WorldWideScience

Sample records for synchrotron light sources

  1. National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Lazarz, N.M.

    1991-04-01

    This report discussion research being conducted at the National Synchrotron light source. In particular, this report contains operations summaries; symposia, workshops, and projects; NSLS highlights; and abstracts of science at the NSLS

  2. Compact synchrotron light sources

    CERN Document Server

    Weihreter, Ernst

    1996-01-01

    This book covers a new niche in circular accelerator design, motivated by the promising industrial prospects of recent micromanufacturing methods - X-ray lithography, synchrotron radiation-based micromachining and microanalysis techniques. It describes the basic concepts and the essential challenges for the development of compact synchrotron radiation sources from an accelerator designer's point of view and gives an outline of the actual state of the art. The volume is intended as an introduction and as a reference for physicists, engineers and managers involved in this rapidly developing fiel

  3. Synchrotron light source data book

    International Nuclear Information System (INIS)

    Murphy, J.

    1989-01-01

    The ''Synchrotron Light Source Data Book'' is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-ray Data Booklet, edited by D. Vaughan (LBL PUB-490), address the 'use' of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in 'practical units' and a brief description of many of the existing and planned light source lattices

  4. Australian synchrotron light source - (boomerang)

    International Nuclear Information System (INIS)

    Boldeman, J.

    2001-01-01

    The Australian National Synchrotron Light Source - (Boomerang) is to be installed at the Monash University in Victoria. This report provides some background to the proposed facility and discusses aspects of a prospective design. Recently, significant effort was devoted to refining the in principle design and a lattice providing an emittance od 18 nm rad was obtained with a distributed dispersion in the straight section of 0.29m. Exhaustive studies have been made of the economic benefits that would accrue to Australia to Australia following the installation of this facility. This design is a refinement of the design concept presented to the SRI -2000, Berlin (Boldeman, Einfeld et al), to the meeting of the 4th Asian Forum and the Preliminary Design Study presented to the Australian Synchrotron Research Program

  5. National Synchrotron Light Source annual report 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.; Lazarz, N.; Williams, G. (eds.)

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  6. The Compact Light Source A Miniature Synchrotron Light Source

    CERN Document Server

    Ruth, Ronald D

    2005-01-01

    During the past 30 years, synchrotron light sources have become the x-ray probe of choice for physicists, chemists, biologists and research physicians. With their high-quality, intense x-ray beams, these national research facilities have spawned a broad array of applications. Past research at Stanford Linear Accelerator Center has led to a new x-ray source concept that can substantially reduce the size of the required synchrotron.* This research has spawned a new corporation, Lyncean Technologies, Inc. which is now developing the Compact Light Source (CLS). The CLS is a tunable, homelab x-ray source with up to three beamlines that can be used like the x-ray beamlines at the synchrotrons-but it is about 200 times smaller than a synchrotron light source. The compact size is achieved using a laser undulator and a miniature electron-beam storage ring. The photon flux on a sample will be comparable to the flux of highly productive synchrotron beamlines. At Lyncean Technologies, Inc. we have constructed a prototype...

  7. Ideas for future synchrotron light sources

    International Nuclear Information System (INIS)

    Jackson, A.; Hassenzahl, W.; Meddahi, M.

    1992-03-01

    Synchrotron light sources have advanced in the past two-to-three decades through three ''generations,'' from irritating parasitic sources on high-energy physics accelerators to dedicated electron and position storage rings of unprecedented low emittance, utilizing undulator and wiggler magnets. The evolution through these three generations followed a predicable, science-driven, course towards brighter beams of VUV- and x-radiation. The requirements of future light sources is not so clear. The limit on how emittance has certainly not been reached, and diffraction-limited sources at shorter wavelengths would be the natural progression from previous generations. However, scientists are now looking at other radiation characteristics that might better serve their needs, for example, more coherent power, fast switching polarization, ultra-short (sub-picosecond) time structure, and synchronized beams for pump-probe experiments. This paper discusses some current ideas that might drive the fourth-generation synchrotron light source

  8. National Synchrotron Light Source: vacuum system for National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Schuchman, J.C.; Godel, J.B.; Jordan, W.; Oversluizen, T.

    1978-01-01

    The National Synchrotron Light Source (NSLS), a 24 million dollar project under construction at Brookhaven National Laboratory (BNL), is a research facility dedicated to the production of synchrotron radiation. Synchrotron radiation is that radiation produced by the acceleration of charged particles at near the speed of light. This facility will provide a continuous spectrum of radiation from the vacuum ultraviolet to the hard x-ray range. The radiation will be highly intense, 100% polarized, extremely well collimated and will have a pulsed time structure. The radiation will be produced in two electron storage rings at energies of 700 MeV and 2.5 GeV, respectively. A maximum of one ampere at 2 GeV, or one-half ampere at 2.5 GeV, of electron beam will be stored

  9. National Synchrotron Light Source 2008 Activity Report

    International Nuclear Information System (INIS)

    Nasta, K.

    2009-01-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R and D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for

  10. National Synchrotron Light Source 2008 Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for

  11. National synchrotron light source basic design and project status

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1981-01-01

    A summary description and the basic design parameters of the National Synchrotron Light Source, a facility for the generation of intense synchrotron radiation in the vuv and x-ray range is presented, the parameters of the sources are given, the presently planned facility beam lines are tabulated and the status of the project is indicated

  12. Synchrotron light; Lumiere synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    'Synchrotron Light' is an interactive and detailed introduction to the physics and technology of the generation of coherent radiation from accelerators as well as to its widespread high-tech applications in science, medicine and engineering. The topics covered are the interaction of light and matter, the technology of synchrotron light sources, spectroscopy, imaging, scattering and diffraction of X-rays, and applications to materials science, biology, biochemistry, medicine, chemistry, food and pharmaceutical technology. All synchrotron light facilities are introduced with their home-page addresses. 'Synchrotron Light' provides an instructive and comprehensive multimedia learning tool for students, experienced practitioners and novices wishing to apply synchrotron radiation in their future work. Its multiple-entry points permit an easy exploration of the CD-Rom according to the users knowledge and interest. 2-D and 3-D animations and virtual reconstruction with computer-generated images guide visitors into the scientific and technical world of a synchrotron and into the applications of synchrotron radiation. This bilingual (English and French) CD-Rom can be used for self-teaching and in courses at various levels in physics, chemistry, engineering, and biology. (author)

  13. National Synchrotron Light Source 2010 Activity Report

    International Nuclear Information System (INIS)

    Rowe, M.; Snyder, K.J.

    2010-01-01

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3

  14. National Synchrotron Light Source 2010 Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.; Snyder, K. J.

    2010-12-29

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of

  15. Synchrotron light

    International Nuclear Information System (INIS)

    2001-01-01

    'Synchrotron Light' is an interactive and detailed introduction to the physics and technology of the generation of coherent radiation from accelerators as well as to its widespread high-tech applications in science, medicine and engineering. The topics covered are the interaction of light and matter, the technology of synchrotron light sources, spectroscopy, imaging, scattering and diffraction of X-rays, and applications to materials science, biology, biochemistry, medicine, chemistry, food and pharmaceutical technology. All synchrotron light facilities are introduced with their home-page addresses. 'Synchrotron Light' provides an instructive and comprehensive multimedia learning tool for students, experienced practitioners and novices wishing to apply synchrotron radiation in their future work. Its multiple-entry points permit an easy exploration of the CD-Rom according to the users knowledge and interest. 2-D and 3-D animations and virtual reconstruction with computer-generated images guide visitors into the scientific and technical world of a synchrotron and into the applications of synchrotron radiation. This bilingual (English and French) CD-Rom can be used for self-teaching and in courses at various levels in physics, chemistry, engineering, and biology. (author)

  16. Stanford Synchrotron Radiation Light Source (SSRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The SSRL at SLAC National Accelerator Laboratory was built in 1974 to take and use for synchrotron studies the intense x-ray beams from the SPEAR storage ring that...

  17. National synchrotron light source VUV storage ring

    International Nuclear Information System (INIS)

    Blumberg, L.; Bittner, J.; Galayda, J.; Heese, R.; Krinsky, S.; Schuchman, J.; van Steenbergen, A.

    1979-01-01

    A 700 MeV electron storage ring designed for synchrotron radiation applications is described. Lattice and stability calculations are presented and the vacuum, correction and injection systems are discussed

  18. National Synchrotron Light Source safety-analysis report

    International Nuclear Information System (INIS)

    Batchelor, K.

    1982-07-01

    This document covers all of the safety issues relating to the design and operation of the storage rings and injection system of the National Synchrotron Light Source. The building systems for fire protection, access and egress are described together with air and other gaseous control or venting systems. Details of shielding against prompt bremstrahlung radiation and synchrotron radiation are described and the administrative requirements to be satisfied for operation of a beam line at the facility are given

  19. Proposal for a national synchrotron light source

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1977-02-01

    Since 1971 discussions have been held at Brookhaven National Laboratory on the desirability of construction of a storage ring which would be used exclusively for production of intense beams of photons with wavelengths in the ultraviolet and X-ray ranges. A proposal is given which discusses in detail the machine, its characteristics, and its expected uses. The proposal includes: (1) characteristics of synchrotron radiation; (2) scientific justification for a synchrotron radiation facility; (3) facility design; (4) wiggler magnets; (5) experimental facilities; (6) buildings and utilities; (7) construction schedules, costs, and manpower; and (8) environmental assessment

  20. Brazilian Synchrotron Light Source: current results and future perspectives

    Science.gov (United States)

    Roque da Silva, Antonio Jose

    2013-03-01

    The application of synchrotron radiation in a great variety of fields in general, and condensed matter in particular, has increased steadily worldwide. This, to a large extent, is a result of the availability of the much brighter third-generation light sources, which opened up new experimental techniques. Brazil gave an important contribution to science in Latin America through the development of the necessary technology and the construction of the first synchrotron in the southern hemisphere, still the only one in Latin America. The Laboratório Nacional de Luz Síncrotron - LNLS, operates this installation as an open facility since 1997, having today more than 1300 users yearly. Despite all this success, the current Brazilian light source is a second-generation machine, with relatively low electron energy, high emittance and few straight sections for insertion devices. LNLS is currently engaged in the design and construction of a new, third-generation synchrotron light source. It is being planned to be a state of the art machine, providing tools for cutting edge research that are non existent today in Brazil. In this talk an overview of the status of the current Brazilian light source will be provided, illustrated with some experimental results from users, as well as the future perspectives of the new synchrotron source.

  1. Research by industry at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    1995-05-01

    The world's foremost facility for research using x-rays and ultraviolet and infrared radiation, is operated by the National Synchrotron Light Source dept. This pamphlet described the participating research teams that built most of the beam lines, various techniques for studying materials, treatment of materials, and various industrial research (catalysis, pharmaceuticals, etc.)

  2. Computerized microtomography using synchrotron radiation from the NSLS [National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Spanne, P.; Rivers, M.L.

    1986-09-01

    Results of microtomography experiments that employ filtered radiation from the National Synchrotron Light Source X-26 Microprobe beam line are presented. These experiments have yielded images of a freeze-dried caterpillar with a spatial resolution of the order of 30 μm and show that the limit on the spatial resolution with the present apparatus will be 1 to 10 μm. Directions for improvement in synchrotron microtomography techniques and some possible applications are discussed. 14 refs., 3 figs

  3. Synchrotron light sources: A powerful tool for science and technology

    International Nuclear Information System (INIS)

    Schlachter, F.; Robinson, A.

    1996-01-01

    A new generation of synchrotron light sources is producing extremely bright beams of vacuum-ultraviolet and x-ray radiation, powerful new tools for research in a wide variety of basic and applied sciences. Spectromicroscopy using high spectral and spatial resolution is a new way of seeing, offering many opportunities in the study of matter. Development of a new light source provides the country or region of the world in which the light source is located many new opportunities: a focal point for research in many scientific and technological areas, a means of upgrading the technology infrastructure of the country, a means of training students, and a potential service to industry. A light source for Southeast Asia would thus be a major resource for many years. Scientists and engineers from light sources around the world look forward to providing assistance to make this a reality in Southeast Asia

  4. Synchrotron light sources: A powerful tool for science and technology

    International Nuclear Information System (INIS)

    Schlachter, F.; Robinson, A.

    1996-01-01

    A new generation of synchrotron light sources is producing extremely bright beams of vacuum-ultraviolet and x-ray radiation, poweful new tools for research in a wide variety of basic and applied sciences. Spectromicroscopy using high spectral and spatial resolution is a new way of seeing, offering many opportunities in the study of matter. Development of a new light source provides the country or region of the world in which the light source is located many new opportunities: a focal point for research in many scientific and technological areas, a means of upgrading the technology infrastructure of the country, a means of training students, and a potential service to industry. A light source for Southeast Asia would thus be a major resource for many years. Scientists and engineers from light sources around the world look forward to providing assistance to make this a reality in Southeast Asia

  5. National synchrotron light source medical personnel protection interlock

    International Nuclear Information System (INIS)

    Buda, S.; Gmur, N.F.; Larson, R.; Thomlinson, W.

    1998-01-01

    This report is founded on reports written in April 1987 by Robert Hettel for angiography operations at the Stanford Synchrotron Research Laboratory (SSRL) and a subsequent report covering angiography operations at the National Synchrotron Light Source (NSLS); BNL Informal Report 47681, June 1992. The latter report has now been rewritten in order to accurately reflect the design and installation of a new medical safety system at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). Known originally as the Angiography Personnel Protection Interlock (APPI), this system has been modified to incorporate other medical imaging research programs on the same beamline and thus the name has been changed to the more generic Medical Personnel Protection Interlock (MPPI). This report will deal almost exclusively with the human imaging (angiography, bronchography, mammography) aspects of the safety system, but will briefly explain the modular aspects of the system allowing other medical experiments to be incorporated

  6. NATIONAL SYNCHROTRON LIGHT SOURCE MEDICAL PERSONNEL PROTECTION INTERLOCK

    Energy Technology Data Exchange (ETDEWEB)

    BUDA,S.; GMUR,N.F.; LARSON,R.; THOMLINSON,W.

    1998-11-03

    This report is founded on reports written in April 1987 by Robert Hettel for angiography operations at the Stanford Synchrotron Research Laboratory (SSRL) and a subsequent report covering angiography operations at the National Synchrotron Light Source (NSLS); BNL Informal Report 47681, June 1992. The latter report has now been rewritten in order to accurately reflect the design and installation of a new medical safety system at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). Known originally as the Angiography Personnel Protection Interlock (APPI), this system has been modified to incorporate other medical imaging research programs on the same beamline and thus the name has been changed to the more generic Medical Personnel Protection Interlock (MPPI). This report will deal almost exclusively with the human imaging (angiography, bronchography, mammography) aspects of the safety system, but will briefly explain the modular aspects of the system allowing other medical experiments to be incorporated.

  7. National Synchrotron Light Source annual report 1991

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system

  8. National Synchrotron Light Source annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.L.; Lazarz, N.M. (eds.)

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  9. Status of the National Synchrotron Light Source upgrade

    International Nuclear Information System (INIS)

    Culwick, B.B.; Smith, J.D.

    1985-01-01

    The demands for real-time control, data acquisition and display from accelerators of the National Synchrotron Light Source have exceeded the capabilities of the computer control system designed in 1978. In January 1985, a workshop on control systems was held at Brookhaven, one of the purposes of which was to provide impetus and design goals for an upgrade of the NSLS control system. The resulting design is described and its status reported

  10. The national synchrotron light source and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.P.

    1989-01-01

    We describe the National Synchrotron Light Source facility including its beamlines and operational characteristics. Research results on selected beamlines on the VUV ring which highlight new experimental capabilities are described since they are more relevant to the program at HESYRL. Examples chosen are spin-polarized photoemission, infra-red surface science, high resolution core level spectroscopy, X- Ray lithography, photoelectron/Auger coincidence spectroscopy and high electron momentum resolution surface studies. 7 refs., 3 figs., 3 tabs.

  11. Science research with high-brilliance synchrotron light source

    International Nuclear Information System (INIS)

    Sanyal, Milan K.

    2013-01-01

    Synchrotron-science has changed dramatically since the development of high brilliance electron accelerator-based light sources in 1990s. In the last twenty years or so, several such facilities have come up, particularly in developed countries, as material characterizations in relevant atmosphere and protein crystallography with tiny-crystals have strong implications in industrial competitiveness. Moreover several new techniques have been developed recently over the entire spectral range of emitted light, from infra-red to high energy X-rays, which have altered our basic understanding of various materials like biomaterials, nanomaterials, soft-matter and semiconductor quantum structures. In addition, rapid development of various X-ray imaging techniques for nondestructive evaluation of compositional/structural homogeneity of engineering materials with nanometer resolution will have tremendous impact in manufacturing industries. As India becomes a developed country, it must have access to such an advanced synchrotron facility in the country that enables knowledge generation in the ever-expanding fields of design-characterization-production of advanced materials and modern medicines. Development of such state-of-the art facility will also enable us to carry out frontier-basic-research in our own country and help us to retain and bring back Indian talents to India. Here we shall discuss briefly the characteristics of a high brilliance synchrotron source and outline the nature of basic and applied science research that can be done with such a state-of-the-art facility. (author)

  12. Single bunch transfer system for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Sheehan, J.; Singh, O.; Rambo, W.

    1983-01-01

    The accelerator system at the National Synchrotron Light Source consists of an S-band 85 MeV linac and three synchrotron rings. The electron beam from the linac is accelerated by the booster ring to 600 MeV and transferred to one of the two storage rings. The smaller of the two rings operates between 300 and 800 MeV emtting photons in the vacuum ultraviolet (VUV), while the larger storage ring operates up to 2.5 GeV and emits photons in the x-ray spectrum. A system is described for loading the storage rings by filling a single-phase space bunch in the booster ring and transferring it at the end of each booster cycle into a selected bucket in one of the storage rings. By controlling the timing of the transfer on successive transfer cycles, many fill patterns may be obtained

  13. Stability and vibration control in synchrotron light source buildings

    Energy Technology Data Exchange (ETDEWEB)

    Godel, J.B.

    1991-01-01

    Synchrotron light sources have undergone three generations of development in the last two decades. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory has two second generation'' storage rings that currently provide the world's most intense sources of photons in the VUV and X-ray spectral ranges. There are almost 90 beam lines serving a community of 2600 scientists from 370 institutions. They are engaged in basic and applied research in physics, chemistry, biology, medicine, materials science and various technologies. When design of the NSLS began in 1977, emphasis was given to the stability of the concrete slab on which the storage rings and experimental beam lines were placed. Stability is the result of controlling: vibration from sources internal and external to the building, thermal effects of air and water temperature variations, foundation settlement and contact between the slab and underlying subsoil. With the advent of new research where highly focused beams of x-rays must be placed on increasingly smaller targets located 35 meters or more from the source, and the development of x-ray lithography with resolutions approaching 0.1 micron at chip exposure stations, even greater attention to stability is required in building designs. This paper will review the results of the successful NSLS experience and give an integrated design approach that includes elements which contribute to instabilities, and the means available to reduce them to acceptable levels.

  14. Stability and vibration control in synchrotron light source buildings

    Energy Technology Data Exchange (ETDEWEB)

    Godel, J.B.

    1991-12-31

    Synchrotron light sources have undergone three generations of development in the last two decades. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory has two ``second generation`` storage rings that currently provide the world`s most intense sources of photons in the VUV and X-ray spectral ranges. There are almost 90 beam lines serving a community of 2600 scientists from 370 institutions. They are engaged in basic and applied research in physics, chemistry, biology, medicine, materials science and various technologies. When design of the NSLS began in 1977, emphasis was given to the stability of the concrete slab on which the storage rings and experimental beam lines were placed. Stability is the result of controlling: vibration from sources internal and external to the building, thermal effects of air and water temperature variations, foundation settlement and contact between the slab and underlying subsoil. With the advent of new research where highly focused beams of x-rays must be placed on increasingly smaller targets located 35 meters or more from the source, and the development of x-ray lithography with resolutions approaching 0.1 micron at chip exposure stations, even greater attention to stability is required in building designs. This paper will review the results of the successful NSLS experience and give an integrated design approach that includes elements which contribute to instabilities, and the means available to reduce them to acceptable levels.

  15. Light source for synchrotron radiation x-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL)

    International Nuclear Information System (INIS)

    Zhao Jiyong; Jiang Jianhua; Tian Yulian

    1992-01-01

    Characteristics of the synchrotron radiation source for X-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL) is described, local geometrical resolution of topographies is discussed, and the diffracting intensities of white beam topography is given

  16. Phase 2 safety analysis report: National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Stefan, P.

    1989-06-01

    The Phase II program was established in order to provide additional space for experiments, and also staging and equipment storage areas. It also provides additional office space and new types of advanced instrumentation for users. This document will deal with the new safety issues resulting from this extensive expansion program, and should be used as a supplement to BNL Report No. 51584 ''National Synchrotron Light Source Safety Analysis Report,'' July 1982 (hereafter referred to as the Phase I SAR). The initial NSLS facility is described in the Phase I SAR. It comprises two electron storage rings, an injection system common to both, experimental beam lines and equipment, and office and support areas, all of which are housed in a 74,000 sq. ft. building. The X-ray Ring provides for 28 primary beam ports and the VUV Ring, 16. Each port is capable of division into 2 or 3 separate beam lines. All ports receive their synchrotron light from conventional bending magnet sources, the magnets being part of the storage ring lattice. 4 refs

  17. A NEW THERMIONIC RF ELECTRON GUN FOR SYNCHROTRON LIGHT SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey; Agustsson, R.; Hartzell, J; Murokh, A.; Nassiri, A.; Savin, E.; Smirnov, A.V.; Smirnov, A. Yu; Sun, Y.; Verma, A; Waldschmidt, Geoff; Zholents, A.

    2017-06-02

    A thermionic RF gun is a compact and efficient source of electrons used in many practical applications. RadiaBeam Systems and the Advanced Photon Source at Argonne National Laboratory collaborate in developing of a reliable and robust thermionic RF gun for synchrotron light sources which would offer substantial improvements over existing thermionic RF guns and allow stable operation with up to 1A of beam peak current at a 100 Hz pulse repetition rate and a 1.5 μs RF pulse length. In this paper, we discuss the electromagnetic and engineering design of the cavity and report the progress towards high power tests of the cathode assembly of the new gun.

  18. Ozone production at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Weilandics, C.; Rohrig, N.; Gmur, N.F.

    1987-01-01

    Ozone production by synchrotron radiation as a function of power density in air was investigated using a white beam at the BNL National Synchrotron Light Source (NSLS) x-ray ring. Power densities were calculated from the energy spectrum at 2.52 GeV. Ozone concentrations in small beam pipes were measured for power densities between I = 10 12 and 10 15 eV . cm -3 . sec -1 . The measured ozone half-life was 37 +- 2 min. The measured G-value was 2.69 +- 0.14 mol/100 eV and the ozone destruction factor k was less than 7 x 10 -19 cm 3 . eV -1 . The random uncertainties stated are approximately one standard error. The large departure of the values for G and k from previous values suggest that some undiscovered systematic error may exist in the experiment. Ozone concentration in excess of the 0.1 ppM ACGIH TLV can be generated in the experimental hutches but can readily be controlled. Industrial hygiene aspects of operation and possible control measures will be discussed. 19 refs., 7 figs., 3 tabs

  19. Dazzling new light source opens at Stanford synchrotron radiation laboratory

    CERN Multimedia

    2004-01-01

    SPEAR3, the Stanford Positron Electron Asymmetric Ring, was formally opened at a dedication ceremony at the Stanford Linear Accelerator Center on Jan. 29. It incorporates the latest technology to make it competitive with the best synchrotron sources in the world (1/2 page)

  20. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend

  1. Synchrotron sources

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.L.

    1999-12-13

    Synchrotron radiation is a very bright, broadband, polarized, pulsed source of electromagnetic radiation extending from the infrared to the x-ray region. Brightness, defined as flux per unit area per unit solid angle, is normally a more important quantity than flux or intensity, particularly in throughput limited applications which include those in which monochromators are used. The authors have attempted to compile the formulae needed to calculate the flux, brightness, polarization and power produced by the three standard storage ring synchrotron radiation sources: bending magnets, wigglers and undulators. Where necessary, these formulae have contained reference to the emittance of the electron beam, as well as to the electron beam size and its divergence. For all three type sources, the source phase space area, i.e. the spatial and angular extent of the effective (real) source, is a convolution of its electron and photon components.

  2. DEVELOPMENTS IN SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY AT THE NATIONAL SYNCHROTRON LIGHT SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    DOWD,B.A.

    1999-07-23

    Last year, the X27A beamline at the National Synchrotron Light Source (NSLS) became dedicated solely to X-Ray Computed Microtomography (XCMT). This is a third-generation instrument capable of producing tomographic volumes of 1-2 micron resolution over a 2-3mm field of view. Recent enhancements will be discussed. These have focused on two issues: the desire for real-time data acquisition and processing and the need for highly monochromatic beam (.1 % energy bandpass). The latter will permit k-edge subtraction studies and will provide improved image contrast from below the Cr (6 keV) up to the Cs (36 keV) k-edge. A range of applications that benefit from these improvements will be discussed as well. These two goals are somewhat counterproductive, however; higher monochromaticity yields a lower flux forcing longer data acquisition times. To balance the two, a more efficient scintillator for X-ray conversion is being developed. Some testing of a prototype scintillator has been performed; preliminary results will be presented here. In the meantime, data reconstruction times have been reduced, and the entire tomographic acquisition, reconstruction and volume rendering process streamlined to make efficient use of synchrotron beam time. A Fast Filtered Back Transform (FFBT) reconstruction program recently developed helped to reduce the time to reconstruct a volume of 150 x 150 x 250 pixels{sup 3} (over 5 million voxels) from the raw camera data to 1.5 minutes on a dual R10,000 CPU. With these improvements, one can now obtain a ''quick look'' of a small tomographic volume ({approximately}10{sup 6}voxels) in just over 15 minutes from the start of data acquisition.

  3. National synchrotron light source. [Annual report], October 1, 1992--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, E.Z.; Hulbert, S.L.; Lazarz, N.M. [eds.

    1994-04-01

    This report contains brief discussions on the research being conducted at the National Synchrotron Light source. Some of the topics covered are: X-ray spectroscopy; nuclear physics; atomic and molecular science; meetings and workshops; operations; and facility improvements.

  4. Scanning soft x-ray microscopy with a fresnel zoneplate at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Kenney, J.M.; Kirz, J.; Rarback, H.; Feder, R.; Sayre, D.; Howells, M.

    1983-01-01

    We have built a scanning transmission soft x-ray microscope located at the National Synchrotron Light Source (NSLS). Images of biological specimens have been formed with submicron resolution. A Fresnel zoneplate serves as the focusing element

  5. Design and Optimisation Strategies of Nonlinear Dynamics for Diffraction Limited Synchrotron Light Source

    CERN Document Server

    Bartolini, R.

    2016-01-01

    This paper introduces the most recent achievements in the control of nonlinear dynamics in electron synchrotron light sources, with special attention to diffraction limited storage rings. Guidelines for the design and optimization of the magnetic lattice are reviewed and discussed.

  6. Atomic physics research with second and third generation synchrotron light sources

    International Nuclear Information System (INIS)

    Johnson, B.M.

    1990-10-01

    This contribution to these proceedings is intended to provide an introduction and overview for other contributions on atomic (and related) physics research at existing and planned synchrotron light sources. The emphasis will be on research accomplishments and future opportunities, but a comparison will be given of operating characteristics for first, second, and third generation machines. First generation light sources were built to do research with the primary electron and positron beams, rather than with the synchrotron radiation itself. Second generation machines were specifically designed to be dedicated synchrotron-radiation facilities, with an emphasis on the use of bending-magnet radiation. The new third generation light sources are being designed to optimize radiation from insertion devices, such as undulators and wigglers. Each generation of synchrotron light source offers useful capabilities for forefront research in atomic physics and many other disciplines. 27 refs., 1 fig., 3 tabs

  7. National synchrotron light source. [Annual report], October 1, 1992--September 30, 1993

    International Nuclear Information System (INIS)

    Rothman, E.Z.; Hulbert, S.L.; Lazarz, N.M.

    1994-04-01

    This report contains brief discussions on the research being conducted at the National Synchrotron Light source. Some of the topics covered are: X-ray spectroscopy; nuclear physics; atomic and molecular science; meetings and workshops; operations; and facility improvements

  8. Synchrotron light source data book: Version 4, Revision 05/96

    International Nuclear Information System (INIS)

    Murphy, J.B.

    1996-05-01

    This book is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-Ray Data Booklet address the use of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in practical units and a brief description of many of the existing and planned light source lattices

  9. My Precious! The Location and Diffusion of Scientific Research: Evidence from the Synchrotron Diamond Light Source

    OpenAIRE

    Christian Helmers; Henry Overman

    2013-01-01

    We analyze the impact of the establishment of a GBP 380 million basic scientific research facility in the UK on the geographical distribution of related research. We investigate whether the siting of the Diamond Light Source, a 3rd generation synchrotron light source, in Oxfordshire induced a clustering of related research in its geographic proximity. To account for the potentially endogenous location choice of the synchrotron, we exploit the availability of a `runner-up' site near Manchester...

  10. Medical applications of synchrotron radiation at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1992-01-01

    The overriding features of the synchrotron beams which make them applicable to medical research are their extremely high intensity and broadband energy spectrum. Several orders of magnitude separate the smooth, continuous spectrum of the synchrotron from the sharply peaked characteristic emission spectrum of a conventional source. Basically, the high intensity and tunability allow monochromatic beams to be generated at virtually any energy. The standard problem of beam hardening in both medical imaging and therapy is eliminated by the monochromatic beams since the energy spectrum does not change with passage through tissue. The tunable spectrum allows enhancement of images and therapeutic dose by selection of the most effective energy for a given procedure

  11. Progress with ELETTRA, the synchrotron light source in Trieste

    International Nuclear Information System (INIS)

    Puglisi, M.; Wrulich, A.

    1991-01-01

    ELETTRA, the 3rd generation synchrotron radiation source under construction in Trieste has passed the design phase. The present schedule calls for a start of commissioning by the second half of 1993. The buildings are under construction and prototypes for all main components of the accelerator complex have been constructed and industrial production has started. A high power cavity fully equipped with cooling circuit and input coupling loop, as well as mechanical tuning system, has been tested and measured. Prototype cavities equipped with higher order mode suppressors are under development. In-house prototypes for each magnet type have been built and magnetic measurements have been performed. The vacuum chamber prototype has been baked under vacuum and tested with its pumping system. A prototype pure permanent magnet undulator has been assembled and measured. The first 100 MeV sections of the 1.5 GeV injection linac will go in operation in August 1990

  12. The Advanced Light Source: A third-generation Synchrotron Radiation Source

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Arthur L.

    2002-08-14

    The Advanced Light Source (ALS) at the E.O. Lawrence Berkeley National Laboratory (Berkeley Lab) of the University of California is a ''third-generation'' synchrotron radiation source optimized for highest brightness at ultraviolet and soft x-ray photon energies. It also provides world-class performance at hard x-ray photon energies. Berkeley Lab operates the ALS for the United States Department of Energy as a national user facility that is available 24 hours/day around the year for research by scientists from industrial, academic, and government laboratories primarily from the United States but also from abroad.

  13. Synchrotron light sources: The search for quantum chaos

    Energy Technology Data Exchange (ETDEWEB)

    Schlachter, Fred

    2001-02-01

    A storage ring is a specialized synchrotron in which a stored beam of relativistic electrons produces radiation in the vuv and x-ray regions of the spectrum. High-brightness radiation is used at the ALS to study doubly excited autoionizing states of the helium atom in the search for quantum chaos.

  14. Rf power systems for the national synchrotron light source

    International Nuclear Information System (INIS)

    Dickinson, T.; Rheaume, R.H.

    1981-01-01

    The booster synchrotron and the two storage rings at the NSLS are provided with rf power systems of 3 kW, 50 kW, and 500 kW nominal output power, all at 53 MHz. This power is supplied by grounded grid tetrode amplifiers designed for television broadcast service. These amplifiers and associated power supplies, control and interlock systems, rf controls, and computer interface are described

  15. Project planning workshop 6-GeV synchrotron light source: Volume 1

    International Nuclear Information System (INIS)

    1986-01-01

    A model 6 GeV synchrotron light source is described, and the costs, schedule, and manpower associated with producing such a synthrotron light source are summarized. A program consisting of a two-year pre-construction phase, a five-year construction phase, and a three-year post-construction phase and costing a total of $379.6 million is assumed

  16. Synchrotron applications of pixel and strip detectors at Diamond Light Source

    International Nuclear Information System (INIS)

    Marchal, J.; Tartoni, N.; Nave, C.

    2009-01-01

    A wide range of position-sensitive X-ray detectors have been commissioned on the synchrotron X-ray beamlines operating at the Diamond Light Source in UK. In addition to mature technologies such as image-plates, CCD-based detectors, multi-wire and micro-strip gas detectors, more recent detectors based on semiconductor pixel or strip sensors coupled to CMOS read-out chips are also in use for routine synchrotron X-ray diffraction and scattering experiments. The performance of several commercial and developmental pixel/strip detectors for synchrotron studies are discussed with emphasis on the image quality achieved with these devices. Examples of pixel or strip detector applications at Diamond Light Source as well as the status of the commissioning of these detectors on the beamlines are presented. Finally, priorities and ideas for future developments are discussed.

  17. 1994 Activity Report, National Synchrotron Light Source. Annual report, October 1, 1993-September 30, 1994

    International Nuclear Information System (INIS)

    Rothman, E.Z.

    1995-05-01

    This report is a summary of activities carried out at the National Synchrotron Light Source during 1994. It consists of sections which summarize the work carried out in differing scientific disciplines, meetings and workshops, operations experience of the facility, projects undertaken for upgrades, administrative reports, and collections of abstracts and publications generated from work done at the facility

  18. 1994 Activity Report, National Synchrotron Light Source. Annual report, October 1, 1993-September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, E.Z. [ed.

    1995-05-01

    This report is a summary of activities carried out at the National Synchrotron Light Source during 1994. It consists of sections which summarize the work carried out in differing scientific disciplines, meetings and workshops, operations experience of the facility, projects undertaken for upgrades, administrative reports, and collections of abstracts and publications generated from work done at the facility.

  19. OCELOT: A software framework for synchrotron light source and FEL studies

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, I., E-mail: ilya.agapov@xfel.eu [European XFEL GmbH, Hamburg (Germany); Geloni, G. [European XFEL GmbH, Hamburg (Germany); Tomin, S. [NRC Kurchatov Institute, Moscow (Russian Federation); Zagorodnov, I. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2014-12-21

    OCELOT is a novel multiphysics simulation toolkit, which has been in development at European XFEL in collaboration with NRC Kurchatov Institute and DESY since 2011. In this paper we describe its architecture, implementation, and applications in the area of synchrotron light sources and FELs.

  20. National Synchrotron Light Source angiography personnel protection interlock

    International Nuclear Information System (INIS)

    Gmuer, N.; Larson, R.; Thomlinson, W.

    1992-06-01

    This document has been written to describe the safety system operation at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). The angiography exposure process involves scanning a patient up and down through dual fixed-position x-ray beams; exposure is controlled by opening and closing a fast-acting Safety Shutter mechanism at precise times in relation to the up and down motion of the scan chair. The fast-acting Safety Shutter mechanism is the primary radiation-stopping element protecting the patient while the chair is at rest and while it is reversing directions during the scan. Its fail-safe and fast operation is essential for the safety of the patient. Operation of X17B2 as a human subject angiography station necessitates the implementation of a personnel protection interlock system that, in conjunction with the Safety Shutters: permits safe access to the patient exposure area while the synchrotron radiation beam is illuminating the upstream dual energy monochromator; allows a patient to be imaged by the monochromatized beam under the supervision of a Responsible Physician, with scan chair motion and precision shutter actuation regulated by an angiography control computer, while providing a suitable number of safeguards against accidental radiation exposure; has different modes of operation to accommodate equipment set-up, test, and calibration; and patient exposure; and ensures the quick extinction of the beam if a potentially unsafe condition is detected. The interlock system which performs these safety functions is called the Angiography Personnel Protection Interlock (APPI). The APPI Document is organized such that the level of detail changes from a general overview to detailed engineering drawings of the hardware system

  1. National Synchrotron Light Source angiography personnel protection interlock

    Energy Technology Data Exchange (ETDEWEB)

    Gmuer, N.; Larson, R.; Thomlinson, W.

    1992-06-01

    This document has been written to describe the safety system operation at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). The angiography exposure process involves scanning a patient up and down through dual fixed-position x-ray beams; exposure is controlled by opening and closing a fast-acting Safety Shutter mechanism at precise times in relation to the up and down motion of the scan chair. The fast-acting Safety Shutter mechanism is the primary radiation-stopping element protecting the patient while the chair is at rest and while it is reversing directions during the scan. Its fail-safe and fast operation is essential for the safety of the patient. Operation of X17B2 as a human subject angiography station necessitates the implementation of a personnel protection interlock system that, in conjunction with the Safety Shutters: permits safe access to the patient exposure area while the synchrotron radiation beam is illuminating the upstream dual energy monochromator; allows a patient to be imaged by the monochromatized beam under the supervision of a Responsible Physician, with scan chair motion and precision shutter actuation regulated by an angiography control computer, while providing a suitable number of safeguards against accidental radiation exposure; has different modes of operation to accommodate equipment set-up, test, and calibration; and patient exposure; and ensures the quick extinction of the beam if a potentially unsafe condition is detected. The interlock system which performs these safety functions is called the Angiography Personnel Protection Interlock (APPI). The APPI Document is organized such that the level of detail changes from a general overview to detailed engineering drawings of the hardware system.

  2. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    International Nuclear Information System (INIS)

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments. The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits)

  3. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G. [Imperial College London, London (United Kingdom); Drakopoulos, Michael [Diamond Light Source, I12 Joint Engineering, Environmental, Processing (JEEP) Beamline, Didcot, Oxfordshire (United Kingdom); Rack, Alexander [European Synchrotron Radiation Facility, Grenoble (France); Eakins, Daniel E., E-mail: d.eakins@imperial.ac.uk [Imperial College London, London (United Kingdom)

    2016-03-24

    Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments. The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits)

  4. The first synchrotron infrared beamlines at the Advanced Light Source: Microspectroscopy and fast timing

    International Nuclear Information System (INIS)

    Martin, M.C.; McKinney, W.R.

    1998-05-01

    A set of new infrared (IR) beamlines on the 1.4 bending magnet port at the Advanced Light Source, LBNL, are described. Using a synchrotron as an IR source provides considerable brightness advantages, which manifests itself most beneficially when performing spectroscopy on a microscopic length scale. Beamline (BL) 1.4.3 is a dedicated microspectroscopy beamline, where the much smaller focused spot size using the synchrotron source is utilized. This enables an entirely new set of experiments to be performed where spectroscopy on a truly microscopic scale is now possible. BL 1.4.2 consists of a vacuum FTIR bench with a wide spectral range and step-scan capabilities. The fast timing is demonstrated by observing the synchrotron electron storage pattern at the ALS

  5. Future Synchrotron Radiation Sources

    CERN Document Server

    Winick, Herman

    2003-01-01

    Sources of synchrotron radiation (also called synchrotron light) and their associated research facilities have experienced a spectacular growth in number, performance, and breadth of application in the past two to three decades. In 1978 there were eleven electron storage rings used as light sources. Three of these were small rings, all below 500 mega-electron volts (MeV), dedicated to this purpose; the others, with energy up to 5 giga-electron volts (GeV), were used parasitically during the operation of the ring for high energy physics research. In addition, at that time synchrotron radiation from nine cyclic electron synchrotrons, with energy up to 5 GeV, was also used parasitically. At present no cyclic synchrotrons are used, while about 50 electron storage rings are in operation around the world as fully dedicated light sources for basic and applied research in a wide variety of fields. Among these fields are structural molecular biology, molecular environmental science, materials, analytic chemistry, micr...

  6. Consideration of a non-baked start-up of a synchrotron light source

    International Nuclear Information System (INIS)

    Hori, Y.; Kobayashi, M.

    1996-01-01

    Vacuum baking of large complex uhv devices, such as synchrotron light sources, requires both careful design and consideration of potential problems regarding the operation and maintenance of the device. Intense synchrotron irradiation can be utilized for degassing; it is indeed necessary to achieve the required operating pressure in most light sources. To examine a non-baked start-up, the outgassing of non-baked chambers by SR irradiation was measured. Also, a non-baked start-up was carried out at the Photon Factory ring. Both results demonstrate the feasibility of a non-baked start-up of a light source. The experiments and results are described, together with several other problems which must be solved for a non-baked start-up. (Author)

  7. Synchrotron light sources and free-electron lasers accelerator physics, instrumentation and science applications

    CERN Document Server

    Khan, Shaukat; Schneider, Jochen; Hastings, Jerome

    2016-01-01

    Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources dri...

  8. ZAP and its application to the optimization of synchrotron light source parameters

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1987-03-01

    The design of electron storage rings for the production of synchrotron radiation has become increasingly sophisticated in recent years. To assist in the optimization of such storage rings, a new, user-friendly code to treat the relevant collective phenomena, called ZAP, has been written at LBL. The code is designed primarily to carry out parameter studies of electron storage rings, although options for protons or heavy ions are included where appropriate. In this paper, we first describe the contents of the code itself, and then illustrate, via selected examples, how the collective effects treated by ZAP manifest themselves in the new generation of synchrotron light sources

  9. SUNY beamline facilities at the National Synchrotron Light Source (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Coppens, Philip

    2003-06-22

    The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellent training for students and postdoctoral scientists in the field.

  10. SUNY beamline facilities at the National Synchrotron Light Source (Final Report)

    International Nuclear Information System (INIS)

    Coppens, Philip

    2003-01-01

    The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellent training for students and postdoctoral scientists in the field

  11. Use of a synchrotron radiation x-ray microprobe for elemental analysis at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1980-01-01

    The National Synchrotron Light Source (NSLS) is a facility consisting of a 700 MeV and a 2.5 GeV electron storage ring and dedicated to providing synchrotron radiation in the energy range from the vacuum ultraviolet to high energy x rays. Some of the properties of synchrotron radiation that contribute to its usefulness for x-ray fluorescence are: a continuous, tunable energy spectrum, strong collimation in the horizontal plane, high polarization in the storage ring plane, and relatively low energy deposition. The highest priority is for the development of an x-ray microprobe beam line capable of trace analysis in the parts per million range with spatial resolution as low as one micrometer. An eventual capability for bulk sample analysis is also planned with sensitivities in the more favorable cases beings low as 50 parts per billion in dry biological tissue. The microprobe technique has application to a variety of fields including the geological, medical, materials and environmental sciences. Examples of investigations include multielemental trace analysis across grain boundaries for the study of diffusion and cooling processes in geological and materials sciences samples; in leukocytes and other types of individual cells for studying the relationship between trace element concentrations and disease or nutrition; and in individual particles in air pollution samples

  12. An Upgrade for the Brazilian Synchrotron Light Source: Are you Sirius?

    Science.gov (United States)

    Roque da Silva, Antonio José

    2015-03-01

    The application of synchrotron radiation in a great variety of fields in general, and condensed matter in particular, has increased steadily worldwide. This, to a large extent, is a result of the availability of the much brighter third-generation light sources, which opened up new experimental techniques. Recently, new developments in accelerator technology are paving the way for even brighter sources, which are being named fourth-generation light sources. Sirius, the future new Brazilian synchrotron, is one of the first two such machines being currently constructed in the world. Its first light is expected by 2018. It is being planned to be a state of the art machine, providing tools for cutting edge research that are non existent today in Brazil. It is a project designed and executed by the Laboratório Nacional de Luz Síncrotron - LNLS, which was also responsible for the construction of the current second generation Brazilian light source, the first synchrotron in the southern hemisphere, still the only one in Latin America. In this talk an overview of the status of Sirius will be provided.

  13. Undulator based scanning microscope at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Rarback, H.; Shu, D.; Ade, H.; Jacobsen, C.; Kirz, J.; McNulty, I.; Rosser, R.

    1986-01-01

    A second generation scanning soft x-ray microscope is under construction, designed to utilize the dramatic increase in source bightness available at the soft x-ray undulator. The new instrument is expected to reduce image acquisition time by a factor of about 100, and to improve resolution, stability, and reproducibility

  14. Experience with synchrotron radiation sources

    International Nuclear Information System (INIS)

    Krinsky, S.

    1987-01-01

    The development of synchrotron radiation sources is discussed, emphasizing characteristics important for x-ray microscopy. Bending magnets, wigglers and undulators are considered as sources of radiation. Operating experience at the national Synchrotron Light Source on the VUV and XRAY storage rings is reviewed, with particular consideration given to achieved current and lifetime, transverse bunch dimensions, and orbit stability. 6 refs., 3 figs

  15. Is photocleavage of DNA by YOYO-1 using a synchrotron radiation light source sequence dependent?

    DEFF Research Database (Denmark)

    Gilroy, Emma L.; Hoffmann, Søren Vrønning; Jones, Nykola C.

    2011-01-01

    The photocleavage of double-stranded and single-stranded DNA by the fluorescent dye YOYO-1 was investigated in real time by using the synchrotron radiation light source ASTRID (ISA, Denmark) both to initiate the reaction and to monitor its progress using Couette flow linear dichroism (LD) through......The photocleavage of double-stranded and single-stranded DNA by the fluorescent dye YOYO-1 was investigated in real time by using the synchrotron radiation light source ASTRID (ISA, Denmark) both to initiate the reaction and to monitor its progress using Couette flow linear dichroism (LD...... different LD kinetic behaviors, and there was significant sequence dependence of the kinetics. However, in contrast to expectations from the literature, we found that poly(dA), mlDNA, low salt ctDNA and low salt poly[(dA-dT)2] all had significant populations of groove-bound YOYO. It seems that this mode...

  16. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    International Nuclear Information System (INIS)

    Gmuer, N.F.; White-DePace, S.M.

    1987-08-01

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS

  17. Time-resolved far-infrared experiments at the National Synchrotron Light Source. Final report

    International Nuclear Information System (INIS)

    Tanner, D.B.; Reitze, D.H.; Carr, G.L.

    1999-01-01

    A facility for time-resolved infrared and far-infrared spectroscopy has been built and commissioned at the National Synchrotron Light Source. This facility permits the study of time dependent phenomena over a frequency range from 2-8000cm -1 (0.25 meV-1 eV). Temporal resolution is approximately 200 psec and time dependent phenomena in the time range out to 100 nsec can be investigated

  18. SYNCHROTRON RADIATION SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    HULBERT,S.L.; WILLIAMS,G.P.

    1998-07-01

    Synchrotron radiation is a very bright, broadband, polarized, pulsed source of light extending from the infrared to the x-ray region. It is an extremely important source of Vacuum Ultraviolet radiation. Brightness is defined as flux per unit area per unit solid angle and is normally a more important quantity than flux alone particularly in throughput limited applications which include those in which monochromators are used. It is well known from classical theory of electricity and magnetism that accelerating charges emit electromagnetic radiation. In the case of synchrotron radiation, relativistic electrons are accelerated in a circular orbit and emit electromagnetic radiation in a broad spectral range. The visible portion of this spectrum was first observed on April 24, 1947 at General Electric's Schenectady facility by Floyd Haber, a machinist working with the synchrotron team, although the first theoretical predictions were by Lienard in the latter part of the 1800's. An excellent early history with references was presented by Blewett and a history covering the development of the utilization of synchrotron radiation was presented by Hartman. Synchrotron radiation covers the entire electromagnetic spectrum from the infrared region through the visible, ultraviolet, and into the x-ray region up to energies of many 10's of kilovolts. If the charged particles are of low mass, such as electrons, and if they are traveling relativistically, the emitted radiation is very intense and highly collimated, with opening angles of the order of 1 milliradian. In electron storage rings there are three possible sources of synchrotron radiation; dipole (bending) magnets; wigglers, which act like a sequence of bending magnets with alternating polarities; and undulators, which are also multi-period alternating magnet systems but in which the beam deflections are small resulting in coherent interference of the emitted light.

  19. CT of small objects with synchrotron radiation from the X-26C beam line at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Spanne, P.; Rivers, M.L.

    1987-01-01

    CT with spatial resolution in the micrometer range has so far not been possible because of the limited photon fluence rates available from conventional x-ray sources. Synchrotron-generated x-rays now make such high-resolution imaging possible. Experiments to develop CT to the micrometer spatial resolution range have been performed at the X-26C microprobe beam line at the National Synchrotron Light Source at Brookhaven National Laboratory. They have so far yielded images with spatial resolutions down to about 20 μm and show that there is a potential to improve the spatial resolution down to at least 1 μm in imaging of dead objects. This creates an entirely new tool for imaging of microstructures in needle biopsies. Calculations shown that the choice of photon energy is critical in minimizing radiation damage and the imaging time. They also show that CT imaging of small laboratory animals, for example, mice and rats, cna be done with a spatial resolution of the order of 50 μm without inducing any significant radiation damage in the animals. By use of a line-shaped x-ray beam, a photodiode array detector, and standard CAMAC acquisition modules, it should be possible to obtain an image in about 1 minute

  20. Intense, broadband, pulsed I-R source at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Williams, G.P.

    1984-01-01

    We describe a broadband (1 μm to 1 mm) synchrotron radiation infrared source, pulsed each 20 to 180 nseconds and delivering about 10 15 photons/sec/1% bandpass into f10 optics. The source size is diffraction limited. This source is thus 100 to 1000 times brighter than a 2000 0 K black body, very stable and capable of being used for calibration

  1. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    Science.gov (United States)

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  2. Refurbishment of a used in-vacuum undulator from the National Synchrotron Light Source for the National Synchrotron Light Source-II ring.

    Science.gov (United States)

    Tanabe, Toshiya; Bassan, Harmanpreet; Broadbent, Andrew; Cappadoro, Peter; Escallier, John; Harder, David; Hetzel, Charles; Hidas, Dean; Kitegi, Charles; Kosciuk, Bernard; Musardo, Marco; Kirkland, Johnny

    2017-09-01

    The National Synchrotron Light Source (NSLS) ceased operation in September 2014 and was succeeded by NSLS-II. There were four in-vacuum undulators (IVUs) in operation at NSLS. The most recently constructed IVU for NSLS was the mini-gap undulator (MGU-X25, to be renamed IVU18 for NSLS-II), which was constructed in 2006. This device was selected to be reused for the New York Structural Biology Consortium Microdiffraction beamline at NSLS-II. At the time of construction, IVU18 was a state-of-the-art undulator designed to be operated as a cryogenic permanent-magnet undulator. Due to the more stringent field quality and impedance requirements of the NSLS-II ring, the transition region was redesigned. The control system was also updated to NSLS-II specifications. This paper reports the details of the IVU18 refurbishment activities including additional magnetic measurement and tuning.

  3. National Synchrotron Light Source annual report 1989 (for the period of October 1, 1988--September 30, 1989)

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Lazarz, N.; Williams, G.P.

    1990-04-01

    This report discusses research at the National Synchrotron Light Source for the year 1989. Included in this report are operations summaries, symposia, workshops and projects, NSLS committees and administration information; informational guides; and abstracts from paper release during the year

  4. SESAME-A 3rd Generation Synchrotron Light Source for the Middle East

    Science.gov (United States)

    Winick, Herman

    2010-02-01

    Developed under the auspices of UNESCO and modeled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research center in construction in Jordan. It will enable world class research by scientists from the region, reversing the brain drain. It will also build bridges between diverse societies, contributing to a culture of peace through international cooperation in science. The centerpiece is a synchrotron light source originating from BESSY I, a gift by Germany. The upgraded machine, a 2.5 GeV 3rd Generation Light Source (133m circumference, 26nm-rad emittance and 12 places for insertion devices), will provide light from infra-red to hard X-rays, offering excellent opportunities to train local scientists and attract those working abroad to return. The SESAME Council meets twice each year and presently has nine Members (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority, Turkey). Members have responsibility for the project and provide the annual operations budget (1.5M US dollars in 2009, expected to rise to about 5M when operation starts in 2012-13). Jordan provided the site, building, and infrastructure. A staff of 20 is installing the 0.8 GeV BESSY I injection system. The facility will have the capacity to serve 30 or more experiments operating simultaneously. See www.sesame.org.jo )

  5. SESAME — A 3rd Generation Synchrotron Light Source for the Middle East

    Science.gov (United States)

    Å°lkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ˜133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries

  6. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    International Nuclear Information System (INIS)

    Ulkue, Dincer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ∼133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries

  7. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    Science.gov (United States)

    U˝Lkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ~133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries

  8. Development of a scanning tunneling microscope combined with a synchrotron radiation light source

    International Nuclear Information System (INIS)

    Hasegawa, Yukio; Okuda, Taichi; Eguchi, Toyoaki; Matsushima, Takeshi; Harasawa, Ayumi; Akiyama, Kotone; Kinoshita, Toyohiko

    2005-01-01

    We have developed a scanning tunneling microscope (STM) combined with a synchrotron-radiation light source (SR-STM) aiming at elemental analysis in a spatial resolution of STM. Using SR-STM atomically resolved STM images under the irradiation and also X-ray adsorption spectra clearly showing an adsorption edge of a substrate were successfully obtained by detecting photo-emitted electrons with the STM tip. In order to focus the probing area of the photo-induced current, a glass-coated metal tip sharpened with focused ion beam was used as a probe. The present situation and prospects of the instrument are discussed in this review. (author)

  9. Tests of monolithic active pixel sensors at national synchrotron light source

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, G. [Brookhaven National Laboratory, Upton, NY 11973 (United States)]. E-mail: deptuch@ieee.org; Besson, A. [IPHC, CNRS-IN2P3/ULP, 23 rue du Loess, BP 28, 67037 Strasbourg cedex 02 (France); Carini, G.A. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Siddons, D.P. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Szelezniak, M. [IPHC, CNRS-IN2P3/ULP, 23 rue du Loess, BP 28, 67037 Strasbourg cedex 02 (France); Winter, M. [IPHC, CNRS-IN2P3/ULP, 23 rue du Loess, BP 28, 67037 Strasbourg cedex 02 (France)

    2007-01-01

    The paper discusses basic characterization of Monolithic Active Pixel Sensors (MAPS) carried out at the X12A beam-line at National Synchrotron Light Source (NSLS), Upton, NY, USA. The tested device was a MIMOSA V (MV) chip, back-thinned down to the epitaxial layer. This 1M pixels device features a pixel size of 17x17{mu}m{sup 2} and was designed in a 0.6{mu}m CMOS process. The X-ray beam energies used range from 5 to 12keV. Examples of direct X-ray imaging capabilities are presented.

  10. The scanning transmission microscope at the NSLS [National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Rarback, H.; Buckley, C.; Goncz, K.

    1989-01-01

    The scanning transmission soft x-ray microscope (STXM), that has been under development at the National Synchrotron Light Source has been substantially upgraded for operation with the X1 undulator. The principal new features are: optical prefocusing, using a visible light interferometer, a dedicated VAXstation 3200 with a more user friendly and flexible software system for image acquisition and analysis, a flow cell that makes it possible not only to keep the specimen wet during exposure, but to change the fluid around the specimen as well, and a more compact proportional counter that is capable of counting rates of several MHz. In conjunction with new zone plates of better resolution and higher efficiency, the microscope is ready for a period of extended use in biological imaging. 9 refs., 6 figs

  11. National synchrotron light source. Activity report, October 1, 1994--September 30, 1995

    International Nuclear Information System (INIS)

    Rothman, E.Z.; Hastings, J.

    1996-05-01

    This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users' meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide

  12. National synchrotron light source. Activity report, October 1, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, E.Z.; Hastings, J. [eds.

    1996-05-01

    This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users` meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide.

  13. In-situ shearing interferometry of National Synchrotron Light Source mirrors

    International Nuclear Information System (INIS)

    Qian, S.N.; Rarback, H.; Shu, D.; Takacs, P.Z.

    1987-01-01

    In situ mirror distortion measurements were made with a lateral shearing interferometer on three mirrors in beam line X17T at the National Syn203hrotron Light Source. Lateral shearing interference is insensitive to vibrational motion in five of the six degrees of freedom, so it is well-suited for investigations in the synchrotron radiation (SR) environment. No distortion was seen in an uncooled silicon carbide mirror and in a colled copper alloy mirror on X17TB, but a change in the radius of an uncooled electroless nickel-plated aluminium cylinder mirror of about 6.2% was observed on X17TA. Angular vibrations in the 2 to 3 arc second range were easily observed on one of the beam lines, as was an overall mirror rotation in the arc second range

  14. Pressure measurement of the synchrotron light source PF-AR by cold cathode gauges

    CERN Document Server

    Tanimoto, Y; Hori, Y

    2003-01-01

    Synchrotron light source PF-AR was improved to realize higher performance in 2001. This improvement involved the renewal of the entire vacuum system to attain lower vacuum pressure for required beam lifetime. Thermal cathode ionization gauges, the most suitable gauges for the pressure measurement in the new system, were unacceptable because of both possible radiation damage to the controllers and the restriction of the budget. Cold cathode gauges (CCGs) were then chosen for the new system, while they usually have instability in the pressure range of 10 sup - sup 7 Pa and lower. For the solution of this problem, we adopted the improved cold cathode gauges that hold the Penning discharge even at 10 sup - sup 8 Pa and acquired calibration data with a pre-calibrated B-A gauge. We have originally designed CCG controllers using the calibration data, which enabled the reliable measurement in 10 sup - sup 8 Pa range. (author)

  15. Environmental Remediation Science at Beamline X26A at the National Synchrotron Light Source- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, Paul [Univ. of Kentucky, Lexington, KY (United States)

    2013-11-07

    The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites as well as contaminated sites around the United States and beyond.

  16. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-12-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature.

  17. Synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    van Steenbergen, A.

    1979-01-01

    As a result of the exponential growth of the utilization of synchrotron radiation for research in the domain of the material sciences, atomic and molecular physics, biology and technology, a major construction activity has been generated towards new dedicated electron storage rings, designed optimally for synchrotron radiation applications, also, expansion programs are underway at the existing facilities, such as DORIS, SPEAR, and VEPP. In this report the basic properties of synchrotron radiation will be discussed, a short overview will be given of the existing and new facilities, some aspects of the optimization of a structure for a synchrotron radiation source will be discussed and the addition of wigglers and undulators for spectrum enhancement will be described. Finally, some parameters of an optimized synchrotron radiation source will be given.

  18. National synchrotron light source. Activity report, October 1, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, E.Z.; Hastings, J.B. [eds.

    1997-05-01

    The hard work done by the synchrotron radiation community, in collaboration with all those using large-scale central facilities during 1995, paid off in FY 1996 through the DOE`s Presidential Scientific Facilities Initiative. In comparison with the other DOE synchrotron radiation facilities, the National Synchrotron Light Source benefited least in operating budgets because it was unable to increase running time beyond 100%-nevertheless, the number of station hours was maintained. The major thrust at Brookhaven came from a 15% increase in budget which allowed the recruitment of seven staff in the beamlines support group and permitted a step increment in the funding of the extremely long list of upgrades; both to the sources and to the beamlines. During the December 1995 shutdown, the VUV Ring quadrant around U10-U12 was totally reconstructed. New front ends, enabling apertures up to 90 mrad on U10 and U12, were installed. During the year new PRTs were in formation for the infrared beamlines, encouraged by the investment the lab was able to commit from the initiative funds and by awards from the Scientific Facilities Initiative. A new PRT, specifically for small and wide angle x-ray scattering from polymers, will start work on X27C in FY 1997 and existing PRTs on X26C and X9B working on macromolecular crystallography will be joined by new members. Plans to replace aging radio frequency cavities by an improved design, originally a painfully slow six or eight year project, were brought forward so that the first pair of cavities (half of the project for the X-Ray Ring) will now be installed in FY 1997. Current upgrades to 350 mA initially and to 438 mA later in the X-Ray Ring were set aside due to lack of funds for the necessary thermally robust beryllium windows. The Scientific Facilities Initiative allowed purchase of all 34 windows in FY 1996 so that the power upgrade will be achieved in FY 1997.

  19. Design status of the 2.5 GeV National Synchrotron Light Source x-ray ring

    International Nuclear Information System (INIS)

    Krinsky, S.; Blumberg, L.; Bittner, J.; Galayda, J.; Heese, R.; Schuchman, J.C.; van Steenbergen, A.

    1979-01-01

    The present state of the design of the 2.5 GeV electron storage ring for the National Synchrotron Light Source is described. This ring will serve as a dedicated source of synchrotron radiation in the wavelength range 0.1 A to 30 A. While maintaining the basic high brigtness features of the eariler developed lattice structure, recent work resulted in a more economical magnet system, is simplified chromaticity corrections, and improved distribution of the X-ray beam lines. In addition, the adequacy of the dynamic aperture for stable betatron oscillations has been verified for a variety of betatron tunes

  20. Ultra-high vacuum system of the Brookhaven National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, C.L.

    1995-12-31

    The rings of the National Synchrotron Light Source (NSLS) have been supplying light to numerous users for approximately a decade and we recently enjoyed a fully conditioned machine vacuum at design currents. A brief description of the X-Ray storage ring, the VUV storage ring and their current supply is given along with some of their features. The ultra-high vacuum system employed for the storage rings and their advantages for the necessary stored beam environments are discussed including, a brief history of time. After several hundred amp hours of stored beam current operation, very little improvement in machine performance was seen due to conditioning. Sections of the rings were vented, to dry nitrogen and replacement components were pre-baked and pre-argon glow conditioned prior to installation. Very little machine conditioning was needed to return to operation after recovering vacuum due to well established conditioning procedures. All straight sections in the X-Ray ring and the VUV ring have been filled with various insertion devices and most are fully operational. Each storage ring has a computer controlled total pressure and partial pressure monitoring system for the ring and its beam ports, to insure good vacuum.

  1. Generating picosecond x-ray pulses in synchrotron light sources using dipole kickers

    Directory of Open Access Journals (Sweden)

    W. Guo

    2007-02-01

    Full Text Available The duration of the x-ray pulse generated at a synchrotron light source is typically tens of picoseconds. Shorter pulses are highly desired by the users. In electron storage rings, the vertical beam size is usually orders of magnitude less than the bunch length due to radiation damping; therefore, a shorter pulse can be obtained by slitting the vertically tilted bunch. Zholents proposed tilting the bunch using rf deflection. We found that tilted bunches can also be generated by a dipole magnet kick. A vertical tilt is developed after the kick in the presence of nonzero chromaticity. The tilt was successfully observed and a 4.2-ps pulse was obtained from a 27-ps electron bunch at the Advanced Photon Source. Based on this principle, we propose a short-pulse generation scheme that produces picosecond x-ray pulses at a repetition rate of 1–2 kHz, which can be used for pump-probe experiments.

  2. A scanning photoelectron microscope (SPEM) at the National Synchrotron Light Source (NSLS)

    International Nuclear Information System (INIS)

    Ade, H.; Kirz, J.; Hulbert, S.; Johnson, E.; Anderson, E.; Kern, D.; Brookhaven National Lab., Upton, NY; Lawrence Berkeley Lab., CA; International Business Machines Corp., Yorktown Heights, NY

    1989-01-01

    We are in the process of developing and commissioning a scanning photoelectron microscope (SPEM) at the X1A beamline of the National Synchrotron Light Source (NSLS). It is designed to make use of the Soft X-ray Undulator (SXU) at the NSLS. This high brightness source illuminates a Fresnel zone plate, which forms a focused probe, ≤ 0.2μm in size, on the specimen surface. A grating monochromator selects the photon energy in the 400-800 eV range with an energy resolution of better than 1 eV. The expected flux in the focus is in the 5 x 10 7 - 10 9 photons/s range. A single pass Cylindrical Mirror Analyzer (CMA) is used to record photoemission spectra, or to form an image within a fixed electron energy bandwidth as the specimen is mechanically scanned. As a first test, a 1000 mesh Au grid was successfully imaged with a resolution of about 1μm and the CMA tuned to the Au 4 f photoelectron peak. Once it is commissioned, a program is planned which will utilize the microscope to study beam sensitive systems, such as thin oxide/sub-oxide films of alumina and silica, and ultimately various adsorbates on these films. 14 refs., 4 figs

  3. Launch of the I13-2 data beamline at the Diamond Light Source synchrotron

    International Nuclear Information System (INIS)

    Bodey, A J; Rau, C

    2017-01-01

    Users of the Diamond-Manchester Imaging Branchline I13-2 commonly spend many months analysing the large volumes of tomographic data generated in a single beamtime. This is due to the difficulties inherent in performing complicated, computationally-expensive analyses on large datasets with workstations of limited computing power. To improve productivity, a ‘data beamline’ was launched in January 2016. Users are scheduled for visits to the data beamline in the same way as for regular beamlines, with bookings made via the User Administration System and provision of financial support for travel and subsistence. Two high-performance graphics workstations were acquired, with sufficient RAM to enable simultaneous analysis of several tomographic volumes. Users are given high priority on Diamond’s central computing cluster for the duration of their visit, and if necessary, archived data are restored to a high-performance disk array. Within the first six months of operation, thirteen user visits were made, lasting an average of 4.5 days each. The I13-2 data beamline was the first to be launched at Diamond Light Source and, to the authors’ knowledge, the first to be formalised in this way at any synchrotron. (paper)

  4. Launch of the I13-2 data beamline at the Diamond Light Source synchrotron

    Science.gov (United States)

    Bodey, A. J.; Rau, C.

    2017-06-01

    Users of the Diamond-Manchester Imaging Branchline I13-2 commonly spend many months analysing the large volumes of tomographic data generated in a single beamtime. This is due to the difficulties inherent in performing complicated, computationally-expensive analyses on large datasets with workstations of limited computing power. To improve productivity, a ‘data beamline’ was launched in January 2016. Users are scheduled for visits to the data beamline in the same way as for regular beamlines, with bookings made via the User Administration System and provision of financial support for travel and subsistence. Two high-performance graphics workstations were acquired, with sufficient RAM to enable simultaneous analysis of several tomographic volumes. Users are given high priority on Diamond’s central computing cluster for the duration of their visit, and if necessary, archived data are restored to a high-performance disk array. Within the first six months of operation, thirteen user visits were made, lasting an average of 4.5 days each. The I13-2 data beamline was the first to be launched at Diamond Light Source and, to the authors’ knowledge, the first to be formalised in this way at any synchrotron.

  5. Industrial applications of micro/nanofabrication at Singapore Synchrotron Light Source

    International Nuclear Information System (INIS)

    Jian, L K; Casse, B D F; Heussler, S P; Kong, J R; Saw, B T; Mahmood, Shahrain bin; Moser, H O

    2006-01-01

    SSLS (Singapore Synchrotron Light Source) has set up a complete one-stop shop for micro/nanofabrication in the framework of the LIGA process. It is dubbed LiMiNT for Lithography for Micro and Nanotechnology and allows complete prototyping using the integral cycle of the LIGA process for producing micro/nanostructures from mask design/fabrication over X-ray lithography to electroplating in Ni, Cu, or Au, and, finally, hot embossing in a wide variety of plastics as one of the capabilities to cover a wide range of application fields and to go into higher volume production. The process chain also includes plasma cleaning and sputtering as well as substrate preparation processes including metal buffer layers, plating bases, and spin coating, polishing, and dicing. Furthermore, metrology using scanning electron microscopy (SEM), optical profilometry, and optical microscopy is available. LiMiNT is run as a research lab as well as a foundry. In this paper, several industrial applications will be presented, in which LiMiNT functions as a foundry to provide external customers the micro/nano fabrication services. These services include the fabrication of optical or X-ray masks, of micro/nano structures from polymers or from metals and of moulds for hot embossing or injection moulding

  6. Induced Radioactivity in Lead Shielding at the National Synchrotron Light Source.

    Science.gov (United States)

    Ghosh, Vinita J; Schaefer, Charles; Kahnhauser, Henry

    2017-06-01

    The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was shut down in September 2014. Lead bricks used as radiological shadow shielding within the accelerator were exposed to stray radiation fields during normal operations. The FLUKA code, a fully integrated Monte Carlo simulation package for the interaction and transport of particles and nuclei in matter, was used to estimate induced radioactivity in this shielding and stainless steel beam pipe from known beam losses. The FLUKA output was processed using MICROSHIELD® to estimate on-contact exposure rates with individually exposed bricks to help design and optimize the radiological survey process. This entire process can be modeled using FLUKA, but use of MICROSHIELD® as a secondary method was chosen because of the project's resource constraints. Due to the compressed schedule and lack of shielding configuration data, simple FLUKA models were developed. FLUKA activity estimates for stainless steel were compared with sampling data to validate results, which show that simple FLUKA models and irradiation geometries can be used to predict radioactivity inventories accurately in exposed materials. During decommissioning 0.1% of the lead bricks were found to have measurable levels of induced radioactivity. Post-processing with MICROSHIELD® provides an acceptable secondary method of estimating residual exposure rates.

  7. Operation of general purpose stepping motor controllers at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Stubblefield, F.W.

    1987-01-01

    A prototype and four copies of a general purpose subsystem for mechanical positioning of detectors, samples, and beam line optical elements which constitute experiments at the National Synchrotron Light Source facility of Brookhaven National Laboratory have been constructed and placed into operation. Construction of a sixth subsystem is nearing completion. The subsystems effect mechanical positioning by controlling a set of stepping motors and their associated position encoders. The units are general purpose in the sense that they receive commands over a standard 9600 baud asynchronous serial line compatible with the RS-232-C electrical signal standard, generate TTL-compatible streams of stepping pulses which can be used with a wide variety of stepping motors, and read back position values from a number of different types and models of position encoder. The basic structure of the motor controller subsystem is briefly reviewed. Short descriptions of the positioning apparatus actuated at each of the test and experiment stations employing a motor control unit are given. Additions and enhancements to the sub-system made in response to problems indicated by actual operation of the four installed units are described in more detail

  8. Operation of general purpose stepping motor controllers at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Stubblefield, F.W.

    1986-10-01

    A prototype and four copies of a general purpose subsystem for mechanical positioning of detectors, samples, and beam line optical elements which constitute experiments at the National Synchrotron Light Source facility of Brookhaven National Laboratory have been constructed and placed into operation. Construction of a sixth subsystem is nearing completion. The subsystems effect mechanical positioning by controlling a set of stepping motors and their associated position encoders. The units are general purpose in the sense that they receive commands over a standard 9600 baud asynchronous serial line compatible with the RS-232-C electrical signal standard, generate TTL-compatible streams of stepping pulses which can be used with a wide variety of stepping motors, and read back position values from a number of different types and models of position encoder. The basic structure of the motor controller subsystem will be briefly reviewed. Short descriptions of the positioning apparatus actuated at each of the test and experiment stations employing a motor control unit are given. Additions and enhancements to the subsystem made in response to problems indicated by actual operation of the four installed units are described in more detail

  9. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-05-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature. This paper presents an overview of the principal results obtained from X-ray microdiffraction studies of electromigration effects on aluminum and copper interconnects at the ALS throughout continuous efforts that spanned over a decade (1998-2008) from approximately 40 weeks of combined beamtime.

  10. National Synchrotron Light Source Facility Manual Maintenance Management Program. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Fewell, N.

    1993-12-01

    The purpose of this program s to meet the policy and objectives for the management and performance of cost-effective maintenance and repair of the National Synchrotron Light Source, as required by the US Department of Energy order DOE 433O.4A. It is the DOE`s policy that: The maintenance management program for the NSLS be consistent with this Order and that NSLS property is maintained in a manner which promotes operational safety, worker health, environmental protection and compliance, property preservation, and cost-effectiveness while meeting the NSLS`s programmatic mission. Structures, components and systems (active and passive) that are imporant to safe operation of the NSLS shall be subject to a maintenance program to ensure that they meet or exceed their design requirements throughout the life of the NSLS. Periodic examination of structures, systems components and equipment be performed to determine deterioration or technical obsolescence which may threaten performance and/or safety. Primary responsibility, authority, and accountability for the direction and management of the maintenance program at the NSLS reside with the line management assigned direct programmatic responsibility. Budgeting and accounting for maintenance programs are consistent with DOE Orders guidance.

  11. Latest experience on insertion devices at the National Synchrotron Light Source-II

    International Nuclear Information System (INIS)

    Tanabe, Toshiya; Cappadoro, Peter; Corwin, Todd

    2016-01-01

    National Synchrotron Light Source-II (NSLS-II) is the latest storage ring of 3 GeV energy with the horizontal emittance of the electron beam being 0.9 nm.rad. Nine In-Vacuum Undulators (IVUs) are utilized at the NSLS-II as of February 2016. All IVUs have a unique side window derived from the experience from the CHESS facility in Cornell University. An R and D activity called 'Vacuum Seal Test' was conducted to ensure the viability of aluminum wire seal. Another R and D activity to develop a measurement system for Cryogenic Permanent Magnet Undulator (CPMU) was also performed. Other in-air devices, namely damping wigglers (DWs) and elliptically polarizing undulators (EPUs) utilize extruded aluminum chambers with Non-Evaporable Getter (NEG) coating. The beam-based integral estimates were obtained from the virtual kicks at the upstream and downstream of the undulator that best fit the measured orbit distortion in a model lattice with Tracy. In some cases, there are fairly large discrepancies between magnetic measurement data and observed integrals by the beam. Beam studies were carried out to explain the discrepancies mentioned earlier. The latest experiences on ID development and commissioning are discussed in conjunction with related activities in the world. (author)

  12. Historical overview of the synchrotron radiation research in Japan. From the view point of creative works in the development of light sources and related technology

    International Nuclear Information System (INIS)

    Kamitsubo, Hiromichi

    2007-01-01

    Synchrotron radiation research in Japan started in early 1960's when the first electron synchrotron was commissioned at the Institute of Nuclear Study (INS), University of Tokyo (UT). This review covers the parasite use of the INS electron synchrotron and research works done at the light sources in Japan such as SOR-RING, Photon Factory (KEK-PF) Accumulator Ring (KEK-AR), and SPring-8. History of synchrotron radiation research in Japan was overviewed by paying attention to the creative works in the development of light sources and related technology, as well as the pioneering works on the development of experimental techniques and methods. At present there are more than ten synchrotron radiation sources are in operation and the number of their users, especially users from industries in Japan is increasing very rapidly and the research fields of users are also developing. Accordingly the synchrotron radiation facility becomes more and more indispensable facility in the society in Japan. (author)

  13. NSLS 2007 Activity Report (National Synchrotron Light Source Activity Report 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Miller ,L.; Nasta, K.

    2008-05-01

    The National Synchrotron Light Source is one of the world's most productive and cost-effective user facilities. With 2,219 individual users, about 100 more than last year, and a record-high 985 publications, 2007 was no exception. In addition to producing an impressive array of science highlights, which are included in this Activity Report, many NSLS users were honored this year for their scientific accomplishments. Throughout the year, there were major strides in the development of the scientific programs by strengthening strategic partnerships with major research resources and with the Center for Functional Nanomaterials (CFN). Of particular note, the Consortium for Materials Properties Research in Earth Sciences (COMPRES) received renewed funding for the next five years through the National Science Foundation. COMPRES operates four high-pressure NSLS beamlines--X17B2, X17B3, X17C, and U2A--and serves the earth science community as well as the rapidly expanding segment of researchers using high-pressure techniques in materials, chemical, and energy-related sciences. A joint appointment was made between the NSLS and Stony Brook University to further enhance interactions with COMPRES. There was major progress on two key beamline projects outlined in the Five-Year Strategic Plan: the X25 beamline upgrade and the construction of the X9 small angle scattering (SAXS) beamline. The X25 overhaul, which began with the installation of the in-vacuum mini-gap undulator (MGU) in January 2006, is now complete. X25 is once again the brightest beamline for macromolecular crystallography at the NSLS, and in tandem with the X29 undulator beamline, it will keep the NSLS at the cutting edge in this important area of research. Upgrade work associated with the new MGU and the front end for the X9 SAXS beamline--jointly developed by the NSLS and the CFN--also was completed. Beamline X9 will host the SAXS program that currently exists at beamline X21 and will provide new microbeam

  14. Terahertz Coherent Synchrotron Radiation from Femtosecond Laser Modulation of the Electron Beam at the Advanced Light Source

    CERN Document Server

    Byrd, John; Martin, Michael C; Robin, David; Sannibale, Fernando; Schönlein, Robert W; Zholents, Alexander; Zolotorev, Max S

    2005-01-01

    At the Advanced Light Source (ALS), the "femtoslicing" beamline is in operation since 1999 for the production of x-ray synchrotron radiation pulses with femtosecond duration. The mechanism used for generating the short x-ray pulses induces at the same time temporary structures in the electron bunch longitudinal distribution with very short characteristic length. Such structures emit intense coherent synchrotron radiation (CSR) in the terahertz frequency range. This CSR, whose measured intensity is routinely used as a diagnostics for the tune-up of the femtoslicing experiments, represents a potential source of terahertz radiation with very interesting features. Several measurements have been performed for its characterization and in this paper an updated description of the experimental results and of their interpretation is presented.

  15. Construction and maintenance of SUNY facilities at the National Synchrotron Light Source. Progress report, 1 July 1982-1 July 1983

    International Nuclear Information System (INIS)

    Bigeleisen, J.

    1983-01-01

    Experimental facilities on the X-21 beam line at the National Synchrotron Light Source are described, and synchrotron radiation experiments performed by PRT members are discussed. The report includes a description of the beam line development stages and the experimental equipment

  16. Measuring circular dichroism in a capillary cell using the b23 synchrotron radiation CD beamline at diamond light source.

    Science.gov (United States)

    Jávorfi, Tamás; Hussain, Rohanah; Myatt, Daniel; Siligardi, Giuliano

    2010-01-01

    Synchrotron radiation circular dichroism (SRCD) is a well-established method in structural biology. The first UV-VIS beamline dedicated to circular dichroism at Diamond Light Source, a third generation synchrotron facility in South Oxfordshire, has recently become operational and it is now available for the user community. Herein we present an important application of SRCD: the CD measurement of protein solutions in fused silica rectangular capillary cells. This was achieved without the use of any lens between the photoelastic modulator and the photomultiplier tube detectors by exploiting the high photon flux of the collimated beam that can be as little as half a millimeter squared. Measures to minimize or eliminate vacuum-UV protein denaturation effects are discussed. The CD spectra measured in capillaries is a proof of principle to address CD measurements in microdevice systems using the new B23 SRCD beamline. © 2010 Wiley-Liss, Inc.

  17. Compact synchrotron radiation source

    International Nuclear Information System (INIS)

    Liu, N.; Wang, T.; Tian, J.; Lin, Y.; Chen, S.; He, W.; Hu, Y.; Li, Q.

    1985-01-01

    A compact 800 MeV synchrotron radiation source is discussed. The storage ring has a circumference of 30.3 m, two 90 degree and four 45 degree bending magnet sections, two long straight sections and four short straight sections. The radius of the bending magnet is 2.224m. The critical wave length is 24A. The injector is a 15 Mev Microtron Electrons are accelerated from 15 Mev to 800 Mev by ramping the field of the ring. The expected stored current will be around 100 ma

  18. Development of the LIGA process using a superconducting compact synchrotron light source; Chodendo kogata synchrotron kogen wo mochiita LIGA process no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takada, H.; Hirata, Y.; Okuyama, H.; Numazawa, T. [Sumitomo Electric Industries, Ltd., Osaka (Japan)

    1996-11-20

    This paper is devoted to the description of the LIGA process using a 60OMeV superconducting compact synchrotron light source. The realization of deep-etch x-ray lithography is based on a new resist and mask. The resist is made of a copolymer of methyl methacrylate (MMA) and methacryl acid (MAA). The main benefit is its high sensitivity, which is one order of magnitude greater than that of polymethyl methacrylate (PMMA) used in the LIGA process. The mask is composed of a 2{mu}m thick silicon nitride membrane with high transparency supporting tungsten absorber which is a at results about deep-etch x-ray lithography, electroforming and molding 5{mu}m-thick. Experiment techniques are presented. Micro-ultrasonic transmitter obtained with these techniques is also shown. The purpose of this study is the realization of low cost micro-components for a variety of industrial applications. 7 refs., 15 figs., 1 tab.

  19. X-ray metrology of an array of active edge pixel sensors for use at synchrotron light sources

    Science.gov (United States)

    Plackett, R.; Arndt, K.; Bortoletto, D.; Horswell, I.; Lockwood, G.; Shipsey, I.; Tartoni, N.; Williams, S.

    2018-01-01

    We report on the production and testing of an array of active edge silicon sensors as a prototype of a large array. Four Medipix3RX.1 chips were bump bonded to four single chip sized Advacam active edge n-on-n sensors. These detectors were then mounted into a 2 by 2 array and tested on B16 at Diamond Light Source with an x-ray beam spot of 2um. The results from these tests, compared with optical metrology demonstrate that this type of sensor is sensitive to the physical edge of the silicon, with only a modest loss of efficiency in the final two rows of pixels. We present the efficiency maps recorded with the microfocus beam and a sample powder diffraction measurement. These results give confidence that this sensor technology can be used effectively in larger arrays of detectors at synchrotron light sources.

  20. Radiation monitoring in a synchrotron light source facility using magnetically levitated electrode ionization chambers

    International Nuclear Information System (INIS)

    Ichiki, Hirofumi; Kawaguchi, Toshirou; Utsunomiya, Yoshitomo; Ishibashi, Kenji; Ikeda, Nobuo; Korenaga, Kazuhito

    2009-01-01

    We developed a highly accurate differential-type automatic radiation dosimeter to measure very low radiation doses. The dosimeter had two ionization chambers, each of which had a magnetically levitated electrode and it was operated in a repetitive-time integration mode. We first installed the differential-type automatic radiation dosimeter with MALICs at a high-energy electron accelerator facility (Kyushu Synchrotron Light Research Center Facility) and measured the background and ionizing radiations in the facility as well as the gaseous radiation in air. In the background dose measurements, the accuracy of the repetitive-time integration-type dosimeter was three times better than that of a commercial ionization chamber. When the radiation dose increased momentarily at the electron injection from the linac to the operating storage ring, the dosimeter with repetitive-time integral mode gave a successful response to the actual dose variation. The gaseous radiation dose in the facility was at the same level as that in Fukuoka City. We confirmed that the dosimeter with magnetically levitated electrode ionization chambers was usable in the accelerator facility, in spite of its limited response when operated in the repetitive-time integration mode. (author)

  1. NSLS 2002 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2002)

    International Nuclear Information System (INIS)

    MILLER, L.

    2003-01-01

    The year 2002 has been another highly productive year at the NSLS and an impressive array of highlights from this scientific activity is included in this Activity Report. They have taken significant steps this past year toward better supporting beamlines and users. The number of user science support staff has been increased by about ten positions. They have also worked with their users, DOE, and the other DOE synchrotron facilities to develop a new, more flexible user access policy. Doing things safely remains a top priority, and they are reviewing their training and safety requirements to ensure they are thorough and everyone fully understands the necessity of abiding by them. A major development this past year was approval from DOE for BNL to begin the conceptual design of the Center for Functional Nanomaterials (CFN). The CFN will have a dramatic impact on nanoscience in the Northeast, facilitating the synthesis, characterization and scientific exploration of new classes of novel nanostructured materials. It will be located adjacent to the NSLS and a number of NSLS beamlines will be optimized to serve the needs of the nanoscience community. The NSLS and CFN user programs will be coordinated to facilitate easy access to both in a single visit. The VUV and X-Ray rings operated with excellent reliability as a result of continued attention to aging critical systems. The DUV-FEL achieved several important milestones this year, including production of Self-Amplified Spontaneous Emission (SASE) laser light at 400 nm and 266 nm, laser seeded saturation at 266 nm, and the first observation of High Gain Harmonic Generation (HGHG) light at 266 nm, with a third harmonic at 89 nm. Light from the DUV-FEL is now enabling user science experiments in ion pair imaging and they look forward to an expanding user program and a continued series of pioneering accelerator physics studies. In 2002, they continued to work with their user community to develop a plan to upgrade the

  2. Beam heat load investigations with a cold vacuum chamber for diagnostics in a synchrotron light source

    Energy Technology Data Exchange (ETDEWEB)

    Voutta, Robert

    2016-04-22

    The beam heat load is a crucial input parameter for the cryogenic design of superconducting insertion devices. To understand the discrepancies between the predicted heat load of an electron beam to a cold bore and the heat load observed in superconducting devices, a cold vacuum chamber for diagnostics has been built. Extensive beam heat load measurements were performed at the Diamond light source. They are analysed systematically and combined with complementary impedance bench measurements.

  3. Terahertz Coherent Synchrotron Radiation from Femtosecond Laser Modulation of the Electron Beam at the Advanced Light Source

    International Nuclear Information System (INIS)

    Byrd, John M.; Hao, Zhao; Martin, Michael C.; Robin, David S.; Sannibale, Fernando; Schoenlein, Robert W.; Zholents, Alexander A.; Zolotorev, Max S.

    2005-01-01

    At the Advanced Light Source (ALS), the ''femtoslicing'' beamline is in operation since 1999 for the production of x-ray synchrotron radiation pulses with femtosecond duration. The mechanism used for generating the short x-ray pulses induces at the same time temporary structures in the electron bunch longitudinal distribution with very short characteristic length. Such structures emit intense coherent synchrotron radiation (CSR) in the terahertz frequency range. These CSR pulses were first observed at the ALS, and the measurement of their intensity is now routinely used as a diagnostics for the tune-up of the femtoslicing x-ray experiments. At the same time, these CSR pulses synchronous with the modulating laser, represent a potential source of terahertz radiation with very interesting features. Several measurements have been performed for their characterization and in this paper we present an updated description of the experimental results and of their interpretation. In particular, we include more data on the interesting interaction, previously observed at the ALS, between the slicing and the microbunching instability (MBI), where under particular circumstances, the slicing seems to trigger the onset of the instability

  4. Support for the Advanced Polymers Beamline at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Benjamin S. [State Univ. of New York (SUNY), Stonybrook, NY (United States)

    2008-10-01

    The primary focus of the X27C beamline is to investigate frontier polymer science and engineering problems with emphasis on real-time studies of structures, morphologies and dynamics from atomic, nanoscopic, microscopic to mesoscopic scales using simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) techniques. The scientific merit of this project is as follows. Currently, many unique sample chambers for in-situ synchrotron studies, developed by the PI (B. Hsiao) and Co-PI (B. Chu), are available for general users of X27C at NSLS. These instruments include a gel/melt spinning apparatus, a continuous fiber drawing apparatus, a tensile stretching apparatus, a high pressure X-ray cell using supercritical carbon dioxide, a parallel plate strain-controlled shear stage and a dynamic rheometer for small-strain oscillatory deformation study. Based on the use of these instruments in combination with synchrotron X-rays, many new insights into the relationships between processing and structure have been obtained in recent years. The broader impact of this project is as follows. The X27C beamline is the first synchrotron facility in the United States dedicated to chemistry/materials research (with emphasis on polymers). The major benefit of this facility to the materials community is that no extensive synchrotron experience and equipment preparation are required from general users to carry out cutting-edge experiments.

  5. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    International Nuclear Information System (INIS)

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms

  6. Spectrometer control subsystem with high level functionality for use at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Alberi, J.L.; Stubblefield, F.W.

    1980-11-01

    We have developed a subsystem capable of controlling stepping motors in a wide variety of vuv and x-ray spectrometers to be used at the National Sychrotron Light Source. The subsystem is capable of controlling up to 15 motors with encoder readback and ramped acceleration/deceleration. Both absolute and incremental encoders may be used in any mixture. Function commands to the subsystem are communicated via ASCII characters over an asynchronous serial link in a well-defined protocol in decipherable English. Thus the unit can be controlled via write statements in a high-level language. Details of hardware implementation will be presented

  7. Data acquisition and experiment control system for high-data-rate experiments at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Alberi, J.L.; Stubblefield, F.W.

    1981-11-01

    A data acquisition and experiment control system for experiments at the Biology Small-Angle X-ray Scattering Station at the National Synchrotron Light Source has been developed based on a multiprocessor, functionally distributed architecture. The system controls an x-ray monochromator and spectrometer and acquires data from any one of three position-sensitive x-ray detectors. The average data rate from the position-sensitive detector is approx. 10 6 events/sec. Data is stored in a one megaword histogramming memory. The experiments at this Station require that x-ray diffraction patterns be correlated with timed stimuli at the sample. Therefore, depending on which detector is in use, up to 10 3 time-correlated diffraction patterns may be held in the system memory simultaneously. The operation of the system is functionally distributed over four processors communicating via a multiport memory

  8. Operation of a general purpose stepping motor-encoder positioning subsystem at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Stubblefield, F.W.

    1985-11-01

    Four copies of a general purpose subsystem for mechanical positioning of detectors, samples, and beam line optical elements which constitute experiments at the National Synchrotron Light Source facility of Brookhaven National Laboratory have been constructed and placed into operation. Construction of a fifth subsystem unit is nearing completion. The subsystems affect mechanical positioning by controlling a set of stepping motor-encoder pairs. The units are general purpose in the sense that they receive commands over a 9600 baud asynchronous serial line compatible with the RS-232-C electrical signal standard, generate TTL-compatible streams of stepping pulses which can be used with a wide variety of stepping motors, and read back position values from a number of different types and models of position encoder. The basic structure of the motor controller subsystem is briefly reviewed. Additions to the subsystem made in response to problems indicated by actual operation of the four installed units are described in more detail

  9. National Synchrotron Light Source: Annual report 1986 for the period of October 1, 1985 through September 30, 1986

    International Nuclear Information System (INIS)

    White-DePace, S.; Gmur, N.

    1986-10-01

    The National Synchrotron Light Source (NSLS) is the nation's largest facility dedicated solely to the production of synchrotron radiation. The facility has two electron storage rings: a vacuum ultraviolet (VUV) ring which operates at an electron energy of 750 MeV designed for optimum radiation at energies from 10 eV to 1 keV, and an x-ray ring which operates at 2.5 GeV to optimize radiation from 1 keV to 20 keV. A total of 44 beam ports emanate from these rings. Each beam port is capable of supporting one to four experiments. The VUV and x-ray rings presently accommodate over 800 scientists representing over 71 universities, industries, and government laboratories. Both basic and applied research are being done at the NSLS by groups from a variety of disciplines which include physics, chemistry, materials science, metallurgy, biology, and medicine. Among the techniques used are EXAFS (extended x-ray absorption fine structure), scattering, diffraction, topography, fluorescence, gas phase spectroscopy, lithography, tomography, microscopy, and circular dichroism

  10. National synchrotron light source. Annual report 1985, October 1, 1984-September 30, 1985

    International Nuclear Information System (INIS)

    Thomlinson, W.; White-DePace, S.

    1985-10-01

    The NSLS has made great strides in the past year. Both storage rings are now in full operational status. The users have assembled a most impressive array of beam lines and are making creative use of them. This report outlines the status, describes the facility, and discusses some of the science which is being produced. The facility represents not only a large increase in the national capacity to do synchrotron research, but a new level of capability, with further gains occurring rapidly

  11. THE Low-level Radio Frequency System for the superconducting cavities of National Synchrotron Light Source II

    Energy Technology Data Exchange (ETDEWEB)

    Ma, H.; Rose, J.; Holub, B.; Cupolo, J.; Oliva, J.; Sikora, R.; Yeddulla, M.

    2011-03-28

    A digital low-level radio frequency (LLRF) field controller has been developed for the storage ring of The National Synchrotron Light Source-II (NSLS-II). The primary performance goal for the LLRF is to support the required RF operation of the superconducting cavities with a beam current of 500mA and a 0.14 degree or better RF phase stability. The digital field controller is FPGA-based, in a standard format 19-inch/I-U chassis. It has an option of high-level control support with MATLAB running on a local host computer through a USB2.0 port. The field controller has been field tested with the high-power superconducting RF (SRF) at Canadian light Source, and successfully stored a high beam current of 250 mA. The test results show that required specifications for the cavity RF field stability are met. This digital field controller is also currently being used as a development platform for other functional modules in the NSLS-II RF systems.

  12. Construction and maintenance of SUNY facilities at the National Synchrotron Light Source. Progress report, 1 October 1981-1 July 1982

    International Nuclear Information System (INIS)

    Bigeleisen, J.

    1982-01-01

    Development of the SUNY beam line at the National Synchrotron Light Source is described. The line now includes monochromator/mirror optics with tandem arrangement of experiments. The beamline computer system is now working with CAMAC data acquisition, and a four-circle diffractometer, a small-angle-scattering bench, and a fluorescence EXAFS apparatus should be ready soon

  13. Calculation of coupled bunch effects in the synchrotron light source BESSY VSR

    Energy Technology Data Exchange (ETDEWEB)

    Ruprecht, Martin

    2016-02-22

    In the scope of this thesis, the strength of coupled bunch instabilities (CBIs) driven by longitudinal monopole higher order modes (HOMs) and transverse dipole and quadrupole HOMs is evaluated for the upgrade project BESSY Variable Pulse Length Storage Ring (BESSY VSR) at Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH (HZB), based on analytic calculations and tracking simulations, and compared to the performance of an active bunch-by-bunch feedback (BBFB). Algorithms for tracking codes are derived, and a semi-empirical formula for the estimation of transverse quadrupole CBIs is presented. CBI studies are an integral part of the benchmarking of the cavity models for BESSY VSR and have been accompanying and influencing their entire design process. Based on the BESSY VSR cavity model with highly advanced HOM damping, beam stability is likely to be reached with a BBFB system, independent of the bunch fill pattern. Additionally, measurements of CBIs have been performed at BESSY II and the Metrology Light Source of the Physikalisch-Technische Bundesanstalt (MLS), where the longitudinal long range impedance was characterized. Transient beam loading is evaluated by means of analytic formulas and new experimentally verified tracking codes. For the baseline bunch fill pattern of BESSY VSR, it is shown that the particular setup of cavity frequencies amplifies the transient effect on the long bunch, limiting its elongation and potentially resulting in increased Touschek losses.

  14. NSLS 2003 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2003)

    International Nuclear Information System (INIS)

    MILLER, L.

    2004-01-01

    -resolution curved position sensitive detector for powder diffraction was also developed and made available to users to enable time-resolved studies of reaction mechanisms, phase transformations, chemical kinetics, and material dynamics. At the DUV-FEL, this past year saw the achievement of HGHG light at 266 nm, with a substantial third harmonic at 89 nm. User science experiments were initiated and published in Physical Review Letters and a successful workshop was held to identify the new scientific opportunities in the chemical sciences enabled by this unique light source. These and many other important projects are described more fully in the Facility Report

  15. A new fixed-target approach for serial crystallography at synchrotron light sources and X-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, Philip

    2017-07-15

    In the framework of this thesis, a new method for high-speed fixed-target serial crystallography experiments and its applicability to biomacromolecular crystallography at both synchrotron light sources and X-ray free electron lasers (XFELs) is presented. The method is based on a sample holder, which can carry up to 20,000 microcrystals and which is made of single-crystalline silicon. Using synchrotron radiation, the structure of Operophtera brumata cytoplasmic polyhedrosis virus type 18 polyhedrin, lysozyme and cubic insulin was determined by collecting X-ray diffraction data from multiple microcrystals. Data collection was shown to be possible at both cryogenic and ambient conditions. For room-temperature measurements, both global and specific indications of radiation damage were investigated and characterized. Due to the sieve-like structure of the chip, the microcrystals tend to arrange themselves according to the micropore pattern, which allows for efficient sampling of the sample material. In combination with a high-speed scanning stage, the sample holder was furthermore shown to be highly suitable for serial femtosecond crystallography experiments. By fast raster scanning of the chip through the pulsed X-ray beam of an XFEL, structure determination of a virus, using the example of bovine enterovirus type 2, has been demonstrated at an XFEL for the first time. Hit rates of up to 100% were obtained by the presented method, which refers to a reduction in sample consumption by at least three orders of magnitude with respect to common liquid-jet injection methods used for sample delivery. In this way, the typical time needed for data collection in serial femtosecond crystallography is significantly decreased. The presented technique for sample loading of the chip is easy to learn and results in efficient removal of the surrounding mother liquor, thereby reducing the generated background signal. Since the chip is made of single-crystalline silicon, in principle no

  16. A new fixed-target approach for serial crystallography at synchrotron light sources and X-ray free electron lasers

    International Nuclear Information System (INIS)

    Roedig, Philip

    2017-07-01

    In the framework of this thesis, a new method for high-speed fixed-target serial crystallography experiments and its applicability to biomacromolecular crystallography at both synchrotron light sources and X-ray free electron lasers (XFELs) is presented. The method is based on a sample holder, which can carry up to 20,000 microcrystals and which is made of single-crystalline silicon. Using synchrotron radiation, the structure of Operophtera brumata cytoplasmic polyhedrosis virus type 18 polyhedrin, lysozyme and cubic insulin was determined by collecting X-ray diffraction data from multiple microcrystals. Data collection was shown to be possible at both cryogenic and ambient conditions. For room-temperature measurements, both global and specific indications of radiation damage were investigated and characterized. Due to the sieve-like structure of the chip, the microcrystals tend to arrange themselves according to the micropore pattern, which allows for efficient sampling of the sample material. In combination with a high-speed scanning stage, the sample holder was furthermore shown to be highly suitable for serial femtosecond crystallography experiments. By fast raster scanning of the chip through the pulsed X-ray beam of an XFEL, structure determination of a virus, using the example of bovine enterovirus type 2, has been demonstrated at an XFEL for the first time. Hit rates of up to 100% were obtained by the presented method, which refers to a reduction in sample consumption by at least three orders of magnitude with respect to common liquid-jet injection methods used for sample delivery. In this way, the typical time needed for data collection in serial femtosecond crystallography is significantly decreased. The presented technique for sample loading of the chip is easy to learn and results in efficient removal of the surrounding mother liquor, thereby reducing the generated background signal. Since the chip is made of single-crystalline silicon, in principle no

  17. Advancements and Application of Microsecond Synchrotron X-ray Footprinting at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sayan; Celestre, Rich; Feng, Jun; Ralston, Corie

    2016-01-02

    The method of synchrotron X-ray protein footprinting (XF-MS) is used to determine protein conformational changes, folding, protein-protein and protein-ligand interactions, providing information which is often difficult to obtain using X-ray crystallography and other common structural biology methods [1 G. Xu and M.R. Chance, Chemical Reviews 107, 3514–3543 (2007). [CrossRef], [PubMed], [Web of Science ®], [Google Scholar] –3 V.N. Bavro, Biochem Soc Trans 43, 983–994 (2015). [CrossRef], [PubMed], [Web of Science ®], [Google Scholar] ]. The technique uses comparative in situ labeling of solvent-accessible side chains by highly reactive hydroxyl radicals (•OH) in buffered aqueous solution under different assay conditions. In regions where a protein is folded or binds a partner, these •OH susceptible sites are inaccessible to solvent, and therefore protected from labeling. The •OH are generated by the ionization of water using high-flux-density X-rays. High-flux density is a key factor for XF-MS labeling because obtaining an adequate steady-state concentration of hydroxyl radical within a short irradiation time is necessary to minimize radiation-induced secondary damage and also to overcome various scavenging reactions that reduce the yield of labeled side chains.

  18. Conceptual Design of an Insertion Device for Non-Destructive Beam Diagnostics of a Low-Emittance Synchrotron Light Source

    CERN Document Server

    Masaki, Mitsuhiro

    2005-01-01

    An insertion device is proposed to measure small vertical angular divergence and energy spread (dE/E) of electron beam in a low-emittance synchrotron light source. In accelerators such as the SPring-8 storage ring operated on the small emittance-coupling ratio, vertical divergence of spectral photon flux produced by electron beam in a conventional undulator of several meters long will be dominated by natural divergence of the undulator radiation. Therefore, the divergence of spectral flux is not useful for vertical emittance diagnostics. The proposed insertion device consists of N short undulator sections as x-ray radiators cascaded through vertical deflective sections to make a half-period cosine-like electron trajectory. Two radiation parts of the upper and lower sides are formed due to up-and-down electron orbit by the deflective sections. X-rays emitted from the two radiation parts interfere at observation point far from the insertion device. It was numerically studied that the vertical angular divergence...

  19. Tests of small X-ray Active Matrix Pixel Sensor prototypes at the National Synchrotron Light Source

    Science.gov (United States)

    Carini, G. A.; Chen, W.; Dragone, A.; Fried, J.; Jakoncic, J.; Kuczweski, A.; Li, Z.; Mead, J.; Michta, R.; Pratte, J.-F.; Rehak, P.; Siddons, D. P.

    2009-03-01

    X-ray Active Matrix Pixel Sensors (XAMPS) were designed and fabricated at Brookhaven National Laboratory. Devices based on J-FET technology were produced on 100 mm high-resistivity silicon, typically 400 μm-thick. The prototypes are square matrices with n rows and n columns with n = 16, 32, 64, 128, 256, 512. Each pixel of the matrix is 90 × 90 μm2 and contains a JFET switch to control the charge readout. The XAMPS is a position sensitive ionization detector made on high resistivity silicon. It consists of a pixel array detector with integrated switches. Pixels are isolated from each other by a potential barrier and the device is fully depleted by applying a high voltage bias to the junction on the entrance window of the sensor. The small features of the design presented some technological challenges fully addressed during this production. The first prototypes were tested at the National Synchrotron Light Source (NSLS) with a monochromatic beam of 8 keV and millisecond readout and exhibit good performances at room temperature.

  20. Tests of small X-ray Active Matrix Pixel Sensor prototypes at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Carini, G A; Chen, W; Fried, J; Jakoncic, J; Kuczweski, A; Li, Z; Mead, J; Michta, R; Pratte, J-F; Rehak, P; Siddons, D P [Brookhaven National Laboratory, Upton, 11973 NY (United States); Dragone, A [SLAC National Accelerator Center, Menlo Park, 94025 CA (United States)], E-mail: carini@bnl.gov

    2009-03-15

    X-ray Active Matrix Pixel Sensors (XAMPS) were designed and fabricated at Brookhaven National Laboratory. Devices based on J-FET technology were produced on 100 mm high-resistivity silicon, typically 400 {mu}m-thick. The prototypes are square matrices with n rows and n columns with n = 16, 32, 64, 128, 256, 512. Each pixel of the matrix is 90 x 90 {mu}m{sup 2} and contains a JFET switch to control the charge readout. The XAMPS is a position sensitive ionization detector made on high resistivity silicon. It consists of a pixel array detector with integrated switches. Pixels are isolated from each other by a potential barrier and the device is fully depleted by applying a high voltage bias to the junction on the entrance window of the sensor. The small features of the design presented some technological challenges fully addressed during this production. The first prototypes were tested at the National Synchrotron Light Source (NSLS) with a monochromatic beam of 8 keV and millisecond readout and exhibit good performances at room temperature.

  1. Free electron laser facilities employing a 150-MeV linac injector for Saga synchrotron light source

    International Nuclear Information System (INIS)

    Tomimasu, T.; Yasumoto, M.; Ochiai, Y.; Ishibashi, M.; Murayama, T.

    1999-01-01

    Free electron laser (FEL) facilities as the FELI FEL Facility are proposed, for which a 150-MeV linac type injector for a Saga synchrotron light source (SLS) is employed in FEL mode. The linac has two operating modes; short macropulse mode a 1 μs at 150 MeV for injection to a 1 - 1.3-GeV third generation type storage ring and long macropulse mode of 12 μs at 100 MeV for four FEL Facilities. The macropulse beam consists of a train of several ps, 0.6 nC microbunches (peak current 100 A) repeating at 89.25 MHz. We are aiming to supply high power level photon beams covering an attractive wavelength range from 0.05 nm (25 keV) to 200 μm (0.006 eV) for scientific researches, bio-medical and industrial applications, using the Saga third generation type SLS with a superconducting wiggler and the proposed four FEL Facilities. (author)

  2. NSLS 2006 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2006)

    International Nuclear Information System (INIS)

    MILLER, L.

    2006-01-01

    This past year has seen both challenges and fantastic new opportunities for the user community at the NSLS. The fantastic new opportunities are clear and abundant. We now have a five-year strategic plan for new development and continued operation of the NSLS. The NSLS continues to be an extremely productive facility, and the UEC is delighted at how NSLS Chair Chi-Chang Kao has consulted widely within the user community to develop a five-year plan for strategic upgrades and continued operation of the facility. The NSLS-II project, led by Associate Lab Director Steve Dierker, has done very well in its Department of Energy (DOE) reviews and will hopefully soon receive Critical Decision-1 (CD-1) approval, which in DOE lingo gives a go-ahead to launch the detailed design of the facility. We also held the first joint user meeting between the NSLS and Brookhaven's Center for Functional Nanomaterials (CFN), for which the building is near completion. The joint user meeting is an important step toward the close collaboration of the two facilities. The CFN, led by Emilio Mendez, promises to provide capabilities and research foci that are complementary to those at the NSLS. Together, all of these developments give a clear path to an exciting future of synchrotron radiation research at Brookhaven. However, with opportunities come challenges. One of the largest of these faced in the past year involved congressional support for scientific research in general, and DOE user facilities in particular. As you likely know, Congress did not complete its usual budget process in 2006, with the exceptions of the departments of Defense and Homeland Security. This left science funding at the budget levels enacted in late 2005 for FY2006, and unfortunately, FY2006 was not a particularly memorable vintage for science support. The good news is that you, the user community, have spoken up with unprecedented vigor about this, and Congress appears to be listening. As we look at the FY2007 budget

  3. NSLS 2006 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2006)

    Energy Technology Data Exchange (ETDEWEB)

    MILLER, L. (EDITOR)

    2006-12-31

    This past year has seen both challenges and fantastic new opportunities for the user community at the NSLS. The fantastic new opportunities are clear and abundant. We now have a five-year strategic plan for new development and continued operation of the NSLS. The NSLS continues to be an extremely productive facility, and the UEC is delighted at how NSLS Chair Chi-Chang Kao has consulted widely within the user community to develop a five-year plan for strategic upgrades and continued operation of the facility. The NSLS-II project, led by Associate Lab Director Steve Dierker, has done very well in its Department of Energy (DOE) reviews and will hopefully soon receive Critical Decision-1 (CD-1) approval, which in DOE lingo gives a go-ahead to launch the detailed design of the facility. We also held the first joint user meeting between the NSLS and Brookhaven's Center for Functional Nanomaterials (CFN), for which the building is near completion. The joint user meeting is an important step toward the close collaboration of the two facilities. The CFN, led by Emilio Mendez, promises to provide capabilities and research foci that are complementary to those at the NSLS. Together, all of these developments give a clear path to an exciting future of synchrotron radiation research at Brookhaven! However, with opportunities come challenges! One of the largest of these faced in the past year involved congressional support for scientific research in general, and DOE user facilities in particular. As you likely know, Congress did not complete its usual budget process in 2006, with the exceptions of the departments of Defense and Homeland Security. This left science funding at the budget levels enacted in late 2005 for FY2006, and unfortunately, FY2006 was not a particularly memorable vintage for science support. The good news is that you, the user community, have spoken up with unprecedented vigor about this, and Congress appears to be listening. As we look at the FY2007

  4. The Advanced Light Source: A new 1.5 GeV synchrotron radiation facility at the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schlachter, F.

    1990-01-01

    The Advanced Light Source (ALS), presently under construction at the Lawrence Berkeley Laboratory, will be the world's brightest synchrotron-radiation source of ultraviolet and soft x-ray photons when it opens its doors to users in April 1993. The ALS is a third-generation source that is based on a low-emittance electron storage ring, optimized for operation at 1.5 GeV, with long straight sections for insertion devices. Its naturally short pulses are ideal for time-resolved measurements. Undulators will produce high-brightness beams from below 10 eV to above 2 keV; wigglers will produce high fluxes of harder x-rays to energies above 10 keV. The ALS will support an extensive research program in a broad spectrum of scientific and technological areas. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. Undulator radiation can excite the K shell of elements up to silicon and the L shell of elements up to krypton, and wiggler radiation can excite the L shell of nearly every element. The ALS will operate as a national user facility; interested scientists are encouraged to contact the ALS Scientific Program Coordinator to explore their scientific and technological research interests

  5. Synchrotron radiation sources in the Soviet Union

    International Nuclear Information System (INIS)

    Kapitza, S.P.

    1987-01-01

    Synchrotron radiation (SR) is now recognized to be an important instrument for experimental work in many fields of science. Recently the application of SR in medicine and industry, especially as a light source for microelectronics production have been demonstrated. Thus the development of SR sources has now grown to become a significant and independent dimension for accelerator research and technology. This article describes SR work in the Soviet Union

  6. Informal proposal for an Atomic Physics Facility at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.W.; Johnson, B.M.; Meron, M.

    1986-01-01

    An Atomic Physics Facility (APF) for experiments that will use radiation from a superconducting wiggler on the NSLS X-13 port is described. The scientific justification for the APF is given and the elements of the facility are discussed. It is shown that it will be possible to conduct a uniquely varied set of experiments that can probe most aspects of atomic physics. A major component of the proposal is a heavy-ion storage ring capable of containing ions with energies of about 10 MeV/nucleon. The ring can be filled with heavy ions produced at the BNL MP Tandem Laboratory or from independent ion-source systems. A preliminary cost estimate for the facility is presented.

  7. National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.L.; Lazarz, N.M. [eds.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  8. Assessing noise sources at synchrotron infrared ports

    International Nuclear Information System (INIS)

    Lerch, Ph.; Dumas, P.; Schilcher, T.; Nadji, A.; Luedeke, A.; Hubert, N.; Cassinari, L.; Boege, M.; Denard, J.-C.; Stingelin, L.; Nadolski, L.; Garvey, T.; Albert, S.; Gough, Ch.; Quack, M.; Wambach, J.; Dehler, M.; Filhol, J.-M.

    2012-01-01

    Low-frequency noise present in the electron and photon beams of two comparable storage rings, SOLEIL and SLS, are carefully compared in the context of IR spectroscopy using the Fourier transform technique. Today, the vast majority of electron storage rings delivering synchrotron radiation for general user operation offer a dedicated infrared port. There is growing interest expressed by various scientific communities to exploit the mid-IR emission in microspectroscopy, as well as the far infrared (also called THz) range for spectroscopy. Compared with a thermal (laboratory-based source), IR synchrotron radiation sources offer enhanced brilliance of about two to three orders of magnitude in the mid-IR energy range, and enhanced flux and brilliance in the far-IR energy range. Synchrotron radiation also has a unique combination of a broad wavelength band together with a well defined time structure. Thermal sources (globar, mercury filament) have excellent stability. Because the sampling rate of a typical IR Fourier-transform spectroscopy experiment is in the kHz range (depending on the bandwidth of the detector), instabilities of various origins present in synchrotron radiation sources play a crucial role. Noise recordings at two different IR ports located at the Swiss Light Source and SOLEIL (France), under conditions relevant to real experiments, are discussed. The lowest electron beam fluctuations detectable in IR spectra have been quantified and are shown to be much smaller than what is routinely recorded by beam-position monitors

  9. National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Lazarz, N.M.

    1993-04-01

    This report contains seven sections discussing the following: (1) scientific research at the NSLS; (2) symposia and workshops held at the NSLS; (3) a facility report; (4) NSLS projects; (5) NSLS operational highlights; (6) informational guides to the VUV and X-ray beamlines; and (7) appendices which include abstracts on projects carried out at the VUV and X-ray beamlines

  10. National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Klaffky, R.W.

    1984-01-01

    A general description is given of the NSLS. Topics covered include: storage ring characteristics; experimental facilities; experimental research; general user proposals; expansion of the NSLS; and transportation to the facility. (GHT)

  11. Synchrotron-driven spallation sources

    CERN Document Server

    Bryant, P J

    1996-01-01

    The use of synchrotrons for pulsed neutron spallation sources is an example of scientific and technological spin-off from the accelerator development for particle physics. Accelerator-driven sources provide an alternative to the continuous-flux, nuclear reactors that currently furnish the majority of neutrons for research and development. Although the present demand for neutrons can be adequately met by the existing reactors, this situation is unlikely to continue due to the increasing severity of safety regulations and the declared policies of many countries to close down their reactors within the next decade or so. Since the demand for neutrons as a research tool is, in any case,expected to grow, there has been a corresponding interest in sources that are synchrotron-driven or linac-driven with a pulse compression ring and currently several design studies are being made. These accelerator-driven sources also have the advantage of a time structure with a high peak neutron flux. The basic requirement is for a...

  12. Intermediate-energy light sources

    CERN Document Server

    Corbett, W

    2003-01-01

    Increasingly, atomic scale information underlies scientific and technological progress in disciplines ranging from pharmaceutical development to materials synthesis to environmental remediation. While a variety of research tools are used to provide atomic scale information, synchrotron radiation has proved invaluable in this quest. The rapid growth of soft- and hard X-ray synchrotron light sources stands as stark testimony to the importance and utility of synchrotron radiation. Starting from just a handful of synchrotron light sources in the early 1970s, this burgeoning field now includes over 70 proposed, in-construction, or operating facilities in 23 countries on five continents. Along the way, synchrotron light facilities have evolved from small laboratories extracting light parasitically from storage rings designed for high-energy physics research to large, dedicated sources using the latest technology to produce extraordinarily bright photon beams. The basic layout of a multi-GeV storage ring light sourc...

  13. Versatile user-oriented atomic and molecular beam apparatus for use with the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Mitchell, J.B.A.; Grover, J.R.

    1978-11-01

    A proposed atomic and moleuclar beam apparatus is described for photon interaction studies using the National Sychrotron Light Source at the Brookhaven National Laboratory. This apparatus will employ ultrahigh vacuum techniques compatible with storage ring operation. Supersonic nozzle sources will be used to produce the beams and signal detection will be accomplished using a quadrupole mass analysis system. The equipment is intended for use both by in-house and outside users and primary consideration has been given to flexibility of design. The application of photoionization techniques to the study of crossed beam reactive scattering with particular emphasis on internal energy distribution analysis is discussed

  14. Protein Data Bank Depositions from Synchrotron Sources

    International Nuclear Information System (INIS)

    Jiang, J.; Sweet, R.

    2004-01-01

    A survey and analysis of Protein Data Bank (PDB) depositions from international synchrotron radiation facilities, based on the latest released PDB entries, are reported. The results ( ) show that worldwide, every year since 1999, more than 50% of the deposited X-ray structures have used synchrotron facilities, reaching 75% by 2003. In this web-based database, all PDB entries among individual synchrotron beamlines are archived, synchronized with the weekly PDB release. Statistics regarding the quality of experimental data and the refined model for all structures are presented, and these are analysed to reflect the impact of synchrotron sources. The results confirm the common impression that synchrotron sources extend the size of structures that can be solved with equivalent or better quality than home sources

  15. Synchrotron radiation sources: general features and vacuum system

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1985-01-01

    In the last years the electron or positron storage rings, which were until 1970 only used for high energy physics experiments, begun to be built in several countries exclusively as electromagnetic radiation source (synchrotron radiation). The sources are generally made up by injector (linear accelerator or microtron), 'booster' (synchrotron), storage ring, insertions ('Wigglers' and ondulators) and light lines. The interest by these sources are due to the high intensity, large spectrum (from infrared to the X-rays), polarization and pulsed structure of the produced radiation. For the ultra-vacuum obtainement, necessary for the functioning storage rings (p=10 -9 Torr), several special procedures are used. In Brazil the Synchrotron Radiation National Laboratory of the CNPq worked out a conceptual project of synchrotron radiation source, whose execution should begin by the construction of the several components prototypes. (L.C.) [pt

  16. Synchrotron light and its uses

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1978-01-01

    It was known for a century that charged particles radiate when accelerated and that relativistic electrons in the energy range between 100 MeV and several GeV and constrained to travel in circular orbits emit concentrated, intense beams with broad continuous spectra that can cover the electromagnetic spectrum from infrared through hard x-rays. Recently the possible applications of this radiation were appreciated and electron synchrotrons and electron storage rings are now being used in many centers for studies of the properties of matter in the solid, liquid and gaseous states. 10 references

  17. Advances and synergy of high pressure sciences at synchrotron sources

    International Nuclear Information System (INIS)

    Liu, H.; Ehm, L.; Duffy, T.; Crichton, W.; Aoki, K.

    2009-01-01

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  18. Instrumentation of x-ray diffraction and materials research on the National Synchrotron Light Source. Final report

    International Nuclear Information System (INIS)

    Liedl, G.L.

    1984-11-01

    MATRIX was organized in 1980 to formulate a research team to design and construct a beam line at NSLS for x-ray diffraction studies of materials. A versatile system was designed to allow a full range of experimental capabilities for wide angle x-ray scattering experiments including surface diffraction studies. The design and construction of the system has been completed. Testing of parts of the system was completed at CHESS and with x-ray sources or other equipment at member institutions. Installation of the beam line at NSLS is in progress and will proceed in parallel with the commissioning of the x-ray ring at NSLS. Full operation of the beam line is expected to be ready by December 1, 1984 being limited only by the source power of NSLS at that time. Useful experiments could be started if the power is at least 2 GeV and 100ma. The MATRIX beam line was one of the first x-ray beam lines to see light in the beam line in early spring of 1984. In July of 1984, the MATRIX beam line as the first port at NSLS to have a monochromatic beam and to scan part of the spectrum from the source. As part of this contract, six publications have resulted from the various projects. Three publications are concerned directly with the beam line and/or its operation while the other three publications are the result of research associated with the project

  19. Characteristics of synchrotron radiation and of its sources

    International Nuclear Information System (INIS)

    Krinsky, S.; Perlman, M.L.; Watson, R.E.

    1979-01-01

    Synchrotron light emission and the classical relativistic electromagnetic theory describing it are reviewed. The electron optics of storage rings are considered in some detail, beginning with the ideal electron orbit and the distribution which electrons take around it. This is folded with the process of synchrotron light emission itself to define the effective photon source. The predictions of classical relativistic theory are compared with experiment, and one finds agreement within the experimental uncertainties. Further refinements, such as wiggler magnets and free electron lasers are also considered

  20. Molecular Chemical Structure of Barley Proteins Revealed by Ultra-Spatially Resolved Synchrotron Light Sourced FTIR Microspectroscopy: Comparison of Barley Varieties

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    Barley protein structure affects the barley quality, fermentation, and degradation behavior in both humans and animals among other factors such as protein matrix. Publications show various biological differences among barley varieties such as Valier and Harrington, which have significantly different degradation behaviors. The objectives of this study were to reveal the molecular structure of barley protein, comparing various varieties (Dolly, Valier, Harrington, LP955, AC Metcalfe, and Sisler), and quantify protein structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling by using the ultra-spatially resolved synchrotron light sourced Fourier transform infrared microspectroscopy (SFTIRM). The items of the protein molecular structure revealed included protein structure α-helices, β-sheets, and others such as β-turns and random coils. The experiment was performed at the National Synchrotron Light Source in Brookhaven National Laboratory (BNL, US Department of Energy, NY). The results showed that with the SFTIRM, the molecular structure of barley protein could be revealed. Barley protein structures exhibited significant differences among the varieties in terms of proportion and ratio of model-fitted α-helices, β-sheets, and others. By using multi-component peaks modeling at protein amide I region of 1710-1576 cm -1 , the results show that barley protein consisted of approximately 18-34% of α-helices, 14-25% of β-sheets, and 44-69% others. AC Metcalfe, Sisler, and LP955 consisted of higher (P 0.05). The ratio of α-helices to others (0.3 to 1.0, P < 0.05) and that of β-sheets to others (0.2 to 0.8, P < 0.05) were different among the barley varieties. It needs to be pointed out that using a multi-peak modeling for protein structure analysis is only for making relative estimates and not exact determinations and only for the comparison purpose between varieties. The principal component analysis showed that protein amide I Fourier

  1. First Beam Measurements with the LHC Synchrotron Light Monitors

    CERN Document Server

    Bravin, E; Fisher, AS; Guerrero, A; Jeff, A; Lefevre, T; Goldblatt, A; Roncarolo, F

    2010-01-01

    The continuous monitoring of the transverse sizes of the beams in the Large Hadron Collider (LHC) relies on the use of synchrotron radiation and intensified video cameras. Depending on the beam energy, different synchrotron light sources must be used. A dedicated superconducting undulator has been built for low beam energies (450 GeV to 1.5 TeV), while edge and centre radiation from a beam-separation dipole magnet are used respectively for intermediate and high energies (up to 7 TeV). The emitted visible photons are collected using a retractable mirror, which sends the light into an optical system adapted for acquisition using intensified CCD cameras. This paper presents the design of the imaging system, and compares the expected light intensity with measurements and the calculated spatial resolution with a cross calibration performed with the wire scanners. Upgrades and future plans are also discussed.

  2. Applications of Indus-1 synchrotron radiation source

    International Nuclear Information System (INIS)

    Nandedkar, R.V.

    2003-01-01

    Indus-1 is a 450 MeV electron storage ring. This is a soft X-ray and Vacuum Ultra Violet radiation source with the critical wavelength being 61 A. In this source, the first beam was stored in mid-1999 and was then made available, after initial storage and beam cleaning of the vacuum components, for beamline installation in the early 2000. Two beamlines are commissioned and are working. Other beamlines are in the advanced stage of commissioning. For Indus-1, the injection system consists of a 20 MeV classical microtron as a preinjector and a booster synchrotron that can go up to 700 MeV. For Indus-1, the injection into the storage ring is at full 450 MeV from this booster synchrotron

  3. Ferroelectrics under the Synchrotron Light: A Review

    Directory of Open Access Journals (Sweden)

    Luis E. Fuentes-Cobas

    2015-12-01

    Full Text Available Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS and X-ray absorption fine structure (XAFS experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described.

  4. Ferroelectrics under the Synchrotron Light: A Review

    Science.gov (United States)

    Fuentes-Cobas, Luis E.; Montero-Cabrera, María E.; Pardo, Lorena; Fuentes-Montero, Luis

    2015-01-01

    Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described. PMID:28787814

  5. Synchrotron light: A success story over six decades

    International Nuclear Information System (INIS)

    Margaritondo, G.

    2017-01-01

    Synchrotron radiation research continues to be a major factor in the progress of science and technology, as it has been for more than half a century. We present different aspects of its history, starting with an unconventional approach: a fictional version, which should bring to light the reasons that make this field so broadly important. Then, we narrate the real history from three different points of view: the progress of electron accelerators, the evolution of synchrotron-based experiments, and the human factors. Finally, we discuss the present situation, characterized by the arrival of a new generation of sources with exceptional performances: the x-ray free electron lasers (x-FEL's).

  6. Analysis of stray radiation produced by the advanced light source (1.9 GeV synchrotron radiation source) at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ajemian, Robert C. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering

    1995-01-01

    The yearly environmental dose equivalent likely to result at the closest site boundary from the Advanced Light Source was determined by generating multiple linear regressions. The independent variables comprised quantified accelerator operating parameters and measurements from synchronized, in-close (outside shielding prior to significant atmospheric scattering), state-of-the-art neutron remmeters and photon G-M tubes. Neutron regression models were more successful than photon models due to lower relative background radiation and redundant detectors at the site boundary. As expected, Storage Ring Beam Fill and Beam Crashes produced radiation at a higher rate than gradual Beam Decay; however, only the latter did not include zero in its 95% confidence interval. By summing for all three accelerator operating modes, a combined yearly DE of 4.3 mRem/yr with a 90% CI of (0.04-8.63) was obtained. These results fall below the DOE reporting level of 10 mRem/yr and suggest repeating the study with improved experimental conditions.

  7. Analysis of stray radiation produced by the advanced light source (1.9 GeV synchrotron radiation source) at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Ajemian, R.C.

    1995-01-01

    The yearly environmental dose equivalent likely to result at the closest site boundary from the Advanced Light Source was determined by generating multiple linear regressions. The independent variables comprised quantified accelerator operating parameters and measurements from synchronized, in-close (outside shielding prior to significant atmospheric scattering), state-of-the-art neutron remmeters and photon G-M tubes. Neutron regression models were more successful than photon models due to lower relative background radiation and redundant detectors at the site boundary. As expected, Storage Ring Beam Fill and Beam Crashes produced radiation at a higher rate than gradual Beam Decay; however, only the latter did not include zero in its 95% confidence interval. By summing for all three accelerator operating modes, a combined yearly DE of 4.3 mRem/yr with a 90% CI of (0.04-8.63) was obtained. These results fall below the DOE reporting level of 10 mRem/yr and suggest repeating the study with improved experimental conditions

  8. Hard X-ray Sources for the Mexican Synchrotron Project

    Science.gov (United States)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  9. Surface, interface and bulk materials characterization using Indus synchrotron sources

    International Nuclear Information System (INIS)

    Phase, Deodatta M.

    2014-01-01

    Synchrotron radiation sources, providing intense, polarized and stable beams of ultra violet, soft and hard x-ray photons, are having great impact on physics, chemistry, biology, materials science and other areas research. In particular synchrotron radiation has revolutionized materials characterization techniques by enhancing its capabilities for investigating the structural, electronic and magnetic properties of solids. The availability of synchrotron sources and necessary instrumentation has led to considerable improvements in spectral resolution and intensities. As a result, application scope of different materials characterization techniques has tremendously increased particularly in the analysis of solid surfaces, interfaces and bulk materials. The Indian synchrotron storage ring, Indus-1 and Indus-2 are in operation at RRCAT, Indore. The UGC-DAE CSR with the help of university scientist had designed and developed an angle integrated photoelectron spectroscopy (AlPES) beam line on Indus-1 storage ring of 450 MeV and polarized light beam line for soft x-ray absorption spectroscopy (SXAS) on Indus-2 storage ring of 2.5 GeV. (author)

  10. Photoemission studies using laboratory and synchrotron sources

    International Nuclear Information System (INIS)

    Phase, D.M.

    2012-01-01

    Synchrotron radiation sources, providing intense, polarized and stable beams of ultra violet soft and hard X-ray photons, are having great impact on physics, chemistry, biology materials science and other areas research. In particular synchrotron radiation has revolutionized photoelectron spectroscopy by enhancing its capabilities for investigating the electronic properties of solids. The first Indian synchrotron storage ring, Indus- 1 is in operation at RRCAT, Indore. The UGC-DAE CSR with the help of university scientist had designed and developed an angle integrated photoelectron spectroscopy (PES) beamline on this 450 MeV storage ring. A storage ring of this kind is most suitable for investigation in the energy range from few electron volts to around five hundred electron volts. In this lecture we will describe the details of PES beamline and its experimental station. Till date the different university users carried out photoemission measurements on variety of samples. Some of the spectra recorded by users will be presented in order to show the capability of this beamline. In the later part we will report a review of our recent research work carried out on dilute magnetic thin films using this beamline. (author)

  11. Atomic physics at high brilliance synchrotron sources: Proceedings

    International Nuclear Information System (INIS)

    Berry, G.; Cowan, P.; Gemmell, D.

    1994-08-01

    This report contains papers on the following topics: present status of SPring-8 and the atomic physics undulator beamline; recent photoabsorption measurements in the rare gases and alkalis in the 3 to 15 keV proton energy region; atomic and molecular physics at LURE; experiments on atoms, ions and small molecules using the new generation of synchrotron radiation sources; soft x-ray fluorescence spectroscopy using tunable synchrotron radiation; soft x-ray fluorescence spectroscopy excited by synchrotron radiation: Inelastic and resonant scattering near threshold; outer-shell photoionization of ions; overview of the APS BESSRC beamline development; the advanced light source: Research opportunities in atomic and molecular physics; Photoionization of the Ba + ion by 4d shell excitation; decay dynamics of inner-shell excited atoms and molecules; absorption of atomic Ca, Cr, Mn and Cu; High-resolution photoelectron studies of resonant molecular photoionization; radiative and radiationless resonant raman scattering by synchrotron radiation; auger spectrometry of atoms and molecules; some thoughts of future experiments with the new generation of storage rings; Electron spectroscopy studies of argon K-shell excitation and vacancy cascades; ionization of atoms by high energy photons; ion coincidence spectroscopy on rare gas atoms and small molecules after photoexcitation at energies of several keV; an EBIS for use with synchrotron radiation photoionization of multiply charged ions and PHOBIS; gamma-2e coincidence measurements the wave of the future in inner-shell electron spectroscopy; recoil momentum spectroscopy in ion-atom and photon-atom collisions; a study of compton ionization of helium; future perspectives of photoionization studies at high photon energies; and status report on the advanced photon source. These papers have been cataloged separately elsewhere

  12. Undulators as sources of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Krinsky, S.

    1983-01-01

    At the present time the first generation of facilities having electron storage rings designed for and dedicated to synchrotron radiation research are beginning operations in the US, Europe and Japan. The use of wigglers and undulators as enhanced sources of synchrotron radiation plays an important role at all these facilities. Moreover, recently there has been much activity in the design of the next generation machines, which will place even greater, and perhaps exclusive, emphasis on the use of wigglers and undulators. The operation of these insertion devices has been made even more attractive by advances in the design and construction of permanent magnet wigglers and undulators. This reliable and economical technology eliminates the need for more complex superconducting magnets, except to achieve very high magnetic fields for the production of hard photons from relatively low energy rings. We review the spectral properties of the radiation, emphasizing the complementary aspects of time- and frequency-domain analyses. We next study the brightness of the undulator source. Finally, we consider some limitations associated with operating an undulator in a storage ring.

  13. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  14. Swiss Light Source SLS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The Paul Scherrer Institute has begun work on the implementation of the Swiss Synchrotron Light Source (SLS). The construction of this facility, which will have international scope, is intended to provide a national focus for co-operation between various disciplines and for research in material sciences. Although basic research in physics and chemistry, biology, medicine and environmental sciences would seem to be in the foreground, industrial users also have an interest in the SLS. At present, this mainly centres on investigations into the structure of biological and chemical molecules, the use of high-performance methods of analysis, and the manufacture and investigation of microstructures. SLS is planned to be taken into service with an initial experimental installation by the middle of 2001. In this brochure an overview is presented on the main characteristics of the SLS facility and on its significance as a tool for interdisciplinary research.

  15. Swiss Light Source SLS

    International Nuclear Information System (INIS)

    1999-09-01

    The Paul Scherrer Institute has begun work on the implementation of the Swiss Synchrotron Light Source (SLS). The construction of this facility, which will have international scope, is intended to provide a national focus for co-operation between various disciplines and for research in material sciences. Although basic research in physics and chemistry, biology, medicine and environmental sciences would seem to be in the foreground, industrial users also have an interest in the SLS. At present, this mainly centres on investigations into the structure of biological and chemical molecules, the use of high-performance methods of analysis, and the manufacture and investigation of microstructures. SLS is planned to be taken into service with an initial experimental installation by the middle of 2001. In this brochure an overview is presented on the main characteristics of the SLS facility and on its significance as a tool for interdisciplinary research

  16. Facilities for small-molecule crystallography at synchrotron sources.

    Science.gov (United States)

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  17. Low frequency interference between short synchrotron radiation sources

    Directory of Open Access Journals (Sweden)

    F. Méot

    2001-06-01

    Full Text Available A recently developed analytical formalism describing low frequency far-field synchrotron radiation (SR is applied to the calculation of spectral angular radiation densities from interfering short sources (edge, short magnet. This is illustrated by analytical calculation of synchrotron radiation from various assemblies of short dipoles, including an “isolated” highest density infrared SR source.

  18. Synchrotron-radiation research

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1982-01-01

    The use of radiation from synchrotron sources has started a renaissance in materials, physics, chemistry, and biology. Synchrotron radiation has advantages over conventional x rays in that its source brightness is a thousand times greater throughout a continuous energy spectrum, and resonances are produced with specific electron energy levels. Two major synchrotron radiation sources are operated by DOE: the Stanford Synchrotron Radiation Laboratory at SLAC, and the National Synchrotron Light Source at Brookhaven

  19. Aspects of a new light source

    International Nuclear Information System (INIS)

    Bagley, G.P.

    1978-01-01

    The National Synchrotron Light Source, under construction at Brookhaven Laboratory, will be a uniquely copious source of x-ray and ultraviolet photons with a wide spectrum. Some of the potential uses of this intense radiation include studies of absorption spectra, photo-emission of electrons, x-ray scattering, biochemical studies and other areas of basic research. It can also be used for micro-lithography of integrated circuits for ultra dense semiconductor devices. The basic operation of the electron synchrotron is described. This includes the three step acceleration of the electrons through a linear accelerator, a booster synchrotron and finally in a synchrotron storage ring. The synchrotron magnet power system, the responsibility of a black engineer, is described. An SCR chopper approach is used with precision components to achieve current stability and repeatability of 0.01 percent. This current generates the magnetic fields which bend and focus the electron beam

  20. The emerging role of 4D synchrotron X-ray micro-tomography for climate and fossil energy studies: five experiments showing the present capabilities at beamline 8.3.2 at the Advanced Light Source.

    Science.gov (United States)

    Voltolini, Marco; Haboub, Abdelmoula; Dou, Shan; Kwon, Tae Hyuk; MacDowell, Alastair A; Parkinson, Dilworth Y; Ajo-Franklin, Jonathan

    2017-11-01

    Continuous improvements at X-ray imaging beamlines at synchrotron light sources have made dynamic synchrotron X-ray micro-computed tomography (SXR-µCT) experiments more routinely available to users, with a rapid increase in demand given its tremendous potential in very diverse areas. In this work a survey of five different four-dimensional SXR-µCT experiments is presented, examining five different parameters linked to the evolution of the investigated system, and tackling problems in different areas in earth sciences. SXR-µCT is used to monitor the microstructural evolution of the investigated sample with the following variables: (i) high temperature, observing in situ oil shale pyrolysis; (ii) low temperature, replicating the generation of permafrost; (iii) high pressure, to study the invasion of supercritical CO 2 in deep aquifers; (iv) uniaxial stress, to monitor the closure of a fracture filled with proppant, in shale; (v) reactive flow, to observe the evolution of the hydraulic properties in a porous rock subject to dissolution. For each of these examples, it is shown how dynamic SXR-µCT was able to provide new answers to questions related to climate and energy studies, highlighting the significant opportunities opened recently by the technique.

  1. First operation of SOLEIL, a third generation synchrotron radiation source in France and prospects for ARC-EN-CIEL, a LINAC based fourth generation source

    Energy Technology Data Exchange (ETDEWEB)

    Couprie, M.E. [Synchrotron SOLEIL, Saint Abin, BP 34, 91 192 Gif-sur-Yvette (France)]. E-mail: marie-emmanuelle.couprie@synchrotron-soleil.fr; Filhol, J.M. [Synchrotron SOLEIL, Saint Abin, BP 34, 91 192 Gif-sur-Yvette (France); Benabderhammane, C. [Synchrotron SOLEIL, Saint Abin, BP 34, 91 192 Gif-sur-Yvette (France)] (and others)

    2007-05-21

    The first results of commissioning for the French Synchrotron Radiation Facility SOLEIL at 2.75 GeV are presented. Perspectives for the fourth generation light source based on the ARC-EN-CIEL project are described.

  2. First operation of SOLEIL, a third generation synchrotron radiation source in France and prospects for ARC-EN-CIEL, a LINAC based fourth generation source

    Science.gov (United States)

    Couprie, M. E.; Filhol, J. M.; Benabderhammane, C.; Berteaud, P.; Besson, J. C.; Briquez, F.; Brunelle, P.; Bruni, C.; Chubar, O.; Denard, J. C.; Girault, M.; Godefroy, J. M.; Herbaux, C.; Lebasque, P.; Le Roux, V.; Level, M. P.; Lestrade, A.; Loulergue, A.; Marchand, P.; Marcouille, O.; Marteau, F.; Massal, M.; Nadji, A.; Nadolski, L.; Nagaoka, R.; Paulin, F.; Pottin, B.; Tordeux, M. A.; Valleau, M.; Vétéran, J.; Carré, B.; Garzella, D.; Labat, M.; Lambert, G.; Monot, P.; Jablonka, M.; Méot, F.; Mosnier, A.; Marquès, J. R.; Ortéga, J. M.

    2007-05-01

    The first results of commissioning for the French Synchrotron Radiation Facility SOLEIL at 2.75 GeV are presented. Perspectives for the fourth generation light source based on the ARC-EN-CIEL project are described.

  3. Advanced Light Source (ALS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Light Source (ALS), a world leader in soft x-ray science, generates light in the wavelengths needed for examining the atomic and electronic structure of...

  4. Photonic crystal light source

    Science.gov (United States)

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  5. Flux and brightness calculations for various synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J.M.; Hulbert, S.L.

    1991-11-01

    Synchrotron radiation (SR) storage rings are powerful scientific and technological tools. The first generation of storage rings in the US., e.g., SURF (Washington, D.C.), Tantalus (Wisconsin), SSRL (Stanford), and CHESS (Cornell), revolutionized VUV, soft X-ray, and hard X-ray science. The second (present) generation of storage rings, e.g. the NSLS VUV and XRAY rings and Aladdin (Wisconsin), have sustained the revolution by providing higher stored currents and up to a factor of ten smaller electron beam sizes than the first generation sources. This has made possible a large number of experiments that could not performed using first generation sources. In addition, the NSLS XRAY ring design optimizes the performance of wigglers (high field periodic magnetic insertion devices). The third generation storage rings, e.g. ALS (Berkeley) and APS (Argonne), are being designed to optimize the performance of undulators (low field periodic magnetic insertion devices). These extremely high brightness sources will further revolutionize x-ray science by providing diffraction-limited x-ray beams. The output of undulators and wigglers is distinct from that of bending magnets in magnitude, spectral shape, and in spatial and angular size. Using published equations, we have developed computer programs to calculate the flux, central intensity, and brightness output bending magnets and selected wigglers and undulators of the NSLS VUV and XRAY rings, the Advanced Light Source (ALS), and the Advanced Photon Source (APS). Following is a summary of the equations used, the graphs and data produced, and the computer codes written. These codes, written in the C programming language, can be used to calculate the flux, central intensity, and brightness curves for bending magnets and insertion devices on any storage ring.

  6. Flux and brightness calculations for various synchrotron radiation sources

    International Nuclear Information System (INIS)

    Weber, J.M.; Hulbert, S.L.

    1991-11-01

    Synchrotron radiation (SR) storage rings are powerful scientific and technological tools. The first generation of storage rings in the US., e.g., SURF (Washington, D.C.), Tantalus (Wisconsin), SSRL (Stanford), and CHESS (Cornell), revolutionized VUV, soft X-ray, and hard X-ray science. The second (present) generation of storage rings, e.g. the NSLS VUV and XRAY rings and Aladdin (Wisconsin), have sustained the revolution by providing higher stored currents and up to a factor of ten smaller electron beam sizes than the first generation sources. This has made possible a large number of experiments that could not performed using first generation sources. In addition, the NSLS XRAY ring design optimizes the performance of wigglers (high field periodic magnetic insertion devices). The third generation storage rings, e.g. ALS (Berkeley) and APS (Argonne), are being designed to optimize the performance of undulators (low field periodic magnetic insertion devices). These extremely high brightness sources will further revolutionize x-ray science by providing diffraction-limited x-ray beams. The output of undulators and wigglers is distinct from that of bending magnets in magnitude, spectral shape, and in spatial and angular size. Using published equations, we have developed computer programs to calculate the flux, central intensity, and brightness output bending magnets and selected wigglers and undulators of the NSLS VUV and XRAY rings, the Advanced Light Source (ALS), and the Advanced Photon Source (APS). Following is a summary of the equations used, the graphs and data produced, and the computer codes written. These codes, written in the C programming language, can be used to calculate the flux, central intensity, and brightness curves for bending magnets and insertion devices on any storage ring

  7. Light Sources and Lighting Circuits

    Science.gov (United States)

    Honda, Hisashi; Suwa, Takumi; Yasuda, Takeo; Ohtani, Yoshihiko; Maehara, Akiyoshi; Okada, Atsunori; Komatsu, Naoki; Mannami, Tomoaki

    According to the Machinery Statistics of the Ministry of Economy, Trade and Industry, the production of incandescent lamps in Japan in 2007 was 990 million units (90.0% of the previous year's total), in which the production of incandescent lamps for general lighting was 110 million units (90.0% of the previous year's total) and of tungsten-halogen lamps was 44 million units (96.6% of the previous year's total). The production of fluorescent lamps was 927 million units (93.9% of the previous year's total), in which general fluorescent lamps, excluding those for LCD back lighting, was 320 million units (87.2% of the previous year's total). Also, the production of HID lamps was 10 million units (101.5% of the previous year's total). On the other hand, when the numbers of sales are compared with the sales of the previous year, incandescent lamps for general use was 99.8%, tungsten-halogen lamps was 96.9%, fluorescent lamps was 95.9%, and HID lamps was 98.9%. Self-ballasted fluorescent lamps alone showed an increase in sales as strong as 29 million units, or 121.7% of the previous year's sales. It is considered that the switchover of incandescent lamps to HID lamps was promoted for energy conservation and carbon dioxide reduction with the problem of global warming in the background. In regard to exhibitions, Lighting Fair 2007 was held in Tokyo in March, and LIGHTFAIR INTERNATIONAL 2007 was held in New York in May. Regarding academic conferences, LS:11 (the 11th International Symposium on the Science & Technology of Light Sources) was held in Shanghai in May, and the First International Conference on White LEDs and Solid State Lighting was held in Tokyo in November. Both conferences suggested that there are strong needs and concerns now about energy conservation, saving natural resources, and restrictions of hazardous materials. In regard to incandescent lamps, the development of products aiming at higher efficacy, electric power savings, and longer life was advanced by

  8. Spatial and temporal beam profiles for the LHC using synchrotron light

    Science.gov (United States)

    Jeff, A.; Bart Pedersen, S.; Boccardi, A.; Bravin, E.; Fisher, A. S.; Guerrero Ollacarizqueta, A.; Lefevre, T.; Rabiller, A.; Welsch, C. P.

    2010-04-01

    Synchrotron radiation is emitted whenever a beam of charged particles passes though a magnetic field. The power emitted is strongly dependent on the relativistic Lorentz factor of the particles, which itself is proportional to the beam energy and inversely proportional to the particle rest mass. Thus, synchrotron radiation is usually associated with electron accelerators, which are commonly used as light sources. However the largest proton machines reach sufficiently high energies to make synchrotron light useful for diagnostic purposes. The Large Hadron Collider at CERN will accelerate protons up to an energy of 7TeV. An optical arrangement has been made which focuses synchrotron light from two LHC magnets to image the cross-section of the beam. It is also planned to use this setup to produce a longitudinal profile of the beam by use of fast Single Photon Counting. This is complicated by the bunched nature of the beam which needs to be measured with a very large dynamic range. In this contribution we present early experimental data of the transverse LHC beam profile together with a scheme for measuring the longitudinal profile with a time resolution of 50 ps. It includes the use of a gating regime to increase the dynamic range of the photon counter and a three-stage correction algorithm to compensate for the detector's deadtime, afterpulsing and pile-up effects.

  9. An Upgrade for the Advanced Light Source

    International Nuclear Information System (INIS)

    Chemla, Daniel S.; Feinberg, Benedict; Hussain, Zahid; Kirz, Janos; Krebs, Gary F.; Padmore, Howard A.; Robin, David S.; Robinson, Arthur L.; Smith, Neville V.

    2004-01-01

    One of the first third-generation synchrotron light sources, the ALS, has been operating for almost a decade at Berkeley Lab, where experimenters have been exploiting its high brightness for forefront science. However, accelerator and insertion-device technology have significantly changed since the ALS was designed. As a result, the performance of the ALS is in danger of being eclipsed by that of newer, more advanced sources. The ALS upgrade that we are planning includes full-energy, top-off injection with higher storage-ring current and the replacement of five first-generation insertion devices with nine state-of-the art insertion devices and four new application-specific beamlines now being identified in a strategic planning process. The upgrade will help keep the ALS at the forefront of soft x-ray synchrotron light sources for the next two decades

  10. A Proposal to the Department of Energy for The Fabrication of a Very High Energy Polarized Gama Ray Beam Facility and A Program of Medium Energy Physics Research at The National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1982-09-01

    This proposal requests support for the fabrication and operation of a modest facility that would provide relatively intense beams of monochromatic and polarized photons with energies in the range of several hundreds of MeV. These {gamma} rays would be produced by Compton backscattering laser light from the electrons circulating in the 2.5-3.0 GeV 'X-RAY' storage ring of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The excellent emittance, phase space, and high current of this state-of-the-art storage ring will allow the production of 2 x 10{sup 7} {gamma} rays per second. These photons would be tagged by detecting the scattered electrons, thereby determining the energy to 2.7 MeV for all {gamma}-ray energies. The efficiency of this tagging procedure is 100% and the {gamma}-ray beam would be essentially background free. Tagging will also allow the flexibility of operating with a dynamic range as large as 200 MeV in photon energy while still preserving high resolution and polarization. These beams will permit a fruitful study of important questions in medium-energy nuclear physics. The initial goals of this program are to reach reliable operation with photon energies up to 300 MeV and to develop {gamma}-ray beams with energies up to about 500 MeV. To demonstrate reliable operation, a modest physics program is planned that, for the most part, utilizes existing magnets and detector systems but nonetheless addresses several important outstanding problems. Gamma ray beams of the versatility, intensity, energy, and resolution that can be achieved at this facility are not currently available at any other world facility either existing or under construction. Furthermore, the proposed program would produce the first intense source of medium-energy {gamma} rays that are polarized. Because of the difficulties in producing such polarized beams, it is very unlikely that viable alternate sources can be developed in the near future; at

  11. Polymer research at synchrotron radiation sources: symposium proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Russell, T.P.; Goland, A.N. (eds.)

    1985-01-01

    The twenty-two papers are arranged into eleven sessions entitled: general overviews; time-resolved x-ray scattering; studies using fluorescence, ion-containing polymers; time-resolved x-ray scattering; novel applications of synchrotron radiation; phase transitions in polymers; x-ray diffraction on polymers; recent detector advances; complementary light, x-ray and neutron studies; and neutron scattering studies. Seven of the papers are processed separately; three of the remainder have been previously processed. (DLC)

  12. Polymer research at synchrotron radiation sources: symposium proceedings

    International Nuclear Information System (INIS)

    Russell, T.P.; Goland, A.N.

    1985-01-01

    The twenty-two papers are arranged into eleven sessions entitled: general overviews; time-resolved x-ray scattering; studies using fluorescence, ion-containing polymers; time-resolved x-ray scattering; novel applications of synchrotron radiation; phase transitions in polymers; x-ray diffraction on polymers; recent detector advances; complementary light, x-ray and neutron studies; and neutron scattering studies. Seven of the papers are processed separately; three of the remainder have been previously processed

  13. Advanced Light Source control system

    International Nuclear Information System (INIS)

    Magyary, S.; Chin, M.; Cork, C.; Fahmie, M.; Lancaster, H.; Molinari, P.; Ritchie, A.; Robb, A.; Timossi, C.

    1989-03-01

    The Advanced Light Source (ALS) is a third generation 1--2 GeV synchrotron radiation source designed to provide ports for 60 beamlines. It uses a 50 MeV electron linac and 1.5 GeV, 1 Hz, booster synchrotron for injection into a 1--2 GeV storage ring. Interesting control problems are created because of the need for dynamic closed beam orbit control to eliminate interaction between the ring tuning requirements and to minimize orbit shifts due to ground vibrations. The extremely signal sensitive nature of the experiments requires special attention to the sources of electrical noise. These requirements have led to a control system design which emphasizes connectivity at the accelerator equipment end and a large I/O bandwidth for closed loop system response. Not overlooked are user friendliness, operator response time, modeling, and expert system provisions. Portable consoles are used for local operation of machine equipment. Our solution is a massively parallel system with >120 Mbits/sec I/O bandwidth and >1500 Mips computing power. At the equipment level connections are made using over 600 powerful Intelligent Local Controllers (ILC-s) mounted in 3U size Eurocard slots using fiber-optic cables between rack locations. In the control room, personal computers control and display all machine variables at a 10 Hz rate including the scope signals which are collected though the control system. Commercially available software and industry standards are used extensively. Particular attention is paid to reliability, maintainability and upgradeability. 10 refs., 11 figs

  14. National Synchrotron Light Source. Annual report 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.L.; Lazarz, N.M. [eds.

    1993-04-01

    This report contains seven sections discussing the following: (1) scientific research at the NSLS; (2) symposia and workshops held at the NSLS; (3) a facility report; (4) NSLS projects; (5) NSLS operational highlights; (6) informational guides to the VUV and X-ray beamlines; and (7) appendices which include abstracts on projects carried out at the VUV and X-ray beamlines.

  15. Study of spear as a dedicated source of synchrotron radiation

    International Nuclear Information System (INIS)

    Cerino, J.; Golde, A.; Hastings, J.; Lindau, I.; Salsburg, B.; Winick, H.; Lee, M.; Morton, P.; Garren, A.

    1977-11-01

    A study was made of the potential of SPEAR as a dedicated source of synchrotron radiation, based on the expectation that SPEAR will become increasingly available for this purpose as PEP, the 18-GeV colliding-beam storage ring now under construction by LBL and SLAC, becomes operational. A synchrotron radiation research program has been underway since May, 1974. Two beam ports capable of serving 9 simultaneous users are now operational. In single-beam multi-bunch operation high currents are possible (225 mA has been achieved and > approximately 300 mA is expected) and the electron beam emittance can be made smaller, resulting in higher source point brightness. Descriptions are given of SPEAR capabilities and of plans to expand the research capability by adding beam runs and by inserting wiggler magnets in SPEAR straight sections

  16. Science experiments via telepresence at a synchrotron radiation source facility

    International Nuclear Information System (INIS)

    Warren, J. E.; Diakun, G.; Bushnell-Wye, G.; Fisher, S.; Thalal, A.; Helliwell, M.; Helliwell, J. R.

    2008-01-01

    The application of a turnkey communication system for telepresence at station 9.8 of the Synchrotron Radiation Source, Daresbury, is described and demonstrated, including its use for inter-continental classroom instruction and user training. Station 9.8 is one of the most oversubscribed and high-throughput stations at the Synchrotron Radiation Source, Daresbury, whereby awarded experimental time is limited, data collections last normally no longer than an hour, user changeover is normally every 24 h, and familiarity with the station systems can be low. Therefore time lost owing to technical failures on the station has a dramatic impact on productivity. To provide 24 h support, the application of a turnkey communication system has been implemented, and is described along with additional applications including its use for inter-continental classroom instruction, user training and remote participation

  17. Partial coherence and imperfect optics at a synchrotron radiation source modeled by wavefront propagation

    Science.gov (United States)

    Laundy, David; Alcock, Simon G.; Alianelli, Lucia; Sutter, John P.; Sawhney, Kawal J. S.; Chubar, Oleg

    2014-09-01

    A full wave propagation of X-rays from source to sample at a storage ring beamline requires simulation of the electron beam source and optical elements in the beamline. The finite emittance source causes the appearance of partial coherence in the wave field. Consequently, the wavefront cannot be treated exactly with fully coherent wave propagation or fully incoherent ray tracing. We have used the wavefront code Synchrotron Radiation Workshop (SRW) to perform partially coherent wavefront propagation using a parallel computing cluster at the Diamond Light Source. Measured mirror profiles have been used to correct the wavefront for surface errors.

  18. Experiments planned to be made with the synchrotron radiation source

    International Nuclear Information System (INIS)

    Matz, W.

    1993-01-01

    For this working meeting, various research groups from the Land Sachsen and from the neighbouring countries Poland and the Czech Republic have been invited in order to present their materials research programmes or task-specific experiments intended to be carried out with the synchrotron radiation source to be installed in the near future. The proceedings volume in hand presents the discussion papers, which have been directly reproduced from the original foils. (orig.) [de

  19. Advanced Light Source beam position monitor

    International Nuclear Information System (INIS)

    Hinkson, J.

    1991-01-01

    The Advanced Light Source (ALS) is a synchrotron radiation facility nearing completion at LBL. As a third-generation machine, the ALS is designed to produce intense light from bend magnets, wigglers, and undulators (insertion devices). The facility will include a 50 MeV electron linear accelerator, a 1.5 GeV booster synchrotron, beam transport lines, a 1--2 GeV storage ring, insertion devices, and photon beam lines. Currently, the beam injection systems are being commissioned, and the storage ring is being installed. Electron beam position monitors (BPM) are installed throughout the accelerator and constitute the major part of accelerator beam diagnostics. The design of the BPM instruments is complete, and 50 units have been constructed for use in the injector systems. We are currently fabricating 100 additional instruments for the storage ring. In this paper I discuss engineering fabrication, testing and performance of the beam pickup electrodes and the BPM electronics

  20. Methods for lipid nanostructure investigation at neutron and synchrotron sources

    Science.gov (United States)

    Kiselev, M. A.

    2011-03-01

    A lipid membrane is a main component of biological membranes. Contemporary bionanotechnologies use phospholipids and ceramides as basic components of drugs and cosmetic preparations. Phospholipids-based nanoparticles are used as drug carriers. Effective development of bionanotechnologies in Russia calls for creation of physical methods to diagnose the particle nanostructure which would be promising for application in pharmacology. Radiation with wavelengths of 1-10 Å is an adequate instrument for detecting the nanostructure of lipid bi- and monolayers. The review deals with methods that apply neutron scattering and synchrotron radiation for studying nanostructures of lipid membranes, phospholipid nanoparticles, and phospholipid monolayers on a water surface by techniques of diffraction, small-angle scattering, and reflectometry. The importance of the mutually complementary application of neutron and synchrotron radiation for solving urgent problems of membrane biophysics, microbiology, dermapharmacology, and bionanotechnologies is demonstrated by particular examples of studies of phospholipid membranes and ceramide-based membranes. The efficiency of development and application of new methods for solving urgent problems of biophysics is shown. The review is written on the basis of results obtained over the period of 1999-2010 at the Joint Institute for Nuclear Research (JINR) Laboratory of Neutron Physics in collaboration with the Pharmaceutical Departments of universities of France (Paris-Sud, Chatenay Malabry) and Germany (Martin Luther University, Halle). The experiments were performed at various European and Russian neutron and synchrotron sources.

  1. Orbit correction using an eigenvector method with constraints for synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Kentaro [Photon Factory, High Energy Accelerator Research Organization, 1-1, Oho, Tsukuba, Ibaraki 305-0801 (Japan)], E-mail: kentaro.harada@kek.jp; Obina, Takashi; Kobayashi, Yukinori [Photon Factory, High Energy Accelerator Research Organization, 1-1, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nakamura, Norio; Takaki, Hiroyuki; Sakai, Hiroshi [Institute for Solid State Physics, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2009-06-11

    An eigenvector method with constraints (EVC) is proposed as a new orbit correction scheme for synchrotron light sources. EVC efficiently corrects the global orbit in a storage ring, and can simultaneously perform exact correction of local orbits without deterioration of the global orbit. To demonstrate the advantages of EVC over the ordinary eigenvector method (EV), we carried out experimental studies at the Photon Factory storage ring (PF-ring) and the Photon Factory Advanced Ring (PF-AR) at the High Energy Accelerator Research Organization (KEK). The performance of EVC was systematically examined at PF-ring and PF-AR. The experimental results agreed well with the simulated ones. Consequently, we confirmed that EVC easily realized orbit correction for both global and local orbits, and that it was very effective for the beam stabilization of synchrotron radiation (SR) sources.

  2. Orbit correction using an eigenvector method with constraints for synchrotron radiation sources

    Science.gov (United States)

    Harada, Kentaro; Obina, Takashi; Kobayashi, Yukinori; Nakamura, Norio; Takaki, Hiroyuki; Sakai, Hiroshi

    2009-06-01

    An eigenvector method with constraints (EVC) is proposed as a new orbit correction scheme for synchrotron light sources. EVC efficiently corrects the global orbit in a storage ring, and can simultaneously perform exact correction of local orbits without deterioration of the global orbit. To demonstrate the advantages of EVC over the ordinary eigenvector method (EV), we carried out experimental studies at the Photon Factory storage ring (PF-ring) and the Photon Factory Advanced Ring (PF-AR) at the High Energy Accelerator Research Organization (KEK). The performance of EVC was systematically examined at PF-ring and PF-AR. The experimental results agreed well with the simulated ones. Consequently, we confirmed that EVC easily realized orbit correction for both global and local orbits, and that it was very effective for the beam stabilization of synchrotron radiation (SR) sources.

  3. Photon Science at Modern Light Sources

    Science.gov (United States)

    Arthur, John

    2009-12-01

    More than 50 large x-ray and UV light sources based on high-energy electron accelerators are in operation around the world, serving a scientific community numbering in the tens of thousands. These sources generate synchrotron radiation from accelerated electrons or positrons. The development of synchrotron light sources over the last 40 years has fueled an exponential increase in x-ray source brightness of more than 10 orders of magnitude. The next large advance in source potential is now underway, with the commissioning of the first x-ray Free-Electron Laser (FEL) sources. Using high-energy electron linear accelerators, these facilities produce sub-picosecond pulses of hard x-rays with peak brightness more than 10 orders of magnitude greater than current synchrotron facilities. FEL x-ray facilities will soon be operational in the US, Japan, and Germany. Research at modern light sources makes use of a wide range of experimental techniques. Many experiments are designed to study the structure of matter at the atomic scale using elastic x-ray scattering. This technique has been particularly effective for determining the structures of biological molecules, such as proteins, viruses, and drugs. Inelastic x-ray scattering, or x-ray absorption followed by emission of electrons or photons, can give information about the electronic structures of atoms, which can be used to deduce local environment information such as atomic species, bonding state, geometry of neighboring atoms, or magnetic state. For some techniques involving x-ray emission from a sample, cryogenic detectors with energy resolution at the ˜10 eV level or better would be very helpful. Shifts in electron energy levels associated with bonding states and magnetic states are typically several eV, while the energy structure associated with Compton inelastic scattering is typically in the range of a few tens of eV. Current energy-resolving detectors used at synchrotron light sources are hampered by either poor

  4. Circular dichroism beamline B23 at the Diamond Light Source.

    Science.gov (United States)

    Hussain, Rohanah; Jávorfi, Tamás; Siligardi, Giuliano

    2012-01-01

    Synchrotron radiation circular dichroism (SRCD) is a well established technique in structural biology. The first UV-VIS beamline, dedicated to circular dichroism, at Diamond Light Source Ltd, a third-generation synchrotron facility in south Oxfordshire, UK, has recently become operational and it is now available for the user community. Herein the main characteristics of the B23 SRCD beamline, the ancillary facilities available for users, and some of the recent advances achieved are summarized.

  5. Magnet power supplies for the Advanced Light Source

    International Nuclear Information System (INIS)

    Jackson, L.T.; Lutz, I.C.

    1989-03-01

    The Lawrence Berkeley Laboratory (LBL) is building an Advanced Light Source (ALS) to produce synchrotron radiation. An electron linear accelerator, and a booster synchrotron are used to accelerate the electron beam to 1.5 GeV to fill the storage ring. This paper describes the power supplies used for the magnets in the booster and the storage ring and the interface requirements for computer control and monitoring the power supplies and magnet currents. 1 ref., 3 figs., 2 tabs

  6. Multi-modal spectroscopic imaging with synchrotron light to study mechanisms of brain disease

    Science.gov (United States)

    Summers, Kelly L.; Fimognari, Nicholas; Hollings, Ashley; Kiernan, Mitchell; Lam, Virginie; Tidy, Rebecca J.; Takechi, Ryu; George, Graham N.; Pickering, Ingrid J.; Mamo, John C.; Harris, Hugh H.; Hackett, Mark J.

    2017-04-01

    The international health care costs associated with Alzheimer's disease (AD) and dementia have been predicted to reach $2 trillion USD by 2030. As such, there is urgent need to develop new treatments and diagnostic methods to stem an international health crisis. A major limitation to therapy and diagnostic development is the lack of complete understanding about the disease mechanisms. Spectroscopic methods at synchrotron light sources, such as FTIR, XRF, and XAS, offer a "multi-modal imaging platform" to reveal a wealth of important biochemical information in situ within ex vivo tissue sections, to increase our understanding of disease mechanisms.

  7. Measurement of parameters in Indus-2 synchrotron radiation source.

    Science.gov (United States)

    Ghodke, A D; Husain, Riyasat; Kumar, Pradeep; Yadav, Surendra; Puntambekar, T A

    2012-10-01

    The paper presents the measurement of optics parameters in Indus-2 synchrotron radiation source, which include betatron tune, beta function, dispersion function, natural chromaticity, corrected chromaticity, central RF frequency, momentum compaction factor, and linear betatron coupling. Two methods were used for beta function measurement; a conventional quadrupole scan method and a method using the fitting of the orbit response matrix. A robust Levenberg-Marquardt algorithm was used for nonlinear least square fitting of the orbit response matrix. In this paper, detailed methods for the parameter measurements are described. The measured results are discussed and compared with the theoretical values obtained using accelerator simulation code Accelerator Toolbox in MATLAB.

  8. Automated tuning of the advanced photon source booster synchrotron

    International Nuclear Information System (INIS)

    Biedron, S.G.; Milton, S.V.

    1997-01-01

    The acceleration cycle of the Advanced Photon Source (APS) booster synchrotron is completed within 223 ms and is repeated at 2 Hz. Unless properly corrected, transverse and longitudinal injection errors can lead to inefficient booster performance. In order to simplify daily operation, automated tuning methods have been developed. Through the use of beam position monitor (BPM) reading, transfer line corrector magnets, magnet ramp timing, and empirically determined response functions, the injection process is optimized by correcting the first turn trajectory to the measured closed orbit. These tuning algorithms and their implementation are described here along with an evaluation of their performance

  9. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    Science.gov (United States)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  10. The three-dimensional microstructure of polycrystalline materials unravelled by synchrotron light

    DEFF Research Database (Denmark)

    Ludwig, W.; King, A.; Herbig, M.

    2011-01-01

    (different crystallographic phases, cracks, porosities) can be detected using 3D imaging modes exploiting Fresnel diffraction and the coherence properties of third generation synchrotron beams. X-ray diffraction contrast tomography, a technique based on Bragg diffraction imaging, provides access to the 3D......The three-dimensional microstructure of polycrystalline materials unravelled by synchrotron light Synchrotron radiation X-ray imaging and diffraction techniques offer new possibilities for non-destructive bulk characterization of polycrystalline materials. Minute changes in electron density...

  11. Synchrotron radiation sources: their properties and applications for VUV and X-ray spectroscopy

    International Nuclear Information System (INIS)

    Koch, E.E.

    1976-09-01

    Synchrotron radiation from accelerators and storage rings offers far reaching possibilities for many fields of basic and applied physics. The properties of synchrotron radiation, existing and planned synchrotron radiation facilities, as well as instrumental aspects are discussed. In order to illustrate the usefulness of the synchrotron radiation sources a few highlights from atomic, molelucar, and solid state spectroscopy are presented and examples from x-ray experiments and from the field of applied physics are given. (orig.) [de

  12. The Advanced Light Source (ALS) Radiation Safety System

    International Nuclear Information System (INIS)

    Ritchie, A.L.; Oldfather, D.E.; Lindner, A.F.

    1993-08-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 Gev synchrotron light source facility consisting of a 120 kev electron gun, 50 Mev linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. Figure 1. ALS floor plan. Pairs of neutron and gamma radiation monitors are shown as dots numbered from 1 to 12. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  13. The Advanced Light Source (ALS) Radiation Safety System

    International Nuclear Information System (INIS)

    Ritchie, A.; Oldfather, D.; Lindner, A.

    1993-05-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 GeV synchrotron light source facility consisting of a 120 keV electron gun, 50 MeV linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  14. Ring insertions as light sources

    International Nuclear Information System (INIS)

    Green, G.K.

    1975-01-01

    Bending magnets can be inserted in the long straight sections of electron storage rings to produce synchrotron radiation. If the design is carefully proportioned, the bending magnets create only a small perturbation of the properties of the ring. The resulting spectra have favorable optical properties as sources for spectroscopy and diffraction studies. The characteristics of the source are discussed, and the geometrical requirements of the magnets are presented

  15. The role of iron in neurodegenerative disorders: insights and opportunities with synchrotron light

    Directory of Open Access Journals (Sweden)

    Joanna Frances Collingwood

    2014-08-01

    Full Text Available There is evidence for iron dysregulation in many forms of disease, including a broad spectrum of neurodegenerative disorders. In order to advance our understanding of the pathophysiological role of iron, it is helpful to be able to determine in detail the distribution of iron as it relates to metabolites, proteins, cells, and tissues, the chemical state and local environment of iron, and its relationship with other metal elements. Synchrotron light sources, providing primarily X-ray beams accompanied by access to longer wavelengths such as infra-red, are an outstanding tool for multi-modal non-destructive analysis of iron in these systems. The micro- and nano-focused X-ray beams that are generated at synchrotron facilities enable measurement of iron and other transition metal elements to be performed with outstanding analytic sensitivity and specificity. Recent developments have increased the scope for methods such as X-ray fluorescence mapping to be used quantitatively rather than semi-quantitatively. Burgeoning interest, coupled with technical advances and beamline development at synchrotron facilities, has led to substantial improvements in resources and methodologies in the field over the past decade. In this paper we will consider how the field has evolved with regard to the study of iron in proteins, cells, and brain tissue, and identify challenges in sample preparation and analysis. Selected examples will be used to illustrate the contribution, and future potential, of synchrotron X-ray analysis for the characterization of iron in model systems exhibiting iron dysregulation, and for human cases of neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease, Friedreich’s ataxia and Amyotrophic Lateral Sclerosis.

  16. The role of iron in neurodegenerative disorders: insights and opportunities with synchrotron light.

    Science.gov (United States)

    Collingwood, Joanna F; Davidson, Mark R

    2014-01-01

    There is evidence for iron dysregulation in many forms of disease, including a broad spectrum of neurodegenerative disorders. In order to advance our understanding of the pathophysiological role of iron, it is helpful to be able to determine in detail the distribution of iron as it relates to metabolites, proteins, cells, and tissues, the chemical state and local environment of iron, and its relationship with other metal elements. Synchrotron light sources, providing primarily X-ray beams accompanied by access to longer wavelengths such as infra-red, are an outstanding tool for multi-modal non-destructive analysis of iron in these systems. The micro- and nano-focused X-ray beams that are generated at synchrotron facilities enable measurement of iron and other transition metal elements to be performed with outstanding analytic sensitivity and specificity. Recent developments have increased the scope for methods such as X-ray fluorescence mapping to be used quantitatively rather than semi-quantitatively. Burgeoning interest, coupled with technical advances and beamline development at synchrotron facilities, has led to substantial improvements in resources and methodologies in the field over the past decade. In this paper we will consider how the field has evolved with regard to the study of iron in proteins, cells, and brain tissue, and identify challenges in sample preparation and analysis. Selected examples will be used to illustrate the contribution, and future potential, of synchrotron X-ray analysis for the characterization of iron in model systems exhibiting iron dysregulation, and for human cases of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Friedreich's ataxia, and amyotrophic lateral sclerosis.

  17. Diamond Light Source: status and perspectives.

    Science.gov (United States)

    Materlik, Gerhard; Rayment, Trevor; Stuart, David I

    2015-03-06

    Diamond Light Source, a third-generation synchrotron radiation (SR) facility in the UK, celebrated its 10th anniversary in 2012. A private limited company was set up in April 2002 to plan, construct and operate the new user-oriented SR facility, called in brief Diamond. It succeeded the Synchrotron Radiation Source in Daresbury, a second-generation synchrotron that opened in 1980 as the world's first dedicated X-ray-providing facility, closing finally in 2008, by which time Diamond's accelerators and first beamlines were operating and user experiments were under way. This theme issue of Philosophical Transactions of the Royal Society A gives some examples of the rich diversity of research done in the initial five years, with some glimpses of activity up to 2014. Speakers at the 10 year anniversary symposium were drawn from a small number of major thematic areas and each theme was elaborated by a few speakers whose contributions were placed into a broader context by a leading member of the UK academic community in the role of rapporteur. This introduction gives a summary of the design choices and strategic planning of Diamond as a coherent user facility, a snapshot of its present status and some consideration of future perspectives. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Operational experience with synchrotron light interferometers for CEBAF experimental beam lines

    Energy Technology Data Exchange (ETDEWEB)

    Pavel Chevtsov

    2006-10-24

    Beam size and energy spread monitoring systems based on Synchrotron Light Interferometers (SLI) have been in operations at Jefferson Lab for several years. A non-invasive nature and a very high (a few mm) resolution of SLI make these instruments valuable beam diagnostic tools for the CEBAF accelerator. This presentation describes the evolution of the Synchrotron Light Interferometer at Jefferson Lab and highlights our extensive experience in the installation and operation of the SLI for CEBAF experimental beam lines.

  19. Attosecond light sources in the water window

    Science.gov (United States)

    Ren, Xiaoming; Li, Jie; Yin, Yanchun; Zhao, Kun; Chew, Andrew; Wang, Yang; Hu, Shuyuan; Cheng, Yan; Cunningham, Eric; Wu, Yi; Chini, Michael; Chang, Zenghu

    2018-02-01

    As a compact and burgeoning alternative to synchrotron radiation and free-electron lasers, high harmonic generation (HHG) has proven its superiority in static and time-resolved extreme ultraviolet spectroscopy for the past two decades and has recently gained many interests and successes in generating soft x-ray emissions covering the biologically important water window spectral region. Unlike synchrotron and free-electron sources, which suffer from relatively long pulse width or large time jitter, soft x-ray sources from HHG could offer attosecond time resolution and be synchronized with their driving field to investigate time-resolved near edge absorption spectroscopy, which could reveal rich structural and dynamical information of the interrogated samples. In this paper, we review recent progresses on generating and characterizing attosecond light sources in the water window region. We show our development of an energetic, two-cycle, carrier-envelope phase stable laser source at 1.7 μm and our achievement in producing a 53 as soft x-ray pulse covering the carbon K-edge in the water window. Such source paves the ways for the next generation x-ray spectroscopy with unprecedented temporal resolution.

  20. Monitoring the beam profile in HLS with synchrotron light

    International Nuclear Information System (INIS)

    Fang Zhigao; Wang Guicheng; Yan Xiufen; Wang Jihong; Zhang Danhong; Zhou Yuehua; Zhao Feng; Xie Rongsheng; Sun Baogen; Wu Jinqi

    1996-01-01

    The beam profile monitor built for HLS (Hefei Light Source) is presented. The monitor is composed of an imaging optical system, a commercial CCD TV camera as a detector, an electronic circuit, and a computer to calculate the beam dimensions. This technique has the ability to get the emittance of HLS with the superior resolution, to monitor the beam orbit and beam instability as well. (orig.)

  1. Advanced Light Source: Activity report 1993

    International Nuclear Information System (INIS)

    1994-11-01

    The Advanced Light Source (ALS) produces the world's brightest light in the ultraviolet and soft x-ray regions of the spectrum. The first low-energy third-generation synchrotron source in the world, the ALS provides unprecedented opportunities for research in science and technology not possible anywhere else. This year marked the beginning of operations and the start of the user research program at the ALS, which has already produced numerous high quality results. A national user facility located at Lawrence Berkeley Laboratory of the University of California, the ALS is available to researchers from academia, industry, and government laboratories. This report contains the following: (1) director's message; (2) operations overview; (3) user program; (4) users' executive committee; (5) industrial outreach; (6) accelerator operations; (7) beamline control system; (8) insertion devices; (9) experimental systems; (10) beamline engineering; (11) first results from user beamlines; (12) beamlines for 1994--1995; (13) special events; (14) publications; (15) advisory panels; and (16) ALS staff

  2. Advanced Light Source beam diagnostics systems

    International Nuclear Information System (INIS)

    Hinkson, J.

    1993-10-01

    The Advanced Light Source (ALS), a third-generation synchrotron light source, has been recently commissioned. Beam diagnostics were very important to the success of the operation. Each diagnostic system is described in this paper along with detailed discussion of its performance. Some of the systems have been in operation for two years. Others, in the storage ring, have not yet been fully commissioned. These systems were, however, working well enough to provide the essential information needed to store beam. The devices described in this paper include wall current monitors, a beam charge monitor, a 50 ohm Faraday cup, DC current transformers, broad-hand striplines, fluorescence screens, beam collimators and scrapers, and beam position monitors. Also, the means by which waveforms are digitized and displayed in the control room is discussed

  3. Toward a fourth-generation light source

    International Nuclear Information System (INIS)

    Moncton, D. E.

    1999-01-01

    Historically, x-ray research has been propelled by the existence of urgent and compelling scientific questions and the push of powerful and exquisite source technology. These two factors have gone hand in hand since Rontgen discovered x-rays. Here we review the progress being made with existing third-generation synchrotron-radiation light sources and the prospects for a fourth-generation light source with dramatically improved laser-like beam characteristics. The central technology for high-brilliance x-ray beams is the x-ray undulator, a series of alternating-pole magnets situated above and below the particle beam. When the particle beam is oscillated by the alternating magnetic fields, a set of. interacting and interfering wave fronts is produced, which leads to an x-ray beam with extraordinary properties. Third-generation sources of light in the hard x-ray range have been constructed at three principal facilities: the European Synchrotrons Radiation Facility (ESRF) in France; the Super Photon Ring 8-GeV (or Spring-8) in Japan; and the Advanced Photon Source (APS) in the US. Undulator technology is also used on a number of low-energy machines for radiation in the ultraviolet and soft x-ray regimes. At the APS, these devices exceed all of our original expectations for beam brilliance, tunability, spectral range, and operational flexibility. Shown in Fig. 1 are the tuning curves of the first few harmonics, showing x-ray production from a few kV to better than 40 keV. High-brilliance radiation extends to over 100 keV

  4. The JLab high power ERL light source

    Energy Technology Data Exchange (ETDEWEB)

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  5. Challenges of Linac Driven Light Sources

    CERN Document Server

    Bocchetta, C J

    2004-01-01

    The use of linacs allows novel light sources to be conceived by not being limited by equilibrium dynamics or IBS effects. These new sources can be single pass or recirculated (with or without energy recovery) or linac augmented storage rings. They allow tuneable polarised radiation of unprecedented brilliance, short pulse lengths that may reach the atto-second scale and full coherence. Both SC and NC machines are being proposed, designed and constructed. Photon output characteristics range from incoherent synchrotron radiation to SASE to seeded HGHG. The proposed beams can be low to high average current and pulse time structures range from CW to highly variable with mutual exclusion amongst different forms of operation. The multiple challenges of these machines reside not only in the requirement of beams of extremely high quality (energy, emittance, energy-spread and temporal stability) for the brightest, shortest wavelength sources but also in the demanding technologies and control of beam-machine interactio...

  6. Towards Light Sources Featuring Superconducting Miniundulators

    Science.gov (United States)

    Moser, H. O.; Diao, C. Z.

    Besides the exploitation of the Helios 2 superconducting compact storage ring for user operations and for its own R&D work, SSLS envisions a 4th generation synchrotron light source to complement and, eventually, replace the current facility. This vision includes an accelerator system based on a superconducting linear accelerator with up to 5 recirculation loops for energy multiplication and recovery with the distinguishing feature that the light would be generated by superconducting mini- and micro-undulators. Under this programme, SSLS is pursuing the development of superconducting miniundulators including a proof-of-technology electron beam experiment in co-operation with the Shanghai Institute of Applied Physics and the analytical and numerical study of the fabrication tolerances of superconducting miniundulators with respect to their finite length field errors and mechanical errors.

  7. Storage Rings for Science with: Electron-Positron Collisions, Hadron Collisions and Synchrotron Light

    International Nuclear Information System (INIS)

    Ozaki, S.

    2009-01-01

    The author is honored to receive the 2009 Robert Wilson Prize and the recognition that comes with it. The citation for the prize reads, 'For his outstanding contribution to the design and construction of accelerators that has led to the realization of major machines for fundamental science on two continents and his promotion of international collaboration.' In this article, he will discuss the two construction projects, which he led, one (TRISTAN e + e - Collider at KEK) in Japan and the other (RHIC at BNL) in the USA, covering project issues and lessons learned from these projects. Although both of them were built on separate continents, it is interesting to note that they are both built on long off-shore islands. He will also add comments on his recent engagement in the development of the Conceptual Design for the National Synchrotron Light Source II (NSLS-II).

  8. Clash over demand for more synchrotron sources in Europe

    CERN Multimedia

    Butler, D

    1998-01-01

    French synchrotron staff accused the science minister, Claude Allegre, of misleading the National Assembly over the need to replace LURE, Paris. Allegre believes all big science facilities should be European with national facilities the exception (1 page).

  9. Source assemblage types for cratonic diamonds from X-ray synchrotron diffraction

    Science.gov (United States)

    Nestola, F.; Alvaro, M.; Casati, M. N.; Wilhelm, H.; Kleppe, A. K.; Jephcoat, A. P.; Domeneghetti, M. C.; Harris, J. W.

    2016-11-01

    Three single crystals of clinopyroxene trapped within three different gem-quality diamonds from the Udachnaya kimberlite (Siberia, Russia) were analysed in situ by single-crystal synchrotron X-ray diffraction in order to obtain information on their chemical composition and infer source assemblage type. A non-destructive approach was used with high-energy (≈ 60 keV; λ ≈ 0.206 Å) at I15, the extreme-conditions beamline at Diamond Light Source. A dedicated protocol was used to center the mineral inclusions located deep inside the diamonds in the X-ray beam. Our results reveal that two of the inclusions can be associated with peridotitic paragenesis whereas the third is eclogitic. This study also demonstrates that this non-destructive experimental approach is extremely efficient in evaluating the origin of minerals trapped in their diamond hosts.

  10. Boomerang - the Australian light source

    International Nuclear Information System (INIS)

    Boldeman, J.W.; Garrett, R.F.

    2000-01-01

    Full text: The Australian Synchrotron Research Program (ASRP) was one of seven major national research facilities funded by the Federal Government in December 1995. The program provides guaranteed access and travel funds for Australian scientists to conduct synchrotron radiation-based research at two overseas facilities - the Photon Factory at Tsukuba in Japan and the Advanced Photon Source at the Argonne National Laboratory in the US. The Federal Government also provided funding of $100K to carry out a Feasibility Study for an Australian-based facility. This has been completed and included a mission to a number of laboratories overseas that were or had recently constructed a facility that could be considered for Australia. Following the mission, consensus was achieved within the community for the specifications of a proposed Australian facility. The proposed facility, Boomerang, has an energy of 3 GeV, an emittance of 16 nm rad and will be equipped in the first phase with 9 instrument stations. Boomerang will be competitive in performance with other facilities currently under construction overseas. A detailed proposal has been submitted to the Federal Government for funding. No site has been specified in the proposal. The proposal was prepared within the Australian Synchrotron Research Program (ASRP) following extensive consultation with industrial and scientific groups in all Australian states. Valuable contributions have been made by members of all the committees of the ASRP, the Australian synchrotron research community that works through the ASRP and the National Synchrotron Steering Committee. Important contributions have also been made by many industrial groups including consortia in Victoria, Queensland and New South Wales. The input from the ANKA staff at Forschungszentrum Karlsruhe and, in particular. Professor Einfeld has been a critical component. The estimated capital cost of a no frills laboratory has been estimated to be $100M in 1999 dollars. The

  11. The uses of synchrotron radiation sources for elemental and chemical microanalysis

    International Nuclear Information System (INIS)

    Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Jones, K.W.; Rivers, M.L.; Sutton, S.R.

    1989-08-01

    Synchrotron radiation sources offer important features for the analysis of a material. Among these features is the ability to determine both the elemental composition of the material and the chemical state of its elements. For microscopic analysis synchrotron x-ray fluorescence (SXRF) microprobes now offer spatial resolutions of 10μm with minimum detection limits in the 1--10 ppM range depending on the nature of the sample and the synchrotron source used. This paper describes the properties of synchrotron radiation and their importance for elemental analysis, existing synchrotron facilities and those under construction that are optimum for SXRF microanalysis, and a number of applications including the high energy excitation of the K lines of heavy elements, microtomography, and XANES and EXAFS spectroscopies. 45 refs., 8 figs., 1 tab

  12. Report of the second workshop on synchrotron radiation sources for x-ray lithography

    Energy Technology Data Exchange (ETDEWEB)

    Barton, M.Q.; Craft, B.; Williams, G.P. (eds.)

    1986-01-01

    The reported workshop is part of an effort to implement a US-based x-ray lithography program. Presentations include designs for three storage rings (one superconducting and two conventional) and an overview of a complete lithography program. The background of the effort described, the need for synchrotron radiation, and the international competition in the area are discussed briefly. The technical feasibility of x-ray lithography is discussed, and synchrotron performance specifications and construction options are given, as well as a near-term plan. It is recommended that a prototype synchrotron source be built as soon as possible, and that a research and development plan on critical technologies which could improve cost effectiveness of the synchrotron source be established. It is further recommended that a small number of second generation prototype synchrotrons be distributed to IC manufacturing centers to expedite commercialization. (LEW)

  13. Report of the second workshop on synchrotron radiation sources for x-ray lithography

    International Nuclear Information System (INIS)

    Barton, M.Q.; Craft, B.; Williams, G.P.

    1986-01-01

    The reported workshop is part of an effort to implement a US-based x-ray lithography program. Presentations include designs for three storage rings (one superconducting and two conventional) and an overview of a complete lithography program. The background of the effort described, the need for synchrotron radiation, and the international competition in the area are discussed briefly. The technical feasibility of x-ray lithography is discussed, and synchrotron performance specifications and construction options are given, as well as a near-term plan. It is recommended that a prototype synchrotron source be built as soon as possible, and that a research and development plan on critical technologies which could improve cost effectiveness of the synchrotron source be established. It is further recommended that a small number of second generation prototype synchrotrons be distributed to IC manufacturing centers to expedite commercialization

  14. The Pre-Injector Linac for the Diamond Light Source

    CERN Document Server

    Christou, C

    2004-01-01

    The Diamond Light Source is a new medium-energy high brightness synchrotron light facility which is under construction on the Rutherford Appleton Laboratory site in the U.K. The accelerator facility can be divided into three major components; a 3 GeV 561 m circumference storage ring, a full-energy booster synchrotron and a 100 MeV pre-injector linac. This paper describes the linac design and plans for operation. The linac is supplied by ACCEL Instruments GmbH under a turn-key contract, with Diamond Light Source Ltd. providing linac beam diagnostics, control system hardware and standard vacuum components. Commissioning of the linac will take place in early 2005 and user operation of the facility will commence in 2007.

  15. Expected Performance of the LHC Synchrotron-Light Telescope (BSRT) and Abort-Gap Monitor (BSRA)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan; /SLAC

    2010-06-07

    This Report presents calculations of the synchrotron light from proton and lead-ion beams in the LHC at all energies from 0.45 to 7 TeV. It computes the emission from three sources: the uniform-field region of the D3 dipole, the dipole's edge field, and the short undulator just upstream. Light emitted at or near visible wavelengths is assessed for making optical measurements of transverse beam profiles and for monitoring the emptiness of the abort gap in the fill pattern. There is sufficient light for both applications, although both species pass through energy ranges in the ramp with small photon counts. Effects limiting image resolution are examined, including geometric optics, depth of field, and diffraction. The Report also considers recent suggestions that the undulator, intended to supplement the dipole for low energies, should not be ramped off at high energies and perhaps should not be used at all. We conclude that the undulator is essential at low energy for both species, but that it is possible to leave the undulator on at the cost of some blurring at intermediate energies.

  16. Expected Performance of the LHC Synchrotron-Light Telescope (BSRT) and Abort-Gap Monitor (BSRA)

    CERN Document Server

    Fisher, A S

    2010-01-01

    This Report presents calculations of the synchrotron light from proton and lead-ion beams in the LHC at all energies from 0.45 to 7 TeV. It computes the emission from three sources: the uniform-field region of the D3 dipole, the dipole’s edge field, and the short undulator just upstream. Light emitted at or near visible wavelengths is assessed for making optical measurements of transverse beam profiles and for monitoring the emptiness of the abort gap in the fill pattern. There is sufficient light for both applications, although both species pass through energy ranges in the ramp with small photon counts. Effects limiting image resolution are examined, including geometric optics, depth of field, and diffraction. The Report also considers recent suggestions that the undulator, intended to supplement the dipole for low energies, should not be ramped off at high energies and perhaps should not be used at all. We conclude that the undulator is essential at low energy for both species, but that it is possible to...

  17. Kharkov 3-GeV pulse stretcher ring as a source of synchrotron radiation

    International Nuclear Information System (INIS)

    Boldyshev, V.F.; Gladkikh, P.I.; Grigor'ev, Y.N.; Guk, I.S.; Efimov, S.V.; Karnaukhov, I.M.; Kononenko, S.G.; Mocheshnikov, N.I.; Popkov, Y.P.; Tarasenko, A.S.; Telegin, Y.N.; Chechetenko, V.F.; Shcherbakov, A.A.; Titov, V.A.; Nagaenko, M.G.

    1989-01-01

    The article discusses the possibility of using the pulse stretcher ring, designed at the Kharkov Institute of Physics and Technology, as a synchrotron radiation source (SRS). Comparison is made between our SRS design parameters and those of other dedicated SRSs

  18. Magnetic measurements of the injector synchrotron magnets for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Kim, S.H.; Carnegie, D.W.; Doose, C.L.; Hogrefe, R.; Kim, K.; Merl, R.; Turner, L.R.

    1993-01-01

    The magnetic measurement data of the dipole, quadrupole, and sextupole magnets for the Advanced Photon Source injector synchrotron are summarized. Magnet design and magnetic measurements of the field strength, field shape, and multipole coefficients are described

  19. Synchrotron Radiation

    International Nuclear Information System (INIS)

    Asfour, F.I

    2000-01-01

    Synchrotron light is produced by electron accelerators combined with storage rings. This light is generated over a wide spectral region; from infra-red (IR) through the visible and vacuum ultraviolet (VUV), and into the X-ray region. For relativistic electrons (moving nearly with the speed of light), most radiation is concentrated in a small cone with an opening angle of 1/gamma(some 0.1 to 1 milliradian),where gamma is the electron energy in units of rest energy (typically 10 3 -10 4 ). In synchrotron radiation sources (storage rings) highly relativistic electrons are stored to travel along a circular path for many hours. Radiation is caused by transverse acceleration due to magnetic forces(bending magnets). The radiation is emitted in pulses of 10-20 picosecond, separated by some 2 nanosecond or longer separation

  20. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  1. The Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    White, William E., E-mail: wewhite@slac.stanford.edu; Robert, Aymeric; Dunne, Mike [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-21

    The present status of the Linac Coherent Light Source as a user facility is presented. Opportunities and challenges as well as the scientific impact of X-ray free-electron lasers are discussed. The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  2. Shining a light on planetary processes using synchrotron techniques

    Science.gov (United States)

    Brand, H. E. A.; Kimpton, J. A.

    2017-12-01

    The Australian Synchrotron is a world-class national research facility that uses accelerator technology to produce X-rays and infrared for research. It is available for researchers from all institutions and disciplines. This contribution is intended to inform the community of the current capabilities at the facility using examples drawn from planetary research across the beamlines. Examples will include: formation of jarosite minerals with a view to Mars; studies of Micrometeorites; and large volume CT imaging of geological samples. A suite of new beamlines has been proposed for the growth of the facility and one of these, ADS, the Advanced Diffraction and Scattering beamline, is intended to be a high energy X-ray diffraction beamline capable of reaching extreme conditions and carrying out challenging in situ experiments. There is an opportunity to develop complex new sample environments which could be of relevance to shock metamorphic processes and this will form part of the discussion.

  3. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source

    International Nuclear Information System (INIS)

    Woll, A.R.; Huang, R.; Mass, J.; Bisulca, C.; Bilderback, D.H.; Gruner, S.; Gao, N.

    2006-01-01

    A confocal X-ray fluorescence microscope was built at the Cornell High Energy Synchrotron Source (CHESS) to obtain compositional depth profiles of historic paintings. The microscope consists of a single-bounce, borosilicate monocapillary optic to focus the incident beam onto the painting and a commercial borosilicate polycapillary lens to collect the fluorescent X-rays. The resolution of the microscope was measured by scanning a variety of thin metal films through this confocal volume while monitoring the fluorescence signal. The capabilities of the technique were then probed using test paint microstructures with up to four distinct layers, each having a thickness in the range of 10-80 microns. Results from confocal XRF were compared with those from stand-alone XRF and visible light microscopy of the paint cross-sections. A large area, high-resolution scanner is currently being built to perform 3D scans on moderately sized paintings. (orig.)

  4. Highlights from e-EPS: Coordinated Access to Light sources

    CERN Multimedia

    e-EPS News

    2014-01-01

    The CALIPSO project, which runs until May 2015, will contribute to the effective exploitation of European synchrotrons and free electron lasers. CALIPSO (Coordinated Access to Light sources to Promote Standards and Optimisation) includes 20 partners forming one of the largest Research Networks in the world.   e-EPS interviewed M. Bertolo, CALIPSO project manager and his assistant C. Blasetti. Which challenges are addressed by CALIPSO? CALIPSO’s goal is to optimize the exploitation of the European synchrotrons and Free Electron Lasers. With respect to previous projects funded by the European Commission, it foresees significant improvements in integration, innovation and user-friendliness in all three areas of networking, transnational access and instrumentation. The Transnational Access program potentially benefits a community of 25,000 estimated users offering free open access to 12 synchrotrons and 5 free electron lasers solely based on scientific merit. In ad...

  5. Superbend upgrade of the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Robin, D.; Krupnick, J.; Schlueter, R.; Steier, C.; Marks, S.; Wang, B.; Zbasnik, J.; Benjegerdes, R.; Biocca, A.; Bish, P.; Brown, W.; Byrne, W.; Chen, J.; Decking, W.; DeVries, J.; DeMarco, W.R.; Fahmie, M.; Geyer, A.; Harkins, J.; Henderson, T.; Hinkson, J.; Hoyer, E.; Hull, D.; Jacobson, S.; McDonald, J.; Molinari, P.; Mueller, R.; Nadolski, L.; Nishimura, H.; Nishimura, K.; Ottens, F.; Paterson, J.A.; Pipersky, P.; Portmann, G.; Richie, A.; Rossi, S.; Salvant, B.; Scarvie, T.; Schmidt,A.; Spring, J.; Taylor, C.; Thur, W.; Timossi, C.; Wandesforde, A.

    2004-05-26

    The Advanced Light Source (ALS) is a third generation synchrotron light source located at Lawrence Berkeley National Laboratory (LBNL). There was an increasing demand at the ALS for additional high brightness hard x-ray beamlines in the 7 to 40 keV range. In response to that demand, the ALS storage ring was modified in August 2001. Three 1.3 Tesla normal conducting bending magnets were removed and replaced with three 5 Tesla superconducting magnets (Superbends). The radiation produced by these Superbends is an order of magnitude higher in photon brightness and flux at 12 keV than that of the 1.3 Tesla bends, making them excellent sources of hard x-rays for protein crystallography and other hard x-ray applications. At the same time the Superbends did not compromise the performance of the facility in the VUV and soft x-ray regions of the spectrum. The Superbends will eventually feed 12 new beamlines greatly enhancing the facility's capability and capacity in the hard x-ray region. The Superbend project is the biggest upgrade to the ALS storage ring since it was commissioned in 1993. In this paper we present an overview of the Superbend project, its challenges and the resulting impact on the ALS.

  6. Time-resolved materials science opportunities using synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by ∼tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities

  7. Research in atomic and applied physics using a 6-GeV synchrotron source

    International Nuclear Information System (INIS)

    Jones, K.W.

    1985-12-01

    The Division of Atomic and Applied Physics in the Department of Applied Science at Brookhaven National Laboratory conducts a broad program of research using ion beams and synchrotron radiation for experiments in atomic physics and nuclear analytical techniques and applications. Many of the experiments would benefit greatly from the use of high energy, high intensity photon beams from a 6-GeV synchrotron source. A survey of some of the specific scientific possibilities is presented

  8. Dynamic Aperture Measurements at the Advanced Light Source

    International Nuclear Information System (INIS)

    Decking, W.; Robin, D.

    1999-01-01

    A large dynamic aperture for a storage ring is of importance for long lifetimes and a high injection efficiency. Measurements of the dynamic aperture of the third generation synchrotron light source Advanced Light Source (ALS) using beam excitation with kicker magnets are presented. The experiments were done for various accelerator conditions, allowing us to investigate the influence of different working points, chromaticities, insertion devices, etc.. The results are compared both with tracking calculations and a simple model for the dynamic aperture yielding good agreements. This gives us confidence in the predictability of the nonlinear accelerator model. This is especially important for future ALS upgrades as well as new storage ring designs

  9. The three-dimensional microstructure of polycrystalline materials unravelled by synchrotron light

    DEFF Research Database (Denmark)

    Ludwig, W.; King, A.; Herbig, M.

    2011-01-01

    (different crystallographic phases, cracks, porosities) can be detected using 3D imaging modes exploiting Fresnel diffraction and the coherence properties of third generation synchrotron beams. X-ray diffraction contrast tomography, a technique based on Bragg diffraction imaging, provides access to the 3D......The three-dimensional microstructure of polycrystalline materials unravelled by synchrotron light Synchrotron radiation X-ray imaging and diffraction techniques offer new possibilities for non-destructive bulk characterization of polycrystalline materials. Minute changes in electron density...... shape, orientation and elastic strain state of the individual grains from polycrystalline sample volumes containing several hundred up to a few thousand grains. Combining both imaging modalities allows a comprehensive description of the microstructure of the material at the micrometer length scale...

  10. Sesame Synchrotron Light for Experimental Sciences and Application in the Middle East

    International Nuclear Information System (INIS)

    El-Khalafawy, T.A.

    2003-01-01

    Anew international center for synchrotron radiation for research excellence for scientists from throughout the Middle East as well as other parts of the world could do for science what CERN has done for science in Europe. SESAME Project (Synchrotron Light for Experimental Sciences and Application in the Middle East ) under the umbrella for UNESCO establish the first major international research center as a cooperative venture by the scientists and governments of the Middle East, opened to all qualified scientists. It will be propeller for the regional economy while promoting the peaceful development of science and technology in the Middle East. SESAME will have as its centerpiece a synchrotron radiation based on a gift from Germany of the 0.8 GeV BESSYI storage ring and injector system which stopped operation at the end of November 1999

  11. Nanoparticles and synchrotron light for brain tumors therapy

    International Nuclear Information System (INIS)

    Taupin, Florence

    2013-01-01

    Gliomas treatment is still a serious challenge in medicine. Available treatments are mainly palliative and patients' survival is increased by a few months only. An original radiotherapy technique consists in increasing the dose delivered to the tumor by loading it with high Z atoms before an irradiation with low energy X-rays (50-100 keV). Preclinical studies have been conducted using iodine contrast agent (CA) (Z=53) and 50 keV X-rays. The increase of the animals' survival leads today to the beginning of clinical trials (phases I and II) at the medical beamline of the European synchrotron, where the available monochromatic and intense photons beam is well suited for this treatment. The use of intravenously injected CA is however insufficient for curing rat's bearing glioma. Indeed, the contrast agent's accumulation is limited by the presence of the BBB and it remains extracellular. Metallic nanoparticles (NPs) appear interesting for improving the treatment efficacy. During this work, three different types of NPs have been studied: GdNPs (3 nm), AuNPs (13 nm) and PtNPs (6 nm). Their toxicity and internalization have been evaluated in vitro on F98 rodent glioma cells. Cells' survival has also been measured after different irradiation conditions in presence of these NPs and with monochromatic photons beams. Several mechanisms implicated in the treatment have been highlighted by the study of the cells' response dependence to the incident particles energy and to the sub cellular NPs distribution during irradiation. For identical concentrations, NPs were more efficient in cells killing than CA, illustrating their microdosimetric potential. The effect was also preferential for low energy X-rays, indicating that photoactivation of heavy atoms plays a role in the cells' death. GdNPs and PtNPs have also lead to an effect in combination to high energy photons (1.25 MeV), indicating that another mechanism may also increase the cell

  12. Total reflection X-ray fluorescence analysis of light elements with synchrotron radiation and special X-ray tubes

    International Nuclear Information System (INIS)

    Streli, C.; Wobrauschek, P.; Bauer, V.; Kregsamer, P.; Goergl, R.; Pianetta, P.; Ryon, R.; Pahlke, S.; Fabry, L.

    1997-01-01

    Total reflection X-ray fluorescence analysis (TXRF) of light elements, such as C, O and Al (atomic numbers 5-13) generally has poor sensitivity and detection limits due to poor excitation and low fluorescent yields. Special excitation sources are necessary to compensate for these physical limitations. Synchrotron radiation is the ideal source for TXRF due to its high intensity and wide spectral range extending into the low energy region required for light elements. For more routine use, special X-ray tubes can be constructed. Experiments have been performed at the Standford Synchrotron Radiation Laboratory (SSRL) using beamline III-4, which is specially designed for the sue of low energy photons. Light elements on Si wafers have been analyzed, leading to detection limits below 100 fg for Na, Mg and Al, which corresponds to about 10 9 atoms. A new vacuum chamber is introduced meeting the requirements of wafer handling without the risk of contamination and offering the possibility of scanning a certain area of the wafer. Boron was detected on a wafer with 10 14 atoms cm -2 implanted in the surface layer. A special windowless X-ray tube with Mo, Al and Si as anode materials was also tested. With the optimization of anode geometry, beam path and excitation conditions, a detection limit of 5 pg (corresponds to 10 11 atoms) for Al was achieved. (Author)

  13. Total reflection X-ray fluorescence analysis of light elements with synchrotron radiation and special X-ray tubes

    Energy Technology Data Exchange (ETDEWEB)

    Streli, C.; Wobrauschek, P.; Bauer, V.; Kregsamer, P.; Goergl, R. [Atominstitut der Oesterreichischen Universitaeten, Wien (Austria); Pianetta, P. [Stanford Synchrotron Radiation Lab. (Canada); Ryon, R. [Lawrence Livermore National Lab. CA (United States); Pahlke, S.; Fabry, L. [Wacker Siltronic AG, Burghausen (Germany)

    1997-06-20

    Total reflection X-ray fluorescence analysis (TXRF) of light elements, such as C, O and Al (atomic numbers 5-13) generally has poor sensitivity and detection limits due to poor excitation and low fluorescent yields. Special excitation sources are necessary to compensate for these physical limitations. Synchrotron radiation is the ideal source for TXRF due to its high intensity and wide spectral range extending into the low energy region required for light elements. For more routine use, special X-ray tubes can be constructed. Experiments have been performed at the Standford Synchrotron Radiation Laboratory (SSRL) using beamline III-4, which is specially designed for the sue of low energy photons. Light elements on Si wafers have been analyzed, leading to detection limits below 100 fg for Na, Mg and Al, which corresponds to about 10{sup 9}atoms. A new vacuum chamber is introduced meeting the requirements of wafer handling without the risk of contamination and offering the possibility of scanning a certain area of the wafer. Boron was detected on a wafer with 10{sup 14} atoms cm{sup -2} implanted in the surface layer. A special windowless X-ray tube with Mo, Al and Si as anode materials was also tested. With the optimization of anode geometry, beam path and excitation conditions, a detection limit of 5 pg (corresponds to 10{sup 11} atoms) for Al was achieved. (Author).

  14. Current capabilities at the Metrology Light Source

    International Nuclear Information System (INIS)

    Gottwald, Alexander; Klein, Roman; Mueller, Ralph; Richter, Mathias; Scholze, Frank; Thornagel, Reiner; Ulm, Gerhard

    2012-01-01

    The Physikalisch-Technische Bundesanstalt (PTB) has set up the 630 MeV electron storage ring Metrology Light Source (MLS) in close cooperation with the Helmholtz-Zentrum Berlin (HZB). This electron storage ring has been in regular user operation since April 2008. It is dedicated to synchrotron-radiation-based metrology and technological developments in the far-IR/THz, IR, UV, VUV and EUV spectral ranges, with the use as primary source standard as the key activity. In a permanent process of improvement, the storage ring itself was optimized regarding its regular performance (beam current and lifetime) as well as for special operations (e.g. variable electron energies and electron bunch lengths). The measurement capabilities at the seven different beamline ports were set up sequentially, first in the UV/VUV and IR spectral ranges. This first phase of instrumentation set-up will be finished in 2011 by completing the beamlines for EUV metrology, for the calibration of radiation sources and for the application of undulator radiation. (authors)

  15. New generation of light sources: Present and future

    International Nuclear Information System (INIS)

    Couprie, M.E.

    2014-01-01

    Spectroscopy and imaging in the VUV–X-ray domain are very sensitive tools for the investigation of the properties of matter [1–3]. Time-resolved studies enable to follow the movies of ultra-fast reactions. More than fifty years after the laser discovery [4], VUVX light sources are actively developed around the world. Among them, high order harmonics generated in gas, X-ray lasers, synchrotron radiation, free electron lasers are providing a wide offer, from laboratory size sources to large scale facilities, with various features, suitable for different types of experiments. The properties of these sources are here reviewed. Quest of new performances and flexibility is also discussed

  16. Non-invasive energy spread monitoring for the JLAB experimental program via synchrotron light interferometers

    International Nuclear Information System (INIS)

    The hypernuclear physics program at Jefferson Lab [JLAB] requires a tight upper limit on the RMS beam energy spread of σ E /E -5 . The energy spread is determined by measuring the beam width at a dispersive location (D∼4m) in the transport line to the experimental halls. Ignoring the intrinsic beam size, this low energy spread corresponds to an upper bound on the beam width of σ beam <120μm. Such small beam sizes cannot be measured using direct imaging of the synchrotron light due to diffraction limitations. Using interferometry of the synchrotron light the resolution of the optical system can be made very high. The non-invasive nature of this measurement is also very advantageous as it allows continuous energy spread monitoring. Two synchrotron light interferometers have been built and installed at Jefferson Lab, one each in the Hall-A and Hall-C transport lines. The two devices operate over a beam current range from 10 to 120μA and have a spatial resolution better than 10μm. The structure of the interferometer, the experience gained during its installation, beam measurements and energy spread stability are presented

  17. Monochromator for synchrotron light with temperature controlled by electrical current on silicon crystal

    International Nuclear Information System (INIS)

    Cusatis, Cesar; Souza, Paulo E.N.; Gobbi, Angelo; Carvalho Junior, Wilson de

    2011-01-01

    Full text. doped silicon crystal was used simultaneously as a monochromator, sensor and actuator in such way that its temperature could be controlled. Ohmic contacts allowed resistance measurements on a perfect silicon crystal, which were correlated to its temperature. Using the ohmic contacts, an electrical current caused Joule heating on the monochromator that was used to control its temperature. A simple stand-alone electronic box controlled the system. The device was built and tested with white beam synchrotron light on the double crystal monochromator of the XRD line of LNLS, Laboratorio Nacional de Luz Sincrotron, Campinas. The first crystal of a double crystal monochromator determines the energy that is delivered to a synchrotron experimental station and its temperature instability is a major source of energy and intensity instability. If the (333) silicon monochromator is at theta Bragg near 45 degree the variation of the diffraction angle is around one second of arc per degree Kelvin. It may take several minutes for the first crystal temperature to stabilize at the beginning of the station operation when the crystal and its environment are cold. With water refrigeration, the average overall temperature of the crystal may be constant, but the temperature of the surface changes with and without the white beam. The time used to wait for stabilization of the beam energy/intensity is lost unless the temperature of the crystal surface is kept constant. One solution for keeping the temperature of the monochromator and its environment constant or nearly constant is Joule heating it with a controlled small electrical current flowing on the surface of a doped perfect crystal. When the white beam is on, this small amount of extra power will be more concentrated at the beam footpath because the resistance is lower in this region due to the higher temperature. In addition, if the crystal itself is used to detect the temperature variation by measuring the electrical

  18. Range of applications of modern superconducting synchrotron radiation sources using the source planned at Karlsruhe (KSSQ) as an example

    International Nuclear Information System (INIS)

    Moser, H.O.

    1989-06-01

    The performance of the Karlsruhe synchrotron radiation source which was designed originally for X-ray deep-etch lithography comes close to that of first and second generation synchrotron radiation sources. The range of applications spanned by KSSQ is therefore quite similar to that of those machines. The present report displays a first collection of topics from the fields of surface analysis, solid state and materials research, and biology which could be investigated using KSSQ by interested groups coming from KfK and its surroundings. (orig.) [de

  19. Analysis of coherence properties of 3-rd generation synchrotron sources and free-electron lasers

    International Nuclear Information System (INIS)

    Vartanyants, I.A.; Singer, A.

    2009-07-01

    A general theoretical approach based on the results of statistical optics is used for the analysis of the transverse coherence properties of 3-rd generation synchrotron sources and X-ray free-electron lasers (XFEL). Correlation properties of the wave elds are calculated at different distances from an equivalent Gaussian Schell-model source. This model is used to describe coherence properties of the five meter undulator source at the synchrotron storage ring PETRA III. In the case of XFEL sources the decomposition of the statistical fields into a sum of independently propagating transverse modes is used for the analysis of the coherence properties of these new sources. A detailed calculation is performed for the parameters of the SASE1 undulator at the European XFEL. It is demonstrated that only a few modes contribute significantly to the total radiation field of that source. (orig.)

  20. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, D. (Purdue Univ., Lafayette, IN (USA)); Anderson, S. (Michigan State Univ., East Lansing, MI (USA)); Mattigod, S. (Pacific Northwest Lab., Richland, WA (USA))

    1990-07-01

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography.

  1. Study for a 6 GeV undulator based synchrotron radiation source

    International Nuclear Information System (INIS)

    Vignola, G.; Barton, M.; Blumberg, R.; Galayda, J.; Krinsky, S.; Luccio, A.; Pellegrini, C.; van Steenbergen, A.; Wang, J.

    1985-01-01

    A partial study for a 6 GeV undulator based synchrotron radiation source for production of high brightness undulator radiation, in the A region, is presented. The basic lattice adopted for the storage ring is a hybrid FODO Chasman-Green lattice, making use of gradient in the dipoles. We discuss also the e beam current limits and the injection parameters

  2. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    International Nuclear Information System (INIS)

    Schulze, D.; Anderson, S.; Mattigod, S.

    1990-07-01

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography

  3. The small-angle X-ray scattering beamline of the Brazilian Synchrotron Light Laboratory

    International Nuclear Information System (INIS)

    Kellermann, G.; Vicentin, F.; Tamura, E.; Rocha, M.; Tolentino, H.; Craievich, A.; Barbosa, A.; Torriani, I.

    1997-01-01

    This paper describes the small-angle scattering beamline built at the Brazilian synchrotron light laboratory (LNLS). Vertical focusing of the synchrotron beam is achieved by an elastically bent gold-plated cylindrical mirror. An asymmetric cut curved triangle-shaped silicon single crystal (111 reflection) is used for monochromatization and horizontal focusing. The mirror, monochromator optics and 2θ arm were designed to cover the spectral range between 1.0 and 2.0 A. Three slit sets, a secondary photon shutter, two beam monitors, filters and absorbers, a multi-sample holder, a vacuum path, a beam-stopper and a set of detectors are the basic components of the workstation. The stepping motors are equipped with specially designed encoders. All mechanical and pneumatic movements and detectors can be remotely controlled using a direct panel or a PC. (orig.)

  4. A CCD-based area detector for X-ray crystallography using synchrotron and laboratory sources

    International Nuclear Information System (INIS)

    Phillips, W.C.; Li Youli; Stanton, M.; Xie Yuanhui; O'Mara, D.; Kalata, K.

    1993-01-01

    The design and characteristics of a CCD-based area detector suitable for X-ray crystallographic studies using both synchrotron and laboratory sources are described. The active area is 75 mm in diameter, the FWHM of the point response function is 0.20 mm, and for Bragg peaks the dynamic range is 900 and the DQE ∼0.3. The 1320x1035-pixel Kodak CCD is read out into an 8 Mbyte memory system in 0.14 s and digitized to 12 bits. X-ray crystallographic data collected at the NSLS synchrotron from cubic insulin crystals are presented. (orig.)

  5. Iranian Light Source Facility, A third generation light source laboratory

    Directory of Open Access Journals (Sweden)

    J Rahighi

    2015-09-01

    Full Text Available The Iranian Light Source Facility (ILSF project is the first large scale accelerator facility which is currently under planning in Iran. On the basis of the present design, circumference of the 3 GeV storage ring is 528 m. Beam current and natural beam emittance are 400 mA and 0.477 nm.rad, respectively. Some prototype accelerator components such as high power solid state radio frequency amplifiers, low level RF system, thermionic RF gun, H-type dipole and quadruple magnets, magnetic measurement laboratory and highly stable magnet power supplies have been constructed at ILSF R&D laboratory

  6. Infrared synchrotron radiation from electron storage rings

    International Nuclear Information System (INIS)

    Duncan, W.D.; Williams, G.P.

    1983-01-01

    Simple and useful approximations, valid at infrared wavelengths, to the equations for synchrotron radiation are presented and used to quantify the brightness and power advantage of current synchrotron radiation light sources over conventional infrared broadband laboratory sources. The Daresbury Synchrotron Radiation Source (SRS) and the Brookhaven National Synchrotron Light Source (vacuum ultraviolet) [NSLS(VUV)] storage rings are used as examples in the calculation of the properties of infrared synchrotron radiation. The pulsed nature of the emission is also discussed, and potential areas of application for the brightness, power, and time structure advantages are presented. The use of infrared free electron lasers and undulators on the next generation of storage ring light sources is briefly considered

  7. Ginzburg's invention of undulators and their role in modern synchrotron radiation sources and free electron lasers

    International Nuclear Information System (INIS)

    Kulipanov, Gennadii N

    2007-01-01

    Undulators - periodic magnetic structures that were originally introduced by Vitalii Ginzburg in 1947 for electromagnetic radiation generation using relativistic electrons - are among the key elements of modern synchrotron radiation sources and free electron lasers (FELs). In this talk, the history of three generations of storage ring-based synchrotron X-ray sources using wigglers and undulators is briefly traced. Prospects for two types of next-generation space-coherent X-ray sources are discussed, which use long undulators and energy recovery accelerators or, alternatively, employ linear accelerator-based FELs. The recently developed Novosibirsk terahertz FEL facility, currently the world' s most powerful terahertz source, is described. It was the generation of electromagnetic radiation in this range that Ginzburg discussed in his 1947 work. (oral issue of the journal 'uspekhi fizicheskikh nauk')

  8. Chirality Emergence in Thin Solid Films of Amino Acids by Polarized Light from Synchrotron Radiation and Free Electron Laser

    Directory of Open Access Journals (Sweden)

    Mashahiro Adachi

    2009-07-01

    Full Text Available One of the most attractive hypothesis for the origin of homochirality in terrestrial bioorganic compounds is that a kind of “chiral impulse” as an asymmetric excitation source induced asymmetric reactions on the surfaces of such materials such as meteorites or interstellar dusts prior to the existence of terrestrial life (Cosmic Scenario. To experimentally introduce chiral structure into racemic films of amino acids (alanine, phenylalanine, isovaline, etc., we irradiated them with linearly polarized light (LPL from synchrotron radiation and circularly polarized light (CPL from a free electron laser. After the irradiation, we evaluated optical anisotropy by measuring the circular dichroism (CD spectra and verified that new Cotton peaks appeared at almost the same peak position as those of the corresponding non-racemic amino acid films. With LPL irradiation, two-dimensional anisotropic structure expressed as linear dichroism and/or linear birefringence was introduced into the racemic films. With CPL irradiation, the signs of the Cotton peaks exhibit symmetrical structure corresponding to the direction of CPL rotation. This indicates that some kinds of chiral structure were introduced into the racemic film. The CD spectra after CPL irradiation suggest the chiral structure should be derived from not only preferential photolysis but also from photolysis-induced molecular structural change. These results suggest that circularly polarized light sources in space could be associated with the origin of terrestrial homochirality; that is, they would be effective asymmetric exciting sources introducing chiral structures into bio-organic molecules or complex organic compounds.

  9. Chirality Emergence in Thin Solid Films of Amino Acids by Polarized Light from Synchrotron Radiation and Free Electron Laser

    Science.gov (United States)

    Takahashi, Jun-ichi; Shinojima, Hiroyuki; Seyama, Michiko; Ueno, Yuko; Kaneko, Takeo; Kobayashi, Kensei; Mita, Hajime; Adachi, Mashahiro; Hosaka, Masahito; Katoh, Masahiro

    2009-01-01

    One of the most attractive hypothesis for the origin of homochirality in terrestrial bioorganic compounds is that a kind of “chiral impulse” as an asymmetric excitation source induced asymmetric reactions on the surfaces of such materials such as meteorites or interstellar dusts prior to the existence of terrestrial life (Cosmic Scenario). To experimentally introduce chiral structure into racemic films of amino acids (alanine, phenylalanine, isovaline, etc.), we irradiated them with linearly polarized light (LPL) from synchrotron radiation and circularly polarized light (CPL) from a free electron laser. After the irradiation, we evaluated optical anisotropy by measuring the circular dichroism (CD) spectra and verified that new Cotton peaks appeared at almost the same peak position as those of the corresponding non-racemic amino acid films. With LPL irradiation, two-dimensional anisotropic structure expressed as linear dichroism and/or linear birefringence was introduced into the racemic films. With CPL irradiation, the signs of the Cotton peaks exhibit symmetrical structure corresponding to the direction of CPL rotation. This indicates that some kinds of chiral structure were introduced into the racemic film. The CD spectra after CPL irradiation suggest the chiral structure should be derived from not only preferential photolysis but also from photolysis-induced molecular structural change. These results suggest that circularly polarized light sources in space could be associated with the origin of terrestrial homochirality; that is, they would be effective asymmetric exciting sources introducing chiral structures into bio-organic molecules or complex organic compounds. PMID:19742124

  10. Physics of compact nonthermal sources. III - Energetic considerations. [electron synchrotron radiation

    Science.gov (United States)

    Burbidge, G. R.; Jones, T. W.; Odell, S. L.

    1974-01-01

    The energy content of the compact incoherent electron-synchrotron sources 3C 84, 3C 120, 3C 273, 3C 279, 3C 454.3, CTA 102, 3C 446, PKS 2134+004, VRO 42.22.01 and OJ 287 is calculated on the assumption that the low-frequency turnovers in the radio spectrum are due to self-absorption and that the electron distribution is isotropic. The dependence of the source parameters on various modifications of the standard assumptions is determined. These involve relativistic motions, alternate explanations for the low-frequency turnover, proton-synchrotron radiation, and distance to the source. The canonical interpretation is found to be accurate in many respects; some of the difficulties and ways of dealing with them are discussed in detail.

  11. Electromagnet power sources for taking beam out of electron synchrotron in Institute for Nuclear Study

    International Nuclear Information System (INIS)

    Muto, Masafumi; Yoshida, Katsuhide; Okuno, Hideki; Watanabe, Kenichi

    1996-01-01

    In the 1.3 GeV electron synchrotron in Institute for Nuclear Study, the new system of taking out and transporting electron beam was introduced in 1985, and the duty factor of beam was able to be made into 10-15%. The system of taking out and transporting electron beam is the system for guiding the electrons accelerated in the electron synchrotron to the experimental devices, namely, photon tagging device and wide solid angle spectrometer. The constitution of the system is described. The main electromagnets of the electron synchrotron are AC/DC superposition type. In order to taking electrons out with high duty factor, also the exciting waveforms of respective electromagnets in the system must be the current waveforms of superposing DC and sine wave. For the purpose, it is necessary to change frequency and finely adjust exciting waveform. The features of respective power sources are explained. The constitution of the circuits for KM1, KM2 and BM power sources is described. When the electron beam transport system was constructed, at the beginning, due to insufficient waveform adjustment and the frequent occurrence of troubles, the BM power source was changed to the present power source in May, 1995. KM1 and KM2 power sources have been operated for 10 years without serious trouble. (K.I.)

  12. Plant Growth Absorption Spectrum Mimicking Light Sources

    OpenAIRE

    Jou, Jwo-Huei; Lin, Ching-Chiao; Li, Tsung-Han; Li, Chieh-Ju; Peng, Shiang-Hau; Yang, Fu-Chin; Thomas, K.; Kumar, Dhirendra; Chi, Yun; Hsu, Ban-Dar

    2015-01-01

    Plant factories have attracted increasing attention because they can produce fresh fruits and vegetables free from pesticides in all weather. However, the emission spectra from current light sources significantly mismatch the spectra absorbed by plants. We demonstrate a concept of using multiple broad-band as well as narrow-band solid-state lighting technologies to design plant-growth light sources. Take an organic light-emitting diode (OLED), for example; the resulting light source shows an ...

  13. Driver circuit for solid state light sources

    Science.gov (United States)

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  14. Light Sources and Ballast Circuits

    Science.gov (United States)

    Yorifuji, Takashi; Sakai, Makoto; Yasuda, Takeo; Maehara, Akiyoshi; Okada, Atsunori; Gouriki, Takeshi; Mannami, Tomoaki

    discharge models were reported. Further, studies on ultra high-pressure mercury lamps as light sources for projectors are becoming the mainstream of HID lamp related researches. For high-pressure sodium lamps, many studies on plant growing and pest control utilizing low insect attracting aspects were also reported in 2006. Additionally, for discharge lamps, the minimum sustaining electric power for arc tubes employed in electrode-less compact fluorescent lamps was investigated. For Hg-free rare-gas fluorescent lamps, a luminance of 10,000cd/m2 was attained by a 1 meter-long external duplex spiral electrode prototype using Xe/Ne barrier discharge. As to startup circuits, the commercialization of energy saving and high value added products mainly associated with fluorescent lamps and HID lamps are becoming common. Further, the miniaturization of startup circuits for self electronic-ballasted lamps has advanced. Speaking of the overall light sources and startup circuits in 2006 and with the enforcement of RoHS in Europe in July, the momentum toward hazardous substance-free and energy saving initiatives has been enhanced from the perspective of protecting the global environment. It is anticipated that similar restrictions will be globally enforced in the future.

  15. Research Activities Using Indus-1 Synchrotron Radiation Source

    International Nuclear Information System (INIS)

    Lodha, G. S.; Deb, S. K.

    2010-01-01

    Indus-1 is an efficient SR source in the soft x-ray / vacuum ultra violet region of the electromagnetic spectrum. For Indus-1, the higher order energy contamination in soft x-ray region, heat load and radiation safety problems are also significantly low. At present, soft x-ray-VUV reflectivity, angle integrated and angle resolved photo electron spectroscopy (ARPES), photo physics and high resolution vacuum ultra violet spectroscopy, beamlines are operational. The paper presents some of the recent studies carried out using In-dus-1.

  16. Nanopositioning techniques development for synchrotron radiation instrumentation applications at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu Deming

    2010-01-01

    At modern synchrotron radiation sources and beamlines, high-precision positioning techniques present a significant opportunity to support state-of-the-art synchrotron radiation research. Meanwhile, the required instrument positioning performance and capabilities, such as resolution, dynamic range, repeatability, speed, and multiple axes synchronization are exceeding the limit of commercial availability. This paper presents the current nanopositioning techniques developed for the Argonne Center for Nanoscale Materials (CNM)/Advanced Photon Source (APS) hard x-ray nanoprobe and high-resolution x-ray monochromators and analyzers for the APS X-ray Operations and Research (XOR) beamlines. Future nanopositioning techniques to be developed for the APS renewal project will also be discussed.

  17. Development of high resolution vacuum ultraviolet beam line at Indus-1 synchrotron source

    International Nuclear Information System (INIS)

    Shukla, R.P.; Das, N.C.; Udupa, D.V.; Saraswathy, P.; Sunanda, K.; Jha, S.N.; Shastri, Aparna; Singh, Paramjeet; Mallick, Manika; Mishra, A.P.; Sahoo, N.K.; Sinha, A.K.; Bhatt, S.; Sahni, V.C.

    2005-07-01

    High resolution vacuum ultraviolet beamline at Indus-1 450 MeV synchrotron source has been developed for carrying out absorption spectral studies of atoms and molecules. The beamline consists of three major parts i.e. a focusing optical system, an absorption cell and a high resolution 6.65 m vacuum ultraviolet spectrometer in Eagle mount. The wavelength range of the spectrometer is from 700 A to 2000 A and the resolution of the spectrometer is 0.01 A. Using the synchrotron source Indus-1, the absorption spectra of oxygen, ammonia and carbon disulphide have been recorded at the wavelength band of 1750 A, 1881 A and 3100 A respectively. Details of different aspects of design and development of the high resolution VUV beamline are described in this report. (author)

  18. Upgrades and expansion of the Cornell High Energy Synchrotron Source (CHESS)

    International Nuclear Information System (INIS)

    White, Jeffrey A.

    2000-01-01

    The Cornell High Energy Synchrotron Source (CHESS) is a user-oriented National Facility that provides state-of-the-art synchrotron radiation facilities to scientists worldwide. With major new funding in 1999, we now have 5 ongoing upgrade and expansion projects: 1) a new building addition that will house a new wiggler beamline (CHESS G-line) with three new experimental stations; 2) a new more powerful wiggler source for both A and G beamlines; 3) an upgrade to the A-line optics for better heat load handling and focussing; 4) a rebuild of the F-cave optics room with new optics to handle higher machine current; and 5) a renovation to the user laboratory space surrounding the F1 and F2 crystallography stations. We expect these upgrades and a new G line Cornell faculty collaborating group to raise the level of excitement and productivity at CHESS for many years to come

  19. National Synchrotron Light Source guidelines for the conduct of operations

    International Nuclear Information System (INIS)

    Fewell, N.

    1990-03-01

    This report briefly discusses the following topics: NSLS operations organization and administration; shift routines and operating practices; NSLS control room activities; communications; control of on-shift training; investigation of abnormal events; notifications; control of equipment and system status; lock-out tagout; independent verification; logkeeping; shift turnover; required reading; shift orders; equipment operations guides; operator aid postings; and equipment labeling

  20. Fast ferrite tuner for the BNL synchrotron light source

    International Nuclear Information System (INIS)

    Pivit, E.; Hanna, S.M.; Keane, J.

    1991-01-01

    A new type of ferrite tuner has been tested at the BNL. The ferrite tuner uses garnet slabs partially filling a stripline. One of the important features of the tuner is that the ferrite is perpendicularly biased for operation above FMR, thus reducing the magnetic losses. A unique design was adopted to achieve the efficient cooling. The principle of operation of the tuner as well as our preliminary results on tuning a 52 MHz cavity are reported. Optimized conditions under which we demonstrated linear tunability of 80 KHz are described. The tuner's losses and its effect on higher-order modes in the cavity are discussed. 2 refs., 8 figs

  1. The tomography beamline at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Dilmanian, F.A.; Wu, X.Y.; Parsons, E.C. [and others

    1996-12-31

    We compared the image contrast of a monochromatic CT, Multiple Energy Computed Tomography (MECT), and conventional CT scanner using phantoms. The experimental results indicate that monochromatic CT, with beam energy tuned just above the iodine K-edge, has about a 3 fold advantage in iodine contrast over conventional CT with a 120 kVp beam. Modeling using the same beams at a 3 rad dose and 3 mm slice height on an 18 cm diameter acrylic phantom, the simulations show a noise of 1.2 HU for MECT and 1.9 HU for CCT. Furthermore, despite the Cupping-effect corrections the bone contrast is lower in CCT and varies by 24 HU moving from the phantom`s center to the edge; this indicates an advantage for MECT in detecting and quantifying lesions differing from surrounding tissue by their mean atomic number.

  2. SUNY beam line X3, National Synchrotron Light Source

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses: beamline change and upgrades at NSLS; crystallography; surface structure; small angle scattering; EXAFS, glazing angle and fluorescence studies; and high temperature superconductors. (LSP)

  3. Dipole power supply for National Synchrotron Light Source Booster upgrade

    International Nuclear Information System (INIS)

    Olsen, R.; Dabrowski, J.; Murray, J.

    1992-01-01

    The booster at the NSLS is being upgraded from .75 to 2 pulses per second. To accomplish this, new power supplies for the dipole, quadrupole, and sextupole magnets have been designed and are being constructed. This paper will outline the design of the dipole power supply and control system, and will present results obtained thus far

  4. (SUNY beamline facilities at the National Synchrotron Light Source)

    Energy Technology Data Exchange (ETDEWEB)

    Coppens, P.

    1992-01-01

    This report contains short discussions on the following topics which mainly deal with superconductors: crystallography; surface structure; scattering and EXAFS studies; small angle scattering of x-rays. (LSP)

  5. SUNY beam line X3, National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This report discusses: beamline change and upgrades at NSLS; crystallography; surface structure; small angle scattering; EXAFS, glazing angle and fluorescence studies; and high temperature superconductors. (LSP).

  6. National Synchrotron Light Source guidelines for the conduct of operations

    Energy Technology Data Exchange (ETDEWEB)

    Fewell, N.

    1990-03-01

    This report briefly discusses the following topics: NSLS operations organization and administration; shift routines and operating practices; NSLS control room activities; communications; control of on-shift training; investigation of abnormal events; notifications; control of equipment and system status; lock-out tagout; independent verification; logkeeping; shift turnover; required reading; shift orders; equipment operations guides; operator aid postings; and equipment labeling.

  7. [SUNY beamline facilities at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Coppens, P.

    1992-01-01

    This report contains short discussions on the following topics which mainly deal with superconductors: crystallography; surface structure; scattering and EXAFS studies; small angle scattering of x-rays

  8. Storage ring development at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Krinsky, S.; Bittner, J.; Fauchet, A.M.; Johnson, E.D.; Keane, J.; Murphy, J.; Nawrocky, R.J.; Rogers, J.; Singh, O.V.; Yu, L.H.

    1991-09-01

    This report contains papers on the following topics: Transverse Beam Profile Monitor; Bunch Length Measurements in the VUV Storage Ring; Photoelectric Effect Photon Beam Position Monitors; RF Receivers for Processing Electron Beam Pick-up Electrode Signals; Real-Time Global Orbit Feedback Systems; Local Orbit Feedback; Active Interlock System for High Power Insertion Devices in the X-ray Ring; Bunch Lengthening Cavity for the VUV Ring; SXLS Storage Ring Design

  9. SUNY beamline facilities at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Coppens, P.

    1993-01-01

    This document presents information concerning: crystallography (single crystal studies); crystallography (powder diffraction); crystallography (surface structure); exafs and interface studies; and small angle scattering

  10. BNL National Synchrotron Light Source activity report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    During FY 1997 Brookhaven National Laboratory celebrated its 50th Anniversary and 50 years of outstanding achievement under the management of Associated Universities, Inc. This progress report is divided into the following sections: (1) introduction; (2) science highlights; (3) meetings and workshops; (4) operations; (5) projects; (6) organization; and (7) abstracts and publications.

  11. BNL National Synchrotron Light Source activity report 1997

    International Nuclear Information System (INIS)

    1998-05-01

    During FY 1997 Brookhaven National Laboratory celebrated its 50th Anniversary and 50 years of outstanding achievement under the management of Associated Universities, Inc. This progress report is divided into the following sections: (1) introduction; (2) science highlights; (3) meetings and workshops; (4) operations; (5) projects; (6) organization; and (7) abstracts and publications

  12. Multiobjective optimization of the synchrotron radiation source Siberia-2 lattice using a genetic algorithm

    Science.gov (United States)

    Korchuganov, V. N.; Smygacheva, A. S.; Fomin, Ye. A.

    2018-01-01

    Numerical simulation is one of the most efficient methods of investigating and optimizing nonlinear effects. However, simulating complex processes considering numerous nonlinear effects with the use of classical optimization methods is very difficult. This work deals with the application of a multiobjective genetic algorithm for the optimization of lattices of synchrotron radiation sources. This algorithm allows one to efficiently optimize both the linear and complex strongly nonlinear lattices of accelerators to obtain the required facility parameters.

  13. Design, commissioning and operation of the Swiss Light Source SLS

    International Nuclear Information System (INIS)

    Streun, Andreas

    2003-01-01

    The Swiss Light Source (SLS) at the Paul Scherrer Institute (PSI) is the most recent 3rd generation light source coming to operation. It consists of a 12- TBA storage ring of 288 m circumference providing 5 nm rad emittance at 2.4 GeV, a novel type of full energy booster synchrotron and a 100 MeV linac. The initial four beamlines cover protein X-ray crystallography (PX), materials science (MS), surface and interface spectroscopy (SIS) and microscopy (SIM). We will review the project history, describe the design concepts of the accelerators and the technical subsystems, and report on the commissioning process and the status of operation by end of 2002. (author)

  14. Synchrotron radiation

    CERN Document Server

    Kunz, C

    1974-01-01

    The production of synchrotron radiation as a by-product of circular high-energy electron (positron) accelerators or storage rings is briefly discussed. A listing of existing or planned synchrotron radiation laboratories is included. The following properties are discussed: spectrum, collimation, polarization, and intensity; a short comparison with other sources (lasers and X-ray tubes) is also given. The remainder of the paper describes the experimental installations at the Deutsches Elektronen-Synchrotron (DESY) and DORIS storage rings, presents a few typical examples out of the fields of atomic, molecular, and solid-state spectroscopy, and finishes with an outlook on the use of synchrotron radiation in molecular biology. (21 refs).

  15. Photocathodes for High Repetition Rate Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, Ilan [Stony Brook Univ., NY (United States). Dept. of Physics and Astronomy. Center for Accelerator Science and Education

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). Below details the Principal Investigators and contact information. Each PI submits separately for a budget through his corresponding institute. The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-­conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-­antimonide cathodes (BNL – LBNL) b) Development and testing of a diamond amplifier for photocathodes (SBU -­ BNL) c) Tests of both cathodes in superconducting RF photoguns (SBU) and copper RF photoguns (LBNL) Our work made extensive use of synchrotron radiation materials science techniques, such as powder-­ and single-­crystal diffraction, x-­ray fluorescence, EXAFS and variable energy XPS. BNL and LBNL have many complementary facilities at the two light sources associated with these laboratories (NSLS and ALS, respectively); use of these will be a major thrust of our program and bring our understanding of these complex materials to a new level. In addition, CHESS at Cornell will be used to continue seamlessly throughout the NSLS dark period and

  16. Synchrotron radiation

    International Nuclear Information System (INIS)

    Nave, C.; Quinn, P.; Blake, R.J.

    1988-01-01

    The paper on Synchrotron Radiation contains the appendix to the Daresbury Annual Report 1987/88. The appendix is mainly devoted to the scientific progress reports on the work at the Synchrotron Radiation Source in 1987/8. The parameters of the Experimental Stations and the index to the Scientific Reports are also included in the appendix. (U.K.)

  17. Online monitoring the detector calibration process at a synchrotron X-ray source

    Science.gov (United States)

    Li, Huapng; Zhao, Yidong; Zheng, Lei; Tang, Kun; Liu, Shuhu; Zhao, Xiaoliang; Zhao, Yashuai; Li, Fan

    2017-12-01

    This paper describes an online noble gas monitor used for the detector calibration process with a cryogenic radiometer. The process is implemented under a high-flux synchrotron radiation X-ray source in the energy range from 2100 to 6000 eV at the Beijing Synchrotron Radiation Facility (BSRF). This online monitoring system aims to lower the uncertainty of the calibration results caused by electron beam decay in the storage ring during the detector calibration process. Because the calibration process is performed under the high vacuum condition, an ionization chamber with adjustable Kr gas pressure is chosen as the monitoring device. To decrease the electronic noise, a method for obtaining the signal by collecting the counts within a specified time has been applied. Under the properly controlled conditions, the uncertainty of the calibration results introduced by the online monitoring system is estimated to be better than 0.15%, which can meet the demands of various high-precision calibration processes.

  18. Moving at the speed of light

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A short survey is given about synchrotron radiation research. In this connection the US National Synchrotron light source is described. Then the application to angiography is considered. Furthermore some further synchrotron radiation sources in USA and the synchrotron radiation research in Novosibirsk are considered. Finally the development of Wigglers and undulators is discussed. (HSI).

  19. Electron multiplier as a detector for soft x rays from synchrotron and laser plasma sources

    Science.gov (United States)

    Buckley, Christopher J.; Dermody, Geraint; Khaleque, Naz I.; Michette, Alan G.; Pfauntsch, Slawka J.; Turcu, I. C. Edmond; Allott, Ric M.

    1998-11-01

    An electron-tubes-LTD 129EM electron multiplier tube has been modified to act as a detector of soft x-rays. the first dynode was coated with 100 nm of CsI and the assembly was mounted in a small vacuum chamber with 100 nm thick silicon nitride entrance window. Initial tests show the detector is linear up to an input flux of approximately 1MHz on a synchrotron source and has proved effective in providing pulse height discrimination when used on a pulsed laser plasma source.

  20. Development of a circadian light source

    Science.gov (United States)

    Nicol, David B.; Ferguson, Ian T.

    2002-11-01

    Solid state lighting presents a new paradigm for lighting - controllability. Certain characteristics of the lighting environment can be manipulated, because of the possibility of using multiple LEDs of different emission wavelengths as the illumination source. This will provide a new, versatile, general illumination source due to the ability to vary the spectral power distribution. New effects beyond the visual may be achieved that are not possible with conventional light sources. Illumination has long been the primary function of lighting but as the lighting industry has matured the psychological aspects of lighting have been considered by designers; for example, choosing a particular lighting distribution or color variation in retail applications. The next step in the evolution of light is to consider the physiological effects of lighting that cause biological changes in a person within the environment. This work presents the development of a source that may have important bearing on this area of lighting. A circadian light source has been developed to provide an illumination source that works by modulating its correlated color temperature to mimic the changes in natural daylight through the day. In addition, this source can cause or control physiological effects for a person illuminated by it. The importance of this is seen in the human circadian rhythm's peak response corresponding to blue light at ~460 nm which corresponds to the primary spectral difference in increasing color temperature. The device works by adding blue light to a broadband source or mixing polychromatic light to mimic the variation of color temperature observed for the Planckian Locus on the CIE diagram. This device can have several applications including: a tool for researchers in this area, a general illumination lighting technology, and a light therapy device.

  1. Increasing the brightness of light sources

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ling

    2006-11-16

    In this work the principle of light recycling is applied to artificial light sources in order to achieve brightness enhancement. Firstly, the feasibilities of increasing the brightness of light sources via light recycling are examined theoretically, based on the fundamental laws of thermodynamics including Kirchhoff's law on radiation, Planck's law, Lambert-Beer's law, the etendue conservation and the brightness theorem. From an experimental viewpoint, the radiation properties of three different kinds of light sources including short-arc lamps, incandescent lamps and LEDs characterized by their light-generating mechanisms are investigated. These three types of sources are used in light recycling experiments, for the purpose of 1. validating the intrinsic light recycling effect in light sources, e. g. the intrinsic light recycling effect in incandescent lamps stemming from the coiled filament structure. 2. acquiring the required parameters for establishing physical models, e.g. the emissivity/absorptivity of the short-arc lamps, the intrinsic reflectivity and the external quantum efficiency of LEDs. 3. laying the foundations for designing optics aimed at brightness enhancement according to the characteristics of the sources and applications. Based on the fundamental laws and experiments, two physical models for simulating the radiance distribution of light sources are established, one for thermal filament lamps, the other for luminescent sources, LEDs. As validation of the theoretical and experimental investigation of the light recycling effect, an optical device, the Carambola, is designed for achieving deterministic and multiple light recycling. The Carambola has the function of a concentrator. In order to achieve the maximum possible brightness enhancement with the Carambola, several combinations of sources and Carambolas are modelled in ray-tracing simulations. Sources with different light-emitting mechanisms and different radiation properties

  2. Linac Coherent Light Source (LCLS) Design Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Cornacchia, Massimo

    1998-12-04

    The Stanford Linear Accelerator Center, in collaboration with Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, is proposing to build a Free-Electron-Laser (FEL) R and D facility operating in the wavelength range 1.5-15 {angstrom}. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. Starting in FY 1998, the first two-thirds of the SLAC linac will be used for injection into the B factory. This leaves the last one-third free for acceleration to 15 GeV. The LCLS takes advantage of this opportunity, opening the way for the next generation of synchrotron light sources with largely proven technology and cost effective methods. This proposal is consistent with the recommendations of the Report of the Basic Energy Sciences Advisory Committee (Synchrotron Radiation Light Source Working Group, October 18-19, 1997). The report recognizes that ''fourth-generation x-ray sources...will in all likelihood be based on the free electron laser concepts. If successful, this technology could yield improvements in brightness by many orders of magnitude.'' This Design Study, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac. Although this design is based on a consistent and feasible set of parameters, some components require more research and development to guarantee the performance. Given appropriate funding, this R and D phase can be completed in 2 years.

  3. Increased cell survival and cytogenetic integrity by spatial dose redistribution at a compact synchrotron X-ray source

    Science.gov (United States)

    Ilicic, Katarina; Dierolf, Martin; Günther, Benedikt; Walsh, Dietrich W. M.; Schmid, Ernst; Eggl, Elena; Achterhold, Klaus; Gleich, Bernhard; Combs, Stephanie E.; Molls, Michael; Schmid, Thomas E.; Pfeiffer, Franz; Wilkens, Jan J.

    2017-01-01

    X-ray microbeam radiotherapy can potentially widen the therapeutic window due to a geometrical redistribution of the dose. However, high requirements on photon flux, beam collimation, and system stability restrict its application mainly to large-scale, cost-intensive synchrotron facilities. With a unique laser-based Compact Light Source using inverse Compton scattering, we investigated the translation of this promising radiotherapy technique to a machine of future clinical relevance. We performed in vitro colony-forming assays and chromosome aberration tests in normal tissue cells after microbeam irradiation compared to homogeneous irradiation at the same mean dose using 25 keV X-rays. The microplanar pattern was achieved with a tungsten slit array of 50 μm slit size and a spacing of 350 μm. Applying microbeams significantly increased cell survival for a mean dose above 2 Gy, which indicates fewer normal tissue complications. The observation of significantly less chromosome aberrations suggests a lower risk of second cancer development. Our findings provide valuable insight into the mechanisms of microbeam radiotherapy and prove its applicability at a compact synchrotron, which contributes to its future clinical translation. PMID:29049300

  4. Increased cell survival and cytogenetic integrity by spatial dose redistribution at a compact synchrotron X-ray source.

    Directory of Open Access Journals (Sweden)

    Karin Burger

    Full Text Available X-ray microbeam radiotherapy can potentially widen the therapeutic window due to a geometrical redistribution of the dose. However, high requirements on photon flux, beam collimation, and system stability restrict its application mainly to large-scale, cost-intensive synchrotron facilities. With a unique laser-based Compact Light Source using inverse Compton scattering, we investigated the translation of this promising radiotherapy technique to a machine of future clinical relevance. We performed in vitro colony-forming assays and chromosome aberration tests in normal tissue cells after microbeam irradiation compared to homogeneous irradiation at the same mean dose using 25 keV X-rays. The microplanar pattern was achieved with a tungsten slit array of 50 μm slit size and a spacing of 350 μm. Applying microbeams significantly increased cell survival for a mean dose above 2 Gy, which indicates fewer normal tissue complications. The observation of significantly less chromosome aberrations suggests a lower risk of second cancer development. Our findings provide valuable insight into the mechanisms of microbeam radiotherapy and prove its applicability at a compact synchrotron, which contributes to its future clinical translation.

  5. Far-infrared Beamline at the Canadian Light Source

    Science.gov (United States)

    Zhao, Jianbao; Billinghurst, Brant

    2017-06-01

    Far-infrared is a particularly useful technique for studies on lattice modes as they generally appear in the Far-infrared region. Far-infrared is also an important tool for gathering information on the electrical transport properties of metallic materials and the band gap of semiconductors. This poster will describe the horizontal microscope that has recently been built in the Far-infrared beamline at the Canadian Light Source Inc. (CLS). This microscope is specially designed for high-pressure Far-infrared absorbance and reflectance spectroscopic studies. The numerical aperture (0.5) and the long working distance (82.1 mm) in the microscope are good fits for Diamond Anvil Cell (DAC). The spectra are recorded using liquid helium cooled Si bolometer or Ge:Cu detector. The pressure in the DAC can be determined by using the fluorescence spectrometer available onsite. The Far-infrared beamline at CLS is a state-of-the-art synchrotron facility, offering significantly more brightness than conventional sources. Because of the high brightness of the synchrotron radiation, we can obtain the Far-infrared reflectance/absorbance spectra on the small samples with more throughput than with a conventional source. The Far-infrared beamline is open to users through peer review.

  6. Electromagnetic Coupling Between High Intensity LHC Beams and the Synchrotron Radiation Monitor Light Extraction System

    CERN Document Server

    Andreazza, W; Bravin, E; Caspers, F; Garlasch`e, M; Gras, J; Goldblatt, A; Lefevre, T; Jones, R; Metral, E; Nosych, A; Roncarolo_, F; Salvant, B; Trad, G; Veness, R; Vollinger, C; Wendt, M

    2013-01-01

    The CERN LHC is equipped with two Synchrotron Radiation Monitor (BSRT) systems used to characterise transverse and longitudinal beam distributions. Since the end of the 2011 LHC run the light extraction system, based on a retractable mirror, has suffered deformation and mechanical failure that is correlated to the increase in beam intensity. Temperature probes have associated these observations to a strong heating of the mirror support with a dependence on the longitudinal bunch length and shape, indicating the origin as electromagnetic coupling between the beam and the structure. This paper combines all this information with the aim of characterising and improving the system in view of its upgrade during the current LHC shutdown. Beam-based observations are presented along with electromagnetic and thermomechanical simulations and complemented by laboratory measurements, including the study of the RF properties of different mirror bulk and coating materials.

  7. Current status and future perspectives of accelerator-based x-ray light sources

    Science.gov (United States)

    Tanaka, Takashi

    2017-09-01

    State-of-the-art x-ray light sources are nowadays based on large-scale electron accelerators, because the synchrotron radiation (SR) and x-ray free electron laser (XFEL) radiation generated by high-energy electron beams have many advantages over other alternatives in terms of the wavelength tunability, high brightness and flux, high coherence, flexible polarization states, and so on. This is the reason why SR and XFEL light sources have largely contributed to the evolution of x-ray science. This paper reviews the current status of such accelerator-based x-ray light source facilities and discusses their future perspectives.

  8. X-ray phase contrast imaging: From synchrotrons to conventional sources

    International Nuclear Information System (INIS)

    Olivo, A.; Castelli, E.

    2014-01-01

    Phase-based approaches can revolutionize X-ray imaging and remove its main limitation: poor image contrast arising from low attenuation differences. They exploit the unit decrement of the real part of the refractive index, typically 1000 times larger than the imaginary part driving attenuation. This increases the contrast of all details, and enables the detection of features classically considered 'X-ray invisible'. Following pioneering experiments dating back to the mid-sixties, X-ray phase contrast imaging 'exploded' in the mid-nineties, when third generation synchrotron sources became more widely available. Applications were proposed in fields as diverse as material science, palaeontology, biology, food science, cultural heritage preservation, and many others. Among these applications, medicine has been constantly considered the most important; among medical applications, mammography is arguably the one that attracted most attention. Applications to mammography were pioneered by the SYRMEP (SYnchrotron Radiation for MEdical Physics) group in Trieste, which was already active in the area through a combination of innovative ways to do imaging at synchrotrons and development of novel X-ray detectors. This pioneering phase led to the only clinical experience of phase contrast mammography on human patients, and spawned a number of ideas as to how these advances could be translated into clinical practice.

  9. Synchrotron radiation

    International Nuclear Information System (INIS)

    Helliwell, J.R.; Walker, R.P.

    1985-01-01

    A detailed account of the research work associated with the Synchrotron Radiation Source at Daresbury Laboratory, United Kingdom, in 1984/85, is presented in the Appendix to the Laboratory's Annual Report. (U.K.)

  10. Synchrotron radiation and biomedical imaging

    International Nuclear Information System (INIS)

    Luccio, A.

    1986-08-01

    In this lecture we describe the characteristics of Synchrotron radiation as a source of X rays. We discuss the properties of SR arc sources, wigglers, undulators and the use of backscattering of laser light. Applications to angiography, X ray microscopy and tomography are reviewed. 16 refs., 23 figs

  11. Photo absorption studies of polyatomic molecules using Indus 1 synchrotron radiation source

    International Nuclear Information System (INIS)

    Saraswathy, P.; Sunanda, K.; Aparna, S.; Rajashekar, B.N.; Das, N.C.

    2004-06-01

    The Photophysics beamline is a medium resolution beamline designed for carrying out photo absorption and fluorescence experiments using the synchrotron radiation source Indus-l. This beamline has been commissioned recently and is in operation. An experimental setup for gas phase absorption studies has been developed and installed. Absorption spectra of a few polyatomicmolecules viz. benzene, ammonia, carbon disulphide and acetone were recorded in the wavelength region 1500 -3000 A. The results from this study indicated the satisfactory performance of the beam line as well as the experimental setup. Details of the first set of absorption experiments carried out are discussed in this report. (author)

  12. Light Sources Technologies and Applications

    CERN Document Server

    Kitsinelis, Spyridon

    2010-01-01

    From the dialogues of the ancient Greek philosophers right up through the physical laws of Newton, the experiments of Thomas Young and the quantum physics pioneers, the study of light was all about observing its characteristics and defining its behavior. At the end of the 19th century, wicks, wax, and oil gave way to electricity, filaments, and gases, and scientific minds began to focus on the technological creation of light, as well as its control and diverse uses. Yet, despite more than a century of profound research and development, until now, the most complete resources on lighting technol

  13. Measurement of the intensity of the beam in the abort gap at the Tevatron utilizing synchrotron light

    International Nuclear Information System (INIS)

    Thurman-Keup, R.; Lorman, E.; Meyer, T.; Pordes, S.; De Santis, S.

    2005-01-01

    This paper discusses the implementation of abort gap beam intensity monitoring at the Tevatron collider at Fermilab. There are two somewhat independent monitors which measure the intensity of the synchrotron light emitted by particles in the abort gaps. One system uses a gated Photomultiplier Tube (PMT) to measure the light intensity, and the other system uses a single lens telescope, gated image intensifier, and Charge Injection Device (CID) camera to image the beam

  14. A compact, coherent light source system architecture

    NARCIS (Netherlands)

    Biedron, S.G.; Dattoli, G.; Dipalma, E.; Einstein, J.; Milton, S.V.; Petrillo, V.; Rau, J. V.; Sabia, E.; Spassovsky, I.P.; Van Der Slot, P. J.M.

    2016-01-01

    Our team has been examining several architectures for short-wavelength, coherent light sources. We are presently exploring the use and role of advanced, high-peak power lasers for both accelerating the electrons and generating a compact light source with the same laser. Our overall goal is to devise

  15. Engineering for high heat loads on ALS [Advanced Light Source] beamlines

    International Nuclear Information System (INIS)

    DiGennaro, R.; Swain, T.

    1989-08-01

    This paper discussed general thermal engineering problems and specific categories of thermal design issues for high photon flux beam lines at the LBL Advanced Light Source: thermal distortion of optical surfaces and elevated temperatures of thermal absorbers receiving synchrotron radiation. A generic design for water-cooled heat absorbers is described for use with ALS photon shutters, beam defining apertures, and heat absorbing masks. Also, results of in- situ measurements of thermal distortion of a water-cooled mirror in a synchrotron radiation beam line are compared with calculated performance estimates. 17 refs., 2 figs

  16. Paul Scherrer Institute Scientific Report 1999. Volume VII: Swiss Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Weyer, Heinz Josef; Bugmann, Marlen; Schuetz, Christine [eds.

    2000-07-01

    The Swiss Synchrotron Light Source (SLS) is a medium energy range light source that also provides light with high brilliance in the regime of hard X-rays. It is being constructed at PSI and scheduled to be operational in 2001. The progress of the construction of pre-injector, booster and storage ring as well as some of the details of new features that were adopted for the design and operation of this machine, are described in this annual report for 1999. An overview of the concept and status of the four SLS beamlines and the related infrastructure is also given. The last chapter contains 11 contributions which report on scientific activities of SLS staff members at synchrotron radiation facilities all over the world.

  17. Paul Scherrer Institute Scientific Report 1999. Volume VII: Swiss Light Source

    International Nuclear Information System (INIS)

    Weyer, Heinz Josef; Bugmann, Marlen; Schuetz, Christine

    2000-01-01

    The Swiss Synchrotron Light Source (SLS) is a medium energy range light source that also provides light with high brilliance in the regime of hard X-rays. It is being constructed at PSI and scheduled to be operational in 2001. The progress of the construction of pre-injector, booster and storage ring as well as some of the details of new features that were adopted for the design and operation of this machine, are described in this annual report for 1999. An overview of the concept and status of the four SLS beamlines and the related infrastructure is also given. The last chapter contains 11 contributions which report on scientific activities of SLS staff members at synchrotron radiation facilities all over the world

  18. Blue enhanced light sources: opportunities and risks

    Science.gov (United States)

    Lang, Dieter

    2012-03-01

    Natural daylight is characterized by high proportions of blue light. By proof of a third type of photoreceptor in the human eye which is only sensitive in this spectral region and by subsequent studies it has become obvious that these blue proportions are essential for human health and well being. In various studies beneficial effects of indoor lighting with higher blue spectral proportions have been proven. On the other hand with increasing use of light sources having enhanced blue light for indoor illumination questions are arising about potential health risks attributed to blue light. Especially LED are showing distinct emission characteristics in the blue. Recently the French agency for food, environmental and occupational health & safety ANSES have raised the question on health issues related to LED light sources and have claimed to avoid use of LED for lighting in schools. In this paper parameters which are relevant for potential health risks will be shown and their contribution to risk factors will quantitatively be discussed. It will be shown how to differentiate between photometric parameters for assessment of beneficial as well as hazardous effects. Guidelines will be discussed how blue enhanced light sources can be used in applications to optimally support human health and well being and simultaneously avoid any risks attributed to blue light by a proper design of lighting parameters. In the conclusion it will be shown that no inherent health risks are related to LED lighting with a proper lighting design.

  19. High resolution hard x-ray microscope on a second generation synchrotron source

    International Nuclear Information System (INIS)

    Tian Yangchao; Li Wenjie; Chen Jie; Liu Longhua; Liu Gang; Tian Jinping; Xiong Ying; Tkachuk, Andrei; Gelb, Jeff; Hsu, George; Yun Wenbing

    2008-01-01

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed.

  20. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  1. Flicker Vision of Selected Light Sources

    Science.gov (United States)

    Otomański, Przemysław; Wiczyński, Grzegorz; Zając, Bartosz

    2017-10-01

    The results of the laboratory research concerning a dependence of flicker vision on voltage fluctuations are presented in the paper. The research was realized on a designed measuring stand, which included an examined light source, a voltage generator with amplitude modulation supplying the light source and a positioning system of the observer with respect to the observed surface. In this research, the following light sources were used: one incandescent lamp and four LED luminaires by different producers. The research results formulate a conclusion concerning the description of the influence of voltage fluctuations on flicker viewing for selected light sources. The research results indicate that LED luminaires are less susceptible to voltage fluctuations than incandescent bulbs and that flicker vision strongly depends on the type of LED source.

  2. Filter and window assemblies for high power insertion device synchrotron radiation sources

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Viccaro, P.J.; Kuzay, T.M.

    1992-01-01

    The powerful beams of x-ray radiation generated by insertion devices at high power synchrotron facilities deposit substantial amounts of localized heat in the front end and optical components that they intercept. X-ray beams from undulator sources, in particular, are confined to very narrow solid angles and therefore impose very high absorbed heat fluxes. This paper is devoted to a detailed study of the design of windows for the Advanced Photon Source undulators and wigglers, emphasizing alternative design concepts, material considerations, and cooling techniques necessary for handling the high heat load of the insertion devices. Various designs are thermally and structurally analyzed by numerically simulating full-power operating conditions. This analysis also has relevance to the design and development of other beam line components which are subjected to the high heat loads of insertion devices

  3. Synchrotron radiation

    International Nuclear Information System (INIS)

    Norman, D.; Walker, R.P.; Durham, P.J.; Ridley, P.A.

    1986-01-01

    The paper on synchrotron radiation is the appendix to the Daresbury (United Kingdom) annual report, 1985/86. The bulk of the volume is made up of the progress reports for the work carried out during the year under review using the Synchrotron Radiation Source (SRS) at Daresbury. The Appendix also contains: the scientific programmes at the the SRS, progress on beamlines, instrumentation and computing developments, and activities connected with accelerator development. (U.K.)

  4. Synchrotron radiation

    International Nuclear Information System (INIS)

    Poole, M.W.; Lea, K.R.

    1982-01-01

    A report is given on the work involving the Synchrotron Radiation Division of the Daresbury Laboratory during the period January 1981 - March 1982. Development of the source, beamlines and experimental stations is described. Progress reports from individual investigators are presented which reveal the general diversity and interdisciplinary nature of the research which benefits from access to synchrotron radiation and the associated facilities. Information is given on the organisation of the Division and publications written by the staff are listed. (U.K.)

  5. The potential and limitations of third generation light sources

    International Nuclear Information System (INIS)

    Hormes, Josef

    2011-01-01

    To date, 3rd generation Light Sources, i.e. electron storage rings where mainly radiation from insertion devices (wigglers and undulators) is used for synchrotron radiation experiments are the 'workhorses' for basic and applied VUV/X-ray research. Several machine parameters. i.e. the energy of the electrons, the emittance and the circumference of the machine, together with the specification of the corresponding insertion devices determine the 'quality' of a facility and a specific beamline. In this talk, several of these aspects are discussed mainly from a users' point of view, i.e. what are the required specifications to carry out 'state-of-the-art' experiments in various areas, e.g. protein crystallography, Resonant Elastic and Inelastic X-ray Scattering (REIXS), Micro-/nanospectroscopy, and time resolved experiments in the femtosecond time domain. (author)

  6. Diamond Light Source Booster fast orbit feedback system

    International Nuclear Information System (INIS)

    Gayadeen, S.; Duncan, S.R.; Christou, C.; Heron, M.T.; Rowland, J.

    2012-01-01

    The Fast Orbit Feedback system that has been installed on the Diamond Light Source Storage ring has been replicated on the Booster synchrotron in order to provide a test bed for the development of the Storage Ring controller design. To realise this the Booster is operated in DC mode. The electron beam is regulated in two planes using the Fast Orbit Feedback system, which takes the beam position from 22 beam position monitors for each plane, and calculates offsets to 44 corrector power supplies at a sample rate of 10 kHz. This paper describes the design and realization of the controller for the Booster Fast Orbit Feedback, presents results from the implementation and considers future development

  7. Design of the Advanced Light Source timing system

    International Nuclear Information System (INIS)

    Fahmie, M.

    1993-05-01

    The Advanced Light Source (ALS) is a third generation synchrotron radiation facility, and as such, has several unique timing requirements. Arbitrary Storage Ring filling patterns and high single bunch purity requirements demand a highly stable, low jitter timing system with the flexibility to reconfigure on a pulse-to-pulse basis. This modular system utilizes a highly linear Gauss Clock with ''on the fly'' programmable setpoints to track a free-running Booster ramping magnet and provides digitally programmable sequencing and delay for Electron Gun, Linac, Booster Ring, and Storage Ring RF, Pulsed Magnet, and Instrumentation systems. It has proven itself over the last year of accelerator operation to be reliable and rock solid

  8. COMPARATIVE STUDY OF LIGHT SOURCES FOR HOUSEHOLD

    Directory of Open Access Journals (Sweden)

    Andrzej PAWLAK

    2017-01-01

    Full Text Available The article describes test results that provided the ground to define and evaluate basic photometric, colorimetric and electric parameters of selected, widely available light sources, which are equivalent to a traditional incandescent 60-Watt light bulb. Overall, one halogen light bulb, three compact fluorescent lamps and eleven LED light sources were tested. In general, it was concluded that in most cases (branded products, in particular the measured and calculated parameters differ from the values declared by manufacturers only to a small degree. LED sources prove to be the most beneficial substitute for traditional light bulbs, considering both their operational parameters and their price, which is comparable with the price of compact fluorescent lamps or, in some instances, even lower.

  9. New Perspectives for Advanced Science at the Brazilian Synchrotron Light Laboratory

    International Nuclear Information System (INIS)

    Tolentino, Helio C.N.

    2003-01-01

    The LNLS (Laboratorio Nacional de Luz Sincrotron) is a national laboratory in Brazil that operates a 1.37 GeV storage ring for synchrotron light users since July 1997. Eleven bending magnet beamlines are open to a wide range of possibilities for research in ultra-violet and X-ray spectroscopy, single crystal and powder diffraction, magnetic and anomalous scattering, protein crystallography, X-ray fluorescence, X-ray lithography and small angle X-ray scattering. The recent conclusion of the booster injector opened the way for insertion devices to be accommodated in the four straight sections available. A multipolar wiggler, for protein crystallography using the MAD technique, is the first planned to be installed during 2003. The construction of the first LNLS undulator, for the vaccum ultra-violet and soft X-ray domain, has already started and will expand the possibilities in atomic, molecular and surface physics, as well as in catalysis and magnetism. LNLS has expanded its infra-structure as an open multidisciplinary research laboratory into complementary areas, such as electron and scanning probe microscopy, nanostructure synthesis and molecular biology. Many technological and scientific achievements have been attained in these last five years. Some of them will be highlighted here, with emphasis in the area of nanostructured and magnetic materials

  10. Advanced Light Source Activity Report 2002

    International Nuclear Information System (INIS)

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori

    2003-01-01

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information

  11. Advanced Light Source Activity Report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  12. Advanced Light Source Activity Report 2000

    International Nuclear Information System (INIS)

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-01-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself

  13. Advanced Light Source Activity Report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori (Editors)

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  14. Vacuum chamber with distributed titanium sublimation pumping for the G-line wiggler at Cornell High Energy Synchrotron Source

    International Nuclear Information System (INIS)

    Li, Y.; He, Y.; Mistry, N.B.

    2003-01-01

    This article describes a 3-m-long vacuum chamber for the new wiggler magnet at the Cornell Electron Storage Ring (CESR) for the synchrotron light beam line of the Cornell High Energy Synchrotron Source (CHESS). Copper was chosen as the main chamber material for its good electric and thermal conductivities. Proper mechanical design and welding procedure were implemented to meet very tight tolerances to ensure adequate vertical aperture for the stored beams in CESR while allowing the required small wiggler gap. Distributed titanium sublimation pumping is incorporated along the 3 m length of the chamber to provide sufficient pumping speed and capacity for CESR and CHESS operations. The chamber pumping performance was evaluated prior to installation. Linear distributed pumping speeds at the beam line of ∼720 l/s/m for N 2 and CO and ∼4000 l/s/m for H 2 were measured. The measured pumping capacities for N 2 , CO and H 2 are ∼1.0, ∼2.0 and ∼77 Torr l, respectively, for each titanium sublimation cycle. Measurements also showed that CO molecules adsorb on the N 2 and H 2 saturated titanium films with virtually the same initial sticking coefficient as on a fresh titanium film. Analyses indicated very different CO adsorption mechanisms between the N 2 and H 2 saturated titanium films. While the replacement of surface H 2 by CO was observed, little desorption of nitrogen was measured. Operational experience showed excellent vacuum pumping performance over two years after the chamber installation

  15. Applications of photon-in, photon-out spectroscopy with third-generation, synchrotron-radiation sources

    International Nuclear Information System (INIS)

    Lindle, D.W.; Perera, R.C.C.

    1991-01-01

    This report discusses the following topics: Mother nature's finest test probe; soft x-ray emission spectroscopy with high-brightness synchrotron radiation sources; anisotropy and polarization of x-ray emission from atoms and molecules; valence-hole fluorescence from molecular photoions as a probe of shape-resonance ionization: progress and prospects; structural biophysics on third-generation synchrotron sources; ultra-soft x-ray fluorescence-yield XAFS: an in situ photon-in, photon-out spectroscopy; and x-ray microprobe: an analytical tool for imaging elemental composition and microstructure

  16. eBooking of beam-time over internet for beamlines of Indus synchrotron radiation sources

    International Nuclear Information System (INIS)

    Jain, Alok; Verma, Rajesh; Rajan, Alpana; Modi, M.H.; Rawat, Anil

    2015-01-01

    Users from various research labs and academic institutes carry out experiments on beamlines of two Synchrotron Radiation Sources Indus-1 and Indus-2 available at RRCAT, Indore. To carry out experimental work on beamlines of both synchrotron radiation sources, beam-time is booked over Internet by the users of beamlines using user portal designed, developed and deployed over Internet. This portal has made the process of beamtime booking fast, hassle free and paperless as manual booking of beam-time for carrying out experiment on a particular beamline is cumbersome. The portal facilitates in-charge of Indus-1 and Indus-2 beamlines to keep track of users' records, work progress and other activities linked to experiments carried on beamlines. It is important to keep record and provide statistics about the usage of the beam lines from time-to-time. The user portal for e-booking of beam-time has been developed in-house using open source software development tools. Multi-step activities of users and beamline administrators are workflow based with seamless flow of information across various modules and fully authenticated using role based mechanism for different roles of software usage. The software is in regular use since November 2013 and has helped beamline in- charges in efficiently managing various activities related to user registration, booking of beam-time, booking of Guest House, Generation of Security permits, User feedback etc. Design concept, role based authentication mechanism and features provided by the web portal are discussed in detail in this paper. (author)

  17. Photobiocatalytic alcohol oxidation using LED light sources

    NARCIS (Netherlands)

    Rauch, M.C.R.; Schmidt, S.; Arends, I.W.C.E.; oppelt, K.; Kara, S; Hollmann, F.

    2016-01-01

    The photocatalytic oxidation of NADH using a flavin photocatalyst and a simple blue LED light source is reported. This in situ NAD+ regeneration system can be used to promote biocatalytic, enantioselective oxidation reactions. Compared to the traditional use of white light bulbs this method enables

  18. A Test Beamline on Diamond Light Source

    International Nuclear Information System (INIS)

    Sawhney, K. J. S.; Dolbnya, I. P.; Tiwari, M. K.; Alianelli, L.; Scott, S. M.; Preece, G. M.; Pedersen, U. K.; Walton, R. D.

    2010-01-01

    A Test beamline B16 has been built on the 3 GeV Diamond synchrotron radiation source. The beamline covers a wide photon energy range from 2 to 25 keV. The beamline is highly flexible and versatile in terms of the available beam size (a micron to 100 mm) and the range of energy resolution and photon flux; by virtue of its several operational modes, and the different inter-changeable instruments available in the experiments hutch. Diverse experimental configurations can be flexibly configured using a five-circle diffractometer, a versatile optics test bench, and a suite of detectors. Several experimental techniques including reflectivity, diffraction and imaging are routinely available. Details of the beamline and its measured performance are presented.

  19. Uniform variable light sources for instrument calibration.

    Science.gov (United States)

    Squyres, H P; Rennilson, J J

    1970-05-01

    This paper describes light sources that were developed for use in calibrating cameras for space exploration. The design produces a nearly uniform luminance field whose correlated color temperature ranges from 4000 K to 5000 K in the visible. Luminance of the source may be continuously varied by as much as 500:1 without affecting the uniformity of the field. The sources, consisting basically of two integrating cavities with an iris diaphragm interposed, use xenon light. Luminances as high as 25,000 cd m(-2) are possible. Such sources are used for light-transfer calibration, as well as spectral response of camera systems. After a brief theoretical treatment, the design variations are discussed. Measurement data on these sources indicates that the angular luminance distribution approximates a uniform diffuser within a 50-deg cone.

  20. Characterization of germanium linear kinoform lenses at Diamond Light Source.

    Science.gov (United States)

    Alianelli, L; Sawhney, K J S; Tiwari, M K; Dolbnya, I P; Stevens, R; Jenkins, D W K; Loader, I M; Wilson, M C; Malik, A

    2009-05-01

    The unprecedented brilliance achieved by third-generation synchrotron sources and the availability of improved optics have opened up new opportunities for the study of materials at the micrometre and nanometre scale. Focusing the synchrotron radiation to smaller and smaller beams is having a huge impact on a wide research area at synchrotrons. The key to the exploitation of the improved sources is the development of novel optics that deliver narrow beams without loss of brilliance and coherence. Several types of synchrotron focusing optics are successfully fabricated using advanced miniaturization techniques. Kinoform refractive lenses are being developed for hard X-ray beamlines, and the first test results at Diamond are discussed in this paper.

  1. Techniques for Handling Channeling in High Resolution Fourier Transform Spectra Recorded with Synchrotron Sources

    International Nuclear Information System (INIS)

    Ibrahim, Amr; PredoiCross, Adriana; Teillet, P. M.

    2010-01-01

    Seven different techniques in dealing the problem of channel spectra in Fourier transform Spectroscopy utilizing synchrotron source were examined and compared. Five of these techniques deal with the artifacts (spikes) in the recorded interferogram which in turn result in channel spectra within the spectral domain. Such interferogram editing method include replacing these spikes with zeros, straight line, fitted polynomial curve, rescaled spike and spike reduced with Gauss Function. Another two techniques try to target this issue in the spectral domain instead by either generating a synthetic background simulating the channels or measuring the channels parameters (amplitude, spacing and phase) to use in the spectral fitting program. Results showed spectral domain techniques produces higher quality results in terms of signal to noise and fitting residual. The effect of each method on the line parameters such as position, intensity are air broadening are also measured and discussed.

  2. Evaluation of fatigue properties of bulk ring superconductors for synchrotron radiation sources

    Science.gov (United States)

    Tsuru, R.; Tanaka, T.; Nakajima, T.; Seike, T.; Hirano, H.; Morita, M.; Teshima, H.; Nariki, S.; Sakai, N.; Hirbayashi, I.; Kitamura, H.

    2007-10-01

    A new concept of synchrotron radiation (SR) sources with ring-shaped high-Tc superconducting bulk (bulk ring) magnets have been proposed at the SPring-8, a SR facility in Japan. During the proof-of-principle experiments, it was found that the magnetic field generated by the bulk ring gradually decreased, due to mechanical damages in the bulk ring. In order to improve the mechanical property of the bulk ring toward realization of this concept, two methods of reinforcement, i.e., resin impregnation and iron ribbing, were proposed. The effects of these methods were investigated with four bulk ring samples and it was found that combination of the two methods significantly improved the mechanical property.

  3. Optics for protein microcrystallography using synchrotron and laboratory X-ray sources

    International Nuclear Information System (INIS)

    Varghese, J.N.; Van Donkelaar, A.; Balaic, D.X.; Barnea, Z.

    2000-01-01

    Full text: For protein crystallography, a highly-intense focused beam overcomes a serious constraint in current biological research: the inability of many protein molecules to form crystals larger than a few tens of microns in size. High structure-resolution X-ray diffraction analysis of microcrystals is currently only being studied at synchrotron X-ray sources. We shall examine how this is being carried out, and also report the development of a novel tapered glass monocapillary toroidal-mirror optic, which achieves a high-intensity, low-divergence focused beam from a rotating-anode Xray generator. We have used this optic, which demonstrates an ∼28x intensity gain at the beam focus to solve the structure of a plant exoglucanse/inhibtor complex microcrystal to 2.8 Angstroms, with volume equivalent to a 30-micron-edge cube

  4. PROCEEDINGS ON SYNCHROTRON RADIATION: China Spallation Neutron Source - an overview of application prospects

    Science.gov (United States)

    Wei, Jie; Fu, Shi-Nian; Tang, Jing-Yu; Tao, Ju-Zhou; Wang, Ding-Sheng; Wang, Fang-Wei; Wang, Sheng

    2009-11-01

    The China Spallation Neutron Source (CSNS) is an accelerator-based multidisciplinary user facility to be constructed in Dongguan, Guangdong, China. The CSNS complex consists of an H- linear accelerator, a rapid cycling synchrotron accelerating the beam to 1.6 GeV, a solid-tungsten target station, and instruments for spallation neutron applications. The facility operates at 25 Hz repetition rate with an initial design beam power of 120 kW and is upgradeable to 500 kW. Construction of the CSNS project will lay the foundation of a leading national research center based on advanced proton-accelerator technology, pulsed neutron-scattering technology, and related programs including muon, fast neutron, and proton applications as well as medical therapy and accelerator-driven subcritical reactor (ADS) applications to serve China's strategic needs in scientific research and technological innovation for the next 30 plus years.

  5. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    International Nuclear Information System (INIS)

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube

  6. Software development for studies of diffuse scattering using CCD-detectors and synchrotron radiation sources

    CERN Document Server

    Paulmann, C; Bismayer, U

    2001-01-01

    A graphical-user-interface based software system was developed to cover advanced data processing requirements which arise from studies of diffuse scattering in disordered minerals using synchrotron radiation sources and CCD-detectors. The software includes interfaces to standard applications, procedures for numerical processing of large data sets, corrections for sample external scattering and detector-specific distortions, different scaling options to correct the data set against the varying primary beam intensity as well as procedures to reconstruct arbitrary slices in reciprocal space on a regular grid. The software system was successfully applied in studies of diffuse scattering in disordered REE-doped germanates, phase-transition studies of synthetic titanite and studies of the thermal recrystallization behaviour of radiation-damaged (metamict) minerals.

  7. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

  8. Supercontinuum light sources for food analysis

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Petersen, Christian Rosenberg; Kubat, Irnis

    2014-01-01

    and in the factory. These solutions will combine bright and broadband infrared light sources, so-called supercontinuum light sources,with spectroscopy, chemometrics and processing expertise and thereby contribute to increased food quality through faster and more precise analysis of grains, soils and dairy products...... bandwidth,high brightness and portability of a supercontinuum laser are all required. DTU Fotonik has now demonstrated the first optical fiber based broadband supercontinuum light souce, which covers 1.4-13.3μm and thereby most of the molecular fingerprint region....

  9. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Vylet, Vaclav; /Jefferson Lab

    2009-12-11

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  10. GPC light shaping a supercontinuum source

    DEFF Research Database (Denmark)

    Kopylov, Oleksii; Bañas, Andrew Rafael; Villangca, Mark Jayson

    2015-01-01

    Generalized Phase Contrast (GPC) is a versatile tool for efficiently rerouting and managing photon energy into speckle-free contiguous spatial light distributions. We have previously shown theoretically and numerically that a GPC Light Shaper shows robustness to shift in wavelength and can maintain...... both projection length scale and high efficiency over a range [0.75λ0; 1.5λ0] with λ0 as the characteristic design wavelength. With this performance across multiple wavelengths and the recent availability of tabletop supercontinuum lasers, GPC light shaping opens the possibility for creatively...... incorporating various multi-wavelength approaches into spatially shaped excitations that can enable new broadband light applications. We verify this new approach using a supercontinuum light source, interfaced with a compact GPC light shaper. Our experiments give ~70% efficiency, ~3x intensity gain, and ~85...

  11. SESAME -- A light source for the Middle East

    Science.gov (United States)

    Winick, Herman

    2012-02-01

    Developed under UNESCO and modelled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research centre in construction in Jordan, enabling world-class research while promoting peace through scientific cooperation. Its centerpiece, a new 2.5 GeV 3rd Generation Electron Storage Ring (133m circumference, 26nm-rad emittance, 12 places for insertion devices), will provide intense light from infra-red to hard X-rays. The Council (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority, Turkey), provides the annual budget. Concrete shielding is complete, and a staff of 21 is installing the refurbished 0.8 GeV BESS Y I injector system, a gift from Germany. The facility can serve 25 simultaneous experiments. Beamline equipment has been provided by Daresbury (UK), the Helmholtz Assoc. (Germany), the Swiss Light Source, LURE (France), the Univ. of Liverpool, Elettra (Italy) and US labs. Jordan has contributed 3.3M, in addition to a building and land. The EU has contributed 4.8M. Commitments confirmed by Members look set to provide most of 35M needed to complete construction of the ring and 3 beamlines. A training program has been underway since 2000. See www.sesame.org.jo

  12. Plant Growth Absorption Spectrum Mimicking Light Sources

    Directory of Open Access Journals (Sweden)

    Jwo-Huei Jou

    2015-08-01

    Full Text Available Plant factories have attracted increasing attention because they can produce fresh fruits and vegetables free from pesticides in all weather. However, the emission spectra from current light sources significantly mismatch the spectra absorbed by plants. We demonstrate a concept of using multiple broad-band as well as narrow-band solid-state lighting technologies to design plant-growth light sources. Take an organic light-emitting diode (OLED, for example; the resulting light source shows an 84% resemblance with the photosynthetic action spectrum as a twin-peak blue dye and a diffused mono-peak red dye are employed. This OLED can also show a greater than 90% resemblance as an additional deeper red emitter is added. For a typical LED, the resemblance can be improved to 91% if two additional blue and red LEDs are incorporated. The approach may facilitate either an ideal use of the energy applied for plant growth and/or the design of better light sources for growing different plants.

  13. Research on Modern Gas Discharge Light Sources

    Science.gov (United States)

    Born, M.; Markus, T.

    This article gives an overview of today's gas discharge light sources and their application fields with focus on research aspects. In Sect. 15.1 of this chapter, an introduction to electric light sources, the lighting market and related research topics is outlined. Due to the complexity of the subject, we have focused on selected topics in the field of high intensity discharge (HID) lamps since these represent an essential part of modern lamp research. The working principle and light technical properties of HID lamps are described in Sect. 15.2. Physical and thermochemical modelling procedures and tools as well as experimental analysis are discussed in Sects. 15.3 and 15.4, respectively. These tools result in a detailed scientific insight into the complexity of real discharge lamps. In particular, analysis and modelling are the keys for further improvement and development of existing and new products.

  14. IR microscopy utilizing intense supercontinuum light source

    DEFF Research Database (Denmark)

    Dupont, Sune; Petersen, Christian; Thøgersen, Jan

    2012-01-01

    Combining the molecular specificity of the infrared spectral region with high resolution microscopy has been pursued by researchers for decades. Here we demonstrate infrared supercontinuum radiated from an optical fiber as a promising new light source for infrared microspectroscopy. The supercont......Combining the molecular specificity of the infrared spectral region with high resolution microscopy has been pursued by researchers for decades. Here we demonstrate infrared supercontinuum radiated from an optical fiber as a promising new light source for infrared microspectroscopy....... The supercontinuum light source has a high brightness and spans the infrared region from 1400 nm to 4000 nm. This combination allows contact free high resolution hyper spectral infrared microscopy. The microscope is demonstrated by imaging an oil/water sample with 20 μm resolution....

  15. Robust photometric stereo using structural light sources

    Science.gov (United States)

    Han, Tian-Qi; Cheng, Yue; Shen, Hui-Liang; Du, Xin

    2014-05-01

    We propose a robust photometric stereo method by using structural arrangement of light sources. In the arrangement, light sources are positioned on a planar grid and form a set of collinear combinations. The shadow pixels are detected by adaptive thresholding. The specular highlight and diffuse pixels are distinguished according to their intensity deviations of the collinear combinations, thanks to the special arrangement of light sources. The highlight detection problem is cast as a pattern classification problem and is solved using support vector machine classifiers. Considering the possible misclassification of highlight pixels, the ℓ1 regularization is further employed in normal map estimation. Experimental results on both synthetic and real-world scenes verify that the proposed method can robustly recover the surface normal maps in the case of heavy specular reflection and outperforms the state-of-the-art techniques.

  16. Synchrotron radiation X-ray powder diffraction techniques applied in hydrogen storage materials - A review

    OpenAIRE

    Honghui Cheng; Chen Lu; Jingjing Liu; Yongke Yan; Xingbo Han; Huiming Jin; Yu Wang; Yi Liu; Changle Wu

    2017-01-01

    Synchrotron radiation is an advanced collimated light source with high intensity. It has particular advantages in structural characterization of materials on the atomic or molecular scale. Synchrotron radiation X-ray powder diffraction (SR-XRPD) has been successfully exploited to various areas of hydrogen storage materials. In the paper, we will give a brief introduction on hydrogen storage materials, X-ray powder diffraction (XRPD), and synchrotron radiation light source. The applications of...

  17. Preliminary tests of a second harmonic rf system for the intense pulsed neutron source synchrotron

    International Nuclear Information System (INIS)

    Norem, J.; Brandeberry, F.

    1983-01-01

    The Rapid Cycling Synchrotron (RCS) of the Intense Pulsed Neutron Source (IPNS) operating at Argonne National Laboratory is presently producing intensities of 2 to 2.5 x 10 12 protons per pulse (ppp) with the addition of a new ion source. This intensity is close to the space charge limit of the machine, estimated at approx. 3 x 10 12 ppp, depending somewhat on the available aperture. Accelerator improvements are being directed at (1) increasing beam intensities for neutron science, (2) lowering acceleration losses to minimize activation, and (3) gaining better control of the beam so that losses can be made to occur when and where they can be most easily controlled. We are now proposing a third cavity for the RF system which would provide control of the longitudinal bunch shape during the cycle which would permit raising the effective space charge limit of the accelerator and reducing losses by providing more RF voltage at maximum acceleration. This paper presents an outline of the expected benefits together with recent results obtained during low energy operation with one of the two existing cavities operating at the second harmonic

  18. Proposed second harmonic acceleration system for the intense pulsed neutron source rapid cycling synchrotron

    International Nuclear Information System (INIS)

    Norem, J.; Brandeberry, F.; Rauchas, A.

    1983-01-01

    The Rapid Cycling Synchrotron (RCS) of the Intense Pulsed Neutron Source (IPNS) operating at Argonne National Laboratory is presently producing intensities of 2 to 2.5 x 10 12 protons per pulse (ppp) with the addition of a new ion source. This intensity is close to the space charge limit of the machine, estimated at approx.3 x 10 12 ppp, depending somewhat on the available aperture. With the present good performance in mind, accelerator improvements are being directed at: (1) increasing beam intensities for neutron science; (2) lowering acceleration losses to minimize activation; and (3) gaining better control of the beam so that losses can be made to occur when and where they can be most easily controlled. On the basis of preliminary measurements, we are now proposing a third cavity for the RF systems which would provide control of the longitudinal bunch shape during the cycle which would permit raising the effective space charge limit of the accelerator and reducing losses

  19. Estimate of production of medical isotopes by photo-neutron reaction at the Canadian Light Source

    Science.gov (United States)

    Szpunar, B.; Rangacharyulu, C.; Daté, S.; Ejiri, H.

    2013-11-01

    In contrast to conventional bremsstrahlung photon beam sources, laser backscatter photon sources at electron synchrotrons provide the capability to selectively tune photons to energies of interest. This feature, coupled with the ubiquitous giant dipole resonance excitations of atomic nuclei, promises a fertile method of nuclear isotope production. In this article, we present the results of simulations of production of the medical/industrial isotopes 196Au, 192Ir and 99Mo by (γ,n) reactions. We employ FLUKA Monte Carlo code along with the simulated photon flux for a beamline at the Canadian Light Source in conjunction with a CO2 laser system.

  20. High gradient accelerators for linear light sources

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, W.A.

    1988-09-26

    Ultra-high gradient radio frequency linacs powered by relativistic klystrons appear to be able to provide compact sources of radiation at XUV and soft x-ray wavelengths with a duration of 1 picosecond or less. This paper provides a tutorial review of the physics applicable to scaling the present experience of the accelerator community to the regime applicable to compact linear light sources. 22 refs., 11 figs., 21 tabs.

  1. Tunable light source for fiber optic lighting applications

    Science.gov (United States)

    Narendran, Nadarajah; Bierman, Andrew; Finney, Mark J.; Edwards, Ian K.

    1997-09-01

    This paper examines the possibility of tuning the lamp spectrum to compensate for color distortions in fiber optic lighting systems. Because most optical fibers have strong absorption in the blue and red wavelength regions, white light entering and propagating down an optical fiber suffers varied amounts of attenuation as a function of wavelength. As a result, the light exiting the optical fiber has a greenish tint that the lighting design community considers undesirable in interior lighting applications. HID lamps are commonly used for the light source in this industry. Certain classes of HID lamps tend to shift in color when their operating position or the input voltage to the lamp is changed. An experimental study is being conducted to characterize the color shift properties of a small HID lamp as a function of tilt and input voltage. The study also examines the possibility of exploiting this color shift to compensate for the color distortions caused by optical fibers. The details of the experiment and the results are presented in this manuscript.

  2. Long-pulse Supercontinuum Light Sources

    DEFF Research Database (Denmark)

    Moselund, Peter M.

    A Supercontinuum (SC) is a broad spectrum generated from a narrow light source through non-linear effects. This thesis describes SC generation based on 1064 nm ps pulses in PCF fibres. We investigate how the SC spectrum can be modified and intensity noise reduced by feeding back part of the SC...

  3. The synchrotron radiation

    International Nuclear Information System (INIS)

    Chevallier, P.

    1994-01-01

    Synchrotron Radiation is a fantastic source of electromagnetic radiation the energy spectrum of which spreads continuously from the far infrared to hard X-rays. For this reason a wide part of the scientific community, fundamentalists as well as industry, is concerned by its use. We shall describe here the main properties of this light source and give two examples of application in the field of characterization of materials: EXAFS (Extended X-Ray Absorption Fine Structure) and X-ray fluorescence. (author). 8 figs., 21 refs

  4. Bringing Physics, Synchrotron Light and Probing Neutrons to the Public: A Collaborative Outreach

    Science.gov (United States)

    Micklavzina, Stanley; Almqvist, Monica; Sörensen, Stacey L.

    2014-01-01

    Stanley Micklavzina, a US physics educator on sabbatical, teams up with a Swedish national research laboratory, a synchrotron radiation experimental group and a university science centre to develop and create educational and public outreach projects. Descriptions of the physics, science centre displays and public demonstrations covering the…

  5. Vacuum system of Synchrotron Light National Laboratory (LNLS) linear accelerator: project and results

    International Nuclear Information System (INIS)

    Rocha, L.R.B.; Gomes, P.A.P.

    1990-01-01

    The LINAC, electron linear accelerator used as injector for storage ring in production of synchrotron radiation at Laboratorio Nacional de Luz Sincrotron (LNLS) is described. The LINAC basic parameters, the dimension calculations of vacuum system and the final project with all components are presented. The vacuum system for electron gun tests and accelerator structure tests is described. (M.C.K.)

  6. Remote Operating Monitoring Of Spatial Stability Magnets On A Kurchatov Source Of Synchrotron Radiation

    CERN Document Server

    Barkovsky, E V; Martynenko, V V; Novikov, V A; Udin, L I

    2004-01-01

    During operation of the accelerator because of a nonuniform warm -up of the ring base and constructions of installation there are angular and linear displacements of bending and focusing magnets of a Big Accelerator Ring (BR) of a Kurchatov Source of Synchrotron Radiation. With the purpose of remote operating monitoring of a spatial position of elements BR was used anglemetrical control and measuring system with digital and analog registration in a real time mode. The results of the first stage of a monitoring BR have shown high informativity of the given instrumental - methodical means. The basic radiants of cyclical thermoelastic alternating strains are detected; the amplitudes of angular and linear displacements of magnets from different internal factors evaluated during operation of the accelerator. Is established, that the maximum radial angular and linear displacements of magnets are watched in 3,5-4 day after switching on of installation and achieve in max 30-35 seconds of an arc or 120-150 microns in ...

  7. Microstructure evolution in copper under severe plastic deformation detected by in situ X-ray diffraction using monochromatic synchrotron light

    Energy Technology Data Exchange (ETDEWEB)

    Kilmametov, A.R. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, K. Marx St. 12, Ufa 450000 (Russian Federation); Vaughan, G. [European Synchrotron Radiation Facilities ESRF, Grenoble (France); Yavari, A.R.; LeMoulec, A. [Euronano, LTPCM-CNRS umr 5614, Institut National Polytechnique de Grenoble, 38402 St-Martin-d' Heres (France); Botta, W.J. [Depto. Engenharia de Materiais, Universidade Federal de Sao Carlos (UFSCar), SP, Brazil. 3UNIVA, Av. Shishima Hifumi, 2911 Sao Jose dos Campos, SP (Brazil); Valiev, R.Z. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, K. Marx St. 12, Ufa 450000 (Russian Federation)], E-mail: rzvaliev@mail.rb.ru

    2009-03-15

    Microstructure evolution in severely deformed Cu has been investigated using high-energy synchrotron light during in situ high-pressure torsion (HPT) at room temperature. Relative changes in broadening of Bragg peaks and crystal lattice expansion were studied in the loading-unloading regime of torsion straining. Experimental results revealed fast relaxation (on the order of hundred of seconds) that occurred due to annihilation of HPT-induced crystal lattice defects, which were generated directly during deformation. The kinetics of relaxation is probably diffusion-controlled; therefore, the enhanced diffusivity can be explained by extremely high excess vacancy concentration, which is usually achieved at thermal equilibrium near the melting point.

  8. Design and development of PEEM/ARPES beamline for Indus-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    Goutam, U.K.; Sharma, R.K.; Jagannath; Gadkari, S.C.; Yakhmi, J.V.; Sahni, V.C.

    2008-06-01

    A high resolution beamline having two branches dedicated to Photo Emission Electron Microscopy (PEEM) and Angle Resolved Photo Electron Spectroscopy (ARPES) is planned for Indus-2 synchrotron radiation source. These two techniques open a wide field of new applications in materials research and have proven to be powerful tools to investigate topological, elemental, chemical state, electronic and magnetic properties of surfaces, thin films, and multilayers at high resolutions.The beamline will cover a large energy range from 10 to 4000 eV and is expected to deliver a flux of the order of ∼10 13 ph/s/0.1%B.W. with an energy resolution of ∼10 -4 . This report describes the optical design, beamline layout, effects of heat load on various components and the expected performance of the beamline. This beamline would have a collimating mirror for vertical collimation of the beam, plane grating/double crystal monochromator to make the white synchrotron beam monochromatic in entire energy range, toroidal mirror for splitting the beam as well as for intermediate focusing and a Kirkpatrick-Baez (K-B) mirror system for focusing the beam both in vertical and horizontal directions at the final sample location. Total beamline will be 36m long. Optical design has been carried out involving various computer codes such as XOP2.1, SHADOWVUI, SPECTRA 8.0 etc. Head load calculations have been performed using ANSYS, a finite element analysis code. Using this code, temperature distribution, thermal deformation and slope error values for collimating mirror, grating monochromator and double crystal monochromator using several possible cooling arrangements have been calculated and depending on these parameters, best options for different components have been selected for the beamline. Experimental stations of this beamline consist of ultra-high vacuum compatible chambers in which various probes, analyzers, detectors and other facilities are housed. A toroidal electron energy analyzer will

  9. Report of the Synchrotron Radiation Vacuum Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well.

  10. Report of the Synchrotron Radiation Vacuum Workshop

    International Nuclear Information System (INIS)

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well

  11. [Quality control research of cold light source of endoscope].

    Science.gov (United States)

    Shao, Yubo; Yuan, Fuqiang; Liu, Yanzhen; Wang, Quan; Meng, Xiangfeng

    2014-09-01

    This paper introduced the significance parameters of the quality control of cold light source of endoscope, expounded the importance and necessity of quality control of cold light source; it investigated several manufacturers, analyzed and discussed the main causes of the cold light source uneven, in order to realized the standard management and effective supervision on the cold light source, at the end, the next step quality control work was brought out, which provide technical support for quality supervision of cold light source.

  12. Towards an integrated squeezed light source

    DEFF Research Database (Denmark)

    Gehring, Tobias; Hoff, Ulrich Busk; Iskhakov, Timur

    2017-01-01

    Since it's first generation more than 30 years ago, squeezed light has developed towards a tool for high precision measurements as well as a tool for quantum information tasks like quantum key distribution. Miniaturization of sensors is an active field of research with the prospect of many......-track resonators in silicon nitride by presenting characterizations of the chip. Using standard fabrication techniques this source will have the potential of seamless integration into on-chip optical sensors....

  13. Pioneering SESAME light source officially opened

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2017-01-01

    Allan, Jordan, 16 May 2017. The SESAME light source was today officially opened by His Majesty King Abdullah II. An intergovernmental organization, SESAME is the first regional laboratory for the Middle East and neighbouring regions The laboratory’s official opening ushers in a new era of research covering fields ranging from medicine and biology, through materials science, physics and chemistry to healthcare, the environment, agriculture and archaeology.

  14. The Australian synchrotron; Le synchrotron australien

    Energy Technology Data Exchange (ETDEWEB)

    Farhi, R

    2005-06-15

    This document recalls the historical aspects of the Australian Synchrotron which will be implemented in 2007. It presents then the objectives of this program, the specifications of the ring and the light lines. (A.L.B.)

  15. Gas Phase Thz Spectroscopy of Organosulfide and Organophosphorous Compounds Using a Synchrotron Source

    Science.gov (United States)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale

    2011-06-01

    This study concerns the gas phase rovibrational spectroscopy of organosulfide and organophosphorous which are considered as non toxic model compounds in the analysis of chemical weapon materials, high pathogenic and mutagenic agents, and other environmentally interesting air-borne species. The coupling of the synchrotron radiation with multipass cells and the FTIR spectrometer allowed to obtain very conclusive results in term of sensitivity and resolution and improved the previous results obtained with classical sources. For DMSO, using an optical path of 150 m the spectra have been recorded at the ultimate resolution of 0.001 Cm-1 allowing to fully resolve the rotational structure of the lowest vibrational modes observed in the THz region. In the 290 - 420 Cm-1 region, the rovibrational spectrum of the "perpendicular" and "parallel" vibrational bands associated with, respectively, the asymmetric ν23 and symmetric ν11 bending modes of DMSO have been recorded with a resolution of 1.5× 10-3 Cm-1. The gas phase vibrational spectra of organophosphorous compounds were measured by FTIR spectroscopy using the vapor pressure of the compounds. Except for TBP, the room temperature vapor pressure was sufficient to detect all active vibrational modes from THz to NIR domain. Contrary to DMSO, the rotational patterns of alkyl phosphates and alkyl phosphonates could not be resolved; only a vibrational analysis may be performed. Nevertheless, the spectral fingerprints observed in the THz region allowed a clear discrimination between the molecules and between the different molecular conformations. A. Cuisset, G. Mouret, O. Pirali, P. Roy, F. Cazier, H. Nouali, J. Demaison, J. Phys. Chem. B, 2008, 112:, 12516-12525 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy and D. A. Sadovskií, Chem. Phys. Lett., 2010, 492: 30-34 I. Smirnova, A. Cuisset, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, J. Phys. Chem. B, 2010, 114: 16936-16947.

  16. Optical design of an x-ray absorption spectroscopy beamline at Indus-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    Das, N.C.; Jha, S.N.; Roy, A.P.

    1999-10-01

    Details of optical design of EXAFS beamline at Indus-2 SRS, under development at CAT, Indore, have been discussed in this report. This beamline will cover the photon energy range of 5 keV to 20 keV and will use a bent crystal of Si(111) having 2d value equal to 6.2709 A. It will accept a horizontal divergence of 1.5 mrad. The heart of the beamline is the bent crystal polychromator which will disperse and focus the synchrotron beam at the experimental sample position. The transmitted radiation from the sample will be, subsequently, detected by a position sensitive detector (CCD type). The detector length is 25 mm. Assuming a suitable value for the distance between the source and the crystal, we have computed several geometrical parameters of the beamline, such as, Bragg angle, crystal length, crystal radius, crystal to sample distance, sample to detector distance, etc. for three different photon energies, namely, 5 keV, 10 keV, and 20 keV. The band passes around these photon energies are 0.3 keV, 1 keV and 2 keV respectively. It has been found that computed geometrical parameters are well within acceptable limits. An extensive ray tracing work was done using the software program SHADOW to evaluate the imaging properties of the beamline. It was established that the image spot size at the sample position improved substantially when the crystal is changed from spherical cylinder shape to elliptic cylinder shape. From the ray intensity plots, the average resolution of the crystal bender was estimated to be 1 eV per channel. Finally based on the optical layout of the beamline, a schematic mechanical layout of the beamline has been prepared. (author)

  17. New Light Source Setup for Angle Resolved Light Absorption measurement of PV samples

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light.......Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light....

  18. New Light Source Setup for Angle Resolved Light Absorption measurement of PV sample

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light.......Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light....

  19. Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout

    International Nuclear Information System (INIS)

    Stitt, C.A.; Hart, M.; Harker, N.J.; Hallam, K.R.; MacFarlane, J.; Banos, A.; Paraskevoulakos, C.; Butcher, E.; Padovani, C.; Scott, T.B.

    2015-01-01

    Highlights: • Unirradiated Magnox uranium was encapsulated in grout and exposed to hydrogen. • Synchrotron X-ray tomography imaged the uranium corrosion before and after exposure. • Synchrotron X-ray powder diffraction identified the corrosion products; UH 3 and UO 2 . • Uranium encapsulated in grout oxidised via the anoxic U + H 2 O regime. • Successful in-situ, non-invasive examination of pyrophoric and radioactive material - Abstract: How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H 2 corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U + H 2 O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO 2 and UH 3 , and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems

  20. Paul Scherrer Institute Scientific Report 2000. Volume VII: Swiss Light Source

    International Nuclear Information System (INIS)

    Weyer, Heinz Josef; Bugmann, Marlen; Schuetz, Christine

    2001-01-01

    The Swiss Synchrotron Light Source (SLS) is a medium energy range light source that also provides light with high brilliance in the regime of hard X-rays. It is presently being constructed at PSI. The year 2000 was crucial for maintaining the project milestones with the start of storage ring commissioning for beginning of 2001 and first light on the probe at the four beamlines of phase I for August 2001. The major goals of 2000 were the completion of accelerator installation, the commissioning of linac and booster and the beginning of beamline assembly. In the first half of the year in parallel to the installation, major fabrication procedures were going on, that had to be thoroughly followed up in order to guarantee their completion in time. The overview and detailed description of these developments is supplemented in this annual report by 8 contributions on scientific activities of SLS staff members at synchrotron radiation facilities all over the world. A list of scientific publications in 2000 is also provided

  1. Paul Scherrer Institute Scientific Report 2000. Volume VII: Swiss Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Weyer, Heinz Josef; Bugmann, Marlen; Schuetz, Christine [eds.

    2001-07-01

    The Swiss Synchrotron Light Source (SLS) is a medium energy range light source that also provides light with high brilliance in the regime of hard X-rays. It is presently being constructed at PSI. The year 2000 was crucial for maintaining the project milestones with the start of storage ring commissioning for beginning of 2001 and first light on the probe at the four beamlines of phase I for August 2001. The major goals of 2000 were the completion of accelerator installation, the commissioning of linac and booster and the beginning of beamline assembly. In the first half of the year in parallel to the installation, major fabrication procedures were going on, that had to be thoroughly followed up in order to guarantee their completion in time. The overview and detailed description of these developments is supplemented in this annual report by 8 contributions on scientific activities of SLS staff members at synchrotron radiation facilities all over the world. A list of scientific publications in 2000 is also provided.

  2. Directly Phase-Modulated Light Source

    Directory of Open Access Journals (Sweden)

    Z. L. Yuan

    2016-09-01

    Full Text Available The art of imparting information onto a light wave by optical signal modulation is fundamental to all forms of optical communication. Among many schemes, direct modulation of laser diodes stands out as a simple, robust, and cost-effective method. However, the simultaneous changes in intensity, frequency, and phase have prevented its application in the field of secure quantum communication. Here, we propose and experimentally demonstrate a directly phase-modulated light source which overcomes the main disadvantages associated with direct modulation and is suitable for diverse applications such as coherent communications and quantum cryptography. The source separates the tasks of phase preparation and pulse generation between a pair of semiconductor lasers leading to very pure phase states. Moreover, the cavity-enhanced electro-optic effect enables the first example of subvolt half-wave phase modulation at high signal rates. The source is compact, stable, and versatile, and we show its potential to become the standard transmitter for future quantum communication networks based on attenuated laser pulses.

  3. Infrared microspectroscopy with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Carr, G.L.; Williams, G.P. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source

    1997-09-01

    Infrared microspectroscopy with a high brightness synchrotron source can achieve a spatial resolution approaching the diffraction limit. However, in order to realize this intrinsic source brightness at the specimen location, some care must be taken in designing the optical system. Also, when operating in diffraction limited conditions, the effective spatial resolution is no longer controlled by the apertures typically used for a conventional (geometrically defined) measurement. Instead, the spatial resolution depends on the wavelength of light and the effective apertures of the microscope`s Schwarzchild objectives. The authors have modeled the optical system from the synchrotron source up to the sample location and determined the diffraction-limited spatial distribution of light. Effects due to the dependence of the synchrotron source`s numerical aperture on wavelength, as well as the difference between transmission and reflection measurement modes, are also addressed. Lastly, they examine the benefits (when using a high brightness source) of an extrinsic germanium photoconductive detector with cone optics as a replacement for the standard MCT detector.

  4. X-ray diffraction measurement of liquid As2Se3 by using third-generation synchrotron radiation source

    OpenAIRE

    Kajihara, Yukio; Inui, Masanori; Matsuda, Kazuhiro; Tamura, Kozaburo; Hosokawa, Shinya

    2007-01-01

    X-ray diffraction (XD) measurements of liquid As2Se3 were carried out in the temperature range up to 1600◦C where the temperature is well beyond the semiconductor to metal (SC-M) transition temperature around 1000◦C . The measurements were done by using third-generation synchrotron radiation source at SPring-8 and the obtained structure factors have much improvements over the previous XD measurements by using in house X-ray sources with regard to the momentum transfer range and the data stati...

  5. Plasma-based EUV light source

    Science.gov (United States)

    Shumlak, Uri; Golingo, Raymond; Nelson, Brian A.

    2010-11-02

    Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

  6. Chemical Dynamics at the Advanced Light Source

    International Nuclear Information System (INIS)

    Baer, T.; Berrah, N.; Fadley, C.; Moore, C.B.; Neumark, D.M.; Ng, C.Y.; Ruscic, B.; Smith, N.V.; Suits, A.G.; Wodtke, A.M.

    1999-01-01

    A day-long retreat was held January 15, 1999 to chart the future directions for chemical dynamics studies at the Advanced Light Source. This represents an important period for the Chemical Dynamics Beamline, as the hardware is well-developed, most of the initial experimental objectives have been realized and the mission is now to identify the future scientific priorities for the beamline and attract users of the highest caliber. To this end, we have developed a detailed scientific program for the near term; identified and prioritized the long range scientific opportunities, identified essential new hardware, and outlined an aggressive outreach program to involve the chemical physics community

  7. Magnet costs for the Advanced Light Source

    International Nuclear Information System (INIS)

    Tanabe, J.; Krupnick, J.; Hoyer, E.; Paterson, A.

    1993-05-01

    The Advanced Light Source (ALS) accelerator is now completed. The numerous conventional magnets required for the booster ring, the storage ring and the low and high energy transfer lines were installed during the last two years. This paper summarizes the various costs associated with the quantity fabrication of selected magnet families. These costs include the costs of prototypes, tooling, coil and core fabrication, assembly and magnetic measurements. Brief descriptions of the magnets and specialized requirements for magnetic measurements are included in order to associate the costs with the relative complexities of the various magnet systems

  8. Integrated source of broadband quadrature squeezed light

    DEFF Research Database (Denmark)

    Hoff, Ulrich Busk; Nielsen, Bo Melholt; Andersen, Ulrik Lund

    2015-01-01

    An integrated silicon nitride resonator is proposed as an ultracompact source of bright single-mode quadrature squeezed light at 850 nm. Optical properties of the device are investigated and tailored through numerical simulations, with particular attention paid to loss associated with interfacing...... the device. An asymmetric double layer stack waveguide geometry with inverse vertical tapers is proposed for efficient and robust fibre-chip coupling, yielding a simulated total loss of -0.75 dB/facet. We assess the feasibility of the device through a full quantum noise analysis and derive the output...

  9. Status of the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Galayda, John N.; /SLAC

    2011-11-04

    The Linac Coherent Light Source (LCLS) is a free electron laser facility in construction at Stanford Linear Accelerator Center. It is designed to operate in the wavelength range 0.15-1.5 nanometers. At the time of this conference, civil construction of new tunnels and buildings is complete, the necessary modifications to the SLAC linac are complete, and the undulator system and x-ray optics/diagnostics are being installed. The electron gun, 135 MeV injector linac and 250 MeV bunch compressor were commissioned in 2007. Accelerator commissioning activities are presently devoted to the achievement of performance goals for the completed 14 GeV linac.

  10. Linac Coherent Light Source (LCLS) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, Heinz-Dieter

    2002-11-25

    The Stanford Linear Accelerator Center, in collaboration with Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, have collaborated to create a conceptual design for a Free-Electron-Laser (FEL) R&D facility operating in the wavelength range 1.5-15 {angstrom}. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. The first two-thirds of the SLAC linac are used for injection into the PEP-II storage rings. The last one-third will be converted to a source of electrons for the LCLS. The electrons will be transported to the SLAC Final Focus Test Beam (FFTB) Facility, which will be extended to house a 122-m undulator system. In passing through the undulators, the electrons will be bunched by the force of their own synchrotron radiation to produce an intense, spatially coherent beam of x-rays, tunable in energy from 0.8 keV to 8 keV. The LCLS will include two experiment halls as well as x-ray optics and infrastructure necessary to make use of this x-ray beam for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac.

  11. X-ray Optics for BES Light Source Facilities

    International Nuclear Information System (INIS)

    Mills, Dennis; Padmore, Howard; Lessner, Eliane

    2013-01-01

    -coordinated program of X-ray optics development within the suite of BES synchrotron radiation facilities. Due to the importance and complexity of the field, the need for tight coordination between BES light source facilities and with industry, as well as the rapid evolution of light source capabilities, the workshop participants recommend holding similar workshops at least biannually.

  12. X-ray Optics for BES Light Source Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Dennis [Argonne National Lab. (ANL), Argonne, IL (United States); Padmore, Howard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lessner, Eliane [Dept. of Energy (DOE), Washington DC (United States). Office of Science

    2013-03-27

    -coordinated program of X-ray optics development within the suite of BES synchrotron radiation facilities. Due to the importance and complexity of the field, the need for tight coordination between BES light source facilities and with industry, as well as the rapid evolution of light source capabilities, the workshop participants recommend holding similar workshops at least biannually.

  13. A novel amblyopia treatment system based on LED light source

    Science.gov (United States)

    Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling

    2011-05-01

    A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.

  14. Overview of Accelerator Physics Studies and High Level Software for the Diamond Light Source

    CERN Document Server

    Bartolini, Riccardo; Belgroune, Mahdia; Christou, Chris; Holder, David J; Jones, James; Kempson, Vince; Martin, Ian; Rowland, James H; Singh, Beni; Smith, Susan L; Varley, Jennifer Anne; Wyles, Naomi

    2005-01-01

    DIAMOND is a 3 GeV synchrotron light source under construction at Rutherford Appleton Laboratory in Oxfordshire (UK). The accelerators complex consists of a 100 MeV LINAC, a full energy booster and a 3GeV storage ring with 22 straight sections available for IDs. Installation of all three accelerators has begun, and LINAC commissioning is due to start in Spring 2005. This paper will give an overview of the accelerator physics activity to produce final layouts and prepare for the commissioning of the accelerator complex. The DIAMOND facility is expected to be operational for users in 2007

  15. Microbunch Instability Observations from a THz Detector at Diamond Light Source

    Science.gov (United States)

    Shields, W.; Bartolini, R.; Boorman, G.; Karataev, P.; Lyapin, A.; Puntree, J.; Rehm, G.

    2012-05-01

    Diamond Light source is a third generation synchrotron facility dedicated to producing radiation of outstanding brightness, ranging from infra-red to x-rays. The short electron bunches that are accelerated around the storage ring are susceptible to the phenomenon of microbunching instabilities when the bunch charge exceeds a threshold. The primary feature of the microbunch instabilities is the onset of bursts of radiation in the THz range. The high frequencies involved in the emissions make detection and analysis challenging. A 60-90 GHz Schottky Barrier Diode detector was installed to investigate turn by turn evolution of the instabilities.

  16. Microbunch Instability Observations from a THz Detector at Diamond Light Source

    International Nuclear Information System (INIS)

    Shields, W; Boorman, G; Karataev, P; Lyapin, A; Bartolini, R; Rehm, G; Puntree, J

    2012-01-01

    Diamond Light source is a third generation synchrotron facility dedicated to producing radiation of outstanding brightness, ranging from infra-red to x-rays. The short electron bunches that are accelerated around the storage ring are susceptible to the phenomenon of microbunching instabilities when the bunch charge exceeds a threshold. The primary feature of the microbunch instabilities is the onset of bursts of radiation in the THz range. The high frequencies involved in the emissions make detection and analysis challenging. A 60-90 GHz Schottky Barrier Diode detector was installed to investigate turn by turn evolution of the instabilities.

  17. Social and Economic Impact of the Candle Light Source Project Candle project impact

    Science.gov (United States)

    Baghiryan, M.

    Social and economic progress related to the realization of the CANDLE synchrotron light source creation project in Armenia is discussed. CANDLE service is multidisciplinary and long-lasting. Its impacts include significant improvement in science capacities, education quality, industrial capabilities, investment climate, country image, international relations, health level, restraining the "brain-drain", new workplaces, etc. CANDLE will serve as a universal national infrastructure assuring Armenia as a country with knowledge-based economy, a place for doing high-tech business, and be a powerful tool in achieving the country's jump forward in general.

  18. EDITORIAL: Special Issue on Light Sources

    Science.gov (United States)

    Wharmby, D. O.

    2008-07-01

    The papers in this Special Issue of Journal of Physics D: Applied Physics originate from the 11th International Symposium on the Science and Technology of Light Sources (LS:11) held at Fudan University, Shanghai, China, during 20 24 May 2007. Abstracts of all papers were published in the conference book Light Sources 2007 (Sheffield: FAST-LS) edited by Muqing Liu and R Devonshire. Special issues were produced after LS:9 and LS:10 and have proved to be well-cited and important sources of information for this community. The Symposia occur at three-year intervals. In this one over 200 papers were presented—the majority as posters—with ample time provided for active discussion. As all submitted papers had to be refereed in the normal way for J. Phys. D: Appl. Phys., I was concerned that too many submissions would overwhelm the small number of referees available in this area. To ensure a broad spread of interests and opinions, I invited 10 senior colleagues to give me their recommendations about who should be asked to submit papers for this Special Issue. The criteria were that the work should be new, complete and within the scope of the journal. As a result of their suggestions 42 authors were asked to submit papers. Not all authors were able to submit a manuscript in time and some, at my request, combined their work into a single paper. The 28 papers published here are the result of that process. The issue starts with a comprehensive review by Benilov of the remarkable progress that has been made in the past 15 years in understanding the behaviour of cathode and anode terminations in arcs. It is fair to say that we now have a fundamental understanding of the formerly baffling behaviour of spot and diffuse terminations, at least in the quasi-steady state. A number of following papers cover applications of this theory, extensions to time dependence and examination of the effects of the different gaseous atmospheres in which lighting arcs operate. Mercury has very

  19. Beam measurement of the high frequency impedance sources with long bunches in the CERN Super Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    A. Lasheen

    2018-03-01

    Full Text Available Microwave instability in the Super Proton Synchrotron (SPS at CERN is one of the main limitations to reach the requirements for the High Luminosity-LHC project (increased beam intensity by a factor 2. To identify the impedance source responsible of the instability, beam measurements were carried out to probe the SPS impedance. The method presented in this paper relies on measurements of the unstable spectra of single bunches, injected in the SPS with the rf voltage switched off. The modulation of the bunch profile gives information about the main impedance sources driving microwave instability, and is compared to particle simulations using the SPS impedance model to identify the most important contributions. This allowed us to identify the vacuum flanges as the main impedance source for microwave instability in the SPS, and to evaluate possible missing impedance sources.

  20. Rated parameters of the JINR synchrotron radiation source for the electron energy 0.7 GeV

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Belushkin, A.V.; Meshkov, I.N.; Syresin, E.M.; Tyutyunnikov, S.I.

    1998-01-01

    This paper gives the first estimates of the rated parameters of the JINR compact synchrotron radiation (SR) source for the electron energy 0.7 GeV. The realization of the JINR SR source which incorporates superconducting wigglers and an undulator will make it possible to construct few channels for hard X-rays with the energy up to 10 keV. The project for the construction of the SR source is motivated by the purposes of X-ray lithography and micromechanics, the so-called LIGA process. The energy spectrum of SR from the bending magnets in the source covers the energy range from infra-red to ultra-violet. This SR can be used at several stations for investigations in the field of condensed matter physics in the infra-red region, such as studies of impurities in semiconductors, measurements of the superconducting gap, radiometry in the vacuum ultra-violet region

  1. Intense X-ray and EUV light source

    Science.gov (United States)

    Coleman, Joshua; Ekdahl, Carl; Oertel, John

    2017-06-20

    An intense X-ray or EUV light source may be driven by the Smith-Purcell effect. The intense light source may utilize intense electron beams and Bragg crystals. This may allow the intense light source to range from the extreme UV range up to the hard X-ray range.

  2. Phosphor converted laser diode light source for endoscopic diagnostics

    DEFF Research Database (Denmark)

    Krasnoshchoka, Anastasiia; Thorseth, Anders; Dam-Hansen, Carsten

    2017-01-01

    In order to provide light sources for endourology and on-site testing of the light source, we are developing a portable endoscope light source prototype based on a phosphor converted laser diode. A small emitting area from the phosphor material excited by a laser diode enables coupling...... of the generated white light into thin optical fibres. The development involves designing optics for optimizing the light extraction efficiency and guiding of light to the area of interest. In this paper we compared the developed light source to the current standard in endoscopy – xenon arc lamps. Detailed...... spectral analysis of illuminance, CRI and CCT at two power levels and two distances for both the PC-LD and the xenon light source was performed. The obtained results verified that the developed light source is suitable for endoscopy illumination and the first pre-clinical trials will be performed shortly....

  3. Synchrotron X-ray magnetic scattering

    CERN Document Server

    Stirling, W G

    2003-01-01

    Research on magnetic materials constitutes an increasingly important part of the programmes of most major synchrotron radiation centres. The extremely high brilliance and small spot size of advanced synchrotron beamlines, combined with element-specific resonant effects at certain absorption edges, provide a powerful probe of magnetic structures and phase transitions, with excellent wavevector resolution. Over the last decade a variety of experimental techniques have been developed, exploiting these effects for the study of thin film, multilayer and bulk magnetic materials. In this paper the basic concepts of X-ray magnetic scattering will be introduced, followed by recent examples taken from work at Daresbury Laboratory (UK), the European Synchrotron Radiation Facility (Grenoble, France) and the National Synchrotron Light Source (Brookhaven National Laboratory, USA). Investigations of domain patterns in thin magnetic films employing X-ray resonant magnetic scattering (XRMS) will be described, followed by a se...

  4. High-pressure Experimental Studies on Geo-liquids Using Synchrotron Radiation at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanbin [Univ. of Chicago, IL (United States); Shen, Guoyin [Carnegie Inst. of Washington, Argonne, IL (United States). Geophysical Lab.

    2014-12-23

    Here, we review recent progress in studying silicate, carbonate, and metallic liquids of geological and geophysical importance at high pressure and temperature, using the large-volume high-pressure devices at the third-generation synchrotron facility of the Advanced Photon Source, Argonne National Laboratory. These integrated high-pressure facilities now offer a unique combination of experimental techniques that allow researchers to investigate structure, density, elasticity, viscosity, and interfacial tension of geo-liquids under high pressure, in a coordinated and systematic fashion. Moreover, we describe experimental techniques, along with scientific highlights. Future developments are also discussed.

  5. Determination of illuminants representing typical white light emitting diodes sources

    DEFF Research Database (Denmark)

    Jost, S.; Ngo, M.; Ferrero, A.

    2017-01-01

    Solid-state lighting (SSL) products are already in use by consumers and are rapidly gaining the lighting market. Especially, white Light Emitting Diode (LED) sources are replacing banned incandescent lamps and other lighting technologies in most general lighting applications. The aim of this work...

  6. Impact of the Diamond Light Source on research in Earth and environmental sciences: current work and future perspectives.

    OpenAIRE

    Burke, IT; Mosselmans, FW; Shaw, S; Peacock, CL; Benning, LG; Coker, VS

    2015-01-01

    Diamond Light Source Ltd celebrated its 10th anniversary as a company in December 2012 and has now accepted user experiments for over 5 years. This paper describes the current facilities available at Diamond and future developments that enhance its capacities with respect to the Earth and environmental sciences. A review of relevant research conducted at Diamond thus far is provided. This highlights how synchrotron-based studies have brought about important advances in our understanding of th...

  7. Energy Recovery Linacs for Light Source Applications

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  8. Status of the CAMD Light Source

    CERN Document Server

    Suller, Victor P; Fedurin, Mikhail; Jines, Paul; Launey, Daren; Miller, Toby; Wang, Yanshan

    2005-01-01

    With the increasing diversity of its research program, the CAMD Light Source has improved its beam brightness and quality. Using a well calibrated model of the lattice, the ring optic has been refined to generate a lower beam emittance of 150 nm.rad and this has been confirmed by measuring the beta values with the modulated quadrupole shunt system. The beam sizes have also been measured with an X-ray pinhole camera and compared to the calculated emittance. The beam orbit is corrected to a standard position referenced to the quadrupole centers to a precision better than 0.5 mm, using a suite of well localized bumps which can also flexibly steer the user photon beams to their requirements. Beam reliability has been improved by bringing into use a VME control system for the energy ramp.

  9. The advanced light source control system

    International Nuclear Information System (INIS)

    Magyary, S.; Chin, M.; Cork, C.; Fahmie, M.; Lancaster, H.; Molinari, P.; Ritchie, A.; Robb, A.; Timossi, C.; Young, J.

    1990-01-01

    The criteria for the design of a modern control system are discussed in the context of the special requirements for the control of the Advanced Light Source (ALS). This is followed by the description of the system being built, which has a number of special features. The emphasis has been placed on providing an extremely wide I/O and CPU bandwidth (greater than 120 Mbits/s and 1200 Mips, respectively) and on using commercially available hardware and software. The only major custom design item is the Intelligent Local Controller (ILC), of which about 600 will be used to interface to the hardware. The use of personal computers for the operator stations allows the use of a wealth of industrial standards for windows, languages and tools. (orig.)

  10. Development of scanning X-ray microscopes for materials science spectromicroscopy at the Advanced Light Source

    International Nuclear Information System (INIS)

    Warwick, T.; Ade, H.

    1997-07-01

    Third generation synchrotron sources of soft x-rays provide an excellent opportunity to apply established x-ray spectroscopic materials analysis techniques to surface imaging on a sub-micron scale. This paper describes an effort underway at the Advanced Light Source (ALS) to pursue this development using Fresnel zone plate lenses. These are used to produce a sub-micron spot of x-rays for use in scanning microscopy. Several groups have developed microscopes using this technique. A specimen is rastered in the focused x-ray spot and a detector signal is acquired as a function of position to generate an image. Spectroscopic capability is added by holding the small spot on a feature of interest and scanning through the spectrum. The authors are pursuing two spectroscopic techniques: Near Edge X-ray Absorption Spectroscopy (NEXAFS), X-ray Photoelectron Spectroscopy (XPS) which together provide a powerful capability for light element analysis in materials science

  11. Lighthouses, Light Sources, and Kinoform Hard X-Ray Optics (428th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    Lutterodt-Evans, Kenneth

    2007-01-01

    BNL's planned National Synchrotron Light Source II (NSLS-II) is designed to be a world-leading light source facility, promising advances in nanoscience, energy, biology, and materials research. In designing and developing this new facility, breakthrough research is a must to ensure that appropriate tools are available for the new science that will be studied. At BNL, a team of researchers has overcome a major x-ray focusing obstacle to allow the study of molecules, atoms, and advanced materials at the nanoscale, which is on the order of billionths of a meter. Their innovative method uses a type of refractive lens called a kinoform lens -- similar to the kind found in lighthouses -- in order to focus the x-rays down to the extremely small spots needed for a sharp image at small dimensions.

  12. Estimates of Imaging Times for Conventional and Synchrotron X-Ray Sources

    CERN Document Server

    Kinney, J

    2003-01-01

    The following notes are to be taken as estimates of the time requirements for imaging NIF targets in three-dimensions with absorption contrast. The estimates ignore target geometry and detector inefficiency, and focus only on the statistical question of detecting compositional (structural) differences between adjacent volume elements in the presence of noise. The basic equations, from the classic reference by Grodzins, consider imaging times in terms of the required number of photons necessary to provide an image with given resolution and noise. The time estimates, therefore, have been based on the calculated x-ray fluxes from the proposed Advanced Light Source (ALS) imaging beamline, and from the calculated flux for a tungsten anode x-ray generator operated in a point focus mode.

  13. LED intense headband light source for fingerprint analysis

    Science.gov (United States)

    Villa-Aleman, Eliel

    2005-03-08

    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  14. Leveraging brightness from transportation lighting systems through light source color.

    Science.gov (United States)

    2013-11-01

    Roadway transportation lighting is installed for multiple reasons including traffic safety and pedestrian : security. Judgments of pedestrian safety and security along roadways are not strictly correlated to : specified light levels, but the color of...

  15. Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams.

    Science.gov (United States)

    Botha, Sabine; Nass, Karol; Barends, Thomas R M; Kabsch, Wolfgang; Latz, Beatrice; Dworkowski, Florian; Foucar, Lutz; Panepucci, Ezequiel; Wang, Meitian; Shoeman, Robert L; Schlichting, Ilme; Doak, R Bruce

    2015-02-01

    Recent advances in synchrotron sources, beamline optics and detectors are driving a renaissance in room-temperature data collection. The underlying impetus is the recognition that conformational differences are observed in functionally important regions of structures determined using crystals kept at ambient as opposed to cryogenic temperature during data collection. In addition, room-temperature measurements enable time-resolved studies and eliminate the need to find suitable cryoprotectants. Since radiation damage limits the high-resolution data that can be obtained from a single crystal, especially at room temperature, data are typically collected in a serial fashion using a number of crystals to spread the total dose over the entire ensemble. Several approaches have been developed over the years to efficiently exchange crystals for room-temperature data collection. These include in situ collection in trays, chips and capillary mounts. Here, the use of a slowly flowing microscopic stream for crystal delivery is demonstrated, resulting in extremely high-throughput delivery of crystals into the X-ray beam. This free-stream technology, which was originally developed for serial femtosecond crystallography at X-ray free-electron lasers, is here adapted to serial crystallography at synchrotrons. By embedding the crystals in a high-viscosity carrier stream, high-resolution room-temperature studies can be conducted at atmospheric pressure using the unattenuated X-ray beam, thus permitting the analysis of small or weakly scattering crystals. The high-viscosity extrusion injector is described, as is its use to collect high-resolution serial data from native and heavy-atom-derivatized lysozyme crystals at the Swiss Light Source using less than half a milligram of protein crystals. The room-temperature serial data allow de novo structure determination. The crystal size used in this proof-of-principle experiment was dictated by the available flux density. However, upcoming

  16. Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout.

    Science.gov (United States)

    Stitt, C A; Hart, M; Harker, N J; Hallam, K R; MacFarlane, J; Banos, A; Paraskevoulakos, C; Butcher, E; Padovani, C; Scott, T B

    2015-03-21

    How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H2 corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U+H2O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO2 and UH3, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Preliminary studies of enhanced contrast radiography in anatomy and embryology of insects with Elettra synchrotron light

    International Nuclear Information System (INIS)

    Hoennicke, M.G.; Foerster, L.A.; Navarro-Silva, M.A.; Menk, R.-H.; Rigon, L.; Cusatis, C.

    2005-01-01

    Enhanced contrast X-ray imaging is achieved by exploiting the real part of the refraction index, which is responsible for the phase shifts, in addition to the imaginary part, which is responsible for the absorption. Such techniques are called X-ray phase contrast imaging. An analyzer-based X-ray phase contrast imaging set-up with Diffraction Enhanced Imaging processing (DEI) were used for preliminary studies in anatomy and embryology of insects. Parasitized stinkbug and moth eggs used as control agents of pests in vegetables and adult stinkbugs and mosquitoes (Aedes aegypti) were used as samples. The experimental setup was mounted in the SYRMEP beamline at ELETTRA. Images were obtained using a high spatial resolution CCD detector (pixel size 14x14μm 2 ) coupled with magnifying optics. Analyzer-based X-ray phase contrast images (PCI) and edge detection images show contrast and details not observed with conventional synchrotron radiography and open the possibility for future study in the embryonic development of insects

  18. Preliminary studies of enhanced contrast radiography in anatomy and embryology of insects with Elettra synchrotron light

    Energy Technology Data Exchange (ETDEWEB)

    Hoennicke, M.G. [Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19091, 81531-990 Curitiba-PR (Brazil)]. E-mail: marcelo@fisica.ufpr.br; Foerster, L.A. [Departamento de Zoologia, Universidade Federal do Parana, Caixa Postal 19020, 81531-990 Curitiba-PR (Brazil); Navarro-Silva, M.A. [Departamento de Zoologia, Universidade Federal do Parana, Caixa Postal 19020, 81531-990 Curitiba-PR (Brazil); Menk, R.-H. [Sincrotrone Trieste SCpA, Strada Statale S.S. 14 km 163.5, 34012 Basovizza, Trieste (Italy); Rigon, L. [Dipartamento di Fisica, Universita di Trieste, Via Valerio 2, 34100, Trieste Italy (Italy); Cusatis, C. [Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19091, 81531-990 Curitiba-PR (Brazil)

    2005-08-11

    Enhanced contrast X-ray imaging is achieved by exploiting the real part of the refraction index, which is responsible for the phase shifts, in addition to the imaginary part, which is responsible for the absorption. Such techniques are called X-ray phase contrast imaging. An analyzer-based X-ray phase contrast imaging set-up with Diffraction Enhanced Imaging processing (DEI) were used for preliminary studies in anatomy and embryology of insects. Parasitized stinkbug and moth eggs used as control agents of pests in vegetables and adult stinkbugs and mosquitoes (Aedes aegypti) were used as samples. The experimental setup was mounted in the SYRMEP beamline at ELETTRA. Images were obtained using a high spatial resolution CCD detector (pixel size 14x14{mu}m{sup 2}) coupled with magnifying optics. Analyzer-based X-ray phase contrast images (PCI) and edge detection images show contrast and details not observed with conventional synchrotron radiography and open the possibility for future study in the embryonic development of insects.

  19. Preliminary studies of enhanced contrast radiography in anatomy and embryology of insects with Elettra synchrotron light

    Science.gov (United States)

    Hönnicke, M. G.; Foerster, L. A.; Navarro-Silva, M. A.; Menk, R.-H.; Rigon, L.; Cusatis, C.

    2005-08-01

    Enhanced contrast X-ray imaging is achieved by exploiting the real part of the refraction index, which is responsible for the phase shifts, in addition to the imaginary part, which is responsible for the absorption. Such techniques are called X-ray phase contrast imaging. An analyzer-based X-ray phase contrast imaging set-up with Diffraction Enhanced Imaging processing (DEI) were used for preliminary studies in anatomy and embryology of insects. Parasitized stinkbug and moth eggs used as control agents of pests in vegetables and adult stinkbugs and mosquitoes ( Aedes aegypti) were used as samples. The experimental setup was mounted in the SYRMEP beamline at ELETTRA. Images were obtained using a high spatial resolution CCD detector (pixel size 14×14 μm 2) coupled with magnifying optics. Analyzer-based X-ray phase contrast images (PCI) and edge detection images show contrast and details not observed with conventional synchrotron radiography and open the possibility for future study in the embryonic development of insects.

  20. All fiber based supercontinuum light source utilized for IR microscopy

    DEFF Research Database (Denmark)

    Dupont, Sune; Petersen, Christian; Thøgersen, Jan

    2012-01-01

    An all fiber based supercontinuum light source is demonstrated for infrared microscopy. The high brightness and spatial coherence of the source facilitate fast high resolution measurements.......An all fiber based supercontinuum light source is demonstrated for infrared microscopy. The high brightness and spatial coherence of the source facilitate fast high resolution measurements....

  1. The three-dimensional microstructure of polycrystalline materials unravelled by synchrotron light; La microstructure 3D des materiaux polycristallins vue sous la lumiere synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, W.; Herbig, M. [Universite de Lyon, INSA-Lyon, MATEIS, UMR 5510 CNRS, LyonTech Campus, Bat. Saint-Exupery, 25 avenue Jean Capelle, F-69621 Villeurbanne Cedex (France); Ludwig, W.; King, A; Reischig, P. [European Synchrotron Radiation Facility, 6 rue J. Horowitz, BP 220, F-38043 Grenoble (France); Marrow, J. [University of Oxford, Department of Materiels, Parks road, Oxford OX1 3PH (United Kingdom); Babout, L. [Computer Engineering Department, Technical University of Lodz, ul. Stefanowskiego 18/22, PL-90- 537 Lodz (Poland); Mejdal Lauridsen, E. [Materials Research Department, Riso National Laboratory for Sustainable Energy, Technical University of Denmark (DTU), Building 228, PO Box 49, DK-4000 Roskilde (Denmark); Proudhon, H. [MINES ParisTech, Centre des Materiaux, UMR 7633 CNRS, BP 87, F-91003 Evry Cedex (France)

    2011-07-01

    Synchrotron radiation X-ray imaging and diffraction techniques offer new possibilities for non-destructive bulk characterization of polycrystalline materials. Minute changes in electron density (different crystallographic phases, cracks, porosities) can be detected using 3D imaging modes exploiting Fresnel diffraction and the coherence properties of third generation synchrotron beams. X-ray diffraction contrast tomography, a technique based on Bragg diffraction imaging, provides access to the 3D shape, orientation and elastic strain state of the individual grains from polycrystalline sample volumes containing several hundred up to a few thousand grains. Combining both imaging modalities allows a comprehensive description of the microstructure of the material at the micrometer length scale. Repeated observations during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystal deformation and degradation mechanisms in materials, fulfilling some conditions on grain size and deformation state. (authors)

  2. Advanced Light Source activity report 1996/97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Ten years ago, the Advanced Light Source (ALS) existed as a set of drawings, calculations, and ideas. Four years ago, it stored an electron beam for the first time. Today, the ALS has moved from those ideas and beginnings to a robust, third-generation synchrotron user facility, with eighteen beam lines in use, many more in planning or construction phases, and hundreds of users from around the world. Progress from concepts to realities is continuous as the scientific program, already strong in many diverse areas, moves in new directions to meet the needs of researchers into the next century. ALS staff members who develop and maintain the infrastructure for this research are similarly unwilling to rest on their laurels. As a result, the quality of the photon beams the authors deliver, as well as the support they provide to users, continues to improve. The ALS Activity Report is designed to share the results of these efforts in an accessible form for a broad audience. The Scientific Program section, while not comprehensive, shares the breadth, variety, and interest of recent research at the ALS. (The Compendium of User Abstracts and Technical Reports provides a more comprehensive and more technical view.) The Facility Report highlights progress in operations, ongoing accelerator research and development, and beamline instrumentation efforts. Although these Activity Report sections are separate, in practice the achievements of staff and users at the ALS are inseparable. User-staff collaboration is essential as they strive to meet the needs of the user community and to continue the ALS's success as a premier research facility.

  3. Advanced Light Source activity report 1996/97

    International Nuclear Information System (INIS)

    1997-01-01

    Ten years ago, the Advanced Light Source (ALS) existed as a set of drawings, calculations, and ideas. Four years ago, it stored an electron beam for the first time. Today, the ALS has moved from those ideas and beginnings to a robust, third-generation synchrotron user facility, with eighteen beam lines in use, many more in planning or construction phases, and hundreds of users from around the world. Progress from concepts to realities is continuous as the scientific program, already strong in many diverse areas, moves in new directions to meet the needs of researchers into the next century. ALS staff members who develop and maintain the infrastructure for this research are similarly unwilling to rest on their laurels. As a result, the quality of the photon beams the authors deliver, as well as the support they provide to users, continues to improve. The ALS Activity Report is designed to share the results of these efforts in an accessible form for a broad audience. The Scientific Program section, while not comprehensive, shares the breadth, variety, and interest of recent research at the ALS. (The Compendium of User Abstracts and Technical Reports provides a more comprehensive and more technical view.) The Facility Report highlights progress in operations, ongoing accelerator research and development, and beamline instrumentation efforts. Although these Activity Report sections are separate, in practice the achievements of staff and users at the ALS are inseparable. User-staff collaboration is essential as they strive to meet the needs of the user community and to continue the ALS's success as a premier research facility

  4. The 4th Generation Light Source at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Albert Grippo; Christopher Gould; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; John Klopf; Steven Moore; George Neil; Thomas Powers; Joseph Preble; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Shukui Zhang; Gwyn Williams

    2007-04-25

    A number of "Grand Challenges" in Science have recently been identified in reports from The National Academy of Sciences, and the U.S. Dept. of Energy, Basic Energy Sciences. Many of these require a new generation of linac-based light source to study dynamical and non-linear phenomena in nanoscale samples. In this paper we present a summary of the properties of such light sources, comparing them with existing sources, and then describing in more detail a specific source at Jefferson Lab. Importantly, the JLab light source has developed some novel technology which is a critical enabler for other new light sources.

  5. The 4th Generation Light Source at Jefferson Lab

    International Nuclear Information System (INIS)

    Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Albert Grippo; Christopher Gould; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; John Klopf; Steven Moore; George Neil; Thomas Powers; Joseph Preble; Daniel Sexton; Michelle Shinn; Christopher Tennant; Richard Walker; Shukui Zhang; Gwyn Williams

    2007-01-01

    A number of 'Grand Challenges' in Science have recently been identified in reports from The National Academy of Sciences, and the U.S. Dept. of Energy, Basic Energy Sciences. Many of these require a new generation of linac-based light source to study dynamical and non-linear phenomena in nanoscale samples. In this paper we present a summary of the properties of such light sources, comparing them with existing sources, and then describing in more detail a specific source at Jefferson Lab. Importantly, the JLab light source has developed some novel technology which is a critical enabler for other new light sources

  6. X-ray lithography using wiggler and undulator synchrotron-radiation sources

    International Nuclear Information System (INIS)

    Neureuther, A.R.; Kim, K.J.; Thompson, A.C.; Hoyer, E.

    1983-08-01

    A systems design approach is used to identify feasible options for wiggler and undulator beam lines for x-ray lithography in the 0.5 to 0.2 μm linewidth region over 5 cm by 5 cm fields. Typical parameters from the Wiggler and Undulator in the Advanced Light Source designed at the Lawrence Berkeley Laboratory are used as examples. Moving from the conventional wavelengths of 4 to 9 A to very soft wavelengths around 15 A is shown to be very promising. The mask absorber thickness can be reduced a factor of three so that 0.2 μm features can be made with a 1:1 mask aspect ratio. The mask heating limited exposure time is also reduced a factor of three to 3 sec/cm 2 . However, extremely thin beam line windows (1/4 mil Be) and mask supports (1 μm Si) must be used. A wiggler beam line design using a small slit window at a scanning mirror appears feasible. A unconventional, windowless differentially pumped beam line with dual deflecting mirrors could be used with an undulator source

  7. A compressed sensing based reconstruction algorithm for synchrotron source propagation-based X-ray phase contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Melli, Seyed Ali, E-mail: sem649@mail.usask.ca [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Wahid, Khan A. [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Babyn, Paul [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada); Montgomery, James [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Snead, Elisabeth [Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK (Canada); El-Gayed, Ali [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Pettitt, Murray; Wolkowski, Bailey [College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK (Canada); Wesolowski, Michal [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada)

    2016-01-11

    Synchrotron source propagation-based X-ray phase contrast computed tomography is increasingly used in pre-clinical imaging. However, it typically requires a large number of projections, and subsequently a large radiation dose, to produce high quality images. To improve the applicability of this imaging technique, reconstruction algorithms that can reduce the radiation dose and acquisition time without degrading image quality are needed. The proposed research focused on using a novel combination of Douglas–Rachford splitting and randomized Kaczmarz algorithms to solve large-scale total variation based optimization in a compressed sensing framework to reconstruct 2D images from a reduced number of projections. Visual assessment and quantitative performance evaluations of a synthetic abdomen phantom and real reconstructed image of an ex-vivo slice of canine prostate tissue demonstrate that the proposed algorithm is competitive in reconstruction process compared with other well-known algorithms. An additional potential benefit of reducing the number of projections would be reduction of time for motion artifact to occur if the sample moves during image acquisition. Use of this reconstruction algorithm to reduce the required number of projections in synchrotron source propagation-based X-ray phase contrast computed tomography is an effective form of dose reduction that may pave the way for imaging of in-vivo samples.

  8. Synchrotron radiation facilities in the USA

    International Nuclear Information System (INIS)

    Decker, G.

    1996-01-01

    With the successful commissioning and achievement of significant milestones at both the 7-GeV Advanced Photon Source (APS) and the 1.5- GeV Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory, synchrotron radiation research capability in the United States holds the promise of many important discoveries in the decade to come. An overview of current accelerator commissioning performance at the American third-generation light sources, state-of-the-art developments at first- and second-generation sources, and a preview of fourth-generation source progress is presented

  9. 3D chemical imaging based on a third-generation synchrotron source

    Energy Technology Data Exchange (ETDEWEB)

    Bleuet, P.; Gergaud, P. [CEA, LETI, MINATEC, F-38054 Grenoble, (France); Lemelle, L. [Ecole Normale Super Lyon, CNRS, USR, UMR 5570, F-3010 Lyon, (France); Bleuet, P.; Tucoulou, R.; Cloetens, P.; Susini, J. [European Synchrotron Radiat Facil, F-38043 Grenoble, (France); Delette, G. [CEA LITEN DEHT LPCE, F-38054 Grenoble, (France); Simionovici, A. [Univ Grenoble 1, Lab Geodynam Chaines Alpines, F-38041 Grenoble, (France)

    2010-07-01

    Data acquisition and reconstruction for tomography have been extensively studied for the past 30 years, mainly for medical diagnosis and non-destructive testing. In these fields, imaging is typically limited to sample morphology. However, in many cases, that is insufficient, and 3D chemical imaging becomes essential. This review highlights synchrotron X-ray fluorescence tomography, a well-established non-destructive technique that makes tomography richer by reconstructing the quantitative elemental distribution within samples down to the micrometer scale or even less. We compare the technique to others and illustrate it through results covering different scientific applications. (authors)

  10. The Jefferson Lab High Power Light Source

    International Nuclear Information System (INIS)

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments

  11. The Jefferson Lab High Power Light Source

    Energy Technology Data Exchange (ETDEWEB)

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  12. Estimation of light source colours for light pollution assessment.

    Science.gov (United States)

    Ziou, D; Kerouh, F

    2018-05-01

    The concept of the smart city raised several technological and scientific issues including light pollution. There are various negative impacts of light pollution on economy, ecology, and heath. This paper deals with the census of the colour of light emitted by lamps used in a city environment. To this end, we derive a light bulb colour estimator based on Bayesian reasoning, directional data, and image formation model in which the usual concept of reflectance is not used. All choices we made are devoted to designing an algorithm which can be run almost in real-time. Experimental results show the effectiveness of the proposed approach. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Conceptual design of a rapid-cycling synchrotron for the KFA-Juelich spallation neutron source: working papers

    International Nuclear Information System (INIS)

    1983-01-01

    An accelerator group was established at ANL by the request of KFA-Juelich to carry out a conceptual design study and cost estimate for a rapid-cycling synchrotron as a possible first stage program on spallation neutron sources at KFA-Juelich. This set of notes is the individual notes which form the basis of the final report under this proposal prepared in January 1983. The topics covered include: SNQ Synchrotron Lattice-I; injection and extraction orbit; extraction from SNQ-SRA; SRA injection; capture and acceleration considerations in the SNQ-SRA; longitudinal coupling impedance; power supplies for SNQ synchrotron proposals; space charge limits in the SNQ-SRA; error analysis; SNQ-SRA ring magnets preliminary designs and cost; summary of CERN booster 4-ring arrangement; V-lattices for SNQ-SRA and extraction from the V-lattices; rf parameters for capture, acceleration and extraction; some parameters of the SNQ-SRA injector system; Keil-Schnell criterion; risetime of longitudinal resistive wall instability; beam scrapers; a design of the vacuum system; some aspects of vacuum consideration for SNQ-SRA; choice working points; ring magnet power supplies for shaped extaction of 1.1 GeV SNQ; ring magnet design and costs; tune shift due to the fringing field of the quadrupoles; coherent instability due to ions in the residual gas; transverse stabilization of bunched beams; rf acceleration system; injection into the SRA; Landau damping to get transverse stability; chromaticity and amplitude dependent tune controls in the SNQ-SRA; conversion of the SNQ-SRA to a compressor ring; comments on beam loss; summary of longitudinal stability study and transverse stability study for the SNQ-SRA; and the beam stay clear regions of the SNQ-SRA

  14. First undulators for the Advanced Light Source

    International Nuclear Information System (INIS)

    Hoyer, E.; Akre, J.; Chin, J.

    1993-05-01

    The first three undulators, each 4.6 m in length, for the Advanced Light source (ALS) at Lawrence Berkeley Laboratory (LBL), are near completion and are undergoing qualification tests before installation into the storage ring. Two devices have 5.0-cm period lengths, 89 periods, and achieve an effective field of 0.85 T at the 14 mm minimum magnetic gap. The other device has a period length of 8.0 cm, 55 periods, and an effective field of 1.2 T at the minimum 14 mm gap. Measurements on the first 5 cm period device show the uncorrelated field errors to be 0.23%, which is less than the required 0.25%. Measurements of gap control show reproducibility of ±5 microns or better. The first vacuum chamber, 5.0 m long, is flat to within 0.53 mm over the 4.6 m magnetic structure section and a 4 x 10 -11 Torr pressure was achieved during vacuum tests. Device description, fabrication, and measurements are presented

  15. The Injection System of SAGA Light Source

    CERN Document Server

    Iwasaki, Yoshitaka; Ohgaki, Hideaki; Okajima, Toshihiro; Takabayashi, Yuichi; Tomimasu, Takio; Yoshida, Katuhide

    2005-01-01

    Saga light Source is a 1.4-GeV electron storage ring with a circumference of 75.6m. The injector is a 250-MeV linac producing 1 ms macro-pulse with a peak current of 12mA and repetition rate of 1Hz. The output beam from the linac is transported though a transport line, and injected into the ring though a septum magnet with a bending angle of 20-degree. The transport line consists of two bending magnets, two quadrupole doublelets, and a quadrupole singlet. The bump orbit is formed by four kicker magnets, two of which are installed at both sides of septum magnet, and other two are positioned apart by one magnet cell of the ring. They are excited by sinusoidal electric currents with a half width of 0.5 ms. The beam optics for the injection trajectory is computed and shown at control room, the parameters for which are provided directly from the power supply control server PC. The operator is able to see real-time result of the beam trajectory calculation. This tool is quite effective to optimize the magnets param...

  16. NIJI-III superconducting compact light source facility

    International Nuclear Information System (INIS)

    Emura, Katsuji; Haga, Tsuyoshi; Shinzato, Tsuyoshi; Takada, Hiroshi

    1995-01-01

    Sumitomo Electric Industries established a synchrotron radiation (SR) facility named 'Harima Research Laboratories' in 1993. The facility is located in Harima Science Garden City where the large SR facility 'Spring-8' is being under construction. Main purpose of our laboratory is to develop the advanced technologies on SR application, particularly for micro-fabrication, photochemistry and x-ray tomography. In the facility, a 600 MeV superconducting compact SR ring 'NIJI-III', a 100 MeV compact linac and five beamlines have been installed. Nowadays, NIJI-III usually provides SR light to users for 16 hours in a day. (author)

  17. Ground motion measurements at the LBL Light Source site, the Bevatron and at SLAC

    International Nuclear Information System (INIS)

    Green, M.A.; Majer, E.I.; More, V.D.; O'Connell, D.R.; Shilling, R.C.

    1986-12-01

    This report describes the technique for measuring ground motion at the site of the 1.0 to 2.0 GeV Synchrotron Radiation Facility which was known as the Advanced Light Source (in 1983 when the measurements were taken). The results of ground motion measurements at the Light Source site at Building 6 at LBL are presented. As comparison, ground motion measurements were made at the Byerly Tunnel, the Bevatron, Blackberry Canyon, and SLAC at the Spear Ring. Ground Motion at the Light Source site was measured in a band from 4 to 100 Hz. The measured noise is primarily local in origin and is not easily transported through LBL soils. The background ground motion is for the most part less than 0.1 microns. Localized truck traffic near Building 6 and the operation of the cranes in the building can result in local ground motions of a micron or more for short periods of time. The background motion at Building 6 is between 1 and 2 orders of magnitude higher than ground motion in a quiet seismic tunnel, which is representative of quiet sites worldwide. The magnitude of the ground motions at SLAC and the Bevatron are comparable to ground motions measured at the Building 6 Light Source site. However, the frequency signature of each site is very different

  18. Report of the Basic Energy Sciences Workshop on Compact Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, William A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Borland, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2010-05-11

    This report is based on a BES Workshop on Compact Light Sources, held May 11-12, 2010, to evaluated the advantages and disadvantages of compact light source approaches and compared their performance to the third generation storage rings and free-electron lasers. The workshop examined the state of the technology for compact light sources and their expected progress. The workshop evaluated the cost efficiency, user access, availability, and reliability of such sources. Working groups evaluated the advantages and disadvantages of Compact Light Source (CLS) approaches, and compared their performance to the third-generation storage rings and free-electron lasers (FELs). The primary aspects of comparison were 1) cost effectiveness, 2) technical availability v. time frame, and 3) machine reliability and availability for user access. Five categories of potential sources were analyzed: 1) inverse Compton scattering (ICS) sources, 2) mini storage rings, 3) plasma sources, 4) sources using plasma-based accelerators, and 5) laser high harmonic generation (HHG) sources. Compact light sources are not a substitute for large synchrotron and FEL light sources that typically also incorporate extensive user support facilities. Rather they offer attractive, complementary capabilities at a small fraction of the cost and size of large national user facilities. In the far term they may offer the potential for a new paradigm of future national user facility. In the course of the workshop, we identified overarching R&D topics over the next five years that would enhance the performance potential of both compact and large-scale sources: Development of infrared (IR) laser systems delivering kW-class average power with femtosecond pulses at kHz repetition rates. These have application to ICS sources, plasma sources, and HHG sources. Development of laser storage cavities for storage of 10-mJ picosecond and femtosecond pulses focused to micron beam sizes. Development of high-brightness, high

  19. Synchrotron radiation: earth, environmental and materials sciences applications

    International Nuclear Information System (INIS)

    Henderson, G.; Baker, D.R.

    2002-01-01

    Mineralogical Association of Canada Short Course 30 called Synchrotron Radiation: Earth, Environmental and Materials Sciences Applications was held in Saskatoon, Saskatchewan in 2002. This short course attempts to introduce to the general earth science community some of the basics of synchrotron radiation-based research. It is not intended as a review of all aspects of every synchrotron-based technique, although it does include the important literature into which knowledge of more specific areas can be gained. Instead, it covers the basics of synchrotron research at a level suitable for those interested in beginning to use synchrotron radiation in their research. Chapter 1 covers the physics of synchrotron radiation and synchrotron storage rings in general. Chapter 2 details what the Canadian Light Source is, what it will be capable of, and the types of experiments that will be able to be performed on the beamlines. Chapter 3 covers the basics of synchrotron-based diffraction studies including both powder and single crystal studies. Chapter 4 introduces the novice user to X-ray absorption spectroscopy (EXAFS/XANES) and includes details on how to correctly reduce the data. Chapter 5 outlines the capabilities of the X-ray microprobe for chemical analyses, micro-EXAFS/XANES and imaging of geological samples. Chapter 6 gives a detailed overview of synchrotron-based X-ray photoelectron spectroscopy with application to mineralogical and geochemical studies. Finally, chapter 7 introduces the types of experiments within the geological community that are commonly performed on amorphous materials

  20. Closing remarks: A prespective from the advanced synchrotron light source conference on the vacuum design of advanced and compact synchrotron light sources

    International Nuclear Information System (INIS)

    Johnson, E.D.

    1988-01-01

    The scope and breadth of the conference are reviewed from the personal perspective of the author. The need for additional desorption data and more rapid development and testing of proptotype vacuum system components for the next generation facilities are highlighted

  1. Light emitting diodes as a plant lighting source

    Energy Technology Data Exchange (ETDEWEB)

    Bula, R.J.; Tennessen, D.J.; Morrow, R.C. [Wisconsin Center for Space Automation and Robotics, Madison, WI (United States); Tibbitts, T.W. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-31

    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted by Lossew in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). Development efforts to translate these observations into visible light emitting devices, however, was not undertaken until the 1950s. The term, light emitting diode (LEDs), was first used in a report by Wolfe, et al., in 1955. The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. The most popular applications of the LED are as indicators or as optoelectronic switches. However, several recent advances in LED technology have made possible the utilization of LEDs for applications that require a high photon flux, such as for plant lighting in controlled environments. The new generation of LEDs based on a gallium aluminum arsenide (GaAlAS) semiconductor material fabricated as a double heterostructure on a transparent substrate has opened up many new applications for these LEDs.

  2. ''Use of synchrotron radiation in France: present status and perspectives''

    International Nuclear Information System (INIS)

    Thiry, P.

    1996-01-01

    LURE (laboratory for the use of electromagnetic radiation) plays an important role as a research center, as a synchrotron radiation producer and as a leading pole about new light source studies. The necessity to maintain LURE at a high level of technological competitiveness implies to build a new facility called SOLEIL. This article describes the present equipment of LURE, its activity fields and draws the prospect of synchrotron radiation in France. (A.C.)

  3. Investigation of Light-Emitting Diode (LED) Point Light Source Color Visibility against Complex Multicolored Backgrounds

    Science.gov (United States)

    2017-11-01

    ARL-TR-8214 ● NOV 2017 US Army Research Laboratory Investigation of Light-Emitting Diode (LED) Point Light Source Color...ARL-TR-8214 ● NOV 2017 US Army Research Laboratory Investigation of Light-Emitting Diode (LED) Point Light Source Color Visibility against...instructions, searching existing data sources , gathering and maintaining the data needed, and completing and reviewing the collection information. Send

  4. Synchrotron radiation from protons

    International Nuclear Information System (INIS)

    Dutt, S.K.

    1992-12-01

    Synchrotron radiation from protons, though described by the same equations as the radiation from electrons, exhibits a number of interesting features on account of the parameters reached in praxis. In this presentation, we shall point out some of the features relating to (i) normal synchrotron radiation from dipoles in proton machines such as the High Energy Booster and the Superconducting Super Collider; (ii) synchrotron radiation from short dipoles, and its application to light monitors for proton machines, and (iii) synchrotron radiation from undulators in the limit when, the deflection parameter is much smaller than unity. The material for this presentation is taken largely from the work of Hofmann, Coisson, Bossart, and their collaborators, and from a paper by Kim. We shall emphasize the qualitative aspects of synchrotron radiation in the cases mentioned above, making, when possible, simple arguments for estimating the spectral and angular properties of the radiation. Detailed analyses can be found in the literature

  5. Barium light source method and apparatus

    Science.gov (United States)

    Curry, John J. (Inventor); MacDonagh-Dumler, Jeffrey (Inventor); Anderson, Heidi M. (Inventor); Lawler, James E. (Inventor)

    2002-01-01

    Visible light emission is obtained from a plasma containing elemental barium including neutral barium atoms and barium ion species. Neutral barium provides a strong green light emission in the center of the visible spectrum with a highly efficient conversion of electrical energy into visible light. By the selective excitation of barium ionic species, emission of visible light at longer and shorter wavelengths can be obtained simultaneously with the green emission from neutral barium, effectively providing light that is visually perceived as white. A discharge vessel contains the elemental barium and a buffer gas fill therein, and a discharge inducer is utilized to induce a desired discharge temperature and barium vapor pressure therein to produce from the barium vapor a visible light emission. The discharge can be induced utilizing a glow discharge between electrodes in the discharge vessel as well as by inductively or capacitively coupling RF energy into the plasma within the discharge vessel.

  6. Fifth school on Magnetism and Synchrotron Radiation

    CERN Document Server

    Beaurepaire, Eric; Scheurer, Fabrice; Kappler, Jean-Paul; Magnetism and Synchrotron Radiation : New Trends

    2010-01-01

    Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials. At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale. With the Fifth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.

  7. Analysis of peripheral thermal damage after laser irradiation of dentin using polarized light microscopy and synchrotron radiation infrared spectromicroscopy

    Science.gov (United States)

    Dela Rosa, Alfredo; Sarma, Anupama V.; Le, Charles Q.; Jones, Robert S.; Fried, Daniel

    2004-05-01

    It is necessary to minimize peripheral thermal damage during laser irradiation, since thermal damage to collagen and mineral compromises the bond strength to restorative materials in dentin and inhibits healing and osteointegration in bone. The overall objective of this study was to test the hypothesis that lasers resonant to the specific absorption of water, collagen, and hydroxyapatite with pulse durations less than the thermal relaxation times at each respective laser wavelength will efficiently remove dentin with minimal peripheral thermal damage. Precise incisions were produced in 3 x 3 mm2 blocks of human dentin using CO2 (9.6 μm), Er:YSGG (2.79 μm), and Nd:YAG (355 nm) lasers with and without a computer controlled water spray. Polarization-sensitive optical coherence tomography was used to obtain optical cross-sections of each incision to determine the rate and efficiency of ablation. The peripheral thermal damage zone around each incision was analyzed using polarized light microscopy (PLM) and Synchrotron-Radiation Fourier Transform Infrared Spectro-microscopy (SR-FTIR). Thermally induced chemical changes to both mineral and the collagen matrix was observed with SR-FTIR with a 10-μm spatial resolution and those changes were correlated with optical changes observed with PLM. Minimal (alveolar bone.

  8. Compact linac-driven light sources utilizing mm-period RF undulators

    Science.gov (United States)

    Toufexis, F.; Dolgashev, V. A.; Limborg-Deprey, C.; Tantawi, S. G.

    2017-08-01

    Conventional synchrotron light sources and Free-Electron Lasers (FELs) utilize permanent magnet undulators with periods on the order of a few centimeters, and to generate X-rays they need GeV scale electron beam energies. Such facilities are very large and expensive. Inverse Compton scattering sources use a laser beam as an undulator with micrometer periods and produce X-ray energies on the order of tens of keV. These sources operate with MeV scale beam energies, and therefore they are much more compact. However, their average photon flux is typically small, especially in the EUV and soft X-ray regime. We present a novel compact linac-driven light source, which could produce both incoherent and FEL radiation depending on its configuration. This source is based on a mm-period RF undulator. The RF undulator is a mm-wave cavity resonating at a deflecting mode. The source operates as follows: a train of electron bunches is generated in a thermionic X-band RF injector. These bunches are accelerated in an X-band linac and then interact with the RF undulator. The RF power that feeds the undulator is extracted from the electron beam in a decelerating RF structure, located downstream of the undulator. As an example, a light source with a 91.392 GHz RF undulator and a 129 MeV electron beam can generate incoherent EUV radiation at 13.5 nm. Such a light source could be less than 6 m long, and potentially be used for EUV mask metrology. Similar approach will enable soft X-Ray imaging.

  9. Power supplies for the injector synchrotron quadrupoles and sextupoles

    International Nuclear Information System (INIS)

    Fathizadeh, M.

    1995-01-01

    This light source note will describe the power supplies for the injector synchrotron quadrupole and sextupole magnets. The injector synchrotron has two families of quadrupole magnets. Each family consists of 40 quadrupole magnets connected in series. These magnets are energized by two phase-controlled, 12-pulse power supplies. Therefore, each power supply will be rated to deliver the necessary power to only 40 quadrupole magnets. The two families of sextupole magnets in the injector synchrotron each consists of 32 sextupole magnets connected in series, powered by a phase-controlled power supply. Thus, each power supply shall be capable of delivering power to only 32 sextupole magnets

  10. Prospects for X-ray absorption with the super-bright light sources of the future.

    Science.gov (United States)

    Norman, D

    2001-03-01

    The immense growth in applications of X-ray absorption spectroscopy (XAS) has been enabled by the widespread availability of intense tunable X-rays from synchrotron radiation sources. Recently, new concepts have been proposed for fourth-generation light sources, such as the SASE (self-amplified stimulated emission) X-ray free-electron lasers (XFELs) being pursued at Hamburg (TESLA) and Stanford (LCLS), and the recirculator ring (MARS) at Novosibirsk. These sources offer expected gains of many orders of magnitude in instantaneous brilliance, which will unlock opportunities for qualitatively different science. Examples of new or greatly expanded techniques in XAS could include Raman X-ray absorption fine structure (XAFS), pump-probe experiments, time-resolved XAFS and small-spot X-ray spectromicroscopy, although the limited tunability of the sources might not allow conventional XAFS measurements. Multi-photon X-ray absorption could become a new field of study. There should not be a collective stampede to these new sources, however, and it is likely that storage rings will continue to be necessary for most XAFS applications. The extreme brightness of these future light sources will present difficult challenges in instrumentation, especially detectors and sample containment. Practitioners will also have to exercise caution, because the intensity of the beam will surely destroy many samples and in some cases there will be so many photons absorbed per atom that XAFS will be impossible.

  11. Magnetic measurement of Iranian Light Source Facility quadrupole storage ring prototype

    Directory of Open Access Journals (Sweden)

    Y Radkhorrami

    2017-08-01

    Full Text Available Magnetic Measurement Lab is one of the most significant divisions of Research and Development (R&D Lab of Iranian Light Source Facility. The main duty of this lab is to measure and check qualification of the accelerator magnets, including permanent and electromagnets, being applied in Iran for the fisrt time. The ILSF measurement lab consists of precise measurement equipment, in proportion  to synchrotron needs, such as Hall Effect probe measurement bench, rotating coil and Helmholtz coil. Recently, the lab has been provided with Hall probe measurement bench and uncompensated rotating coil and has made it possible to measure prototype magnets. In this article, the results of measuring quadrupole prototype are studied using Hall probe and rotating coil, to determine and compare errors in measuring multipole magnets and their sources

  12. Gating circuit for single photon-counting fluorescence lifetime instruments using high repetition pulsed light sources

    International Nuclear Information System (INIS)

    Laws, W.R.; Potter, D.W.; Sutherland, J.C.

    1984-01-01

    We have constructed a circuit that permits conventional timing electronics to be used in single photon-counting fluorimeters with high repetition rate excitation sources (synchrotrons and mode-locked lasers). Most commercial time-to-amplitude and time-to-digital converters introduce errors when processing very short time intervals and when subjected to high-frequency signals. This circuit reduces the frequency of signals representing the pulsed light source (stops) to the rate of detected fluorescence events (starts). Precise timing between the start/stop pair is accomplished by using the second stop pulse after a start pulse. Important features of our design are that the circuit is insensitive to the simultaneous occurrence of start and stop signals and that the reduction in the stop frequency allows the start/stop time interval to be placed in linear regions of the response functions of commercial timing electronics

  13. Synchrotron radiation structure analyses of the light-induced radical pair of a hexaarylbiimidazolyl derivative. Origin of the spin-multiplicity change

    CERN Document Server

    Kawano, M; Matsubara, K; Imabayashi, H; Mitsumi, M; Toriumi, K; Ohashi, Y

    2002-01-01

    In situ synchrotron radiation structure analyses of a light-induced radical pair from o-Cl-HABI were performed by using an X-ray vacuum camera at 23-70K at the BL02B1 station of SPring-8. The combined results of X-ray analysis with theoretical calculation, IR, and UV-vis spectroscopy reveal that a slight conformational change of the radical pair causes the drastic spin-multiplicity change during 2-140K. (author)

  14. LAT Monitored Source List Light Curves

    Data.gov (United States)

    National Aeronautics and Space Administration — The LAT team monitors flux values for a number of bright sources and transient sources that have shown flares during the mission. (See up-to-date weekly reports on...

  15. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mirian L.A.F.; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (CT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray CT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumba (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based CT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  16. Scintillator's sensitivity calibration method in synchrotron radiation facility

    International Nuclear Information System (INIS)

    He Xiao'an; Du Huabing; Li Chaoguang; Yi Rongqing; Xiao Tiqiao

    2012-01-01

    Researches on scintillator's sensitivity method has been carried out recently in Shanghai synchrotron radiation facility. By some experimental researches in light source and detector's linearity, it built a new method for calibrating scintillator's sensitivity. Finally, calibration results were acquired by theory simulation of experimental data which were in accordance with radioactive source methods results, and the new method improved the data accuracy. (authors)

  17. Synchrotron radiation

    International Nuclear Information System (INIS)

    Pattison, P.; Quinn, P.

    1990-01-01

    This report details the activities in synchrotron radiation and related areas at Daresbury Laboratory during 1989/90. The number and scope of the scientific reports submitted by external users and in-house staff is a reflection of the large amount of scheduled beamtime and high operating efficiency achieved at the Synchrotron Radiation Source (SRS) during the past year. Over 4000 hours of user beam were available, equivalent to about 80% of the total scheduled time. Many of the reports collected here illustrate the increasing technical complexity of the experiments now being carried out at Daresbury. Provision of the appropriate technical and scientific infrastructure and support is a continuing challenge. The development of the Materials Science Laboratory together with the existing Biological Support Laboratory will extend the range of experiments which can be carried out on the SRS. This will particularly facilitate work in which the sample must be prepared or characterised immediately before or during an experiment. The year 1989/90 has also seen a substantial upgrade of several stations, especially in the area of x-ray optics. Many of the advantages of the High Brightness Lattice can only be exploited effectively with the use of focusing optics. As the performance of these stations improves, the range of experiments which are feasible on the SRS will be extended significantly. (author)

  18. 5 years of ambient pressure photoelectron spectroscopy (APPES) at the Swiss Light Source (SLS)

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, Giorgia [Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093, Zurich (Switzerland); Giorgi, Javier B. [Department of Chemistry and Biomolecular Sciences, and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Green, Richard G. [Measurement Science and Standards, National Research Council Canada, Ottawa, Ontario K1A 0R6 (Canada); Brown, Matthew A., E-mail: matthew.brown@mat.ethz.ch [Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093, Zurich (Switzerland)

    2017-04-15

    Highlights: • A review of the ongoing research using the APPES endstation of the Swiss Light Source is presented. • Research interests include the liquid-vapor, liquid-nanoparticle and vapor-solid interfaces. • An outlook to the next five years of research at the Swiss Light Source is presented. - Abstract: In March of 2012 an endstation dedicated to ambient pressure photoelectron spectroscopy (APPES) was installed at the Swiss Light Source (SLS) synchrotron radiation facility on the campus of the Paul Scherrer Institute (PSI). The endstation is mobile and operated at the vacuum ultraviolet (VUV), Surfaces/Interfaces: Microscopy (SIM) and Phoenix beamlines, which together afford a nearly continuous photon energy range from 5−8000 eV. This broad energy range is by far the widest available to a single currently operational APPES endstation. During its first five years of operation this endstation has been used to address challenging fundamental problems in the areas of soft-matter colloidal nanoscience, environmental science and energy storage—research that encompasses the liquid-nanoparticle, liquid-vapor (or vacuum) and solid-vapor interfaces. Here we present select highlights of these results and offer an outlook to the next five years of APPES research at the SLS.

  19. Design and performance of the 40 MeV linac and beam transport system for the 1 GeV synchrotron radiation source at SORTEC

    International Nuclear Information System (INIS)

    Shiota, M.; Hiraki, A.; Mizota, M.; Iida, T.; Haraguchi, M.; Kuno, K.; Nakamura, S.; Ohno, M.; Tomimasu, T.

    1990-01-01

    A 1 Gev synchrotron radiation source (SOR) system has been installed and is now being adjusted at SORTEC corporation. This paper reports the configuration and the beam test results of the 40 MeV electron linac (pre-injector) and the beam transport line to the electron synchrotron used in this system. The output beam from the linac must be low emittance, small energy spread, and stable in energy. The beam transport line must also efficiently lead the beam from the linac to the electron synchrotron. This linac produced the beam current of 130 mA, with an energy spread of 1.3 % (FWHM), and an emittance of 0.7 πmm·mrad. The beam characteristics were verified by various beam monitors on the beam transport line. (author)

  20. A new storage-ring light source

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alex [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  1. An experiment on the color rendering of different light sources

    Science.gov (United States)

    Fumagalli, Simonetta; Bonanomi, Cristian; Rizzi, Alessandro

    2013-02-01

    The color rendering index (CRI) of a light source attempts to measure how much the color appearance of objects is preserved when they are illuminated by the given light source. This problem is of great importance for various industrial and scientific fields, such as lighting architecture, design, ergonomics, etc. Usually a light source is specified through the Correlated Color Temperature or CCT. However two (or more) light sources with the same CCT but different spectral power distribution can exist. Therefore color samples viewed under two light sources with equal CCTs can appear different. Hence, the need for a method to assess the quality of a given illuminant in relation to color. Recently CRI has had a renewed interest because of the new LED-based lighting systems. They usually have a color rendering index rather low, but good preservation of color appearance and a pleasant visual appearance (visual appeal). Various attempts to develop a new color rendering index have been done so far, but still research is working for a better one. This article describes an experiment performed by human observers concerning the appearance preservation of color under some light sources, comparing it with a range of available color rendering indices.

  2. Electrical discharge light sources: a challenge for the future

    International Nuclear Information System (INIS)

    Zissis, G.

    2001-01-01

    The first electric powder lamp operated that 150 years ago, since then the evolution of light sources is astonishing. Today, more than 10 % of the global electric power produced worldwide serve fore light production from several billions lamps. Since last three decades incandescent lamps are gradually replaced by more energy efficient discharge lamps. In parallel, new generation of light emitting diodes, producing bright colours (including white) with luminous efficacy challenging even discharge lamps, appeared in past years. The objective of this paper is to focus on the state of art in the domain of light sources and discuss the challenges for the near future. (author)

  3. Imaging spectroscopic analysis at the Advanced Light Source

    International Nuclear Information System (INIS)

    MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

    1999-01-01

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications

  4. Synchronization System for Next Generation Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Zavriyev, Anton [MagiQ Technologies, Inc., Somerville, MA (United States)

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  5. Permanent magnet based dipole magnets for next generation light sources

    Directory of Open Access Journals (Sweden)

    Takahiro Watanabe

    2017-07-01

    Full Text Available We have developed permanent magnet based dipole magnets for the next generation light sources. Permanent magnets are advantageous over electromagnets in that they consume less power, are physically more compact, and there is a less risk of power supply failure. However, experience with electromagnets and permanent magnets in the field of accelerators shows that there are still challenges to replacing main magnets of accelerators for light sources with permanent magnets. These include the adjustability of the magnetic field, the temperature dependence of permanent magnets, and the issue of demagnetization. In this paper, we present a design for magnets for future light sources, supported by experimental and numerical results.

  6. Laser driven white light source for BRDF measurement

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Thorseth, Anders; Dam-Hansen, Carsten

    2017-01-01

    source (UV-VIS-NIR), spectroradiometer and sample holder stepper motor in a dark UV-protected environment. Here, we introduced a special kind of light source which has a bright, stable, broad spectral range and well collimated light output to give a very good angular resolution. The experimental results...... show how stable and reliable is our light source in terms of spectral power distribution, and in BRDF measurement. Furthermore we have shown that we are able to get a well collimated beam and higher power output using set of off-axis parabolic mirrors...

  7. Review of single particle dynamics for third generation light sources through frequency map analysis

    Directory of Open Access Journals (Sweden)

    L. Nadolski

    2003-11-01

    Full Text Available Frequency map analysis [J. Laskar, Icarus 88, 266 (1990] is used here to analyze the transverse dynamics of four third generation synchrotron light sources: the ALS, the ESRF, the SOLEIL project, and Super-ACO. Time variations of the betatron tunes give additional information for the global dynamics of the beam. The main resonances are revealed; a one-to-one correspondence between the configuration space and the frequency space can be performed. We stress that the frequency maps, and therefore the dynamics optimization, are highly sensitive to sextupolar strengths and vary in a large amount from one machine to another. The frequency maps can thus be used to characterize the different machines.

  8. A time resolved microfocus XEOL facility at the Diamond Light Source

    International Nuclear Information System (INIS)

    Mosselmans, J F W; Taylor, R P; Quinn, P D; Cibin, G; Gianolio, D; Finch, A A; Sapelkin, A V

    2013-01-01

    We have constructed a Time-Resolved X-ray Excited Optical Luminescence (TR-XEOL) detection system at the Microfocus Spectroscopy beamline I18 at the Diamond Light Source. Using the synchrotron in h ybrid bunch mode , the data collection is triggered by the RF clock, and we are able to record XEOL photons with a time resolution of 6.1 ps during the 230 ns gap between the hybrid bunch and the main train of electron bunches. We can detect photons over the range 180-850 nm using a bespoke optical fibre, with X-ray excitation energies between 2 and 20 keV. We have used the system to study a range of feldspars. The detector is portable and has also been used on beamline B18 to collect Optically Determined X-ray Absorption Spectroscopy (OD-XAS) in QEXAFS mode.

  9. A time resolved microfocus XEOL facility at the Diamond Light Source

    Science.gov (United States)

    Mosselmans, J. F. W.; Taylor, R. P.; Quinn, P. D.; Finch, A. A.; Cibin, G.; Gianolio, D.; Sapelkin, A. V.

    2013-03-01

    We have constructed a Time-Resolved X-ray Excited Optical Luminescence (TR-XEOL) detection system at the Microfocus Spectroscopy beamline I18 at the Diamond Light Source. Using the synchrotron in "hybrid bunch mode", the data collection is triggered by the RF clock, and we are able to record XEOL photons with a time resolution of 6.1 ps during the 230 ns gap between the hybrid bunch and the main train of electron bunches. We can detect photons over the range 180-850 nm using a bespoke optical fibre, with X-ray excitation energies between 2 and 20 keV. We have used the system to study a range of feldspars. The detector is portable and has also been used on beamline B18 to collect Optically Determined X-ray Absorption Spectroscopy (OD-XAS) in QEXAFS mode.

  10. Performance of the Lancelot Beam Position Monitor at the Diamond Light Source

    Science.gov (United States)

    Chagani, H.; Garcia-Nathan, T. B.; Jiang, C.; Kachatkou, A.; Marchal, J.; Omar, D.; Tartoni, N.; van Silfhout, R. G.; Williams, S.

    2017-12-01

    The Lancelot beam position and profile monitor records the scattered radiation off a thin, low-density foil, which passes through a pinhole perpendicular to the path of the beam and is detected by a Medipix3RX sensor. This arrangement does not expose the detector to the direct beam at synchrotrons and results in a negligible drop in flux downstream of the module. It allows for magnified images of the beam to be acquired in real time with high signal-to-noise ratios, enabling measurements of tiny displacements in the position of the centroid of approximately 1 μm. It also provides a means for independently measuring the photon energy of the incident monoenergetic photon beam. A constant frame rate of up to 245 Hz is achieved. The results of measurements with two Lancelot detectors installed in different environments at the Diamond Light Source are presented and their performance is discussed.

  11. New light Sources for Biomedical Applications

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini

    .005 μg/cm2 of not exposed samples, and 4 fold increase of vitamin D in egg yolk was demonstrated by direct illumination. Applying VIS LED illuminants with specific spectral power distribution in elderly houses resulted in better sleep for elderly women (p=0.007). Light interventions enabled elite...... athletes to conserve their sleep quantity and quality, despite their shifted circadian rhythm. Easier vein identification-access was achieved by applying a special LED illuminant and a statistic evaluation of the human eye ability to identify veins was performed. Finally, lower risks for C-section (OR= 0...

  12. Synchrotron radiation sources and condensers for projection x-ray lithography

    International Nuclear Information System (INIS)

    Murphy, J.B.; MacDowell, A.A.; White, D.L.; Wood, O.R. II

    1992-01-01

    The design requirements for a compact electron storage ring that could be used as a soft x-ray source for projection lithography are discussed. The design concepts of the x-ray optics that are required to collect and condition the radiation in divergence, uniformity and direction to properly illuminate the mask and the particular x-ray projection camera used are discussed. Preliminary designs for an entire soft x-ray projection lithography system using an electron storage ring as a soft X-ray source are presented. It is shown that by combining the existing technology of storage rings with large collection angle condensers, a powerful and reliable source of 130 Angstrom photons for production line projection x-ray lithography is possible

  13. On the Measurement of the Velocity of Light Emitted by an Ultrarelativistic Source

    Science.gov (United States)

    Kupryaev, N. V.

    2015-01-01

    By analytical calculations it has been shown that in papers on the measurement of the velocity of light published in 2011 in the journals Uspekhi Fizicheskikh Nauk [Physics-Uspekhi] and Pis'ma v ZhETF [JRTP Letters], in actual fact the velocity of a light pulse from a relativistic clot of electrons was not measured. All that was done was to compare the velocity of light emitted by an ultrarelativistic source with the velocity of light from a fixed source, i.e., both in the first and second variants (one independent quantity was compared with another), in essence, it was simply postulated. In the first variant a glass plate was used as the fixed light source, and in the second variants, a synchrotron pulse was used as the reference signal. The velocity of light was calculated using a calculated time based on the postulate of the special theory of relativity (STR) on the invariance of the velocity of light. This, of course, contradicts the Newton-Ritz hypothesis on ballistic addition of velocities, but at the present time this idea is not taken seriously. Practically none of the serious contemporary critics of STR, apart, of course, from amateurs, holds this point of view. The result cannot be considered as a direct experimental confirmation of the second postulate of Einstein's special theory of relativity, i.e., its main part, which speaks of the constancy of the velocity of light in all inertial reference frames, but only of that part which speaks of the independence of the velocity of light on motion of the source. Moreover, this same result stands as equal proof of the so-called theory of the luminiferous ether, which held sway up to the creation of the special theory of relativity and which has now been revived, i.e., it does not distinguish between these two theories. It is fundamentally impossible in principle to measure the velocity of light by the proposed method, it is only possible to postulate it.

  14. Optimization of superconducting bending magnets for a 1.0 to 1.5 GeV compact light source

    International Nuclear Information System (INIS)

    Green, M.A.; Garren, A.A.

    1995-06-01

    Compact light sources are being proposed for protein crystallography, medical imaging, nano-machining and other areas of study that require intense sources of x rays at energies up to 35 keV. In order for a synchrotron light source to be attractive, its capital cost must, be kept low. The proposed compact light source has superconducting bending elements to bend the stored beam and produce the x rays. Additional focusing for the machine is provided by conventional quadrupoles. An important part of the cost optimization of a compact light source is the cost of the bending magnets. In the case of a machine with superconducting bending elements, the bending magnet system can represent close to half of the storage ring cost. The compact light source storage rings studied here have a range of stored electron energies from 1.0 to 1.5 GeV. For a number of reasons, it is desirable to keep the storage ring circumference below 30 meters. Cost optimization parameters include: (1) the number of superconducting bending elements in the ring, and (2) the central induction of the dipole. A machine design that features two superconducting dipoles in a single cryostat vacuum vessel is also discussed

  15. Temporal Evolution of the Gamma-ray Burst Afterglow Spectrum for an Observer: GeV–TeV Synchrotron Self-Compton Light Curve

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Takuma; Fujita, Yutaka [Department of Earth and Space Science, Osaka University, Osaka, 560-0043 (Japan); To, Sho; Asano, Katsuaki, E-mail: fukushima@vega.ess.sci.osaka-u.ac.jp, E-mail: fujita@vega.ess.sci.osaka-u.ac.jp, E-mail: tosho@icrr.u-tokyo.ac.jp, E-mail: asanok@icrr.u-tokyo.ac.jp [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan)

    2017-08-01

    We numerically simulate the gamma-ray burst (GRB) afterglow emission with a one-zone time-dependent code. The temporal evolutions of the decelerating shocked shell and energy distributions of electrons and photons are consistently calculated. The photon spectrum and light curves for an observer are obtained taking into account the relativistic propagation of the shocked shell and the curvature of the emission surface. We find that the onset time of the afterglow is significantly earlier than the previous analytical estimate. The analytical formulae of the shock propagation and light curve for the radiative case are also different from our results. Our results show that even if the emission mechanism is switching from synchrotron to synchrotron self-Compton, the gamma-ray light curves can be a smooth power law, which agrees with the observed light curve and the late detection of a 32 GeV photon in GRB 130427A. The uncertainty of the model parameters obtained with the analytical formula is discussed, especially in connection with the closure relation between spectral index and decay index.

  16. A new on-axis multimode spectrometer for the macromolecular crystallography beamlines of the Swiss Light Source

    International Nuclear Information System (INIS)

    Owen, Robin L.; Pearson, Arwen R.; Meents, Alke; Boehler, Pirmin; Thominet, Vincent; Schulze-Briese, Clemens

    2009-01-01

    Complementary techniques greatly aid the interpretation of macromolecule structures to yield functional information, and can also help to track radiation-induced changes. A new on-axis spectrometer being integrated into the macromolecular crystallography beamlines of the Swiss Light Source is presented. X-ray crystallography at third-generation synchrotron sources permits tremendous insight into the three-dimensional structure of macromolecules. Additional information is, however, often required to aid the transition from structure to function. In situ spectroscopic methods such as UV–Vis absorption and (resonance) Raman can provide this, and can also provide a means of detecting X-ray-induced changes. Here, preliminary results are introduced from an on-axis UV–Vis absorption and Raman multimode spectrometer currently being integrated into the beamline environment at X10SA of the Swiss Light Source. The continuing development of the spectrometer is also outlined

  17. Translation of atherosclerotic plaque phase-contrast CT imaging from synchrotron radiation to a conventional lab-based X-ray source.

    Directory of Open Access Journals (Sweden)

    Tobias Saam

    Full Text Available OBJECTIVES: Phase-contrast imaging is a novel X-ray based technique that provides enhanced soft tissue contrast. The aim of this study was to evaluate the feasibility of visualizing human carotid arteries by grating-based phase-contrast tomography (PC-CT at two different experimental set-ups: (i applying synchrotron radiation and (ii using a conventional X-ray tube. MATERIALS AND METHODS: Five ex-vivo carotid artery specimens were examined with PC-CT either at the European Synchrotron Radiation Facility using a monochromatic X-ray beam (2 specimens; 23 keV; pixel size 5.4 µm, or at a laboratory set-up on a conventional X-ray tube (3 specimens; 35-40 kVp; 70 mA; pixel size 100 µm. Tomographic images were reconstructed and compared to histopathology. Two independent readers determined vessel dimensions and one reader determined signal-to-noise ratios (SNR between PC-CT and absorption images. RESULTS: In total, 51 sections were included in the analysis. Images from both set-ups provided sufficient contrast to differentiate individual vessel layers. All PCI-based measurements strongly predicted but significantly overestimated lumen, intima and vessel wall area for both the synchrotron and the laboratory-based measurements as compared with histology (all p0.53 per mm(2, 95%-CI: 0.35 to 0.70. Although synchrotron-based images were characterized by higher SNRs than laboratory-based images; both PC-CT set-ups had superior SNRs compared to corresponding conventional absorption-based images (p0.98 and >0.84 for synchrotron and for laboratory-based measurements; respectively. CONCLUSION: Experimental PC-CT of carotid specimens is feasible with both synchrotron and conventional X-ray sources, producing high-resolution images suitable for vessel characterization and atherosclerosis research.

  18. Science and Technology of Future Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Dierker,S.; Bergmann, U.; Corlett, J.; Dierker, S.; Falcone, R.; Galayda, J.; Gibson, M.; Hastings, J.; Hettel, B.; Hill, J.; Hussain, Z.; Kao, C.-C.; Kirx, J.; Long, G.; McCurdy, B.; Raubenheimer, T.; Sannibale, F.; Seeman, J.; Shen, Z.-X.; Shenoy, g.; Schoenlein, B.; Shen, Q.; Stephenson, B.; Stohr, J.; Zholents, A.

    2008-12-01

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects. The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of

  19. Science and Technology of Future Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, Janos; Long, Danielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z. -X.; Schenoy, Gopal; Schoenlein, Bob; Shen, Qun; Stephenson, Brian; Stohr, Joachim; Zholents, Alexander

    2009-01-28

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of

  20. Diffusion filter eliminates fringe effects of coherent laser light source

    Science.gov (United States)

    Olsasky, M. J.

    1970-01-01

    Diffusion filter comprised of small particles in colloidal suspension reduces the coherence of a laser beam used as a photographic light source. Interference patterns which obscure details in photographic film are eliminated, the intensity and collimation are moderately affected.

  1. Design of Special Light Source for Biological Application

    Directory of Open Access Journals (Sweden)

    Miroslav Steinbauer

    2006-01-01

    Full Text Available This paper presents information about design of special light sources, which is intended for photosynthesis process research, especially for photoinhibition effect. Required properties were continuous spectral characteristic with respect to photosynthetically active wavelength area, possibility of luminous flux regulation and practically zero thermal effect to illuminated object. Owing to new high-performance LED this type of light source was selected. Design of light source consisting of high efficient white LED’s, as well as experimental results, are presented. The special light source was designed and constructed for the research activity on the lichen structure in the Antarctica. This research is made by the Institute of Experimental Biology, Masaryk University, Faculty of Science.

  2. Different light sources in photodynamic therapy for use in photorejuvenation

    CSIR Research Space (South Africa)

    Van Kets, V

    2010-09-01

    Full Text Available Photodynamic therapy (PDT) has recently emerged as a treatment modality for photorejuvenation of the skin. This study is a preliminary investigation into the effect of different light sources to activate hypericin, a plant-derived photosensitizer...

  3. Modification of light sources for appropriate biological action

    Energy Technology Data Exchange (ETDEWEB)

    Kozakov, R; Schoepp, H; Franke, St [Leibniz Institute of Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany); Stoll, C; Kunz, D, E-mail: kozakov@inp-greifswald.d [Charite-Universitymedicine Berlin, Sleep Research and Clinical Chronobiology, Gr. Hamburger Str. 5-11, D-10115 Berlin (Germany)

    2010-06-16

    The impact of the non-visual action of light on the design of novel light sources is discussed. Therefore possible modifications of lamps dealing with spectral tailoring and their action on melatonin suppression in usual life situations are investigated. The results of melatonin suppression by plasma lamps are presented. It is shown that even short-time exposure to usual light levels in working areas has an influence on the melatonin onset.

  4. Development and evaluation of a light-emitting diode endoscopic light source

    Science.gov (United States)

    Clancy, Neil T.; Li, Rui; Rogers, Kevin; Driscoll, Paul; Excel, Peter; Yandle, Ron; Hanna, George; Copner, Nigel; Elson, Daniel S.

    2012-03-01

    Light-emitting diode (LED) based endoscopic illumination devices have been shown to have several benefits over arclamp systems. LEDs are energy-efficient, small, durable, and inexpensive, however their use in endoscopy has been limited by the difficulty in efficiently coupling enough light into the endoscopic light cable. We have demonstrated a highly homogenised lightpipe LED light source that combines the light from four Luminus LEDs emitting in the red, green, blue and violet using innovative dichroics that maximise light throughput. The light source spectrally combines light from highly divergent incoherent sources that have a Lambertian intensity profile to provide illumination matched to the acceptance numerical aperture of a liquid light guide or fibre bundle. The LED light source was coupled to a standard laparoscope and performance parameters (power, luminance, colour temperature) compared to a xenon lamp. Although the total illuminance from the endoscope was lower, adjustment of the LEDs' relative intensities enabled contrast enhancement in biological tissue imaging. The LED light engine was also evaluated in a minimally invasive surgery (MIS) box trainer and in vivo during a porcine MIS procedure where it was used to generate 'narrowband' images. Future work using the violet LED could enable photodynamic diagnosis of bladder cancer.

  5. A new LED light source for display cases

    DEFF Research Database (Denmark)

    Dam-Hansen, Carsten; Petersen, Paul Michael

    Abstract: We report a new LED light source suitable for illumination of gold objects. It has a variable correlated color temperature from 2760 K to 2200 K with a high color rendering index up to 97.......Abstract: We report a new LED light source suitable for illumination of gold objects. It has a variable correlated color temperature from 2760 K to 2200 K with a high color rendering index up to 97....

  6. Survey, alignment, and beam stability at the Advanced Light Source

    International Nuclear Information System (INIS)

    Krebs, G.F.

    1997-10-01

    This paper describes survey and alignment at the Lawrence Berkeley Laboratories Advanced Light Source (ALS) accelerators from 1993 to 1997. The ALS is a third generation light source requiring magnet alignment to within 150 microns. To accomplish this, a network of monuments was established and maintained. Monthly elevation surveys show the movement of the floor over time. Inclinometers have recently been employed to give real time information about magnet, vacuum tank and magnet girder motion in the ALS storage ring

  7. Performance of single mechanoluminescent particle as ubiquitous light source.

    Science.gov (United States)

    Terasaki, Nao; Xu, Chao-Nan

    2014-08-01

    In this study, we have investigated mechanoluminescent (ML) performance of single ML particle as ubiquitous light source. When using high-speed CCD camera with image intensifier and microscopic equipment, mechanoluminescence from single particle was observed. As to the quantitative ML evaluation of the single ML particle was carried out using photomultiplier, and successfully estimated the performance of the single ML particle as an intensity controllable light source in nW order. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Advanced light source, User`s Handbook, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Advanced Light Source (ALS) is a national facility for scientific research and development located at the Lawrence Berkeley National Laboratory (LBNL) of the University of California. Its purpose is to generate beams of very bright light in the ultraviolet and soft x-ray regions of the spectrum. The facility is open to researchers from industry, universities, and government laboratories.

  9. New lasers and light sources - old and new risks?

    DEFF Research Database (Denmark)

    Paasch, Uwe; Schwandt, Antje; Seeber, Nikolaus

    2017-01-01

    Recent developments (new wavelengths, treatment concepts, and combinations) in the field of lasers, intense pulsed light (IPL), LED, as well as new energy and light sources have opened up new therapeutic options that extend beyond mere aesthetic indications. Thus, while fractional lasers used to ...

  10. Hyperspectral microscopy to identify foodborne bacteria with optimum lighting source

    Science.gov (United States)

    Hyperspectral microscopy is an emerging technology for rapid detection of foodborne pathogenic bacteria. Since scattering spectral signatures from hyperspectral microscopic images (HMI) vary with lighting sources, it is important to select optimal lights. The objective of this study is to compare t...

  11. Solid state light source for wavelength multiplex 3D

    Science.gov (United States)

    Huang, Junejei

    2012-10-01

    A solid state light source provided for wavelength multiplex 3D Display is proposed. The system of solid state light source includes blue laser arrays of two wavelengths, a 2-ring phosphor wheel, a multi-band filter and a TIR prism. Green and red phosphors excited by blue lasers provide the original green and red lights of wide bandwidth. By passing through or reflected by a multi-band filter, two groups of green and red lights of narrow bandwidth for left or right eyes are selected. Blue lasers of two wavelengths also provide two blue lights for left and right eyes. Instead of using a second rotated narrow band filters that synchronized with the first phosphor wheel, a wheel having two rings coated with mirrors and phosphors is used to replace the synchronization existing in the conventional two wheels method. After passing the 2-ring wheel, the light source switches between two light paths that lead to be reflected or transmitting through the multiband filter. The multi-band filter can be disposed in a telecentric optical path to secure a high efficiency for the filter. A compact spectral multiplex light source is realized and can be directly attached to any existing optical engine.

  12. Considerations for Sample Preparation Using Size-Exclusion Chromatography for Home and Synchrotron Sources.

    Science.gov (United States)

    Rambo, Robert P

    2017-01-01

    The success of a SAXS experiment for structural investigations depends on two precise measurements, the sample and the buffer background. Buffer matching between the sample and background can be achieved using dialysis methods but in biological SAXS of monodisperse systems, sample preparation is routinely being performed with size exclusion chromatography (SEC). SEC is the most reliable method for SAXS sample preparation as the method not only purifies the sample for SAXS but also almost guarantees ideal buffer matching. Here, I will highlight the use of SEC for SAXS sample preparation and demonstrate using example proteins that SEC purification does not always provide for ideal samples. Scrutiny of the SEC elution peak using quasi-elastic and multi-angle light scattering techniques can reveal hidden features (heterogeneity) of the sample that should be considered during SAXS data analysis. In some cases, sample heterogeneity can be controlled using a small molecule additive and I outline a simple additive screening method for sample preparation.

  13. Metrology of reflection optics for synchrotron radiation

    International Nuclear Information System (INIS)

    Takacs, P.Z.

    1985-09-01

    Recent years have seen an almost explosive growth in the number of beam lines on new and existing synchrotron radiation facilities throughout the world. The need for optical components to utilize the unique characteristics of synchrotron radiation has increased accordingly. Unfortunately, the technology to manufacture and measure the large, smooth, exotic optical surfaces required to focus and steer the synchrotron radiation beam has not progressed as rapidly as the operational demands on these components. Most companies do not wish to become involved with a project that requires producing a single, very expensive, aspheric optic with surface roughness and figure tolerances that are beyond their capabilities to measure. This paper will review some of the experiences of the National Synchrotron Light Source in procuring grazing incidence optical components over the past several years. We will review the specification process - how it is related to the function of the optic, and how it relates to the metrology available during the manufacturing process and after delivery to the user's laboratory. We will also discuss practical aspects of our experience with new technologies, such as single point diamond turning of metal mirrors and the use of SiC as a mirror material. Recent advances in metrology instrumentation have the potential to move the measurement of surface figure and finish from the research laboratory into the optical shop, which should stimulate growth and interest in the manufacturing of optics to meet the needs of the synchrotron radiation user community

  14. 'Moving source': feasibility of diffraction experiment with nanosecond time resolution by the fast synchrotron radiation beam scanning

    CERN Document Server

    Tolochko, B P; Mezentsev, N A; Mishnev, S I

    2000-01-01

    We propose combination of electronical and X-ray optical scheme that will allow one to fulfil the diffraction experiment with a nanosecond time resolution. In this scheme, a few bunches of electrons will be in the nearest separatrixes. They will move inside the undulator along the different trajectories and at different moments t sub i. Each trajectory will have a different deviation above the stationary orbit. As a result there will be a shift of the synchrotron radiation (SR) generation point from the equilibrium position. So, a discretely moving source of SR will be created: the SR will be radiated at t sub i moment and from the ith point. For each ith trajectory of electrons (and for SR), a single-coordinate detector D sub i will be placed for diffracted radiation collecting from the ith point of the sample. So, every new X-ray diffraction image will be received within time interval t sub i sub - sub 1 -t sub i which is equal to a few nanoseconds. The exposure time may be as short as the electron bunch du...

  15. OASYS (OrAnge SYnchrotron Suite): an open-source graphical environment for x-ray virtual experiments

    Science.gov (United States)

    Rebuffi, Luca; Sanchez del Rio, Manuel

    2017-08-01

    The evolution of the hardware platforms, the modernization of the software tools, the access to the codes of a large number of young people and the popularization of the open source software for scientific applications drove us to design OASYS (ORange SYnchrotron Suite), a completely new graphical environment for modelling X-ray experiments. The implemented software architecture allows to obtain not only an intuitive and very-easy-to-use graphical interface, but also provides high flexibility and rapidity for interactive simulations, making configuration changes to quickly compare multiple beamline configurations. Its purpose is to integrate in a synergetic way the most powerful calculation engines available. OASYS integrates different simulation strategies via the implementation of adequate simulation tools for X-ray Optics (e.g. ray tracing and wave optics packages). It provides a language to make them to communicate by sending and receiving encapsulated data. Python has been chosen as main programming language, because of its universality and popularity in scientific computing. The software Orange, developed at the University of Ljubljana (SLO), is the high level workflow engine that provides the interaction with the user and communication mechanisms.

  16. Demonstration experiment of a laser synchrotron source for tunable, monochromatic x-rays at 500 eV

    Energy Technology Data Exchange (ETDEWEB)

    Ting, A.; Fischer, R.; Fisher, A. [Naval Research Lab., Washington, DC (United States)] [and others

    1995-12-31

    A Laser Synchrotron Source (LSS) was proposed to generate short-pulsed, tunable x-rays by Thomson scattering of laser photons from a relativistic electron beam. A proof-of-principle experiment was performed to generate x-ray photons of 20 eV. A demonstration experiment is being planned and constructed to generate x-ray photons in the range of {approximately}500 eV. Laser photons of {lambda}=1.06 {mu}m are Thomson backscattered by a 4.5 MeV electron beam which is produced by an S-band RF electron gun. The laser photons are derived from either (i) a 15 Joules, 3 nsec Nd:glass laser, (ii) the uncompressed nsec: pulse of the NRL table-top terawatt (T{sup 3}) laser, or (iii) the compressed sub-picosec pulse of the T{sup 3} laser. The RF electron gun is being constructed with initial operation using a thermionic cathode. It will be upgraded to a photocathode to produce high quality electron beams with high current and low emittance. The x-ray pulse structure consists of {approximately}10 psec within an envelope of a macropulse whose length depends on the laser used. The estimated x-ray photon flux is {approximately}10{sup 18} photons/sec, and the number of photons per macropulse is {approximately}10{sup 8}. Design parameters and progress of the experiment will be presented.

  17. Directional Dicke Subradiance with Nonclassical and Classical Light Sources

    Science.gov (United States)

    Bhatti, Daniel; Schneider, Raimund; Oppel, Steffen; von Zanthier, Joachim

    2018-03-01

    We investigate Dicke subradiance of N ≥2 distant quantum sources in free space, i.e., the spatial emission patterns of spontaneously radiating noninteracting multilevel atoms or multiphoton sources, prepared in totally antisymmetric states. We find that the radiated intensity is marked by a full suppression of spontaneous emission in particular directions. In resemblance to the analogous, yet inverted, superradiant emission profiles of N distant two-level atoms prepared in symmetric Dicke states, we call the corresponding emission patterns directional Dicke subradiance. We further derive that higher-order intensity correlations of the light emitted by statistically independent thermal light sources display the same directional Dicke subradiant behavior and show that it stems from the same interference phenomenon as in the case of quantum sources. We finally present measurements of directional Dicke subradiance for N =2 ,…,5 distant thermal light sources corroborating the theoretical findings.

  18. Optimization of a coherent synchrotron radiation source in the Tera-hertz range for high-resolution spectroscopy of molecules of astrophysical interest

    International Nuclear Information System (INIS)

    Barros, J.

    2012-01-01

    Fourier Transform spectroscopy is the most used multiplex tool for high-resolution measurements in the infrared range. Its extension to the Tera-hertz domain is of great interest for spectroscopic studies of interstellar molecules. This application is however hampered by the lack of dedicated, broadband sources with a sufficient intensity and stability. In this work, Coherent Synchrotron Radiation (CSR) was used as a source for molecular spectroscopy at high resolution on the AILES infrared and Tera-hertz beamline of SOLEIL synchrotron. The beamline being optimized for far-infrared, we could characterize the properties of CSR and compare them to the incoherent synchrotron radiation. A double detection system allowed to correct the effect of the source-related instabilities, hence to significantly increase the signal-to-noise ratio. Pure rotational spectra were measured using these developments. The case of the propynal molecule, for which a refined set of rotational and centrifugal distortion constants was calculated, proves the complementarity between CSR and the classical microwave or infrared sources. (author)

  19. An adaptive crystal bender for high power synchrotron radiation beams

    International Nuclear Information System (INIS)

    Berman, L.E.; Hastings, J.B.

    1992-01-01

    Perfect crystal monochromators cannot diffract x-rays efficiently, nor transmit the high source brightness available at synchrotron radiation facilities, unless surface strains within the beam footprint are maintained within a few arcseconds. Insertion devices at existing synchrotron sources already produce x-ray power density levels that can induce surface slope errors of several arcseconds on silicon monochromator crystals at room temperature, no matter how well the crystal is cooled. The power density levels that will be produced by insertion devices at the third-generation sources will be as much as a factor of 100 higher still. One method of restoring ideal x-ray diffraction behavior, while coping with high power levels, involves adaptive compensation of the induced thermal strain field. The design and performance, using the X25 hybrid wiggler beam line at the National Synchrotron Light Source (NSLS), of a silicon crystal bender constructed for this purpose are described

  20. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    International Nuclear Information System (INIS)

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-01-01

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.