beamline, at ELETTRA synchrotron radiation facility, Italy. Concerning the obtained results for normal and pathological bones from same skeletal sites and individuals, from our results, a certain declining bone volume fraction was achieved. The results obtained could be used in forming the basis for comparison of the bone microarchitecture and can be a valuable tool for predicting bone fragility. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. The Beamline X28C of the Center for Synchrotron Biosciences: a National Resource for Biomolecular Structure and Dynamics Experiments Using Synchrotron Footprinting

    International Nuclear Information System (INIS)

    Gupta, S.; Sullivan, M.; Toomey, J.; Kiselar, J.; Chance, M.

    2007-01-01

    Structural mapping of proteins and nucleic acids with high resolution in solution is of critical importance for understanding their biological function. A wide range of footprinting technologies have been developed over the last ten years to address this need. Beamline X28C, a white-beam X-ray source at the National Synchrotron Light Source of Brookhaven National Laboratory, functions as a platform for synchrotron footprinting research and further technology development in this growing field. An expanding set of user groups utilize this national resource funded by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health. The facility is operated by the Center for Synchrotron Biosciences and the Center for Proteomics of Case Western Reserve University. The facility includes instrumentation suitable for conducting both steady-state and millisecond time-resolved footprinting experiments based on the production of hydroxyl radicals by X-rays. Footprinting studies of nucleic acids are routinely conducted with X-ray exposures of tens of milliseconds, which include studies of nucleic acid folding and their interactions with proteins. This technology can also be used to study protein structure and dynamics in solution as well as protein-protein interactions in large macromolecular complexes. This article provides an overview of the X28C beamline technology and defines protocols for its adoption at other synchrotron facilities. Lastly, several examples of published results provide illustrations of the kinds of experiments likely to be successful using these approaches

  6. Evaluation of the synchrotron close orbit

    International Nuclear Information System (INIS)

    Bashmakov, Yu.A.; Karpov, V.A.

    1991-01-01

    The knowledge of the closed orbit position is an essential condition for the effective work of any accelerator. Therefore questions of calculations, measurements and controls have great importance. For example, during injection of particles into a synchrotron, the amplitudes of their betatron oscillations may become commensurable with the working region of the synchrotron. This makes one pay attention at the problem of formation of the optimum orbit with use of correcting optical elements. In addition, it is often necessary to calculate such an orbit at the end of the acceleration cycle when particles are deposited at internal targets or removed from the synchrotron. In this paper, the computation of the close orbit is reduced to a determination at an arbitrarily chosen azimuth of the eigenvector of the total transfer matrix of the synchrotron ring and to tracing with this vector desired orbit. The eigenvector is found as a result of an iteration

  7. Emerging research trends in medical textiles

    CERN Document Server

    Gokarneshan, N; Rajendran, V; Lavanya, B; Ghoshal, Arundhathi

    2015-01-01

    This book provides a comprehensive review of the significant researches reported during the recent years in the field of medical textiles. It also highlights the use of new types of fibres in developing medical textile products and their promising role in the respective areas of application. Considerable developments have taken place in the development of medical textiles for varied applications.

  8. X-ray diffraction microtomography using synchrotron radiation

    CERN Document Server

    Barroso, R C; Jesus, E F O; Oliveira, L F

    2001-01-01

    The X-ray diffraction computed tomography technique is based on the interference phenomena of the coherent scatter. For low-momentum transfer, it is most probable that the scattering interaction will be coherent. A selective discrimination of a given element in a scanned specimen can be realized by fixing the Bragg angle which produces an interference peak and then, to carry out the computed tomography in the standard mode. The image reconstructed exalts the presence of this element with respect to other ones in a sample. This work reports the feasibility of a non-destructive synchrotron radiation X-ray diffraction imaging technique. This research was performed at the X-ray Diffraction beam line of the National Synchrotron Light Laboratory (LNLS) in Brazil. The coherent scattering properties of different tissue and bone substitute materials were evaluated. Furthermore, diffraction patterns of some polycrystalline solids were studied due to industrial and environmental human exposure to these metals. The obtai...

  9. Berkeley Lab's ALS generates femtosecond synchrotron radiation

    CERN Document Server

    Robinson, A L

    2000-01-01

    A team at Berkeley's Advanced Light Source has shown how a laser time-slicing technique provides a path to experiments with ultrafast time resolution. A Lawrence Berkeley National Laboratory team has succeeded in generating 300 fs pulses of synchrotron radiation at the ALS synchrotron radiation machine. The team's members come from the Materials Sciences Division (MSD), the Center for Beam Physics in the Accelerator and Fusion Research Division and the Advanced Light Source (ALS). Although this proof-of principle experiment made use of visible light on a borrowed beamline, the laser "time-slicing" technique at the heart of the demonstration will soon be applied in a new bend magnet beamline that was designed specially for the production of femtosecond pulses of X-rays to study long-range and local order in condensed matter with ultrafast time resolution. An undulator beamline based on the same technique has been proposed that will dramatically increase the flux and brightness. The use of X-rays to study the c...

  10. Tropical Journal of Medical Research

    African Journals Online (AJOL)

    Tropical Journal of Medical Research publishes original research work, review articles, important case report, short communications, and innovations in medicine and related fields. Vol 16, No 2 (2012). DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Table of Contents. Articles ...

  11. Medical Research for All Americans

    Science.gov (United States)

    ... we want to offer you and your family good, helpful health information that is based on the very best medical research conducted by and for the National Institutes of Health (NIH). This issue focuses on several topics in which NIH-funded research continues to make ...

  12. Properties of synchrotron radiation

    International Nuclear Information System (INIS)

    Materlik, G.

    1982-01-01

    This paper forms the introductory chapter to a book concerning the use of synchrotron radiation for investigation of the structure and mechanism of biological macromolecules. After a historical section, the physics of synchrotron radiation is summarized so that the most promising experiments may be extrapolated. Irradiated power and intensity, polarization and angular distribution, brilliance of a real source, and developments such as wigglers and undulators are briefly dealt with. The paper includes a tabulated compilation of proposed and operating machines in 1982, with some of their characteristics. (U.K.)

  13. Synchrotron radiation sources in the Soviet Union

    International Nuclear Information System (INIS)

    Kapitza, S.P.

    1987-01-01

    Synchrotron radiation (SR) is now recognized to be an important instrument for experimental work in many fields of science. Recently the application of SR in medicine and industry, especially as a light source for microelectronics production have been demonstrated. Thus the development of SR sources has now grown to become a significant and independent dimension for accelerator research and technology. This article describes SR work in the Soviet Union

  14. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections

  15. Summer research training for medical students: impact on research self-efficacy.

    Science.gov (United States)

    Black, Michelle L; Curran, Maureen C; Golshan, Shahrokh; Daly, Rebecca; Depp, Colin; Kelly, Carolyn; Jeste, Dilip V

    2013-12-01

    There is a well-documented shortage of physician researchers, and numerous training programs have been launched to facilitate development of new physician scientists. Short-term research training programs are the most practical form of research exposure for most medical students, and the summer between their first and second years of medical school is generally the longest period they can devote solely to research. The goal of short-term training programs is to whet the students' appetite for research and spark their interest in the field. Relatively little research has been done to test the effectiveness of short-term research training programs. In an effort to examine short-term effects of three different NIH-funded summer research training programs for medical students, we assessed the trainees' (N = 75) research self-efficacy prior to and after the programs using an 11-item scale. These hands-on training programs combined experiential, didactic, and mentoring elements. The students demonstrated a significant increase in their self-efficacy for research. Trainees' gender, ranking of their school, type of research, and specific content of research project did not predict improvement. Effect sizes for different types of items on the scale varied, with the largest gain seen in research methodology and communication of study findings. © 2013 Wiley Periodicals, Inc.

  16. Undergraduate medical research: the student perspective.

    LENUS (Irish Health Repository)

    Burgoyne, Louise N

    2010-01-01

    Research training is essential in a modern undergraduate medical curriculum. Our evaluation aimed to (a) gauge students\\' awareness of research activities, (b) compare students\\' perceptions of their transferable and research-specific skills competencies, (c) determine students\\' motivation for research and (d) obtain students\\' personal views on doing research.

  17. Fabrication of a small animal restraint for synchrotron biomedical imaging using a rapid prototyper

    International Nuclear Information System (INIS)

    Zhu Ying; Zhang Honglin; McCrea, Richard; Bewer, Brian; Wiebe, Sheldon; Nichol, Helen; Ryan, Christopher; Wysokinski, Tomasz; Chapman, Dean

    2007-01-01

    Biomedical research at synchrotron facilities may involve imaging live animals that must remain motionless for extended periods of time to obtain quality images. Even breathing movements reduce image quality but on the other hand excessive restraint of animals increases morbidity and mortality. We describe a humane animal restraint designed to eliminate head movements while promoting animal survival. This paper describes how an animal restraint that conforms to the shape of an animal's head was fabricated by a 3D prototyper. The method used to translate medical computed tomography (CT) data to a 3D stereolithography format is described and images of its use at the Canadian Light Source (CLS) are shown. This type of restraint holds great promise in improving image quality and repeatability while reducing stress on experimental animals

  18. Molecular Environmental Science: An Assessment of Research Accomplishments, Available Synchrotron Radiation Facilities, and Needs

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G

    2004-02-05

    Synchrotron-based techniques are fundamental to research in ''Molecular Environmental Science'' (MES), an emerging field that involves molecular-level studies of chemical and biological processes affecting the speciation, properties, and behavior of contaminants, pollutants, and nutrients in the ecosphere. These techniques enable the study of aqueous solute complexes, poorly crystalline materials, solid-liquid interfaces, mineral-aqueous solution interactions, microbial biofilm-heavy metal interactions, heavy metal-plant interactions, complex material microstructures, and nanomaterials, all of which are important components or processes in the environment. Basic understanding of environmental materials and processes at the molecular scale is essential for risk assessment and management, and reduction of environmental pollutants at field, landscape, and global scales. One of the main purposes of this report is to illustrate the role of synchrotron radiation (SR)-based studies in environmental science and related fields and their impact on environmental problems of importance to society. A major driving force for MES research is the need to characterize, treat, and/or dispose of vast quantities of contaminated materials, including groundwater, sediments, and soils, and to process wastes, at an estimated cost exceeding 150 billion dollars through 2070. A major component of this problem derives from high-level nuclear waste. Other significant components come from mining and industrial wastes, atmospheric pollutants derived from fossil fuel consumption, agricultural pesticides and fertilizers, and the pollution problems associated with animal waste run-off, all of which have major impacts on human health and welfare. Addressing these problems requires the development of new characterization and processing technologies--efforts that require information on the chemical speciation of heavy metals, radionuclides, and xenobiotic organic compounds and

  19. Molecular Environmental Science: An Assessment of Research Accomplishments, Available Synchrotron Radiation Facilities, and Needs

    International Nuclear Information System (INIS)

    Brown, G

    2004-01-01

    Synchrotron-based techniques are fundamental to research in ''Molecular Environmental Science'' (MES), an emerging field that involves molecular-level studies of chemical and biological processes affecting the speciation, properties, and behavior of contaminants, pollutants, and nutrients in the ecosphere. These techniques enable the study of aqueous solute complexes, poorly crystalline materials, solid-liquid interfaces, mineral-aqueous solution interactions, microbial biofilm-heavy metal interactions, heavy metal-plant interactions, complex material microstructures, and nanomaterials, all of which are important components or processes in the environment. Basic understanding of environmental materials and processes at the molecular scale is essential for risk assessment and management, and reduction of environmental pollutants at field, landscape, and global scales. One of the main purposes of this report is to illustrate the role of synchrotron radiation (SR)-based studies in environmental science and related fields and their impact on environmental problems of importance to society. A major driving force for MES research is the need to characterize, treat, and/or dispose of vast quantities of contaminated materials, including groundwater, sediments, and soils, and to process wastes, at an estimated cost exceeding 150 billion dollars through 2070. A major component of this problem derives from high-level nuclear waste. Other significant components come from mining and industrial wastes, atmospheric pollutants derived from fossil fuel consumption, agricultural pesticides and fertilizers, and the pollution problems associated with animal waste run-off, all of which have major impacts on human health and welfare. Addressing these problems requires the development of new characterization and processing technologies--efforts that require information on the chemical speciation of heavy metals, radionuclides, and xenobiotic organic compounds and their reactions with

  20. Molecular environmental science : an assessment of research accomplishments, available synchrotron radiation facilities, and needs.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G. E., Jr.; Sutton, S. R.; Bargar, J. R.; Shuh, D. K.; Fenter, P. A.; Kemner, K. M.

    2004-10-20

    Synchrotron-based techniques are fundamental to research in ''Molecular Environmental Science'' (MES), an emerging field that involves molecular-level studies of chemical and biological processes affecting the speciation, properties, and behavior of contaminants, pollutants, and nutrients in the ecosphere. These techniques enable the study of aqueous solute complexes, poorly crystalline materials, solid-liquid interfaces, mineral-aqueous solution interactions, microbial biofilm-heavy metal interactions, heavy metal-plant interactions, complex material microstructures, and nanomaterials, all of which are important components or processes in the environment. Basic understanding of environmental materials and processes at the molecular scale is essential for risk assessment and management, and reduction of environmental pollutants at field, landscape, and global scales. One of the main purposes of this report is to illustrate the role of synchrotron radiation (SR)-based studies in environmental science and related fields and their impact on environmental problems of importance to society. A major driving force for MES research is the need to characterize, treat, and/or dispose of vast quantities of contaminated materials, including groundwater, sediments, and soils, and to process wastes, at an estimated cost exceeding 150 billion dollars through 2070. A major component of this problem derives from high-level nuclear waste. Other significant components come from mining and industrial wastes, atmospheric pollutants derived from fossil fuel consumption, agricultural pesticides and fertilizers, and the pollution problems associated with animal waste run-off, all of which have major impacts on human health and welfare. Addressing these problems requires the development of new characterization and processing technologies--efforts that require information on the chemical speciation of heavy metals, radionuclides, and xenobiotic organic compounds and

  1. Dual-harmonic auto voltage control for the rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    Fumihiko Tamura

    2008-07-01

    Full Text Available The dual-harmonic operation, in which the accelerating cavities are driven by the superposition of the fundamental and the second harmonic rf voltage, is useful for acceleration of the ultrahigh intensity proton beam in the rapid cycling synchrotron (RCS of Japan Proton Accelerator Research Complex (J-PARC. However, the precise and fast voltage control of the harmonics is necessary to realize the dual-harmonic acceleration. We developed the dual-harmonic auto voltage control system for the J-PARC RCS. We describe details of the design and the implementation. Various tests of the system are performed with the RCS rf system. Also, a preliminary beam test has been done. We report the test results.

  2. Beam commissioning of the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    H. Hotchi

    2009-04-01

    Full Text Available The 3-GeV rapid cycling synchrotron (RCS of the Japan Proton Accelerator Research Complex (J-PARC was commissioned in October 2007, and successfully accomplished 3 GeV acceleration on October 31. Six run cycles through February 2008 were dedicated to commissioning the RCS, for which the initial machine parameter tuning and various underlying beam studies were completed. Then since May 2008 the RCS beam has been delivered to the downstream facilities for their beam commissioning. In this paper we describe beam tuning and study results following our beam commissioning scenario and a beam performance and operational experience obtained in the first commissioning phase through June 2008.

  3. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    International Nuclear Information System (INIS)

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube

  4. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

  5. Synchrotron topographic project. Progress report, February 20, 1981-January 20, 1982

    International Nuclear Information System (INIS)

    Bilello, J.C.

    1982-01-01

    The Synchrotron Topography Project (STP) has under design and construction various phases of a dedicated beam line for x-ray diffraction topography users in conjunction with the National Synchrotron Light Source at Brookhaven National Laboratory. During the past year final design and procurement phase has been completed for the following: (1) Experimental Hutch, (2) White Beam Camera, (3) Detector Arm for White Beam Camera, (4) Film Cassette System, (5) Medium Resolution Real-time TV System, (6) Lift Table Assembly, (7) Asymmetric Camera Base Mount, (8) Motor Control System, and (9) Computer system. Experimental work has been initiated on using reflection topography to study fracture surfaces. Preliminary results, both with Berg-Barrett, as well as with Synchrotron Topography done in collaboration with the Daresbury, U.K. facility show that defects generated in the near surface layers can be detected. Research work on the effects of stress concentration and geometric effects due to grain boundaries on the fracture of tungsten has been completed

  6. Narrative inquiry: a relational research methodology for medical education.

    Science.gov (United States)

    Clandinin, D Jean; Cave, Marie T; Berendonk, Charlotte

    2017-01-01

    Narrative research, an inclusive term for a range of methodologies, has rapidly become part of medical education scholarship. In this paper we identify narrative inquiry as a particular theoretical and methodological framework within narrative research and outline its characteristics. We briefly summarise how narrative research has been used in studying medical learners' identity making in medical education. We then turn to the uses of narrative inquiry in studying medical learners' professional identity making. With the turn to narrative inquiry, the shift is to thinking with stories instead of about stories. We highlight four challenges in engaging in narrative inquiry in medical education and point toward promising future research and practice possibilities. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  7. Synchrotron power supply of TARN II

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi.

    1991-07-01

    The construction and performance of synchrotron power supply of TARN II are described. The 1.1 GeV synchrotron-cooler TARN II has been constructed at Institute for Nuclear Study, University of Tokyo. Constructed power supply for the dipole magnets is 600 V, 2500 A operated in the mode of trapezoid wave form with the repetition cycle of 0.1 Hz. The stability of magnetic field within 10 -3 and tracking error of 10 -4 have been attained with the aid of computer control system. First trial of synchrotron acceleration of He 2+ beam has been done up to 600 MeV in April, 1991. (author)

  8. Medical technology advances from space research

    Science.gov (United States)

    Pool, S. L.

    1972-01-01

    Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

  9. Medical research at the Albert Schweitzer Hospital.

    Science.gov (United States)

    Issifou, Saadou; Adegnika, Ayola A; Lell, Bertrand

    2010-03-01

    Built in 1981, the Medical Research Unit is located at the campus of the Albert Schweitzer Hospital. The main scientific activities of this research unit lie on clinical research focusing on antimalarial drugs and vaccines, and basic studies on pathogenesis of infectious diseases. Since 2002 the Medical Research Unit has experience in organising and hosting high quality training in clinical research in collaboration with the Vienna School of Clinical Research and other partners. For the future, this unit is involved as a key partner in the Central African Network on Tuberculosis, HIV/AIDS and Malaria (CANTAM) consortium playing a central role for the excellence in clinical research in Central Africa.

  10. Synchrotron radiation applications in biophysics and medicine

    International Nuclear Information System (INIS)

    Burattini, E.

    1985-01-01

    The peculiar properties of synchrotron radiation are briefly summarized. A short review on the possible applications of synchrotron radiation in two important fields like Biophysics and Medicine is presented. Details are given on experiments both in progress and carried out in many synchrotron radiation facilities, all over the world, using different techniques like X-ray absorption and fluorescence spectroscopy, X-ray fluorescence microanalysis, X-ray microscopy and digital subtraction angiography. Some news about the photon-activation therapy are briefly reported too

  11. Medical Research Volunteer Program (MRVP): innovative program promoting undergraduate research in the medical field.

    Science.gov (United States)

    Dagher, Michael M; Atieh, Jessica A; Soubra, Marwa K; Khoury, Samia J; Tamim, Hani; Kaafarani, Bilal R

    2016-06-06

    Most educational institutions lack a structured system that provides undergraduate students with research exposure in the medical field. The objective of this paper is to describe the structure of the Medical Research Volunteer Program (MRVP) which was established at the American University of Beirut, Lebanon, as well as to assess the success of the program. The MRVP is a program that targets undergraduate students interested in becoming involved in the medical research field early on in their academic career. It provides students with an active experience and the opportunity to learn from and support physicians, clinical researchers, basic science researchers and other health professionals. Through this program, students are assigned to researchers and become part of a research team where they observe and aid on a volunteer basis. This paper presents the MRVP's four major pillars: the students, the faculty members, the MRVP committee, and the online portal. Moreover, details of the MRVP process are provided. The success of the program was assessed by carrying out analyses using information gathered from the MRVP participants (both students and faculty). Satisfaction with the program was assessed using a set of questions rated on a Likert scale, ranging from 1 (lowest satisfaction) to 5 (highest satisfaction). A total of 211 students applied to the program with a total of 164 matches being completed. Since the beginning of the program, three students have each co-authored a publication in peer-reviewed journals with their respective faculty members. The majority of the students rated the program positively. Of the total number of students who completed the program period, 35.1 % rated the effectiveness of the program with a 5, 54.8 % rated 4, and 8.6 % rated 3. A small number of students gave lower ratings of 2 and 1 (1.1 % and 0.4 %, respectively). The MRVP is a program that provides undergraduate students with the opportunity to learn about research firsthand

  12. Intensity possibilities for the Loma Linda Medical Accelerator

    International Nuclear Information System (INIS)

    Young, P.E.; Morton, P.L.

    1991-01-01

    Based on questions and concerns over the possible intensity limitations of the Loma Linda Medical Synchrotron, a detailed study was conducted in order to determine the possible intensity limitations in the synchrotron as presently configured and what could be done in future machines in order to achieve better intensity performance. The losses in the operating machine were investigated as well as the possible space charge and coherent collective effects limits

  13. Nazi Medical Research in Neuroscience: Medical Procedures, Victims, and Perpetrators.

    Science.gov (United States)

    Loewenau, Aleksandra; Weindling, Paul J

    Issues relating to the euthanasia killings of the mentally ill, the medical research conducted on collected body parts, and the clinical investigations on living victims under National Socialism are among the best-known abuses in medical history. But to date, there have been no statistics compiled regarding the extent and number of the victims and perpetrators, or regarding their identities in terms of age, nationality, and gender. "Victims of Unethical Human Experiments and Coerced Research under National Socialism," a research project based at Oxford Brookes University, has established an evidence-based documentation of the overall numbers of victims and perpetrators through specific record linkages of the evidence from the period of National Socialism, as well as from post-WWII trials and other records. This article examines the level and extent of these unethical medical procedures as they relate to the field of neuroscience. It presents statistical information regarding the victims, as well as detailing the involvement of the perpetrators and Nazi physicians with respect to their post-war activities and subsequent court trials.

  14. Space-charge calculations in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Machida, S.

    1993-05-01

    One obvious bottleneck of achieving high luminosity in hadron colliders, such as the Superconducting Super Collider (SSC), is the beam emittance growth, due to space-charge effects in low energy injector synchrotrons. Although space-charge effects have been recognized since the alternating-gradient synchrotron was invented, and the Laslett tune shift usually calculated to quantify these effects, our understanding of the effects is limited, especially when the Laslett tune shift becomes a large fraction of the integer. Using the Simpsons tracking code, which we developed to study emittance preservation issues in proton synchrotrons, we investigated space-charge effects in the SSC Low Energy Booster (LEB). We observed detailed dependence on parameters such as beam intensity, initial emittance, injection energy, lattice function, and longitudinal motion. A summary of those findings, as well as the tracking technique we developed for the study, are presented.

  15. Medipix3 array high performance read-out board for synchrotron research

    International Nuclear Information System (INIS)

    Tartoni, N.; Horswell, I. C.; Marchal, J.; Gimenez, E. N.; Fearn, R. D.; Silfhout, R. G. van

    2010-01-01

    The Medipix3 ASIC is one of the most advanced chip that is presently available to build photon counting area detectors. The capabilities of the chip include adjacent pixels charge summing circuitry to sort out the distortion due to charge sharing, simultaneous counting and read-out that enables frames to be acquired without dead time, the colour mode of operation that enables up to eight energy bands to be acquired. In order to fully exploit the capabilities of the Medipix3 chip in synchrotron research, a high performance electronic board capable of driving large arrays of chips is necessary. We propose a parallel read-out board of Medipix3 chip arrays with a scalable architecture that allows driving the Medipix3 chip in all of its modes of operation. The board functions include the control of the chip arrays, data formatting and data compression, the management of the communications with the data storage devices, and operation in various trigger modes. In addition to this the board will have some 'intelligence' embedded. This will add some very important features to the final detector such as pattern recognition, capability of variable frame duration as a function of the photon flux, feedback to other equipment and real time calculations of data relevant to experiments such as the autocorrelation function.

  16. Macromolecular crystallography using synchrotron radiation

    International Nuclear Information System (INIS)

    Bartunik, H.D.; Phillips, J.C.; Fourme, R.

    1982-01-01

    The use of synchrotron X-ray sources in macromolecular crystallography is described. The properties of synchrotron radiation relevant to macromolecular crystallography are examined. The applications discussed include anomalous dispersion techniques, the acquisition of normal and high resolution data, and kinetic studies of structural changes in macromolecules; protein data are presented illustrating these applications. The apparatus used is described including information on the electronic detectors, the monitoring of the incident beam and crystal cooling. (U.K.)

  17. Public support for medical research in the 21st century.

    Science.gov (United States)

    Smith, P M

    2000-01-01

    Key public policies that have contributed to the rise of modern medical research in the 20th Century are reviewed, focusing especially on the United States and the post-World War II period. Drawing on this history, the question is posed: "Are these policies sufficient to insure vigorous medical research in the 21st Century?" Although radical policy changes are not needed, several proposals for policy and medical research portfolio redirection are offered, including a rebalancing of public supported research in all fields of science that contribute to medical advances. Medical research must also invest in a national and international information infrastructure that will allow the linking of researchers, clinical experimenters, practicing physicians, and the public in ways heretofore not imagined. Medical researchers must be leaders and advocates for the whole research enterprise in the 21st Century.

  18. Division of Biological and Medical Research research summary 1984-1985

    Energy Technology Data Exchange (ETDEWEB)

    Barr, S.H. (ed.)

    1985-08-01

    The Division of Biological and Medical Research at Argonne National Laboratory conducts multidisciplinary research aimed at defining the biological and medical hazards to man from energy technologies and new energy options. These technically oriented studies have a strong base in fundamental research in a variety of scientific disciplines, including molecular and cellular biology, biophysics, genetics, radiobiology, pharmacology, biochemistry, chemistry, environmental toxicology, and epidemiology. This research summary is organized into six parts. The first five parts reflect the Divisional structure and contain the scientific program chapters, which summarize the activities of the individual groups during the calendar year 1984 and the first half of 1985. To provide better continuity and perspective, previous work is sometimes briefly described. Although the summaries are short, efforts have been made to indicate the range of research activities for each group.

  19. Division of Biological and Medical Research research summary 1984-1985

    International Nuclear Information System (INIS)

    Barr, S.H.

    1985-08-01

    The Division of Biological and Medical Research at Argonne National Laboratory conducts multidisciplinary research aimed at defining the biological and medical hazards to man from energy technologies and new energy options. These technically oriented studies have a strong base in fundamental research in a variety of scientific disciplines, including molecular and cellular biology, biophysics, genetics, radiobiology, pharmacology, biochemistry, chemistry, environmental toxicology, and epidemiology. This research summary is organized into six parts. The first five parts reflect the Divisional structure and contain the scientific program chapters, which summarize the activities of the individual groups during the calendar year 1984 and the first half of 1985. To provide better continuity and perspective, previous work is sometimes briefly described. Although the summaries are short, efforts have been made to indicate the range of research activities for each group

  20. PHOTOACOUSTIC SPECTROSCOPY USING A SYNCHROTRON LIGHT SOURCE

    International Nuclear Information System (INIS)

    JACKSON, R.S.; MICHAELIAN, K.H.; HOMES, C.C.

    2001-01-01

    We have investigated the use of a synchrotron as a source for infrared photoacoustic spectroscopy. A synchrotron has an intrinsically high radiance, which is beneficial when photoacoustic spectroscopy is applied to small samples, especially at long wavelengths

  1. Funding problems threaten Middle East's synchrotron

    CERN Multimedia

    McCabe, H

    1999-01-01

    Scientists will tour the Middle East to try to raise support for the Synchrotron radiation for Experimental Science and Applications in the Middle East project. The plan is to dismantle and move a decommissioned synchrotron from Berlin to the Middle East where scientists of any nationality would be able to use it (3 paragraphs).

  2. HESYRL: a dedicated synchrotron radiation laboratory in China

    International Nuclear Information System (INIS)

    Qiu, L.J.

    1985-01-01

    The HESYRL national synchrotron radiation laboratory was first proposed in 1977 as a conclusion of a general planning meeting on nationwide development of natural science and technology at which a topic was the application of synchrotron radiation. A study group was formed in 1978 to carry out preliminary research and prototype development work. The final approval of the project was given in April 1983 and the lab was soon founded. Designs of the main facilities and building completed in Oct 1984. The ground breaking was in Nov 1984. Manufacturing and purchasing of all the equipment and components are now in progress. The overall layout of HESYRL project is shown. the main facilities are an 800 MeV electron storage ring, a 88 meter transport line and a 240 MeV linac as the injector. Some basic considerations in the selecting of major machine parameters are discussed

  3. Application of synchrotron radiation to elemental analysis

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Hanson, A.L.; Hastings, J.B.; Howells, M.R.; Kraner, H.W.; Chen, J.R.

    1983-01-01

    The use of a synchrotron storage ring as a high brightness source for production of monoergic, variable energy, and highly polarized x-ray beams promises to revolutionize the field of elemental analysis. The results of exploratory work using the Cornell synchrotron facility, CHESS, will be described. Design considerations and features of the new X-Ray Microprobe Facility now under construction at the Brookhaven National Synchrotron Light Source will be presented. This facility will be used for bulk analysis and for microanalysis with an initial spatial resolution of the order of 30 μm

  4. Synchrotron FTIR Imaging For The Identification Of Cell Types Within Human Tissues

    International Nuclear Information System (INIS)

    Walsh, Michael J.; Pounder, F. Nell; Nasse, Michael J.; Macias, Virgilia; Kajdacsy-Balla, Andre; Hirschmugl, Carol; Bhargava, Rohit

    2010-01-01

    The use of synchrotron Fourier Transform Infrared spectroscopy (S-FTIR) has been shown to be a very promising tool for biomedical research. S-FTIR spectroscopy allows for the fast acquisition of infrared (IR) spectra at a spatial resolution approaching the IR diffraction limit. The development of the Infrared Environmental Imaging (IRENI) beamline at the Synchrotron Radiation Center (SRC) at the University of Wisconsin-Madison has allowed for diffraction limited imaging measurements of cells in human prostate and breast tissues. This has allowed for the identification of cell types within tissues that would otherwise not have been resolvable using conventional FTIR sources.

  5. Radiation protection in medical and biomedical research

    International Nuclear Information System (INIS)

    Fuente Puch, A.E. de la

    2013-01-01

    The human exposure to ionizing radiation in the context of medical and biomedical research raises specific ethical challenges whose resolution approaches should be based on scientific, legal and procedural matters. Joint Resolution MINSAP CITMA-Regulation 'Basic Standards of Radiation Safety' of 30 November 2001 (hereafter NBS) provides for the first time in Cuba legislation specifically designed to protect patients and healthy people who participate in research programs medical and biomedical and exposed to radiation. The objective of this paper is to demonstrate the need to develop specific requirements for radiation protection in medical and biomedical research, as well as to identify all the institutions involved in this in order to establish the necessary cooperation to ensure the protection of persons participating in the investigation

  6. Application of Synchrotron Radiation-based Methods for Environmental Biogeochemistry: Introduction to the Special Section

    Energy Technology Data Exchange (ETDEWEB)

    Hettiarachchi, Ganga M.; Donner, Erica; Doelsch, Emmanuel

    2017-01-01

    To understand the biogeochemistry of nutrients and contaminants in environmental media, their speciation and behavior under different conditions and at multiple scales must be determined. Synchrotron radiation-based X-ray techniques allow scientists to elucidate the underlying mechanisms responsible for nutrient and contaminant mobility, bioavailability, and behavior. The continuous improvement of synchrotron light sources and X-ray beamlines around the world has led to a profound transformation in the field of environmental biogeochemistry and, subsequently, to significant scientific breakthroughs. Following this introductory paper, this special collection includes 10 papers that either present targeted reviews of recent advancements in spectroscopic methods that are applicable to environmental biogeochemistry or describe original research studies conducted on complex environmental samples that have been significantly enhanced by incorporating synchrotron radiation-based X-ray technique(s). We believe that the current focus on improving the speciation of ultra-dilute elements in environmental media through the ongoing optimization of synchrotron technologies (e.g., brighter light sources, improved monochromators, more efficient detectors) will help to significantly push back the frontiers of environmental biogeochemistry research. As many of the relevant techniques produce extremely large datasets, we also identify ongoing improvements in data processing and analysis (e.g., software improvements and harmonization of analytical methods) as a significant requirement for environmental biogeochemists to maximize the information that can be gained using these powerful tools.

  7. Microangiography in Living Mice Using Synchrotron Radiation

    International Nuclear Information System (INIS)

    Yuan Falei; Wang Yongting; Xie Bohua; Tang Yaohui; Guan Yongjing; Lu Haiyan; Yang Guoyuan; Xie Honglan; Du Guohao; Xiao Tiqiao

    2010-01-01

    Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-1 mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent. The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 μm/pixel. The optimal dose of contrast agent is 100 μl per injection and the injecting rate is 33 μl/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43±6.8 μm. There were no differences between LSAs from the left and right hemisphere (p<0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.

  8. Microangiography in Living Mice Using Synchrotron Radiation

    Science.gov (United States)

    Yuan, Falei; Wang, Yongting; Guan, Yongjing; Lu, Haiyan; Xie, Bohua; Tang, Yaohui; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Yang, Guo-Yuan

    2010-07-01

    Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-1 mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent. The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 μm/pixel. The optimal dose of contrast agent is 100 μl per injection and the injecting rate is 33 μl/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43±6.8 μm. There were no differences between LSAs from the left and right hemisphere (p<0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.

  9. Medical Applications of Non-Medical Research: Applications Derived from BES-Supported Research and Research at BES Facilities

    Science.gov (United States)

    1998-07-01

    This publication contains stories that illustrate how the Office of Basic Energy Sciences (BES) research and major user facilities have impacted the medical sciences in the selected topical areas of disease diagnosis, treatment (including drug development, radiation therapy, and surgery), understanding, and prevention.

  10. Statistical problems in medical research

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... medical research, there are some common problems in using statistical methodology which may result ... optimal combination of diagnostic tests for osteoporosis .... randomization used include stratification and minimize-.

  11. Prospects of using synchrotron radiation facilities with diamond-anvil cells

    International Nuclear Information System (INIS)

    Manghani, M.H.; Ming, L.C.; Jamieson, J.C.

    1980-01-01

    Diamond-anvil pressure cells have proven versatile and useful for conducting high pressure research in the submegabar range. The interfacing of diamond-anvil cell technology with synchrotron facilities seems a logical new step for carrying out in situ X-ray diffraction studies of materials under extreme conditions of combined high pressure and temperature. The conventional film method of X-ray diffraction has definite limitations which call for the energy dispersive analysis techniques. Various potential high pressure-temperature studies in geophysis and related fields involving the use of diamond-anvil cell, synchrotron facilities and energy dispersive techniques are exemplified. For geophysical studies the conditions prevailing in 86% of the Earth's volume are capable of being simulated completely in pressure, and partially in pressure and temperature, simultaneously. (orig.)

  12. Synchrotron/crystal sample preparation

    Science.gov (United States)

    Johnson, R. Barry

    1993-01-01

    The Center for Applied Optics (CAO) of the University of Alabama in Huntsville (UAH) prepared this final report entitled 'Synchrotron/Crystal Sample Preparation' in completion of contract NAS8-38609, Delivery Order No. 53. Hughes Danbury Optical Systems (HDOS) is manufacturing the Advanced X-ray Astrophysics Facility (AXAF) mirrors. These thin-walled, grazing incidence, Wolter Type-1 mirrors, varying in diameter from 1.2 to 0.68 meters, must be ground and polished using state-of-the-art techniques in order to prevent undue stress due to damage or the presence of crystals and inclusions. The effect of crystals on the polishing and grinding process must also be understood. This involves coating special samples of Zerodur and measuring the reflectivity of the coatings in a synchrotron system. In order to gain the understanding needed on the effect of the Zerodur crystals by the grinding and polishing process, UAH prepared glass samples by cutting, grinding, etching, and polishing as required to meet specifications for witness bars for synchrotron measurements and for investigations of crystals embedded in Zerodur. UAH then characterized these samples for subsurface damage and surface roughness and figure.

  13. Conducting Quantitative Medical Education Research: From Design to Dissemination.

    Science.gov (United States)

    Abramson, Erika L; Paul, Caroline R; Petershack, Jean; Serwint, Janet; Fischel, Janet E; Rocha, Mary; Treitz, Meghan; McPhillips, Heather; Lockspeiser, Tai; Hicks, Patricia; Tewksbury, Linda; Vasquez, Margarita; Tancredi, Daniel J; Li, Su-Ting T

    2018-03-01

    Rigorous medical education research is critical to effectively develop and evaluate the training we provide our learners. Yet many clinical medical educators lack the training and skills needed to conduct high-quality medical education research. We offer guidance on conducting sound quantitative medical education research. Our aim is to equip readers with the key skills and strategies necessary to conduct successful research projects, highlighting new concepts and controversies in the field. We utilize Glassick's criteria for scholarship as a framework to discuss strategies to ensure that the research question of interest is worthy of further study and how to use existing literature and conceptual frameworks to strengthen a research study. Through discussions of the strengths and limitations of commonly used study designs, we expose the reader to particular nuances of these decisions in medical education research and discuss outcomes generally focused on, as well as strategies for determining the significance of consequent findings. We conclude with information on critiquing research findings and preparing results for dissemination to a broad audience. Practical planning worksheets and comprehensive tables illustrating key concepts are provided in order to guide researchers through each step of the process. Medical education research provides wonderful opportunities to improve how we teach our learners, to satisfy our own intellectual curiosity, and ultimately to enhance the care provided to patients. Copyright © 2018 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  14. Research at big facilities on actinides: How neutrons and synchrotron x-rays can help our understanding

    International Nuclear Information System (INIS)

    Lander, G.H.

    2014-01-01

    Neutron scattering was a by-product of the Manhattan Project, as it started by using neutron beams emerging from the reactors produced by that project. Seventy years later, neutron scattering is a tool used by many scientists, across many different disciplines, to try to understand the microscopic properties of materials. It can also give unique answers to problems involving actinides. ; X-rays, of course, date even further back, but it was not until the 1970s that synchrotron radiation was widely available. Now synchrotron radiation is a tool widely used in the study of actinides across a variety of different fields. ; The basic properties of these two probes will be presented and contrasted. Some of the ways these techniques have helped us understand the actinides will be presented

  15. The Australian synchrotron

    International Nuclear Information System (INIS)

    Farhi, R.

    2005-06-01

    This document recalls the historical aspects of the Australian Synchrotron which will be implemented in 2007. It presents then the objectives of this program, the specifications of the ring and the light lines. (A.L.B.)

  16. Dynamic response of a typical synchrotron magnet/girder assembly

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Smith, R.K.; Vogt, M.E.

    1993-06-01

    In the Advanced Photon Source, the synchrotron booster ring accelerates positrons to the required energy level of 7 GeV. The positrons are then injected into the storage ring where they continue to orbit for 10--15 h. The storage ring quadrupoles have very stringent vibration criteria that must be satisfied to ensure that beam emittance growth is within acceptable limits, viz., <10%. Because the synchrotron booster ring is not operated after particle insertion into the storage ring, its vibration response is not a critical issue relative to the performance of the storage ring beam. Nevertheless, the synchrotron pulses at a frequency of 2 Hz, and if a vibration response frequency of the synchrotron magnet/girder assembly were to coincide with the pulsation frequency or its near harmonics, large-amplitude motion could result, with the effect that it could compromise the operation of the synchrotron. Due to the complex dynamics of the synchrotron magnet/girder assembly, it is necessary to measure the dynamic response of a prototypic assembly and its components to ensure that the inherent dynamic response frequencies are not equal to 2 Hz or any near harmonics. Dynamic-response measurement of the synchrotron girder assembly and component magnets is the subject of this report

  17. Synchrotron radiation facilities in the USA

    International Nuclear Information System (INIS)

    Decker, G.

    1996-01-01

    With the successful commissioning and achievement of significant milestones at both the 7-GeV Advanced Photon Source (APS) and the 1.5- GeV Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory, synchrotron radiation research capability in the United States holds the promise of many important discoveries in the decade to come. An overview of current accelerator commissioning performance at the American third-generation light sources, state-of-the-art developments at first- and second-generation sources, and a preview of fourth-generation source progress is presented

  18. Infrared microspectroscopy with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Carr, G.L.; Williams, G.P. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source

    1997-09-01

    Infrared microspectroscopy with a high brightness synchrotron source can achieve a spatial resolution approaching the diffraction limit. However, in order to realize this intrinsic source brightness at the specimen location, some care must be taken in designing the optical system. Also, when operating in diffraction limited conditions, the effective spatial resolution is no longer controlled by the apertures typically used for a conventional (geometrically defined) measurement. Instead, the spatial resolution depends on the wavelength of light and the effective apertures of the microscope`s Schwarzchild objectives. The authors have modeled the optical system from the synchrotron source up to the sample location and determined the diffraction-limited spatial distribution of light. Effects due to the dependence of the synchrotron source`s numerical aperture on wavelength, as well as the difference between transmission and reflection measurement modes, are also addressed. Lastly, they examine the benefits (when using a high brightness source) of an extrinsic germanium photoconductive detector with cone optics as a replacement for the standard MCT detector.

  19. Report of the Synchrotron Radiation Vacuum Workshop

    International Nuclear Information System (INIS)

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well

  20. Ethics and the ethnography of medical research in Africa

    Science.gov (United States)

    Molyneux, Sassy; Geissler, P. Wenzel

    2008-01-01

    The ethics of medical research have grown as an area of expertise and debate in recent years, with two broad approaches emerging in relation to transnational research: (1) the refinement of guidelines and strengthening of review, processes primarily to protect the right of individual research participants and strengthen interpersonal relations at the micro-level; and (2) considering more centrally, as crucial ethical concerns, the wider interests of whole populations, the functioning of research institutions, the processes of collaboration, and the ethics of inequitable international relations. We see the two areas of debate and action as complementary, and believe that social science conducted in and around transnational medical research environments can bring these two perspectives together in a more ‘situated ethics’ of research. To explore this idea for medical research in Africa, we organized a conference in December 2005 in Kilifi, Kenya. In this introduction we outline the two emerging approaches to medical ethics, summarise each of seven papers selected from the conference for inclusion in this special issue on ethics and ethnography, and finally highlight two areas of lively debate at the conference itself: the appropriateness and value of ethics guidelines and review boards for medical research; and the ethical review of social science research. Together, the papers and debates point to the importance of focusing on the ethics of relationships and on justice in both biomedicine and social science research, and on giving greater voice and visibility to the field staff who often play a crucial and under-supported role in ‘doing ethics’ in the field. They also point to the potential value of social science research on the range of relationships operating at different levels and time scales in medical research, including those surrounding community engagement activities, and the role and functioning of ethics review boards. We conclude by highlighting

  1. Evaluation of the medical student research programme in Norwegian medical schools. A survey of students and supervisors

    Directory of Open Access Journals (Sweden)

    Tømmerås Karin

    2009-07-01

    Full Text Available Abstract Background The Medical Student Research Programme is a national education and grant scheme for medical students who wish to carry out research in parallel with their studies. The purpose of the programme is to increase recruitment of people with a standard medical degree to medical research. The Research Programme was established in 2002 and underwent a thorough evaluation during the spring of 2007. The evaluation should investigate if the programme had fulfilled its objectives of increased recruitment to medical research, in addition to the students' and supervisors' satisfaction of the programme, and unwanted differences between the universities. Methods Data was collected from students, supervisors and administrative staff via web-based questionnaires. Information about admission, implementation, results achieved and satisfaction was analysed and compared between the four Norwegian medical schools. In addition, the position of the scheme in relation to the national Quality Reform of Higher Education was analysed. Results At the end of 2006, the Medical Student Research Programme had recruited 265 medical students to research. These consisted of 214 active students, 35 who had completed their studies and only 17 who had dropped out. Both students and supervisors were generally very satisfied with the scheme, including the curriculum, the results achieved and the administrative service. The majority of students wanted to continue their research towards a PhD and, of those who had completed the Medical Student Research Programme, practically all had published one or several scientific papers. The survey showed only small differences between the four medical schools, despite their choice of somewhat different solutions in terms of administration and organisation. The Medical Student Research Programme satisfies the majority of the demands of the Quality Reform, however as an integrated research programme aimed at a PhD it presupposes

  2. Evaluation of the medical student research programme in Norwegian medical schools. A survey of students and supervisors

    Science.gov (United States)

    Hunskaar, Steinar; Breivik, Jarle; Siebke, Maje; Tømmerås, Karin; Figenschau, Kristian; Hansen, John-Bjarne

    2009-01-01

    Background The Medical Student Research Programme is a national education and grant scheme for medical students who wish to carry out research in parallel with their studies. The purpose of the programme is to increase recruitment of people with a standard medical degree to medical research. The Research Programme was established in 2002 and underwent a thorough evaluation during the spring of 2007. The evaluation should investigate if the programme had fulfilled its objectives of increased recruitment to medical research, in addition to the students' and supervisors' satisfaction of the programme, and unwanted differences between the universities. Methods Data was collected from students, supervisors and administrative staff via web-based questionnaires. Information about admission, implementation, results achieved and satisfaction was analysed and compared between the four Norwegian medical schools. In addition, the position of the scheme in relation to the national Quality Reform of Higher Education was analysed. Results At the end of 2006, the Medical Student Research Programme had recruited 265 medical students to research. These consisted of 214 active students, 35 who had completed their studies and only 17 who had dropped out. Both students and supervisors were generally very satisfied with the scheme, including the curriculum, the results achieved and the administrative service. The majority of students wanted to continue their research towards a PhD and, of those who had completed the Medical Student Research Programme, practically all had published one or several scientific papers. The survey showed only small differences between the four medical schools, despite their choice of somewhat different solutions in terms of administration and organisation. The Medical Student Research Programme satisfies the majority of the demands of the Quality Reform, however as an integrated research programme aimed at a PhD it presupposes access to PhD courses before the

  3. Research Equity: A Capacity Building Workshop of Research Methodology for Medical Health Professionals

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Bhardwaj

    2013-01-01

    Full Text Available Research is a cornerstone for knowledge generation, which in turns requires capacity building for its tools and techniques. Despite having a vast infrastructure in India the research in medical science has been carried out in limited and focused institutions. In order to build the capacity in carrying out research activities a five-day planning workshop was conducted at state run medical college. Total 22 medical faculty members participated in the workshop with average public health experience of 12 years (range: 5–25 years. The knowledge was assessed objectively by multiple-choice questionnaire. The mean score increased from 6.7 to 7.9 from pre- to posttest. About seventy-percent participants showed improvement, whereas 21.0% showed deterioration in the knowledge and the rest showed the same score. Apart from knowledge skills also showed improvement as total 12 research projects were generated and eight were approved for funding by the Indian Council of Medical Research (ICMR, New Delhi. It can be concluded that a supportive environment for research can be built with the technical assistance.

  4. Liquid microjet synchrotron-radiation spectroscopy for biomolecules in water solution 2

    International Nuclear Information System (INIS)

    Shimada, Hiroyuki; Ukai, Masatoshi

    2014-01-01

    A new spectroscopic research of radiation induced damage on DNA and its constituent molecules is proposed, which is made possible using a liquid microjet technique for bio-solution under vacuum in combination with synchrotron-radiation aided site-selective excitation. The latter part of the proposal article describes the present state of research on the selective primary radiation interaction by looking at base moieties of nucleotides. X-ray absorption near edge structure (XANES) spectra at energies around the nitrogen K-edge for nucleotides, adenosine-5'-monophosphate (AMP), guanosine-5'-monophosophate (GMP), cytidine-5'-monophosophate (CMP), and adenosine-5'-triphosphate (ATP) in aqueous solutions are presented. Selective excitation of a base moiety using a synchrotron radiation allows us to investigate the interaction of the base moiety with water solvent. We discuss the change of spectral character of XANES which reveals to the structural change of the base moiety under different pH environmental condition of water solution. Through the present research a scope for cooperative direct and indirect primary radiation effects is given. (author)

  5. AILES: the infrared and THz beamline on SOLEIL synchrotron radiation source

    International Nuclear Information System (INIS)

    Roy, P.; Brubach, J.B.; Rouzieres, M.; Pirali, O.; Kwabia Tchana, F.; Manceron, L.

    2008-01-01

    The development of a new infrared beamline (ligne de lumiere AILES) at the third generation Synchrotron Radiation source SOLEIL is underway. This beamline utilizes infrared synchrotron radiation from both the edge emission and the constant field conventional source. The expected performances including flux, spatial distribution of the photons, spectral range and stability are calculated and discussed. The optical system, spectroscopic stations and workspace are described. The calculation in the near field approach and the simulation by ray tracing show that the source with its adapted optics offers high flux and brilliance for a variety of infrared experiments. We also review the main research themes and the articulation and developments of the infrared sources at SOLEIL. (authors)

  6. Synchrotron Radiation in eRHIC Interaction Region

    CERN Document Server

    Beebe-Wang, Joanne; Montag, Christoph; Rondeau, Daniel J; Surrow, Bernd

    2005-01-01

    The eRHIC currently under study at BNL consists of an electron storage ring added to the existing RHIC complex. The interaction region of this facility has to provide the required low-beta focusing while accommodating the synchrotron radiation generated by beam separation close to the interaction point. In the current design, the synchrotron radiation caused by 10GeV electrons bent by low-beta triplet magnets will be guided through the interaction region and dumped 5m downstream. However, it is unavoidable to stop a fraction of the photons at the septum where the electron and ion vacuum system are separated. In order to protect the septum and minimize the backward scattering of the synchrotron radiation, an absorber and collimation system will be employed. In this paper, we first present the overview of the current design of the eRHIC interaction region with special emphasis on the synchrotron radiation. Then the initial design of the absorber and collimation system, including their geometrical and physical p...

  7. US Army Medical Research and Development Report.

    Science.gov (United States)

    1979-10-01

    RI) US ARMY MEDICAL RESEARCH AND DEVELOPMENT REPORT. Colonel/John Jr DTIC JUL 1 5 1980; A USL &MY MEDICAL BIOENGINEERING RESEARCH AND DEVELOPMENT...pollutants in water or soil . Pollutant by-products and breakdown products in water, air or soil will be isolated, characterized, and quantified. Where...determination of selected low-level pollutants io soil and water. Degradation products and secondary pollutants arising from munitions manufacture or pest

  8. National synchrotron light source. [Annual report], October 1, 1992--September 30, 1993

    International Nuclear Information System (INIS)

    Rothman, E.Z.; Hulbert, S.L.; Lazarz, N.M.

    1994-04-01

    This report contains brief discussions on the research being conducted at the National Synchrotron Light source. Some of the topics covered are: X-ray spectroscopy; nuclear physics; atomic and molecular science; meetings and workshops; operations; and facility improvements

  9. National synchrotron light source. [Annual report], October 1, 1992--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, E.Z.; Hulbert, S.L.; Lazarz, N.M. [eds.

    1994-04-01

    This report contains brief discussions on the research being conducted at the National Synchrotron Light source. Some of the topics covered are: X-ray spectroscopy; nuclear physics; atomic and molecular science; meetings and workshops; operations; and facility improvements.

  10. Early British synchrotrons, an informal history

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1997-02-01

    An historical account of the design and construction of early synchrotrons in the United Kingdom, based partly on personal reminiscences, is presented. Material is also drawn from archives at Birmingham and CERN. The document covers the period from plans for the world's first synchrotron at Malvern after the Second World War to work done at Harwell Laboratory for CERN in the period 1951-1953. (UK)

  11. Coherent Synchrotron Radiation: Theory and Simulations

    International Nuclear Information System (INIS)

    Novokhatski, Alexander

    2012-01-01

    The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum

  12. Medical students as human subjects in educational research

    Directory of Open Access Journals (Sweden)

    Adina L. Kalet

    2013-02-01

    Full Text Available Introduction: Special concerns often arise when medical students are themselves the subjects of education research. A recently completed large, multi-center randomized controlled trial of computer-assisted learning modules for surgical clerks provided the opportunity to explore the perceived level of risk of studies where medical students serve as human subjects by reporting on: 1 the response of Institutional Review Boards (IRBs at seven institutions to the same study protocol; and 2 the thoughts and feelings of students across study sites about being research subjects. Methods: From July 2009 to August 2010, all third-year medical students at seven collaborating institutions were eligible to participate. Patterns of IRB review of the same protocol were compared. Participation burden was calculated in terms of the time spent interacting with the modules. Focus groups were conducted with medical students at each site. Transcripts were coded by three independent reviewers and analyzed using Atlas.ti. Results: The IRBs at the seven participating institutions granted full (n=1, expedited (n=4, or exempt (n=2 review of the WISE Trial protocol. 995 (73% of those eligible consented to participate, and 207 (20% of these students completed all outcome measures. The average time to complete the computer modules and associated measures was 175 min. Common themes in focus groups with participant students included the desire to contribute to medical education research, the absence of coercion to consent, and the low-risk nature of the research. Discussion: Our findings demonstrate that risk assessment and the extent of review utilized for medical education research vary among IRBs. Despite variability in the perception of risk implied by differing IRB requirements, students themselves felt education research was low risk and did not consider themselves to be vulnerable. The vast majority of eligible medical students were willing to participate as research

  13. Medical Robots: Current Systems and Research Directions

    Directory of Open Access Journals (Sweden)

    Ryan A. Beasley

    2012-01-01

    Full Text Available First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities of medical robots, for example, increased usage of intraoperative images, improved robot arm design, and haptic feedback to guide the surgeon.

  14. Experiments planned to be made with the synchrotron radiation source

    International Nuclear Information System (INIS)

    Matz, W.

    1993-01-01

    For this working meeting, various research groups from the Land Sachsen and from the neighbouring countries Poland and the Czech Republic have been invited in order to present their materials research programmes or task-specific experiments intended to be carried out with the synchrotron radiation source to be installed in the near future. The proceedings volume in hand presents the discussion papers, which have been directly reproduced from the original foils. (orig.) [de

  15. A proposal for an infrared/optical beam line for the new Australian synchrotron project

    International Nuclear Information System (INIS)

    Creagh, D.

    2002-01-01

    Full text: In late 2001 the Premier of Victoria, Steve Bracks, announced that the Victorian Government would provide funding of $100,000,000 for the construction of an Australian National Synchrotron on a site on the Monash University campus. The design of the synchrotron and the tentative allocations of beamlines within the synchrotron were taken from the 'Boomerang' designs developed by Dr John Boldeman for the Australian Synchrotron Research Program. The formal administrative structure has recently been put in place. Committees such as the International Machine Advisory Committee (IMAC) and the National Scientific Advisory Committee (NSAC) have been formed and are actively pursuing the goals set down in the strategic plan. Meetings of the NSAC are held monthly, the fifteen members from all states and territories (except Tasmania and the Northern Territory) meeting to discuss how the scientific goals may be achieved. At the last meeting proposals were canvassed for the beamlines to be provided at the synchrotron. One of these beamlines is an IR/Optical Beamline, the subject of this paper. Spectroscopy, using photon energies from the infrared (IR) to the ultraviolet has long been an important analytical tool in scientific investigations. The study of the absorption and scattering (both elastic and Raman) of light by samples, and the fluorescence radiation emitted by samples, can give information about essential for the understanding of the chemical state of the sample, identifying chemical and mineral types present in a sample, and identifying changes in systems Areas of research which would benefit from the use of synchrotron radiation source include: cell biology, in particular the study of the uptake of drugs by cells; surficial processes, for example the in situ study of corrosion processes and the testing of anti-corrosion coatings; organic and inorganic nanotechnology; the study of bandgaps in quantum effect materials; mineralogy, for example determining

  16. Quality assurance in military medical research and medical radiation accident management.

    Science.gov (United States)

    Hotz, Mark E; Meineke, Viktor

    2012-08-01

    The provision of quality radiation-related medical diagnostic and therapeutic treatments cannot occur without the presence of robust quality assurance and standardization programs. Medical laboratory services are essential in patient treatment and must be able to meet the needs of all patients and the clinical personnel responsible for the medical care of these patients. Clinical personnel involved in patient care must embody the quality assurance process in daily work to ensure program sustainability. In conformance with the German Federal Government's concept for modern departmental research, the international standard ISO 9001, one of the relevant standards of the International Organization for Standardization (ISO), is applied in quality assurance in military medical research. By its holistic approach, this internationally accepted standard provides an excellent basis for establishing a modern quality management system in line with international standards. Furthermore, this standard can serve as a sound basis for the further development of an already established quality management system when additional standards shall apply, as for instance in reference laboratories or medical laboratories. Besides quality assurance, a military medical facility must manage additional risk events in the context of early recognition/detection of health risks of military personnel on deployment in order to be able to take appropriate preventive and protective measures; for instance, with medical radiation accident management. The international standard ISO 31000:2009 can serve as a guideline for establishing risk management. Clear organizational structures and defined work processes are required when individual laboratory units seek accreditation according to specific laboratory standards. Furthermore, international efforts to develop health laboratory standards must be reinforced that support sustainable quality assurance, as in the exchange and comparison of test results within

  17. Synchrotron control system of the HIMAC

    International Nuclear Information System (INIS)

    Takada, E.; Sato, K.; Itano, A.

    1994-01-01

    A structural design synopsis and the present status of the HIMAC synchrotron control system are described. The control system comprises of Timing System, (ring magnet) Power-supply Controller, Programmable Logic Controller, Static Var Compensator controller, Monitor Controller, RF control computer, Beam Transport control computer and the synchrotron main computer (denoted as CS, hereafter) that forms a local area cluster with man-machine interfacing computers, and communicates with HIMAC supervisor computer. (author)

  18. Recent Developments in Synchrotron Moessbauer Reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Deak, L.; Bottyan, L.; Major, M.; Nagy, D. L. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Spiering, H. [Johannes Gutenberg Universitaet, Mainz, Institute fuer Anorganische und Analytische Chemie (Germany); Szilagyi, E.; Tancziko, F. [KFKI Research Institute for Particle and Nuclear Physics (Hungary)

    2002-12-15

    Synchrotron Moessbauer Reflectometry (SMR), the grazing incidence nuclear resonant scattering of synchrotron radiation, can be applied to perform depth-selective phase analysis and to determine the isotopic and magnetic structure of thin films and multilayers. Principles and methodological aspects of SMR are briefly reviewed. Off-specular SMR provides information from the lateral structure of multilayers. In anti-ferromagneticly coupled systems the size of magnetic domains can be measured.

  19. 78 FR 58569 - Notice of Meeting; NSF Synchrotron Subcommittee of the Advisory Committee for Mathematical and...

    Science.gov (United States)

    2013-09-24

    ... report findings--Murray Gibson, Northeastern University 2. Importance of materials research facilities...--Patricia Dehmer, DOE 3. Biology/biomaterials talk--importance of materials research facilities--Pupa... Materials Research on its facilities portfolio including the role it and NSF should play in synchrotron...

  20. Introduction to Medical Research Council Delivery Plan during 2009 to 2014

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Introduction The Medical Research Foundation is the Medical Research Council's (MRC) independently managed charity.It receives funds from the giving public to support medical research, training, public engagement and dissemination of knowledge.Since it was first established in 1920, the MRC has been able to accept charitable bequests, endowments and donations from the public to contribute towards the costs of the research that it undertakes.The MRC registered these charitable funds with the Charity Commission in the late 1960's and its charity - the Medical Research Foundation-has been successfully supporting medical research for over 80 years.

  1. Initial studies of synchrotron radiation phase-contrast imaging in the field of medicine

    International Nuclear Information System (INIS)

    Chen Shaoliang; Zhang Xi; Peng Yifeng; Li Beilei; Cheng Aiping; Zhu Peiping; Yuan Xiqing; Huang Wanxia

    2010-01-01

    Recently,research on using X-ray phase information in medicine has been growing remarkably fast. Phase-contrast imaging with synchrotron radiation can reveal inner soft tissues such as tendons, cartilage, ligaments, adipose tissue, vessels and nerves without a contrast agent. We have visualized the liver, bile duct, lung, kidney, stomach and intestine, heart, blood vessel, bone and arthrosis, and tumor tissues using 'in-line' phase contrast imaging and diffraction-enhanced imaging. It is seen that the synchrotron radiation graphs show much higher resolution. This method is especially suitable for studying soft tissue structure and blood vessels. (authors)

  2. Research priorities in medical education: A national study.

    Science.gov (United States)

    Tootoonchi, Mina; Yamani, Nikoo; Changiz, Tahereh; Yousefy, Alireza

    2012-01-01

    One preliminary step to strengthen medical education research would be determining the research priorities. The aim of this study was to determine the research priorities of medical education in Iran in 2007-2008. This descriptive study was carried out in two phases. Phase one was performed in 3 stages and used Delphi technique among academic staffs of Isfahan University of Medical Sciences. The three stages included a brainstorming workshop for 140 faculty members and educational experts resulting in a list of research priorities, then, in the second and third stages 99 and 76 questionnaires were distributed among faculty members. In the second phase, the final questionnaires were mailed to educational research center managers of universities type I, II and III, and were distributed among 311 academic members and educational experts to rate the items on a numerical scale ranging from 1 to 10. The most important research priorities included faculty members' development methods, faculty members' motives, satisfaction and welfare, criteria and procedures of faculty members' promotion, teaching methods and learning techniques, job descriptions and professional skills of graduates, quality management in education, second language, clinical education, science production in medicine, faculty evaluation and information technology. This study shows the medial education research priorities in national level and in different types of medical universities in Iran. It is recommended that faculty members and research administrators consider the needs and requirements of education and plan the researches in education according to these priorities.

  3. What is a synchrotron and why does Australia need one?

    CERN Document Server

    Nugent, K A

    2002-01-01

    Construction of a $157 million synchrotron will soon begin in Melbourne. The author describes what this facility means for Australian science. The Australian synchrotron is a third generation device. The facility would have the capacity to do a wide range of science and technology at the same time. A number of applications, which are the priority for the Australian synchrotron project are briefly described. The huge technological spin-offs of this knowledge have made synchrotrons an attractive proposition to state governments

  4. PERFORMANCE ANALYSIS OF MULTI-TURN EXTRACTION FROM THE PROTON SYNCHROTRON TO THE SUPER PROTON SYNCHROTRON

    CERN Document Server

    Abernethy, Samuel

    2016-01-01

    Within CERN's accelerator complex, the extraction from the Proton Synchrotron to the Super Proton Synchrotron has been done using the so-called ``Continuous Transfer" (CT) method since the 1970's. A new technique, known as Multi-Turn Extraction (MTE), has now been implemented and is in full operation. This report examines a holistic performance analysis of the novel technique in multiple aspects of the accelerator complex, as well as a direct comparison with its predecessor, CT, from the implementation of MTE in 2010 until the end of 2015.

  5. The national synchrotron light source and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.P.

    1989-01-01

    We describe the National Synchrotron Light Source facility including its beamlines and operational characteristics. Research results on selected beamlines on the VUV ring which highlight new experimental capabilities are described since they are more relevant to the program at HESYRL. Examples chosen are spin-polarized photoemission, infra-red surface science, high resolution core level spectroscopy, X- Ray lithography, photoelectron/Auger coincidence spectroscopy and high electron momentum resolution surface studies. 7 refs., 3 figs., 3 tabs.

  6. Challenges for data storage in medical imaging research.

    Science.gov (United States)

    Langer, Steve G

    2011-04-01

    Researchers in medical imaging have multiple challenges for storing, indexing, maintaining viability, and sharing their data. Addressing all these concerns requires a constellation of tools, but not all of them need to be local to the site. In particular, the data storage challenges faced by researchers can begin to require professional information technology skills. With limited human resources and funds, the medical imaging researcher may be better served with an outsourcing strategy for some management aspects. This paper outlines an approach to manage the main objectives faced by medical imaging scientists whose work includes processing and data mining on non-standard file formats, and relating those files to the their DICOM standard descendents. The capacity of the approach scales as the researcher's need grows by leveraging the on-demand provisioning ability of cloud computing.

  7. Comparative effectiveness research: Challenges for medical journals

    Directory of Open Access Journals (Sweden)

    Tovey David

    2010-04-01

    Full Text Available Abstract Editors from a number of medical journals lay out principles for journals considering publication of Comparative Effectiveness Research (CER. In order to encourage dissemination of this editorial, this article is freely available in PLoS Medicine and will be also published in Medical Decision Making, Croatian Medical Journal, The Cochrane Library, Trials, The American Journal of Managed Care, and Journal of Clinical Epidemiology.

  8. Limitations of heavy ion synchrotron acceleration for inertial fusion

    International Nuclear Information System (INIS)

    Berley, D.; Danby, G.T.

    1977-01-01

    The potential benefits from heavy ion inertial fusion motivate the rapid development of a program to test the principle. To define the program, accelerator parameters which have not hitherto been commonly considered must be studied interactively with basic questions of space charge limitations and charge exchange. Beam lifetime and power output efficiency may ultimately lead to a linear accelerator as the choice for an ignition device. For proof of principle, however, at power levels way beyond present inertial fusion experience, synchrotrons may have applicability at lower cost. The power and energy which can be delivered by the accelerating system to the reaction chamber are limited by space charge defocussing and intra beam charge exchange scattering, both of which are beam density dependent. These put constraints on linac injector energy, synchrotron aperture, synchrotron magnetic rigidity, acceleration time, ion species and charge to mass ratio. The accelerator system considered is classical. A linear accelerator injects into a synchrotron which accelerates the ion beam to the full energy delivered to the target. The maximum energy deliverable by a synchrotron is treated in section I. The targetting parameters and the energy gained through synchrotron acceleration completely determine the synchrotron aperture. These are discussed in sections II and III. The ion range in material is treated in section IV. The problem of intrabeam scattering is considered in section V. Finally, in section VI is a discussion of examples to meet specified goals

  9. Procedures for the medical application of research reactors (Appendix)

    International Nuclear Information System (INIS)

    Nishihara, H.; Kanda, K.

    2004-01-01

    The Kyoto University Reactor (KUR) is one of the four research reactors in Japan that are currently licensed for medical application, in addition to other research purposes. Taking the KUR as an example, legal and other procedures for using research reactors for boron neutron capture therapy (BNCT) are described, which are practiced in accordance with the 'Provisional Guideline Pertaining to Medical Irradiation by Accelerators and/or Reactors, other than defined by the Medical Service Act' of the Science Council of Japan

  10. Synchrotron applications in wood preservation and deterioration

    Science.gov (United States)

    Barbara L. Illman

    2003-01-01

    Several non-intrusive synchrotron techniques are being used to detect and study wood decay. The techniques use high intensity synchrotron-generated X-rays to determine the atomic structure of materials with imaging, diffraction, and absorption. Some of the techniques are X-ray absorption near edge structure (XANES), X-ray fluorescence spectroscopy (XFS), X-ray...

  11. Synchrotron radiation sources: general features and vacuum system

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1985-01-01

    In the last years the electron or positron storage rings, which were until 1970 only used for high energy physics experiments, begun to be built in several countries exclusively as electromagnetic radiation source (synchrotron radiation). The sources are generally made up by injector (linear accelerator or microtron), 'booster' (synchrotron), storage ring, insertions ('Wigglers' and ondulators) and light lines. The interest by these sources are due to the high intensity, large spectrum (from infrared to the X-rays), polarization and pulsed structure of the produced radiation. For the ultra-vacuum obtainement, necessary for the functioning storage rings (p=10 -9 Torr), several special procedures are used. In Brazil the Synchrotron Radiation National Laboratory of the CNPq worked out a conceptual project of synchrotron radiation source, whose execution should begin by the construction of the several components prototypes. (L.C.) [pt

  12. Synchrotron-based XRD from rat bone of different age groups

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D.V., E-mail: dvrao_9@yahoo.com [Science Based Applications to Engineering (SBAI), Physics Division, University of Rome “La Sapienza”, Via Scarpa 10, 00161 Roma (Italy); Gigante, G.E. [Science Based Applications to Engineering (SBAI), Physics Division, University of Rome “La Sapienza”, Via Scarpa 10, 00161 Roma (Italy); Cesareo, R.; Brunetti, A. [Istituto di Matematica e Fisica, Università di Sassari, Via Vienna 2, 07100 Sassari (Italy); Schiavon, N. [Hercules Laboratory, University of Evora (Portugal); Akatsuka, T.; Yuasa, T. [Department of Bio-System Engineering, Faculty of Engineering, Yamagata University, Yonezawa-shi, Yamagata 992-8510 (Japan); Takeda, T. [Allied Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan)

    2017-05-01

    Synchrotron-based XRD spectra from rat bone of different age groups (w, 56 w and 78w), lumber vertebra at early stages of bone formation, Calcium hydroxyapatite (HAp) [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}] bone fill with varying composition (60% and 70%) and bone cream (35–48%), has been acquired with 15 keV synchrotron X-rays. Experiments were performed at Desy, Hamburg, Germany, utilizing the Resonant and Diffraction beamline (P9), with 15 keV X-rays (λ = 0.82666 A{sup 0}). Diffraction data were quantitatively analyzed using the Rietveld refinement approach, which allowed us to characterize the structure of these samples in their early stages. Hydroxyapatite, received considerable attention in medical and materials sciences, since these materials are the hard tissues, such as bone and teeth. Higher bioactivity of these samples gained reasonable interest for biological application and for bone tissue repair in oral surgery and orthopedics. The results obtained from these samples, such as phase data, crystalline size of the phases, as well as the degree of crystallinity, confirm the apatite family crystallizing in a hexagonal system, space group P6{sub 3}/m with the lattice parameters of a = 9.4328 Å and c = 6.8842 Å (JCPDS card #09-0432). Synchrotron-based XRD patterns are relatively sharp and well resolved and can be attributed to the hexagonal crystal form of hydroxyapatite. All the samples were examined with scanning electron microscope at an accelerating voltage of 15 kV. The presence of large globules of different sizes is observed, in small age groups of the rat bone (8w) and lumber vertebra (LV), as distinguished from, large age groups (56 and 78w) in all samples with different magnification, reflects an amorphous phase without significant traces of crystalline phases. Scanning electron microscopy (SEM) was used to characterize the morphology and crystalline properties of Hap, for all the samples, from 2 to 100 μm resolution. - Highlights: • For

  13. The Scale Invariant Synchrotron Jet of Flat Spectrum Radio Quasars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... In this paper, the scale invariance of the synchrotron jet of Flat Spectrum Radio Quasars has been studied using a sample of combined sources from FKM04 and from SDSS DR3 catalogue. Since the research of scale invariance has been focused on sub-Eddington cases that can be fitted onto the ...

  14. Support for the Advanced Polymers Beamline at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Benjamin S. [State Univ. of New York (SUNY), Stonybrook, NY (United States)

    2008-10-01

    The primary focus of the X27C beamline is to investigate frontier polymer science and engineering problems with emphasis on real-time studies of structures, morphologies and dynamics from atomic, nanoscopic, microscopic to mesoscopic scales using simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) techniques. The scientific merit of this project is as follows. Currently, many unique sample chambers for in-situ synchrotron studies, developed by the PI (B. Hsiao) and Co-PI (B. Chu), are available for general users of X27C at NSLS. These instruments include a gel/melt spinning apparatus, a continuous fiber drawing apparatus, a tensile stretching apparatus, a high pressure X-ray cell using supercritical carbon dioxide, a parallel plate strain-controlled shear stage and a dynamic rheometer for small-strain oscillatory deformation study. Based on the use of these instruments in combination with synchrotron X-rays, many new insights into the relationships between processing and structure have been obtained in recent years. The broader impact of this project is as follows. The X27C beamline is the first synchrotron facility in the United States dedicated to chemistry/materials research (with emphasis on polymers). The major benefit of this facility to the materials community is that no extensive synchrotron experience and equipment preparation are required from general users to carry out cutting-edge experiments.

  15. Stimulating medical education research in the Netherlands

    NARCIS (Netherlands)

    Jaarsma, Debbie; Scherpbier, Albert; Van Der Vleuten, Cees; Ten Cate, Olle

    BACKGROUND: Since the 1970s, the Dutch have been active innovators and researchers in the medical education domain. With regards to the quantity of publications in the medical education literature, the Netherlands rank second among countries in Europe and fourth worldwide over the past years,

  16. The Synchrotron Radiation Facility ESFR in Grenoble

    International Nuclear Information System (INIS)

    Haensel, R.

    1994-01-01

    The European Synchrotron Radiation Facility (ESFR) is the first synchrotron radiation source of the 3-th generation for Roentgen radiations.It permits a new series of experiments in the domains of physics, chemistry, materials studies, micromechanics, biology, medicine and crystallography. The main part of device represents the 850 meter storage ring of 6 GeV electrons. (MSA)

  17. Improving Defense Health Program Medical Research Processes

    Science.gov (United States)

    2017-08-08

    research , including a Business Cell; 87 Research Development, 88 Research Oversight, 89 and Research Compliance offices;90 and the Center...needed for DHP medical research , such as the Army’s Clinical and Translational Research Program Office, 38 the Navy’s Research Methods Training Program... research stated, “key infrastructure for a learning health system will encompass three core elements: data networks, methods , and workforce.” 221

  18. Research priorities in medical education: A national study

    Directory of Open Access Journals (Sweden)

    Mina Tootoonchi

    2012-01-01

    Full Text Available Background: One preliminary step to strengthen medical education research would be determining the research prior-ities. The aim of this study was to determine the research priorities of medical education in Iran in 2007-2008. Methods: This descriptive study was carried out in two phases. Phase one was performed in 3 stages and used Delphi technique among academic staffs of Isfahan University of Medical Sciences. The three stages included a brainstorming workshop for 140 faculty members and educational experts resulting in a list of research priorities, then, in the second and third stages 99 and 76 questionnaires were distributed among faculty members. In the second phase, the final ques-tionnaires were mailed to educational research center managers of universities type I, II and III, and were distributed among 311 academic members and educational experts to rate the items on a numerical scale ranging from 1 to 10. Results: The most important research priorities included faculty members′ development methods, faculty members′ motives, satisfaction and welfare, criteria and procedures of faculty members′ promotion, teaching methods and learning techniques, job descriptions and professional skills of graduates, quality management in education, second language, clinical education, science production in medicine, faculty evaluation and information technology. Conclusions: This study shows the medial education research priorities in national level and in different types of medical universities in Iran. It is recommended that faculty members and research administrators consider the needs and requirements of education and plan the researches in education according to these priorities.

  19. Statistical competencies for medical research learners: What is fundamental?

    Science.gov (United States)

    Enders, Felicity T; Lindsell, Christopher J; Welty, Leah J; Benn, Emma K T; Perkins, Susan M; Mayo, Matthew S; Rahbar, Mohammad H; Kidwell, Kelley M; Thurston, Sally W; Spratt, Heidi; Grambow, Steven C; Larson, Joseph; Carter, Rickey E; Pollock, Brad H; Oster, Robert A

    2017-06-01

    It is increasingly essential for medical researchers to be literate in statistics, but the requisite degree of literacy is not the same for every statistical competency in translational research. Statistical competency can range from 'fundamental' (necessary for all) to 'specialized' (necessary for only some). In this study, we determine the degree to which each competency is fundamental or specialized. We surveyed members of 4 professional organizations, targeting doctorally trained biostatisticians and epidemiologists who taught statistics to medical research learners in the past 5 years. Respondents rated 24 educational competencies on a 5-point Likert scale anchored by 'fundamental' and 'specialized.' There were 112 responses. Nineteen of 24 competencies were fundamental. The competencies considered most fundamental were assessing sources of bias and variation (95%), recognizing one's own limits with regard to statistics (93%), identifying the strengths, and limitations of study designs (93%). The least endorsed items were meta-analysis (34%) and stopping rules (18%). We have identified the statistical competencies needed by all medical researchers. These competencies should be considered when designing statistical curricula for medical researchers and should inform which topics are taught in graduate programs and evidence-based medicine courses where learners need to read and understand the medical research literature.

  20. rising to the challenges ofscientific medical research and publication

    African Journals Online (AJOL)

    Guest

    The aim of this presentation is to review the logical steps in scientific medical research, discuss ..... Despite the critical role of Scientific Medical .... association of resident doctors (ard); july 2004. ... Wilson Jr. E. B. Graduate Research: A guide.

  1. Research and investigation on medical usage of cyclotrons as a special research project

    International Nuclear Information System (INIS)

    1980-01-01

    In the National Institute of Radiological Sciences, the special research project ''Research and investigation on the medical usage of cyclotrons'' had been carried out in the three years program from fiscal 1976 to 1978. Its purpose was to establish the methods of therapy using particle beam such as fast neutrons and the methods of diagnosis using short-lived radioisotopes and positron-emitting radioisotopes. The works were conducted comprehensively in cooperation of the personnel both in and outside the NIRS. Consequently, the purpose was able to be fulfilled satisfactorily. Following on this project, a new special research project ''Research and investigation on the medical usage of particle accelerators'' was started in fiscal 1979. These results are described on the effects of the therapy, diagnostic utilizations, and the medical usage of heavy ion accelerators. (J.P.N.)

  2. Third generation synchrotron radiation applied to materials science

    International Nuclear Information System (INIS)

    Kaufmann, E.N.; Yun, W.

    1993-01-01

    Utility of synchrotron radiation for characterization of materials and ramifications of availability of new third-generation, high-energy, high-intensity sources of synchrotron radiation are discussed. Examples are given of power of x-ray analysis techniques to be expected with these new machines

  3. Research and Evaluation in Medical Education

    Science.gov (United States)

    Ferris, Helena A.; Collins, Mary E.

    2015-01-01

    The landscape of medical education is continuously evolving, as are the needs of the learner. The appropriate use of research and evaluation is key when assessing the need for change and instituting one's innovative endeavours. This paper demonstrates how research seeks to generate new knowledge, whereas evaluation uses information acquired from…

  4. Preliminary thoughts on research in medical humanities.

    Science.gov (United States)

    Yun, Xiaojing; Guo, Jiawei; Qian, Haihong

    2017-05-23

    Medical humanities (MH) is an interdisciplinary field of medicine which includes the humanities (literature, philosophy, ethics, history, and religion), social sciences (anthropology, cultural studies, psychology, sociology, and health geography), and the arts (literature, theater, film, and visual arts) and their application to medical education and practice. Studies of MH should not be limited to theoretical discussions. Research results must be translated into use of methodologies to formulate medical policies, guide clinical practices, and help resolve physical or mental problems. MH has a critical role in addressing medicine-related issues, such as human cloning legislation and the treatment of Ebola virus infection. Recently, MH has also been included in the "Healthy China 2030" project, indicating that MH has garnered more attention in China. Medical colleges, research institutes, and non-profit organizations are focusing on MH studies. Over the past few years, financial support for MH studies has also increased. Although the development of MH currently lags behind medicine and health sciences, MH has promise.

  5. Development of a synchrotron timing system on a programmable chip

    International Nuclear Information System (INIS)

    Lin Feiyu; Qiao Weimin; Wang Yanyu; Guo Yuhui

    2009-01-01

    A synchrotron requires extremely high time constraints for timing signals, so timing system is very important for a synchrotron control system. A FPGA+ARM+Linux+DSP architecture has been mainly used in timing control of the HIRFL-CSR control system. In this paper, we report the development of the SOPC(System On a Programmable Chip) based on FPGA and uClinux.It can integrate all the functions of ARM+Linux in one single FPGA chip, hence no need of the dedicated ARM chip, and the reduced cost. The maximum operation frequency of this system is 185 MHz. The hardware consumes less than 4% of total resources of FPGA chip. And both the hardware system and the operating system of the SOPC are reconfigurable. The SOPC system has a wide prospect of applications in accelerator engineering and many fields of scientific research. (authors)

  6. Status report of the Cornell High Energy Synchrotron Radiation Source (CHESS)

    International Nuclear Information System (INIS)

    Batterman, B.W.

    1980-01-01

    The Wilson Laboratory at Cornell University has done pioneering work on the development of high energy synchrotrons. In the last decade the 12 GeV Wilson Synchrotron was the most energetic electron synchrotron in the world. In 1975 plans were formulated at the Wilson Laboratory to build a new electron-positron storage ring to cover the range from 4-8 GeV. The storage ring was to be constructed in the same tunnel as the present synchrotron and to use the latter as an injector for the ring. A novel injection feature was to be incorporated, namely, vernier phase compression. In this scheme, positron coalesence is to be performed by compressing a 30-60 bunch positron beam by tranferring individual bunches from the storage ring to the synchrotron and stacking back into the storage ring. This procedure takes advantage of the slight circumferential difference between the storage ring and the synchrotron. Positron beams of 10 mA have been achieved in CESR at the present time. The first colliding beam studies were performed in an October 1979 two-week running period at which time CHESS, the synchrotron radiation source associated with CESR, also had its first extended experience with synchrotron light. (orig.)

  7. Ireland and medical research with minors: some medico-legal aspects.

    Science.gov (United States)

    Sheikh, Asim A

    2008-07-01

    The practice of medical research with minors in Ireland consist of practices pertaining to therapeutic and non-therapeutic medical research. Clinical trials (a category of therapeutic research), is governed by legislation. However, any other therapeutic research (non-clinical trials research) and non-therapeutic research, e.g. observational medical research such as a longitudinal study of children or non-therapeutic research such as blood sample collection for analysis of cause of disease, are unregulated by legislation. This, article will outline and describe some of the medico-legal issues involved in both types of research and will comment on matters such as what national law exists, how the directive on good clinical practice has been implemented, what guidelines, if any, exist.

  8. Empirical research in medical ethics: How conceptual accounts on normative-empirical collaboration may improve research practice

    Science.gov (United States)

    2012-01-01

    Background The methodology of medical ethics during the last few decades has shifted from a predominant use of normative-philosophical analyses to an increasing involvement of empirical methods. The articles which have been published in the course of this so-called 'empirical turn' can be divided into conceptual accounts of empirical-normative collaboration and studies which use socio-empirical methods to investigate ethically relevant issues in concrete social contexts. Discussion A considered reference to normative research questions can be expected from good quality empirical research in medical ethics. However, a significant proportion of empirical studies currently published in medical ethics lacks such linkage between the empirical research and the normative analysis. In the first part of this paper, we will outline two typical shortcomings of empirical studies in medical ethics with regard to a link between normative questions and empirical data: (1) The complete lack of normative analysis, and (2) cryptonormativity and a missing account with regard to the relationship between 'is' and 'ought' statements. Subsequently, two selected concepts of empirical-normative collaboration will be presented and how these concepts may contribute to improve the linkage between normative and empirical aspects of empirical research in medical ethics will be demonstrated. Based on our analysis, as well as our own practical experience with empirical research in medical ethics, we conclude with a sketch of concrete suggestions for the conduct of empirical research in medical ethics. Summary High quality empirical research in medical ethics is in need of a considered reference to normative analysis. In this paper, we demonstrate how conceptual approaches of empirical-normative collaboration can enhance empirical research in medical ethics with regard to the link between empirical research and normative analysis. PMID:22500496

  9. High pressure and synchrotron radiation satellite workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  10. X-ray fluorescence imaging with synchrotron radiation

    International Nuclear Information System (INIS)

    Rivers, M.L.

    1987-01-01

    The micro-distribution of trace elements is of great interest in fields such as geochemistry, biology and material science. The synchrotron x-ray fluorescence microprobe provides a technique to quantitatively measure trace element compositions at individual points and to construct semiquantitative two dimensional maps of trace element compositions. This paper describes an x-ray fluorescence system used at the National Synchrotron Light Source

  11. Experimental demonstration of the KEK induction synchrotron

    International Nuclear Information System (INIS)

    Takayama, Ken; Torikai, Kota; Shimosaki, Yoshito; Kono, Tadaaki; Iwashita, Taiki; Arakida, Yoshio; Nakamura, Eiji; Shirakata, Masashi; Sueno, Takeshi; Wake, Masayoshi; Otsuka, Kazunori

    2007-01-01

    Recent progress in the KEK induction synchrotron is presented. In the recent experiment, by using a newly developed induction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV Booster ring and captured by the barrier bucket created by the induction step-voltages was accelerated to 6 GeV in the KEK proton synchrotron

  12. High pressure and synchrotron radiation satellite workshop

    International Nuclear Information System (INIS)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A.

    2006-01-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations

  13. Inclination towards research and the pursuit of a research career among medical students: an international cohort study.

    Science.gov (United States)

    Ha, Tam Cam; Ng, Sheryl; Chen, Cynthia; Yong, Sook Kwin; Koh, Gerald C H; Tan, Say Beng; Malhotra, Rahul; Altermatt, Fernando; Seim, Arnfinn; Biderman, Aya; Woolley, Torres; Østbye, Truls

    2018-05-02

    Involvement of clinicians in biomedical research is imperative for the future of healthcare. Several factors influence clinicians' inclination towards research: the medical school experience, exposure to research article reading and writing, and knowledge of research. This cohort study follows up medical students at time of graduation to explore changes in their inclination towards research and pursuing a research career compared to their inclination at time of entry into medical school. Students from medical schools in six different countries were enrolled in their first year of school and followed-up upon graduation in their final year. Students answered the same self-administered questionnaire at both time points. Changes in inclination towards research and pursuing a research career were assessed. Factors correlated with these changes were analysed. Of the 777 medical students who responded to the study questionnaire at entry into medical school, 332 (42.7%) completed the follow-up survey. Among these 332 students, there was no significant increase in inclination towards research or pursuing a research career over the course of their medical schooling. Students from a United States based school, in contrast to those from schools other countries, were more likely to report having research role models to guide them (51.5% vs. 0%-26.4%) and to have published in a peer-reviewed journal (75.7% vs. 8.9%-45%). Absence of a role model was significantly associated with a decrease in inclination towards research, while an increased desire to learn more about statistics was significantly associated with an increase in inclination towards pursuing a research career. Most medical students did not experience changes in their inclination towards research or pursuing a research career over the course of their medical schooling. Factors that increased their inclination to undertaking research or pursuing a research career were availability of a good role model, and a good

  14. Synchrotron radiation and prospects of its applications

    Energy Technology Data Exchange (ETDEWEB)

    Kulipanov, G; Skrinskii, A

    1981-04-01

    Current and prospective applications are described of synchrotron radiation resulting from the motion of high-energy electrons or positrons in a magnetic field and covering a wide spectral range from the infrared to X-ray. The advantages of the synchrotron radiation include a big source luminance, a small angular divergence, the possibility of calculating the absolute intensity and the spectral distribution of the radiation. Special storage rings are most suitable as a source. Synchrotron radiation is applied in X-ray microscopy, energy diffractometry, atomic and molecular spectroscopy, in the structural analysis of microcrystals, very rapid diffractometry of biological objects and crystals, and in Moessbauer spectroscopy. The prospective applications include uses in metrology, medicine, X-ray lithography, elemental analysis, molecular microsurgery, and in radiation technology.

  15. Limitations on plasma acceleration due to synchrotron losses

    International Nuclear Information System (INIS)

    Barletta, W.A.; Lee, E.P.; Bonifacio, R.; De Salvo, L.

    1999-01-01

    In this letter we consider the effect of synchrotron radiation losses due to the betatron motion of the electron beam in its self-induced magnetic field in a plasma accelerator taking into account the charge neutralization factor. The most favorable case is where the plasma density is smaller than the beam density. The contrary regime is strongly disfavored by the synchrotron radiation loss for beams with characteristics for TeV energies. In both cases we find that upon increasing the plasma density the synchrotron losses kill the acceleration process, so that there are limitations on the maximum allowable plasma density

  16. The Synchrotron Topography Project (STP) at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Bilello, J.C.; Hmelo, A.B.; Liu, J.M.; Herley, P.J.; Chen, H.; Birnbaum, H.K.; Illinois Univ., Urbana; Green, R.E. Jr.

    1983-01-01

    The collaborators have participated in the Synchrotron Topography Project (STP) which has designed and developed instrumentation for an X-ray topography station at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The two principle instruments constructed consist of a White Beam Camera (WBC) and a Multiple Crystal Camera (MCC) with high planar collimation and wide area image coverage. It is possible to perform in situ studies in a versatile environmental chamber equipped with a miniature mechanical testing stage for both the WBC and MCC systems. Real-time video imaging plus a rapid feed cassette holder for high resolution photographic plates is available for recording topographs. Provisions are made for other types of photon detection as well as spectroscopy. The facilities for the entire station have been designed for remote operation using a LSI-11/23 plus suitable interfacing. These instruments will be described briefly and the current status of the program will be reviewed. (orig.)

  17. Review of existing issues, ethics and practices in general medical research and in radiation protection research

    International Nuclear Information System (INIS)

    Schreiner-Karoussou, A.

    2008-01-01

    A literature review was carried out in relation to general medical research and radiation protection research. A large number of documents were found concerning the subject of ethics in general medical research. For radiation protection research, the number of documents and the information available is very limited. A review of practices in 13 European countries concerning general medical research and radiation protection research was carried out by sending a questionnaire to each country. It was found that all countries reviewed were well regulated for general medical research. For research that involves ionising radiation, the UK and Ireland are by far the most regulated countries. For other countries, there does not seem to be much information available. From the literature review and the review of practices, a number of existing ethical issues were identified and exposed, and a number of conclusions were drawn. (authors)

  18. Vacuum chambers full of ideas for the Swedish synchrotron

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    CERN’s Vacuum, Surfaces and Coatings group has contributed to the development of vacuum chambers for the MAX IV synchrotron, which has just been officially opened in Sweden.   A section of the new 3 GeV MAX IV synchrotron at the time of installation. In the centre of the magnets you can see the vacuum chamber developed in collaboration with CERN. (Photo: Marek Grabski, MAX IV Vacuum group) On 21 June, the King and the Prime Minister of Sweden officially opened MAX IV, a brand-new synchrotron in Lund, Sweden. The summer solstice, the longest day of the year, was deliberately chosen for the ceremony: MAX IV, a cutting-edge synchrotron, will deliver the brightest X-rays ever produced to more than 2000 users. Some 1500 kilometres away, a team at CERN followed the opening ceremony with a touch of pride. The Vacuum, Surfaces and Coatings group in the Technology department (TE-VSC) participated in the construction of this new synchrotron. Its contribution lies at the very hea...

  19. [Significance of COI disclosure in medical research in Japan].

    Science.gov (United States)

    Sone, Saburo

    2011-11-01

    In medical research, remarkable increase in collaboration with industry, public organizations such as universities, research institutions, and academic societies makes researchers to be more deeply involved with the activities of commercial entities. Activities of education and research, which are the responsibilities of academic institutions and societies, conflict with the interests of individuals associated with industrial-academic collaboration. Management of such conflict of interest (COI) is of much importance for academic institutions and societies to appropriately promote industrial-academic collaborative activities. Particularly, participation not only by healthy individuals, but also patients, is essential in the medical field as subjects of clinical research. For those involved in medical research, the deeper the level of COI with commercial entities, who are the financial or benefit provider, becomes serious, the more human rights of subjects could be violated, safety of life could be endangered, and research methods, data analysis and interpretation of results could be distorted. It is also possible that research may be unfairly evaluated or not published, even if the results are accurate, sometimes resulting in the ascertained effects of reporting bias included the overestimation of efficacy and the underestimation of safety risks of interventions. According to the COI management guideline of the Japanese Association of Medical Science (JAMS), significance of COI management is discussed.

  20. Use of electronic medical records in oncology outcomes research

    Directory of Open Access Journals (Sweden)

    Gena Kanas

    2010-02-01

    Full Text Available Gena Kanas1, Libby Morimoto1, Fionna Mowat1, Cynthia O’Malley2, Jon Fryzek3, Robert Nordyke21Exponent, Inc., Menlo Park, CA, USA; 2Amgen, Inc., Thousand Oaks, CA, USA; 3MedImmune, Gaithersburg, MD, USAAbstract: Oncology outcomes research could benefit from the use of an oncology-specific electronic medical record (EMR network. The benefits and challenges of using EMR in general health research have been investigated; however, the utility of EMR for oncology outcomes research has not been explored. Compared to current available oncology databases and registries, an oncology-specific EMR could provide comprehensive and accurate information on clinical diagnoses, personal and medical histories, planned and actual treatment regimens, and post-treatment outcomes, to address research questions from patients, policy makers, the pharmaceutical industry, and clinicians/researchers. Specific challenges related to structural (eg, interoperability, data format/entry, clinical (eg, maintenance and continuity of records, variety of coding schemes, and research-related (eg, missing data, generalizability, privacy issues must be addressed when building an oncology-specific EMR system. Researchers should engage with medical professional groups to guide development of EMR systems that would ultimately help improve the quality of cancer care through oncology outcomes research.Keywords: medical informatics, health care, policy, outcomes

  1. Brief guidelines for methods and statistics in medical research

    CERN Document Server

    Ab Rahman, Jamalludin

    2015-01-01

    This book serves as a practical guide to methods and statistics in medical research. It includes step-by-step instructions on using SPSS software for statistical analysis, as well as relevant examples to help those readers who are new to research in health and medical fields. Simple texts and diagrams are provided to help explain the concepts covered, and print screens for the statistical steps and the SPSS outputs are provided, together with interpretations and examples of how to report on findings. Brief Guidelines for Methods and Statistics in Medical Research offers a valuable quick reference guide for healthcare students and practitioners conducting research in health related fields, written in an accessible style.

  2. Nuclear resonant scattering of synchrotron radiation: Applications in magnetism of layered structures

    International Nuclear Information System (INIS)

    Schlage, Kai; Röhlsberger, Ralf

    2013-01-01

    Highlights: •Depth-resolved determination of magnetic spin structures. •Isotopic probe layers allow for probing selected depths in the sample. •High sensitivity to magnetic domain patterns via diffuse scattering. -- Abstract: Nuclear resonant scattering of synchrotron radiation has become an established tool within condensed-matter research. Synchrotron radiation with its outstanding brilliance, transverse coherence and polarization has opened this field for many unique studies, for fundamental research in the field of light-matter interaction as well as for materials science. This applies in particular for the electronic and magnetic structure of very small sample volumes like micro- and nano-structures and samples under extreme conditions of temperature and pressure. This article is devoted to the application of the technique to nanomagnetic systems such as thin films and multilayers. After a basic introduction into the method, a number of our experiments are presented to illustrate how magnetic spin structures within such layer systems can be revealed

  3. Multielemental analysis of samples from patients with dermatological pathologies using synchrotron radiation

    International Nuclear Information System (INIS)

    Soares, J.C.A.C.R.; Canellas, C.G.L.; Anjos, M.J.; Lopes, R.T.

    2014-01-01

    Using synchrotron radiation total X-ray fluorescence (SRTXRF) technique, the concentrations of trace elements were measured in four skin lesions: seborrheic keratosis, fibroepithelial polyp, cherry angioma and dermatosis papulosa nigra. The concentrations of P, S, K, Ca, Fe, Cu, Zn and Rb were evaluated in 62 pairs of lesions and healthy samples, each one having been collected from the same patient. The results revealed significant differences of P, Ca, K, Fe and Cu levels as well as a common trend in their variations between lesion and control samples among the skin diseases. This study revealed a powerful tool that can be useful for skin disorders research. The measurements were conducted at Brazilian National Synchrotron Light Laboratory (LNLS). - Highlights: • Concentrations of trace elements were measured and compared in four skin lesions. • The results revealed significant differences of P, Ca, K, Fe and Cu levels. • This study revealed a powerful tool that can be useful for skin disorders research

  4. Synchrotron-radiation experiments with recoil ions

    International Nuclear Information System (INIS)

    Levin, J.C.

    1989-01-01

    Studies of atoms, ions and molecules with synchrotron radiation have generally focused on measurements of properties of the electrons ejected during, or after, the photoionization process. Much can also be learned, however, about the atomic or molecular relaxation process by studies of the residual ions or molecular fragments following inner-shell photoionization. Measurements are reported of mean kinetic energies of highly charged argon, krypton, and xenon recoil ions produced by vacancy cascades following inner-shell photoionization using white and monochromatic synchrotron x radiation. Energies are much lower than for the same charge-state ions produced by charged-particle impact. The results may be applicable to design of future angle-resolved ion-atom collision experiments. Photoion charge distributions are presented and compared with other measurements and calculations. Related experiments with synchrotron-radiation produced recoil ion, including photoionization of stored ions and measurement of shakeoff in near-threshold excitation, are briefly discussed. 24 refs., 6 figs., 1 tab

  5. 3D chemical imaging based on a third-generation synchrotron source

    Energy Technology Data Exchange (ETDEWEB)

    Bleuet, P.; Gergaud, P. [CEA, LETI, MINATEC, F-38054 Grenoble, (France); Lemelle, L. [Ecole Normale Super Lyon, CNRS, USR, UMR 5570, F-3010 Lyon, (France); Bleuet, P.; Tucoulou, R.; Cloetens, P.; Susini, J. [European Synchrotron Radiat Facil, F-38043 Grenoble, (France); Delette, G. [CEA LITEN DEHT LPCE, F-38054 Grenoble, (France); Simionovici, A. [Univ Grenoble 1, Lab Geodynam Chaines Alpines, F-38041 Grenoble, (France)

    2010-07-01

    Data acquisition and reconstruction for tomography have been extensively studied for the past 30 years, mainly for medical diagnosis and non-destructive testing. In these fields, imaging is typically limited to sample morphology. However, in many cases, that is insufficient, and 3D chemical imaging becomes essential. This review highlights synchrotron X-ray fluorescence tomography, a well-established non-destructive technique that makes tomography richer by reconstructing the quantitative elemental distribution within samples down to the micrometer scale or even less. We compare the technique to others and illustrate it through results covering different scientific applications. (authors)

  6. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J. [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 North Charter Street, Madison, WI 53706-1507 (United States)

    2017-06-10

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.

  7. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    International Nuclear Information System (INIS)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J.

    2017-01-01

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.

  8. Inauguration of Proton Synchrotron

    CERN Multimedia

    1960-01-01

    On 5 February 1960, the Proton Synchrotron (PS) was formally inaugurated. The great Danish physicist, Niels Bohr, releases a bottle of champagne against a shielding block to launch the PS on its voyage in physics.

  9. Highlights in emergency medicine medical education research: 2008.

    Science.gov (United States)

    Farrell, Susan E; Coates, Wendy C; Khun, Gloria J; Fisher, Jonathan; Shayne, Philip; Lin, Michelle

    2009-12-01

    The purpose of this article is to highlight medical education research studies published in 2008 that were methodologically superior and whose outcomes were pertinent to teaching and education in emergency medicine. Through a PubMed search of the English language literature in 2008, 30 medical education research studies were independently identified as hypothesis-testing investigations and measurements of educational interventions. Six reviewers independently rated and scored all articles based on eight anchors, four of which related to methodologic criteria. Articles were ranked according to their total rating score. A ranking agreement among the reviewers of 83% was established a priori as a minimum for highlighting articles in this review. Five medical education research studies met the a priori criteria for inclusion and are reviewed and summarized here. Four of these employed experimental or quasi-experimental methodology. Although technology was not a component of the structured literature search employed to identify the candidate articles for this review, 14 of the articles identified, including four of the five highlighted articles, employed or studied technology as a focus of the educational research. Overall, 36% of the reviewed studies were supported by funding; three of the highlighted articles were funded studies. This review highlights quality medical education research studies published in 2008, with outcomes of relevance to teaching and education in emergency medicine. It focuses on research methodology, notes current trends in the use of technology for learning in emergency medicine, and suggests future avenues for continued rigorous study in education.

  10. Applications of free electron lasers and synchrotrons in industry and research

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, William A. [Dept. of Physics, Massachusetts Institute of Technology Cambridge MA (United States)

    2013-04-19

    Synchrotron radiation sources have had a profound effect on both science and technology from their beginnings decades ago as parasitic operations on accelerators for high energy physics. Now the general area of photon science has opened up new experimental techniques which have become the mainstay tools of materials science, surface physics, protein crystallography, and nanotechnology. With the promise of ultra-bright beams from the latest generation of storage rings and free electron lasers with full coherence, the tools of photon science promise to open a new area of mesoscale science and technology as well as prove to be a disruptive wildcard in the search for sustainable energy technologies. This review will survey a range of applications and explore in greater depth the potential applications to EUV lithography and to technologies for solar energy.

  11. Application of synchrotron radiation in archaeology

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Izumi [Science University of Tokyo, Faculty of Science, Department of Applied Chemistry, Tokyo (Japan)

    2002-07-01

    This paper reports current status of archaeological application of synchrotron radiation (SR). The advantages of SR in archaeological research and various application possibilities of X-ray powder diffraction (XPD), X-ray fluorescence (XRF) and X-ray absorption fine structure (XAFS) analyses of objects and materials of cultural heritage value are demonstrated through a number of case studies from literatures. They include XPD characterizations of Egyptian cosmetic powder, Attic Black Gloss, and pigments in Gothic altarpieces, provenance analysis of Old-Kutani china wares by high energy XRF, and XAFS analyses to reveal to origin of red color in Satsuma copper-ruby glass and role of iron in Maya blue. (author)

  12. Data repositories for medical education research: issues and recommendations.

    Science.gov (United States)

    Schwartz, Alan; Pappas, Cleo; Sandlow, Leslie J

    2010-05-01

    The authors explore issues surrounding digital repositories with the twofold intention of clarifying their creation, structure, content, and use, and considering the implementation of a global digital repository for medical education research data sets-an online site where medical education researchers would be encouraged to deposit their data in order to facilitate the reuse and reanalysis of the data by other researchers. By motivating data sharing and reuse, investigators, medical schools, and other stakeholders might see substantial benefits to their own endeavors and to the progress of the field of medical education.The authors review digital repositories in medicine, social sciences, and education, describe the contents and scope of repositories, and present extant examples. The authors describe the potential benefits of a medical education data repository and report results of a survey of the Society for Directors of Research in Medicine Education, in which participants responded to questions about data sharing and a potential data repository. Respondents strongly endorsed data sharing, with the caveat that principal investigators should choose whether or not to share data they collect. A large majority believed that a repository would benefit their unit and the field of medical education. Few reported using existing repositories. Finally, the authors consider challenges to the establishment of such a repository, including taxonomic organization, intellectual property concerns, human subjects protection, technological infrastructure, and evaluation standards. The authors conclude with recommendations for how a medical education data repository could be successfully developed.

  13. Synchrotron X-ray fluorescence studies of a bromine-labelled cyclic RGD peptide interacting with individual tumor cells

    International Nuclear Information System (INIS)

    Sheridan, Erin J.; Austin, Christopher J. D.; Aitken, Jade B.; Vogt, Stefan; Jolliffe, Katrina A.; Harris, Hugh H.; Rendina, Louis M.

    2013-01-01

    The first example of synchrotron X-ray fluorescence imaging of cultured mammalian cells in cyclic peptide research is reported. The study reports the first quantitative analysis of the incorporation of a bromine-labelled cyclic RGD peptide and its effects on the biodistribution of endogenous elements (for example, K and Cl) within individual tumor cells. The first example of synchrotron X-ray fluorescence imaging of cultured mammalian cells in cyclic peptide research is reported. The study reports the first quantitative analysis of the incorporation of a bromine-labelled cyclic RGD peptide and its effects on the biodistribution of endogenous elements (for example, K and Cl) within individual tumor cells

  14. Proceedings of the workshop on LAMPF II synchrotron

    International Nuclear Information System (INIS)

    Cooper, R.K.

    1983-01-01

    Topics covered at the workshop include: considerations for a staged approach to synchrotron construction; consideration of energy and cost for a kaon and/or antiproton factory; changing the transition energy in the main ring for the Fermilab antiproton beam; a lattice with 50% undispersed straight sections; bunch width considerations in a stretcher ring; a self-consistent longitudinal distribution; rapid-cycling tuned rf cavity for synchrotron use; considerations on a high-shunt impedance tunable RF cavity; rotating condensers; low extraction from the stretcher ring; an antiproton source for LAMPF II; synchrotron magnet circuit; power supply and ring magnet options; and notes for a kaon factory design

  15. A synchrotron radiation facility for x-ray astronomy

    DEFF Research Database (Denmark)

    Hall, C.J.; Lewis, R.A.; Christensen, Finn Erland

    1997-01-01

    A proposal for an x-ray optics test facility based at a synchrotron radiation source is presented. The facility would incorporate a clean preparation area, and a large evacuable test area. The advantages of using a synchrotron as the source of the test radiation are discussed. These include the a...

  16. Status of the National Synchrotron Light Source project

    International Nuclear Information System (INIS)

    Heese, R.N.

    1981-01-01

    The National Synchrotron Light Source is in its final stages of construction, and as the turn-on time for the 700 MeV vuv storage ring draws near, an overview of the project is presented. Emphasis is placed on the linac and booster synchrotron performance and the status of major subsystems

  17. Symposium 'Methodology in Medical Education Research' organised by the Methodology in Medical Education Research Committee of the German Society of Medical Education May, 25th to 26th 2013 at Charité, Berlin.

    Science.gov (United States)

    Schüttpelz-Brauns, Katrin; Kiessling, Claudia; Ahlers, Olaf; Hautz, Wolf E

    2015-01-01

    In 2013, the Methodology in Medical Education Research Committee ran a symposium on "Research in Medical Education" as part of its ongoing faculty development activities. The symposium aimed to introduce to participants educational research methods with a specific focus on research in medical education. Thirty-five participants were able to choose from workshops covering qualitative methods, quantitative methods and scientific writing throughout the one and a half days. The symposium's evaluation showed participant satisfaction with the format as well as suggestions for future improvement. Consequently, the committee will offer the symposium again in a modified form in proximity to the next annual Congress of the German Society of Medical Education.

  18. The first synchrotron infrared beamlines at the Advanced Light Source: Spectromicroscopy and fast timing

    International Nuclear Information System (INIS)

    Martin, Michael C.; McKinney, Wayne R.

    1999-01-01

    Two recently commissioned infrared beamlines on the 1.4 bending magnet port at the Advanced Light Source, LBNL, are described. Using a synchrotron as an IR source provides three primary advantages: increased brightness, very fast light pulses, and enhanced far-IR flux. The considerable brightness advantage manifests itself most beneficially when performing spectroscopy on a microscopic length scale. Beamline (BL) 1.4.3 is a dedicated FTIR spectromicroscopy beamline, where a diffraction-limited spot size using the synchrotron source is utilized. BL 1.4.2 consists of a vacuum FTIR bench with a wide spectral range and step-scan capability. This BL makes use of the pulsed nature of the synchrotron light as well as the far-IR flux. Fast timing is demonstrated by observing the pulses from the electron bunch storage pattern at the ALS. Results from several experiments from both IR beamlines will be presented as an overview of the IR research currently being done at the ALS

  19. Photoionization studies of atoms and molecules using synchrotron radiation

    International Nuclear Information System (INIS)

    Lindle, D.W.

    1988-01-01

    Photoionization studies of free atoms and molecules have undergone considerable development in the past decade, in large part due to the use of synchrotron radiation. The tunability of synchrotron radiation has permitted the study of photoionization processes near valence-and core-level ionization thresholds for atoms and molecules throught the Periodic Table. A general illustration of these types of study will be presented, with emphasis on a few of the more promising new directions in atomic and molecular physics being pursued with synchrotron radiation. (author) [pt

  20. High heat load synchrotron optics

    International Nuclear Information System (INIS)

    Mills, D.M.

    1993-01-01

    Third generation synchrotron radiation sources currently being constructed worldwide will produce x-ray beams of unparalleled power and power density. These high heat fluxes coupled with the stringent dimensional requirements of the x-ray optical components pose a prodigious challenge to designers of x-ray optical elements, specifically x-ray mirrors and crystal monochromators. Although certain established techniques for the cooling of high heat flux components can be directly applied to this problem, the thermal management of high heat load x-ray optical components has several unusual aspects that may ultimately lead to unique solutions. This manuscript attempts to summarize the various approaches currently being applied to this undertaking and to point out the areas of research that require further development

  1. Spin dynamics in electron synchrotrons; Spindynamik in Elektronensynchrotronen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jan Felix

    2017-07-14

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  2. Setting priorities for research in medical nutrition education: an international approach.

    Science.gov (United States)

    Ball, Lauren; Barnes, Katelyn; Laur, Celia; Crowley, Jennifer; Ray, Sumantra

    2016-12-14

    To identify the research priorities for medical nutrition education worldwide. A 5-step stakeholder engagement process based on methodological guidelines for identifying research priorities in health. 277 individuals were identified as representatives for 30 different stakeholder organisations across 86 countries. The stakeholder organisations represented the views of medical educators, medical students, doctors, patients and researchers in medical education. Each stakeholder representative was asked to provide up to three research questions that should be deemed as a priority for medical nutrition education. Research questions were critically appraised for answerability, sustainability, effectiveness, potential for translation and potential to impact on disease burden. A blinded scoring system was used to rank the appraised questions, with higher scores indicating higher priority (range of scores possible 36-108). 37 submissions were received, of which 25 were unique research questions. Submitted questions received a range of scores from 62 to 106 points. The highest scoring questions focused on (1) increasing the confidence of medical students and doctors in providing nutrition care to patients, (2) clarifying the essential nutrition skills doctors should acquire, (3) understanding the effectiveness of doctors at influencing dietary behaviours and (4) improving medical students' attitudes towards the importance of nutrition. These research questions can be used to ensure future projects in medical nutrition education directly align with the needs and preferences of research stakeholders. Funders should consider these priorities in their commissioning of research. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. The uses of synchrotron radiation sources for elemental and chemical microanalysis

    Science.gov (United States)

    Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Jones, K.W.; Rivers, M.L.; Sutton, S.R.

    1990-01-01

    Synchrotron radiation sources offer important features for the analysis of a material. Among these features is the ability to determine both the elemental composition of the material and the chemical state of its elements. For microscopic analysis synchrotron X-ray fluorescence (SXRF) microprobes now offer spatial resolutions of 10 ??m with minimum detection limits in the 1-10 ppm range depending on the nature of the sample and the synchrotron source used. This paper describes the properties of synchrotron radiation and their importance for elemental analysis, existing synchrotron facilities and those under construction that are optimum for SXRF microanalysis, and a number of applications including the high energy excitation of the K lines of heavy elements, microtomography, and XANES and EXAFS spectroscopies. ?? 1990.

  4. Research trends in studies of medical students' characteristics: a scoping review.

    Science.gov (United States)

    Jung, Sung Soo; Park, Kwi Hwa; Roh, HyeRin; Yune, So Jung; Lee, Geon Ho; Chun, Kyunghee

    2017-09-01

    The purpose of this study is to investigate domestic and international research trends in studies of medical students' characteristics by using the scoping review methods. This study adopted the scoping review to assess papers on the characteristics of medical students. The procedure of research was carried out according to the five steps of the scoping review. The full texts of 100 papers are obtained and are read closely, after which suitable 88 papers are extracted by us for this research. The review is mapped by the year of the study, source, location, author, research design, research subject, objective, and key results. The frequency is analyzed by using Microsoft Excel and SPSS. We found 70 papers (79.5%) on a single medical school, 15 (17.0%) on multiple medical schools, and three (3.4%) on mixed schools, including medical and nonmedical schools. Sixty-nine (79.5%) were cross-sectional studies and 18 (20.5%) were longitudinal studies. Eighty-two papers (93.2%) adopted questionnaire surveys. We summarized research trends of studies on medical students in Korea and overseas by topic, and mapped them into physical health, mental health, psychological characteristics, cognitive characteristics, social characteristics, and career. This study provides insights into the future directions of research for the characteristics of medical students.

  5. Research trends in studies of medical students’ characteristics: a scoping review

    Science.gov (United States)

    2017-01-01

    The purpose of this study is to investigate domestic and international research trends in studies of medical students’ characteristics by using the scoping review methods. This study adopted the scoping review to assess papers on the characteristics of medical students. The procedure of research was carried out according to the five steps of the scoping review. The full texts of 100 papers are obtained and are read closely, after which suitable 88 papers are extracted by us for this research. The review is mapped by the year of the study, source, location, author, research design, research subject, objective, and key results. The frequency is analyzed by using Microsoft Excel and SPSS. We found 70 papers (79.5%) on a single medical school, 15 (17.0%) on multiple medical schools, and three (3.4%) on mixed schools, including medical and nonmedical schools. Sixty-nine (79.5%) were cross-sectional studies and 18 (20.5%) were longitudinal studies. Eighty-two papers (93.2%) adopted questionnaire surveys. We summarized research trends of studies on medical students in Korea and overseas by topic, and mapped them into physical health, mental health, psychological characteristics, cognitive characteristics, social characteristics, and career. This study provides insights into the future directions of research for the characteristics of medical students. PMID:28870017

  6. Research trends in studies of medical students’ characteristics: a scoping review

    Directory of Open Access Journals (Sweden)

    Sung Soo Jung

    2017-09-01

    Full Text Available The purpose of this study is to investigate domestic and international research trends in studies of medical students’ characteristics by using the scoping review methods. This study adopted the scoping review to assess papers on the characteristics of medical students. The procedure of research was carried out according to the five steps of the scoping review. The full texts of 100 papers are obtained and are read closely, after which suitable 88 papers are extracted by us for this research. The review is mapped by the year of the study, source, location, author, research design, research subject, objective, and key results. The frequency is analyzed by using Microsoft Excel and SPSS. We found 70 papers (79.5% on a single medical school, 15 (17.0% on multiple medical schools, and three (3.4% on mixed schools, including medical and nonmedical schools. Sixty-nine (79.5% were cross-sectional studies and 18 (20.5% were longitudinal studies. Eighty-two papers (93.2% adopted questionnaire surveys. We summarized research trends of studies on medical students in Korea and overseas by topic, and mapped them into physical health, mental health, psychological characteristics, cognitive characteristics, social characteristics, and career. This study provides insights into the future directions of research for the characteristics of medical students.

  7. Coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Agoh, Tomonori

    2006-01-01

    This article presents basic properties of coherent synchrotron radiation (CSR) with numerical examples and introduces the reader to important aspects of CSR in future accelerators with short bunches. We show interesting features of the single bunch instability due to CSR in storage rings and discuss the longitudinal CSR field via the impedance representation. (author)

  8. Future prospect of the research study using intense and bright synchrotron radiation in VUV and soft x-ray region

    International Nuclear Information System (INIS)

    Tanaka, Kenichiro; Miyahara, Tsuneaki

    1987-02-01

    This report is the summary of the contents of the study meeting 'Future prospect of the research study using intense and bright synchrotron radiation in VUV and soft x-ray region' sponsored by PF, held on October 20 and 21, 1986. This study meeting was held by inviting those who are particularly interested in the basic field among the users of VUV and soft x-ray region, and the research on the application field was excluded. The objective of the discussion of this study meeting was to talk about the dream that if a high luminance light source which is 100 - 1000 times more intense in terms of luminous flux intensity is completed, what can we do with it. Three sessions on the themes 'How the existing research fields will develop', 'What the possible new research fields are' and 'Comment from the technical aspect' were held. More than seven years elapsed since the beginning of construction of the Photon Factory. Many excellent results have been obtained. As of October, 1986, the beam lines available for experiment are 11, the themes of common utilization experiment in progress are 300, and the number of registered researchers exceeded 1000. The development of a new light emission source is to be undertaken. (Kako, I.)

  9. Use of radiation in medicine and medical research in Australia

    International Nuclear Information System (INIS)

    Bonnyman, J.

    1994-01-01

    On 1 April, 1994, The Age, Melbourne, published an article claiming that hundreds of Australians had been given radioactive doses in medical experiments performed after the Second World War. Data for the article were obtained by researching information available in the Australian Radiation Laboratory (ARL) library and the Nation Health and Medical Research Council (NHMRC) Minutes in Canberra. In this article, the author gives a balanced view of the situation relating to medical experiments with radioactive substances in the 1930-1940s. Usage can be classified into the following categories : established therapeutic use; investigational therapeutic use; established diagnostic use; investigational diagnostic use and research. The limited search has indicated that considerable use has been made of radioisotopes in medicine and medical research in Australia. In most of the research studies, there would have been no benefit to the patient. Although in some cases the radiation dose would have exceeded that which is acceptable today for research studies, no cases were found where the dose delivered was dangerous. The concern is that there may be isolated studies published in medical journals which could be described in poor light in the print and electronic news media

  10. Bunch heating by coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Heifets, S.A.; Zolotorev, M.

    1995-10-01

    The authors discuss here effects which define the steady-state rms energy spread of a microbunch in a storage ring. It is implied that the longitudinal microwave instability is controlled by low α lattice. In this case the coherent synchrotron radiation, if exists, may be the main factor defining the bunch temperature. Another effect comes from the fact that a nonlinear momentum compaction of such lattices makes Haissinskii equation not applicable, and the coherent synchrotron radiation may effect not only bunch lengthening but the energy spread as well

  11. Pump-probe experiments in atoms involving laser and synchrotron radiation: an overview

    International Nuclear Information System (INIS)

    Wuilleumier, F J; Meyer, M

    2006-01-01

    The combined use of laser and synchrotron radiations for atomic photoionization studies started in the early 1980s. The strong potential of these pump-probe experiments to gain information on excited atomic states is illustrated through some exemplary studies. The first series of experiments carried out with the early synchrotron sources, from 1960 to about 1995, are reviewed, including photoionization of unpolarized and polarized excited atoms, and time-resolved laser-synchrotron studies. With the most advanced generation of synchrotron sources, a whole new class of pump-probe experiments benefiting from the high brightness of the new synchrotron beams has been developed since 1996. A detailed review of these studies as well as possible future applications of pump-probe experiments using third generation synchrotron sources and free electron lasers is presented. (topical review)

  12. Attitudes of Saudi Arabian Undergraduate Medical Students towards Health Research

    Directory of Open Access Journals (Sweden)

    Sara M. Al-Hilali

    2016-02-01

    Full Text Available Objectives: This study aimed to evaluate attitudes, perceptions and perceived barriers towards health research among Saudi Arabian undergraduate medical students. Methods: This cross-sectional study took place between August and October 2014 and included 520 students from five medical schools across Saudi Arabia. An anonymous online survey with 21 close-ended questions was designed to assess students’ attitudes towards research, contribution to research-related activities, awareness of the importance of research, perception of available resources/opportunities for research, appreciation of medical students’ research contributions and perceived barriers to research. Responses were scored on a 5-point Likert scale. Results: A total of 401 students participated in the study (response rate: 77.1%. Of these, 278 (69.3% were female. A positive attitude towards research was reported by 43.9% of the students. No statistically significant differences were observed between genders with regards to attitudes towards and available resources for research (P = 0.500 and 0.200, respectively. Clinical students had a significantly more positive attitude towards research compared to preclinical students (P = 0.007. Only 26.4% of the respondents believed that they had adequate resources/opportunities for research. According to the students, perceived barriers to undertaking research included time constraints (n = 200; 49.9%, lack of research mentors (n = 95; 23.7%, lack of formal research methodology training (n = 170; 42.4% and difficulties in conducting literature searches (n = 145; 36.2%. Conclusion: Less than half of the surveyed Saudi Arabian medical students had a positive attitude towards health research. Medical education policies should aim to counteract the barriers identified in this study.

  13. The exploitation of the Saturne synchrotron during the second quarter of 1960; L'exploitation du synchrotron Saturne pendant le 2eme trimestre 1960

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    After an overview of the use of the synchrotron, and an indication of the time distribution among experiments, creation of two new beams, maintenance, and technical incidents, this report briefly presents the various studies performed on the equipment (assessment of injected particles, study of the interaction between two beams, experimental observation of median plan anomalies), physics experiments performed by different research teams (notably in bubble chambers), measures and measurements regarding radiation protection.

  14. Reflectometer end station for synchrotron calibrations of Advanced X-ray Astrophysics Facility flight optics and for spectrometric research applications

    International Nuclear Information System (INIS)

    Graessle, D.E.; Fitch, J.J.; Ingram, R.; Zhang Juda, J.; Blake, R.L.

    1995-01-01

    Preparations have been underway to construct and test a facility for grazing incidence reflectance calibrations of flat mirrors at the National Synchrotron Light Source. The purpose is to conduct calibrations on witness flats to the coating process of the flight mirrors for NASA's Advanced X-ray Astrophysics Facility (AXAF). The x-ray energy range required is 50 eV--12 keV. Three monochromatic beamlines (X8C, X8A, U3A) will provide energy tunability over this entire range. The goal is to calibrate the AXAF flight mirrors with uncertainties approaching 1%. A portable end station with a precision-positioning reflectometer has been developed for this work. We have resolved the vacuum cleanliness requirements to preserve the coating integrity of the flats with the strict grazing-angle certainty requirements placed on the rotational control system of the reflectometer. A precision positioning table permits alignment of the system to the synchrotron beam to within 10 arcsec; the reflectometer's rotational control system can then produce grazing angle accuracy to within less than 2 arcsec, provided that the electron orbit is stable. At 10--12 keV, this degree of angular accuracy is necessary to achieve the calibration accuracy required for AXAF. However the most important energy regions for the synchrotron calibration are in the 2000--3200 eV range, where the M-edge absorption features of the coating element, iridium, appear, and the 300--700 eV range of the Ir N edges. The detail versus energy exhibited in these features cannot be traced adequately without a tunable energy source, which necessitates a synchrotron for this work. We present the mechanical designs, motion control systems, detection and measurement capabilities, and selected procedures for our measurements, as well as reflectance data

  15. Segmentation of Synchrotron Radiation micro-Computed Tomography Images using Energy Minimization via Graph Cuts

    International Nuclear Information System (INIS)

    Meneses, Anderson A.M.; Giusti, Alessandro; Almeida, André P. de; Nogueira, Liebert; Braz, Delson; Almeida, Carlos E. de; Barroso, Regina C.

    2012-01-01

    The research on applications of segmentation algorithms to Synchrotron Radiation X-Ray micro-Computed Tomography (SR-μCT) is an open problem, due to the interesting and well-known characteristics of SR images, such as the phase contrast effect. The Energy Minimization via Graph Cuts (EMvGC) algorithm represents state-of-art segmentation algorithm, presenting an enormous potential of application in SR-μCT imaging. We describe the application of the algorithm EMvGC with swap move for the segmentation of bone images acquired at the ELETTRA Laboratory (Trieste, Italy). - Highlights: ► Microstructures of Wistar rats' ribs are investigated with Synchrotron Radiation μCT imaging. ► The present work is part of a research on the effects of radiotherapy on the thoracic region. ► Application of the Energy Minimization via Graph Cuts algorithm for segmentation is described.

  16. Refraction-contrast bone imaging using synchrotron radiation

    International Nuclear Information System (INIS)

    Mori, Koichi; Sekine, Norio; Sato, Hitoshi; Shikano, Naoto; Shimao, Daisuke; Shiwaku, Hideaki; Hyodo, Kazuyuki; Oka, Hiroshi

    2002-01-01

    The X-ray refraction-contrast imaging using synchrotron radiation with some X-ray energies is successfully performed at B120B2 of SPring-8. The refraction-contrast images of bone samples such as human dried proximal phalanx, wrist, upper cervical vertebrae and sella turcica and as mouse proximal femur using the synchrotron X-ray are always better in image contrast and resolution than those of the absorption-contrast images using the synchrotron X-ray and/or the conventional X-ray tube. There is much likeness in the image contrast and resolution of trabeculae bone in the human dried proximal phalanx between X-ray energy of 30 keV at sample-to-film distance of 1 m and those of 40, 50 keV at those of 4,5 m, respectively. High-energy refraction-contrast imaging with suitable sample-to-film distance could reduce the exposure dose in human imaging. In the refraction-contrast imaging of human wrist, upper cervcal vertebrae, sella turcica and mouse proximal femur using the synchrotron X-ray, we can obtain better image contrast and resolution to correctly extract morphological information for diagnosis corresponding to each of the clinical field than those of the absorption-contrast images. (author)

  17. Synchrotron radiation facilities at DESY, a status report

    International Nuclear Information System (INIS)

    Koch, E.E.

    1979-12-01

    A short summary of the developments which have led to the present extensive use of Synchrotron Radiation at DESY is presented and a description of the Synchrotron Radiation facilities presently available and under development is given with emphasis on the new HASYLAB project at the storage ring DORIS. (orig.) 891 HSI/orig. 892 MKO

  18. Application of Synchrotron Radiation in the Geological and Environmental Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith W.

    1999-09-01

    experimental community. The next years should therefore be a time of high productivity and great excitement quite comparable to the previous era of synchrotron-based geological research.

  19. Characteristics of synchrotron radiation

    International Nuclear Information System (INIS)

    Brown, G.S.

    1984-01-01

    The characteristics and production of synchrotron radiation are qualitatively discussed. The spectral properties of wigglers and undulators are briefly described. Possible applications in condensed matter physics are outlined. These include atomic and molecular studies, crystallography, impurities in solids and radiographic imaging

  20. How is Funding Medical Research Better for Patients?

    Directory of Open Access Journals (Sweden)

    Jennifer D. Zwicker

    2015-08-01

    Full Text Available With rising health care costs, often health research is viewed as a major cost driver, calling to question the role and value of provincial funding of health research. Most agree that the quality of healthcare provided is directly linked to our ability to conduct quality research; however currently there is little empirical evidence supporting the link between engagement in health research and healthcare performance. In Canada this has resulted in funding for health research that varies over time and between provinces. While medical knowledge is a public good, we hypothesize there are local benefits from health research, such as the attraction of a specialized human capital workforce, which fosters a culture of innovation in clinical practice. To address this question, we look at whether health outcomes are impacted by changes in provincial research funding in Alberta compared to other provinces. Provincial funding for medical research, which varies greatly over time and among provinces, is used as a proxy for medical treatment inputs. Trend rates of reduction in mortality from potentially avoidable causes (MPAC (comprised of mortality from preventable causes (MPC and mortality from treatable causes (MTC, are used as a proxy health outcome measure sensitive to the contributions of technological progress in medical treatment. Our analysis suggests that investment in health research has payback in health outcomes, with greater improvements in the province where the research occurs. The trend declines seen in age standardized MPAC rates in different Canadian provinces may be impacted by shifts in provincial research funding investment, suggesting that knowledge is not transferred without cost between provinces. Up until the mid-1980s, Alberta had the most rapid rate of decline in MPAC compared to the other provinces. This is striking given the large and unique investment in medical research funding in Alberta in the early 1980s through AHFMR, the

  1. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    International Nuclear Information System (INIS)

    Nasr, Amgad

    2012-01-01

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N 2 , Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  2. The uses of synchrotron radiation sources for elemental and chemical microanalysis

    International Nuclear Information System (INIS)

    Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Jones, K.W.; Rivers, M.L.; Sutton, S.R.

    1989-08-01

    Synchrotron radiation sources offer important features for the analysis of a material. Among these features is the ability to determine both the elemental composition of the material and the chemical state of its elements. For microscopic analysis synchrotron x-ray fluorescence (SXRF) microprobes now offer spatial resolutions of 10μm with minimum detection limits in the 1--10 ppM range depending on the nature of the sample and the synchrotron source used. This paper describes the properties of synchrotron radiation and their importance for elemental analysis, existing synchrotron facilities and those under construction that are optimum for SXRF microanalysis, and a number of applications including the high energy excitation of the K lines of heavy elements, microtomography, and XANES and EXAFS spectroscopies. 45 refs., 8 figs., 1 tab

  3. Current thinking in medical education research: an overview.

    Science.gov (United States)

    Elledge, R

    2018-04-28

    Medical education is fast becoming a separate focus, and together with their clinical commitments, many clinicians now seek higher qualifications and professional accreditation in the field. Research is also developing, and there is a need for evidence-based practice in education, just as in clinical work. This review gives an overview of research into medical education, and explains the fundamentals of educational theory and the specific considerations for the quantitative and qualitative research methods that pertain to it. It also explains the application of these methods to two growing areas of research: technology-enhanced learning (TEL) and normative ethics in training. Copyright © 2018 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Low frequency interference between short synchrotron radiation sources

    Directory of Open Access Journals (Sweden)

    F. Méot

    2001-06-01

    Full Text Available A recently developed analytical formalism describing low frequency far-field synchrotron radiation (SR is applied to the calculation of spectral angular radiation densities from interfering short sources (edge, short magnet. This is illustrated by analytical calculation of synchrotron radiation from various assemblies of short dipoles, including an “isolated” highest density infrared SR source.

  5. MICROANALYSIS OF MATERIALS USING SYNCHROTRON RADIATION.

    Energy Technology Data Exchange (ETDEWEB)

    JONES,K.W.; FENG,H.

    2000-12-01

    High intensity synchrotron radiation produces photons with wavelengths that extend from the infrared to hard x rays with energies of hundreds of keV with uniquely high photon intensities that can be used to determine the composition and properties of materials using a variety of techniques. Most of these techniques represent extensions of earlier work performed with ordinary tube-type x-ray sources. The properties of the synchrotron source such as the continuous range of energy, high degree of photon polarization, pulsed beams, and photon flux many orders of magnitude higher than from x-ray tubes have made possible major advances in the possible chemical applications. We describe here ways that materials analyses can be made using the high intensity beams for measurements with small beam sizes and/or high detection sensitivity. The relevant characteristics of synchrotron x-ray sources are briefly summarized to give an idea of the x-ray parameters to be exploited. The experimental techniques considered include x-ray fluorescence, absorption, and diffraction. Examples of typical experimental apparatus used in these experiments are considered together with descriptions of actual applications.

  6. Synchrotron radiation: its characteristics and applications

    International Nuclear Information System (INIS)

    Blewett, J.P.; Chasman, R.; Green, G.K.

    1977-01-01

    It has been known for a century that charged particles radiate when accelerated and that relativistic electrons in the energy range between 100 MeV and several GeV and constrained to travel in circular orbits emit concentrated, intense beams with broad continuous spectra that can cover the electromagnetic spectrum from infrared through hard X-rays. Recently the possible applications of this radiation have been appreciated and electron synchrotrons and electron storage rings are now being used in many centers for studies of the properties of matter in the solid, liquid and gaseous states. A brief history is presented of ''synchrotron radiation'' as it is now called. The basic properties of this radiation are described and the world-wide distribution is indicated of facilities for its production. Particular attention is given to the proposed facility at Brookhaven which will be the first major installation to be dedicated only to the production and use of synchrotron radiation. Finally, typical examples are given of applications in the areas of radiation absorption studies, techniques based on scattering of radiation, and advances based on X-ray lithography

  7. Tabletop synchrotron and its unique features

    CERN Document Server

    Yamada, H

    2002-01-01

    Two synchrotrons, AURORA and MIRRORCLE, were built in Ritsumeikan University. MIRRORCLE-20 is the smallest normal conduction synchrotron (15 cm orbit radius and 1.2 m outer diameter) in the world. It uses 2/3 resonance method for electron beam incidence but is not optimized for X-ray generation. MIRRORCLE-6 shall be optimized for X-ray generation. X-ray generated by MIRRORCLE shows very flat white light, rich in hard X-ray, pulse with width changeable from a few mu s to a few ms , wide radiation angle of 25 mrad at MIRRORCLE-20 and 80 mrad at MIRRORCLE-8 and high coherence. The feature such as pulsed light and high coherence is expected to new application which photon radiation cannot practice. Imaging experiments by MIRRORCLE were carried out by Cu plate, Al plate, Teflon and acryl plate. We took a photograph of insect, electric lamp, connector, and cyclotron. New X-ray generation mechanism, X-ray strength, development of tabletop synchrotron and features of X-ray beam are explained. (S.Y.)

  8. Tabletop synchrotron and its unique features

    International Nuclear Information System (INIS)

    Yamada, Hironari

    2002-01-01

    Two synchrotrons, AURORA and MIRRORCLE, were built in Ritsumeikan University. MIRRORCLE-20 is the smallest normal conduction synchrotron (15 cm orbit radius and 1.2 m outer diameter) in the world. It uses 2/3 resonance method for electron beam incidence but is not optimized for X-ray generation. MIRRORCLE-6 shall be optimized for X-ray generation. X-ray generated by MIRRORCLE shows very flat white light, rich in hard X-ray, pulse with width changeable from a few μs to a few ms , wide radiation angle of 25 mrad at MIRRORCLE-20 and 80 mrad at MIRRORCLE-8 and high coherence. The feature such as pulsed light and high coherence is expected to new application which photon radiation cannot practice. Imaging experiments by MIRRORCLE were carried out by Cu plate, Al plate, Teflon and acryl plate. We took a photograph of insect, electric lamp, connector, and cyclotron. New X-ray generation mechanism, X-ray strength, development of tabletop synchrotron and features of X-ray beam are explained. (S.Y.)

  9. Essential competencies in global health research for medical trainees: A narrative review.

    Science.gov (United States)

    White, Mary T; Satterfield, Caley A; Blackard, Jason T

    2017-09-01

    Participation in short-term educational experiences in global health (STEGHs) among medical trainees is increasingly accompanied by interest in conducting research while abroad. Because formal training in both global health and research methods is currently under-represented in most medical curricula, trainees are often unfamiliar with the knowledge, attitudes, and skills necessary to design and conduct research successfully. This narrative review identifies essential global health research competencies for medical trainees engaged in STEGHs. The authors searched the literature using the terms global health, competency, research, research methods/process/training, scholarly project, medical student, and medical education/education. Because articles directly addressing global health research competencies for medical trainees were limited, the authors additionally drew on the broader literature addressing general research competencies and global health competencies. Articles yielded by the literature search, combined with established guidelines in research ethics and global health ethics, were used to identify six core domains and twenty discrete competencies fundamental to global health research at a level appropriate for medical trainees enrolled in STEGHs. Consideration was given to diverse research modalities, varying levels of training, and the availability of mentoring and on-site support. Research may provide important benefits to medical trainees and host partners. These competencies provide a starting point; however, circumstances at any host site may necessitate additional competencies specific to that setting. These competencies are also limited by the methodology employed in their development and the need for additional perspectives from host partners. The competencies identified outline basic knowledge, attitudes, and skills necessary for medical trainees to conduct limited global health research while participating in STEGHS. They may also be used as a

  10. A multifaceted program to encourage medical students' research.

    Science.gov (United States)

    Zier, K; Stagnaro-Green, A

    2001-07-01

    Clinician-scientists are important members of a research community that has more opportunities than ever before to solve problems important to patients. Nevertheless, the number of physicians applying for and receiving grants from the National Institutes of Health (NIH) has dropped. Introducing medical students to research and relevant support mechanisms early in their education may help to reverse this trend. In 1995, the Mount Sinai School of Medicine created its Office of Student Research Opportunities (OSRO) to stimulate students to engage in research. It also appointed a new dean to direct the OSRO; the person who filled this new position was a senior faculty member involved in patient-oriented research. The OSRO advises students, identifies faculty who want to mentor students, sponsors the Distinction in Research program, organizes an annual research day, helps fund summer and full-time research, and has created an endowment to support student travel to national meetings. Between 1997 and 2000 the number of students who participated in the research day increased from 18 to 74, and the number of publications by the graduating classes increased from 34 to 58 between 1997 and 1999. Participants have presented both basic and clinical projects. The authors' experience has shown that medical students can be motivated to carry out research with appropriate encouragement from the administration and the faculty, something that may help to reverse a troubling national trend. Based upon these early successes, Mount Sinai is developing a novel five-year program to provide medical students with research training.

  11. Industry's demand for the BESSY synchrotron radiation (SR): approaches towards interlinking basic scientific research activities and industry

    International Nuclear Information System (INIS)

    Bierhals, R.; Schmoch, U.; Nick, D.; Pilorget, L.; Ritschel, C.; Walter, G.H.

    1994-08-01

    In Germany, industry's demand for synchrotron radiation (SR) is very limited, due to the current macroeconomic situation and the corporate strategy of potential SR users in industry. This is in contrast to the conditions in the USA (and Japan), where industrial enterprises more readily invest in and run their own long-term basic research projects for exploration of potential commercial applications according to their demands, with research goals pursued there and in Germany overlapping to a large extent. It cannot be expected that demand for SR from industry in Germany will ever come up to the level seen in the USA. In Germany, non-university research institutes are most likely to become an important group of potential users of SR. Substantially boosting the demand for SR from industry will need a change of macroeconomic framework conditions affecting the corporate strategy to the effect that industry will more strongly commit itself to and take up responsibility for application-oriented fundamental research and the corresponding technology transfer. This can be achieved by a policy providing both for institutional means and financial incentives. As to near-market, strategic technological developments, establishment of structures allowing direct cooperation of science and technology, for instance in the form of joint ventures, or underwriting agreements and corresponding supervisory boards, seem to be promising. As to basic-research-oriented promotion of research, a technology screening might lead to the selection of technology-relevant research goals, and corresponding financial support from a special fund. Such incentives for cooperative action by technology, science and the government will create novel types of research-industry interfaces in Germany between ''historical'' spheres of autonomy of research of industry and the scientific community. (orig.) [de

  12. [Conflict of interest in medical practice and research].

    Science.gov (United States)

    Youn, Young Hoon; Lee, Ilhak

    2012-09-25

    In recent years, medical professionals are in charge with multiple roles. They have to work as an educator, researcher, and administrator, as well as medical practitioner. In addition, they experience a conflict between the primary responsibilities that each role requires of them. A conflict of interest (COI) is a set of circumstances that creates a risk that professional judgment or actions regarding a primary interest will be unduly influenced by a secondary interest. It occurs when an individual or organization is involved in multiple interests, one of which could possibly corrupt the motivation for an act in the other. The COI should be managed appropriately to preserve the value of public trust, scientific objectivity, and the benefit and safety of patients. Primary interest of medical professionals refers to the principal goals of the medical profession, such as the health and safety of patients, and the integrity of research. Secondary interest includes not only financial gain but also such motives as the desire for professional advancement and the wish to do favors for family and friends, but COI rules usually focus on financial relationships because they are relatively more objective, fungible, and quantifiable. This article will briefly review the COI in medical practice and research, discuss about what is COI, why we should manage it, and how we can manage it.

  13. Medical ethics, bioethics and research ethics education perspectives in South East Europe in graduate medical education.

    Science.gov (United States)

    Mijaljica, Goran

    2014-03-01

    Ethics has an established place within the medical curriculum. However notable differences exist in the programme characteristics of different schools of medicine. This paper addresses the main differences in the curricula of medical schools in South East Europe regarding education in medical ethics and bioethics, with a special emphasis on research ethics, and proposes a model curriculum which incorporates significant topics in all three fields. Teaching curricula of Medical Schools in Bulgaria, Bosnia and Herzegovina, Croatia, Serbia, Macedonia and Montenegro were acquired and a total of 14 were analyzed. Teaching hours for medical ethics and/or bioethics and year of study in which the course is taught were also analyzed. The average number of teaching hours in medical ethics and bioethics is 27.1 h per year. The highest national average number of teaching hours was in Croatia (47.5 h per year), and the lowest was in Serbia (14.8). In the countries of the European Union the mean number of hours given to ethics teaching throughout the complete curriculum was 44. In South East Europe, the maximum number of teaching hours is 60, while the minimum number is 10 teaching hours. Research ethics topics also show a considerable variance within the regional medical schools. Approaches to teaching research ethics vary, even within the same country. The proposed model for education in this area is based on the United Nations Educational, Scientific and Cultural Organization Bioethics Core Curriculum. The model curriculum consists of topics in medical ethics, bioethics and research ethics, as a single course, over 30 teaching hours.

  14. The application of synchrotron radiation to X-ray lithography

    International Nuclear Information System (INIS)

    Spiller, E.; Eastman, D.E.; Feder, R.; Grobman, W.D.; Gudat, W.; Topalian, J.

    1976-06-01

    Synchrotron radiation from the German electron synchrotron DESY in Hamburg has been used for X-ray lithograpgy. Replications of different master patterns (for magnetic bubble devices, fresnel zone plates, etc.) were made using various wavelengths and exposures. High quality lines down to 500 A wide have been reproduced using very soft X-rays. The sensitivities of X-ray resists have been evaluated over a wide range of exposures. Various critical factors (heating, radiation damage, etc.) involved with X-ray lithography using synchrotron radiation have been studied. General considerations of storage ring sources designed as radiation sources for X-ray lithography are discussed, together with a comparison with X-ray tube sources. The general conclusion is that X-ray lithography using synchrotron radiation offers considerable promise as a process for forming high quality sub-micron images with exposure times as short as a few seconds. (orig.) [de

  15. Bringing Physics, Synchrotron Light and Probing Neutrons to the Public: A Collaborative Outreach

    Science.gov (United States)

    Micklavzina, Stanley; Almqvist, Monica; Sörensen, Stacey L.

    2014-01-01

    Stanley Micklavzina, a US physics educator on sabbatical, teams up with a Swedish national research laboratory, a synchrotron radiation experimental group and a university science centre to develop and create educational and public outreach projects. Descriptions of the physics, science centre displays and public demonstrations covering the…

  16. The role of social networking sites in medical genetics research.

    Science.gov (United States)

    Reaves, Allison Cook; Bianchi, Diana W

    2013-05-01

    Social networking sites (SNS) have potential value in the field of medical genetics as a means of research subject recruitment and source of data. This article examines the current role of SNS in medical genetics research and potential applications for these sites in future studies. Facebook is the primary SNS considered, given the prevalence of its use in the United States and role in a small but growing number of studies. To date, utilization of SNS in medical genetics research has been primarily limited to three studies that recruited subjects from populations of Facebook users [McGuire et al. (2009); Am J Bioeth 9: 3-10; Janvier et al. (2012); Pediatrics 130: 293-298; Leighton et al. (2012); Public Health Genomics 15: 11-21]. These studies and a number of other medical and public health studies that have used Facebook as a context for recruiting research subjects are discussed. Approaches for Facebook-based subject recruitment are identified, including paid Facebook advertising, snowball sampling, targeted searching and posting. The use of these methods in medical genetics research has the potential to facilitate cost-effective research on both large, heterogeneous populations and small, hard-to-access sub-populations. Copyright © 2013 Wiley Periodicals, Inc.

  17. Synchrotron radiation

    International Nuclear Information System (INIS)

    Pattison, P.; Quinn, P.

    1990-01-01

    This report details the activities in synchrotron radiation and related areas at Daresbury Laboratory during 1989/90. The number and scope of the scientific reports submitted by external users and in-house staff is a reflection of the large amount of scheduled beamtime and high operating efficiency achieved at the Synchrotron Radiation Source (SRS) during the past year. Over 4000 hours of user beam were available, equivalent to about 80% of the total scheduled time. Many of the reports collected here illustrate the increasing technical complexity of the experiments now being carried out at Daresbury. Provision of the appropriate technical and scientific infrastructure and support is a continuing challenge. The development of the Materials Science Laboratory together with the existing Biological Support Laboratory will extend the range of experiments which can be carried out on the SRS. This will particularly facilitate work in which the sample must be prepared or characterised immediately before or during an experiment. The year 1989/90 has also seen a substantial upgrade of several stations, especially in the area of x-ray optics. Many of the advantages of the High Brightness Lattice can only be exploited effectively with the use of focusing optics. As the performance of these stations improves, the range of experiments which are feasible on the SRS will be extended significantly. (author)

  18. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part II. Defects.

    Science.gov (United States)

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography (SXRT) has been applied to the study of defects within three-dimensional printed titanium parts. These parts were made using the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V) as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. The samples represent a selection of complex shapes with a variety of internal morphologies. Inspection via SXRT has revealed a number of defects which may not otherwise have been seen. The location and nature of such defects combined with detailed knowledge of the process conditions can contribute to understanding the interplay between design and manufacturing strategy. This fundamental understanding may subsequently be incorporated into process modelling, prediction of properties and the development of robust methodologies for the production of defect-free parts.

  19. Design of the dipole and quadrupole magnets of the dedicated proton synchrotron for hadron therapy

    International Nuclear Information System (INIS)

    Kukarnikov, S.I.; Makoveev, V.K.; Minashkin, V.F.; Molodozhentsev, A.Yu.; Shevtsov, V.F.; Sidorov, G.I.

    1998-01-01

    The 2D-calculation results of magnetic elements of the PRAMES (Prague Medical Synchrotron) are presented. This machine is a dedicated accelerator for cancer therapy. The output energy of the beam should be variable in the range 60-220 MeV. The maximum magnetic field of the dipole magnet should be 1.2 T, the maximum magnetic field ramp - less than 8 T/s. The focusing structure of the proton synchrotron consists of 8 dipole and 18 quadrupole magnets. All magnets are laminated to minimize leakage currents. The dipoles are parallel-edge, H-type magnets. The field uniformity should be of the order of ± 1 x 10 -4 in the working area (± 63 mm and ± 27 mm in the horizontal and vertical planes, respectively). The maximum magnetic field on the pole of the quadrupole lenses should be less than 1 T. The gradient uniformity of quadrupole magnets in the working region should be less than ± 3.5 x 10 -4

  20. Medical teachers' attitudes towards science and motivational orientation for medical research.

    Science.gov (United States)

    Cvek, Mario; Hren, Darko; Sambunjak, Dario; Planinc, Mislav; Macković, Maja; Marusić, Ana; Marusić, Matko

    2009-01-01

    Research is an important motivating factor for pursuing a career in academic medicine, but the relation between motivation and other factors involved in scientific research are not clear. To explore the motivational orientation for doing research and its relation with attitudes towards science and publication practice among members of faculty at a medical school. We used a Science Attitude Survey and the Work Preference Inventory (intrinsic and extrinsic motivational orientation using 4 Likert-type scales of motivation, possible range 1-5) to survey two groups of teachers at the Zagreb University School of Medicine (n = 327, 66% response rate): professors, elected to tenure-track positions (n = 150), and instructor/research fellows working on or just completing their thesis (n = 177). Overall, teachers scored highest on the Enjoyment subscale of intrinsic motivational orientation (mean score +/- standard deviation 4.3 +/- 0.42 for professors vs 4.1 +/- 0.42 for instructors/research fellows, P = 0.001, t-test). Professors also scored higher than instructors/research fellows on the Challenge subscale of intrinsic motivational orientation (3.8 +/- 0.55 vs. 3.5 +/- 0.64, P motivational orientation (3.5 +/- 0.74 vs. 3.1 +/- 0.71, P motivation, and negatively associated with scores on the Compensation subscale of extrinsic motivation. Members of the medical faculty differ in motivational orientation for research depending on their academic status, and their motivation is associated more with requirements for academic advancement than with research. These findings have important implications for developing strategies for enhancing academic research production.

  1. X-ray studies on electrochemical systems. Synchrotron methods for energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Artur [Empa. Eidgenoessische Materialpruefungs- und Forschungsanstalt, Duebendorf (Switzerland)

    2017-07-01

    This book is your graduate level entrance into battery, fuel cell and solar cell research at synchrotron X-ray sources. Materials scientists find numerous examples for the combination of electrochemical experiments with simple and with highly complex X-ray scattering and spectroscopy methods. Physicists and chemists can link applied electrochemistry with fundamental concepts of condensed matter physics, physical chemistry and surface science.

  2. National Synchrotron Light Source safety-analysis report

    International Nuclear Information System (INIS)

    Batchelor, K.

    1982-07-01

    This document covers all of the safety issues relating to the design and operation of the storage rings and injection system of the National Synchrotron Light Source. The building systems for fire protection, access and egress are described together with air and other gaseous control or venting systems. Details of shielding against prompt bremstrahlung radiation and synchrotron radiation are described and the administrative requirements to be satisfied for operation of a beam line at the facility are given

  3. Optical systems for synchrotron radiation. Lecture 2. Mirror systems

    International Nuclear Information System (INIS)

    Howells, M.R.

    1986-02-01

    The process of reflection of VUV and x-radiation is summarized. The functions of mirrors in synchrotron beamlines are described, which include deflection, filtration, power absorption, formation of a real image, focusing, and collimation. Fabrication of optical surfaces for synchrotron radiation beamlines are described, and include polishing of a near spherical surface as well as bending a cylindrical surface to toroidal shape. The imperfections present in mirrors, aberrations and surface figure inaccuracy, are discussed. Calculation of the thermal load of a mirror in a synchrotron radiation beam and the cooling of the mirror are covered briefly. 50 refs., 7 figs

  4. Automation and Remote Synchrotron Data Collection

    International Nuclear Information System (INIS)

    Gilski, M.

    2008-01-01

    X-ray crystallography is the natural choice for macromolecular structure determination by virtue of its accuracy, speed, and potential for further speed gains, while synchrotron radiation is indispensable because of its intensity and tuneability. Good X-ray crystallographic diffraction patterns are essential and frequently this is achievable through using the few large synchrotrons located worldwide. Beamline time on these facilities have long queues, and increasing the efficiency of utilization of these facilities will help in expediting the structure determination process. Automation and remote data collection are therefore essential steps in ensuring that macromolecular structure determination becomes a very high throughput process. (author)

  5. Technique of infrared synchrotron acceleration diagnostics

    International Nuclear Information System (INIS)

    Mal'tsev, A.A.; Mal'tsev, M.A.

    1997-01-01

    Techniques of measuring of current and geometric parameters and evaluating of energy parameters of the ring bunch of relativistic low-energy electrons have been presented. They have been based on using the synchrotron radiation effect in its infrared spectral part. Fast infrared detectors have provided radiation detection in the spectral range Δλ ≅ 0.3-45 μm. The descriptions of some data monitoring and measuring systems developed in JINR for the realization of techniques of the infrared synchrotron acceleration diagnostics have been given. Infrared optics elements specially developed have been used in these systems

  6. Review of third and next generation synchrotron light sources

    International Nuclear Information System (INIS)

    Bilderback, Donald H; Elleaume, Pascal; Weckert, Edgar

    2005-01-01

    Synchrotron radiation (SR) is having a very large impact on interdisciplinary science and has been tremendously successful with the arrival of third generation synchrotron x-ray sources. But the revolution in x-ray science is still gaining momentum. Even though new storage rings are currently under construction, even more advanced rings are under design (PETRA III and the ultra high energy x-ray source) and the uses of linacs (energy recovery linac, x-ray free electron laser) can take us further into the future, to provide the unique synchrotron light that is so highly prized for today's studies in science in such fields as materials science, physics, chemistry and biology, for example. All these machines are highly reliant upon the consequences of Einstein's special theory of relativity. The consequences of relativity account for the small opening angle of synchrotron radiation in the forward direction and the increasing mass an electron gains as it is accelerated to high energy. These are familiar results to every synchrotron scientist. In this paper we outline not only the origins of SR but discuss how Einstein's strong character and his intuition and excellence have not only marked the physics of the 20th century but provide the foundation for continuing accelerator developments into the 21st century

  7. An international basic science and clinical research summer program for medical students.

    Science.gov (United States)

    Ramjiawan, Bram; Pierce, Grant N; Anindo, Mohammad Iffat Kabir; Alkukhun, Abedalrazaq; Alshammari, Abdullah; Chamsi, Ahmad Talal; Abousaleh, Mohannad; Alkhani, Anas; Ganguly, Pallab K

    2012-03-01

    An important part of training the next generation of physicians is ensuring that they are exposed to the integral role that research plays in improving medical treatment. However, medical students often do not have sufficient time to be trained to carry out any projects in biomedical and clinical research. Many medical students also fail to understand and grasp translational research as an important concept today. In addition, since medical training is often an international affair whereby a medical student/resident/fellow will likely train in many different countries during his/her early training years, it is important to provide a learning environment whereby a young medical student experiences the unique challenges and value of an international educational experience. This article describes a program that bridges the gap between the basic and clinical research concepts in a unique international educational experience. After completing two semester curricula at Alfaisal University in Riyadh, Kingdom of Saudi Arabia, six medical students undertook a summer program at St. Boniface Hospital Research Centre, in Winnipeg, MB, Canada. The program lasted for 2 mo and addressed advanced training in basic science research topics in medicine such as cell isolation, functional assessment, and molecular techniques of analysis and manipulation as well as sessions on the conduct of clinical research trials, ethics, and intellectual property management. Programs such as these are essential to provide a base from which medical students can decide if research is an attractive career choice for them during their clinical practice in subsequent years. An innovative international summer research course for medical students is necessary to cater to the needs of the medical students in the 21st century.

  8. Synchrotron x-ray fluorescence and extended x-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Chen, J.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kraner, H.W.; Chao, E.C.T.; Minkin, J.A.

    1984-01-01

    The advent of dedicated synchrotron radiation sources has led to a significant increase in activity in many areas of science dealing with the interaction of x-rays with matter. Synchrotron radiation provides intense, linearly polarized, naturally collimated, continuously tunable photon beams, which are used to determine not only the elemental composition of a complex, polyatomic, dilute material but also the chemical form of the elements with improved accuracy. Examples of the application of synchrotron radiation include experiments in synchrotron x-ray fluorescence (SXRF) analysis and extended x-ray absorption fine structure (EXAFS) analysis. New synchrotron radiation x-ray microprobes for elemental analysis in the parts per billion range are under construction at several laboratories. 76 references, 24 figures

  9. A guide to synchrotron radiation science

    CERN Document Server

    Sato, Shigeru; Munro, Ian; Lodha, G S

    2015-01-01

    Synchrotron Radiation (SR), as a light source is now in use around the world to provide brilliant radiation from the infrared into the soft and hard X-ray regions. It is an indispensible and essential tool to establish the physic-chemical characteristics of materials and surfaces from an atomic and molecular view point. It is being applied to topics which range from mineralogy to protein crystallography, embracing research in areas from the physical to the life sciences. This new guide is a concise yet comprehensive and easily readable introduction to an expanding area of science. It presents in a readily assimilable form the basic concepts of SR science from its generation principles, through source design and operation to the principles of instruments for SR exploitation followed by a survey of its actual applications in selected research fields, including spectroscopy, diffractometry, microanalysis and chemical processing.

  10. On the formation of an instantaneous orbit in a synchrotron

    International Nuclear Information System (INIS)

    Bashmakov, Yu.A.; Karpov, V.A.

    1985-01-01

    In the process of injection into a synchrotron amplitudes of particle betatron oscillations can be comparable with the dimensions of the synchrotron working region, which means that special attention should be paid to the formation of the optimum instantaneous orbit. Basides, a necessity to calculate the orbit frequently arises at the end of the acceleration cycle, when particle dump onto internal targets or their extraction from the synchrotron take place. In the paper the method for calculation of particle trajectories in the synchrotron is described. According to the method the program of numerical calculation of both separate particle trajectories and closed instantaneous orbit was developed. The method suggested is based on the presentation of the accelerator magnetic structure as a sequential set of discrete elements. All the elements can be divided into the following main groups: free rectilinear gaps, rectilinear gaps with stray magnetic field, magnetic sectors, rectilinear gaps with accelerating electric field. The calculations made according to the method described have shown its high efficiency. The program developed is used for the simulation of the injection into the ''Pakhra'' synchrotron

  11. Synchrotron radiation in art and archaeology SRA 2005

    International Nuclear Information System (INIS)

    Pollard, A.M.; Janssens, K.; Artioli, G.; Young, M.L.; Casadio, F.; Schnepp, S.; Marvin, J.; Dunand, D.C.; Almer, J.; Fezzaa, K.; Lee, W.K.; Haeffner, D.R.; Reguer, S.; Dillmann, Ph.; Mirambet, F.; Susini, J.; Lagarde, P.; Pradell, T.; Molera, J.; Brunetti, B.; D'acapito, F.; Maurizio, C.; Mazzoldi, P.; Padovani, S.; Sgamellotti, A.; Garges, F.; Etcheverry, M.P.; Flank, A.M.; Lagarde, P.; Marcus, M.A.; Scheidegger, A.M.; Grolimund, D.; Pallot-Frossard, I.; Smith, A.D.; Jones, M.; Gliozzo, E.; Memmi-Turbanti, I.; Molera, J.; Vendrell, M.; Mcconachie, G.; Skinner, T.; Kirkman, I.W.; Pantos, E.; Wallert, A.; Kanngiesser, B.; Hahn, O.; Wilke, M.; NekaT, B.; Malzer, W.; Erko, A.; Chalmin, E.; Vignaud, C.; Farges, F.; Susini, J.; Menu, M.; Sandstrom, M.; Cotte, M.; Kennedy, C.J.; Wess, T.J.; Muller, M.; Murphy, B.; Roberts, M.A.; Burghammer, M.; Riekel, C.; Gunneweg, J.; Pantos, E.; Dik, J.; Tafforeau, P.; Boistel, R.; Boller, E.; Bravin, A.; Brunet, M.; Chaimanee, Y.; Cloetens, P.; Feist, M.; Hoszowska, J.; Jaeger, J.J.; Kay, R.F.; Lazzari, V.; Marivaux, L.; Nel, A.; Nemoz, C.; Thibault, X.; Vignaud, P.; Zabler, S.; Sciau, P.; Goudeau, P.; Tamura, N.; Doormee, E.; Kockelmann, W.; Adriaens, A.; Ryck, I. de; Leyssens, K.; Hochleitner, B.; Schreiner, M.; Drakopoulos, M.; Snigireva, I.; Snigirev, A.; Sanchez Del Rio, M.; Martinetto, P.; Dooryhee, E.; Suarez, M.; Sodo, A.; Reyes-Valerio, C.; Haro Poniatowski, E.; Picquart, M.; Lima, E.; Reguera, E.; Gunneweg, J.; Reiche, I.; Berger, A.; Bevers, H.; Duval, A.

    2005-01-01

    Materials - bones, artifacts, artwork,.... - lie at the heart of both archaeology and art conservation. Synchrotron radiation techniques provide powerful ways to interrogate these records of our physical and cultural past. In this workshop we will discuss and explore the current and potential applications of synchrotron radiation science to problems in archaeology and art conservation. This document gathers the abstracts of the presentations

  12. First turn simulations in the cooler synchrotron COSY

    International Nuclear Information System (INIS)

    Dinev, D.

    1991-07-01

    This paper is devoted to the first turn correction and related problems in particle accelerators of synchrotron type. The paper consists of two parts. The first part is a survey of the existing methods for first turn steering. The second part is entirely devoted to the first turn in the cooler synchrotron COSY which is under assembling in KFA-Julich, Germany. (orig.)

  13. Synchrotron radiation in art and archaeology SRA 2005

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, A M; Janssens, K; Artioli, G; Young, M L; Casadio, F; Schnepp, S; Marvin, J; Dunand, D C; Almer, J; Fezzaa, K; Lee, W K; Haeffner, D R; Reguer, S; Dillmann, Ph; Mirambet, F; Susini, J; Lagarde, P; Pradell, T; Molera, J; Brunetti, B; D' acapito, F; Maurizio, C; Mazzoldi, P; Padovani, S; Sgamellotti, A; Garges, F; Etcheverry, M P; Flank, A M; Lagarde, P; Marcus, M A; Scheidegger, A M; Grolimund, D; Pallot-Frossard, I; Smith, A D; Jones, M; Gliozzo, E; Memmi-Turbanti, I; Molera, J; Vendrell, M; Mcconachie, G; Skinner, T; Kirkman, I W; Pantos, E; Wallert, A; Kanngiesser, B; Hahn, O; Wilke, M; NekaT, B; Malzer, W; Erko, A; Chalmin, E; Vignaud, C; Farges, F; Susini, J; Menu, M; Sandstrom, M; Cotte, M; Kennedy, C J; Wess, T J; Muller, M; Murphy, B; Roberts, M A; Burghammer, M; Riekel, C; Gunneweg, J; Pantos, E; Dik, J; Tafforeau, P; Boistel, R; Boller, E; Bravin, A; Brunet, M; Chaimanee, Y; Cloetens, P; Feist, M; Hoszowska, J; Jaeger, J J; Kay, R F; Lazzari, V; Marivaux, L; Nel, A; Nemoz, C; Thibault, X; Vignaud, P; Zabler, S; Sciau, P; Goudeau, P; Tamura, N; Doormee, E; Kockelmann, W; Adriaens, A; Ryck, I de; Leyssens, K; Hochleitner, B; Schreiner, M; Drakopoulos, M; Snigireva, I; Snigirev, A; Sanchez Del Rio, M; Martinetto, P; Dooryhee, E; Suarez, M; Sodo, A; Reyes-Valerio, C; Haro Poniatowski, E; Picquart, M; Lima, E; Reguera, E; Gunneweg, J; Reiche, I; Berger, A; Bevers, H; Duval, A

    2005-07-01

    Materials - bones, artifacts, artwork,.... - lie at the heart of both archaeology and art conservation. Synchrotron radiation techniques provide powerful ways to interrogate these records of our physical and cultural past. In this workshop we will discuss and explore the current and potential applications of synchrotron radiation science to problems in archaeology and art conservation. This document gathers the abstracts of the presentations.

  14. Synchrotron X-ray induced solution precipitation of nanoparticles

    CERN Document Server

    Lee, H J; Hwu, Y; Tsai, W L

    2003-01-01

    By irradiating a solution in electroless Ni deposition using synchrotron X-rays, Ni composite was found to nucleate homogeneously and eventually precipitate in the form of nanoparticles. The size of the nanoparticles precipitated is rather uniform (100-300 nm depending on the applied temperature). By the addition of an organic acid, well-dispersed nanoparticles could be effectively deposited on glass substrate. The hydrated electrons (e sub a sub q sup -), products of radiolysis of water molecules by synchrotron X-rays, may be responsible for the effective reduction of the metal ions, resulting in homogeneous nucleation and nanoparticle formation. Our results suggest that synchrotron X-ray can be used to induce solution precipitation of nanoparticles and therefore lead to a new method of producing nanostructured particles and coating.

  15. Reprioritizing current research trends in medical education: a reflection on research activities in Saudi Arabia.

    Science.gov (United States)

    Obeidat, Akef S; Alhaqwi, Ali Ibrahim; Abdulghani, Hamza Mohammad

    2015-04-01

    There are numerous national efforts to determine and develop research priorities of medical education in Saudi Arabia. These priorities were first proposed in 2010 by "Dr Al-Khuli's Chair for Developing Medical Education in Saudi Arabia". The proposed priority domains were: curriculum, students, faculty, and quality assurance and accreditation. To investigate publications in medical education at the national and international levels in areas relating to these proposed priorities. Electronic search within PubMed database for papers relating to each domain of priority was conducted at national and international levels in the last three years, using the same keywords as the priority domains, but only confined to undergraduate medical education. Out of 3145 articles retrieved when searching with keyword as broad as "undergraduate medical curriculum" only 81 articles worldwide and 3 articles from Saudi Arabia were dealing with curriculum related issues as a whole. Further search on the sub-domains "effective strategies to manage undergraduate curriculum" and "undergraduate medical education models", resulted in the retrieval of few articles worldwide and none from Saudi Arabia. At the national level, there were 63 publications from Saudi Arabia that were either course (topic)-specific or could not be classified under the four domains specified by Dr Al-Khuli's Chair. Research activities in medical education in Saudi Arabia in the last 3 years showed diversity and lack of focus in the research priorities. Efforts of academic and research centers should continue to monitor and encourage these activities toward achieving the recommended priorities.

  16. Discussions for the shielding materials of synchrotron radiation beamline hutches

    International Nuclear Information System (INIS)

    Asano, Y.

    2006-01-01

    Many synchrotron radiation facilities are now under operation such as E.S.R.F., APS, and S.P.ring-8. New facilities with intermediated stored electron energy are also under construction and designing such as D.I.A.M.O.N.D., S.O.L.E.I.L., and S.S.R.F.. At these third generation synchrotron radiation facilities, the beamline shielding as well as the bulk shield is very important for designing radiation safety because of intense and high energy synchrotron radiation beam. Some reasons employ lead shield wall for the synchrotron radiation beamlines. One is narrow space for the construction of many beamlines at the experimental hall, and the other is the necessary of many movable mechanisms at the beamlines, for examples. Some cases are required to shield high energy neutrons due to stored electron beam loss and photoneutrons due to gas Bremsstrahlung. Ordinary concrete and heavy concrete are coming up to shield material of synchrotron radiation beamline hutches. However, few discussions have been performed so far for the shielding materials of the hutches. In this presentation, therefore, we will discuss the characteristics of the shielding conditions including build up effect for the beamline hutches by using the ordinary concrete, heavy concrete, and lead for shielding materials with 3 GeV and 8 GeV class synchrotron radiation source. (author)

  17. Synchrotron based planar imaging and digital tomosynthesis of breast and biopsy phantoms using a CMOS active pixel sensor.

    Science.gov (United States)

    Szafraniec, Magdalena B; Konstantinidis, Anastasios C; Tromba, Giuliana; Dreossi, Diego; Vecchio, Sara; Rigon, Luigi; Sodini, Nicola; Naday, Steve; Gunn, Spencer; McArthur, Alan; Olivo, Alessandro

    2015-03-01

    The SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at Elettra is performing the first mammography study on human patients using free-space propagation phase contrast imaging. The stricter spatial resolution requirements of this method currently force the use of conventional films or specialized computed radiography (CR) systems. This also prevents the implementation of three-dimensional (3D) approaches. This paper explores the use of an X-ray detector based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology as a possible alternative, for acquisitions both in planar and tomosynthesis geometry. Results indicate higher quality of the images acquired with the synchrotron set-up in both geometries. This improvement can be partly ascribed to the use of parallel, collimated and monochromatic synchrotron radiation (resulting in scatter rejection, no penumbra-induced blurring and optimized X-ray energy), and partly to phase contrast effects. Even though the pixel size of the used detector is still too large - and thus suboptimal - for free-space propagation phase contrast imaging, a degree of phase-induced edge enhancement can clearly be observed in the images. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Founders hope new venture-capital fund will spur medical, biotechnology research

    Science.gov (United States)

    Gray, Charlotte

    1995-01-01

    Lack of a coherent industrial strategy and venture capital have hindered scientific researchers in Canada, but the Canadian Medical Discoveries Fund (CMDF) Inc. hopes to change that. Under the leadership of Dr. Henry Friesen, president of the Medical Research Council of Canada, and Dr. Calvin Stiller, head of the multiorgan transplant unit at University Hospital, London, Ont., the new fund proposes to invest in promising medical and biotechnology research companies in Canada. The research council's peerreview system gives the new fund scientific credibility.

  19. Assessment of a synchrotron X-ray method for quantitative analysis of calcium hydroxide

    International Nuclear Information System (INIS)

    Williams, P. Jason; Biernacki, Joseph J.; Bai Jianming; Rawn, Claudia J.

    2003-01-01

    Thermogravimetric analysis (TGA) and quantitative X-ray diffraction (QXRD) are widely used to determine the calcium hydroxide (CH) content in cementitious systems containing blends of Portland cement, fly ash, blast furnace slag, silica fume and other pozzolanic and hydraulic materials. These techniques, however, are destructive to cement samples and subject to various forms of error. While precise weight losses can be measured by TGA, extracting information from samples with multiple overlapping thermal events is difficult. And, however, while QXRD can offer easier deconvolution, the accuracy for components below about 5 wt.% is typically poor when a laboratory X-ray source is used. Furthermore, the destructive nature of both techniques prevents using them to study the in situ hydration of a single contiguous sample for kinetic analysis. In an attempt to overcome these problems, the present research evaluated the use of synchrotron X-rays for quantitative analysis of CH. A synchrotron X-ray source was used to develop calibration data for quantification of the amount of CH in mixtures with fly ash. These data were compared to conventional laboratory XRD data for like samples. While both methods were found to offer good quantification, synchrotron XRD (SXRD) provided a broader range of detectability and higher accuracy than laboratory diffraction and removed the subjectivity as compared to TGA analysis. Further, the sealed glass capillaries used with the synchrotron source provided a nondestructive closed, in situ environment for tracking hydrating specimens from zero to any desired age

  20. Low Level RF Control System of J-PARC Synchrotrons

    CERN Document Server

    Tamura, Fumihiko; Ezura, Eizi; Hara, Keigo; Nomura, Masahiro; Ohmori, Chihiro; Schnase, Alexander; Takagi, Akira; Yamamoto, Masanobu; Yoshii, Masahito

    2005-01-01

    We present the concept and the design of the low level RF (LLRF) control system of the J-PARC synchrotrons. The J-PARC synchrotrons are the rapid cycling 3-GeV synchrotron (RCS) and the 50-GeV main ring (MR) which require very precise and stable LLRF control systems to accelerate the ultra-high proton beam current. The LLRF system of the synchrotron is a full-digital system based on the direct digital synthesis (DDS). The functions of the system are (1) the multi-harmonic RF generation for the acceleration and the longitudinal bunch shaping, (2) the feedbacks for stabilizing the beam, (3) the feedforward for compensating the heavy beam loading, and (4) other miscellaneous functions such as the synchronization and chopper timing. The LLRF system of the RCS is now under construction. We present the details of the system. Also, we show preliminary results of performance tests of the control modules.