WorldWideScience

Sample records for synchrony predicts skewed

  1. Validation of an Acoustic Impedance Prediction Model for Skewed Resonators

    Science.gov (United States)

    Howerton, Brian M.; Parrott, Tony L.

    2009-01-01

    An impedance prediction model was validated experimentally to determine the composite impedance of a series of high-aspect ratio slot resonators incorporating channel skew and sharp bends. Such structures are useful for packaging acoustic liners into constrained spaces for turbofan noise control applications. A formulation of the Zwikker-Kosten Transmission Line (ZKTL) model, incorporating the Richards correction for rectangular channels, is used to calculate the composite normalized impedance of a series of six multi-slot resonator arrays with constant channel length. Experimentally, acoustic data was acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3500 Hz at 120 and 140 dB OASPL. Normalized impedance was reduced using the Two-Microphone Method for the various combinations of channel skew and sharp 90o and 180o bends. Results show that the presence of skew and/or sharp bends does not significantly alter the impedance of a slot resonator as compared to a straight resonator of the same total channel length. ZKTL predicts the impedance of such resonators very well over the frequency range of interest. The model can be used to design arrays of slot resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  2. Using purine skews to predict genes in AT-rich poxviruses

    Directory of Open Access Journals (Sweden)

    Upton Chris

    2005-02-01

    Full Text Available Abstract Background Clusters or runs of purines on the mRNA synonymous strand have been found in many different organisms including orthopoxviruses. The purine bias that is exhibited by these clusters can be observed using a purine skew and in the case of poxviruses, these skews can be used to help determine the coding strand of a particular segment of the genome. Combined with previous findings that minor ORFs have lower than average aspartate and glutamate composition and higher than average serine composition, purine content can be used to predict the likelihood of a poxvirus ORF being a "real gene". Results Using purine skews and a "quality" measure designed to incorporate previous findings about minor ORFs, we have found that in our training case (vaccinia virus strain Copenhagen, 59 of 65 minor (small and unlikely to be a real genes ORFs were correctly classified as being minor. Of the 201 major (large and likely to be real genes vaccinia ORFs, 192 were correctly classified as being major. Performing a similar analysis with the entomopoxvirus amsacta moorei (AMEV, it was found that 4 major ORFs were incorrectly classified as minor and 9 minor ORFs were incorrectly classified as major. The purine abundance observed for major ORFs in vaccinia virus was found to stem primarily from the first codon position with both the second and third codon positions containing roughly equal amounts of purines and pyrimidines. Conclusion Purine skews and a "quality" measure can be used to predict functional ORFs and purine skews in particular can be used to determine which of two overlapping ORFs is most likely to be the real gene if neither of the two ORFs has orthologs in other poxviruses.

  3. Geographic variation in forest composition and precipitation predict the synchrony of forest insect outbreaks

    Science.gov (United States)

    Kyle J. Haynes; Andrew M. Liebhold; Ottar N. Bjørnstad; Andrew J. Allstadt; Randall S. Morin

    2018-01-01

    Evaluating the causes of spatial synchrony in population dynamics in nature is notoriously difficult due to a lack of data and appropriate statistical methods. Here, we use a recently developed method, a multivariate extension of the local indicators of spatial autocorrelation statistic, to map geographic variation in the synchrony of gypsy moth outbreaks. Regression...

  4. Does Realized Skewness Predict the Cross-Section of Equity Returns?

    DEFF Research Database (Denmark)

    Amaya, Diego; Christoffersen, Peter; Jacobs, Kris

    2015-01-01

    We use intraday data to compute weekly realized moments for equity returns and study their time-series and cross-sectional properties. Buying stocks in the lowest realized skewness decile and selling stocks in the highest realized skewness decile generates an average return of 19 basis points...

  5. Synchrony-desynchrony in the tripartite model of fear: Predicting treatment outcome in clinically phobic children.

    Science.gov (United States)

    Benoit Allen, Kristy; Allen, Ben; Austin, Kristin E; Waldron, Jonathan C; Ollendick, Thomas H

    2015-08-01

    The tripartite model of fear posits that the fear response entails three loosely coupled components: subjective distress, behavioral avoidance, and physiological arousal. The concept of synchrony vs. desynchrony describes the degree to which changes in the activation of these components vary together (synchrony), independently, or inversely (both forms of desynchrony) over time. The present study assessed synchrony-desynchrony and its relationship to treatment outcome in a sample of 98 children with specific phobias both prior to and 1 week after receiving one-session treatment, a 3 h cognitive-behavioral intervention. The results suggest an overall pattern of desynchronous change whereby youth improved on behavioral avoidance and subjective distress following treatment, but their level of cardiovascular reactivity remained stable. However, we found evidence that synchronous change on the behavioral avoidance and subjective distress components was related to better treatment outcome, whereas desynchronous change on these components was related to poorer treatment outcome. These findings suggest that a fuller understanding of the three response systems and their interrelations in phobic youth may assist us in the assessment and treatment of these disorders, potentially leading to a more person-centered approach and eventually to enhanced treatment outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Does Realized Skewness Predict the Cross-Section of Equity Returns?

    DEFF Research Database (Denmark)

    Amaya, Diego; Christoffersen, Peter; Jacobs, Kris

    We use intraday data to compute weekly realized variance, skewness, and kurtosis for equity returns and study the realized moments’ time-series and cross-sectional properties. We investigate if this week’'s realized moments are informative for the cross-section of next week'’s stock returns. We...

  7. Skew chromaticity

    International Nuclear Information System (INIS)

    Peggs, S.; Dell, G.F.

    1994-01-01

    The on-momentum description of linear coupling between horizontal and vertical betatron motion is extended to include off-momentum particles, introducing a vector quantity called the ''skew chromaticity''. This vector tends to be long in large superconducting storage rings, where it restricts the available working space in the tune plane, and modifies collective effect stability criteria. Skew chromaticity measurements at the Cornell Electron Storage Ring (CESR) and at the Fermilab Tevatron are reported, as well as tracking results from the Relativistic Heavy Ion Collider (RHIC). The observation of anomalous head-tail beam Iowa new the tune diagonal in the Tevatron are explained in terms of the extended theory, including modified criteria for headtail stability. These results are confirmed in head-tail simulations. Sources of skew chromaticity are investigated

  8. Reduced orienting to audiovisual synchrony in infancy predicts autism diagnosis at 3 years of age.

    Science.gov (United States)

    Falck-Ytter, Terje; Nyström, Pär; Gredebäck, Gustaf; Gliga, Teodora; Bölte, Sven

    2018-01-23

    Effective multisensory processing develops in infancy and is thought to be important for the perception of unified and multimodal objects and events. Previous research suggests impaired multisensory processing in autism, but its role in the early development of the disorder is yet uncertain. Here, using a prospective longitudinal design, we tested whether reduced visual attention to audiovisual synchrony is an infant marker of later-emerging autism diagnosis. We studied 10-month-old siblings of children with autism using an eye tracking task previously used in studies of preschoolers. The task assessed the effect of manipulations of audiovisual synchrony on viewing patterns while the infants were observing point light displays of biological motion. We analyzed the gaze data recorded in infancy according to diagnostic status at 3 years of age (DSM-5). Ten-month-old infants who later received an autism diagnosis did not orient to audiovisual synchrony expressed within biological motion. In contrast, both infants at low-risk and high-risk siblings without autism at follow-up had a strong preference for this type of information. No group differences were observed in terms of orienting to upright biological motion. This study suggests that reduced orienting to audiovisual synchrony within biological motion is an early sign of autism. The findings support the view that poor multisensory processing could be an important antecedent marker of this neurodevelopmental condition. © 2018 Association for Child and Adolescent Mental Health.

  9. Skewed Binary Search Trees

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Moruz, Gabriel

    2006-01-01

    It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...

  10. Prediction of the moments in advection-diffusion lattice Boltzmann method. I. Truncation dispersion, skewness, and kurtosis

    Science.gov (United States)

    Ginzburg, Irina

    2017-01-01

    The effect of the heterogeneity in the soil structure or the nonuniformity of the velocity field on the modeled resident time distribution (RTD) and breakthrough curves is quantified by their moments. While the first moment provides the effective velocity, the second moment is related to the longitudinal dispersion coefficient (kT) in the developed Taylor regime; the third and fourth moments are characterized by their normalized values skewness (Sk) and kurtosis (Ku), respectively. The purpose of this investigation is to examine the role of the truncation corrections of the numerical scheme in kT, Sk, and Ku because of their interference with the second moment, in the form of the numerical dispersion, and in the higher-order moments, by their definition. Our symbolic procedure is based on the recently proposed extended method of moments (EMM). Originally, the EMM restores any-order physical moments of the RTD or averaged distributions assuming that the solute concentration obeys the advection-diffusion equation in multidimensional steady-state velocity field, in streamwise-periodic heterogeneous structure. In our work, the EMM is generalized to the fourth-order-accurate apparent mass-conservation equation in two- and three-dimensional duct flows. The method looks for the solution of the transport equation as the product of a long harmonic wave and a spatially periodic oscillating component; the moments of the given numerical scheme are derived from a chain of the steady-state fourth-order equations at a single cell. This mathematical technique is exemplified for the truncation terms of the two-relaxation-time lattice Boltzmann scheme, using plug and parabolic flow in straight channel and cylindrical capillary with the d2Q9 and d3Q15 discrete velocity sets as simple but illustrative examples. The derived symbolic dependencies can be readily extended for advection by another, Newtonian or non-Newtonian, flow profile in any-shape open-tabular conduits. It is

  11. The geography of spatial synchrony.

    Science.gov (United States)

    Walter, Jonathan A; Sheppard, Lawrence W; Anderson, Thomas L; Kastens, Jude H; Bjørnstad, Ottar N; Liebhold, Andrew M; Reuman, Daniel C

    2017-07-01

    Spatial synchrony, defined as correlated temporal fluctuations among populations, is a fundamental feature of population dynamics, but many aspects of synchrony remain poorly understood. Few studies have examined detailed geographical patterns of synchrony; instead most focus on how synchrony declines with increasing linear distance between locations, making the simplifying assumption that distance decay is isotropic. By synthesising and extending prior work, we show how geography of synchrony, a term which we use to refer to detailed spatial variation in patterns of synchrony, can be leveraged to understand ecological processes including identification of drivers of synchrony, a long-standing challenge. We focus on three main objectives: (1) showing conceptually and theoretically four mechanisms that can generate geographies of synchrony; (2) documenting complex and pronounced geographies of synchrony in two important study systems; and (3) demonstrating a variety of methods capable of revealing the geography of synchrony and, through it, underlying organism ecology. For example, we introduce a new type of network, the synchrony network, the structure of which provides ecological insight. By documenting the importance of geographies of synchrony, advancing conceptual frameworks, and demonstrating powerful methods, we aim to help elevate the geography of synchrony into a mainstream area of study and application. © 2017 John Wiley & Sons Ltd/CNRS.

  12. Local temperatures predict breeding phenology but do not result in breeding synchrony among a community of resident cavity-nesting birds.

    Science.gov (United States)

    Drake, Anna; Martin, Kathy

    2018-02-09

    Weather and ecological factors are known to influence breeding phenology and thus individual fitness. We predicted concordance between weather conditions and annual variation in phenology within a community of eight resident, cavity-nesting bird species over a 17-year period. We show that, although clutch initiation dates for six of our eight species are correlated with local daily maximum temperatures, this common driver does not produce a high degree of breeding synchrony due to species-specific responses to conditions during different periods of the preceding winter or spring. These "critical temperature periods" were positively associated with average lay date for each species, although the interval between critical periods and clutch initiation varied from 4-78 days. The ecological factors we examined (cavity availability and a food pulse) had an additional influence on timing in only one of our eight focal species. Our results have strong implications for understanding heterogeneous wildlife responses to climate change: divergent responses would be expected within communities where species respond to local conditions within different temporal windows, due to differing warming trends between winter and spring. Our system therefore indicates that climate change could alter relative breeding phenology among sympatric species in temperate ecosystems.

  13. On the same wavelength: predictable language enhances speaker-listener brain-to-brain synchrony in posterior superior temporal gyrus.

    Science.gov (United States)

    Dikker, Suzanne; Silbert, Lauren J; Hasson, Uri; Zevin, Jason D

    2014-04-30

    Recent research has shown that the degree to which speakers and listeners exhibit similar brain activity patterns during human linguistic interaction is correlated with communicative success. Here, we used an intersubject correlation approach in fMRI to test the hypothesis that a listener's ability to predict a speaker's utterance increases such neural coupling between speakers and listeners. Nine subjects listened to recordings of a speaker describing visual scenes that varied in the degree to which they permitted specific linguistic predictions. In line with our hypothesis, the temporal profile of listeners' brain activity was significantly more synchronous with the speaker's brain activity for highly predictive contexts in left posterior superior temporal gyrus (pSTG), an area previously associated with predictive auditory language processing. In this region, predictability differentially affected the temporal profiles of brain responses in the speaker and listeners respectively, in turn affecting correlated activity between the two: whereas pSTG activation increased with predictability in the speaker, listeners' pSTG activity instead decreased for more predictable sentences. Listeners additionally showed stronger BOLD responses for predictive images before sentence onset, suggesting that highly predictable contexts lead comprehenders to preactivate predicted words.

  14. Metric adjusted skew information

    DEFF Research Database (Denmark)

    Hansen, Frank

    2008-01-01

    ) that vanishes for observables commuting with the state. We show that the skew information is a convex function on the manifold of states. It also satisfies other requirements, proposed by Wigner and Yanase, for an effective measure-of-information content of a state relative to a conserved observable. We...... establish a connection between the geometrical formulation of quantum statistics as proposed by Chentsov and Morozova and measures of quantum information as introduced by Wigner and Yanase and extended in this article. We show that the set of normalized Morozova-Chentsov functions describing the possible......We extend the concept of Wigner-Yanase-Dyson skew information to something we call "metric adjusted skew information" (of a state with respect to a conserved observable). This "skew information" is intended to be a non-negative quantity bounded by the variance (of an observable in a state...

  15. Inequalities for quantum skew information

    DEFF Research Database (Denmark)

    Audenaert, Koenraad; Cai, Liang; Hansen, Frank

    2008-01-01

    relation on the set of functions representing quantum Fisher information that renders the set into a lattice with an involution. This order structure generates new inequalities for the metric adjusted skew informations. In particular, the Wigner-Yanase skew information is the maximal skew information...... with respect to this order structure in the set of Wigner-Yanase-Dyson skew informations....

  16. Synchrony in Dyadic Psychotherapy Sessions

    Science.gov (United States)

    Ramseyer, Fabian; Tschacher, Wolfgang

    Synchrony is a multi-faceted concept used in diverse domains such as physics, biology, and the social sciences. This chapter reviews some of the evidence of nonverbal synchrony in human communication, with a main focus on the role of synchrony in the psychotherapeutic setting. Nonverbal synchrony describes coordinated behavior of patient and therapist. Its association with empathy, rapport and the therapeutic relationship has been pointed out repeatedly, yet close evaluation of empirical studies suggests that the evidence remains inconclusive. Particularly in naturalistic studies, research with quantitative measures of synchrony is still lacking. We introduce a new empirical approach for the study of synchrony in psychotherapies under field conditions: Motion Energy Analysis (MEA). This is a video-based algorithm that quantifies the amount of movement in freely definable regions of interest. Our statistical analysis detects synchrony on a global level, irrespective of the specific body parts moving. Synchrony thus defined can be considered as a general measure of movement coordination between interacting individuals. Data from a sequence of N = 21 therapy sessions taken from one psychotherapy dyad shows a high positive relationship between synchrony and the therapeutic bond. Nonverbal synchrony can thus be considered a promising concept for research on the therapeutic alliance. Further areas of application are discussed.

  17. Quantum skew divergence

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, Koenraad M. R., E-mail: koenraad.audenaert@rhul.ac.uk [Department of Mathematics, Royal Holloway University of London, Egham TW20 0EX, United Kingdom and Department of Physics and Astronomy, University of Ghent, S9, Krijgslaan 281, B-9000 Ghent (Belgium)

    2014-11-15

    In this paper, we study the quantum generalisation of the skew divergence, which is a dissimilarity measure between distributions introduced by Lee in the context of natural language processing. We provide an in-depth study of the quantum skew divergence, including its relation to other state distinguishability measures. Finally, we present a number of important applications: new continuity inequalities for the quantum Jensen-Shannon divergence and the Holevo information, and a new and short proof of Bravyi's Small Incremental Mixing conjecture.

  18. Effect of Phase Response Curve Skew on Synchronization with and without Conduction Delays

    Directory of Open Access Journals (Sweden)

    Carmen eCanavier

    2013-12-01

    Full Text Available A central problem in cortical processing including sensory binding and attentional gating is how neurons can synchronize their responses with zero or near-zero time lag. For a spontaneously firing neuron, an input from another neuron can delay or advance the next spike by different amounts depending upon the timing of the input relative to the previous spike. This information constitutes the phase response curve (PRC. We present a simple graphical method for determining the effect of PRC shape on synchronization tendencies and illustrate it using type 1 PRCs, which consist entirely of advances (delays in response to excitation (inhibition. We obtained the following generic solutions for type 1 PRCs, which include the pulse coupled leaky integrate and fire model. For pairs with mutual excitation, exact synchrony can be stable for strong coupling because of the stabilizing effect of the causal limit region of the PRC in which an input triggers a spike immediately upon arrival. However, synchrony is unstable for short delays, because delayed inputs arrive during a refractory period and cannot trigger an immediate spike. Right skew destabilizes antiphase and enables modes with time lags that grow as the conduction delay is increased. Therefore, right skew favors near-synchrony at short conduction delays and a gradual transition between synchrony and antiphase for pairs coupled by mutual excitation. For pairs with mutual inhibition, zero time lag synchrony is stable for conduction delays ranging from zero to a substantial fraction of the period for pairs. However, for right skew there is a preferred antiphase mode at short delays. In contrast to mutual excitation, left skew destabilizes antiphase for mutual inhibition so that synchrony dominates at short delays as well. These pairwise synchronization tendencies constrain the synchronization properties of neurons embedded in larger networks.

  19. Mixtures of skewed Kalman filters

    KAUST Repository

    Kim, Hyoungmoon

    2014-01-01

    Normal state-space models are prevalent, but to increase the applicability of the Kalman filter, we propose mixtures of skewed, and extended skewed, Kalman filters. To do so, the closed skew-normal distribution is extended to a scale mixture class of closed skew-normal distributions. Some basic properties are derived and a class of closed skew. t distributions is obtained. Our suggested family of distributions is skewed and has heavy tails too, so it is appropriate for robust analysis. Our proposed special sequential Monte Carlo methods use a random mixture of the closed skew-normal distributions to approximate a target distribution. Hence it is possible to handle skewed and heavy tailed data simultaneously. These methods are illustrated with numerical experiments. © 2013 Elsevier Inc.

  20. Hatching synchrony in birds

    OpenAIRE

    Tippeltová, Zuzana

    2011-01-01

    This bachelor thesis is about hatching synchrony in birds. Generally, among birds there are two types of hatching - asynchronous and synchronous- and the type of hatching is primarily determined by the time of the onset of incubation. In many bird species, including most precocial ones, incubation does not begin until the last egg has been laid, which results in hatching of all the eggs within a few hours. In synchronously-hatched broods, all the chicks are about the same age. Thus no single ...

  1. Spatial synchrony in cisco recruitment

    Science.gov (United States)

    Myers, Jared T.; Yule, Daniel L.; Jones, Michael L.; Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Claramunt, Randall M.; Ebener, Mark P.; Berglund, Eric K.

    2015-01-01

    We examined the spatial scale of recruitment variability for disparate cisco (Coregonus artedi) populations in the Great Lakes (n = 8) and Minnesota inland lakes (n = 4). We found that the scale of synchrony was approximately 400 km when all available data were utilized; much greater than the 50-km scale suggested for freshwater fish populations in an earlier global analysis. The presence of recruitment synchrony between Great Lakes and inland lake cisco populations supports the hypothesis that synchronicity is driven by climate and not dispersal. We also found synchrony in larval densities among three Lake Superior populations separated by 25–275 km, which further supports the hypothesis that broad-scale climatic factors are the cause of spatial synchrony. Among several candidate climate variables measured during the period of larval cisco emergence, maximum wind speeds exhibited the most similar spatial scale of synchrony to that observed for cisco. Other factors, such as average water temperatures, exhibited synchrony on broader spatial scales, which suggests they could also be contributing to recruitment synchrony. Our results provide evidence that abiotic factors can induce synchronous patterns of recruitment for populations of cisco inhabiting waters across a broad geographic range, and show that broad-scale synchrony of recruitment can occur in freshwater fish populations as well as those from marine systems.

  2. Mixtures of skewed Kalman filters

    KAUST Repository

    Kim, Hyoungmoon; Ryu, Duchwan; Mallick, Bani K.; Genton, Marc G.

    2014-01-01

    Normal state-space models are prevalent, but to increase the applicability of the Kalman filter, we propose mixtures of skewed, and extended skewed, Kalman filters. To do so, the closed skew-normal distribution is extended to a scale mixture class

  3. Prosocial Consequences of Interpersonal Synchrony

    Science.gov (United States)

    2016-01-01

    Abstract. The capacity to establish interpersonal synchrony is fundamental to human beings because it constitutes the basis for social connection and understanding. Interpersonal synchrony refers to instances when the movements or sensations of two or more people overlap in time and form. Recently, the causal influence of interpersonal synchrony on prosociality has been established through experiments. The current meta-analysis is the first to synthesize these isolated and sometimes contradictory experiments. We meta-analyzed 60 published and unpublished experiments that compared an interpersonal synchrony condition with at least one control condition. The results reveal a medium effect of interpersonal synchrony on prosociality with regard to both attitudes and behaviors. Furthermore, experimenter effects and intentionality moderate these effects. We discuss the strengths and limitations of our analysis, as well as its practical implications, and we suggest avenues for future research. PMID:28105388

  4. Metric-adjusted skew information

    DEFF Research Database (Denmark)

    Liang, Cai; Hansen, Frank

    2010-01-01

    on a bipartite system and proved superadditivity of the Wigner-Yanase-Dyson skew informations for such states. We extend this result to the general metric-adjusted skew information. We finally show that a recently introduced extension to parameter values 1 ...We give a truly elementary proof of the convexity of metric-adjusted skew information following an idea of Effros. We extend earlier results of weak forms of superadditivity to general metric-adjusted skew information. Recently, Luo and Zhang introduced the notion of semi-quantum states...... of (unbounded) metric-adjusted skew information....

  5. Cooperative Learning and Interpersonal Synchrony.

    Science.gov (United States)

    Vink, Roy; Wijnants, Maarten L; Cillessen, Antonius H N; Bosman, Anna M T

    2017-04-01

    Cooperative learning has been shown to result in better task performance, compared to individual and competitive learning, and can lead to positive social effects. However, potential working mechanisms at a micro level remain unexplored. One potential working mechanism might be the level of interpersonal synchrony between cooperating individuals. It has been shown that increased levels of interpersonal synchrony are related to better cognitive performance (e.g., increased memory). Social factors also appear to be affected by the level of interpersonal synchrony, with more interpersonal synchrony leading to increased likeability. In the present study, interpersonal synchrony of postural sway and its relation to task performance and social factors (i.e., popularity, social acceptance, and likeability) was examined. To test this, 183 dyads performed a tangram task while each child stood on a Nintendo Wii Balance Board that recorded their postural sway. The results showed that lower levels of interpersonal synchrony were related to better task performance and those dyads who were on average more popular synchronized more. These results contradict previous findings. It is suggested that for task performance, a more loosely coupled system is better than a synchronized system. In terms of social competence, dyad popularity was associated with more interpersonal synchrony.

  6. Enhancing "theory of mind" through behavioral synchrony.

    Science.gov (United States)

    Baimel, Adam; Severson, Rachel L; Baron, Andrew S; Birch, Susan A J

    2015-01-01

    Theory of mind refers to the abilities underlying the capacity to reason about one's own and others' mental states. This ability is critical for predicting and making sense of the actions of others, is essential for efficient communication, fosters social learning, and provides the foundation for empathic concern. Clearly, there is incredible value in fostering theory of mind. Unfortunately, despite being the focus of a wealth of research over the last 40 years relatively little is known about specific strategies for fostering social perspective taking abilities. We provide a discussion of the rationale for applying one specific strategy for fostering efficient theory of mind-that of engaging in "behavioral synchrony" (i.e., the act of keeping together in time with others). Culturally evolved collective rituals involving synchronous actions have long been held to act as social glue. Specifically, here we present how behavioral synchrony tunes our minds for reasoning about other minds in the process of fostering social coordination and cooperation, and propose that we can apply behavioral synchrony as a tool for enhancing theory of mind.

  7. Brief Report: A Pilot Study of Parent-Child Biobehavioral Synchrony in Autism Spectrum Disorder

    Science.gov (United States)

    Baker, Jason K.; Fenning, Rachel M.; Howland, Mariann A.; Baucom, Brian R.; Moffitt, Jacquelyn; Erath, Stephen A.

    2015-01-01

    The theory of biobehavioral synchrony proposes that the predictive power of parent-child attunement likely lies in the manner with which behaviors are aligned with relevant biological processes. Symptoms of autism spectrum disorder (ASD) may challenge the formation of behavioral and physiological synchrony, but maintenance of such parent-child…

  8. Selection on skewed characters and the paradox of stasis.

    Science.gov (United States)

    Bonamour, Suzanne; Teplitsky, Céline; Charmantier, Anne; Crochet, Pierre-André; Chevin, Luis-Miguel

    2017-11-01

    Observed phenotypic responses to selection in the wild often differ from predictions based on measurements of selection and genetic variance. An overlooked hypothesis to explain this paradox of stasis is that a skewed phenotypic distribution affects natural selection and evolution. We show through mathematical modeling that, when a trait selected for an optimum phenotype has a skewed distribution, directional selection is detected even at evolutionary equilibrium, where it causes no change in the mean phenotype. When environmental effects are skewed, Lande and Arnold's (1983) directional gradient is in the direction opposite to the skew. In contrast, skewed breeding values can displace the mean phenotype from the optimum, causing directional selection in the direction of the skew. These effects can be partitioned out using alternative selection estimates based on average derivatives of individual relative fitness, or additive genetic covariances between relative fitness and trait (Robertson-Price identity). We assess the validity of these predictions using simulations of selection estimation under moderate sample sizes. Ecologically relevant traits may commonly have skewed distributions, as we here exemplify with avian laying date - repeatedly described as more evolutionarily stable than expected - so this skewness should be accounted for when investigating evolutionary dynamics in the wild. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  9. Establishing a Statistical Link between Network Oscillations and Neural Synchrony.

    Directory of Open Access Journals (Sweden)

    Pengcheng Zhou

    2015-10-01

    Full Text Available Pairs of active neurons frequently fire action potentials or "spikes" nearly synchronously (i.e., within 5 ms of each other. This spike synchrony may occur by chance, based solely on the neurons' fluctuating firing patterns, or it may occur too frequently to be explicable by chance alone. When spike synchrony above chances levels is present, it may subserve computation for a specific cognitive process, or it could be an irrelevant byproduct of such computation. Either way, spike synchrony is a feature of neural data that should be explained. A point process regression framework has been developed previously for this purpose, using generalized linear models (GLMs. In this framework, the observed number of synchronous spikes is compared to the number predicted by chance under varying assumptions about the factors that affect each of the individual neuron's firing-rate functions. An important possible source of spike synchrony is network-wide oscillations, which may provide an essential mechanism of network information flow. To establish the statistical link between spike synchrony and network-wide oscillations, we have integrated oscillatory field potentials into our point process regression framework. We first extended a previously-published model of spike-field association and showed that we could recover phase relationships between oscillatory field potentials and firing rates. We then used this new framework to demonstrate the statistical relationship between oscillatory field potentials and spike synchrony in: 1 simulated neurons, 2 in vitro recordings of hippocampal CA1 pyramidal cells, and 3 in vivo recordings of neocortical V4 neurons. Our results provide a rigorous method for establishing a statistical link between network oscillations and neural synchrony.

  10. Skew quad compensation at PEP

    International Nuclear Information System (INIS)

    Murray, J.J.

    1977-10-01

    Rotational and focal effects of solenoids used in PEP detectors will cause severe perturbations of machine beam optics and must be corrected. Ordinarily this would be accomplished by the addition of compensating solenoids and adjustment of insertion quadrupole strengths. It has been found that an arbitrary cross plane coupling representing the effects of solenoids and/or skew quads in any combination can be synthesized (or compensated) exactly using a quartet of skew quads combined with other erect transport elements in a wide variety of configurations. Specific skew quad compensating systems for PEP have been designed and are under study by PEP staff. So far no fundamental flaws have been discovered. In view of that, PEP management has tentatively authorized the use of such a system in the PEP-4, PEP-9 experiments and proposes to leave the question open ''without prejudice'' for other experiments. Use of skew quad compensation involves an imponderable risk, of course, simply because the method is new and untested. But in addition to providing the only known method for dealing with skew quad perturbations, skew quad compensation, as an alternate to compensating solenoids, promises to be much cheaper, to require much less power and to occupy much less space in the IR's. The purpose of this note is to inform potential users of the foregoing situation and to explain skew quad compensation more fully. 2 refs., 1 fig., 1 tab

  11. WFC3/UVIS image skew

    Science.gov (United States)

    Petro, Larry

    2009-07-01

    This proposal will provide an independent check of the skew in the ACS astrometric catalog of Omega Cen stars, using exposures taken in a 45-deg range of telescope roll. The roll sequence will also provide a test for orbital variation of skew and field angle dependent PSF variations. The astrometric catalog of Omega Cen, improved for a skew, will be used to derive the geometric distorion to all UVIS filters, which has preliminarily been determined from F606W images and an astrometric catalog of 47 Tuc.

  12. The local field potential reflects surplus spike synchrony

    DEFF Research Database (Denmark)

    Denker, Michael; Roux, Sébastien; Lindén, Henrik

    2011-01-01

    While oscillations of the local field potential (LFP) are commonly attributed to the synchronization of neuronal firing rate on the same time scale, their relationship to coincident spiking in the millisecond range is unknown. Here, we present experimental evidence to reconcile the notions...... of synchrony at the level of spiking and at the mesoscopic scale. We demonstrate that only in time intervals of significant spike synchrony that cannot be explained on the basis of firing rates, coincident spikes are better phase locked to the LFP than predicted by the locking of the individual spikes....... This effect is enhanced in periods of large LFP amplitudes. A quantitative model explains the LFP dynamics by the orchestrated spiking activity in neuronal groups that contribute the observed surplus synchrony. From the correlation analysis, we infer that neurons participate in different constellations...

  13. Spike synchrony reveals emergence of proto-objects in visual cortex.

    Science.gov (United States)

    Martin, Anne B; von der Heydt, Rüdiger

    2015-04-29

    Neurons at early stages of the visual cortex signal elemental features, such as pieces of contour, but how these signals are organized into perceptual objects is unclear. Theories have proposed that spiking synchrony between these neurons encodes how features are grouped (binding-by-synchrony), but recent studies did not find the predicted increase in synchrony with binding. Here we propose that features are grouped to "proto-objects" by intrinsic feedback circuits that enhance the responses of the participating feature neurons. This hypothesis predicts synchrony exclusively between feature neurons that receive feedback from the same grouping circuit. We recorded from neurons in macaque visual cortex and used border-ownership selectivity, an intrinsic property of the neurons, to infer whether or not two neurons are part of the same grouping circuit. We found that binding produced synchrony between same-circuit neurons, but not between other pairs of neurons, as predicted by the grouping hypothesis. In a selective attention task, synchrony emerged with ignored as well as attended objects, and higher synchrony was associated with faster behavioral responses, as would be expected from early grouping mechanisms that provide the structure for object-based processing. Thus, synchrony could be produced by automatic activation of intrinsic grouping circuits. However, the binding-related elevation of synchrony was weak compared with its random fluctuations, arguing against synchrony as a code for binding. In contrast, feedback grouping circuits encode binding by modulating the response strength of related feature neurons. Thus, our results suggest a novel coding mechanism that might underlie the proto-objects of perception. Copyright © 2015 the authors 0270-6474/15/356860-11$15.00/0.

  14. Alpha - Skew Pi - Armendariz Rings

    Directory of Open Access Journals (Sweden)

    Areej M Abduldaim

    2018-03-01

    Full Text Available In this article we introduce a new concept called Alpha-skew Pi-Armendariz rings (Alpha - S Pi - ARas a generalization of the notion of Alpha-skew Armendariz rings.Another important goal behind studying this class of rings is to employ it in order to design a modern algorithm of an identification scheme according to the evolution of using modern algebra in the applications of the field of cryptography.We investigate general properties of this concept and give examples for illustration. Furthermore, this paperstudy the relationship between this concept and some previous notions related to Alpha-skew Armendariz rings. It clearly presents that every weak Alpha-skew Armendariz ring is Alpha-skew Pi-Armendariz (Alpha-S Pi-AR. Also, thisarticle showsthat the concepts of Alpha-skew Armendariz rings and Alpha-skew Pi- Armendariz rings are equivalent in case R is 2-primal and semiprime ring.Moreover, this paper proves for a semicommutative Alpha-compatible ringR that if R[x;Alpha] is nil-Armendariz, thenR is an Alpha-S Pi-AR. In addition, if R is an Alpha - S Pi -AR, 2-primal and semiprime ring, then N(R[x;Alpha]=N(R[x;Alpha]. Finally, we look forwardthat Alpha-skew Pi-Armendariz rings (Alpha-S Pi-ARbe more effect (due to their properties in the field of cryptography than Pi-Armendariz rings, weak Armendariz rings and others.For these properties and characterizations of the introduced concept Alpha-S Pi-AR, we aspire to design a novel algorithm of an identification scheme.

  15. Group Rhythmic Synchrony and Attention in Children

    Directory of Open Access Journals (Sweden)

    Alexander K Khalil

    2013-09-01

    Full Text Available Synchrony, or the coordinated processing of time, is an often-overlooked yet critical context for human interaction. This study tests the relationship between the ability to synchronize rhythmically in a group setting with the ability to attend in 102 elementary schoolchildren. Impairments in temporal processing have frequently been shown to exist in clinical populations with learning disorders, particularly those with Attention Deficit Hyperactivity Disorder (ADHD. Based on this evidence, we hypothesized that the ability to synchronize rhythmically in a group setting—an instance of the type of temporal processing necessary for successful interaction and learning—would be correlated with the ability to attend across the continuum of the population. A music class is an ideal setting for the study of interpersonal timing. In order to measure synchrony in this context, we constructed instruments that allowed the recording and measurement of individual rhythmic performance. The SWAN teacher questionnaire was used as a measurement of attentional behavior. We find that the ability to synchronize with others in a group music class can predict a child’s attentional behavior.

  16. Nonverbal synchrony of head- and body-movement in psychotherapy: different signals have different associations with outcome

    Directory of Open Access Journals (Sweden)

    Fabian eRamseyer

    2014-09-01

    Full Text Available Objective: The coordination of patient’s and therapist’s bodily movement – nonverbal synchrony – has been empirically shown to be associated with psychotherapy outcome. This finding was based on dynamic movement patterns of the whole body. The present paper is a new analysis of an existing dataset (Ramseyer & Tschacher, 2011, which extends previous findings by differentiating movements pertaining to head and upper-body regions. Method: In a sample of 70 patients (37 female, 33 male treated at an outpatient psychotherapy clinic, we quantified nonverbal synchrony with an automated objective video-analysis algorithm (Motion Energy Analysis, MEA. Head- and body-synchrony was quantified during the initial 15 minutes of video-recorded therapy sessions. Micro-outcome was assessed with self-report post-session questionnaires provided by patients and their therapists. Macro-outcome was measured with questionnaires that quantified attainment of treatment goals and changes in experiencing and behavior at the end of therapy. Results: The differentiation of head- and body-synchrony showed that these two facets of motor coordination were differentially associated with outcome. Head-synchrony predicted global outcome of therapy, while body-synchrony did not, and body-synchrony predicted session outcome, while head-synchrony did not. Conclusions: The results pose an important amendment to previous findings, which showed that nonverbal synchrony embodied both outcome and interpersonal variables of psychotherapy dyads. The separation of head- and body-synchrony suggested that distinct mechanisms may operate in these two regions: Head-synchrony embodied phenomena with a long temporal extension (overall therapy success, while body-synchrony embodied phenomena of a more immediate nature (session-level success. More explorations with fine-grained analyses of synchronized phenomena in nonverbal behavior may shed additional light on the embodiment of

  17. Hysteresis in audiovisual synchrony perception.

    Directory of Open Access Journals (Sweden)

    Jean-Rémy Martin

    Full Text Available The effect of stimulation history on the perception of a current event can yield two opposite effects, namely: adaptation or hysteresis. The perception of the current event thus goes in the opposite or in the same direction as prior stimulation, respectively. In audiovisual (AV synchrony perception, adaptation effects have primarily been reported. Here, we tested if perceptual hysteresis could also be observed over adaptation in AV timing perception by varying different experimental conditions. Participants were asked to judge the synchrony of the last (test stimulus of an AV sequence with either constant or gradually changing AV intervals (constant and dynamic condition, respectively. The onset timing of the test stimulus could be cued or not (prospective vs. retrospective condition, respectively. We observed hysteretic effects for AV synchrony judgments in the retrospective condition that were independent of the constant or dynamic nature of the adapted stimuli; these effects disappeared in the prospective condition. The present findings suggest that knowing when to estimate a stimulus property has a crucial impact on perceptual simultaneity judgments. Our results extend beyond AV timing perception, and have strong implications regarding the comparative study of hysteresis and adaptation phenomena.

  18. Synchrony - Cyberknife Respiratory Compensation Technology

    International Nuclear Information System (INIS)

    Ozhasoglu, Cihat; Saw, Cheng B.; Chen Hungcheng; Burton, Steven; Komanduri, Krishna; Yue, Ning J.; Huq, Saiful M.; Heron, Dwight E.

    2008-01-01

    Studies of organs in the thorax and abdomen have shown that these organs can move as much as 40 mm due to respiratory motion. Without compensation for this motion during the course of external beam radiation therapy, the dose coverage to target may be compromised. On the other hand, if compensation of this motion is by expansion of the margin around the target, a significant volume of normal tissue may be unnecessarily irradiated. In hypofractionated regimens, the issue of respiratory compensation becomes an important factor and is critical in single-fraction extracranial radiosurgery applications. CyberKnife is an image-guided radiosurgery system that consists of a 6-MV LINAC mounted to a robotic arm coupled through a control loop to a digital diagnostic x-ray imaging system. The robotic arm can point the beam anywhere in space with 6 degrees of freedom, without being constrained to a conventional isocenter. The CyberKnife has been recently upgraded with a real-time respiratory tracking and compensation system called Synchrony. Using external markers in conjunction with diagnostic x-ray images, Synchrony helps guide the robotic arm to move the radiation beam in real time such that the beam always remains aligned with the target. With the aid of Synchrony, the tumor motion can be tracked in three-dimensional space, and the motion-induced dosimetric change to target can be minimized with a limited margin. The working principles, advantages, limitations, and our clinical experience with this new technology will be discussed

  19. Psychosocial effects of perceived emotional synchrony in collective gatherings.

    Science.gov (United States)

    Páez, Dario; Rimé, Bernard; Basabe, Nekane; Wlodarczyk, Anna; Zumeta, Larraitz

    2015-05-01

    In a classic theory, Durkheim (1912) predicted that because of the social sharing of emotion they generate, collective gatherings bring participants to a stage of collective effervescence in which they experience a sense of union with others and a feeling of empowerment accompanied by positive affect. This would lead them to leave the collective situation with a renewed sense of confidence in life and in social institutions. A century after Durkheim's predictions of these effects, though, they remained untested as a whole. This article reports 4 studies, 2 correlational, 1 semilongitudinal, and 1 experimental, assessing the positive effects of participation in either positively valenced (folkloric marches) or negatively valenced (protest demonstrations) collective gatherings. Results confirmed that collective gatherings consistently strengthened collective identity, identity fusion, and social integration, as well as enhancing personal and collective self-esteem and efficacy, positive affect, and positive social beliefs among participants. In line with a central tenet of the theory, emotional communion, or perceived emotional synchrony with others mediated these effects. Higher perceived emotional synchrony was associated with stronger emotional reactions, stronger social support, and higher endorsement of social beliefs and values. Participation in symbolic collective gatherings also particularly reinforced identity fusion when perceived emotional synchrony was high. The respective contributions of perceived emotional synchrony and flow, or optimal experience, were also assessed. Whereas perceived emotional synchrony emerged as strongly related to the various social outcomes, flow was observed to be related first to collective efficacy and self-esteem, and thus, to encompass mainly empowerment effects. (c) 2015 APA, all rights reserved).

  20. Nonverbal synchrony and affect in dyadic interactions

    Directory of Open Access Journals (Sweden)

    Wolfgang eTschacher

    2014-11-01

    Full Text Available In an experiment on dyadic social interaction, we invited participants to verbal interactions in cooperative, competitive, and 'fun task' conditions. We focused on the link between interactants' affectivity and their nonverbal synchrony, and explored which further variables contributed to affectivity: interactants' personality traits, sex, and the prescribed interaction tasks. Nonverbal synchrony was quantified by the coordination of interactants' body movement, using an automated video-analysis algorithm (Motion Energy Analysis, MEA. Traits were assessed with standard questionnaires of personality, attachment, interactional style, psychopathology and interpersonal reactivity. We included 168 previously unacquainted individuals who were randomly allocated to same-sex dyads (84 females, 84 males, mean age 27.3 years. Dyads discussed four topics of general interest drawn from an urn of eight topics, and finally engaged in a fun interaction. Each interaction lasted five minutes. In between interactions, participants repeatedly assessed their affect. Using hierarchical linear modeling, we found moderate to strong effect sizes for synchrony to occur, especially in competitive and fun task conditions. Positive affect was associated positively with synchrony, negative affect was associated negatively. As for causal direction, data supported the interpretation that synchrony entailed affect rather than vice versa. The link between nonverbal synchrony and affect was strongest in female dyads. The findings extend previous reports of synchrony and mimicry associated with emotion in relationships and suggest a possible mechanism of the synchrony-affect correlation.

  1. Exit from Synchrony in Joint Improvised Motion.

    Directory of Open Access Journals (Sweden)

    Assi Dahan

    Full Text Available Motion synchrony correlates with effective and well-rated human interaction. However, people do not remain locked in synchrony; Instead, they repeatedly enter and exit synchrony. In many important interactions, such as therapy, marriage and parent-infant communication, it is the ability to exit and then re-enter synchrony that is thought to build strong relationship. The phenomenon of entry into zero-phase synchrony is well-studied experimentally and in terms of mathematical modeling. In contrast, exit-from-synchrony is under-studied. Here, we focus on human motion coordination, and examine the exit-from-synchrony phenomenon using experimental data from the mirror game paradigm, in which people perform joint improvised motion, and from human tracking of computer-generated stimuli. We present a mathematical mechanism that captures aspects of exit-from-synchrony in human motion. The mechanism adds a random motion component when the accumulated velocity error between the players is small. We introduce this mechanism to several models for human coordinated motion, including the widely studied HKB model, and the predictor-corrector model of Noy, Dekel and Alon. In all models, the new mechanism produces realistic simulated behavior when compared to experimental data from the mirror game and from tracking of computer generated stimuli, including repeated entry and exit from zero-phase synchrony that generates a complexity of motion similar to that of human players. We hope that these results can inform future research on exit-from-synchrony, to better understand the dynamics of coordinated action of people and to enhance human-computer and human-robot interaction.

  2. Measuring Group Synchrony: A Cluster-Phase Method for Analyzing Multivariate Movement Time-Series

    Directory of Open Access Journals (Sweden)

    Michael eRichardson

    2012-10-01

    Full Text Available A new method for assessing group synchrony is introduced as being potentially useful for objectively determining degree of group cohesiveness or entitativity. The cluster-phase method of Frank and Richardson (2010 was used to analyze movement data from the rocking chair movements of six-member groups who rocked their chairs while seated in a circle facing the center. In some trials group members had no information about others’ movements (their eyes were shut or they had their eyes open and gazed at a marker in the center of the group. As predicted, the group level synchrony measure was able to distinguish between situations where synchrony would have been possible and situations where it would be impossible. Moreover, other aspects of the analysis illustrated how the cluster phase measures can be used to determine the type of patterning of group synchrony, and, when integrated with multi-level modeling, can be used to examine individual-level differences in synchrony and dyadic level synchrony as well.

  3. Kinematic correction for roller skewing

    Science.gov (United States)

    Savage, M.; Loewenthal, S. H.

    1980-01-01

    A theory of kinematic stabilization of rolling cylinders is developed for high-speed cylindrical roller bearings. This stabilization requires race and roller crowning to product changes in the rolling geometry as the roller shifts axially. These changes put a reverse skew in the rolling elements by changing the rolling taper. Twelve basic possible bearing modifications are identified in this paper. Four have single transverse convex curvature in the rollers while eight have rollers with compound transverse curvature composed of a central cylindrical band of constant radius surrounded by symmetric bands with both slope and transverse curvature.

  4. Skew chromaticity in large accelerators

    International Nuclear Information System (INIS)

    Peggs, S.; Dell, G.F.

    1995-01-01

    The 2-D ''skew chromaticity'' vector k is introduced when the standard on-momentum description of linear coupling is extended to include off-momentum particles. A lattice that is well decoupled on-momentum may be badly decoupled off-momentum, inside the natural momentum spread of the beam. There are two general areas of concern: (1) the free space in the tune plane is decreased; (2) collective phenomena may be destabilized. Two strong new criteria for head-tail stability in the presence of off-momentum coupling are derived, which are consistent with experimental and operational observations at the Tevatron, and with tracking data from RHIC

  5. Network Skewness Measures Resilience in Lake Ecosystems

    Science.gov (United States)

    Langdon, P. G.; Wang, R.; Dearing, J.; Zhang, E.; Doncaster, P.; Yang, X.; Yang, H.; Dong, X.; Hu, Z.; Xu, M.; Yanjie, Z.; Shen, J.

    2017-12-01

    Changes in ecosystem resilience defy straightforward quantification from biodiversity metrics, which ignore influences of community structure. Naturally self-organized network structures show positive skewness in the distribution of node connections. Here we test for skewness reduction in lake diatom communities facing anthropogenic stressors, across a network of 273 lakes in China containing 452 diatom species. Species connections show positively skewed distributions in little-impacted lakes, switching to negative skewness in lakes associated with human settlement, surrounding land-use change, and higher phosphorus concentration. Dated sediment cores reveal a down-shifting of network skewness as human impacts intensify, and reversal with recovery from disturbance. The appearance and degree of negative skew presents a new diagnostic for quantifying system resilience and impacts from exogenous forcing on ecosystem communities.

  6. Report from LHC MD 2171: Amplitude dependent closest tune approach from normal and skew octupoles

    CERN Document Server

    Maclean, Ewen Hamish; Persson, Tobias Hakan Bjorn; Carlier, Felix Simon; CERN. Geneva. ATS Department

    2018-01-01

    Simulation-based studies predict significant amplitude-dependent closest tune approach can be generated by skew octupole sources in conjunction with their normal octupolar counterparts. This has the potential to significantly influence Landau damping at small β∗, where skew octupole errors in the experimental IRs, together with b4 introduced by the Landau octupoles, is predicted to cause large distortion of the tune footprint. This MD aimed to perform a first exploration of these predictions with beam, by enhancing skew octupole sources in the IRs at injection and measuring amplitude detuning with free kicks in the plane approaching the coupling resonance.

  7. The skew ray ambiguity in the analysis of videokeratoscopic data.

    Science.gov (United States)

    Iskander, D Robert; Davis, Brett A; Collins, Michael J

    2007-05-01

    Skew ray ambiguity is present in most videokeratoscopic measurements when azimuthal components of the corneal curvature are not taken into account. There have been some reported studies based on theoretical predictions and measured test surfaces suggesting that skew ray ambiguity is significant for highly deformed corneas or decentered corneal measurements. However, the effect of skew ray ambiguity in ray tracing through videokeratoscopic data has not been studied in depth. We have evaluated the significance of the skew ray ambiguity and its effect on the analyzed corneal optics. This has been achieved by devising a procedure in which we compared the corneal wavefront aberrations estimated from 3D ray tracing with those determined from 2D (meridional based) estimates of the refractive power. The latter was possible due to recently developed concept of refractive Zernike power polynomials which links the refractive power domain with that of the wavefront. Simulated corneal surfaces as well as data from a range of corneas (from two different Placido disk-based videokeratoscopes) were used to find the limit at which the difference in estimated corneal wavefronts (or the corresponding refractive powers) would have clinical significance (e.g., equivalent to 0.125 D or more). The inclusion/exclusion of the skew ray in the analyses showed some differences in the results. However, the proposed procedure showed clinically significant differences only for highly deformed corneas and only for large corneal diameters. For the overwhelming majority of surfaces, the skew ray ambiguity is not a clinically significant issue in the analysis of the videokeratoscopic data indicating that the meridional processing such as that encountered in calculation of the refractive power maps is adequate.

  8. Synchronous spikes are necessary but not sufficient for a synchrony code in populations of spiking neurons.

    Science.gov (United States)

    Grewe, Jan; Kruscha, Alexandra; Lindner, Benjamin; Benda, Jan

    2017-03-07

    Synchronous activity in populations of neurons potentially encodes special stimulus features. Selective readout of either synchronous or asynchronous activity allows formation of two streams of information processing. Theoretical work predicts that such a synchrony code is a fundamental feature of populations of spiking neurons if they operate in specific noise and stimulus regimes. Here we experimentally test the theoretical predictions by quantifying and comparing neuronal response properties in tuberous and ampullary electroreceptor afferents of the weakly electric fish Apteronotus leptorhynchus These related systems show similar levels of synchronous activity, but only in the more irregularly firing tuberous afferents a synchrony code is established, whereas in the more regularly firing ampullary afferents it is not. The mere existence of synchronous activity is thus not sufficient for a synchrony code. Single-cell features such as the irregularity of spiking and the frequency dependence of the neuron's transfer function determine whether synchronous spikes possess a distinct meaning for the encoding of time-dependent signals.

  9. Social and genetic structure of paper wasp cofoundress associations: tests of reproductive skew models.

    Science.gov (United States)

    Field, J; Solís, C R; Queller, D C; Strassmann, J E

    1998-06-01

    Recent models postulate that the members of a social group assess their ecological and social environments and agree a "social contract" of reproductive partitioning (skew). We tested social contracts theory by using DNA microsatellites to measure skew in 24 cofoundress associations of paper wasps, Polistes bellicosus. In contrast to theoretical predictions, there was little variation in cofoundress relatedness, and relatedness either did not predict skew or was negatively correlated with it; the dominant/subordinate size ratio, assumed to reflect relative fighting ability, did not predict skew; and high skew was associated with decreased aggression by the rank 2 subordinate toward the dominant. High skew was associated with increased group size. A difficulty with measuring skew in real systems is the frequent changes in group composition that commonly occur in social animals. In P. bellicosus, 61% of egg layers and an unknown number of non-egg layers were absent by the time nests were collected. The social contracts models provide an attractive general framework linking genetics, ecology, and behavior, but there have been few direct tests of their predictions. We question assumptions underlying the models and suggest directions for future research.

  10. Objective Bayesian Analysis of Skew- t Distributions

    KAUST Repository

    BRANCO, MARCIA D'ELIA; GENTON, MARC G.; LISEO, BRUNERO

    2012-01-01

    We study the Jeffreys prior and its properties for the shape parameter of univariate skew-t distributions with linear and nonlinear Student's t skewing functions. In both cases, we show that the resulting priors for the shape parameter are symmetric

  11. A skewed distribution with asset pricing applications

    NARCIS (Netherlands)

    de Roon, Frans; Karehnke, P.

    2017-01-01

    Recent research has identified skewness and downside risk as one of the most important features of risk. We present a new distribution which makes modeling skewed risks no more difficult than normally distributed (symmetric) risks. Our distribution is a combination of the “downside” and “upside”

  12. Skew-adjacency matrices of graphs

    NARCIS (Netherlands)

    Cavers, M.; Cioaba, S.M.; Fallat, S.; Gregory, D.A.; Haemers, W.H.; Kirkland, S.J.; McDonald, J.J.; Tsatsomeros, M.

    2012-01-01

    The spectra of the skew-adjacency matrices of a graph are considered as a possible way to distinguish adjacency cospectral graphs. This leads to the following topics: graphs whose skew-adjacency matrices are all cospectral; relations between the matchings polynomial of a graph and the characteristic

  13. Portfolio optimization with skewness and kurtosis

    Science.gov (United States)

    Lam, Weng Hoe; Jaaman, Saiful Hafizah Hj.; Isa, Zaidi

    2013-04-01

    Mean and variance of return distributions are two important parameters of the mean-variance model in portfolio optimization. However, the mean-variance model will become inadequate if the returns of assets are not normally distributed. Therefore, higher moments such as skewness and kurtosis cannot be ignored. Risk averse investors prefer portfolios with high skewness and low kurtosis so that the probability of getting negative rates of return will be reduced. The objective of this study is to compare the portfolio compositions as well as performances between the mean-variance model and mean-variance-skewness-kurtosis model by using the polynomial goal programming approach. The results show that the incorporation of skewness and kurtosis will change the optimal portfolio compositions. The mean-variance-skewness-kurtosis model outperforms the mean-variance model because the mean-variance-skewness-kurtosis model takes skewness and kurtosis into consideration. Therefore, the mean-variance-skewness-kurtosis model is more appropriate for the investors of Malaysia in portfolio optimization.

  14. Skewed factor models using selection mechanisms

    KAUST Repository

    Kim, Hyoung-Moon

    2015-12-21

    Traditional factor models explicitly or implicitly assume that the factors follow a multivariate normal distribution; that is, only moments up to order two are involved. However, it may happen in real data problems that the first two moments cannot explain the factors. Based on this motivation, here we devise three new skewed factor models, the skew-normal, the skew-tt, and the generalized skew-normal factor models depending on a selection mechanism on the factors. The ECME algorithms are adopted to estimate related parameters for statistical inference. Monte Carlo simulations validate our new models and we demonstrate the need for skewed factor models using the classic open/closed book exam scores dataset.

  15. Skewed factor models using selection mechanisms

    KAUST Repository

    Kim, Hyoung-Moon; Maadooliat, Mehdi; Arellano-Valle, Reinaldo B.; Genton, Marc G.

    2015-01-01

    Traditional factor models explicitly or implicitly assume that the factors follow a multivariate normal distribution; that is, only moments up to order two are involved. However, it may happen in real data problems that the first two moments cannot explain the factors. Based on this motivation, here we devise three new skewed factor models, the skew-normal, the skew-tt, and the generalized skew-normal factor models depending on a selection mechanism on the factors. The ECME algorithms are adopted to estimate related parameters for statistical inference. Monte Carlo simulations validate our new models and we demonstrate the need for skewed factor models using the classic open/closed book exam scores dataset.

  16. Infanticide and within-clutch competition select for reproductive synchrony in a cooperative bird.

    Science.gov (United States)

    Riehl, Christina

    2016-08-01

    Reproduction among members of social animal groups is often highly synchronized, but neither the selective advantages nor the proximate causes of synchrony are fully understood. Here I investigate the evolution of hatching synchrony in the Greater Ani (Crotophaga major), a communally nesting bird in which several unrelated females contribute eggs to a large, shared clutch. Hatching synchrony is variable, ranging from complete synchrony to moderate asynchrony, and is determined by the onset of incubation of the communal clutch. Data from a 10-year field study indicate that individual reproductive success is highest in synchronous groups, and that nestlings that hatch in the middle of the hatching sequence are most likely to survive. Nestling mortality is high in asynchronous clutches because early-hatching nestlings are more likely to be killed by adult group members, whereas late-hatching nestlings are more likely to starve due competition with their older nest-mates. Therefore, the timing of hatching appears to be under stabilizing selection from infanticide and resource competition acting in concert. These results provide empirical support for models predicting that synchrony may evolve as an adaptive counter-strategy to infanticide, and they highlight the importance of competition in shaping the timing of reproduction in social groups. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  17. Synchrony and Physiological Arousal Increase Cohesion and Cooperation in Large Naturalistic Groups.

    Science.gov (United States)

    Jackson, Joshua Conrad; Jong, Jonathan; Bilkey, David; Whitehouse, Harvey; Zollmann, Stefanie; McNaughton, Craig; Halberstadt, Jamin

    2018-01-09

    Separate research streams have identified synchrony and arousal as two factors that might contribute to the effects of human rituals on social cohesion and cooperation. But no research has manipulated these variables in the field to investigate their causal - and potentially interactive - effects on prosocial behaviour. Across four experimental sessions involving large samples of strangers, we manipulated the synchronous and physiologically arousing affordances of a group marching task within a sports stadium. We observed participants' subsequent movement, grouping, and cooperation via a camera hidden in the stadium's roof. Synchrony and arousal both showed main effects, predicting larger groups, tighter clustering, and more cooperative behaviour in a free-rider dilemma. Synchrony and arousal also interacted on measures of clustering and cooperation such that synchrony only encouraged closer clustering-and encouraged greater cooperation-when paired with physiological arousal. The research helps us understand why synchrony and arousal often co-occur in rituals around the world. It also represents the first use of real-time spatial tracking as a precise and naturalistic method of simulating collective rituals.

  18. Skewness of the standard model possible implications

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.

    1989-09-01

    In this paper we consider combinations of gauge algebra and set of rules for quantization of gauge charges. We show that the combination of the algebra of the standard model and the rule satisfied by the electric charges of the quarks and leptons has an exceptional high degree of a kind of asymmetry which we call skewness. Assuming that skewness has physical significance and adding two other rather plausible assumptions, we may conclude that space time must have a non simply connected topology on very small distances. Such topology would allow a kind of symmetry breakdown leading to a more skew combination of gauge algebra and set of quantization rules. (orig.)

  19. Flow induced by a skewed vortex cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The velocity field induced by a skewed vortex cylinder of longitudinal and tangential vorticity is derived in this chapter by direct integration of the Biot– Savart law. The derivation steps are provided in details. The results of Castles and Durham for the skewed semi-infinite cylinder....... The content of this chapter is based on the publication of the author entitled "Cylindrical vortex wake model: skewed cylinder, application to yawed or tilted rotors" [1]. Results from this chapter are applied: in Chap. 21 to model a wind turbine (or rotor) in yaw, in Chap. 22 to derive a new yaw...

  20. SKEW QUADRUPOLE FOCUSING LATTICES AND APPLICATIONS

    International Nuclear Information System (INIS)

    Parker, B.

    2001-01-01

    In this paper we revisit using skew quadrupole fields in place of traditional normal upright quadrupole fields to make beam focusing structures. We illustrate by example skew lattice decoupling, dispersion suppression and chromatic correction using the neutrino factory Study-II muon storage ring design. Ongoing BNL investigation of flat coil magnet structures that allow building a very compact muon storage ring arc and other flat coil configurations that might bring significant magnet cost reduction to a VLHC motivate our study of skew focusing

  1. More than reflections: Empathy in motivational interviewing includes language style synchrony between therapist and client

    Science.gov (United States)

    Lord, Sarah Peregrine; Sheng, Elisa; Imel, Zac E.; Baer, John; Atkins, David C.

    2016-01-01

    Empathy is a basic psychological process that involves the development of synchrony in dyads. It is also a foundational ingredient in specific, evidence-based behavioral treatments like motivational interviewing (MI). Ratings of therapist empathy typically rely on a gestalt, “felt sense” of therapist understanding and the presence of specific verbal behaviors like reflective listening. These ratings do not provide a direct test of psychological processes like behavioral synchrony that are theorized to be an important component of empathy in psychotherapy. To explore a new objective indicator of empathy, we hypothesized that synchrony in language style (i.e., matching how statements are phrased) between client and therapists would predict gestalt ratings of empathy over and above the contribution of reflections. We analyzed 122 MI transcripts with high and low empathy ratings based on the Motivational Interviewing Treatment Integrity (MITI) global rating scale. Linguistic inquiry and word count was used to estimate language style synchrony (LSS) of adjacent client and therapist talk turns. High empathy sessions showed greater LSS across 11 language style categories compared to low empathy sessions (p empathy vs. low empathy sessions (d = 0.62). Regression analyses showed that LSS was predictive of empathy ratings over and above reflection counts; a 1 SD increase in LSS is associated with 2.4 times increase in the odds of a high empathy rating, controlling for therapist reflections (odds ratio = 2.4, 95% CI: 1.36, 4.24, p empathy ratings are related to synchrony in language style, over and above synchrony of content as measured by therapist reflections. Novel indicators of therapist empathy may have implications for the study of MI process as well as the training of therapists. PMID:25892166

  2. Uncovering the skewness news impact curve

    Czech Academy of Sciences Publication Activity Database

    Anatolyev, Stanislav; Petukhov, A.

    2016-01-01

    Roč. 14, č. 4 (2016), s. 746-771 ISSN 1479-8409 Institutional support: RVO:67985998 Keywords : conditional skewness * news impact curve * stock returns Subject RIV: AH - Economics Impact factor: 1.800, year: 2016

  3. Uncovering the skewness news impact curve

    Czech Academy of Sciences Publication Activity Database

    Anatolyev, Stanislav; Petukhov, A.

    2016-01-01

    Roč. 14, č. 4 (2016), s. 746-771 ISSN 1479-8409 Institutional support: PRVOUK-P23 Keywords : conditional skewness * news impact curve * stock returns Subject RIV: AH - Economics Impact factor: 1.800, year: 2016

  4. Hybrid excited claw pole generator with skewed and non-skewed permanent magnets

    Science.gov (United States)

    Wardach, Marcin

    2017-12-01

    This article contains simulation results of the Hybrid Excited Claw Pole Generator with skewed and non-skewed permanent magnets on rotor. The experimental machine has claw poles on two rotor sections, between which an excitation control coil is located. The novelty of this machine is existence of non-skewed permanent magnets on claws of one part of the rotor and skewed permanent magnets on the second one. The paper presents the construction of the machine and analysis of the influence of the PM skewing on the cogging torque and back-emf. Simulation studies enabled the determination of the cogging torque and the back-emf rms for both: the strengthening and the weakening of magnetic field. The influence of the magnets skewing on the cogging torque and the back-emf rms have also been analyzed.

  5. Hybrid excited claw pole generator with skewed and non-skewed permanent magnets

    Directory of Open Access Journals (Sweden)

    Wardach Marcin

    2017-12-01

    Full Text Available This article contains simulation results of the Hybrid Excited Claw Pole Generator with skewed and non-skewed permanent magnets on rotor. The experimental machine has claw poles on two rotor sections, between which an excitation control coil is located. The novelty of this machine is existence of non-skewed permanent magnets on claws of one part of the rotor and skewed permanent magnets on the second one. The paper presents the construction of the machine and analysis of the influence of the PM skewing on the cogging torque and back-emf. Simulation studies enabled the determination of the cogging torque and the back-emf rms for both: the strengthening and the weakening of magnetic field. The influence of the magnets skewing on the cogging torque and the back-emf rms have also been analyzed.

  6. Skew harmonics suppression in electromagnets with application to the Advanced Light Source (ALS) storage ring corrector magnet design

    International Nuclear Information System (INIS)

    Schlueter, R.; Halbach, K.

    1993-09-01

    An analytical expression for prediction of skew harmonics in an iron core combined function regular/skew dipole magnet due to arbitrarily positioned electromagnet coils is developed. A structured approach is presented for the suppression of an arbitrary number of harmonic components to arbitrarily low values. Application of the analytical harmonic strength calculations coupled to the structured harmonic suppression approach is presented in the context of the design of the ALS storage ring corrector magnets, where quadrupole, sextupole, and octupole skew harmonics were reduced to less than 1.0% of the skew dipole at the beam aperture radius r = 3.0 cm

  7. Transitions to Synchrony in Coupled Bursting Neurons

    Science.gov (United States)

    Dhamala, Mukeshwar; Jirsa, Viktor K.; Ding, Mingzhou

    2004-01-01

    Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized states, one associated with bursts and the other with spikes. These sequential transitions to synchronized states are determined by the zero crossings of the maximum transverse Lyapunov exponents. These results suggest that synchronization of spike-burst activity is a multi-time-scale phenomenon and burst synchrony is a precursor to spike synchrony.

  8. Transitions to synchrony in coupled bursting neurons

    International Nuclear Information System (INIS)

    Dhamala, Mukeshwar; Jirsa, Viktor K.; Ding Mingzhou

    2004-01-01

    Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized states, one associated with bursts and the other with spikes. These sequential transitions to synchronized states are determined by the zero crossings of the maximum transverse Lyapunov exponents. These results suggest that synchronization of spike-burst activity is a multi-time-scale phenomenon and burst synchrony is a precursor to spike synchrony

  9. Skewed X-inactivation in cloned mice

    International Nuclear Information System (INIS)

    Senda, Sho; Wakayama, Teruhiko; Yamazaki, Yukiko; Ohgane, Jun; Hattori, Naka; Tanaka, Satoshi; Yanagimachi, Ryuzo; Shiota, Kunio

    2004-01-01

    In female mammals, dosage compensation for X-linked genes is accomplished by inactivation of one of two X chromosomes. The X-inactivation ratio (a percentage of the cells with inactivated maternal X chromosomes in the whole cells) is skewed as a consequence of various genetic mutations, and has been observed in a number of X-linked disorders. We previously reported that phenotypically normal full-term cloned mouse fetuses had loci with inappropriate DNA methylation. Thus, cloned mice are excellent models to study abnormal epigenetic events in mammalian development. In the present study, we analyzed X-inactivation ratios in adult female cloned mice (B6C3F1). Kidneys of eight naturally produced controls and 11 cloned mice were analyzed. Although variations in X-inactivation ratio among the mice were observed in both groups, the distributions were significantly different (Ansary-Bradley test, P < 0.01). In particular, 2 of 11 cloned mice showed skewed X-inactivation ratios (19.2% and 86.8%). Similarly, in intestine, 1 of 10 cloned mice had a skewed ratio (75.7%). Skewed X-inactivation was observed to various degrees in different tissues of different individuals, suggesting that skewed X-inactivation in cloned mice is the result of secondary cell selection in combination with stochastic distortion of primary choice. The present study is the first demonstration that skewed X-inactivation occurs in cloned animals. This finding is important for understanding both nuclear transfer technology and etiology of X-linked disorders

  10. Rising synchrony controls western North American ecosystems

    Science.gov (United States)

    Black, Bryan A.; van der Sleen, Peter; Di Lorenzo, Emanuele; Griffin, Daniel; Sydeman, William J.; Dunham, Jason B.; Rykaczewski, Ryan R.; Garcia-Reyes, Marisol; Safeeq, Mohammad; Arismendi, Ivan; Bograd, Steven J.

    2018-01-01

    Along the western margin of North America, the winter expression of the North Pacific High (NPH) strongly influences interannual variability in coastal upwelling, storm track position, precipitation, and river discharge. Coherence among these factors induces covariance among physical and biological processes across adjacent marine and terrestrial ecosystems. Here, we show that over the past century the degree and spatial extent of this covariance (synchrony) has substantially increased, and is coincident with rising variance in the winter NPH. Furthermore, centuries‐long blue oak (Quercus douglasii) growth chronologies sensitive to the winter NPH provide robust evidence that modern levels of synchrony are among the highest observed in the context of the last 250 years. These trends may ultimately be linked to changing impacts of the El Niño Southern Oscillation on mid‐latitude ecosystems of North America. Such a rise in synchrony may destabilize ecosystems, expose populations to higher risks of extinction, and is thus a concern given the broad biological relevance of winter climate to biological systems.

  11. An Association between Auditory-Visual Synchrony Processing and Reading Comprehension: Behavioral and Electrophysiological Evidence.

    Science.gov (United States)

    Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru

    2017-03-01

    The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension.

  12. Differential contribution of demographic rate synchrony to population synchrony in barn swallows.

    Science.gov (United States)

    Schaub, Michael; von Hirschheydt, Johann; Grüebler, Martin U

    2015-11-01

    Populations of many species show temporally synchronous dynamics over some range, mostly caused by spatial autocorrelation of the environment that affects demographic rates. Synchronous fluctuation of a demographic rate is a necessary, but not sufficient condition for population synchrony because population growth is differentially sensitive to variation in demographic rates. Little is known about the relative effects of demographic rates to population synchrony, because it is rare that all demographic rates from several populations are known. We develop a hierarchical integrated population model with which all relevant demographic rates from all study populations can be estimated and apply it to demographic data of barn swallows Hirundo rustica from nine sites that were between 19 and 224 km apart from each other. We decompose the variation of the population growth and of the demographic rates (apparent survival, components of productivity, immigration) into global and local temporal components using random effects which allowed the estimation of synchrony of these rates. The barn swallow populations fluctuated synchronously, but less so than most demographic rates. The highest synchrony showed the probability of double brooding, while fledging success was highly asynchronous. Apparent survival, immigration and total productivity achieved intermediate levels of synchrony. The growth of all populations was most sensitive to changes in immigration and adult apparent survival, and both of them contributed to the observed temporal variation of population growth rates. Using a simulation model, we show that immigration and apparent survival of juveniles and adults were able to induce population synchrony, but not components of local productivity due to their low population growth rate sensitivity. Immigrants are mostly first-time breeders, and consequently, their number depends on the productivity of neighbouring populations. Since total productivity was synchronized

  13. Forecasting stock market volatility: Do realized skewness and kurtosis help?

    Science.gov (United States)

    Mei, Dexiang; Liu, Jing; Ma, Feng; Chen, Wang

    2017-09-01

    In this study, we investigate the predictability of the realized skewness (RSK) and realized kurtosis (RKU) to stock market volatility, that has not been addressed in the existing studies. Out-of-sample results show that RSK, which can significantly improve forecast accuracy in mid- and long-term, is more powerful than RKU in forecasting volatility. Whereas these variables are useless in short-term forecasting. Furthermore, we employ the realized kernel (RK) for the robustness analysis and the conclusions are consistent with the RV measures. Our results are of great importance for portfolio allocation and financial risk management.

  14. Objective Bayesian Analysis of Skew- t Distributions

    KAUST Repository

    BRANCO, MARCIA D'ELIA

    2012-02-27

    We study the Jeffreys prior and its properties for the shape parameter of univariate skew-t distributions with linear and nonlinear Student\\'s t skewing functions. In both cases, we show that the resulting priors for the shape parameter are symmetric around zero and proper. Moreover, we propose a Student\\'s t approximation of the Jeffreys prior that makes an objective Bayesian analysis easy to perform. We carry out a Monte Carlo simulation study that demonstrates an overall better behaviour of the maximum a posteriori estimator compared with the maximum likelihood estimator. We also compare the frequentist coverage of the credible intervals based on the Jeffreys prior and its approximation and show that they are similar. We further discuss location-scale models under scale mixtures of skew-normal distributions and show some conditions for the existence of the posterior distribution and its moments. Finally, we present three numerical examples to illustrate the implications of our results on inference for skew-t distributions. © 2012 Board of the Foundation of the Scandinavian Journal of Statistics.

  15. Skew-signings of positive weighted digraphs

    Directory of Open Access Journals (Sweden)

    Kawtar Attas

    2018-07-01

    Full Text Available An arc-weighted digraph is a pair (D , ω where D is a digraph and ω is an arc-weight function that assigns to each arc u v of D a nonzero real number ω (u v . Given an arc-weighted digraph (D , ω with vertices v 1 , … , v n , the weighted adjacency matrix of (D , ω is defined as the n × n matrix A (D , ω = [ a i j ] where a i j = ω ( v i v j if v i v j is an arc of D , and 0 otherwise. Let (D , ω be a positive arc-weighted digraph and assume that D is loopless and symmetric. A skew-signing of (D , ω is an arc-weight function ω ′ such that ω ′ (u v = ± ω (u v and ω ′ (u v ω ′ (v u < 0 for every arc u v of D . In this paper, we give necessary and sufficient conditions under which the characteristic polynomial of A (D , ω ′ is the same for all skew-signings ω ′ of (D , ω . Our main theorem generalizes a result of Cavers et al. (2012 about skew-adjacency matrices of graphs. Keywords: Arc-weighted digraphs, Skew-signing of a digraph, Weighted adjacency matrix, Mathematics Subject Classification: 05C22, 05C31, 05C50

  16. Risk Aversion and Skewness Preference: a comment

    NARCIS (Netherlands)

    G.T. Post (Thierry); P. van Vliet (Pim)

    2003-01-01

    textabstractEmpirically, co-skewness of asset returns seems to explain a substantial part of the cross-sectional variation of mean return not explained by beta. Thisfinding is typically interpreted in terms of a risk averse representativeinvestor with a cubic utility function. This comment questions

  17. Investors’ Risk Preference Characteristics and Conditional Skewness

    Directory of Open Access Journals (Sweden)

    Fenghua Wen

    2014-01-01

    Full Text Available Perspective on behavioral finance, we take a new look at the characteristics of investors’ risk preference, building the D-GARCH-M model, DR-GARCH-M model, and GARCHC-M model to investigate their changes with states of gain and loss and values of return together with other time-varying characteristics of investors’ risk preference. Based on a full description of risk preference characteristic, we develop a GARCHCS-M model to study its effect on the return skewness. The top ten market value stock composite indexes from Global Stock Exchange in 2012 are adopted to make the empirical analysis. The results show that investors are risk aversion when they gain and risk seeking when they lose, which effectively explains the inconsistent risk-return relationship. Moreover, the degree of risk aversion rises with the increasing gain and that of risk seeking improves with the increasing losses. Meanwhile, we find that investors’ inherent risk preference in most countries displays risk seeking, and their current risk preference is influenced by last period’s risk preference and disturbances. At last, investors’ risk preferences affect the conditional skewness; specifically, their risk aversion makes return skewness reduce, while risk seeking makes the skewness increase.

  18. Higher Order Spike Synchrony in Prefrontal Cortex during visual memory

    Directory of Open Access Journals (Sweden)

    Gordon ePipa

    2011-06-01

    Full Text Available Precise temporal synchrony of spike firing has been postulated as an important neuronal mechanism for signal integration and the induction of plasticity in neocortex. As prefrontal cortex plays an important role in organizing memory and executive functions, the convergence of multiple visual pathways onto PFC predicts that neurons should preferentially synchronize their spiking when stimulus information is processed. Furthermore, synchronous spike firing should intensify if memory processes require the induction of neuronal plasticity, even if this is only for short-term. Here we show with multiple simultaneously recorded units in ventral prefrontal cortex that neurons participate in 3 ms precise synchronous discharges distributed across multiple sites separated by at least 500 µm. The frequency of synchronous firing is modulated by behavioral performance and is specific for the memorized visual stimuli. In particular, during the memory period in which activity is not stimulus driven, larger groups of up to 7 sites exhibit performance dependent modulation of their spike synchronization.

  19. Steel framing strategies for highly skewed bridges to reduce/eliminate distortion near skewed supports.

    Science.gov (United States)

    2014-05-01

    Different problems in straight skewed steel I-girder bridges are often associated with the methods used for detailing the cross-frames. Use of theoretical terms to describe these detailing methods and absence of complete and simplified design approac...

  20. Effects of flowering phenology and synchrony on the reproductive success of a long-flowering shrub

    Science.gov (United States)

    Rodríguez-Pérez, Javier; Traveset, Anna

    2016-01-01

    Flowering phenology and synchrony with biotic and abiotic resources are crucial traits determining the reproductive success in insect-pollinated plants. In seasonal climates, plants flowering for long periods should assure reproductive success when resources are more predictable. In this work, we evaluated the relationship between flowering phenology and synchrony and reproductive success in Hypericum balearicum, a shrub flowering all year round but mainly during spring and summer. We studied two contrasting localities (differing mostly in rainfall) during 3 years, and at different biological scales spanning from localities to individual flowers and fruits. We first monitored (monthly) flowering phenology and reproductive success (fruit and seed set) of plants, and assessed whether in the locality with higher rainfall plants had longer flowering phenology and synchrony and relatively higher reproductive success within or outside the flowering peak. Secondly, we censused pollinators on H. balearicum individuals and measured reproductive success along the flowering peak of each locality to test for an association between (i) richness and abundance of pollinators and (ii) fruit and seed set, and seed weight. We found that most flowers (∼90 %) and the highest fruit set (∼70 %) were produced during the flowering peak of each locality. Contrary to expectations, plants in the locality with lower rainfall showed more relaxed flowering phenology and synchrony and set more fruits outside the flowering peak. During the flowering peak of each locality, the reproductive success of early-flowering individuals depended on a combination of both pollinator richness and abundance and rainfall; by contrast, reproductive success of late-flowering individuals was most dependent on rainfall. Plant species flowering for long periods in seasonal climates, thus, appear to be ideal organisms to understand how flowering phenology and synchrony match with biotic and abiotic resources, and

  1. Fluid and flexible minds: Intelligence reflects synchrony in the brain’s intrinsic network architecture

    Directory of Open Access Journals (Sweden)

    Michael A. Ferguson

    2017-06-01

    Full Text Available Human intelligence has been conceptualized as a complex system of dissociable cognitive processes, yet studies investigating the neural basis of intelligence have typically emphasized the contributions of discrete brain regions or, more recently, of specific networks of functionally connected regions. Here we take a broader, systems perspective in order to investigate whether intelligence is an emergent property of synchrony within the brain’s intrinsic network architecture. Using a large sample of resting-state fMRI and cognitive data (n = 830, we report that the synchrony of functional interactions within and across distributed brain networks reliably predicts fluid and flexible intellectual functioning. By adopting a whole-brain, systems-level approach, we were able to reliably predict individual differences in human intelligence by characterizing features of the brain’s intrinsic network architecture. These findings hold promise for the eventual development of neural markers to predict changes in intellectual function that are associated with neurodevelopment, normal aging, and brain disease. In our study, we aimed to understand how individual differences in intellectual functioning are reflected in the intrinsic network architecture of the human brain. We applied statistical methods, known as spectral decompositions, in order to identify individual differences in the synchronous patterns of spontaneous brain activity that reliably predict core aspects of human intelligence. The synchrony of brain activity at rest across multiple discrete neural networks demonstrated positive relationships with fluid intelligence. In contrast, global synchrony within the brain’s network architecture reliably, and inversely, predicted mental flexibility, a core facet of intellectual functioning. The multinetwork systems approach described here represents a methodological and conceptual extension of earlier efforts that related differences in

  2. Audiovisual Speech Synchrony Measure: Application to Biometrics

    Directory of Open Access Journals (Sweden)

    Gérard Chollet

    2007-01-01

    Full Text Available Speech is a means of communication which is intrinsically bimodal: the audio signal originates from the dynamics of the articulators. This paper reviews recent works in the field of audiovisual speech, and more specifically techniques developed to measure the level of correspondence between audio and visual speech. It overviews the most common audio and visual speech front-end processing, transformations performed on audio, visual, or joint audiovisual feature spaces, and the actual measure of correspondence between audio and visual speech. Finally, the use of synchrony measure for biometric identity verification based on talking faces is experimented on the BANCA database.

  3. Pallidal gap junctions-triggers of synchrony in Parkinson's disease?

    NARCIS (Netherlands)

    Schwab, B.C.; Heida, T.; Zhao, Y.; Gils, S.A. van; Wezel, R.J.A. van

    2014-01-01

    Although increased synchrony of the neural activity in the basal ganglia may underlie the motor deficiencies exhibited in Parkinson's disease (PD), how this synchrony arises, propagates through the basal ganglia, and changes under dopamine replacement remains unknown. Gap junctions could play a

  4. Pallidal gap junctions - Triggers of synchrony in Parkinson's disease?

    NARCIS (Netherlands)

    Schwab, B.C.; Heida, Tjitske; Zhao, Yan; van Gils, Stephanus A.; van Wezel, Richard Jack Anton

    2014-01-01

    Although increased synchrony of the neural activity in the basal ganglia may underlie the motor deficiencies exhibited in Parkinson's disease (PD), how this synchrony arises, propagates through the basal ganglia, and changes under dopamine replacement remains unknown. Gap junctions could play a

  5. Guided ultrasonic wave beam skew in silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2018-04-01

    In the photovoltaic industry, monocrystalline silicon wafers are employed for solar cells with high conversion efficiency. Micro-cracks induced by the cutting process in the thin wafers can lead to brittle wafer fracture. Guided ultrasonic waves would offer an efficient methodology for the in-process non-destructive testing of wafers to assess micro-crack density. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the propagation direction relative to the crystal orientation. Selective guided ultrasonic wave excitation was achieved using a contact piezoelectric transducer with custom-made wedges for the A0 and S0 Lamb wave modes and a transducer holder to achieve controlled contact pressure and orientation. The out-of-plane component of the guided wave propagation was measured using a non-contact laser interferometer. The phase slowness (velocity) of the two fundamental Lamb wave modes was measured experimentally for varying propagation directions relative to the crystal orientation and found to match theoretical predictions. Significant wave beam skew was observed experimentally, especially for the S0 mode, and investigated from 3D finite element simulations. Good agreement was found with the theoretical predictions based on nominal material properties of the silicon wafer. The important contribution of guided wave beam skewing effects for the non-destructive testing of silicon wafers was demonstrated.

  6. α-Skew π-McCoy Rings

    Directory of Open Access Journals (Sweden)

    Areej M. Abduldaim

    2013-01-01

    Full Text Available As a generalization of α-skew McCoy rings, we introduce the concept of α-skew π-McCoy rings, and we study the relationships with another two new generalizations, α-skew π1-McCoy rings and α-skew π2-McCoy rings, observing the relations with α-skew McCoy rings, π-McCoy rings, α-skew Armendariz rings, π-regular rings, and other kinds of rings. Also, we investigate conditions such that α-skew π1-McCoy rings imply α-skew π-McCoy rings and α-skew π2-McCoy rings. We show that in the case where R is a nonreduced ring, if R is 2-primal, then R is an α-skew π-McCoy ring. And, let R be a weak (α,δ-compatible ring; if R is an α-skew π1-McCoy ring, then R is α-skew π2-McCoy.

  7. Matrix orderings and their associated skew fields

    International Nuclear Information System (INIS)

    Mahdavi-Hezavehi, M.

    1990-08-01

    Matrix orderings on rings are investigated. It is shown that in the commutative case they are essentially positive cones. This is proved by reducing it to the field case; similarly one can show that on a skew field, matrix positive cones can be reduced to positive cones by using the Dieudonne determinant. Our main result shows that there is a natural bijection between the matrix positive cones on a ring R and the ordered epic R-fields. (author). 7 refs

  8. Analysis of Parasite and Other Skewed Counts

    Science.gov (United States)

    Alexander, Neal

    2012-01-01

    Objective To review methods for the statistical analysis of parasite and other skewed count data. Methods Statistical methods for skewed count data are described and compared, with reference to those used over a ten year period of Tropical Medicine and International Health. Two parasitological datasets are used for illustration. Results Ninety papers were identified, 89 with descriptive and 60 with inferential analysis. A lack of clarity is noted in identifying measures of location, in particular the Williams and geometric mean. The different measures are compared, emphasizing the legitimacy of the arithmetic mean for skewed data. In the published papers, the t test and related methods were often used on untransformed data, which is likely to be invalid. Several approaches to inferential analysis are described, emphasizing 1) non-parametric methods, while noting that they are not simply comparisons of medians, and 2) generalized linear modelling, in particular with the negative binomial distribution. Additional methods, such as the bootstrap, with potential for greater use are described. Conclusions Clarity is recommended when describing transformations and measures of location. It is suggested that non-parametric methods and generalized linear models are likely to be sufficient for most analyses. PMID:22943299

  9. High reproductive synchrony of Acropora (Anthozoa: Scleractinia) in the Gulf of Aqaba, Red Sea

    KAUST Repository

    Bouwmeester, Jessica

    2015-01-05

    Coral spawning in the northern Gulf of Aqaba has been reported to be asynchronous, making it almost unique when compared to other regions in the world. Here, we document the reproductive condition of Acropora corals in early June 2014 in Dahab, in the Gulf of Aqaba, 125 km south of previous studies conducted in Eilat, Israel. Seventy-eight percent of Acropora colonies from 14 species had mature eggs, indicating that most colonies will spawn on or around the June full moon, with a very high probability of multi-species synchronous spawning. Given the proximity to Eilat, we predict that a comparable sampling protocol would detect similar levels of reproductive synchrony throughout the Gulf of Aqaba consistent with the hypothesis that high levels of spawning synchrony are a feature of all speciose coral assemblages.

  10. Inferring climate variability from skewed proxy records

    Science.gov (United States)

    Emile-Geay, J.; Tingley, M.

    2013-12-01

    Many paleoclimate analyses assume a linear relationship between the proxy and the target climate variable, and that both the climate quantity and the errors follow normal distributions. An ever-increasing number of proxy records, however, are better modeled using distributions that are heavy-tailed, skewed, or otherwise non-normal, on account of the proxies reflecting non-normally distributed climate variables, or having non-linear relationships with a normally distributed climate variable. The analysis of such proxies requires a different set of tools, and this work serves as a cautionary tale on the danger of making conclusions about the underlying climate from applications of classic statistical procedures to heavily skewed proxy records. Inspired by runoff proxies, we consider an idealized proxy characterized by a nonlinear, thresholded relationship with climate, and describe three approaches to using such a record to infer past climate: (i) applying standard methods commonly used in the paleoclimate literature, without considering the non-linearities inherent to the proxy record; (ii) applying a power transform prior to using these standard methods; (iii) constructing a Bayesian model to invert the mechanistic relationship between the climate and the proxy. We find that neglecting the skewness in the proxy leads to erroneous conclusions and often exaggerates changes in climate variability between different time intervals. In contrast, an explicit treatment of the skewness, using either power transforms or a Bayesian inversion of the mechanistic model for the proxy, yields significantly better estimates of past climate variations. We apply these insights in two paleoclimate settings: (1) a classical sedimentary record from Laguna Pallcacocha, Ecuador (Moy et al., 2002). Our results agree with the qualitative aspects of previous analyses of this record, but quantitative departures are evident and hold implications for how such records are interpreted, and

  11. Skew quad compensation for SPEAR minibeta optics

    International Nuclear Information System (INIS)

    Wille, K.

    1984-06-01

    With the new minibeta insertion for SPEAR the betatron coupling and the perturbations of beam optics caused by the solenoid field of the MARK III detector can't be compensated by the simple coils used so far. Therefore another scheme with four skew quads arranged in two families has been chosen. Even though this scheme doesn't compensate the effect of the solenoid on the beam completely, the residual emittance coupling is much less than 1% which should be sufficient under all running conditions. The major advantage of this concept is its simplicity

  12. Leverage and Deepening Business Cycle Skewness

    DEFF Research Database (Denmark)

    Jensen, Henrik; Petrella, Ivan; Ravn, Søren Hove

    2017-01-01

    We document that the U.S. economy has been characterized by an increasingly negative business cycle asymmetry over the last three decades. This finding can be explained by the concurrent increase in the financial leverage of households and firms. To support this view, we devise and estimate......, booms become progressively smoother and more prolonged than busts. We are therefore able to reconcile a more negatively skewed business cycle with the Great Moderation in cyclical volatility. Finally, in line with recent empirical evidence, financially-driven expansions lead to deeper contractions...

  13. Spatio-temporal patterns of event-related potentials related to audiovisual synchrony judgments in older adults.

    Science.gov (United States)

    Chan, Yu Man; Pianta, Michael Julian; Bode, Stefan; McKendrick, Allison Maree

    2017-07-01

    Older adults have altered perception of the relative timing between auditory and visual stimuli, even when stimuli are scaled to equate detectability. To help understand why, this study investigated the neural correlates of audiovisual synchrony judgments in older adults using electroencephalography (EEG). Fourteen younger (18-32 year old) and 16 older (61-74 year old) adults performed an audiovisual synchrony judgment task on flash-pip stimuli while EEG was recorded. All participants were assessed to have healthy vision and hearing for their age. Observers responded to whether audiovisual pairs were perceived as synchronous or asynchronous via a button press. The results showed that the onset of predictive sensory information for synchrony judgments was not different between groups. Channels over auditory areas contributed more to this predictive sensory information than visual areas. The spatial-temporal profile of the EEG activity also indicates that older adults used different resources to maintain a similar level of performance in audiovisual synchrony judgments compared with younger adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Eyeblink Synchrony in Multimodal Human-Android Interaction.

    Science.gov (United States)

    Tatsukawa, Kyohei; Nakano, Tamami; Ishiguro, Hiroshi; Yoshikawa, Yuichiro

    2016-12-23

    As the result of recent progress in technology of communication robot, robots are becoming an important social partner for humans. Behavioral synchrony is understood as an important factor in establishing good human-robot relationships. In this study, we hypothesized that biasing a human's attitude toward a robot changes the degree of synchrony between human and robot. We first examined whether eyeblinks were synchronized between a human and an android in face-to-face interaction and found that human listeners' eyeblinks were entrained to android speakers' eyeblinks. This eyeblink synchrony disappeared when the android speaker spoke while looking away from the human listeners but was enhanced when the human participants listened to the speaking android while touching the android's hand. These results suggest that eyeblink synchrony reflects a qualitative state in human-robot interactions.

  15. Maternal depression and anxiety, social synchrony, and infant regulation of negative and positive emotions.

    Science.gov (United States)

    Granat, Adi; Gadassi, Reuma; Gilboa-Schechtman, Eva; Feldman, Ruth

    2017-02-01

    Maternal postpartum depression (PPD) exerts long-term negative effects on infants; yet the mechanisms by which PPD disrupts emotional development are not fully clear. Utilizing an extreme-case design, 971 women reported symptoms of depression and anxiety following childbirth and 215 high and low on depressive symptomatology reported again at 6 months. Of these, mothers diagnosed with major depressive disorder (n = 22), anxiety disorders (n = 19), and controls (n = 59) were visited at 9 months. Mother-infant interaction was microcoded for maternal and infant's social behavior and synchrony. Infant negative and positive emotional expression and self-regulation were tested in 4 emotion-eliciting paradigms: anger with mother, anger with stranger, joy with mother, and joy with stranger. Infants of depressed mothers displayed less social gaze and more gaze aversion. Gaze and touch synchrony were lowest for depressed mothers, highest for anxious mothers, and midlevel among controls. Infants of control and anxious mothers expressed less negative affect with mother compared with stranger; however, maternal presence failed to buffer negative affect in the depressed group. Maternal depression chronicity predicted increased self-regulatory behavior during joy episodes, and touch synchrony moderated the effects of PPD on infant self-regulation. Findings describe subtle microlevel processes by which maternal depression across the postpartum year disrupts the development of infant emotion regulation and suggest that diminished social synchrony, low differentiation of attachment and nonattachment contexts, and increased self-regulation during positive moments may chart pathways for the cross-generational transfer of emotional maladjustment from depressed mothers to their infants. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Methodological Advances for Detecting Physiological Synchrony During Dyadic Interactions

    OpenAIRE

    McAssey, M.P.; Helm, J.; Hsieh, F.; Sbarra, D.; Ferrer, E.

    2011-01-01

    A defining feature of many physiological systems is their synchrony and reciprocal influence. An important challenge, however, is how to measure such features. This paper presents two new approaches for identifying synchrony between the physiological signals of individuals in dyads. The approaches are adaptations of two recently-developed techniques, depending on the nature of the physiological time series. For respiration and thoracic impedance, signals that are measured continuously, we use...

  17. Measurements of spatial population synchrony: influence of time series transformations.

    Science.gov (United States)

    Chevalier, Mathieu; Laffaille, Pascal; Ferdy, Jean-Baptiste; Grenouillet, Gaël

    2015-09-01

    Two mechanisms have been proposed to explain spatial population synchrony: dispersal among populations, and the spatial correlation of density-independent factors (the "Moran effect"). To identify which of these two mechanisms is driving spatial population synchrony, time series transformations (TSTs) of abundance data have been used to remove the signature of one mechanism, and highlight the effect of the other. However, several issues with TSTs remain, and to date no consensus has emerged about how population time series should be handled in synchrony studies. Here, by using 3131 time series involving 34 fish species found in French rivers, we computed several metrics commonly used in synchrony studies to determine whether a large-scale climatic factor (temperature) influenced fish population dynamics at the regional scale, and to test the effect of three commonly used TSTs (detrending, prewhitening and a combination of both) on these metrics. We also tested whether the influence of TSTs on time series and population synchrony levels was related to the features of the time series using both empirical and simulated time series. For several species, and regardless of the TST used, we evidenced a Moran effect on freshwater fish populations. However, these results were globally biased downward by TSTs which reduced our ability to detect significant signals. Depending on the species and the features of the time series, we found that TSTs could lead to contradictory results, regardless of the metric considered. Finally, we suggest guidelines on how population time series should be processed in synchrony studies.

  18. Mutual tolerance or reproductive competition? Patterns of reproductive skew among male redfronted lemurs (Eulemur fulvus rufus)

    OpenAIRE

    Kappeler, Peter M.; Port, Markus

    2008-01-01

    The social organization of gregarious lemurs significantly deviates from predictions of the socioecological model, as they form small groups in which the number of males approximately equals the number of females. This study uses models of reproductive skew theory as a new approach to explain this unusual group composition, in particular the high number of males, in a representative of these lemurs, the redfronted lemur (Eulemur fulvus rufus). We tested two central predictions of “concession”...

  19. Audiovisual Temporal Processing and Synchrony Perception in the Rat.

    Science.gov (United States)

    Schormans, Ashley L; Scott, Kaela E; Vo, Albert M Q; Tyker, Anna; Typlt, Marei; Stolzberg, Daniel; Allman, Brian L

    2016-01-01

    Extensive research on humans has improved our understanding of how the brain integrates information from our different senses, and has begun to uncover the brain regions and large-scale neural activity that contributes to an observer's ability to perceive the relative timing of auditory and visual stimuli. In the present study, we developed the first behavioral tasks to assess the perception of audiovisual temporal synchrony in rats. Modeled after the parameters used in human studies, separate groups of rats were trained to perform: (1) a simultaneity judgment task in which they reported whether audiovisual stimuli at various stimulus onset asynchronies (SOAs) were presented simultaneously or not; and (2) a temporal order judgment task in which they reported whether they perceived the auditory or visual stimulus to have been presented first. Furthermore, using in vivo electrophysiological recordings in the lateral extrastriate visual (V2L) cortex of anesthetized rats, we performed the first investigation of how neurons in the rat multisensory cortex integrate audiovisual stimuli presented at different SOAs. As predicted, rats ( n = 7) trained to perform the simultaneity judgment task could accurately (~80%) identify synchronous vs. asynchronous (200 ms SOA) trials. Moreover, the rats judged trials at 10 ms SOA to be synchronous, whereas the majority (~70%) of trials at 100 ms SOA were perceived to be asynchronous. During the temporal order judgment task, rats ( n = 7) perceived the synchronous audiovisual stimuli to be "visual first" for ~52% of the trials, and calculation of the smallest timing interval between the auditory and visual stimuli that could be detected in each rat (i.e., the just noticeable difference (JND)) ranged from 77 ms to 122 ms. Neurons in the rat V2L cortex were sensitive to the timing of audiovisual stimuli, such that spiking activity was greatest during trials when the visual stimulus preceded the auditory by 20-40 ms. Ultimately, given

  20. The curious anomaly of skewed judgment distributions and systematic error in the wisdom of crowds.

    Directory of Open Access Journals (Sweden)

    Ulrik W Nash

    Full Text Available Judgment distributions are often skewed and we know little about why. This paper explains the phenomenon of skewed judgment distributions by introducing the augmented quincunx (AQ model of sequential and probabilistic cue categorization by neurons of judges. In the process of developing inferences about true values, when neurons categorize cues better than chance, and when the particular true value is extreme compared to what is typical and anchored upon, then populations of judges form skewed judgment distributions with high probability. Moreover, the collective error made by these people can be inferred from how skewed their judgment distributions are, and in what direction they tilt. This implies not just that judgment distributions are shaped by cues, but that judgment distributions are cues themselves for the wisdom of crowds. The AQ model also predicts that judgment variance correlates positively with collective error, thereby challenging what is commonly believed about how diversity and collective intelligence relate. Data from 3053 judgment surveys about US macroeconomic variables obtained from the Federal Reserve Bank of Philadelphia and the Wall Street Journal provide strong support, and implications are discussed with reference to three central ideas on collective intelligence, these being Galton's conjecture on the distribution of judgments, Muth's rational expectations hypothesis, and Page's diversity prediction theorem.

  1. Adaptive global synchrony of inferior olive neurons

    International Nuclear Information System (INIS)

    Lee, Keum W; Singh, Sahjendra N

    2009-01-01

    This paper treats the question of global adaptive synchronization of inferior olive neurons (IONs) based on the immersion and invariance approach. The ION exhibits a variety of orbits as the parameter (termed the bifurcation parameter), which appears in its nonlinear functions, is varied. It is seen that once the bifurcation parameter exceeds a critical value, the stability of the equilibrium point of the ION is lost, and periodic orbits are born. The size and shape of the orbits depend on the value of the bifurcation parameter. It is assumed that bifurcation parameters of the IONs are not known. The orbits of IONs beginning from arbitrary initial conditions are not synchronized. For the synchronization of the IONs, a non-certainty equivalent adaptation law is derived. The control system has a modular structure consisting of an identifier and a control module. Using the Lyapunov approach, it is shown that in the closed-loop system, global synchronization of the neurons with a prescribed relative phase is accomplished, and the estimated bifurcation parameters converge to the true parameters. Unlike the certainty-equivalent adaptive control systems, an interesting feature of the designed control system is that whenever the estimated parameters coincide with the true values, the parameter estimates remain frozen thereafter, and the closed-loop system recovers the performance of the deterministic closed-loop system. Simulation results are presented which show that in the closed-loop system, the synchrony of neurons with prescribed phases is accomplished despite the uncertainties in the bifurcation parameters.

  2. Rising climate variability and synchrony in North Pacific ecosystems

    Science.gov (United States)

    Black, Bryan

    2017-04-01

    Rising climate variability and synchrony in North Pacific ecosystems Evidence is growing that climate variability of the northeast Pacific Ocean has increased over the last century, culminating in such events as the record-breaking El Niño years 1983, 1998, and 2016 and the unusually persistent 2014/15 North Pacific Ocean heat wave known as "The Blob." Of particular concern is that rising variability could increase synchrony within and among North Pacific ecosystems, which could reduce the diversity of biological responses to climate (i.e. the "portfolio effect"), diminish resilience, and leave populations more prone to extirpation. To test this phenomenon, we use a network of multidecadal fish otolith growth-increment chronologies that were strongly correlated to records of winter (Jan-Mar) sea level. These biological and physical datasets spanned the California Current through the Gulf of Alaska. Synchrony was quantified as directional changes in running (31-year window) mean pairwise correlation within sea level and then within otolith time series. Synchrony in winter sea level at the nine stations with the longest records has increased by more than 40% over the 1950-2015 interval. Likewise, synchrony among the eight longest otolith chronologies has increased more than 100% over a comparable time period. These directional changes in synchrony are highly unlikely due to chance alone, as confirmed by comparing trends in observed data to those in simulated data (n = 10,000 iterations) with time series of identical number, length, and autocorrelation. Ultimately, this trend in rising synchrony may be linked to increased impacts of the El Niño Southern Oscillation (ENSO) on mid-latitude ecosystems of North America, and may therefore reflect a much broader, global-scale signature.

  3. Random skew plane partitions with a piecewise periodic back wall

    DEFF Research Database (Denmark)

    Boutillier, Cedric; Mkrtchyan, Sevak; Reshetikhin, Nicolai

    Random skew plane partitions of large size distributed according to an appropriately scaled Schur process develop limit shapes. In the present work we consider the limit of large random skew plane partitions where the inner boundary approaches a piecewise linear curve with non-lattice slopes. Muc...

  4. Learning a Novel Pattern through Balanced and Skewed Input

    Science.gov (United States)

    McDonough, Kim; Trofimovich, Pavel

    2013-01-01

    This study compared the effectiveness of balanced and skewed input at facilitating the acquisition of the transitive construction in Esperanto, characterized by the accusative suffix "-n" and variable word order (SVO, OVS). Thai university students (N = 98) listened to 24 sentences under skewed (one noun with high token frequency) or…

  5. Characteristic functions of scale mixtures of multivariate skew-normal distributions

    KAUST Repository

    Kim, Hyoung-Moon

    2011-08-01

    We obtain the characteristic function of scale mixtures of skew-normal distributions both in the univariate and multivariate cases. The derivation uses the simple stochastic relationship between skew-normal distributions and scale mixtures of skew-normal distributions. In particular, we describe the characteristic function of skew-normal, skew-t, and other related distributions. © 2011 Elsevier Inc.

  6. Influences on and measures of unintentional group synchrony

    Directory of Open Access Journals (Sweden)

    Melissa Ellamil

    2016-11-01

    Full Text Available Many instances of large-scale coordination occur in real-life social situations without the explicit awareness of the individuals involved. While the majority of research to date has examined dyadic interactions – those between two individuals – during intentional or deliberate coordination, the present review surveys the handful of recent studies investigating behavioral and physiological synchrony across groups of more than two people when coordination was not an explicit goal. Both minimal (e.g., visual information, shared location and naturalistic (e.g., choir singing part, family relationship group interactions appear to promote unintentional group synchrony although they have so far only been studied separately. State differences in unintentional group synchrony, or the relative presence of coordination in various conditions, have tended to be assessed differently, such as using correlation-type relationships, compared to its temporal dynamics, or changes over time in the degree of coordination, which appear to be best captured using phase differences. Simultaneously evaluating behavioral, physiological, and social responses as well systematically comparing different synchrony measures could further our understanding of the influences on and measures of group synchrony, allowing us to move away from studying individual persons responding to static laboratory stimuli and towards investigating collective experiences in natural, dynamic social interactions.

  7. The Subjective Sensation of Synchrony: An Experimental Study

    KAUST Repository

    Llobera, Joan; Charbonnier, Caecilia; Chagué , Sylvain; Preissmann, Delphine; Antonietti, Jean-Philippe; Ansermet, Franç ois; Magistretti, Pierre J.

    2016-01-01

    People performing actions together have a natural tendency to synchronize their behavior. Consistently, people doing a task together build internal representations not only of their actions and goals, but also of the other people performing the task. However, little is known about which are the behavioral mechanisms and the psychological factors affecting the subjective sensation of synchrony, or “connecting” with someone else. In this work, we sought to find which factors induce the subjective sensation of synchrony, combining motion capture data and psychological measures. Our results show that the subjective sensation of synchrony is affected by performance quality together with task category, and time. Psychological factors such as empathy and negative subjective affects also correlate with the subjective sensation of synchrony. However, when people estimate synchrony as seen from a third person perspective, their psychological factors do not affect the accuracy of the estimation. We suggest that to feel this sensation it is necessary to, first, have a good joint performance and, second, to assume the existence of an attention monitoring mechanism that reports that the attention of both participants (self and other) is focused on the task.

  8. The Subjective Sensation of Synchrony: An Experimental Study

    KAUST Repository

    Llobera, Joan

    2016-02-12

    People performing actions together have a natural tendency to synchronize their behavior. Consistently, people doing a task together build internal representations not only of their actions and goals, but also of the other people performing the task. However, little is known about which are the behavioral mechanisms and the psychological factors affecting the subjective sensation of synchrony, or “connecting” with someone else. In this work, we sought to find which factors induce the subjective sensation of synchrony, combining motion capture data and psychological measures. Our results show that the subjective sensation of synchrony is affected by performance quality together with task category, and time. Psychological factors such as empathy and negative subjective affects also correlate with the subjective sensation of synchrony. However, when people estimate synchrony as seen from a third person perspective, their psychological factors do not affect the accuracy of the estimation. We suggest that to feel this sensation it is necessary to, first, have a good joint performance and, second, to assume the existence of an attention monitoring mechanism that reports that the attention of both participants (self and other) is focused on the task.

  9. [Development of an automatic pneumatic tourniquet system that determines pressures in synchrony with systolic blood pressure].

    Science.gov (United States)

    Liu, Hongyun; Li, Kaiyuan; Zhang, Zhengbo; Guo, Junyan; Wang, Weidong

    2012-11-01

    The correlation coefficients between arterial occlusion pressure and systolic blood pressure, diastolic blood pressure, limb circumference, body mass etc were obtained through healthy volunteer experiments, in which tourniquet were applied on upper/lower extremities. The prediction equations were derived from the data of experiments by multiple regression analysis. Based on the microprocessor C8051F340, a new pneumatic tourniquet system that can determine tourniquet pressure in synchrony with systolic blood pressure was developed and verified the function and stability of designed system. Results showed that the pneumatic tourniquet which automatically adjusts occlusion pressure in accordance with systolic blood pressure could stop the flow of blood to get a bloodless field.

  10. Investigating the Investigative Task: Testing for Skewness--An Investigation of Different Test Statistics and Their Power to Detect Skewness

    Science.gov (United States)

    Tabor, Josh

    2010-01-01

    On the 2009 AP[c] Statistics Exam, students were asked to create a statistic to measure skewness in a distribution. This paper explores several of the most popular student responses and evaluates which statistic performs best when sampling from various skewed populations. (Contains 8 figures, 3 tables, and 4 footnotes.)

  11. POPULATION SYNCHRONY WITHIN AND AMONG LEPIDOPTERA SPECIES IN RELATION TO WEATHER, PHYLOGENY, AND LARVEL PHENOLOGY

    Science.gov (United States)

    1. The population dynamics of native herbivore species in central Appalachian deciduous forests were studied by analysing patterns of synchrony among intra- and interspecific populations and weather. 2. Spatial synchrony of 10 Lepidoptera species and three weather variables (min...

  12. Nilradicals of skew Hurwitz series of rings

    Directory of Open Access Journals (Sweden)

    Morteza Ahmadi

    2015-05-01

    Full Text Available ‎For a ring endomorphism α of a ring R, ‎Krempa called α a rigid endomorphism if aα(a=0 implies a = 0 for a in R. ‎A ring R is called rigid if there exists a rigid endomorphism of R. ‎In this paper‎, ‎we extend the α-rigid property of a ring R to the upper nilradical N_r(R of R. ‎For an endomorphism α and the upper nilradical N_r(R of a ring R, ‎we introduce the condition (*: ‎N_r(R is a α-ideal of R and aα(a in N_r(R implies a in N_r(R for a in R. ‎We study characterizations of a ring R with an endomorphism α satisfying the condition (*, ‎and we investigate their related properties‎. ‎The connections between the upper nilradical of R and the upper nilradical of the skew Hurwitz series ring (HR,α of R are also investigated‎.

  13. Generalized parton distribution for non zero skewness

    International Nuclear Information System (INIS)

    Kumar, Narinder; Dahiya, Harleen; Teryaev, Oleg

    2012-01-01

    In the theory of strong interactions the main open question is how the nucleon and other hadrons are built from quarks and gluons, the fundamental degrees of freedom in QCD. An essential tool to investigate hadron structure is the study of deep inelastic scattering processes, where individual quarks and gluons can be resolved. The parton densities extracted from such processes encode the distribution of longitudinal momentum and polarization carried by quarks, antiquarks and gluons within a fast moving hadron. They have provided much to shape the physical picture of hadron structure. In the recent years, it has become clear that appropriate exclusive scattering processes may provide such information encoded in the general parton distributions (GPDs). Here, we investigate the GPD for deep virtual compton scattering (DVCS) for the non zero skewness. The study has investigated the GPDs by expressing them in terms of overlaps of light front wave functions (LFWFs). The work represented a spin 1/2 system as a composite of spin 1/2 fermion and spin 1 boson with arbitrary masses

  14. Real quartic surfaces containing 16 skew lines

    Directory of Open Access Journals (Sweden)

    Isidro Nieto

    2004-01-01

    Full Text Available It is well known that there is an open three-dimensional subvariety Ms of the Grassmannian of lines in ℙ3 which parametrizes smooth irreducible complex surfaces of degree 4 which are Heisenberg invariant, and each quartic contains 32 lines but only 16 skew lines, being determined by its configuration of lines, are called a double 16. We consider here the problem of visualizing in a computer the real Heisenberg invariant quartic surface and the real double 16. We construct a family of points l∈Ms parametrized by a two-dimensional semialgebraic variety such that under a change of coordinates of l into its Plüecker, coordinates transform into the real coordinates for a line L in ℙ3, which is then used to construct a program in Maple 7. The program allows us to draw the quartic surface and the set of transversal lines to L. Additionally, we include a table of a group of examples. For each test example we specify a parameter, the viewing angle of the image, compilation time, and other visual properties of the real surface and its real double 16. We include at the end of the paper an example showing the surface containing the double 16.

  15. Brain-to-brain synchrony in parent-child dyads and the relationship with emotion regulation revealed by fNIRS-based hyperscanning.

    Science.gov (United States)

    Reindl, Vanessa; Gerloff, Christian; Scharke, Wolfgang; Konrad, Kerstin

    2018-05-25

    Parent-child synchrony, the coupling of behavioral and biological signals during social contact, may fine-tune the child's brain circuitries associated with emotional bond formation and the child's development of emotion regulation. Here, we examined the neurobiological underpinnings of these processes by measuring parent's and child's prefrontal neural activity concurrently with functional near-infrared spectroscopy hyperscanning. Each child played both a cooperative and a competitive game with the parent, mostly the mother, as well as an adult stranger. During cooperation, parent's and child's brain activities synchronized in the dorsolateral prefrontal and frontopolar cortex (FPC), which was predictive for their cooperative performance in subsequent trials. No significant brain-to-brain synchrony was observed in the conditions parent-child competition, stranger-child cooperation and stranger-child competition. Furthermore, parent-child compared to stranger-child brain-to-brain synchrony during cooperation in the FPC mediated the association between the parent's and the child's emotion regulation, as assessed by questionnaires. Thus, we conclude that brain-to-brain synchrony may represent an underlying neural mechanism of the emotional connection between parent and child, which is linked to the child's development of adaptive emotion regulation. Future studies may uncover whether brain-to-brain synchrony can serve as a neurobiological marker of the dyad's socio-emotional interaction, which is sensitive to risk conditions, and can be modified by interventions. Copyright © 2018. Published by Elsevier Inc.

  16. Quantitative analysis of replication-related mutation and selection pressures in bacterial chromosomes and plasmids using generalised GC skew index

    Directory of Open Access Journals (Sweden)

    Suzuki Haruo

    2009-12-01

    Full Text Available Abstract Background Due to their bi-directional replication machinery starting from a single finite origin, bacterial genomes show characteristic nucleotide compositional bias between the two replichores, which can be visualised through GC skew or (C-G/(C+G. Although this polarisation is used for computational prediction of replication origins in many bacterial genomes, the degree of GC skew visibility varies widely among different species, necessitating a quantitative measurement of GC skew strength in order to provide confidence measures for GC skew-based predictions of replication origins. Results Here we discuss a quantitative index for the measurement of GC skew strength, named the generalised GC skew index (gGCSI, which is applicable to genomes of any length, including bacterial chromosomes and plasmids. We demonstrate that gGCSI is independent of the window size and can thus be used to compare genomes with different sizes, such as bacterial chromosomes and plasmids. It can suggest the existence of different replication mechanisms in archaea and of rolling-circle replication in plasmids. Correlation of gGCSI values between plasmids and their corresponding host chromosomes suggests that within the same strain, these replicons have reproduced using the same replication machinery and thus exhibit similar strengths of replication strand skew. Conclusions gGCSI can be applied to genomes of any length and thus allows comparative study of replication-related mutation and selection pressures in genomes of different lengths such as bacterial chromosomes and plasmids. Using gGCSI, we showed that replication-related mutation or selection pressure is similar for replicons with similar machinery.

  17. An extraction of the skewing factor from DESY-HERA data

    International Nuclear Information System (INIS)

    Favart, Laurent; Machado, Magno V.T.; Schoeffel, Laurent

    2007-01-01

    In this contribution we present recent investigation on the extraction of the skewing factor, defined as the ratio of the imaginary parts of the amplitudes ImA (gamma * p → gamma * p) / ImA (gamma * p → gamma p). This factor is extracted from the data using the recent DVCS and the inclusive inelastic cross section measurements at DESY-HERA. We compare the results to the theoretical predictions for NLO QCD and the color dipole approach. (author)

  18. Natural frequencies and an atlas of mode shapes for generally-laminated, thick, skew, trapezoidal plates

    OpenAIRE

    Lovejoy, Andrew Elwyn

    1994-01-01

    Composite materials are increasingly finding use in structures, such as aircraft components, and thus, an accurate method of predicting response is required. Even laminated structures that are considered thin can be significantly affected by transverse shear effects, and as a result, transverse shear should not be neglected. The free vibration response of generally-laminated, thick, skew, trapezoidal plates is investigated as there appears to be a lack of information in this ar...

  19. Environmental Effects on Flutter Characteristics of Laminated Composite Rectangular and Skew Panels

    Directory of Open Access Journals (Sweden)

    T.V.R. Chowdary

    1996-01-01

    Full Text Available A finite element method is presented for predicting the flutter response of laminated composite panels subjected to moisture concentration and temperature. The analysis accounts for material properties at elevated temperature and moisture concentration. The analysis is based on the first-order approximation to the linear piston theory and laminated plate theory that includes shear deformation. Both rectangular and skew panels are considered. Stability boundaries at moisture concentrations and temperatures for various lamination schemes and boundary conditions are discussed.

  20. Characteristic functions of scale mixtures of multivariate skew-normal distributions

    KAUST Repository

    Kim, Hyoung-Moon; Genton, Marc G.

    2011-01-01

    We obtain the characteristic function of scale mixtures of skew-normal distributions both in the univariate and multivariate cases. The derivation uses the simple stochastic relationship between skew-normal distributions and scale mixtures of skew

  1. Continuity diaphragm for skewed continuous span precast prestressed concrete girder bridges.

    Science.gov (United States)

    2004-10-01

    Continuity diaphragms used on skewed bents in prestressed girder bridges cause difficulties in detailing and : construction. Details for bridges with large diaphragm skew angles (>30) have not been a problem for LA DOTD. : However, as the skew angl...

  2. Neuronal synchrony detection on single-electron neural networks

    International Nuclear Information System (INIS)

    Oya, Takahide; Asai, Tetsuya; Kagaya, Ryo; Hirose, Tetsuya; Amemiya, Yoshihito

    2006-01-01

    Synchrony detection between burst and non-burst spikes is known to be one functional example of depressing synapses. Kanazawa et al. demonstrated synchrony detection with MOS depressing synapse circuits. They found that the performance of a network with depressing synapses that discriminates between burst and random input spikes increases non-monotonically as the static device mismatch is increased. We designed a single-electron depressing synapse and constructed the same network as in Kanazawa's study to develop noise-tolerant single-electron circuits. We examined the temperature characteristics and explored possible architecture that enables single-electron circuits to operate at T > 0 K

  3. Regularized multivariate regression models with skew-t error distributions

    KAUST Repository

    Chen, Lianfu; Pourahmadi, Mohsen; Maadooliat, Mehdi

    2014-01-01

    We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both

  4. International portfolio diversification, skewness and the role of gold

    OpenAIRE

    LUCEY, BRIAN MICHAEL

    2007-01-01

    PUBLISHED The paper examines the optimal allocation of assets in well diversified equity based portfolio where the investor is concerned not only with mean and variance but also with the skewness of the returns.

  5. Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices

    Science.gov (United States)

    Glaister, P.

    2008-01-01

    The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.

  6. PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING

    International Nuclear Information System (INIS)

    LUO, Y.; PILAT, F.; ROSER, T.

    2004-01-01

    The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed

  7. Scale and shape mixtures of multivariate skew-normal distributions

    KAUST Repository

    Arellano-Valle, Reinaldo B.; Ferreira, Clé cio S.; Genton, Marc G.

    2018-01-01

    We introduce a broad and flexible class of multivariate distributions obtained by both scale and shape mixtures of multivariate skew-normal distributions. We present the probabilistic properties of this family of distributions in detail and lay down

  8. Hyper-Transcranial Alternating Current Stimulation: Experimental Manipulation of Inter-Brain Synchrony

    Directory of Open Access Journals (Sweden)

    Caroline Szymanski

    2017-11-01

    Full Text Available We walk together, we watch together, we win together: Interpersonally coordinated actions are omnipresent in everyday life, yet the associated neural mechanisms are not well understood. Available evidence suggests that the synchronization of oscillatory activity across brains may provide a mechanism for the temporal alignment of actions between two or more individuals. In an attempt to provide a direct test of this hypothesis, we applied transcranial alternating current stimulation simultaneously to two individuals (hyper-tACS who were asked to drum in synchrony at a set pace. Thirty-eight female-female dyads performed the dyadic drumming in the course of 3 weeks under three different hyper-tACS stimulation conditions: same-phase-same-frequency; different-phase-different-frequency; sham. Based on available evidence and theoretical considerations, stimulation was applied over right frontal and parietal sites in the theta frequency range. We predicted that same-phase-same-frequency stimulation would improve interpersonal action coordination, expressed as the degree of synchrony in dyadic drumming, relative to the other two conditions. Contrary to expectations, both the same-phase-same-frequency and the different-phase-different-frequency conditions were associated with greater dyadic drumming asynchrony relative to the sham condition. No influence of hyper-tACS on behavioral performance was seen when participants were asked to drum separately in synchrony to a metronome. Individual and dyad preferred drumming tempo was also unaffected by hyper-tACS. We discuss limitations of the present version of the hyper-tACS paradigm, and suggest avenues for future research.

  9. Hyper-Transcranial Alternating Current Stimulation: Experimental Manipulation of Inter-Brain Synchrony.

    Science.gov (United States)

    Szymanski, Caroline; Müller, Viktor; Brick, Timothy R; von Oertzen, Timo; Lindenberger, Ulman

    2017-01-01

    We walk together, we watch together, we win together: Interpersonally coordinated actions are omnipresent in everyday life, yet the associated neural mechanisms are not well understood. Available evidence suggests that the synchronization of oscillatory activity across brains may provide a mechanism for the temporal alignment of actions between two or more individuals. In an attempt to provide a direct test of this hypothesis, we applied transcranial alternating current stimulation simultaneously to two individuals (hyper-tACS) who were asked to drum in synchrony at a set pace. Thirty-eight female-female dyads performed the dyadic drumming in the course of 3 weeks under three different hyper-tACS stimulation conditions: same-phase-same-frequency; different-phase-different-frequency; sham. Based on available evidence and theoretical considerations, stimulation was applied over right frontal and parietal sites in the theta frequency range. We predicted that same-phase-same-frequency stimulation would improve interpersonal action coordination, expressed as the degree of synchrony in dyadic drumming, relative to the other two conditions. Contrary to expectations, both the same-phase-same-frequency and the different-phase-different-frequency conditions were associated with greater dyadic drumming asynchrony relative to the sham condition. No influence of hyper-tACS on behavioral performance was seen when participants were asked to drum separately in synchrony to a metronome. Individual and dyad preferred drumming tempo was also unaffected by hyper-tACS. We discuss limitations of the present version of the hyper-tACS paradigm, and suggest avenues for future research.

  10. A note on generalized skew derivations on Lie ideals

    Indian Academy of Sciences (India)

    MOHAMMAD ASHRAF

    2018-04-24

    Apr 24, 2018 ... Abstract. Let R be a prime ring, Z(R) its center, C its extended centroid, L a Lie ideal of R, F a generalized skew derivation associated with a skew derivation d and automorphism α. Assume that there exist t ≥ 1 and m, n ≥ 0 fixed integers such that vu = umF(uv)tun for all u,v ∈ L. Then it is shown that either ...

  11. Asympotic efficiency of signed - rank symmetry tests under skew alternatives.

    OpenAIRE

    Alessandra Durio; Yakov Nikitin

    2002-01-01

    The efficiency of some known tests for symmetry such as the sign test, the Wilcoxon signed-rank test or more general linear signed rank tests was studied mainly under the classical alternatives of location. However it is interesting to compare the efficiencies of these tests under asymmetric alternatives like the so-called skew alternative proposed in Azzalini (1985). We find and compare local Bahadur efficiencies of linear signed-rank statistics for skew alternatives and discuss also the con...

  12. Skew redundant MEMS IMU calibration using a Kalman filter

    International Nuclear Information System (INIS)

    Jafari, M; Sahebjameyan, M; Moshiri, B; Najafabadi, T A

    2015-01-01

    In this paper, a novel calibration procedure for skew redundant inertial measurement units (SRIMUs) based on micro-electro mechanical systems (MEMS) is proposed. A general model of the SRIMU measurements is derived which contains the effects of bias, scale factor error and misalignments. For more accuracy, the effect of lever arms of the accelerometers to the center of the table are modeled and compensated in the calibration procedure. Two separate Kalman filters (KFs) are proposed to perform the estimation of error parameters for gyroscopes and accelerometers. The predictive error minimization (PEM) stochastic modeling method is used to simultaneously model the effect of bias instability and random walk noise on the calibration Kalman filters to diminish the biased estimations. The proposed procedure is simulated numerically and has expected experimental results. The calibration maneuvers are applied using a two-axis angle turntable in a way that the persistency of excitation (PE) condition for parameter estimation is met. For this purpose, a trapezoidal calibration profile is utilized to excite different deterministic error parameters of the accelerometers and a pulse profile is used for the gyroscopes. Furthermore, to evaluate the performance of the proposed KF calibration method, a conventional least squares (LS) calibration procedure is derived for the SRIMUs and the simulation and experimental results compare the functionality of the two proposed methods with each other. (paper)

  13. Measuring Multimodal Synchrony for Human-Computer Interaction

    NARCIS (Netherlands)

    Reidsma, Dennis; Nijholt, Antinus; Tschacher, Wolfgang; Ramseyer, Fabian; Sourin, A.

    2010-01-01

    Nonverbal synchrony is an important and natural element in human-human interaction. It can also play various roles in human-computer interaction. In particular this is the case in the interaction between humans and the virtual humans that inhabit our cyberworlds. Virtual humans need to adapt their

  14. A Case of Hand Waving: Action Synchrony and Person Perception

    Science.gov (United States)

    Macrae, C. Neil; Duffy, Oonagh K.; Miles, Lynden K.; Lawrence, Julie

    2008-01-01

    While previous research has demonstrated that people's movements can become coordinated during social interaction, little is known about the cognitive consequences of behavioral synchrony. Given intimate links between the systems that regulate perception and action, we hypothesized that the synchronization of movements during a dyadic interaction…

  15. Early development of synchrony in cortical activations in the human.

    Science.gov (United States)

    Koolen, N; Dereymaeker, A; Räsänen, O; Jansen, K; Vervisch, J; Matic, V; Naulaers, G; De Vos, M; Van Huffel, S; Vanhatalo, S

    2016-05-13

    Early intermittent cortical activity is thought to play a crucial role in the growth of neuronal network development, and large scale brain networks are known to provide the basis for higher brain functions. Yet, the early development of the large scale synchrony in cortical activations is unknown. Here, we tested the hypothesis that the early intermittent cortical activations seen in the human scalp EEG show a clear developmental course during the last trimester of pregnancy, the period of intensive growth of cortico-cortical connections. We recorded scalp EEG from altogether 22 premature infants at post-menstrual age between 30 and 44 weeks, and the early cortical synchrony was quantified using recently introduced activation synchrony index (ASI). The developmental correlations of ASI were computed for individual EEG signals as well as anatomically and mathematically defined spatial subgroups. We report two main findings. First, we observed a robust and statistically significant increase in ASI in all cortical areas. Second, there were significant spatial gradients in the synchrony in fronto-occipital and left-to-right directions. These findings provide evidence that early cortical activity is increasingly synchronized across the neocortex. The ASI-based metrics introduced in our work allow direct translational comparison to in vivo animal models, as well as hold promise for implementation as a functional developmental biomarker in future research on human neonates. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Multivariate extended skew-t distributions and related families

    KAUST Repository

    Arellano-Valle, Reinaldo B.; Genton, Marc G.

    2010-01-01

    A class of multivariate extended skew-t (EST) distributions is introduced and studied in detail, along with closely related families such as the subclass of extended skew-normal distributions. Besides mathematical tractability and modeling flexibility in terms of both skewness and heavier tails than the normal distribution, the most relevant properties of the EST distribution include closure under conditioning and ability to model lighter tails as well. The first part of the present paper examines probabilistic properties of the EST distribution, such as various stochastic representations, marginal and conditional distributions, linear transformations, moments and in particular Mardia’s measures of multivariate skewness and kurtosis. The second part of the paper studies statistical properties of the EST distribution, such as likelihood inference, behavior of the profile log-likelihood, the score vector and the Fisher information matrix. Especially, unlike the extended skew-normal distribution, the Fisher information matrix of the univariate EST distribution is shown to be non-singular when the skewness is set to zero. Finally, a numerical application of the conditional EST distribution is presented in the context of confidential data perturbation.

  17. Multivariate extended skew-t distributions and related families

    KAUST Repository

    Arellano-Valle, Reinaldo B.

    2010-12-01

    A class of multivariate extended skew-t (EST) distributions is introduced and studied in detail, along with closely related families such as the subclass of extended skew-normal distributions. Besides mathematical tractability and modeling flexibility in terms of both skewness and heavier tails than the normal distribution, the most relevant properties of the EST distribution include closure under conditioning and ability to model lighter tails as well. The first part of the present paper examines probabilistic properties of the EST distribution, such as various stochastic representations, marginal and conditional distributions, linear transformations, moments and in particular Mardia’s measures of multivariate skewness and kurtosis. The second part of the paper studies statistical properties of the EST distribution, such as likelihood inference, behavior of the profile log-likelihood, the score vector and the Fisher information matrix. Especially, unlike the extended skew-normal distribution, the Fisher information matrix of the univariate EST distribution is shown to be non-singular when the skewness is set to zero. Finally, a numerical application of the conditional EST distribution is presented in the context of confidential data perturbation.

  18. Flow in Rotating Serpentine Coolant Passages With Skewed Trip Strips

    Science.gov (United States)

    Tse, David G.N.; Steuber, Gary

    1996-01-01

    Laser velocimetry was utilized to map the velocity field in serpentine turbine blade cooling passages with skewed trip strips. The measurements were obtained at Reynolds and Rotation numbers of 25,000 and 0.24 to assess the influence of trips, passage curvature and Coriolis force on the flow field. The interaction of the secondary flows induced by skewed trips with the passage rotation produces a swirling vortex and a corner recirculation zone. With trips skewed at +45 deg, the secondary flows remain unaltered as the cross-flow proceeds from the passage to the turn. However, the flow characteristics at these locations differ when trips are skewed at -45 deg. Changes in the flow structure are expected to augment heat transfer, in agreement with the heat transfer measurements of Johnson, et al. The present results show that trips are skewed at -45 deg in the outward flow passage and trips are skewed at +45 deg in the inward flow passage maximize heat transfer. Details of the present measurements were related to the heat transfer measurements of Johnson, et al. to relate fluid flow and heat transfer measurements.

  19. Enhancing tumor apparent diffusion coefficient histogram skewness stratifies the postoperative survival in recurrent glioblastoma multiforme patients undergoing salvage surgery.

    Science.gov (United States)

    Zolal, Amir; Juratli, Tareq A; Linn, Jennifer; Podlesek, Dino; Sitoci Ficici, Kerim Hakan; Kitzler, Hagen H; Schackert, Gabriele; Sobottka, Stephan B; Rieger, Bernhard; Krex, Dietmar

    2016-05-01

    Objective To determine the value of apparent diffusion coefficient (ADC) histogram parameters for the prediction of individual survival in patients undergoing surgery for recurrent glioblastoma (GBM) in a retrospective cohort study. Methods Thirty-one patients who underwent surgery for first recurrence of a known GBM between 2008 and 2012 were included. The following parameters were collected: age, sex, enhancing tumor size, mean ADC, median ADC, ADC skewness, ADC kurtosis and fifth percentile of the ADC histogram, initial progression free survival (PFS), extent of second resection and further adjuvant treatment. The association of these parameters with survival and PFS after second surgery was analyzed using log-rank test and Cox regression. Results Using log-rank test, ADC histogram skewness of the enhancing tumor was significantly associated with both survival (p = 0.001) and PFS after second surgery (p = 0.005). Further parameters associated with prolonged survival after second surgery were: gross total resection at second surgery (p = 0.026), tumor size (0.040) and third surgery (p = 0.003). In the multivariate Cox analysis, ADC histogram skewness was shown to be an independent prognostic factor for survival after second surgery. Conclusion ADC histogram skewness of the enhancing lesion, enhancing lesion size, third surgery, as well as gross total resection have been shown to be associated with survival following the second surgery. ADC histogram skewness was an independent prognostic factor for survival in the multivariate analysis.

  20. Skin friction measurements of systematically-varied roughness: Probing the role of roughness amplitude and skewness

    Science.gov (United States)

    Barros, Julio; Flack, Karen; Schultz, Michael

    2017-11-01

    Real-world engineering systems which feature either external or internal wall-bounded turbulent flow are routinely affected by surface roughness. This gives rise to performance degradation in the form of increased drag or head loss. However, at present there is no reliable means to predict these performance losses based upon the roughness topography alone. This work takes a systematic approach by generating random surface roughness in which the surface statistics are closely controlled. Skin friction and roughness function results will be presented for two groups of these rough surfaces. The first group is Gaussian (i.e. zero skewness) in which the root-mean-square roughness height (krms) is varied. The second group has a fixed krms, and the skewness is varied from approximately -1 to +1. The effect of the roughness amplitude and skewness on the skin friction will be discussed. Particular attention will be paid to the effect of these parameters on the roughness function in the transitionally-rough flow regime. For example, the role these parameters play in the monotonic or inflectional nature of the roughness function will be addressed. Future research into the details of the turbulence structure over these rough surfaces will also be outlined. Research funded by U.S. Office of Naval Research (ONR).

  1. Quantum Fisher and skew information for Unruh accelerated Dirac qubit

    International Nuclear Information System (INIS)

    Banerjee, Subhashish; Alok, Ashutosh Kumar; Omkar, S.

    2016-01-01

    We develop a Bloch vector representation of the Unruh channel for a Dirac field mode. This is used to provide a unified, analytical treatment of quantum Fisher and skew information for a qubit subjected to the Unruh channel, both in its pure form as well as in the presence of experimentally relevant external noise channels. The time evolution of Fisher and skew information is studied along with the impact of external environment parameters such as temperature and squeezing. The external noises are modelled by both purely dephasing phase damping and the squeezed generalised amplitude damping channels. An interesting interplay between the external reservoir temperature and squeezing on the Fisher and skew information is observed, in particular, for the action of the squeezed generalised amplitude damping channel. It is seen that for some regimes, squeezing can enhance the quantum information against the deteriorating influence of the ambient environment. Similar features are also observed for the analogous study of skew information, highlighting a similar origin of the Fisher and skew information. (orig.)

  2. Quantum Fisher and skew information for Unruh accelerated Dirac qubit

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Subhashish; Alok, Ashutosh Kumar [Indian Institute of Technology Jodhpur, Jodhpur (India); Omkar, S. [Indian Institute of Science Education and Research, Thiruvananthapuram (India)

    2016-08-15

    We develop a Bloch vector representation of the Unruh channel for a Dirac field mode. This is used to provide a unified, analytical treatment of quantum Fisher and skew information for a qubit subjected to the Unruh channel, both in its pure form as well as in the presence of experimentally relevant external noise channels. The time evolution of Fisher and skew information is studied along with the impact of external environment parameters such as temperature and squeezing. The external noises are modelled by both purely dephasing phase damping and the squeezed generalised amplitude damping channels. An interesting interplay between the external reservoir temperature and squeezing on the Fisher and skew information is observed, in particular, for the action of the squeezed generalised amplitude damping channel. It is seen that for some regimes, squeezing can enhance the quantum information against the deteriorating influence of the ambient environment. Similar features are also observed for the analogous study of skew information, highlighting a similar origin of the Fisher and skew information. (orig.)

  3. Isomorphic Operators and Functional Equations for the Skew-Circulant Algebra

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    Full Text Available The skew-circulant matrix has been used in solving ordinary differential equations. We prove that the set of skew-circulants with complex entries has an idempotent basis. On that basis, a skew-cyclic group of automorphisms and functional equations on the skew-circulant algebra is introduced. And different operators on linear vector space that are isomorphic to the algebra of n×n complex skew-circulant matrices are displayed in this paper.

  4. Poster - 49: Assessment of Synchrony respiratory compensation error for CyberKnife liver treatment

    International Nuclear Information System (INIS)

    Liu, Ming; Cygler, Joanna; Vandervoort, Eric

    2016-01-01

    The goal of this work is to quantify respiratory motion compensation errors for liver tumor patients treated by the CyberKnife system with Synchrony tracking, to identify patients with the smallest tracking errors and to eventually help coach patient’s breathing patterns to minimize dose delivery errors. The accuracy of CyberKnife Synchrony respiratory motion compensation was assessed for 37 patients treated for liver lesions by analyzing data from system logfiles. A predictive model is used to modulate the direction of individual beams during dose delivery based on the positions of internally implanted fiducials determined using an orthogonal x-ray imaging system and the current location of LED external markers. For each x-ray pair acquired, system logfiles report the prediction error, the difference between the measured and predicted fiducial positions, and the delivery error, which is an estimate of the statistical error in the model overcoming the latency between x-ray acquisition and robotic repositioning. The total error was calculated at the time of each x-ray pair, for the number of treatment fractions and the number of patients, giving the average respiratory motion compensation error in three dimensions. The 99 th percentile for the total radial error is 3.85 mm, with the highest contribution of 2.79 mm in superior/inferior (S/I) direction. The absolute mean compensation error is 1.78 mm radially with a 1.27 mm contribution in the S/I direction. Regions of high total error may provide insight into features predicting groups of patients with larger or smaller total errors.

  5. Poster - 49: Assessment of Synchrony respiratory compensation error for CyberKnife liver treatment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming [Carleton University (Canada); Cygler, Joanna [The Ottawa Hospital Cancer Centre, Carleton University, Ottawa University (Canada); Vandervoort, Eric [The Ottawa Hospital Cancer Centre, Ottawa University (Canada)

    2016-08-15

    The goal of this work is to quantify respiratory motion compensation errors for liver tumor patients treated by the CyberKnife system with Synchrony tracking, to identify patients with the smallest tracking errors and to eventually help coach patient’s breathing patterns to minimize dose delivery errors. The accuracy of CyberKnife Synchrony respiratory motion compensation was assessed for 37 patients treated for liver lesions by analyzing data from system logfiles. A predictive model is used to modulate the direction of individual beams during dose delivery based on the positions of internally implanted fiducials determined using an orthogonal x-ray imaging system and the current location of LED external markers. For each x-ray pair acquired, system logfiles report the prediction error, the difference between the measured and predicted fiducial positions, and the delivery error, which is an estimate of the statistical error in the model overcoming the latency between x-ray acquisition and robotic repositioning. The total error was calculated at the time of each x-ray pair, for the number of treatment fractions and the number of patients, giving the average respiratory motion compensation error in three dimensions. The 99{sup th} percentile for the total radial error is 3.85 mm, with the highest contribution of 2.79 mm in superior/inferior (S/I) direction. The absolute mean compensation error is 1.78 mm radially with a 1.27 mm contribution in the S/I direction. Regions of high total error may provide insight into features predicting groups of patients with larger or smaller total errors.

  6. Synchrony detection and amplification by silicon neurons with STDP synapses.

    Science.gov (United States)

    Bofill-i-petit, Adria; Murray, Alan F

    2004-09-01

    Spike-timing dependent synaptic plasticity (STDP) is a form of plasticity driven by precise spike-timing differences between presynaptic and postsynaptic spikes. Thus, the learning rules underlying STDP are suitable for learning neuronal temporal phenomena such as spike-timing synchrony. It is well known that weight-independent STDP creates unstable learning processes resulting in balanced bimodal weight distributions. In this paper, we present a neuromorphic analog very large scale integration (VLSI) circuit that contains a feedforward network of silicon neurons with STDP synapses. The learning rule implemented can be tuned to have a moderate level of weight dependence. This helps stabilise the learning process and still generates binary weight distributions. From on-chip learning experiments we show that the chip can detect and amplify hierarchical spike-timing synchrony structures embedded in noisy spike trains. The weight distributions of the network emerging from learning are bimodal.

  7. Uniqueness: skews bit occurrence frequencies in randomly generated fingerprint libraries.

    Science.gov (United States)

    Chen, Nelson G

    2016-08-01

    Requiring that randomly generated chemical fingerprint libraries have unique fingerprints such that no two fingerprints are identical causes a systematic skew in bit occurrence frequencies, the proportion at which specified bits are set. Observed frequencies (O) at which each bit is set within the resulting libraries systematically differ from frequencies at which bits are set at fingerprint generation (E). Observed frequencies systematically skew toward 0.5, with the effect being more pronounced as library size approaches the compound space, which is the total number of unique possible fingerprints given the number of bit positions each fingerprint contains. The effect is quantified for varying library sizes as a fraction of the overall compound space, and for changes in the specified frequency E. The cause and implications for this systematic skew are subsequently discussed. When generating random libraries of chemical fingerprints, the imposition of a uniqueness requirement should either be avoided or taken into account.

  8. A Finite Segment Method for Skewed Box Girder Analysis

    Directory of Open Access Journals (Sweden)

    Xingwei Xue

    2018-01-01

    Full Text Available A finite segment method is presented to analyze the mechanical behavior of skewed box girders. By modeling the top and bottom plates of the segments with skew plate beam element under an inclined coordinate system and the webs with normal plate beam element, a spatial elastic displacement model for skewed box girder is constructed, which can satisfy the compatibility condition at the corners of the cross section for box girders. The formulation of the finite segment is developed based on the variational principle. The major advantage of the proposed approach, in comparison with the finite element method, is that it can simplify a three-dimensional structure into a one-dimensional structure for structural analysis, which results in significant saving in computational times. At last, the accuracy and efficiency of the proposed finite segment method are verified by a model test.

  9. Performance Analyses of IDEAL Algorithm on Highly Skewed Grid System

    Directory of Open Access Journals (Sweden)

    Dongliang Sun

    2014-03-01

    Full Text Available IDEAL is an efficient segregated algorithm for the fluid flow and heat transfer problems. This algorithm has now been extended to the 3D nonorthogonal curvilinear coordinates. Highly skewed grids in the nonorthogonal curvilinear coordinates can decrease the convergence rate and deteriorate the calculating stability. In this study, the feasibility of the IDEAL algorithm on highly skewed grid system is analyzed by investigating the lid-driven flow in the inclined cavity. It can be concluded that the IDEAL algorithm is more robust and more efficient than the traditional SIMPLER algorithm, especially for the highly skewed and fine grid system. For example, at θ = 5° and grid number = 70 × 70 × 70, the convergence rate of the IDEAL algorithm is 6.3 times faster than that of the SIMPLER algorithm, and the IDEAL algorithm can converge almost at any time step multiple.

  10. Emotional lability and affective synchrony in borderline personality disorder.

    Science.gov (United States)

    Schoenleber, Michelle; Berghoff, Christopher R; Tull, Matthew T; DiLillo, David; Messman-Moore, Terri; Gratz, Kim L

    2016-07-01

    Extant research on emotional lability in borderline personality disorder (BPD) has focused almost exclusively on lability of individual emotions or emotion types, with limited research considering how different types of emotions shift together over time. Thus, this study examined the temporal dynamics of emotion in BPD at the level of both individual emotions (i.e., self-conscious emotions [SCE], anger, and anxiety) and mixed emotions (i.e., synchrony between emotions). One hundred forty-four women from the community completed a diagnostic interview and laboratory study involving 5 emotion induction tasks (each of which was preceded and followed by a 5-min resting period or neutral task). State ratings of SCE, anger, and anxiety were provided at 14 time points (before and after each laboratory task and resting period). Hierarchical linear modeling results indicate that women with BPD reported greater mean levels of SCE and Anxiety (but not Anger), and greater lability of Anxiety. Women with BPD also exhibited greater variability in lability of all 3 emotions (suggestive of within-group differences in the relevance of lability to BPD). Results also revealed synchrony (i.e., positive relations) between each possible pair of emotions, regardless of BPD status. Follow-up regression analyses suggest the importance of accounting for lability when examining the role of synchrony in BPD, as the relation of SCE-Anger synchrony to BPD symptom severity was moderated by Anger and SCE lability. Specifically, synchronous changes in SCE and Anger were associated with greater BPD symptom severity when large shifts in SCE were paired with minor shifts in Anger. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Neural synchrony in cortical networks: history, concept and current status

    Directory of Open Access Journals (Sweden)

    Peter Uhlhaas

    2009-07-01

    Full Text Available Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies.

  12. Measure of synchrony in the activity of intrinsic cardiac neurons

    International Nuclear Information System (INIS)

    Longpré, Jean-Philippe; Salavatian, Siamak; Jacquemet, Vincent; Beaumont, Eric; Armour, J Andrew; Ardell, Jeffrey L

    2014-01-01

    Recent multielectrode array recordings in ganglionated plexi of canine atria have opened the way to the study of population dynamics of intrinsic cardiac neurons. These data provide critical insights into the role of local processing that these ganglia play in the regulation of cardiac function. Low firing rates, marked non-stationarity, interplay with the cardiovascular and pulmonary systems and artifacts generated by myocardial activity create new constraints not present in brain recordings for which almost all neuronal analysis techniques have been developed. We adapted and extended the jitter-based synchrony index (SI) to (1) provide a robust and computationally efficient tool for assessing the level and statistical significance of SI between cardiac neurons, (2) estimate the bias on SI resulting from neuronal activity possibly hidden in myocardial artifacts, (3) quantify the synchrony or anti-synchrony between neuronal activity and the phase in the cardiac and respiratory cycles. The method was validated on firing time series from a total of 98 individual neurons identified in 8 dog experiments. SI ranged from −0.14 to 0.66, with 23 pairs of neurons with SI > 0.1. The estimated bias due to artifacts was typically <1%. Strongly cardiovascular- and pulmonary-related neurons (SI > 0.5) were found. Results support the use of jitter-based SI in the context of intrinsic cardiac neurons. (paper)

  13. Network periodic solutions: patterns of phase-shift synchrony

    International Nuclear Information System (INIS)

    Golubitsky, Martin; Wang, Yunjiao; Romano, David

    2012-01-01

    We prove the rigid phase conjecture of Stewart and Parker. It then follows from previous results (of Stewart and Parker and our own) that rigid phase-shifts in periodic solutions on a transitive network are produced by a cyclic symmetry on a quotient network. More precisely, let X(t) = (x 1 (t), ..., x n (t)) be a hyperbolic T-periodic solution of an admissible system on an n-node network. Two nodes c and d are phase-related if there exists a phase-shift θ cd in [0, 1) such that x d (t) = x c (t + θ cd T). The conjecture states that if phase relations persist under all small admissible perturbations (that is, the phase relations are rigid), then for each pair of phase-related cells, their input signals are also phase-related to the same phase-shift. For a transitive network, rigid phase relations can also be described abstractly as a Z m permutation symmetry of a quotient network. We discuss how patterns of phase-shift synchrony lead to rigid synchrony, rigid phase synchrony, and rigid multirhythms, and we show that for each phase pattern there exists an admissible system with a periodic solution with that phase pattern. Finally, we generalize the results to nontransitive networks where we show that the symmetry that generates rigid phase-shifts occurs on an extension of a quotient network

  14. Dynamic binding of visual features by neuronal/stimulus synchrony.

    Science.gov (United States)

    Iwabuchi, A

    1998-05-01

    When people see a visual scene, certain parts of the visual scene are treated as belonging together and we regard them as a perceptual unit, which is called a "figure". People focus on figures, and the remaining parts of the scene are disregarded as "ground". In Gestalt psychology this process is called "figure-ground segregation". According to current perceptual psychology, a figure is formed by binding various visual features in a scene, and developments in neuroscience have revealed that there are many feature-encoding neurons, which respond to such features specifically. It is not known, however, how the brain binds different features of an object into a coherent visual object representation. Recently, the theory of binding by neuronal synchrony, which argues that feature binding is dynamically mediated by neuronal synchrony of feature-encoding neurons, has been proposed. This review article portrays the problem of figure-ground segregation and features binding, summarizes neurophysiological and psychophysical experiments and theory relevant to feature binding by neuronal/stimulus synchrony, and suggests possible directions for future research on this topic.

  15. Skew-orthogonal polynomials, differential systems and random matrix theory

    International Nuclear Information System (INIS)

    Ghosh, S.

    2007-01-01

    We study skew-orthogonal polynomials with respect to the weight function exp[-2V (x)], with V (x) = Σ K=1 2d (u K /K)x K , u 2d > 0, d > 0. A finite subsequence of such skew-orthogonal polynomials arising in the study of Orthogonal and Symplectic ensembles of random matrices, satisfy a system of differential-difference-deformation equation. The vectors formed by such subsequence has the rank equal to the degree of the potential in the quaternion sense. These solutions satisfy certain compatibility condition and hence admit a simultaneous fundamental system of solutions. (author)

  16. Market skewness risk and the cross section of stock returns

    DEFF Research Database (Denmark)

    Chang, B.Y.; Christoffersen, Peter; Jacobs, K.

    2013-01-01

    The cross section of stock returns has substantial exposure to risk captured by higher moments of market returns. We estimate these moments from daily Standard & Poor's 500 index option data. The resulting time series of factors are genuinely conditional and forward-looking. Stocks with high...... exposure to innovations in implied market skewness exhibit low returns on average. The results are robust to various permutations of the empirical setup. The market skewness risk premium is statistically and economically significant and cannot be explained by other common risk factors such as the market...... excess return or the size, book-to-market, momentum, and market volatility factors, or by firm characteristics....

  17. The Skew Risk Premium in the Equity Index Market

    OpenAIRE

    Roman Kozhan; Anthony Neuberger; Paul Schneider

    2013-01-01

    We develop a new method for measuring moment risk premiums. We find that the skew premium accounts for over 40% of the slope in the implied volatility curve in the S&P 500 market. Skew risk is tightly related to variance risk, in the sense that strategies designed to capture the one and hedge out exposure to the other earn an insignificant risk premium. This provides a new testable restriction for asset pricing models trying to capture, in particular, disaster risk premiums. We base our resul...

  18. Random skew plane partitions and the Pearcey process

    DEFF Research Database (Denmark)

    Reshetikhin, Nicolai; Okounkov, Andrei

    2007-01-01

    We study random skew 3D partitions weighted by q vol and, specifically, the q → 1 asymptotics of local correlations near various points of the limit shape. We obtain sine-kernel asymptotics for correlations in the bulk of the disordered region, Airy kernel asymptotics near a general point of the ...

  19. Polynomial combinatorial algorithms for skew-bisubmodular function minimization

    NARCIS (Netherlands)

    S. Fujishige (Satoru); S.-I. Tanigawa (Shin-Ichi)

    2017-01-01

    textabstractHuber et al. (SIAM J Comput 43:1064–1084, 2014) introduced a concept of skew bisubmodularity, as a generalization of bisubmodularity, in their complexity dichotomy theorem for valued constraint satisfaction problems over the three-value domain, and Huber and Krokhin (SIAM J Discrete Math

  20. Time Skew Estimator for Dual-Polarization QAM Transmitters

    DEFF Research Database (Denmark)

    Medeiros Diniz, Júlio César; Da Ros, Francesco; Jones, Rasmus Thomas

    2017-01-01

    A simple method for joint estimation of transmitter’s in-phase/quadrature and inter-polarization time skew is proposed and experimentally demonstrated. The method is based on clock tone extraction of a photodetected signal and genetic algorithm. The maximum estimation error was 0.5 ps....

  1. A variational analysis for large deflection of skew plates under ...

    African Journals Online (AJOL)

    In the present paper, the static behaviour of thin isotropic skew plates under uniformly distributed load is analyzed with the geometric nonlinearity of the model properly handled. A variational method based on total potential energy has been implemented through assumed displacement field. The computational work has ...

  2. Asymmetric skew Bessel processes and their applications to finance

    NARCIS (Netherlands)

    Decamps, M.; Goovaerts, M.J.; Schoutens, W.

    2006-01-01

    In this paper, we extend the Harrison and Shepp's construction of the skew Brownian motion (1981) and we obtain a diffusion similar to the two-dimensional Bessel process with speed and scale densities discontinuous at one point. Natural generalizations to multi-dimensional and fractional order

  3. Parameterizing unconditional skewness in models for financial time series

    DEFF Research Database (Denmark)

    He, Changli; Silvennoinen, Annastiina; Teräsvirta, Timo

    In this paper we consider the third-moment structure of a class of time series models. It is often argued that the marginal distribution of financial time series such as returns is skewed. Therefore it is of importance to know what properties a model should possess if it is to accommodate...

  4. Entrepreneurship and Financial Incentives of Return, Risk, and Skew

    DEFF Research Database (Denmark)

    Berkhout, Peter; Hartog, Joop; Van Praag, Mirjam

    2016-01-01

    . The focus on earnings forgone may help to solve the lack of robust empirical support for the effect of financial incentives on the decision to become an entrepreneur. We find, consistent with standard theory, that a higher mean, lower variance, and higher skew in the relevant wage distribution reduce...

  5. The Effect of Different Phases of Synchrony on Pain Threshold in a Drumming Task

    Directory of Open Access Journals (Sweden)

    Philip Sullivan

    2017-06-01

    Full Text Available Behavioral synchrony has been linked to endorphin activity (Cohen et al., 2010; Sullivan and Rickers, 2013; Sullivan et al., 2014; Tarr et al., 2015, 2016; Weinstein et al., 2016. This has been called the synchrony effect. Synchrony has two dominant phases of movement; in-phase and anti-phase. The majority of research investigating synchrony’s effect on endorphin activity has focused on in-phase synchrony following vigorous activities. The only research to investigate the effects of anti-phase synchrony on endorphin activity found that anti-phase synchronized rowing did not produce the synchrony effect (Sullivan et al., 2014. Anti-phase synchrony, however, is counter-intuitive to the sport of rowing and may have interfered with the synchrony effect. This study investigated the effect of anti-phase synchrony on endorphin activity in a different task (i.e., drumming. University students (n = 30 were asked to drum solo and in in-phase and anti-phase pairs for 3 min. Pain threshold was assessed as an indirect indicator of endorphin activity prior to and following the task. Although the in-phase synchrony effect was not found, a repeated measures ANOVA found that there was a significant difference in pain threshold change among the three conditions [F(2,24 = 4.10, = 0.255, p < 0.05. Post hoc t-tests showed that the anti-phase condition had a significantly greater pain threshold change than both the solo and in-phase conditions at p < 0.05. This is the first time that anti-phase synchrony has been shown to produce the synchrony effect. Because anti-phase drumming may have required more attention between partners than in-phase synchrony, it may have affected self-other merging (Tarr et al., 2014. These results support Tarr et al.’s (2014 model that multiple mechanisms account for the effect of synchrony on pain threshold, and suggest that different characteristics of the activity may influence the synchrony effect.

  6. Cell synchrony techniques. I. A comparison of methods

    Energy Technology Data Exchange (ETDEWEB)

    Grdina, D.J.; Meistrich, M.L.; Meyn, R.E.; Johnson, T.S.; White, R.A.

    1984-01-01

    Selected cell synchrony techniques, as applied to asynchronous populations of Chinese hamster ovary (CHO) cells, have been compared. Aliquots from the same culture of exponentially growing cells were synchronized using mitotic selection, mitotic selection and hydroxyurea block, centrifugal elutriation, or an EPICS V cell sorter. Sorting of cells was achieved after staining cells with Hoechst 33258. After syncronization by the various methods the relative distribution of cells in G/sub 1/, S, or G/sub 2/ + M phases of the cell cycle was determined by flow cytometry. Fractions of synchronized cells obtained from each method were replated and allowed to progress through a second cell cycle. Mitotic selection gave rise to relatively pure and unperturbed early G/sub 1/ phase cells. While cell synchrony rapidly dispersed with time, cells progressed through the cell cycle in 12 hr. Sorting with the EPIC V on the modal G/sub 1/ peak yielded a relatively pure but heterogeneous G/sub 1/ population (i.e. early to late G/sub 1/). Again, synchrony dispersed with time, but cell-cycle progression required 14 hr. With centrifugal elutriation, several different cell populations synchronized throughout the cell cycle could be rapidly obtained with a purity comparable to mitotic selection and cell sorting. It was concluded that, either alone or in combination with blocking agents such as hydroxyurea, elutriation and mitotic selection were both excellent methods for synchronizing CHO cells. Cell sorting exhibited limitations in sample size and time required for synchronizing CHO cells. Its major advantage would be its ability to isolate cell populations unique with respect to selected cellular parameters. 19 references, 9 figures.

  7. Statistical detection of EEG synchrony using empirical bayesian inference.

    Directory of Open Access Journals (Sweden)

    Archana K Singh

    Full Text Available There is growing interest in understanding how the brain utilizes synchronized oscillatory activity to integrate information across functionally connected regions. Computing phase-locking values (PLV between EEG signals is a popular method for quantifying such synchronizations and elucidating their role in cognitive tasks. However, high-dimensionality in PLV data incurs a serious multiple testing problem. Standard multiple testing methods in neuroimaging research (e.g., false discovery rate, FDR suffer severe loss of power, because they fail to exploit complex dependence structure between hypotheses that vary in spectral, temporal and spatial dimension. Previously, we showed that a hierarchical FDR and optimal discovery procedures could be effectively applied for PLV analysis to provide better power than FDR. In this article, we revisit the multiple comparison problem from a new Empirical Bayes perspective and propose the application of the local FDR method (locFDR; Efron, 2001 for PLV synchrony analysis to compute FDR as a posterior probability that an observed statistic belongs to a null hypothesis. We demonstrate the application of Efron's Empirical Bayes approach for PLV synchrony analysis for the first time. We use simulations to validate the specificity and sensitivity of locFDR and a real EEG dataset from a visual search study for experimental validation. We also compare locFDR with hierarchical FDR and optimal discovery procedures in both simulation and experimental analyses. Our simulation results showed that the locFDR can effectively control false positives without compromising on the power of PLV synchrony inference. Our results from the application locFDR on experiment data detected more significant discoveries than our previously proposed methods whereas the standard FDR method failed to detect any significant discoveries.

  8. Statistical detection of EEG synchrony using empirical bayesian inference.

    Science.gov (United States)

    Singh, Archana K; Asoh, Hideki; Takeda, Yuji; Phillips, Steven

    2015-01-01

    There is growing interest in understanding how the brain utilizes synchronized oscillatory activity to integrate information across functionally connected regions. Computing phase-locking values (PLV) between EEG signals is a popular method for quantifying such synchronizations and elucidating their role in cognitive tasks. However, high-dimensionality in PLV data incurs a serious multiple testing problem. Standard multiple testing methods in neuroimaging research (e.g., false discovery rate, FDR) suffer severe loss of power, because they fail to exploit complex dependence structure between hypotheses that vary in spectral, temporal and spatial dimension. Previously, we showed that a hierarchical FDR and optimal discovery procedures could be effectively applied for PLV analysis to provide better power than FDR. In this article, we revisit the multiple comparison problem from a new Empirical Bayes perspective and propose the application of the local FDR method (locFDR; Efron, 2001) for PLV synchrony analysis to compute FDR as a posterior probability that an observed statistic belongs to a null hypothesis. We demonstrate the application of Efron's Empirical Bayes approach for PLV synchrony analysis for the first time. We use simulations to validate the specificity and sensitivity of locFDR and a real EEG dataset from a visual search study for experimental validation. We also compare locFDR with hierarchical FDR and optimal discovery procedures in both simulation and experimental analyses. Our simulation results showed that the locFDR can effectively control false positives without compromising on the power of PLV synchrony inference. Our results from the application locFDR on experiment data detected more significant discoveries than our previously proposed methods whereas the standard FDR method failed to detect any significant discoveries.

  9. Dynamics and Synchrony of Pancreatic beta-cells and Islets

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram

    2006-01-01

    description of these processes and their interactions would provide important input in the search for a better treatment of the disease. The thesis describes several aspects of mathematical modeling of beta-cells relevant for the understanding of glucose stimulated insulin secretion. It consists...... and the synchronized behavior of many coupled beta-cells as well as to the synchrony of islets. Rather than developing new biophysical models, the thesis investigates existing models, their integration and simplifications, and analyzed the corresponding dynamics, in order to use these models for investigating...

  10. One in the Dance: Musical Correlates of Group Synchrony in a Real-World Club Environment.

    Directory of Open Access Journals (Sweden)

    Melissa Ellamil

    Full Text Available Previous research on interpersonal synchrony has mainly investigated small groups in isolated laboratory settings, which may not fully reflect the complex and dynamic interactions of real-life social situations. The present study expands on this by examining group synchrony across a large number of individuals in a naturalistic environment. Smartphone acceleration measures were recorded from participants during a music set in a dance club and assessed to identify how group movement synchrony covaried with various features of the music. In an evaluation of different preprocessing and analysis methods, giving more weight to front-back movement provided the most sensitive and reliable measure of group synchrony. During the club music set, group synchrony of torso movement was most strongly associated with pulsations that approximate walking rhythm (100-150 beats per minute. Songs with higher real-world play counts were also correlated with greater group synchrony. Group synchrony thus appears to be constrained by familiarity of the movement (walking action and rhythm and of the music (song popularity. These findings from a real-world, large-scale social and musical setting can guide the development of methods for capturing and examining collective experiences in the laboratory and for effectively linking them to synchrony across people in daily life.

  11. One in the Dance: Musical Correlates of Group Synchrony in a Real-World Club Environment.

    Science.gov (United States)

    Ellamil, Melissa; Berson, Joshua; Wong, Jen; Buckley, Louis; Margulies, Daniel S

    2016-01-01

    Previous research on interpersonal synchrony has mainly investigated small groups in isolated laboratory settings, which may not fully reflect the complex and dynamic interactions of real-life social situations. The present study expands on this by examining group synchrony across a large number of individuals in a naturalistic environment. Smartphone acceleration measures were recorded from participants during a music set in a dance club and assessed to identify how group movement synchrony covaried with various features of the music. In an evaluation of different preprocessing and analysis methods, giving more weight to front-back movement provided the most sensitive and reliable measure of group synchrony. During the club music set, group synchrony of torso movement was most strongly associated with pulsations that approximate walking rhythm (100-150 beats per minute). Songs with higher real-world play counts were also correlated with greater group synchrony. Group synchrony thus appears to be constrained by familiarity of the movement (walking action and rhythm) and of the music (song popularity). These findings from a real-world, large-scale social and musical setting can guide the development of methods for capturing and examining collective experiences in the laboratory and for effectively linking them to synchrony across people in daily life.

  12. Nonverbal Synchrony in Psychotherapy: Coordinated Body Movement Reflects Relationship Quality and Outcome

    Science.gov (United States)

    Ramseyer, Fabian; Tschacher, Wolfgang

    2011-01-01

    Objective: The authors quantified nonverbal synchrony--the coordination of patient's and therapist's movement--in a random sample of same-sex psychotherapy dyads. The authors contrasted nonverbal synchrony in these dyads with a control condition and assessed its association with session-level and overall psychotherapy outcome. Method: Using an…

  13. Joint IQ Skew and Chromatic Dispersion Estimation for Coherent Optical Communication Receivers

    DEFF Research Database (Denmark)

    Medeiros Diniz, Júlio César; Porto da Silva, Edson; Piels, Molly

    2016-01-01

    A low-complexity scanning method for joint estimation of receiver IQ skew and chromatic dispersion is proposed. This method shows less than 1 ps skew error for a 1200-km 32-GBd DP-16QAM optical transmission experiment.......A low-complexity scanning method for joint estimation of receiver IQ skew and chromatic dispersion is proposed. This method shows less than 1 ps skew error for a 1200-km 32-GBd DP-16QAM optical transmission experiment....

  14. Regularized multivariate regression models with skew-t error distributions

    KAUST Repository

    Chen, Lianfu

    2014-06-01

    We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both the regression coefficient and inverse scale matrices simultaneously. The sparsity is introduced through penalizing the negative log-likelihood by adding L1-penalties on the entries of the two matrices. Taking advantage of the hierarchical representation of skew-t distributions, and using the expectation conditional maximization (ECM) algorithm, we reduce the problem to penalized normal likelihood and develop a procedure to minimize the ensuing objective function. Using a simulation study the performance of the method is assessed, and the methodology is illustrated using a real data set with a 24-dimensional response vector. © 2014 Elsevier B.V.

  15. Micromagnetic recording model of writer geometry effects at skew

    Science.gov (United States)

    Plumer, M. L.; Bozeman, S.; van Ek, J.; Michel, R. P.

    2006-04-01

    The effects of the pole-tip geometry at the air-bearing surface on perpendicular recording at a skew angle are examined through modeling and spin-stand test data. Head fields generated by the finite element method were used to record transitions within our previously described micromagnetic recording model. Write-field contours for a variety of square, rectangular, and trapezoidal pole shapes were evaluated to determine the impact of geometry on field contours. Comparing results for recorded track width, transition width, and media signal to noise ratio at 0° and 15° skew demonstrate the benefits of trapezoidal and reduced aspect-ratio pole shapes. Consistency between these modeled results and test data is demonstrated.

  16. Yaw-modelling using a skewed vortex cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The cylindrical vortex wake model presented in Chap. 17 for the case of uniform inflow is extended in the current chapter to the case of yawed inflow. Generalities regarding yaw are presented in Sect. 6.1 and only the skewed cylindrical vortex model is presented in this chapter. The chapter starts...... with a literature review on the topic of yaw-models and vorticity-based methods. The description of the model follows. The novelty of the current model is that the assumption of infinite tip-speed ratio is relaxed. The bound vorticity is assumed to be identical to the case of uniform inflow but the vortex cylinder...... and the root vortex are skewed with respect to the normal of the rotor disk. Closed form formulae for the induced velocities are provided. They can only be evaluated analytically for a limited part of the domain. A numerical integration is required to obtain the velocity everywhere in the domain. The numerical...

  17. Speckles generated by skewed, short-coherence light beams

    International Nuclear Information System (INIS)

    Brogioli, D; Salerno, D; Ziano, R; Mantegazza, F; Croccolo, F

    2011-01-01

    When a coherent laser beam impinges on a random sample (e.g. a colloidal suspension), the scattered light exhibits characteristic speckles. If the temporal coherence of the light source is too short, then the speckles disappear, along with the possibility of performing homodyne or heterodyne scattering detection or photon correlation spectroscopy. Here we investigate the scattering of a so-called ‘skewed coherence beam’, i.e. a short-coherence beam modified such that the field is coherent within slabs that are skewed with respect to the wave fronts. We show that such a beam generates speckles and can be used for heterodyne scattering detection, despite its short temporal coherence. Moreover, we show that the heterodyne signal is not affected by multiple scattering. We suggest that the phenomenon presented here can be used as a means of carrying out heterodyne scattering measurement with any short-coherence radiation, including x-rays. (paper)

  18. Audiovisual synchrony enhances BOLD responses in a brain network including multisensory STS while also enhancing target-detection performance for both modalities

    Science.gov (United States)

    Marchant, Jennifer L; Ruff, Christian C; Driver, Jon

    2012-01-01

    The brain seeks to combine related inputs from different senses (e.g., hearing and vision), via multisensory integration. Temporal information can indicate whether stimuli in different senses are related or not. A recent human fMRI study (Noesselt et al. [2007]: J Neurosci 27:11431–11441) used auditory and visual trains of beeps and flashes with erratic timing, manipulating whether auditory and visual trains were synchronous or unrelated in temporal pattern. A region of superior temporal sulcus (STS) showed higher BOLD signal for the synchronous condition. But this could not be related to performance, and it remained unclear if the erratic, unpredictable nature of the stimulus trains was important. Here we compared synchronous audiovisual trains to asynchronous trains, while using a behavioral task requiring detection of higher-intensity target events in either modality. We further varied whether the stimulus trains had predictable temporal pattern or not. Synchrony (versus lag) between auditory and visual trains enhanced behavioral sensitivity (d') to intensity targets in either modality, regardless of predictable versus unpredictable patterning. The analogous contrast in fMRI revealed BOLD increases in several brain areas, including the left STS region reported by Noesselt et al. [2007: J Neurosci 27:11431–11441]. The synchrony effect on BOLD here correlated with the subject-by-subject impact on performance. Predictability of temporal pattern did not affect target detection performance or STS activity, but did lead to an interaction with audiovisual synchrony for BOLD in inferior parietal cortex. PMID:21953980

  19. MEASURING LOCAL GRADIENT AND SKEW QUADRUPOLE ERRORS IN RHIC IRS

    International Nuclear Information System (INIS)

    CARDONA, J.; PEGGS, S.; PILAT, R.; PTITSYN, V.

    2004-01-01

    The measurement of local linear errors at RHIC interaction regions using an ''action and phase'' analysis of difference orbits has already been presented [2]. This paper evaluates the accuracy of this technique using difference orbits that were taken when known gradient errors and skew quadrupole errors were intentionally introduced. It also presents action and phase analysis of simulated orbits when controlled errors are intentionally placed in a RHIC simulation model

  20. Incorporating Skew into RMS Surface Roughness Probability Distribution

    Science.gov (United States)

    Stahl, Mark T.; Stahl, H. Philip.

    2013-01-01

    The standard treatment of RMS surface roughness data is the application of a Gaussian probability distribution. This handling of surface roughness ignores the skew present in the surface and overestimates the most probable RMS of the surface, the mode. Using experimental data we confirm the Gaussian distribution overestimates the mode and application of an asymmetric distribution provides a better fit. Implementing the proposed asymmetric distribution into the optical manufacturing process would reduce the polishing time required to meet surface roughness specifications.

  1. Modeling multivariate time series on manifolds with skew radial basis functions.

    Science.gov (United States)

    Jamshidi, Arta A; Kirby, Michael J

    2011-01-01

    We present an approach for constructing nonlinear empirical mappings from high-dimensional domains to multivariate ranges. We employ radial basis functions and skew radial basis functions for constructing a model using data that are potentially scattered or sparse. The algorithm progresses iteratively, adding a new function at each step to refine the model. The placement of the functions is driven by a statistical hypothesis test that accounts for correlation in the multivariate range variables. The test is applied on training and validation data and reveals nonstatistical or geometric structure when it fails. At each step, the added function is fit to data contained in a spatiotemporally defined local region to determine the parameters--in particular, the scale of the local model. The scale of the function is determined by the zero crossings of the autocorrelation function of the residuals. The model parameters and the number of basis functions are determined automatically from the given data, and there is no need to initialize any ad hoc parameters save for the selection of the skew radial basis functions. Compactly supported skew radial basis functions are employed to improve model accuracy, order, and convergence properties. The extension of the algorithm to higher-dimensional ranges produces reduced-order models by exploiting the existence of correlation in the range variable data. Structure is tested not just in a single time series but between all pairs of time series. We illustrate the new methodologies using several illustrative problems, including modeling data on manifolds and the prediction of chaotic time series.

  2. Few Skewed Results from IOTA Interferometer YSO Disk Survey

    Science.gov (United States)

    Monnier, J. D.; Millan-Gabet, R.; Berger, J.-P.; Pedretti, E.; Traub, W.; Schloerb, F. P.

    2005-12-01

    The 3-telescope IOTA interferometer is capable of measuring closure phases for dozens of Herbig Ae/Be stars in the near-infrared. The closure phase unambiguously identifies deviations from centro-symmetry (i.e., skew) in the brightness distribution, at the scale of 4 milliarcseconds (sub-AU physical scales) for our work. Indeed, hot dust emission from the inner circumstellar accretion disk is expected to be skewed for (generic) flared disks viewed at intermediate inclination angles, as has been observed for LkHa 101. Surprisingly, we find very little evidence for skewed disk emission in our IOTA3 sample, setting strong constraints on the geometry of the inner disk. In particular, we rule out the currently-popular model of a VERTICAL hot inner wall of dust at the sublimation radius. Instead, our data is more consistent with a curved inner wall that bends away from the midplane as might be expected from the pressure-dependence of dust sublimation or limited absorption of stellar luminosity in the disk midplane by gas.

  3. Skewed matrilineal genetic composition in a small wild chimpanzee community.

    Science.gov (United States)

    Shimada, Makoto K; Hayakawa, Sachiko; Fujita, Shiho; Sugiyama, Yukimaru; Saitou, Naruya

    2009-01-01

    Maternal kinship is important in primate societies because it affects individual behaviour as well as the sustainability of populations. All members of the Bossou chimpanzee community are descended from 8 individuals (herein referred to as original adults) who were already adults or subadults when field observations were initiated in 1976 and whose genetic relationships were unknown. Sequencing of the control region on the maternally inherited mtDNA revealed that 4 (1 male and 3 females) of the 8 original adults shared an identical haplotype. We investigated the effects of the skewed distribution of mtDNA haplotypes on the following two outcomes. First, we demonstrated that the probability of mtDNA haplotype extinction would be increased under such a skewed composition in a small community. Second, the ratio of potential mating candidates to competitors is likely to decrease if chimpanzees become aware of maternal kinship and avoid incest. We estimated that the magnitude of the decrease in the ratio is 10 times greater in males than in females. Here we demonstrate a scenario in which this matrilineal skewness in a small community accelerates extinction of mtDNA haplotype, which will make it more difficult to find a suitable mate within the community. 2008 S. Karger AG, Basel.

  4. Screening Immunomodulators To Skew the Antigen-Specific Autoimmune Response.

    Science.gov (United States)

    Northrup, Laura; Sullivan, Bradley P; Hartwell, Brittany L; Garza, Aaron; Berkland, Cory

    2017-01-03

    Current therapies to treat autoimmune diseases often result in side effects such as nonspecific immunosuppression. Therapies that can induce antigen-specific immune tolerance provide an opportunity to reverse autoimmunity and mitigate the risks associated with global immunosuppression. In an effort to induce antigen-specific immune tolerance, co-administration of immunomodulators with autoantigens has been investigated in an effort to reprogram autoimmunity. To date, identifying immunomodulators that may skew the antigen-specific immune response has been ad hoc at best. To address this need, we utilized splenocytes obtained from mice with experimental autoimmune encephalomyelitis (EAE) in order to determine if certain immunomodulators may induce markers of immune tolerance following antigen rechallenge. Of the immunomodulatory compounds investigated, only dexamethasone modified the antigen-specific immune response by skewing the cytokine response and decreasing T-cell populations at a concentration corresponding to a relevant in vivo dose. Thus, antigen-educated EAE splenocytes provide an ex vivo screen for investigating compounds capable of skewing the antigen-specific immune response, and this approach could be extrapolated to antigen-educated cells from other diseases or human tissues.

  5. Developmental synchrony of thalamocortical circuits in the neonatal brain.

    Science.gov (United States)

    Poh, Joann S; Li, Yue; Ratnarajah, Nagulan; Fortier, Marielle V; Chong, Yap-Seng; Kwek, Kenneth; Saw, Seang-Mei; Gluckman, Peter D; Meaney, Michael J; Qiu, Anqi

    2015-08-01

    The thalamus is a deep gray matter structure and consists of axonal fibers projecting to the entire cortex, which provide the anatomical support for its sensorimotor and higher-level cognitive functions. There is limited in vivo evidence on the normal thalamocortical development, especially in early life. In this study, we aimed to investigate the developmental patterns of the cerebral cortex, the thalamic substructures, and their connectivity with the cortex in the first few weeks of the postnatal brain. We hypothesized that there is developmental synchrony of the thalamus, its cortical projections, and corresponding target cortical structures. We employed diffusion tensor imaging (DTI) and divided the thalamus into five substructures respectively connecting to the frontal, precentral, postcentral, temporal, and parietal and occipital cortex. T2-weighted magnetic resonance imaging (MRI) was used to measure cortical thickness. We found age-related increases in cortical thickness of bilateral frontal cortex and left temporal cortex in the early postnatal brain. We also found that the development of the thalamic substructures was synchronized with that of their respective thalamocortical connectivity in the first few weeks of the postnatal life. In particular, the right thalamo-frontal substructure had the fastest growth in the early postnatal brain. Our study suggests that the distinct growth patterns of the thalamic substructures are in synchrony with those of the cortex in early life, which may be critical for the development of the cortical and subcortical functional specialization. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A method for generating skewed random numbers using two overlapping uniform distributions

    International Nuclear Information System (INIS)

    Ermak, D.L.; Nasstrom, J.S.

    1995-02-01

    The objective of this work was to implement and evaluate a method for generating skewed random numbers using a combination of uniform random numbers. The method provides a simple and accurate way of generating skewed random numbers from the specified first three moments without an a priori specification of the probability density function. We describe the procedure for generating skewed random numbers from unifon-n random numbers, and show that it accurately produces random numbers with the desired first three moments over a range of skewness values. We also show that in the limit of zero skewness, the distribution of random numbers is an accurate approximation to the Gaussian probability density function. Future work win use this method to provide skewed random numbers for a Langevin equation model for diffusion in skewed turbulence

  7. Synchrony, waves and ripple in spatially coupled Kuramoto oscillators with Mexican hat connectivity.

    Science.gov (United States)

    Heitmann, Stewart; Ermentrout, G Bard

    2015-06-01

    Spatiotemporal waves of synchronized activity are known to arise in oscillatory neural networks with lateral inhibitory coupling. How such patterns respond to dynamic changes in coupling strength is largely unexplored. The present study uses analysis and simulation to investigate the evolution of wave patterns when the strength of lateral inhibition is varied dynamically. Neural synchronization was modeled by a spatial ring of Kuramoto oscillators with Mexican hat lateral coupling. Broad bands of coexisting stable wave solutions were observed at all levels of inhibition. The stability of these waves was formally analyzed in both the infinite ring and the finite ring. The broad range of multi-stability predicted hysteresis in transitions between neighboring wave solutions when inhibition is slowly varied. Numerical simulation confirmed the predicted transitions when inhibition was ramped down from a high initial value. However, non-wave solutions emerged from the uniform solution when inhibition was ramped upward from zero. These solutions correspond to spatially periodic deviations of phase that we call ripple states. Numerical continuation showed that stable ripple states emerge from synchrony via a supercritical pitchfork bifurcation. The normal form of this bifurcation was derived analytically, and its predictions compared against the numerical results. Ripple states were also found to bifurcate from wave solutions, but these were locally unstable. Simulation also confirmed the existence of hysteresis and ripple states in two spatial dimensions. Our findings show that spatial synchronization patterns can remain structurally stable despite substantial changes in network connectivity.

  8. Job Stress and Dyadic Synchrony in Police Marriages: A Preliminary Investigation

    Science.gov (United States)

    ROBERTS, NICOLE A.; LEONARD, RACHEL C.; BUTLER, EMILY A.; LEVENSON, ROBERT W.; KANTER, JONATHAN W.

    2015-01-01

    Despite reports documenting adverse effects of stress on police marriages, few empirical studies focus on actual emotional behaviors of officers and spouses. In this preliminary investigation, 17 male police officers and their nonpolice wives completed daily stress diaries for 1 week and then participated in a laboratory-based discussion about their respective days. Conversations were video-recorded and coded for specific emotional behaviors reflecting hostility and affection, which are strong predictors of marital outcomes. We examined associations between officers’ job stress (per diaries and the Police Stress Survey) and couples’ emotional behavior (mean levels and behavioral synchrony) using a dyadic repeated measures design capitalizing on the large number of observations available for each couple (1020 observations). When officers reported more job stress, they showed less hostility, less synchrony with their wives’ hostility, and more synchrony with their wives’ affection; their wives showed greater synchrony with officers’ hostility and less synchrony with officers’ affection. Therefore, for officers, greater job stress was associated with less behavioral negativity, potentially less attunement to wives’ negativity, but potentially greater attunement to wives’ affection—perhaps a compensatory strategy or attempt to buffer their marriage from stress. These attempts may be less effective, however, if, as our synchrony findings may suggest, wives are focusing on officers’ hostility rather than affection. Although it will be important to replicate these results given the small sample, our findings reveal that patterns of behavioral synchrony may be a key means to better understand how job stress exacts a toll on police marriages. PMID:23763686

  9. Spatial synchrony of a highly endemic fish Assemblage (Segredo Reservoir, Iguaçu River, Paraná State, Brazil

    Directory of Open Access Journals (Sweden)

    W. M. Domingues

    Full Text Available In this study, patterns of spatial synchrony in population fluctuations (cross-correlation of an endemic fish assemblage of a Neotropical reservoir (Segredo Reservoir, Iguaçu River, Paraná State, Brazil were reported. First, the level of population synchrony for 20 species was estimated. Second, population synchrony was correlated, using the Mantel test, with geographical distances among sites (n = 11 and also environmental synchrony (temperature. Nine species presented significant correlations between spatial synchrony and geographic distances (Astyanax sp. b, Astyanax sp. c, Pimelodus sp., Hoplias malabaricus, Crenicichla iguassuensis, Hypostomus derbyi, Hypostomus myersi, Rhamdia branneri, and R. voulezi. Considering the ecology of the species and the significant relationship between population and environmental synchronies, it seems that environmental stochasticity is the most plausible hypothesis in explaining the observed synchrony patterns.

  10. Dispersal and noise: Various modes of synchrony in ecological oscillators

    KAUST Repository

    Bressloff, Paul C.

    2012-10-21

    We use the theory of noise-induced phase synchronization to analyze the effects of dispersal on the synchronization of a pair of predator-prey systems within a fluctuating environment (Moran effect). Assuming that each isolated local population acts as a limit cycle oscillator in the deterministic limit, we use phase reduction and averaging methods to derive a Fokker-Planck equation describing the evolution of the probability density for pairwise phase differences between the oscillators. In the case of common environmental noise, the oscillators ultimately synchronize. However the approach to synchrony depends on whether or not dispersal in the absence of noise supports any stable asynchronous states. We also show how the combination of partially correlated noise with dispersal can lead to a multistable steady-state probability density. © 2012 Springer-Verlag Berlin Heidelberg.

  11. Timing intervals using population synchrony and spike timing dependent plasticity

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2016-12-01

    Full Text Available We present a computational model by which ensembles of regularly spiking neurons can encode different time intervals through synchronous firing. We show that a neuron responding to a large population of convergent inputs has the potential to learn to produce an appropriately-timed output via spike-time dependent plasticity. We explain why temporal variability of this population synchrony increases with increasing time intervals. We also show that the scalar property of timing and its violation at short intervals can be explained by the spike-wise accumulation of jitter in the inter-spike intervals of timing neurons. We explore how the challenge of encoding longer time intervals can be overcome and conclude that this may involve a switch to a different population of neurons with lower firing rate, with the added effect of producing an earlier bias in response. Experimental data on human timing performance show features in agreement with the model’s output.

  12. Synchrony-optimized networks of non-identical Kuramoto oscillators

    International Nuclear Information System (INIS)

    Brede, Markus

    2008-01-01

    In this Letter we discuss a method for generating synchrony-optimized coupling architectures of Kuramoto oscillators with a heterogeneous distribution of native frequencies. The method allows us to relate the properties of the coupling network to its synchronizability. These relations were previously only established from a linear stability analysis of the identical oscillator case. We further demonstrate that the heterogeneity in the oscillator population produces heterogeneity in the optimal coupling network as well. Two rules for enhancing the synchronizability of a given network by a suitable placement of oscillators are given: (i) native frequencies of adjacent oscillators must be anti-correlated and (ii) frequency magnitudes should positively correlate with the degree of the node they are placed at

  13. Affective Synchrony and Autonomic Coupling during Cooperation: A Hyperscanning Study

    Directory of Open Access Journals (Sweden)

    Maria Elide Vanutelli

    2017-01-01

    Full Text Available Previous research highlighted that during social interactions people shape each other’s emotional states by resonance mechanisms and synchronized autonomic patterns. Starting from the idea that joint actions create shared emotional experiences, in the present study a social bond was experimentally induced by making subjects cooperate with each other. Participants’ autonomic system activity (electrodermal: skin conductance level and response: SCL, SCR; cardiovascular indices: heart rate: HR was continuously monitored during an attentional couple game. The cooperative motivation was induced by presenting feedback which reinforced the positive outcomes of the intersubjective exchange. 24 participants coupled in 12 dyads were recruited. Intrasubject analyses revealed higher HR in the first part of the task, connoted by increased cognitive demand and arousing social dynamic, while intersubject analysis showed increased synchrony in electrodermal activity after the feedback. Such results encourage the use of hyperscanning techniques to assess emotional coupling in ecological and real-time paradigms.

  14. Dispersal and noise: Various modes of synchrony in ecological oscillators

    KAUST Repository

    Bressloff, Paul C.; Lai, Yi Ming

    2012-01-01

    We use the theory of noise-induced phase synchronization to analyze the effects of dispersal on the synchronization of a pair of predator-prey systems within a fluctuating environment (Moran effect). Assuming that each isolated local population acts as a limit cycle oscillator in the deterministic limit, we use phase reduction and averaging methods to derive a Fokker-Planck equation describing the evolution of the probability density for pairwise phase differences between the oscillators. In the case of common environmental noise, the oscillators ultimately synchronize. However the approach to synchrony depends on whether or not dispersal in the absence of noise supports any stable asynchronous states. We also show how the combination of partially correlated noise with dispersal can lead to a multistable steady-state probability density. © 2012 Springer-Verlag Berlin Heidelberg.

  15. SPIKY: a graphical user interface for monitoring spike train synchrony.

    Science.gov (United States)

    Kreuz, Thomas; Mulansky, Mario; Bozanic, Nebojsa

    2015-05-01

    Techniques for recording large-scale neuronal spiking activity are developing very fast. This leads to an increasing demand for algorithms capable of analyzing large amounts of experimental spike train data. One of the most crucial and demanding tasks is the identification of similarity patterns with a very high temporal resolution and across different spatial scales. To address this task, in recent years three time-resolved measures of spike train synchrony have been proposed, the ISI-distance, the SPIKE-distance, and event synchronization. The Matlab source codes for calculating and visualizing these measures have been made publicly available. However, due to the many different possible representations of the results the use of these codes is rather complicated and their application requires some basic knowledge of Matlab. Thus it became desirable to provide a more user-friendly and interactive interface. Here we address this need and present SPIKY, a graphical user interface that facilitates the application of time-resolved measures of spike train synchrony to both simulated and real data. SPIKY includes implementations of the ISI-distance, the SPIKE-distance, and the SPIKE-synchronization (an improved and simplified extension of event synchronization) that have been optimized with respect to computation speed and memory demand. It also comprises a spike train generator and an event detector that makes it capable of analyzing continuous data. Finally, the SPIKY package includes additional complementary programs aimed at the analysis of large numbers of datasets and the estimation of significance levels. Copyright © 2015 the American Physiological Society.

  16. Scale and shape mixtures of multivariate skew-normal distributions

    KAUST Repository

    Arellano-Valle, Reinaldo B.

    2018-02-26

    We introduce a broad and flexible class of multivariate distributions obtained by both scale and shape mixtures of multivariate skew-normal distributions. We present the probabilistic properties of this family of distributions in detail and lay down the theoretical foundations for subsequent inference with this model. In particular, we study linear transformations, marginal distributions, selection representations, stochastic representations and hierarchical representations. We also describe an EM-type algorithm for maximum likelihood estimation of the parameters of the model and demonstrate its implementation on a wind dataset. Our family of multivariate distributions unifies and extends many existing models of the literature that can be seen as submodels of our proposal.

  17. PARAMETRIC STUDY OF SKEW ANGLE ON BOX GIRDER BRIDGE DECK

    OpenAIRE

    Shrikant D. Bobade *, Dr. Valsson Varghese

    2016-01-01

    Box girder bridge deck, is the most common type of bridges in world and India, it consists of several Slab or girders. The span in the direction of the roadway and connected across their tops and bottoms by a thin continuous structural stab, the longitudinal box girders can be made of steel or concrete. The Simple supported single span concrete bridge deck is presented in present study. Skewed bridges are suitable in highway design when the geometry of straight bridges is not possible. The sk...

  18. Frequent Pairs in Data Streams: Exploiting Parallelism and Skew

    DEFF Research Database (Denmark)

    Campagna, Andrea; Kutzkow, Konstantin; Pagh, Rasmus

    2011-01-01

    We introduce the Pair Streaming Engine (PairSE) that detects frequent pairs in a data stream of transactions. Our algorithm finds the most frequent pairs with high probability, and gives tight bounds on their frequency. It is particularly space efficient for skewed distribution of pair supports...... items mining in data streams. We show how to efficiently scale these approaches to handle large transactions. We report experimental results showcasing precision and recall of our method. In particular, we find that often our method achieves excellent precision, returning identical upper and lower...... bounds on the supports of the most frequent pairs....

  19. Skewed steel bridges, part ii : cross-frame and connection design to ensure brace effectiveness : technical summary.

    Science.gov (United States)

    2017-08-01

    Skewed bridges in Kansas are often designed such that the cross-frames are carried parallel to the skew angle up to 40, while many other states place cross-frames perpendicular to the girder for skew angles greater than 20. Skewed-parallel cross-...

  20. Skewed steel bridges, part ii : cross-frame and connection design to ensure brace effectiveness : final report.

    Science.gov (United States)

    2017-08-01

    Skewed bridges in Kansas are often designed such that the cross-frames are carried parallel to the skew angle up to 40, while many other states place cross-frames perpendicular to the girder for skew angles greater than 20. Skewed-parallel cross-...

  1. Crossover ensembles of random matrices and skew-orthogonal polynomials

    International Nuclear Information System (INIS)

    Kumar, Santosh; Pandey, Akhilesh

    2011-01-01

    Highlights: → We study crossover ensembles of Jacobi family of random matrices. → We consider correlations for orthogonal-unitary and symplectic-unitary crossovers. → We use the method of skew-orthogonal polynomials and quaternion determinants. → We prove universality of spectral correlations in crossover ensembles. → We discuss applications to quantum conductance and communication theory problems. - Abstract: In a recent paper (S. Kumar, A. Pandey, Phys. Rev. E, 79, 2009, p. 026211) we considered Jacobi family (including Laguerre and Gaussian cases) of random matrix ensembles and reported exact solutions of crossover problems involving time-reversal symmetry breaking. In the present paper we give details of the work. We start with Dyson's Brownian motion description of random matrix ensembles and obtain universal hierarchic relations among the unfolded correlation functions. For arbitrary dimensions we derive the joint probability density (jpd) of eigenvalues for all transitions leading to unitary ensembles as equilibrium ensembles. We focus on the orthogonal-unitary and symplectic-unitary crossovers and give generic expressions for jpd of eigenvalues, two-point kernels and n-level correlation functions. This involves generalization of the theory of skew-orthogonal polynomials to crossover ensembles. We also consider crossovers in the circular ensembles to show the generality of our method. In the large dimensionality limit, correlations in spectra with arbitrary initial density are shown to be universal when expressed in terms of a rescaled symmetry breaking parameter. Applications of our crossover results to communication theory and quantum conductance problems are also briefly discussed.

  2. FLECHT low flooding rate skewed test series data report

    International Nuclear Information System (INIS)

    Rosal, E.R.; Conway, C.E.; Krepinevich, M.C.

    1977-05-01

    The FLECHT Low Flooding Rate Tests were conducted in an improved original FLECHT Test Facility to provide heat transfer coefficient and entrainment data at forced flooding rates of 1 in./sec. and with electrically heated rod bundles which had cosine and top skewed axial power profiles. The top-skewed axial power profile test series has now been successfully completed and is here reported. For these tests the rod bundle was enclosed in a low mass cylindrical housing which would minimize the wall housing effects encountered in the cosine test series. These tests examined the effects of initial clad temperature, variable stepped and continuously variable flooding rates, housing heat release, rod peak power, constant low flooding rates, coolant subcooling, hot and cold channel entrainment, and bundle stored and generated power. Data obtained in runs which met the test specifications are reported here, and include rod clad temperatures, turn around and quench times, heat transfer coefficients, inlet flooding rates, overall mass balances, differential pressures and calculated void fractions in the test section, thimble wall and steam temperatures, and exhaust steam and liquid carryover rates

  3. Skewed sex ratios in India: "physician, heal thyself".

    Science.gov (United States)

    Patel, Archana B; Badhoniya, Neetu; Mamtani, Manju; Kulkarni, Hemant

    2013-06-01

    Sex selection, a gender discrimination of the worst kind, is highly prevalent across all strata of Indian society. Physicians have a crucial role in this practice and implementation of the Indian Government's Pre-Natal Diagnostic Techniques Act in 1996 to prevent the misuse of ultrasound techniques for the purpose of prenatal sex determination. Little is known about family preferences, let alone preferences among families of physicians. We investigated the sex ratios in 946 nuclear families with 1,624 children, for which either one or both parents were physicians. The overall child sex ratio was more skewed than the national average of 914. The conditional sex ratios decreased with increasing number of previous female births, and a previous birth of a daughter in the family was associated with a 38 % reduced likelihood of a subsequent female birth. The heavily skewed sex ratios in the families of physicians are indicative of a deeply rooted social malady that could pose a critical challenge in correcting the sex ratios in India.

  4. Approximate median regression for complex survey data with skewed response.

    Science.gov (United States)

    Fraser, Raphael André; Lipsitz, Stuart R; Sinha, Debajyoti; Fitzmaurice, Garrett M; Pan, Yi

    2016-12-01

    The ready availability of public-use data from various large national complex surveys has immense potential for the assessment of population characteristics using regression models. Complex surveys can be used to identify risk factors for important diseases such as cancer. Existing statistical methods based on estimating equations and/or utilizing resampling methods are often not valid with survey data due to complex survey design features. That is, stratification, multistage sampling, and weighting. In this article, we accommodate these design features in the analysis of highly skewed response variables arising from large complex surveys. Specifically, we propose a double-transform-both-sides (DTBS)'based estimating equations approach to estimate the median regression parameters of the highly skewed response; the DTBS approach applies the same Box-Cox type transformation twice to both the outcome and regression function. The usual sandwich variance estimate can be used in our approach, whereas a resampling approach would be needed for a pseudo-likelihood based on minimizing absolute deviations (MAD). Furthermore, the approach is relatively robust to the true underlying distribution, and has much smaller mean square error than a MAD approach. The method is motivated by an analysis of laboratory data on urinary iodine (UI) concentration from the National Health and Nutrition Examination Survey. © 2016, The International Biometric Society.

  5. Acrolein inhalation alters myocardial synchrony and performance at and below exposure concentrations that cause ventilatory responses

    Science.gov (United States)

    Acrolein is an irritating aldehyde generated during combustion of organic compounds. Altered autonomic activity has been documented following acrolein inhalation, possibly impacting myocardial synchrony and function. Given the ubiquitous nature of acrolein in the environment, we ...

  6. Audiovisual Temporal Recalibration for Speech in Synchrony Perception and Speech Identification

    Science.gov (United States)

    Asakawa, Kaori; Tanaka, Akihiro; Imai, Hisato

    We investigated whether audiovisual synchrony perception for speech could change after observation of the audiovisual temporal mismatch. Previous studies have revealed that audiovisual synchrony perception is re-calibrated after exposure to a constant timing difference between auditory and visual signals in non-speech. In the present study, we examined whether this audiovisual temporal recalibration occurs at the perceptual level even for speech (monosyllables). In Experiment 1, participants performed an audiovisual simultaneity judgment task (i.e., a direct measurement of the audiovisual synchrony perception) in terms of the speech signal after observation of the speech stimuli which had a constant audiovisual lag. The results showed that the “simultaneous” responses (i.e., proportion of responses for which participants judged the auditory and visual stimuli to be synchronous) at least partly depended on exposure lag. In Experiment 2, we adopted the McGurk identification task (i.e., an indirect measurement of the audiovisual synchrony perception) to exclude the possibility that this modulation of synchrony perception was solely attributable to the response strategy using stimuli identical to those of Experiment 1. The characteristics of the McGurk effect reported by participants depended on exposure lag. Thus, it was shown that audiovisual synchrony perception for speech could be modulated following exposure to constant lag both in direct and indirect measurement. Our results suggest that temporal recalibration occurs not only in non-speech signals but also in monosyllabic speech at the perceptual level.

  7. On the Effects of Wind Turbine Wake Skew Caused by Wind Veer: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, Matthew J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sirnivas, Senu [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-01

    Because of Coriolis forces caused by the Earth's rotation, the structure of the atmospheric boundary layer often contains wind-direction change with height, also known as wind-direction veer. Under low turbulence conditions, such as in stably stratified atmospheric conditions, this veer can be significant, even across the vertical extent of a wind turbine's rotor disk. The veer then causes the wind turbine wake to skew as it advects downstream. This wake skew has been observed both experimentally and numerically. In this work, we attempt to examine the wake skewing process in some detail, and quantify how differently a skewed wake versus a non skewed wake affects a downstream turbine. We do this by performing atmospheric large-eddy simulations to create turbulent inflow winds with and without veer. In the veer case, there is a roughly 8 degree wind direction change across the turbine rotor. We then perform subsequent large-eddy simulations using these inflow data with an actuator line rotor model to create wakes. The turbine modeled is a large, modern, offshore, multimegawatt turbine. We examine the unsteady wake data in detail and show that the skewed wake recovers faster than the non skewed wake. We also show that the wake deficit does not skew to the same degree that a passive tracer would if subject to veered inflow. Last, we use the wake data to place a hypothetical turbine 9 rotor diameters downstream by running aeroelastic simulations with the simulated wake data. We see differences in power and loads if this downstream turbine is subject to a skewed or non skewed wake. We feel that the differences observed between the skewed and nonskewed wake are important enough that the skewing effect should be included in engineering wake models.

  8. On the Effects of Wind Turbine Wake Skew Caused by Wind Veer

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, Matthew J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sirnivas, Senu [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    Because of Coriolis forces caused by the Earth's rotation, the structure of the atmospheric boundary layer often contains wind-direction change with height, also known as wind-direction veer. Under low turbulence conditions, such as in stably stratified atmospheric conditions, this veer can be significant, even across the vertical extent of a wind turbine's rotor disk. The veer then causes the wind turbine wake to skew as it advects downstream. This wake skew has been observed both experimentally and numerically. In this work, we attempt to examine the wake skewing process in some detail, and quantify how differently a skewed wake versus a non skewed wake affects a downstream turbine. We do this by performing atmospheric large-eddy simulations to create turbulent inflow winds with and without veer. In the veer case, there is a roughly 8 degree wind direction change across the turbine rotor. We then perform subsequent large-eddy simulations using these inflow data with an actuator line rotor model to create wakes. The turbine modeled is a large, modern, offshore, multimegawatt turbine. We examine the unsteady wake data in detail and show that the skewed wake recovers faster than the non skewed wake. We also show that the wake deficit does not skew to the same degree that a passive tracer would if subject to veered inflow. Last, we use the wake data to place a hypothetical turbine 9 rotor diameters downstream by running aeroelastic simulations with the simulated wake data. We see differences in power and loads if this downstream turbine is subject to a skewed or non skewed wake. We feel that the differences observed between the skewed and nonskewed wake are important enough that the skewing effect should be included in engineering wake models.

  9. Skew cyclic codes over F_q+uF_q+vF_q+uvF_q

    Directory of Open Access Journals (Sweden)

    Ting Yao

    2015-09-01

    Full Text Available In this paper, we study skew cyclic codes over the ring $R=F_q+uF_q+vF_q+uvF_q$, where $u^{2}=u,v^{2}=v,uv=vu$, $q=p^{m}$ and $p$ is an odd prime. We investigate the structural properties of skew cyclic codes over $R$ through a decomposition theorem. Furthermore, we give a formula for the number of skew cyclic codes of length $n$ over $R.$

  10. Multivariate log-skew-elliptical distributions with applications to precipitation data

    KAUST Repository

    Marchenko, Yulia V.

    2009-07-13

    We introduce a family of multivariate log-skew-elliptical distributions, extending the list of multivariate distributions with positive support. We investigate their probabilistic properties such as stochastic representations, marginal and conditional distributions, and existence of moments, as well as inferential properties. We demonstrate, for example, that as for the log-t distribution, the positive moments of the log-skew-t distribution do not exist. Our emphasis is on two special cases, the log-skew-normal and log-skew-t distributions, which we use to analyze US national (univariate) and regional (multivariate) monthly precipitation data. © 2009 John Wiley & Sons, Ltd.

  11. Multivariate log-skew-elliptical distributions with applications to precipitation data

    KAUST Repository

    Marchenko, Yulia V.; Genton, Marc G.

    2009-01-01

    We introduce a family of multivariate log-skew-elliptical distributions, extending the list of multivariate distributions with positive support. We investigate their probabilistic properties such as stochastic representations, marginal and conditional distributions, and existence of moments, as well as inferential properties. We demonstrate, for example, that as for the log-t distribution, the positive moments of the log-skew-t distribution do not exist. Our emphasis is on two special cases, the log-skew-normal and log-skew-t distributions, which we use to analyze US national (univariate) and regional (multivariate) monthly precipitation data. © 2009 John Wiley & Sons, Ltd.

  12. Skew-orthogonal polynomials and random matrix theory

    CERN Document Server

    Ghosh, Saugata

    2009-01-01

    Orthogonal polynomials satisfy a three-term recursion relation irrespective of the weight function with respect to which they are defined. This gives a simple formula for the kernel function, known in the literature as the Christoffel-Darboux sum. The availability of asymptotic results of orthogonal polynomials and the simple structure of the Christoffel-Darboux sum make the study of unitary ensembles of random matrices relatively straightforward. In this book, the author develops the theory of skew-orthogonal polynomials and obtains recursion relations which, unlike orthogonal polynomials, depend on weight functions. After deriving reduced expressions, called the generalized Christoffel-Darboux formulas (GCD), he obtains universal correlation functions and non-universal level densities for a wide class of random matrix ensembles using the GCD. The author also shows that once questions about higher order effects are considered (questions that are relevant in different branches of physics and mathematics) the ...

  13. Neural Correlates of Temporal Complexity and Synchrony during Audiovisual Correspondence Detection.

    Science.gov (United States)

    Baumann, Oliver; Vromen, Joyce M G; Cheung, Allen; McFadyen, Jessica; Ren, Yudan; Guo, Christine C

    2018-01-01

    We often perceive real-life objects as multisensory cues through space and time. A key challenge for audiovisual integration is to match neural signals that not only originate from different sensory modalities but also that typically reach the observer at slightly different times. In humans, complex, unpredictable audiovisual streams lead to higher levels of perceptual coherence than predictable, rhythmic streams. In addition, perceptual coherence for complex signals seems less affected by increased asynchrony between visual and auditory modalities than for simple signals. Here, we used functional magnetic resonance imaging to determine the human neural correlates of audiovisual signals with different levels of temporal complexity and synchrony. Our study demonstrated that greater perceptual asynchrony and lower signal complexity impaired performance in an audiovisual coherence-matching task. Differences in asynchrony and complexity were also underpinned by a partially different set of brain regions. In particular, our results suggest that, while regions in the dorsolateral prefrontal cortex (DLPFC) were modulated by differences in memory load due to stimulus asynchrony, areas traditionally thought to be involved in speech production and recognition, such as the inferior frontal and superior temporal cortex, were modulated by the temporal complexity of the audiovisual signals. Our results, therefore, indicate specific processing roles for different subregions of the fronto-temporal cortex during audiovisual coherence detection.

  14. Movement Synchrony Forges Social Bonds Across Group Divides

    Directory of Open Access Journals (Sweden)

    Bahar eTuncgenc

    2016-05-01

    Full Text Available Group dynamics play an important role in the social interactions of both children and adults. A large amount of research has shown that merely being allocated to arbitrarily defined groups can evoke disproportionately positive attitudes toward one’s in-group and negative attitudes toward out-groups, and that these biases emerge in early childhood. This prompts important empirical questions with far-reaching theoretical and applied significance. How robust are these inter-group biases? Can biases be mitigated by behaviors known to bond individuals and groups together? How can bonds be forged across existing group divides? To explore these questions, we examined the bonding effects of interpersonal synchrony on minimally constructed groups in a controlled experiment. In-group and out-group bonding were assessed using questionnaires administered before and after a task in which groups performed movements either synchronously or non-synchronously in a between-participants design. We also developed an implicit behavioral measure, the Island Game, in which physical proximity was used as an indirect measure of interpersonal closeness. Self-report and behavioral measures showed increased bonding between groups after synchronous movement. Bonding with the out-group was significantly higher in the condition in which movements were performed synchronously than when movements were performed non-synchronously between groups. The findings are discussed in terms of their importance for the developmental social psychology of group dynamics as well as their implications for applied intervention programs.

  15. Synchrony and motor mimicking in chimpanzee observational learning.

    Science.gov (United States)

    Fuhrmann, Delia; Ravignani, Andrea; Marshall-Pescini, Sarah; Whiten, Andrew

    2014-06-13

    Cumulative tool-based culture underwrote our species' evolutionary success, and tool-based nut-cracking is one of the strongest candidates for cultural transmission in our closest relatives, chimpanzees. However the social learning processes that may explain both the similarities and differences between the species remain unclear. A previous study of nut-cracking by initially naïve chimpanzees suggested that a learning chimpanzee holding no hammer nevertheless replicated hammering actions it witnessed. This observation has potentially important implications for the nature of the social learning processes and underlying motor coding involved. In the present study, model and observer actions were quantified frame-by-frame and analysed with stringent statistical methods, demonstrating synchrony between the observer's and model's movements, cross-correlation of these movements above chance level and a unidirectional transmission process from model to observer. These results provide the first quantitative evidence for motor mimicking underlain by motor coding in apes, with implications for mirror neuron function.

  16. Interaction between Olfaction and Gustation by Using Synchrony Perception Task

    Directory of Open Access Journals (Sweden)

    Tatsu Kobayakawa

    2011-10-01

    Full Text Available It seems that interaction between olfaction (smell sensation and gustation (taste sensation will stronger than other interactions among five senses, although no one has ever confirmed psychophysically. In this study, we utilized synchrony perception task to confirm this specificity comparing control condition, interaction between vision and olfaction and one between vision and gustation. We used NaCl as taste stimuli and flavor from bubbling chicken stock as olfactory stimuli. We used taste stimulator which was able to present pure gustation without tactile stimuli, and smell stimulator with original developed real time stimulus monitoring. We used LED for vision stimuli. Timing of both stimuli was shifted from −1000 ms to +1000ms with each other, and participants were instructed to judge synchronicity. Control conditions revealed that olfaction and gustation has almost equivalent temporal resolution to other sensations. And probability distribution between olfaction and gustation was quite different from other interactions including vision. These results shows interaction between olfaction and gustation is more specific.

  17. Synchrony and motor mimicking in chimpanzee observational learning

    Science.gov (United States)

    Fuhrmann, Delia; Ravignani, Andrea; Marshall-Pescini, Sarah; Whiten, Andrew

    2014-01-01

    Cumulative tool-based culture underwrote our species' evolutionary success, and tool-based nut-cracking is one of the strongest candidates for cultural transmission in our closest relatives, chimpanzees. However the social learning processes that may explain both the similarities and differences between the species remain unclear. A previous study of nut-cracking by initially naïve chimpanzees suggested that a learning chimpanzee holding no hammer nevertheless replicated hammering actions it witnessed. This observation has potentially important implications for the nature of the social learning processes and underlying motor coding involved. In the present study, model and observer actions were quantified frame-by-frame and analysed with stringent statistical methods, demonstrating synchrony between the observer's and model's movements, cross-correlation of these movements above chance level and a unidirectional transmission process from model to observer. These results provide the first quantitative evidence for motor mimicking underlain by motor coding in apes, with implications for mirror neuron function. PMID:24923651

  18. Rhythm and interpersonal synchrony in early social development.

    Science.gov (United States)

    Trainor, Laurel J; Cirelli, Laura

    2015-03-01

    Adults who engage in synchronous movement to music later report liking each other better, remembering more about each other, trusting each other more, and are more likely to cooperate with each other compared to adults who engage in asynchronous movements. Although poor motor coordination limits infants' ability to entrain to a musical beat, they perceive metrical structure in auditory rhythm patterns, their movements are affected by the tempo of music they hear, and if they are bounced by an adult to a rhythm pattern, the manner of this bouncing can affect their auditory interpretation of the meter of that pattern. In this paper, we review studies showing that by 14 months of age, infants who are bounced in synchrony with an adult subsequently show more altruistic behavior toward that adult in the form of handing back objects "accidentally" dropped by the adult compared to infants who are bounced asynchronously with the adult. Furthermore, increased helpfulness is directed at the synchronized bounce partner, but not at a neutral stranger. Interestingly, however, helpfulness does generalize to a "friend" of the synchronized bounce partner. In sum, synchronous movement between infants and adults has a powerful effect on infants' expression of directed prosocial behavior. © 2014 New York Academy of Sciences.

  19. Visual Orientation and Directional Selectivity through Thalamic Synchrony

    Science.gov (United States)

    Stanley, Garrett B.; Jin, Jianzhong; Wang, Yushi; Desbordes, Gaëlle; Wang, Qi; Black, Michael J.; Alonso, Jose-Manuel

    2012-01-01

    Thalamic neurons respond to visual scenes by generating synchronous spike trains on the timescale of 10 – 20 ms that are very effective at driving cortical targets. Here we demonstrate that this synchronous activity contains unexpectedly rich information about fundamental properties of visual stimuli. We report that the occurrence of synchronous firing of cat thalamic cells with highly overlapping receptive fields is strongly sensitive to the orientation and the direction of motion of the visual stimulus. We show that this stimulus selectivity is robust, remaining relatively unchanged under different contrasts and temporal frequencies (stimulus velocities). A computational analysis based on an integrate-and-fire model of the direct thalamic input to a layer 4 cortical cell reveals a strong correlation between the degree of thalamic synchrony and the nonlinear relationship between cortical membrane potential and the resultant firing rate. Together, these findings suggest a novel population code in the synchronous firing of neurons in the early visual pathway that could serve as the substrate for establishing cortical representations of the visual scene. PMID:22745507

  20. Local changes in the excitability of the cerebellar cortex produce spatially restricted changes in complex spike synchrony.

    Science.gov (United States)

    Marshall, Sarah P; Lang, Eric J

    2009-11-11

    Complex spike (CS) synchrony patterns are modulated by the release of GABA within the inferior olive (IO). The GABAergic projection to most of the IO arises from the cerebellar nuclei, which are themselves subject to strong inhibitory control by Purkinje cells in the overlying cortex. Moreover, the connections between the IO and cerebellum are precisely aligned, raising the possibility that each cortical region controls its own CS synchrony distribution. This possibility was tested using multielectrode recordings of CSs and simple spikes (SSs) in crus 2a of anesthetized rats. Picrotoxin or muscimol was applied to the cerebellar cortex at the borders of the recording array. These drugs induced significant changes in CS synchrony and in CS and SS firing rates and changes in post-CS pauses and modulation of SS activity. The level of CS synchrony was correlated with SS firing rate in control, and application of picrotoxin increased both. In contrast, muscimol decreased CS synchrony. Furthermore, when picrotoxin was applied only at the lateral edge of the array, changes in CS synchrony occurred sequentially across the recording array, with cells located in the lateral half of the array having earlier and larger changes in CS synchrony than cells in the medial half. The results indicate that a double-inhibitory feedback circuit from Purkinje cells to the IO provides a mechanism by which SS activity may regulate CS synchrony. Thus, CS synchrony may be a physiologically controlled parameter of cerebellar activity, with the cerebellum and IO comprising a series of self-updating circuits.

  1. Quality level of a treatment by Cyberknife with Synchrony; Niveau de qualite d'un traitement par le CyberKnife avec Synchrony

    Energy Technology Data Exchange (ETDEWEB)

    Khawaja, M.S.A.; Noel, A. [CRAN UMR 7039, CNRS, 54 - Vandoeuvre-les-Nancy (France); Centre Alexis-Vautrin, 54 - Vandoeuvre-les-Nancy (France); Nancy-1 Univ., 54 (France); Marchesi, V. [Centre Alexis-Vautrin, 54 - Vandoeuvre-les-Nancy (France); Wolf, D. [INPL CRAN UMR 7039, CNRS, 54 - Vandoeuvre-les-Nancy (France)

    2009-10-15

    The Cyberknife and its Synchrony associated subsystem represent a very reliable mean to treat the tumors of soft tissues moving with respiration. It allows to guarantee a high quality of treatment because of sub-millimetric accuracy whatever be the complexity degree of the patient respiration cycle. (N.C.)

  2. Simple skew category algebras associated with minimal partially defined dynamical systems

    DEFF Research Database (Denmark)

    Nystedt, Patrik; Öinert, Per Johan

    2013-01-01

    In this article, we continue our study of category dynamical systems, that is functors s from a category G to Topop, and their corresponding skew category algebras. Suppose that the spaces s(e), for e∈ob(G), are compact Hausdorff. We show that if (i) the skew category algebra is simple, then (ii) G...

  3. Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow

    NARCIS (Netherlands)

    van der A, D.A.; O' Donoghue, T.; Davies, A.G; Ribberink, Jan S.

    2011-01-01

    Experiments have been conducted in a large oscillatory flow tunnel to investigate the effects of acceleration skewness on oscillatory boundary layer flow over fixed beds. As well as enabling experimental investigation of the effects of acceleration skewness, the new experiments add substantially to

  4. Likelihood Inference of Nonlinear Models Based on a Class of Flexible Skewed Distributions

    Directory of Open Access Journals (Sweden)

    Xuedong Chen

    2014-01-01

    Full Text Available This paper deals with the issue of the likelihood inference for nonlinear models with a flexible skew-t-normal (FSTN distribution, which is proposed within a general framework of flexible skew-symmetric (FSS distributions by combining with skew-t-normal (STN distribution. In comparison with the common skewed distributions such as skew normal (SN, and skew-t (ST as well as scale mixtures of skew normal (SMSN, the FSTN distribution can accommodate more flexibility and robustness in the presence of skewed, heavy-tailed, especially multimodal outcomes. However, for this distribution, a usual approach of maximum likelihood estimates based on EM algorithm becomes unavailable and an alternative way is to return to the original Newton-Raphson type method. In order to improve the estimation as well as the way for confidence estimation and hypothesis test for the parameters of interest, a modified Newton-Raphson iterative algorithm is presented in this paper, based on profile likelihood for nonlinear regression models with FSTN distribution, and, then, the confidence interval and hypothesis test are also developed. Furthermore, a real example and simulation are conducted to demonstrate the usefulness and the superiority of our approach.

  5. Torque ripple minimization in a doubly salient permanent magnet motors by skewing the rotor teeth

    International Nuclear Information System (INIS)

    Sheth, N.K.; Sekharbabu, A.R.C.; Rajagopal, K.R.

    2006-01-01

    This paper presents the effects of skewing the rotor teeth on the performance of an 8/6 doubly salient permanent magnet motor using a simple method, which utilizes the results obtained from the 2-D FE analysis. The optimum skewing angle is obtained as 12-15 o for the least ripple torque without much reduction in the back-emf

  6. Neoclassical versus Frontier Production Models ? Testing for the Skewness of Regression Residuals

    DEFF Research Database (Denmark)

    Kuosmanen, T; Fosgerau, Mogens

    2009-01-01

    The empirical literature on production and cost functions is divided into two strands. The neoclassical approach concentrates on model parameters, while the frontier approach decomposes the disturbance term to a symmetric noise term and a positively skewed inefficiency term. We propose a theoreti......The empirical literature on production and cost functions is divided into two strands. The neoclassical approach concentrates on model parameters, while the frontier approach decomposes the disturbance term to a symmetric noise term and a positively skewed inefficiency term. We propose...... a theoretical justification for the skewness of the inefficiency term, arguing that this skewness is the key testable hypothesis of the frontier approach. We propose to test the regression residuals for skewness in order to distinguish the two competing approaches. Our test builds directly upon the asymmetry...

  7. A Psychophysical Investigation of Differences between Synchrony and Temporal Order Judgments

    Science.gov (United States)

    Love, Scott A.; Petrini, Karin; Cheng, Adam; Pollick, Frank E.

    2013-01-01

    Background Synchrony judgments involve deciding whether cues to an event are in synch or out of synch, while temporal order judgments involve deciding which of the cues came first. When the cues come from different sensory modalities these judgments can be used to investigate multisensory integration in the temporal domain. However, evidence indicates that that these two tasks should not be used interchangeably as it is unlikely that they measure the same perceptual mechanism. The current experiment further explores this issue across a variety of different audiovisual stimulus types. Methodology/Principal Findings Participants were presented with 5 audiovisual stimulus types, each at 11 parametrically manipulated levels of cue asynchrony. During separate blocks, participants had to make synchrony judgments or temporal order judgments. For some stimulus types many participants were unable to successfully make temporal order judgments, but they were able to make synchrony judgments. The mean points of subjective simultaneity for synchrony judgments were all video-leading, while those for temporal order judgments were all audio-leading. In the within participants analyses no correlation was found across the two tasks for either the point of subjective simultaneity or the temporal integration window. Conclusions Stimulus type influenced how the two tasks differed; nevertheless, consistent differences were found between the two tasks regardless of stimulus type. Therefore, in line with previous work, we conclude that synchrony and temporal order judgments are supported by different perceptual mechanisms and should not be interpreted as being representative of the same perceptual process. PMID:23349971

  8. Audio-visual synchrony and feature-selective attention co-amplify early visual processing.

    Science.gov (United States)

    Keitel, Christian; Müller, Matthias M

    2016-05-01

    Our brain relies on neural mechanisms of selective attention and converging sensory processing to efficiently cope with rich and unceasing multisensory inputs. One prominent assumption holds that audio-visual synchrony can act as a strong attractor for spatial attention. Here, we tested for a similar effect of audio-visual synchrony on feature-selective attention. We presented two superimposed Gabor patches that differed in colour and orientation. On each trial, participants were cued to selectively attend to one of the two patches. Over time, spatial frequencies of both patches varied sinusoidally at distinct rates (3.14 and 3.63 Hz), giving rise to pulse-like percepts. A simultaneously presented pure tone carried a frequency modulation at the pulse rate of one of the two visual stimuli to introduce audio-visual synchrony. Pulsed stimulation elicited distinct time-locked oscillatory electrophysiological brain responses. These steady-state responses were quantified in the spectral domain to examine individual stimulus processing under conditions of synchronous versus asynchronous tone presentation and when respective stimuli were attended versus unattended. We found that both, attending to the colour of a stimulus and its synchrony with the tone, enhanced its processing. Moreover, both gain effects combined linearly for attended in-sync stimuli. Our results suggest that audio-visual synchrony can attract attention to specific stimulus features when stimuli overlap in space.

  9. Synchrony in Psychotherapy: A Review and an Integrative Framework for the Therapeutic Alliance

    Science.gov (United States)

    Koole, Sander L.; Tschacher, Wolfgang

    2016-01-01

    During psychotherapy, patient and therapist tend to spontaneously synchronize their vocal pitch, bodily movements, and even their physiological processes. In the present article, we consider how this pervasive phenomenon may shed new light on the therapeutic relationship– or alliance– and its role within psychotherapy. We first review clinical research on the alliance and the multidisciplinary area of interpersonal synchrony. We then integrate both literatures in the Interpersonal Synchrony (In-Sync) model of psychotherapy. According to the model, the alliance is grounded in the coupling of patient and therapist’s brains. Because brains do not interact directly, movement synchrony may help to establish inter-brain coupling. Inter-brain coupling may provide patient and therapist with access to another’s internal states, which facilitates common understanding and emotional sharing. Over time, these interpersonal exchanges may improve patients’ emotion-regulatory capacities and related therapeutic outcomes. We discuss the empirical assessment of interpersonal synchrony and review preliminary research on synchrony in psychotherapy. Finally, we summarize our main conclusions and consider the broader implications of viewing psychotherapy as the product of two interacting brains. PMID:27378968

  10. Nonverbal Synchrony in Social Interactions of Patients with Schizophrenia Indicates Socio-Communicative Deficits.

    Directory of Open Access Journals (Sweden)

    Zeno Kupper

    Full Text Available Disordered interpersonal communication can be a serious problem in schizophrenia. Recent advances in computer-based measures allow reliable and objective quantification of nonverbal behavior. Research using these novel measures has shown that objective amounts of body and head movement in patients with schizophrenia during social interactions are closely related to the symptom profiles of these patients. In addition to and above mere amounts of movement, the degree of synchrony, or imitation, between patients and normal interactants may be indicative of core deficits underlying various problems in domains related to interpersonal communication, such as symptoms, social competence, and social functioning.Nonverbal synchrony was assessed objectively using Motion Energy Analysis (MEA in 378 brief, videotaped role-play scenes involving 27 stabilized outpatients diagnosed with paranoid-type schizophrenia.Low nonverbal synchrony was indicative of symptoms, low social competence, impaired social functioning, and low self-evaluation of competence. These relationships remained largely significant when correcting for the amounts of patients' movement. When patients showed reduced imitation of their interactants' movements, negative symptoms were likely to be prominent. Conversely, positive symptoms were more prominent in patients when their interaction partners' imitation of their movements was reduced.Nonverbal synchrony can be an objective and sensitive indicator of the severity of patients' problems. Furthermore, quantitative analysis of nonverbal synchrony may provide novel insights into specific relationships between symptoms, cognition, and core communicative problems in schizophrenia.

  11. Synchrony in Psychotherapy: A Review and an Integrative Framework for the Therapeutic Alliance.

    Science.gov (United States)

    Koole, Sander L; Tschacher, Wolfgang

    2016-01-01

    During psychotherapy, patient and therapist tend to spontaneously synchronize their vocal pitch, bodily movements, and even their physiological processes. In the present article, we consider how this pervasive phenomenon may shed new light on the therapeutic relationship- or alliance- and its role within psychotherapy. We first review clinical research on the alliance and the multidisciplinary area of interpersonal synchrony. We then integrate both literatures in the Interpersonal Synchrony (In-Sync) model of psychotherapy. According to the model, the alliance is grounded in the coupling of patient and therapist's brains. Because brains do not interact directly, movement synchrony may help to establish inter-brain coupling. Inter-brain coupling may provide patient and therapist with access to another's internal states, which facilitates common understanding and emotional sharing. Over time, these interpersonal exchanges may improve patients' emotion-regulatory capacities and related therapeutic outcomes. We discuss the empirical assessment of interpersonal synchrony and review preliminary research on synchrony in psychotherapy. Finally, we summarize our main conclusions and consider the broader implications of viewing psychotherapy as the product of two interacting brains.

  12. Temporal Synchrony Detection and Associations with Language in Young Children with ASD

    Directory of Open Access Journals (Sweden)

    Elena Patten

    2014-01-01

    Full Text Available Temporally synchronous audio-visual stimuli serve to recruit attention and enhance learning, including language learning in infants. Although few studies have examined this effect on children with autism, it appears that the ability to detect temporal synchrony between auditory and visual stimuli may be impaired, particularly given social-linguistic stimuli delivered via oral movement and spoken language pairings. However, children with autism can detect audio-visual synchrony given nonsocial stimuli (objects dropping and their corresponding sounds. We tested whether preschool children with autism could detect audio-visual synchrony given video recordings of linguistic stimuli paired with movement of related toys in the absence of faces. As a group, children with autism demonstrated the ability to detect audio-visual synchrony. Further, the amount of time they attended to the synchronous condition was positively correlated with receptive language. Findings suggest that object manipulations may enhance multisensory processing in linguistic contexts. Moreover, associations between synchrony detection and language development suggest that better processing of multisensory stimuli may guide and direct attention to communicative events thus enhancing linguistic development.

  13. A psychophysical investigation of differences between synchrony and temporal order judgments.

    Science.gov (United States)

    Love, Scott A; Petrini, Karin; Cheng, Adam; Pollick, Frank E

    2013-01-01

    Synchrony judgments involve deciding whether cues to an event are in synch or out of synch, while temporal order judgments involve deciding which of the cues came first. When the cues come from different sensory modalities these judgments can be used to investigate multisensory integration in the temporal domain. However, evidence indicates that that these two tasks should not be used interchangeably as it is unlikely that they measure the same perceptual mechanism. The current experiment further explores this issue across a variety of different audiovisual stimulus types. Participants were presented with 5 audiovisual stimulus types, each at 11 parametrically manipulated levels of cue asynchrony. During separate blocks, participants had to make synchrony judgments or temporal order judgments. For some stimulus types many participants were unable to successfully make temporal order judgments, but they were able to make synchrony judgments. The mean points of subjective simultaneity for synchrony judgments were all video-leading, while those for temporal order judgments were all audio-leading. In the within participants analyses no correlation was found across the two tasks for either the point of subjective simultaneity or the temporal integration window. Stimulus type influenced how the two tasks differed; nevertheless, consistent differences were found between the two tasks regardless of stimulus type. Therefore, in line with previous work, we conclude that synchrony and temporal order judgments are supported by different perceptual mechanisms and should not be interpreted as being representative of the same perceptual process.

  14. A psychophysical investigation of differences between synchrony and temporal order judgments.

    Directory of Open Access Journals (Sweden)

    Scott A Love

    Full Text Available BACKGROUND: Synchrony judgments involve deciding whether cues to an event are in synch or out of synch, while temporal order judgments involve deciding which of the cues came first. When the cues come from different sensory modalities these judgments can be used to investigate multisensory integration in the temporal domain. However, evidence indicates that that these two tasks should not be used interchangeably as it is unlikely that they measure the same perceptual mechanism. The current experiment further explores this issue across a variety of different audiovisual stimulus types. METHODOLOGY/PRINCIPAL FINDINGS: Participants were presented with 5 audiovisual stimulus types, each at 11 parametrically manipulated levels of cue asynchrony. During separate blocks, participants had to make synchrony judgments or temporal order judgments. For some stimulus types many participants were unable to successfully make temporal order judgments, but they were able to make synchrony judgments. The mean points of subjective simultaneity for synchrony judgments were all video-leading, while those for temporal order judgments were all audio-leading. In the within participants analyses no correlation was found across the two tasks for either the point of subjective simultaneity or the temporal integration window. CONCLUSIONS: Stimulus type influenced how the two tasks differed; nevertheless, consistent differences were found between the two tasks regardless of stimulus type. Therefore, in line with previous work, we conclude that synchrony and temporal order judgments are supported by different perceptual mechanisms and should not be interpreted as being representative of the same perceptual process.

  15. Out-of-synchrony speech entrainment in developmental dyslexia.

    Science.gov (United States)

    Molinaro, Nicola; Lizarazu, Mikel; Lallier, Marie; Bourguignon, Mathieu; Carreiras, Manuel

    2016-08-01

    Developmental dyslexia is a reading disorder often characterized by reduced awareness of speech units. Whether the neural source of this phonological disorder in dyslexic readers results from the malfunctioning of the primary auditory system or damaged feedback communication between higher-order phonological regions (i.e., left inferior frontal regions) and the auditory cortex is still under dispute. Here we recorded magnetoencephalographic (MEG) signals from 20 dyslexic readers and 20 age-matched controls while they were listening to ∼10-s-long spoken sentences. Compared to controls, dyslexic readers had (1) an impaired neural entrainment to speech in the delta band (0.5-1 Hz); (2) a reduced delta synchronization in both the right auditory cortex and the left inferior frontal gyrus; and (3) an impaired feedforward functional coupling between neural oscillations in the right auditory cortex and the left inferior frontal regions. This shows that during speech listening, individuals with developmental dyslexia present reduced neural synchrony to low-frequency speech oscillations in primary auditory regions that hinders higher-order speech processing steps. The present findings, thus, strengthen proposals assuming that improper low-frequency acoustic entrainment affects speech sampling. This low speech-brain synchronization has the strong potential to cause severe consequences for both phonological and reading skills. Interestingly, the reduced speech-brain synchronization in dyslexic readers compared to normal readers (and its higher-order consequences across the speech processing network) appears preserved through the development from childhood to adulthood. Thus, the evaluation of speech-brain synchronization could possibly serve as a diagnostic tool for early detection of children at risk of dyslexia. Hum Brain Mapp 37:2767-2783, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Perceived synchrony for realistic and dynamic audiovisual events.

    Science.gov (United States)

    Eg, Ragnhild; Behne, Dawn M

    2015-01-01

    In well-controlled laboratory experiments, researchers have found that humans can perceive delays between auditory and visual signals as short as 20 ms. Conversely, other experiments have shown that humans can tolerate audiovisual asynchrony that exceeds 200 ms. This seeming contradiction in human temporal sensitivity can be attributed to a number of factors such as experimental approaches and precedence of the asynchronous signals, along with the nature, duration, location, complexity and repetitiveness of the audiovisual stimuli, and even individual differences. In order to better understand how temporal integration of audiovisual events occurs in the real world, we need to close the gap between the experimental setting and the complex setting of everyday life. With this work, we aimed to contribute one brick to the bridge that will close this gap. We compared perceived synchrony for long-running and eventful audiovisual sequences to shorter sequences that contain a single audiovisual event, for three types of content: action, music, and speech. The resulting windows of temporal integration showed that participants were better at detecting asynchrony for the longer stimuli, possibly because the long-running sequences contain multiple corresponding events that offer audiovisual timing cues. Moreover, the points of subjective simultaneity differ between content types, suggesting that the nature of a visual scene could influence the temporal perception of events. An expected outcome from this type of experiment was the rich variation among participants' distributions and the derived points of subjective simultaneity. Hence, the designs of similar experiments call for more participants than traditional psychophysical studies. Heeding this caution, we conclude that existing theories on multisensory perception are ready to be tested on more natural and representative stimuli.

  17. Skew category algebras associated with partially defined dynamical systems

    DEFF Research Database (Denmark)

    Lundström, Patrik; Öinert, Per Johan

    2012-01-01

    We introduce partially defined dynamical systems defined on a topological space. To each such system we associate a functor s from a category G to Topop and show that it defines what we call a skew category algebra A ⋊σ G. We study the connection between topological freeness of s and, on the one...... hand, ideal properties of A ⋊σ G and, on the other hand, maximal commutativity of A in A ⋊σ G. In particular, we show that if G is a groupoid and for each e ∈ ob(G) the group of all morphisms e → e is countable and the topological space s(e) is Tychonoff and Baire. Then the following assertions...... are equivalent: (i) s is topologically free; (ii) A has the ideal intersection property, i.e. if I is a nonzero ideal of A ⋊σ G, then I ∩ A ≠ {0}; (iii) the ring A is a maximal abelian complex subalgebra of A ⋊σ G. Thereby, we generalize a result by Svensson, Silvestrov and de Jeu from the additive group...

  18. Statistics on cannabis users skew perceptions of cannabis use

    Directory of Open Access Journals (Sweden)

    Rachel Melissa Burns

    2013-11-01

    Full Text Available Collecting information about the prevalence of cannabis use is necessary but not sufficient for understanding the size, dynamics, and outcomes associated with cannabis markets. This paper uses two data sets describing cannabis consumption in the United States and Europe to highlight 1 differences in inferences about sub-populations based on the measure used to quantify cannabis-related activity; 2 how different measures of cannabis-related activity can be used to more accurately describe trends in cannabis usage over time; and 3 the correlation between frequency of use in the past month and average grams consumed per day. Key findings: Focusing on days of use instead of prevalence shows substantially greater increases in U.S. cannabis use in recent years; however, the recent increase is mostly among adults, not youth. Relatively more rapid growth in use days also occurred among the college-educated and Hispanic. Further, data from a survey conducted in several European countries show a strong positive correlation between frequency of use and quantity consumed per day of use, suggesting consumption is even more skewed toward the minority of heavy users than is suggested by days-of-use calculations.

  19. Skewness and kurtosis analysis for non-Gaussian distributions

    Science.gov (United States)

    Celikoglu, Ahmet; Tirnakli, Ugur

    2018-06-01

    In this paper we address a number of pitfalls regarding the use of kurtosis as a measure of deviations from the Gaussian. We treat kurtosis in both its standard definition and that which arises in q-statistics, namely q-kurtosis. We have recently shown that the relation proposed by Cristelli et al. (2012) between skewness and kurtosis can only be verified for relatively small data sets, independently of the type of statistics chosen; however it fails for sufficiently large data sets, if the fourth moment of the distribution is finite. For infinite fourth moments, kurtosis is not defined as the size of the data set tends to infinity. For distributions with finite fourth moments, the size, N, of the data set for which the standard kurtosis saturates to a fixed value, depends on the deviation of the original distribution from the Gaussian. Nevertheless, using kurtosis as a criterion for deciding which distribution deviates further from the Gaussian can be misleading for small data sets, even for finite fourth moment distributions. Going over to q-statistics, we find that although the value of q-kurtosis is finite in the range of 0 < q < 3, this quantity is not useful for comparing different non-Gaussian distributed data sets, unless the appropriate q value, which truly characterizes the data set of interest, is chosen. Finally, we propose a method to determine the correct q value and thereby to compute the q-kurtosis of q-Gaussian distributed data sets.

  20. Symmetries and structure of skewed and double distributions

    International Nuclear Information System (INIS)

    Radyushkin, A.V.

    1998-01-01

    Extending the concept of parton densities onto nonforward matrix elements b arO(0,z)vert b arp> of quark and gluon light-cone operators, one can use two types of nonperturbative functions: double distributions (DDs) f(x,α;t), F(x,y;t) and skewed (off and nonforward) parton distributions (SPDs) H(x,ξ;t), F ζ (X,t). The authors treat DDs as primary objects producing SPDs after integration. They emphasize the role of DDs in understanding interplay between (x) and ζ (ξ) dependences of SPDs. In particular, the use of DDs is crucial to secure the polynomiality condition: Nth moments of SPDs are Nth degree polynomials in the relevant skewedness parameter ζ or ξ. They propose simple ansaetze for DDs having correct spectral and symmetry properties and derive model expressions for SPDs satisfying all known constraints. Finally, they argue that for small skewedness, one can obtain SPDs from the usual parton densities by averaging the latter with an appropriate weight over the region [Xminusζ,X] (or [ x minus ξ, x + ξ])

  1. Active Drumming Experience Increases Infants' Sensitivity to Audiovisual Synchrony during Observed Drumming Actions.

    Science.gov (United States)

    Gerson, Sarah A; Schiavio, Andrea; Timmers, Renee; Hunnius, Sabine

    2015-01-01

    In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat) and assessed the effects of this training, relative to no training, on their later perception of the synchrony between audio and visual presentation of the drumming action. In a second experiment, we then contrasted this active experience with the observation of drumming in order to test whether observation of the audiovisual effect was as effective for sensitivity to multimodal synchrony as active experience. Our results indicated that active experience provided a unique benefit above and beyond observational experience, providing insights on the embodied roots of (early) music perception and cognition.

  2. Active Drumming Experience Increases Infants' Sensitivity to Audiovisual Synchrony during Observed Drumming Actions.

    Directory of Open Access Journals (Sweden)

    Sarah A Gerson

    Full Text Available In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat and assessed the effects of this training, relative to no training, on their later perception of the synchrony between audio and visual presentation of the drumming action. In a second experiment, we then contrasted this active experience with the observation of drumming in order to test whether observation of the audiovisual effect was as effective for sensitivity to multimodal synchrony as active experience. Our results indicated that active experience provided a unique benefit above and beyond observational experience, providing insights on the embodied roots of (early music perception and cognition.

  3. Active Drumming Experience Increases Infants’ Sensitivity to Audiovisual Synchrony during Observed Drumming Actions

    Science.gov (United States)

    Timmers, Renee; Hunnius, Sabine

    2015-01-01

    In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat) and assessed the effects of this training, relative to no training, on their later perception of the synchrony between audio and visual presentation of the drumming action. In a second experiment, we then contrasted this active experience with the observation of drumming in order to test whether observation of the audiovisual effect was as effective for sensitivity to multimodal synchrony as active experience. Our results indicated that active experience provided a unique benefit above and beyond observational experience, providing insights on the embodied roots of (early) music perception and cognition. PMID:26111226

  4. What Iconic Gesture Fragments Reveal about Gesture-Speech Integration: When Synchrony Is Lost, Memory Can Help

    Science.gov (United States)

    Obermeier, Christian; Holle, Henning; Gunter, Thomas C.

    2011-01-01

    The present series of experiments explores several issues related to gesture-speech integration and synchrony during sentence processing. To be able to more precisely manipulate gesture-speech synchrony, we used gesture fragments instead of complete gestures, thereby avoiding the usual long temporal overlap of gestures with their coexpressive…

  5. Non-linear analysis of skew thin plate by finite difference method

    International Nuclear Information System (INIS)

    Kim, Chi Kyung; Hwang, Myung Hwan

    2012-01-01

    This paper deals with a discrete analysis capability for predicting the geometrically nonlinear behavior of skew thin plate subjected to uniform pressure. The differential equations are discretized by means of the finite difference method which are used to determine the deflections and the in-plane stress functions of plates and reduced to several sets of linear algebraic simultaneous equations. For the geometrically non-linear, large deflection behavior of the plate, the non-linear plate theory is used for the analysis. An iterative scheme is employed to solve these quasi-linear algebraic equations. Several problems are solved which illustrate the potential of the method for predicting the finite deflection and stress. For increasing lateral pressures, the maximum principal tensile stress occurs at the center of the plate and migrates toward the corners as the load increases. It was deemed important to describe the locations of the maximum principal tensile stress as it occurs. The load-deflection relations and the maximum bending and membrane stresses for each case are presented and discussed

  6. Nested synchrony – a novel cross-scale interaction among neuronal oscillations

    Directory of Open Access Journals (Sweden)

    Simo eMonto

    2012-09-01

    Full Text Available Neuronal interactions form the basis for our brain function, and oscillations and synchrony are the principal candidates for mediating them in the cortical networks. Phase synchrony, where oscillatory neuronal ensembles directly synchronize their phases, enables precise integration between separated brain regions. However, it is unclear how neuronal interactions are dynamically coordinated in space and over time. Cross-scale effects have been proposed to be responsible for linking levels of processing hierarchy and to regulate neuronal dynamics. Most notably, nested oscillations, where the phase of a neuronal oscillation modulates the amplitude of a faster one, may locally integrate neuronal activities in distinct frequency bands. Yet, hierarchical control of inter-areal synchrony could provide a more comprehensive view to the dynamical structure of oscillatory interdependencies in the human brain.In this study, the notion of nested oscillations is extended to a cross-frequency and inter-areal model of oscillatory interactions. In this model, the phase of a slower oscillation modulates inter-areal synchrony in a higher frequency band. This would allow cross-scale integration of global interactions and, thus, offers a mechanism for binding distributed neuronal activities.We show that inter-areal phase synchrony can be modulated by the phase of a slower neuronal oscillation using magnetoencephalography. This effect is the most pronounced at frequencies below 35 Hz. Importantly, changes in oscillation amplitudes did not explain the findings. We expect that the novel cross-frequency interaction could offer new ways to understand the flexible but accurate dynamic organization of ongoing neuronal oscillations and synchrony.

  7. Study on seismic behaviour of integral concrete bridges with different skew angles through fragility curves

    Directory of Open Access Journals (Sweden)

    Mahmoud Reza ُُShiravand

    2017-12-01

    Full Text Available Bridges are key elements in urban transportation system and should be designed to sustain earthquake induced damages to be utilized after earthquake. Extensive damages during last earthquakes highlighted the importance of seismic assessment and damage estimation of bridges. Skewness is one of the primary parameters effects on seismic behavior of bridges. Skew bridges are defined as bridges with skew angle piers and abutments. In these bridges, the piers have some degrees of skewness due to construction restrictions, such as those caused by crossing a waterway, railway line or road. This paper aims to investigate seismic behavior of skew concrete bridges using damage criteria and estimate probability of piers damage with fragility curves. To this end, three types of concrete bridges with two, three and four spans and varying skew angles of 00 ,100, 200 and 300 are modeled with finite element software. Seismic responses of bridge piers under 10 earthquake ground motion records are calculated using incremental dynamic analysis. Following, damage criteria proposed by Mackie and Stojadinovic are used to define damage limits of bridge piers in four damage states of slight, moderate, extensive and complete and bridge fragility curves are developed. The results show that increasing skew angles increases the probability of damage occurrence, particularly in extensive and complete damage states.

  8. Time-delay-induced phase-transition to synchrony in coupled bursting neurons

    Science.gov (United States)

    Adhikari, Bhim Mani; Prasad, Awadhesh; Dhamala, Mukeshwar

    2011-06-01

    Signal transmission time delays in a network of nonlinear oscillators are known to be responsible for a variety of interesting dynamic behaviors including phase-flip transitions leading to synchrony or out of synchrony. Here, we uncover that phase-flip transitions are general phenomena and can occur in a network of coupled bursting neurons with a variety of coupling types. The transitions are marked by nonlinear changes in both temporal and phase-space characteristics of the coupled system. We demonstrate these phase-transitions with Hindmarsh-Rose and Leech-Heart interneuron models and discuss the implications of these results in understanding collective dynamics of bursting neurons in the brain.

  9. Shannon Entropy and Mutual Information for Multivariate Skew-Elliptical Distributions

    KAUST Repository

    Arellano-Valle, Reinaldo B.

    2012-02-27

    The entropy and mutual information index are important concepts developed by Shannon in the context of information theory. They have been widely studied in the case of the multivariate normal distribution. We first extend these tools to the full symmetric class of multivariate elliptical distributions and then to the more flexible families of multivariate skew-elliptical distributions. We study in detail the cases of the multivariate skew-normal and skew-t distributions. We implement our findings to the application of the optimal design of an ozone monitoring station network in Santiago de Chile. © 2012 Board of the Foundation of the Scandinavian Journal of Statistics.

  10. Skewness of the cosmic microwave background temperature fluctuations due to the non-linear gravitational instability

    International Nuclear Information System (INIS)

    Munshi, D.; Souradeep, T.; Starobinsky, A.A.

    1995-01-01

    The skewness of the temperature fluctuations of the cosmic microwave background (CMB) produced by initially Gaussian adiabatic perturbations with the flat (Harrison-Zeldovich) spectrum, which arises due to non-linear corrections to a gravitational potential at the matter-dominated stage, is calculated quantitatively. For the standard CDM model, the effect appears to be smaller than expected previously and lies below the cosmic variance limit even for small angles. The sign of the skewness is opposite to that of the skewness of density perturbations. (author)

  11. Shannon Entropy and Mutual Information for Multivariate Skew-Elliptical Distributions

    KAUST Repository

    Arellano-Valle, Reinaldo B.; Contreras-Reyes, Javier E.; Genton, Marc G.

    2012-01-01

    The entropy and mutual information index are important concepts developed by Shannon in the context of information theory. They have been widely studied in the case of the multivariate normal distribution. We first extend these tools to the full symmetric class of multivariate elliptical distributions and then to the more flexible families of multivariate skew-elliptical distributions. We study in detail the cases of the multivariate skew-normal and skew-t distributions. We implement our findings to the application of the optimal design of an ozone monitoring station network in Santiago de Chile. © 2012 Board of the Foundation of the Scandinavian Journal of Statistics.

  12. Synchrony of physiological activity during mother-child interaction: moderation by maternal history of major depressive disorder.

    Science.gov (United States)

    Woody, Mary L; Feurer, Cope; Sosoo, Effua E; Hastings, Paul D; Gibb, Brandon E

    2016-07-01

    Family environment plays an important role in the intergenerational transmission of major depressive disorder (MDD), but less is known about how day-to-day mother-child interactions may be disrupted in families with a history of MDD. Disruptions in mother-child synchrony, the dynamic and convergent exchange of physiological and behavioral cues during interactions, may be one important risk factor. Although maternal MDD is associated with a lack of mother-child synchrony at the behavioral level, no studies have examined the impact of maternal MDD on physiological synchrony. Therefore, this study examined whether maternal history of MDD moderates mother-child physiological synchrony [measured via respiratory sinus arrhythmia (RSA)] during positive and negative discussions. Children aged 7-11 years and mothers with either a history of MDD during the child's lifetime (n = 44) or no lifetime diagnosis of any mood disorder (n = 50) completed positive and negative discussion tasks while RSA was continuously recorded for both child and mother. Results indicated significant between-dyad and within-dyad group differences in physiological synchrony during positive and negative discussions. Between-dyad analyses revealed evidence of synchrony only among never depressed dyads, among whom higher average mother RSA during both discussions was associated with higher average child RSA. Within-dyad analyses revealed that never depressed dyads displayed positive synchrony (RSA concordance), whereas dyads with a history of maternal MDD displayed negative synchrony (RSA discordance) during the negative discussion and that the degree of negative synchrony exhibited during the negative discussion was associated with mothers' and children's levels of sadness. These results provide preliminary evidence that physiological synchrony is disrupted in families with a history of maternal MDD and may be a potential risk factor for the intergenerational transmission of depression. © 2016

  13. Coalescent Processes with Skewed Offspring Distributions and Nonequilibrium Demography.

    Science.gov (United States)

    Matuszewski, Sebastian; Hildebrandt, Marcel E; Achaz, Guillaume; Jensen, Jeffrey D

    2018-01-01

    Nonequilibrium demography impacts coalescent genealogies leaving detectable, well-studied signatures of variation. However, similar genomic footprints are also expected under models of large reproductive skew, posing a serious problem when trying to make inference. Furthermore, current approaches consider only one of the two processes at a time, neglecting any genomic signal that could arise from their simultaneous effects, preventing the possibility of jointly inferring parameters relating to both offspring distribution and population history. Here, we develop an extended Moran model with exponential population growth, and demonstrate that the underlying ancestral process converges to a time-inhomogeneous psi-coalescent. However, by applying a nonlinear change of time scale-analogous to the Kingman coalescent-we find that the ancestral process can be rescaled to its time-homogeneous analog, allowing the process to be simulated quickly and efficiently. Furthermore, we derive analytical expressions for the expected site-frequency spectrum under the time-inhomogeneous psi-coalescent, and develop an approximate-likelihood framework for the joint estimation of the coalescent and growth parameters. By means of extensive simulation, we demonstrate that both can be estimated accurately from whole-genome data. In addition, not accounting for demography can lead to serious biases in the inferred coalescent model, with broad implications for genomic studies ranging from ecology to conservation biology. Finally, we use our method to analyze sequence data from Japanese sardine populations, and find evidence of high variation in individual reproductive success, but few signs of a recent demographic expansion. Copyright © 2018 by the Genetics Society of America.

  14. Brain-to-Brain Synchrony Tracks Real-World Dynamic Group Interactions in the Classroom.

    Science.gov (United States)

    Dikker, Suzanne; Wan, Lu; Davidesco, Ido; Kaggen, Lisa; Oostrik, Matthias; McClintock, James; Rowland, Jess; Michalareas, Georgios; Van Bavel, Jay J; Ding, Mingzhou; Poeppel, David

    2017-05-08

    The human brain has evolved for group living [1]. Yet we know so little about how it supports dynamic group interactions that the study of real-world social exchanges has been dubbed the "dark matter of social neuroscience" [2]. Recently, various studies have begun to approach this question by comparing brain responses of multiple individuals during a variety of (semi-naturalistic) tasks [3-15]. These experiments reveal how stimulus properties [13], individual differences [14], and contextual factors [15] may underpin similarities and differences in neural activity across people. However, most studies to date suffer from various limitations: they often lack direct face-to-face interaction between participants, are typically limited to dyads, do not investigate social dynamics across time, and, crucially, they rarely study social behavior under naturalistic circumstances. Here we extend such experimentation drastically, beyond dyads and beyond laboratory walls, to identify neural markers of group engagement during dynamic real-world group interactions. We used portable electroencephalogram (EEG) to simultaneously record brain activity from a class of 12 high school students over the course of a semester (11 classes) during regular classroom activities (Figures 1A-1C; Supplemental Experimental Procedures, section S1). A novel analysis technique to assess group-based neural coherence demonstrates that the extent to which brain activity is synchronized across students predicts both student class engagement and social dynamics. This suggests that brain-to-brain synchrony is a possible neural marker for dynamic social interactions, likely driven by shared attention mechanisms. This study validates a promising new method to investigate the neuroscience of group interactions in ecologically natural settings. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Investigation of free vibration characteristics for skew multiphase magneto-electro-elastic plate

    Science.gov (United States)

    Kiran, M. C.; Kattimani, S.

    2018-04-01

    This article presents the investigation of skew multiphase magneto-electro-elastic (MMEE) plate to assess its free vibration characteristics. A finite element (FE) model is formulated considering the different couplings involved via coupled constitutive equations. The transformation matrices are derived to transform local degrees of freedom into the global degrees of freedom for the nodes lying on the skew edges. Effect of different volume fraction (Vf) on the free vibration behavior is explicitly studied. In addition, influence of width to thickness ratio, the aspect ratio, and the stacking arrangement on natural frequencies of skew multiphase MEE plate investigated. Particular attention has been paid to investigate the effect of skew angle on the non-dimensional Eigen frequencies of multiphase MEE plate with simply supported edges.

  16. Quantifying the cross-sectional relationship between online sentiment and the skewness of stock returns

    Science.gov (United States)

    Shen, Dehua; Liu, Lanbiao; Zhang, Yongjie

    2018-01-01

    The constantly increasing utilization of social media as the alternative information channel, e.g., Twitter, provides us a unique opportunity to investigate the dynamics of the financial market. In this paper, we employ the daily happiness sentiment extracted from Twitter as the proxy for the online sentiment dynamics and investigate its association with the skewness of stock returns of 26 international stock market index returns. The empirical results show that: (1) by dividing the daily happiness sentiment into quintiles from the least to the most happiness days, the skewness of the Most-happiness subgroup is significantly larger than that of the Least-happiness subgroup. Besides, there exist significant differences in any pair of subgroups; (2) in an event study methodology, we further show that the skewness around the highest happiness days is significantly larger than the skewness around the lowest happiness days.

  17. On nomenclature for, and the relative merits of, two formulations of skew distributions

    KAUST Repository

    Azzalini, Adelchi

    2015-12-21

    We examine some skew distributions used extensively within the model-based clustering literature in recent years, paying special attention to claims that have been made about their relative efficacy. Theoretical arguments are provided as well as real data examples.

  18. Forces in wingwalls from thermal expansion of skewed semi-integral bridges.

    Science.gov (United States)

    2010-11-01

    Jointless bridges, such as semi-integral and integral bridges, have become more popular in recent years because of their simplicity in the construction and the elimination of high costs related to joint maintenance. Prior research has shown that skew...

  19. INVESTIGATION OF SEISMIC PERFORMANCE AND DESIGN OF TYPICAL CURVED AND SKEWED BRIDGES IN COLORADO

    Science.gov (United States)

    2018-01-15

    This report summarizes the analytical studies on the seismic performance of typical Colorado concrete bridges, particularly those with curved and skewed configurations. A set of bridge models with different geometric configurations derived from a pro...

  20. Skew information in the XY model with staggered Dzyaloshinskii-Moriya interaction

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Liang, E-mail: lqiu@cumt.edu.cn [School of Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Quan, Dongxiao [State Key Laboratory of Integrated Services Networks, Xidian University, Xi' an, Shaanxi 710071 (China); Pan, Fei; Liu, Zhi [School of Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China)

    2017-06-01

    We study the performance of the lower bound of skew information in the vicinity of transition point for the anisotropic spin-1/2 XY chain with staggered Dzyaloshinskii-Moriya interaction by use of quantum renormalization-group method. For a fixed value of the Dzyaloshinskii-Moriya interaction, there are two saturated values for the lower bound of skew information corresponding to the spin-fluid and Néel phases, respectively. The scaling exponent of the lower bound of skew information closely relates to the correlation length of the model and the Dzyaloshinskii-Moriya interaction shifts the factorization point. Our results show that the lower bound of skew information can be a good candidate to detect the critical point of XY spin chain with staggered Dzyaloshinskii-Moriya interaction.

  1. A novel technique for estimation of skew in binary text document ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Gatos et al (1997) have proposed a new skew detection method based on the information ..... different books, magazines and journals. ..... Duda R O, Hart P E 1973 Pattern classification and scene analysis (New York: Wiley-Interscience).

  2. On nomenclature for, and the relative merits of, two formulations of skew distributions

    KAUST Repository

    Azzalini, Adelchi; Browne, Ryan P.; Genton, Marc G.; McNicholas, Paul D.

    2015-01-01

    We examine some skew distributions used extensively within the model-based clustering literature in recent years, paying special attention to claims that have been made about their relative efficacy. Theoretical arguments are provided as well as real data examples.

  3. Measures of spike train synchrony for data with multiple time scales

    NARCIS (Netherlands)

    Satuvuori, Eero; Mulansky, Mario; Bozanic, Nebojsa; Malvestio, Irene; Zeldenrust, Fleur; Lenk, Kerstin; Kreuz, Thomas

    2017-01-01

    Background Measures of spike train synchrony are widely used in both experimental and computational neuroscience. Time-scale independent and parameter-free measures, such as the ISI-distance, the SPIKE-distance and SPIKE-synchronization, are preferable to time scale parametric measures, since by

  4. Prior Knowledge Facilitates Mutual Gaze Convergence and Head Nodding Synchrony in Face-to-face Communication.

    Science.gov (United States)

    Thepsoonthorn, C; Yokozuka, T; Miura, S; Ogawa, K; Miyake, Y

    2016-12-02

    As prior knowledge is claimed to be an essential key to achieve effective education, we are interested in exploring whether prior knowledge enhances communication effectiveness. To demonstrate the effects of prior knowledge, mutual gaze convergence and head nodding synchrony are observed as indicators of communication effectiveness. We conducted an experiment on lecture task between lecturer and student under 2 conditions: prior knowledge and non-prior knowledge. The students in prior knowledge condition were provided the basic information about the lecture content and were assessed their understanding by the experimenter before starting the lecture while the students in non-prior knowledge had none. The result shows that the interaction in prior knowledge condition establishes significantly higher mutual gaze convergence (t(15.03) = 6.72, p < 0.0001; α = 0.05, n = 20) and head nodding synchrony (t(16.67) = 1.83, p = 0.04; α = 0.05, n = 19) compared to non-prior knowledge condition. This study reveals that prior knowledge facilitates mutual gaze convergence and head nodding synchrony. Furthermore, the interaction with and without prior knowledge can be evaluated by measuring or observing mutual gaze convergence and head nodding synchrony.

  5. Synchrony in the snowshoe hare cycle in Northwestern North America, 1970-2012

    Science.gov (United States)

    C.J. Krebs; K. Kielland; J.P Bryant; M. O' Donoghue; F. Doyle; C. McIntyre; D. DiFolco; N. Berg; S. Carriere; R. Boonstra; S. Boutin; A. J. Kenney; D. G. Reid; K. Bodony; J. Putera; H. K. Timm; T. Burke.

    2013-01-01

    Snowshoe hares (Lepus americanus Erxleben, 1777) fluctuate in 9–10 year cycles throughout much of their North American range. Regional synchrony has been assumed to be the rule for these cycles, so that hare populations in virtually all of northwestern North America have been assumed to be in phase. We gathered qualitative and quantitative data on...

  6. Functioning within a relationship : Mother-infant synchrony and infant sleep

    NARCIS (Netherlands)

    de Graag, Jolien A.; Cox, Ralf F. A.; Hasselman, Fred; Jansen, Jarno; de Weerth, Carolina

    The aim of this study was to investigate the coupling of the biological system of infant sleep and the social system of mother-infant synchrony. Before birth and shortly after birth the systems appear to be connected, but it is unclear whether this remains the case over time. This study therefore

  7. Patterns of Geographic Synchrony in Growth and Reproduction of Oaks Within California and Beyond

    Science.gov (United States)

    Walter D. Koenig; Johannes M.H. Knops

    1997-01-01

    We measured patterns of spatial synchrony in growth and reproduction by oaks using direct acorn surveys, published data on acorn production, and tree-ring chronologies. The two data sets involving acorn production both indicate that acorn crops are detectably synchronous over areas of at least 500 to 1,000 km not only within individual species but among species that...

  8. Physical and Relational Aggression in Young Children: The Role of Mother-Child Interactional Synchrony

    Science.gov (United States)

    Ambrose, Holly N.; Menna, Rosanne

    2013-01-01

    This study examined the relationships between the quality of parent-child interactions, specifically interactional synchrony (IS), and physical and relational aggression in young children. Seventy-three children (3-6 years; 44 males, 29 females) and their mothers participated in this study. The children's level of aggression was assessed through…

  9. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts

    Science.gov (United States)

    He, Jing; Chen, Qianquan; Wei, Yuanyuan; Jiang, Feng; Yang, Meiling; Hao, Shuguang; Guo, Xiaojiao; Chen, Dahua; Kang, Le

    2016-01-01

    Developmental synchrony, the basis of uniform swarming, migration, and sexual maturation, is an important strategy for social animals to adapt to variable environments. However, the molecular mechanisms underlying developmental synchrony are largely unexplored. The migratory locust exhibits polyphenism between gregarious and solitarious individuals, with the former displaying more synchronous sexual maturation and migration than the latter. Here, we found that the egg-hatching time of gregarious locusts was more uniform compared with solitarious locusts and that microRNA-276 (miR-276) was expressed significantly higher in both ovaries and eggs of gregarious locusts than in solitarious locusts. Interestingly, inhibiting miR-276 in gregarious females and overexpressing it in solitarious females, respectively, caused more heterochronic and synchronous hatching of progeny eggs. Moreover, miR-276 directly targeted a transcription coactivator gene, brahma (brm), resulting in its up-regulation. Knockdown of brm not only resulted in asynchronous egg hatching in gregarious locusts but also impaired the miR-276–induced synchronous egg hatching in solitarious locusts. Mechanistically, miR-276 mediated brm activation in a manner that depended on the secondary structure of brm, namely, a stem-loop around the binding site of miR-276. Collectively, our results unravel a mechanism by which miR-276 enhances brm expression to promote developmental synchrony and provide insight into regulation of developmental homeostasis and population sustaining that are closely related to biological synchrony. PMID:26729868

  10. Tonal synchrony in mother-infant interaction based on harmonic and pentatonic series.

    Science.gov (United States)

    Van Puyvelde, Martine; Vanfleteren, Pol; Loots, Gerrit; Deschuyffeleer, Sara; Vinck, Bart; Jacquet, Wolfgang; Verhelst, Werner

    2010-12-01

    This study reports the occurrence of 'tonal synchrony' as a new dimension of early mother-infant interaction synchrony. The findings are based on a tonal and temporal analysis of vocal interactions between 15 mothers and their 3-month-old infants during 5 min of free-play in a laboratory setting. In total, 558 vocal exchanges were identified and analysed, of which 84% reflected harmonic or pentatonic series. Another 10% of the exchanges contained absolute and/or relative pitch and/or interval imitations. The total durations of dyads being in tonal synchrony were normally distributed (M=3.71, SD=2.44). Vocalisations based on harmonic series appeared organised around the major triad, containing significantly more simple frequency ratios (octave, fifth and third) than complex ones (non-major triad tones). Tonal synchrony and its characteristics are discussed in relation to infant-directed speech, communicative musicality, pre-reflective communication and its impact on the quality of early mother-infant interaction and child's development. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Interpersonal synchrony enhanced through 20 Hz phase-coupled dual brain stimulation

    Science.gov (United States)

    Knoblich, Günther; Dunne, Laura; Keller, Peter E.

    2017-01-01

    Abstract Synchronous movement is a key component of social behavior in several species including humans. Recent theories have suggested a link between interpersonal synchrony of brain oscillations and interpersonal movement synchrony. The present study investigated this link. Using transcranial alternating current stimulation (tACS) applied over the left motor cortex, we induced beta band (20 Hz) oscillations in pairs of individuals who both performed a finger-tapping task with the right hand. In-phase or anti-phase oscillations were delivered during a preparatory period prior to movement and while the tapping task was performed. In-phase 20 Hz stimulation enhanced interpersonal movement synchrony, compared with anti-phase or sham stimulation, particularly for the initial taps following the preparatory period. This was confirmed in an analysis comparing real vs pseudo pair surrogate data. No enhancement was observed for stimulation frequencies of 2 Hz (matching the target movement frequency) or 10 Hz (alpha band). Thus, phase-coupling of beta band neural oscillations across two individuals’ (resting) motor cortices supports the interpersonal alignment of sensorimotor processes that regulate rhythmic action initiation, thereby facilitating the establishment of synchronous movement. Phase-locked dual brain stimulation provides a promising method to study causal effects of interpersonal brain synchrony on social, sensorimotor and cognitive processes. PMID:28119510

  12. Mother-adolescent physiological synchrony in naturalistic settings: within-family cortisol associations and moderators.

    Science.gov (United States)

    Papp, Lauren M; Pendry, Patricia; Adam, Emma K

    2009-12-01

    In this study, the authors examined parent-adolescent cortisol associations in 45 families with adolescent children (24 girls; M age = 15.78 years, SD = 1.44 years). Family members' salivary cortisol levels were measured seven times a day on 2 typical weekdays. Family members provided reports of demographic and health variables, and adolescents rated parent-child relationship characteristics. After accounting for the effects of time of day and relevant demographic and health control variables on cortisol levels, hierarchical linear models indicated the presence of significant covariation over time in mother-adolescent cortisol (i.e., physiological synchrony). Furthermore, moderating tests revealed that mother-adolescent cortisol synchrony was strengthened among dyads characterized by mothers and adolescents spending more time together, and in families rated higher on levels of parent-youth shared activities and parental monitoring or supervision. Analysis of momentary characteristics indicated that maternal presence at the time of cortisol sampling lowered adolescent cortisol levels but did not account for mother-adolescent cortisol synchrony. Within-family physiological synchrony was amplified in momentary contexts of elevated maternal negative affect and elevated adolescent negative affect.

  13. Active drumming experience increases infants' sensitivity to audiovisual synchrony during observed drumming actions

    NARCIS (Netherlands)

    Gerson, S.A.; Schiavio, A.A.R.; Timmers, R.; Hunnius, S.

    2015-01-01

    In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat) and assessed the effects of this

  14. Spatial synchrony propagates through a forest food web via consumer-resource interactions

    Science.gov (United States)

    Kyle J. ​Haynes; Andrew M. Liebhold; Todd M. Fearer; Guiming Wang; Gary W. Norman; Derek M. Johnson

    2009-01-01

    In many study systems, populations fluctuate synchronously across large regions. Several mechanisms have been advanced to explain this, but their importance in nature is often uncertain. Theoretical studies suggest that spatial synchrony initiated in one species through Moran effects may propagate among trophically linked species, but evidence for this in nature is...

  15. Selective Attention to a Talker's Mouth in Infancy: Role of Audiovisual Temporal Synchrony and Linguistic Experience

    Science.gov (United States)

    Hillairet de Boisferon, Anne; Tift, Amy H.; Minar, Nicholas J.; Lewkowicz, David J.

    2017-01-01

    Previous studies have found that infants shift their attention from the eyes to the mouth of a talker when they enter the canonical babbling phase after 6 months of age. Here, we investigated whether this increased attentional focus on the mouth is mediated by audio-visual synchrony and linguistic experience. To do so, we tracked eye gaze in 4-,…

  16. REGIONAL DYNAMICS OF WETLAND-BREEDING FROGS AND TOADS: TURNOVER AND SYNCHRONY

    Science.gov (United States)

    We used data from a statewide frog monitoring network to investigate population turnover and synchrony in eight wetland-breeding species. We found that subpopulations at many sites turn over frequently, with breeding choruses absent or undetectable in most years. Frequencies of d...

  17. Speaker detection for conversational robots using synchrony between audio and video

    NARCIS (Netherlands)

    Noulas, A.; Englebienne, G.; Terwijn, B.; Kröse, B.; Hanheide, M.; Zender, H.

    2010-01-01

    This paper compares different methods for detecting the speaking person when multiple persons are interacting with a robot. We evaluate the state-of-the-art speaker detection methods on the iCat robot. These methods use the synchrony between audio and video to locate the most probable speaker. We

  18. Patient-ventilator trigger dys-synchrony: a common phenomenon with important implications

    OpenAIRE

    MacIntyre, Neil

    2013-01-01

    Patient-ventilator trigger dys-synchronies are common with the use of assisted forms of mechanical ventilatory support, including non-invasive mechanical ventilatory support (NIV). Future system designs need to address this in order to improve the effectiveness of NIV.

  19. Geometric representation of the mean-variance-skewness portfolio frontier based upon the shortage function

    OpenAIRE

    Kerstens, Kristiaan; Mounier, Amine; Van de Woestyne, Ignace

    2008-01-01

    The literature suggests that investors prefer portfolios based on mean, variance and skewness rather than portfolios based on mean-variance (MV) criteria solely. Furthermore, a small variety of methods have been proposed to determine mean-variance-skewness (MVS) optimal portfolios. Recently, the shortage function has been introduced as a measure of efficiency, allowing to characterize MVS optimalportfolios using non-parametric mathematical programming tools. While tracing the MV portfolio fro...

  20. Normalization of High Dimensional Genomics Data Where the Distribution of the Altered Variables Is Skewed

    Science.gov (United States)

    Landfors, Mattias; Philip, Philge; Rydén, Patrik; Stenberg, Per

    2011-01-01

    Genome-wide analysis of gene expression or protein binding patterns using different array or sequencing based technologies is now routinely performed to compare different populations, such as treatment and reference groups. It is often necessary to normalize the data obtained to remove technical variation introduced in the course of conducting experimental work, but standard normalization techniques are not capable of eliminating technical bias in cases where the distribution of the truly altered variables is skewed, i.e. when a large fraction of the variables are either positively or negatively affected by the treatment. However, several experiments are likely to generate such skewed distributions, including ChIP-chip experiments for the study of chromatin, gene expression experiments for the study of apoptosis, and SNP-studies of copy number variation in normal and tumour tissues. A preliminary study using spike-in array data established that the capacity of an experiment to identify altered variables and generate unbiased estimates of the fold change decreases as the fraction of altered variables and the skewness increases. We propose the following work-flow for analyzing high-dimensional experiments with regions of altered variables: (1) Pre-process raw data using one of the standard normalization techniques. (2) Investigate if the distribution of the altered variables is skewed. (3) If the distribution is not believed to be skewed, no additional normalization is needed. Otherwise, re-normalize the data using a novel HMM-assisted normalization procedure. (4) Perform downstream analysis. Here, ChIP-chip data and simulated data were used to evaluate the performance of the work-flow. It was found that skewed distributions can be detected by using the novel DSE-test (Detection of Skewed Experiments). Furthermore, applying the HMM-assisted normalization to experiments where the distribution of the truly altered variables is skewed results in considerably higher

  1. The effect of forward skewed rotor blades on aerodynamic and aeroacoustic performance of axial-flow fan

    Science.gov (United States)

    Wei, Jun; Zhong, Fangyuan

    Based on comparative experiment, this paper deals with using tangentially skewed rotor blades in axial-flow fan. It is seen from the comparison of the overall performance of the fan with skewed bladed rotor and radial bladed rotor that the skewed blades operate more efficiently than the radial blades, especially at low volume flows. Meanwhile, decrease in pressure rise and flow rate of axial-flow fan with skewed rotor blades is found. The rotor-stator interaction noise and broadband noise of axial-flow fan are reduced with skewed rotor blades. Forward skewed blades tend to reduce the accumulation of the blade boundary layer in the tip region resulting from the effect of centrifugal forces. The turning of streamlines from the outer radius region into inner radius region in blade passages due to the radial component of blade forces of skewed blades is the main reason for the decrease in pressure rise and flow rate.

  2. A Multi-Resolution Spatial Model for Large Datasets Based on the Skew-t Distribution

    KAUST Repository

    Tagle, Felipe

    2017-12-06

    Large, non-Gaussian spatial datasets pose a considerable modeling challenge as the dependence structure implied by the model needs to be captured at different scales, while retaining feasible inference. Skew-normal and skew-t distributions have only recently begun to appear in the spatial statistics literature, without much consideration, however, for the ability to capture dependence at multiple resolutions, and simultaneously achieve feasible inference for increasingly large data sets. This article presents the first multi-resolution spatial model inspired by the skew-t distribution, where a large-scale effect follows a multivariate normal distribution and the fine-scale effects follow a multivariate skew-normal distributions. The resulting marginal distribution for each region is skew-t, thereby allowing for greater flexibility in capturing skewness and heavy tails characterizing many environmental datasets. Likelihood-based inference is performed using a Monte Carlo EM algorithm. The model is applied as a stochastic generator of daily wind speeds over Saudi Arabia.

  3. Analysis of domain wall dynamics based on skewness of magnetic Barkhausen noise for applied stress determination

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Song [College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, Jiangsu 211816 (China); School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Tian, GuiYun, E-mail: tian280@hotmail.com [School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); School of Electrical and Electronic Engineering, Merz Court, University of Newcastle upon Tyne, Newcastle NE1 7RU (United Kingdom); Dobmann, Gerd; Wang, Ping [School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China)

    2017-01-01

    Skewness of Magnetic Barkhausen Noise (MBN) signal is used as a new feature for applied stress determination. After experimental studies, skewness presents its ability for measuring applied tensile stress compared with conventional feature, meanwhile, a non-linear behavior of this new feature and an independence of the excitation conditions under compressive stress are found and discussed. Effective damping during domain wall motion influencing the asymmetric shape of the MBN statistical distribution function is discussed under compressive and tensile stress variation. Domain wall (DW) energy and distance between pinning edges of the DW are considered altering the characteristic relaxation time, which is the reason for the non-linear phenomenon of skewness. - Highlights: • The skewness of magnetic Barkhausen noise profile is proposed as a new feature for applied stress determination. • The skewness is sensitive to applied stress and independent to excitation frequency. • Domain wall energy and pinning distance influence the relaxation time of domain wall, which leads to a non-linear behavior of skewness under compressive stress.

  4. Assessment of Multivariate Neural Time Series by Phase Synchrony Clustering in a Time-Frequency-Topography Representation

    Directory of Open Access Journals (Sweden)

    M. A. Porta-Garcia

    2018-01-01

    Full Text Available Most EEG phase synchrony measures are of bivariate nature. Those that are multivariate focus on producing global indices of the synchronization state of the system. Thus, better descriptions of spatial and temporal local interactions are still in demand. A framework for characterization of phase synchrony relationships between multivariate neural time series is presented, applied either in a single epoch or over an intertrial assessment, relying on a proposed clustering algorithm, termed Multivariate Time Series Clustering by Phase Synchrony, which generates fuzzy clusters for each multivalued time sample and thereupon obtains hard clusters according to a circular variance threshold; such cluster modes are then depicted in Time-Frequency-Topography representations of synchrony state beyond mere global indices. EEG signals from P300 Speller sessions of four subjects were analyzed, obtaining useful insights of synchrony patterns related to the ERP and even revealing steady-state artifacts at 7.6 Hz. Further, contrast maps of Levenshtein Distance highlight synchrony differences between ERP and no-ERP epochs, mainly at delta and theta bands. The framework, which is not limited to one synchrony measure, allows observing dynamics of phase changes and interactions among channels and can be applied to analyze other cognitive states rather than ERP versus no ERP.

  5. Dissociable effects of dopamine on neuronal firing rate and synchrony in the dorsal striatum

    Directory of Open Access Journals (Sweden)

    John M Burkhardt

    2009-10-01

    Full Text Available Previous studies showed that dopamine depletion leads to both changes in firing rate and in neuronal synchrony in the basal ganglia. Since dopamine D1 and D2 receptors are preferentially expressed in striatonigral and striatopallidal medium spiny neurons, respectively, we investigated the relative contribution of lack of D1 and/or D2-type receptor activation to the changes in striatal firing rate and synchrony observed after dopamine depletion. Similar to what was observed after dopamine depletion, co-administration of D1 and D2 antagonists to mice chronically implanted with multielectrode arrays in the striatum caused significant changes in firing rate, power of the local field potential (LFP oscillations, and synchrony measured by the entrainment of neurons to striatal local field potentials. However, although blockade of either D1 or D2 type receptors produced similarly severe akinesia, the effects on neural activity differed. Blockade of D2 receptors affected the firing rate of medium spiny neurons and the power of the LFP oscillations substantially, but it did not affect synchrony to the same extent. In contrast, D1 blockade affected synchrony dramatically, but had less substantial effects on firing rate and LFP power. Furthermore, there was no consistent relation between neurons changing firing rate and changing LFP entrainment after dopamine blockade. Our results suggest that the changes in rate and entrainment to the LFP observed in medium spiny neurons after dopamine depletion are somewhat dissociable, and that lack of D1- or D2-type receptor activation can exert independent yet interactive pathological effects during the progression of Parkinson’s disease.

  6. Evaluation of Real-time Measurement Liver Tumor's Movement and SynchronyTM System's Accuracy of Radiosurgery using a Robot CyberKnife

    International Nuclear Information System (INIS)

    Kim, Gha Jung; Shim, Su Jung; Kim, Jeong Ho; Min, Chul Kee; Chung, Weon Kuu

    2008-01-01

    This study aimed to quantitatively measure the movement of tumors in real-time and evaluate the treatment accuracy, during the treatment of a liver tumor patient, who underwent radiosurgery with a Synchrony Respiratory motion tracking system of a robot CyberKnife. Materials and Methods: The study subjects included 24 liver tumor patients who underwent CyberKnife treatment, which included 64 times of treatment with the Synchrony Respiratory motion tracking system (SynchronyTM). The treatment involved inserting 4 to 6 acupuncture needles into the vicinity of the liver tumor in all the patients using ultrasonography as a guide. A treatment plan was set up using the CT images for treatment planning uses. The position of the acupuncture needle was identified for every treatment time by Digitally Reconstructed Radiography (DRR) prepared at the time of treatment planning and X-ray images photographed in real-time. Subsequent results were stored through a Motion Tracking System (MTS) using the Mtsmain.log treatment file. In this way, movement of the tumor was measured. Besides, the accuracy of radiosurgery using CyberKnife was evaluated by the correlation errors between the real-time positions of the acupuncture needles and the predicted coordinates. Results: The maximum and the average translational movement of the liver tumor were measured 23.5 mm and 13.9±5.5 mm, respectively from the superior to the inferior direction, 3.9 mm and 1.9±0.9 mm, respectively from left to right, and 8.3 mm and 4.9±1.9 mm, respectively from the anterior to the posterior direction. The maximum and the average rotational movement of the liver tumor were measured to be 3.3o and 2.6±1.3o, respectively for X (Left-Right) axis rotation, 4.8o and 2.3±1.0o, respectively for Y (Cranio-Caudal) axis rotation, 3.9o and 2.8±1.1o, respectively for Z (Anterior-Posterior) axis rotation. In addition, the average correlation error, which represents the treatment's accuracy was 1.1±0.7 mm. Conclusion

  7. Left ventricular synchrony assessed by phase analysis of gated myocardial perfusion SPECT imaging in healthy subjects

    International Nuclear Information System (INIS)

    Wang Yuetao; Wang Jianfeng; Yang Minfu; Niu Rong

    2013-01-01

    Objective: To investigate the value of Cedars-Sinai quantitative gated SPECT (QGS) phase analysis for left ventricular synchrony assessment in healthy subjects. Methods: Seventy-four healthy subjects (41 males, 33 females,average age: (60±13) years) underwent both rest and exercise 99 Tc m -MIBI G-MPI. QGS software was used to analyze the reconstructed rest gated SPECT images automatically, and then the parameters of left ventricular synchrony including phase bandwidth (BW) and phase standard deviation (SD) were obtained. The influences of gender and age (age<60 years, n=36; age ≥ 60 years, n=38) on left ventricular systolic synchronicity were analyzed. The phase angle for original segmental contraction was measured to determine the onset of the ventricular contraction using 17-segment model. Forty healthy subjects were selected by simple random sampling method to evaluate the intra-observer and interobserver repeatability of QGS phase analysis software. Two-sample t test and linear correlation analysis were used to analyze the data. Results: The BW and SD of left ventricular in healthy subjects were (37.22 ±11.71)°, (11.84±5.39)° respectively. Comparisons between male and female for BW and SD yielded no statistical significance (BW: (36.00±9.70)°, (38.73±13.84)°; SD: (11.88±5.56)°, (11.79±5.26)°; t=0.96 and-0.07, both P>0.05); whereas the older subjects (age≥60 years) had larger BW than the others (age<60 years ; (39.95± 12.65)°, (34.33± 10.00)°; t=-2.11, P<0.05) and no statistical significance was shown for SD between the two age groups ((11.18±4.31)°, (12.54±6.33)°; t=1.08, P>0.05). Of the 74 subjects, the mechanical activation started from the ventricular base to apex in 54 subjects (73%), and from apex to base in only 20 subjects (27%). High repeatability of phase analysis was observed for both intra-observer and inter-observer (r=0.867-0.906, all P<0.001). Conclusions: Good left ventricular segmental synchrony is shown in healthy

  8. A Motion Capture Study to Measure the Feeling of Synchrony in Romantic Couples and in Professional Musicians

    KAUST Repository

    Preissmann, Delphine; Charbonnier, Caecilia; Chagué , Sylvain; Antonietti, Jean Philippe; Llobera, Joan; Ansermet, Francois; Magistretti, Pierre J.

    2016-01-01

    The feeling of synchrony is fundamental for most social activities and prosocial behaviors. However, little is known about the behavioral correlates of this feeling and its modulation by intergroup differences. We previously showed

  9. Measurement of the width and skewness of elliptic flow fluctuations in PbPb collisions at 5.02 TeV with CMS

    CERN Document Server

    Castle, James Robert

    2017-01-01

    Flow harmonic fluctuations are studied for PbPb collisions at $\\sqrt{s_{NN}} = 5.02~\\mathrm{TeV}$ using the CMS detector at the LHC. Flow harmonic probability distributions $p\\left(v_2\\right)$ are obtained by unfolding smearing effects from observed azimuthal anisotropy distributions using particles of $0.3 < p_{\\mathrm{T}} < 3.0~\\mathrm{GeV}/c$ and $\\lvert \\eta \\rvert < 1.0$. Cumulant flow harmonics are determined from the moments of $p\\left(v_2\\right)$ and used to estimate the standardized elliptic flow skewness. Hydrodynamic models predict this skewness to be negative with respect to the reaction plane. A statistically significant negative skewness is observed for all centrality bins as evidenced by a splitting between $v_2$ $\\{{4}\\}$, $v_2$ $\\{{6}\\}$, and $v_2$ $\\{{8}\\}$ cumulants. Elliptic power law distribution fits are made to $p\\left(v_2\\right)$ distributions to infer information on the nature of initial-state eccentricity distributions and found to provide a more accurate description of the ...

  10. Measurement of the Skewness of Elliptic Flow Fluctuations in PbPb Collisions at $\\sqrt{s_{NN}} = 5.02~\\mathrm{TeV}$

    CERN Document Server

    CMS Collaboration

    2017-01-01

    Event-by-event flow harmonics are studied for PbPb collisions at $\\sqrt{s_{NN}} = 5.02~\\mathrm{TeV}$ using the CMS detector at the LHC. Flow harmonic probability distributions $p\\left(v_2\\right)$ are obtained using particles of $0.3 \\leq p_{T} \\leq 3.0~\\mathrm{GeV}/c$ and $\\left|\\eta\\right| \\leq 1.0$ and are unfolded to remove smearing effects from observed azimuthal particle distributions. Cumulant flow harmonics are determined from the moments of $p\\left(v_2\\right)$ and used to estimate the standardized elliptic flow skewness in $5\\%$ wide centrality bins up to $60\\%$. Hydrodynamic models predict that flow fluctuations will lead to a non-Gaussian component in the flow distributions with a negative skew with respect to the reaction plane. A significant negative skewness is observed for all centrality bins as evidenced by a splitting between $v_2\\left\\{4\\right\\}$ and $v_2\\left\\{6\\right\\}$ cumulants. In addition, elliptic power law distribution fits are made to the $p\\left(v_2\\right)$ distributions to infer in...

  11. Characteristic function-based semiparametric inference for skew-symmetric models

    KAUST Repository

    Potgieter, Cornelis J.

    2012-12-26

    Skew-symmetric models offer a very flexible class of distributions for modelling data. These distributions can also be viewed as selection models for the symmetric component of the specified skew-symmetric distribution. The estimation of the location and scale parameters corresponding to the symmetric component is considered here, with the symmetric component known. Emphasis is placed on using the empirical characteristic function to estimate these parameters. This is made possible by an invariance property of the skew-symmetric family of distributions, namely that even transformations of random variables that are skew-symmetric have a distribution only depending on the symmetric density. A distance metric between the real components of the empirical and true characteristic functions is minimized to obtain the estimators. The method is semiparametric, in that the symmetric component is specified, but the skewing function is assumed unknown. Furthermore, the methodology is extended to hypothesis testing. Two tests for a hypothesis of specific parameter values are considered, as well as a test for the hypothesis that the symmetric component has a specific parametric form. A resampling algorithm is described for practical implementation of these tests. The outcomes of various numerical experiments are presented. © 2012 Board of the Foundation of the Scandinavian Journal of Statistics.

  12. Generalized Skew Coefficients of Annual Peak Flows for Rural, Unregulated Streams in West Virginia

    Science.gov (United States)

    Atkins, John T.; Wiley, Jeffrey B.; Paybins, Katherine S.

    2009-01-01

    Generalized skew was determined from analysis of records from 147 streamflow-gaging stations in or near West Virginia. The analysis followed guidelines established by the Interagency Advisory Committee on Water Data described in Bulletin 17B, except that stations having 50 or more years of record were used instead of stations with the less restrictive recommendation of 25 or more years of record. The generalized-skew analysis included contouring, averaging, and regression of station skews. The best method was considered the one with the smallest mean square error (MSE). MSE is defined as the following quantity summed and divided by the number of peaks: the square of the difference of an individual logarithm (base 10) of peak flow less the mean of all individual logarithms of peak flow. Contouring of station skews was the best method for determining generalized skew for West Virginia, with a MSE of about 0.2174. This MSE is an improvement over the MSE of about 0.3025 for the national map presented in Bulletin 17B.

  13. Study and optimal correction of a systematic skew quadrupole field in the Tevatron

    International Nuclear Information System (INIS)

    Snopok, Pavel; Johnstone, Carol; Berz, Martin; Ovsyannikov, Dmitry A.; Ovsyannikov, Alexander D.

    2006-01-01

    Increasing demands for luminosity in existing and future colliders have made lattice design and error tolerance and correction critical to achieving performance goals. The current state of the Tevatron collider is an example, with a strong skew quadrupole error present in the operational lattice. This work studies the high-order performance of the Tevatron and the strong nonlinear behavior introduced when a significant skew quadrupole error is combined with conventional sextupole correction, a behavior still clearly evident after optimal tuning of available skew quadrupole circuits. An optimization study is performed using different skew quadrupole families, and, importantly, local and global correction of the linear skew terms in maps generated by the code COSY INFINITY [M. Berz, COSY INFINITY version 8.1 user's guide and reference manual, Department of Physics and Astronomy MSUHEP-20704, Michigan State University (2002). URL http://cosy.pa.msu.edu/cosymanu/index.html]. Two correction schemes with one family locally correcting each arc and eight independent correctors in the straight sections for global correction are proposed and shown to dramatically improve linearity and performance of the baseline Tevatron lattice

  14. Handling Data Skew in MapReduce Cluster by Using Partition Tuning

    Directory of Open Access Journals (Sweden)

    Yufei Gao

    2017-01-01

    Full Text Available The healthcare industry has generated large amounts of data, and analyzing these has emerged as an important problem in recent years. The MapReduce programming model has been successfully used for big data analytics. However, data skew invariably occurs in big data analytics and seriously affects efficiency. To overcome the data skew problem in MapReduce, we have in the past proposed a data processing algorithm called Partition Tuning-based Skew Handling (PTSH. In comparison with the one-stage partitioning strategy used in the traditional MapReduce model, PTSH uses a two-stage strategy and the partition tuning method to disperse key-value pairs in virtual partitions and recombines each partition in case of data skew. The robustness and efficiency of the proposed algorithm were tested on a wide variety of simulated datasets and real healthcare datasets. The results showed that PTSH algorithm can handle data skew in MapReduce efficiently and improve the performance of MapReduce jobs in comparison with the native Hadoop, Closer, and locality-aware and fairness-aware key partitioning (LEEN. We also found that the time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm, since it is more suitable for association rule mining (ARM on healthcare data.

  15. Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation.

    Science.gov (United States)

    Cain, Meghan K; Zhang, Zhiyong; Yuan, Ke-Hai

    2017-10-01

    Nonnormality of univariate data has been extensively examined previously (Blanca et al., Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 9(2), 78-84, 2013; Miceeri, Psychological Bulletin, 105(1), 156, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of nonnormality, this study examined 1,567 univariate distriubtions and 254 multivariate distributions collected from authors of articles published in Psychological Science and the American Education Research Journal. We found that 74 % of univariate distributions and 68 % multivariate distributions deviated from normal distributions. In a simulation study using typical values of skewness and kurtosis that we collected, we found that the resulting type I error rates were 17 % in a t-test and 30 % in a factor analysis under some conditions. Hence, we argue that it is time to routinely report skewness and kurtosis along with other summary statistics such as means and variances. To facilitate future report of skewness and kurtosis, we provide a tutorial on how to compute univariate and multivariate skewness and kurtosis by SAS, SPSS, R and a newly developed Web application.

  16. Generation of net sediment transport by velocity skewness in oscillatory sheet flow

    Science.gov (United States)

    Chen, Xin; Li, Yong; Chen, Genfa; Wang, Fujun; Tang, Xuelin

    2018-01-01

    This study utilizes a qualitative approach and a two-phase numerical model to investigate net sediment transport caused by velocity skewness beneath oscillatory sheet flow and current. The qualitative approach is derived based on the pseudo-laminar approximation of boundary layer velocity and exponential approximation of concentration. The two-phase model can obtain well the instantaneous erosion depth, sediment flux, boundary layer thickness, and sediment transport rate. It can especially illustrate the difference between positive and negative flow stages caused by velocity skewness, which is considerably important in determining the net boundary layer flow and sediment transport direction. The two-phase model also explains the effect of sediment diameter and phase-lag to sediment transport by comparing the instantaneous-type formulas to better illustrate velocity skewness effect. In previous studies about sheet flow transport in pure velocity-skewed flows, net sediment transport is only attributed to the phase-lag effect. In the present study with the qualitative approach and two-phase model, phase-lag effect is shown important but not sufficient for the net sediment transport beneath pure velocity-skewed flow and current, while the asymmetric wave boundary layer development between positive and negative flow stages also contributes to the sediment transport.

  17. A joint behavioral and emotive analysis of synchrony in music therapy of children with autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Paola Venuti

    2016-12-01

    Full Text Available Background Synchrony is an essential component of interactive exchanges. In mother-infant interaction, synchrony underlies reciprocity and emotive regulation. A severe lack of synchrony is indeed a core issue within the communication and interaction deficit that characterizes autism spectrum disorders (ASD in accordance with the DSM-5 classification. Based on emerging evidence that music therapy can improve the communication and regulation ability in children with ASD, we aim to verify quantitatively whether: 1 children with ASD improve synchrony with their therapist during music therapy sessions, and 2 this ability persists in different structured contexts. Participants and procedure Twenty-five children, aged from 4 to 6 years (M = 57.80, SD = 16.70, with an autistic disorder diagnosis based on DSM IV-TR and the Autism Diagnostic Observation Schedule (ADOS, participated in the study. An observational tool for coding behaviors and emotive states of synchrony (Child Behavioral and Emotional status Code [CBEC] and Adult Behavioral and Emotional status Code [ABEC] was applied in video recorded sessions of improvisational music therapy (IMT for the subject-therapist pair. For each subject, we considered the 20 central minutes of the first, tenth and twentieth session of IMT. To verify the persistence of effect in a different context with a different adult, we administered and coded the interactive ADOS section (anticipation of a routine with objects applied after session 20 of therapy. Results During the IMT cycle, the amount of synchronic activity increases, with a significant difference from Session 1 to Session 20 in behavioral synchrony and emotional attunement. Also, the increase of synchrony is confirmed at the end of the therapy cycle as measured by an interactive ADOS section. Conclusions Synchrony is an effective indicator of efficacy for music therapy in children with ASD, in particular to evaluate the expansion of positive emotive

  18. A motion capture study to measure the feeling of synchrony in romantic couples and in professional musicians

    Directory of Open Access Journals (Sweden)

    Delphine Preissmann

    2016-10-01

    Full Text Available The feeling of synchrony is fundamental for most social activities and prosocial behaviors. However, little is known about the behavioral correlates of this feeling and its modulation by intergroup differences. We previously showed that the subjective feeling of synchrony in subjects involved in a mirror imitation task was modulated by objective behavioral measures, as well as contextual factors such as task difficulty and duration of the task performance. In the present study, we extended our methodology to investigate possible interindividual differences. We hypothesized that being in a romantic relationship or being a professional musician can modulate both implicit and explicit synchronisation and the feeling of synchrony as well as the ability to detect synchrony from a third person perspective. Contrary to our hypothesis, we did not find significant differences between people in a romantic relationship and control subjects. However, we observed differences between musicians and control subjects. For the implicit synchrony (spontaneous synchronization during walking, the results revealed that musicians that had never met before spontaneously synchronized their movements earlier among themselves than control subjects, but not better than people sharing a romantic relationship. Moreover, in explicit behavioral synchronisation tasks (mirror game, musicians reported earlier feeling of synchrony and had less speed errors than control subjects. This was in interaction with tasks difficulty as these differences appeared only in tasks with intermediate difficulty. Finally, when subjects had to judge synchrony from a third person perspective, musicians had a better performance to identify if they were present or not in the videos. Taken together, our results suggest that being a professional musician can play a role in the feeling of synchrony and its underlying mechanisms.

  19. A Motion Capture Study to Measure the Feeling of Synchrony in Romantic Couples and in Professional Musicians

    KAUST Repository

    Preissmann, Delphine

    2016-10-27

    The feeling of synchrony is fundamental for most social activities and prosocial behaviors. However, little is known about the behavioral correlates of this feeling and its modulation by intergroup differences. We previously showed that the subjective feeling of synchrony in subjects involved in a mirror imitation task was modulated by objective behavioral measures, as well as contextual factors such as task difficulty and duration of the task performance. In the present study, we extended our methodology to investigate possible interindividual differences. We hypothesized that being in a romantic relationship or being a professional musician can modulate both implicit and explicit synchronization and the feeling of synchrony as well as the ability to detect synchrony from a third person perspective. Contrary to our hypothesis, we did not find significant differences between people in a romantic relationship and control subjects. However, we observed differences between musicians and control subjects. For the implicit synchrony (spontaneous synchronization during walking), the results revealed that musicians that had never met before spontaneously synchronized their movements earlier among themselves than control subjects, but not better than people sharing a romantic relationship. Moreover, in explicit behavioral synchronization tasks (mirror game), musicians reported earlier feeling of synchrony and had less speed errors than control subjects. This was in interaction with tasks difficulty as these differences appeared only in tasks with intermediate difficulty. Finally, when subjects had to judge synchrony from a third person perspective, musicians had a better performance to identify if they were present or not in the videos. Taken together, our results suggest that being a professional musician can play a role in the feeling of synchrony and its underlying mechanisms. © 2016 Preissmann, Charbonnier, Chagué, Antonietti, Llobera, Ansermet and Magistretti.

  20. Climate-induced trends in predator–prey synchrony differ across life-history stages of an anadromous salmonid

    Science.gov (United States)

    Bell, Donovan A.; Kovach, Ryan; Vulstek, Scott C.; Joyce, John E.; Tallmon, David A.

    2017-01-01

    Differential climate-induced shifts in phenology can create mismatches between predators and prey, but few studies have examined predator–prey mismatch across multiple life-history stages. We used long-term data from a warming stream with shifting salmonid migration timings to quantify intra-annual migration synchrony between predatory Dolly Varden (Salvelinus malma) and Pacific salmon prey and examined how predator–prey synchrony has been influenced by climate change. We demonstrate that Dolly Varden have become increasingly mismatched with spring downstream migrations of abundant pink salmon (Oncorhynchus gorbuscha) juveniles. However, Dolly Varden have remained matched with fall upstream migrations of spawning Pacific salmon, including coho (Oncorhynchus kisutch), sockeye (Oncorhynchus nerka), and pink salmon. Downstream predator–prey migration synchrony decreased over time and with higher temperatures, particularly with pink salmon. In contrast, upstream migration synchrony was temporally stable and increased with rising temperatures. Differing trends in Dolly Varden predator–prey synchrony may be explained by the direct use of salmon to cue upstream migration, but not downstream migration. Overall, we show that climate change can have differing impacts on predator–prey synchrony across life-history stages.

  1. A universal order parameter for synchrony in networks of limit cycle oscillators

    Science.gov (United States)

    Schröder, Malte; Timme, Marc; Witthaut, Dirk

    2017-07-01

    We analyze the properties of order parameters measuring synchronization and phase locking in complex oscillator networks. First, we review network order parameters previously introduced and reveal several shortcomings: none of the introduced order parameters capture all transitions from incoherence over phase locking to full synchrony for arbitrary, finite networks. We then introduce an alternative, universal order parameter that accurately tracks the degree of partial phase locking and synchronization, adapting the traditional definition to account for the network topology and its influence on the phase coherence of the oscillators. We rigorously prove that this order parameter is strictly monotonously increasing with the coupling strength in the phase locked state, directly reflecting the dynamic stability of the network. Furthermore, it indicates the onset of full phase locking by a diverging slope at the critical coupling strength. The order parameter may find applications across systems where different types of synchrony are possible, including biological networks and power grids.

  2. Mother-infant circadian rhythm: development of individual patterns and dyadic synchrony.

    Science.gov (United States)

    Thomas, Karen A; Burr, Robert L; Spieker, Susan; Lee, Jungeun; Chen, Jessica

    2014-12-01

    Mutual circadian rhythm is an early and essential component in the development of maternal-infant physiological synchrony. The aim of this to examine the longitudinal pattern of maternal-infant circadian rhythm and rhythm synchrony as measured by rhythm parameters. In-home dyadic actigraphy monitoring at infant age 4, 8, and 12 weeks. Forty-three healthy mother-infant pairs. Circadian parameters derived from cosinor and non-parametric analysis including mesor, magnitude, acrophase, L5 and M10 midpoints (midpoint of lowest 5 and highest 10h of activity), amplitude, interdaily stability (IS), and intradaily variability (IV). Mothers experienced early disruption of circadian rhythm, with re-establishment of rhythm over time. Significant time effects were noted in increasing maternal magnitude, amplitude, and IS and decreasing IV (pcircadian pattern with significant time effects for increasing mesor, magnitude, amplitude, L5, IS, and IV (pcircadian rhythm. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Entrepreneurship and financial incentives of return, risk, and skew

    NARCIS (Netherlands)

    Berkhout, P.; Hartog, J.; van Praag, M.

    2016-01-01

    We focus on the role of the opportunity cost in the choice for entrepreneurship in favor of wage employment, that is, the wages given up as an employee. We argue that just like outside observers, potential entrepreneurs will face great difficulty to predict their earnings from entrepreneurship. The

  4. Finding the Right Distribution for Highly Skewed Zero-inflated Clinical Data

    Directory of Open Access Journals (Sweden)

    Resmi Gupta

    2013-03-01

    Full Text Available Discrete, highly skewed distributions with excess numbers of zeros often result in biased estimates and misleading inferences if the zeros are not properly addressed. A clinical example of children with electrophysiologic disorders in which many of the children are treated without surgery is provided. The purpose of the current study was to identify the optimal modeling strategy for highly skewed, zeroinflated data often observed in the clinical setting by: (a simulating skewed, zero-inflated count data; (b fitting simulated data with Poisson, Negative Binomial, Zero-Inflated Poisson (ZIP and Zero-inflated Negative Binomial (ZINB models; and, (c applying the aforementioned models to actual, highlyskewed, clinical data of children with an EP disorder. The ZIP model was observed to be the optimal model based on traditional fit statistics as well as estimates of bias, mean-squared error, and coverage.  

  5. A Cable-Passive Damper System for Sway and Skew Motion Control of a Crane Spreader

    Directory of Open Access Journals (Sweden)

    La Duc Viet

    2015-01-01

    Full Text Available While the crane control problem is often approached by applying a certain active control command to some parts of the crane, this paper proposes a cable-passive damper system to reduce the vibration of a four-cable suspended crane spreader. The residual sway and skew motions of a crane spreader always produce the angle deflections between the crane cables and the crane spreader. The idea in this paper is to convert those deflections into energy dissipated by the viscous dampers, which connect the cables and the spreader. The proposed damper system is effective in reducing spreader sway and skew motions. Moreover, the optimal damping coefficient can be found analytically by minimizing the time integral of system energy. The numerical simulations show that the proposed passive system can assist the input shaping control of the trolley motion in reducing both sway and skew responses.

  6. Determinants of (–1,1-matrices of the skew-symmetric type: a cocyclic approach

    Directory of Open Access Journals (Sweden)

    Álvarez Víctor

    2015-01-01

    Full Text Available An n by n skew-symmetric type (-1; 1-matrix K =[ki;j ] has 1’s on the main diagonal and ±1’s elsewhere with ki;j =-kj;i . The largest possible determinant of such a matrix K is an interesting problem. The literature is extensive for n ≡ 0 mod 4 (skew-Hadamard matrices, but for n ≡ 2 mod 4 there are few results known for this question. In this paper we approach this problem constructing cocyclic matrices over the dihedral group of 2t elements, for t odd, which are equivalent to (-1; 1-matrices of skew type. Some explicit calculations have been done up to t =11. To our knowledge, the upper bounds on the maximal determinant in orders 18 and 22 have been improved.

  7. Skewed Normal Distribution Of Return Assets In Call European Option Pricing

    Directory of Open Access Journals (Sweden)

    Evy Sulistianingsih

    2011-12-01

    Full Text Available Option is one of security derivates. In financial market, option is a contract that gives a right (notthe obligation for its owner to buy or sell a particular asset for a certain price at a certain time.Option can give a guarantee for a risk that can be faced in a market.This paper studies about theuse of Skewed Normal Distribution (SN in call europeanoption pricing. The SN provides aflexible framework that captures the skewness of log return. We obtain aclosed form solution forthe european call option pricing when log return follow the SN. Then, we will compare optionprices that is obtained by the SN and the Black-Scholes model with the option prices of market. Keywords: skewed normaldistribution, log return, options.

  8. Option-Based Estimation of the Price of Co-Skewness and Co-Kurtosis Risk

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Fournier, Mathieu; Fournier, Mathieu

    -neutral second moments, and the price of co-kurtosis risk corresponds to the spread between the physical and the risk-neutral third moments. The option-based estimates of the prices of risk lead to reasonable values of the associated risk premia. An out-of-sample analysis of factor models with co-skewness and co......We show that the prices of risk for factors that are nonlinear in the market return are readily obtained using index option prices. We apply this insight to the price of co-skewness and co-kurtosis risk. The price of co-skewness risk corresponds to the spread between the physical and the risk......-kurtosis risk indicates that the new estimates of the price of risk improve the models performance. Models with higher-order market moments also robustly outperform standard competitors such as the CAPM and the Fama-French model....

  9. Option-Based Estimation of the Price of Co-Skewness and Co-Kurtosis Risk

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Fournier, Mathieu; Jacobs, Kris

    -neutral second moments, and the price of co-kurtosis risk corresponds to the spread between the physical and the risk-neutral third moments. The option-based estimates of the prices of risk lead to reasonable values of the associated risk premia. An out-of-sample analysis of factor models with co-skewness and co......We show that the prices of risk for factors that are nonlinear in the market return are readily obtained using index option prices. We apply this insight to the price of co-skewness and co-kurtosis risk. The price of co-skewness risk corresponds to the spread between the physical and the risk......-kurtosis risk indicates that the new estimates of the price of risk improve the models' performance. Models with higher-order market moments also robustly outperform standard competitors such as the CAPM and the Fama-French model....

  10. Deterioration of the Skew Quadrupole Moment in Tevatron Dipoles Over Time

    CERN Document Server

    Syphers, Michael J

    2005-01-01

    During the 20 years since it was first commissioned, the Fermilab Tevatron has developed strong coupling between the two transverse degrees of freedom. A circuit of skew quadrupole magnets is used to correct for coupling and, though capable, its required strength has increased since 1983 by more than an order of magnitude. In more recent years changes to the Tevatron for colliding beams operation have altered the skew quadrupole corrector distribution and strong local coupling become evident, often encumbering routine operation during the present physics run. Detailed magnet measurements were performed on each individual magnet during construction, and in early 2003 it was realized that measurements could be performed on the magnets in situ which could determine coil movements within the iron yoke since the early 1980's. It was discovered that the superconducting coils had become vertically displaced relative to their yokes since their construction. The ensuing systematic skew quadrupole field introduced by t...

  11. T helper cell 2 immune skewing in pregnancy/early life

    DEFF Research Database (Denmark)

    McFadden, J P; Thyssen, J P; Basketter, D A

    2015-01-01

    During the last 50 years there has been a significant increase in Western societies of atopic disease and associated allergy. The balance between functional subpopulations of T helper cells (Th) determines the quality of the immune response provoked by antigen. One such subpopulation - Th2 cells...... that in Westernized societies reduced exposure during early childhood to pathogenic microorganisms favours the development of atopic allergy. Pregnancy is normally associated with Th2 skewing, which persists for some months in the neonate before Th1/Th2 realignment occurs. In this review, we consider...... the immunophysiology of Th2 immune skewing during pregnancy. In particular, we explore the possibility that altered and increased patterns of exposure to certain chemicals have served to accentuate this normal Th2 skewing and therefore further promote the persistence of a Th2 bias in neonates. Furthermore, we propose...

  12. PS-Modules over Ore Extensions and Skew Generalized Power Series Rings

    Directory of Open Access Journals (Sweden)

    Refaat M. Salem

    2015-01-01

    Full Text Available A right R-module MR is called a PS-module if its socle, SocMR, is projective. We investigate PS-modules over Ore extension and skew generalized power series extension. Let R be an associative ring with identity, MR a unitary right R-module, O=Rx;α,δ Ore extension, MxO a right O-module, S,≤ a strictly ordered additive monoid, ω:S→EndR a monoid homomorphism, A=RS,≤,ω the skew generalized power series ring, and BA=MS,≤RS,≤, ω the skew generalized power series module. Then, under some certain conditions, we prove the following: (1 If MR is a right PS-module, then MxO is a right PS-module. (2 If MR is a right PS-module, then BA is a right PS-module.

  13. The Changing Nature of Theory and Practice in Marketing: on the Value of Synchrony

    OpenAIRE

    O'Driscoll, Aidan; Murray, John

    1998-01-01

    Any academic discipline with a closely associated area of professional endeavour is profoundly affected by the relationship between its theory and practice. Synchrony in theory and practice adds value to the management of enterprise and to the advance of the discipline. Mindful of this assertion, this article explores the changing nature of theory and practice in marketing. It examines current trends in marketing practice which are occurring as a result of change in markets, technology and or...

  14. Cognition, attention et conscience : la synchronie dans l’esprit

    OpenAIRE

    Ward, Lawrence

    2011-01-01

    Professeur à British Columbia University (Vancouver, Canada), invité par l’Assemblée des professeurs à l’initiative des Prs Alain Berthoz et Stanislas Dehaene, a donné en mai 2010, quatre conférences intitulées « Cognition, attention et conscience : la synchronie dans l’esprit »

  15. ORGANIC MATTER AND CRUDE PROTEIN DEGRADATION SYNCHRONY IN DIETS SELECTED BY RANGE GOATS.

    Directory of Open Access Journals (Sweden)

    Rafael Ramírez Orduña

    2010-09-01

    Full Text Available The study was carried out with the aim to asses the synchrony of organic matter and crude protein degradation in the rumen of diets selected by range goats through two years. Five esophageal cannulated adult male goats were used to collect extrusa samples during summer (August 9–13 and autumn (November 29 –December 3 of 2006, winter (February 20 – 24, spring (April 29 –May 5, summer (September 10–15 and autumn (December 4–8 of 2007 and winter (February 20 – 25 and spring (May 9 –13 of 2008. Extrusa samples were subjected to chemical analysis to determine organic matter (OM, crude protein (CP in situ and in vitro true digestibility of dry matter. OM and CP intake were estimated by total fecal collection. Effective extent of degradation of the OM and CP was calculated hourly and total 24 hours. From the hourly quantity of OM and CP degraded, a synchrony index of CP to OM was calculated, and from the total 24 hours degradation, degraded organic matter intake and crude protein intake were also estimated. Sampling date was the main effect that determined the variation of diet OM and CP degradation parameters. Degraded crude protein intake as a proportion of degraded OM was affected by sampling date and was correlated to rainfall. During winter of the first year degraded crude protein intake was below the requirements for maintenance or to promote growth for range goats weighing 40 kg. Even though, synchrony index between OM and CP degradation was affected by sampling date goats maintained a high synchrony index throughout the years.

  16. Reduction in Cortical Gamma Synchrony during Depolarized State of Slow Wave Activity in Mice

    Directory of Open Access Journals (Sweden)

    EUNJIN eHWANG

    2013-12-01

    Full Text Available EEG gamma band oscillations have been proposed to account for the neural synchronization crucial for perceptual integration. While increased gamma power and synchronization is generally observed during cognitive tasks performed during wake, several studies have additionally reported increased gamma power during sleep or anesthesia, raising questions about the characteristics of gamma oscillation during impaired consciousness and its role in conscious processing. Phase-amplitude modulation has been observed between slow wave activity (SWA, 0.5–4 Hz and gamma oscillations during ketamine/xylazine anesthesia or sleep, showing increased gamma activity corresponding to the depolarized (ON state of SWA. Here we divided gamma activity into its ON and OFF (hyperpolarized state components based on the phase of SWA induced by ketamine/xylazine anesthesia and compared their power and synchrony with wake state levels in mice. We further investigated the state-dependent changes in both gamma power and synchrony across primary motor and primary somatosensory cortical regions and their interconnected thalamic regions throughout anesthesia and recovery. As observed previously, gamma power was as high as during wake specifically during the ON state of SWA. However, the synchrony of this gamma activity between somatosensory-motor cortical regions was significantly reduced compared to the baseline wake state. In addition, the somatosensory-motor cortical synchrony of gamma oscillations was reduced and restored in an anesthetic state-dependent manner, reflecting the changing depth of anesthesia. Our results provide evidence that during anesthesia changes in long-range information integration between cortical regions might be more critical for changes in consciousness than changes in local gamma oscillatory power.

  17. Mechanisms of social synchrony between circadian activity rhythms in cohabiting marmosets.

    Science.gov (United States)

    Bessa, Zoélia Camila Moura; Melo, Paula Rocha De; Gonçalves, Bruno S B; Azevedo, Carolina V M De

    2018-01-26

    In marmosets, social synchrony between circadian profiles of activity is stronger in animals that cohabit in a family. The activity of three breeding pairs was recorded by actiwatches to investigate the mechanisms involved in the synchrony between the circadian activity profiles during cohabitation in marmoset reproductive pairs. The dyads were submitted to LD 12:12 (21 days) and LL: 1) cohabitation (24 days), 2) removal of the cage mate (20 days), 3) reintroduction of the mate into the cage of the 1 st situation (30 days) and 4) removal of the cage mate (7 days). Next, they were rejoined and maintained in LD 12:12 (11 days). In conditions involving cohabitation of pair, the general and maximum correlation indexes between circadian profiles were higher in cage mates compared to animals of the same or different sex with which they maintain only acoustic and olfactive contact. This strong synchrony between rhythms was accompanied by a stable phase relationship at the activity onset and offset, with identical circadian periods between mates. When the pairs were separated, there was a break in stability in the phase relationships between activity profiles with different circadian periods and a greater phase angle difference between rhythms of cage mates. During separation, two females and one male progressively anticipated the activity onset and offset in a phase similar to that in previous conditions, expressing entrainment to the mate. During the first reintroduction, two pairs exhibited signs of masking in rhythm. Although modulation in the rhythm of some animals has been observed through acoustic cues from animals outside the colony, we suggest that cohabitation favors strong synchrony between the circadian activity profiles of marmoset reproductive pairs involving synchronization by entrainment and masking. Further studies in the absence of external social cues are necessary to clarify the role of these mechanisms on social synchronization in marmosets.

  18. Motor correlates of models of secondary bilateral synchrony and multiple epileptic foci

    Czech Academy of Sciences Publication Activity Database

    Jiruška, Přemysl; Prokš, J.; Otáhal, Jakub; Mareš, Pavel

    2007-01-01

    Roč. 16, č. 7 (2007), s. 627-635 ISSN 1059-1311 R&D Projects: GA ČR(CZ) GA309/03/0770; GA ČR GA304/05/2582 Institutional research plan: CEZ:AV0Z5011922 Keywords : epileptic foci * secondary bilateral synchrony * neocortex Subject RIV: ED - Physiology Impact factor: 1.815, year: 2007

  19. Altered gene synchrony suggests a combined hormone-mediated dysregulated state in major depression.

    Directory of Open Access Journals (Sweden)

    Chris Gaiteri

    2010-04-01

    Full Text Available Coordinated gene transcript levels across tissues (denoted "gene synchrony" reflect converging influences of genetic, biochemical and environmental factors; hence they are informative of the biological state of an individual. So could brain gene synchrony also integrate the multiple factors engaged in neuropsychiatric disorders and reveal underlying pathologies? Using bootstrapped Pearson correlation for transcript levels for the same genes across distinct brain areas, we report robust gene transcript synchrony between the amygdala and cingulate cortex in the human postmortem brain of normal control subjects (n = 14; Control/Permutated data, p<0.000001. Coordinated expression was confirmed across distinct prefrontal cortex areas in a separate cohort (n = 19 subjects and affected different gene sets, potentially reflecting regional network- and function-dependent transcriptional programs. Genewise regional transcript coordination was independent of age-related changes and array technical parameters. Robust shifts in amygdala-cingulate gene synchrony were observed in subjects with major depressive disorder (MDD, denoted here "depression" (n = 14; MDD/Permutated data, p<0.000001, significantly affecting between 100 and 250 individual genes (10-30% false discovery rate. Biological networks and signal transduction pathways corresponding to the identified gene set suggested putative dysregulated functions for several hormone-type factors previously implicated in depression (insulin, interleukin-1, thyroid hormone, estradiol and glucocorticoids; p<0.01 for association with depression-related networks. In summary, we showed that coordinated gene expression across brain areas may represent a novel molecular probe for brain structure/function that is sensitive to disease condition, suggesting the presence of a distinct and integrated hormone-mediated corticolimbic homeostatic, although maladaptive and pathological, state in major depression.

  20. Differential models of twin correlations in skew for body-mass index (BMI).

    Science.gov (United States)

    Tsang, Siny; Duncan, Glen E; Dinescu, Diana; Turkheimer, Eric

    2018-01-01

    Body Mass Index (BMI), like most human phenotypes, is substantially heritable. However, BMI is not normally distributed; the skew appears to be structural, and increases as a function of age. Moreover, twin correlations for BMI commonly violate the assumptions of the most common variety of the classical twin model, with the MZ twin correlation greater than twice the DZ correlation. This study aimed to decompose twin correlations for BMI using more general skew-t distributions. Same sex MZ and DZ twin pairs (N = 7,086) from the community-based Washington State Twin Registry were included. We used latent profile analysis (LPA) to decompose twin correlations for BMI into multiple mixture distributions. LPA was performed using the default normal mixture distribution and the skew-t mixture distribution. Similar analyses were performed for height as a comparison. Our analyses are then replicated in an independent dataset. A two-class solution under the skew-t mixture distribution fits the BMI distribution for both genders. The first class consists of a relatively normally distributed, highly heritable BMI with a mean in the normal range. The second class is a positively skewed BMI in the overweight and obese range, with lower twin correlations. In contrast, height is normally distributed, highly heritable, and is well-fit by a single latent class. Results in the replication dataset were highly similar. Our findings suggest that two distinct processes underlie the skew of the BMI distribution. The contrast between height and weight is in accord with subjective psychological experience: both are under obvious genetic influence, but BMI is also subject to behavioral control, whereas height is not.

  1. Elevated mortality among birds in Chernobyl as judged from skewed age and sex ratios.

    Directory of Open Access Journals (Sweden)

    Anders Pape Møller

    Full Text Available Radiation has negative effects on survival of animals including humans, although the generality of this claim is poorly documented under low-dose field conditions. Because females may suffer disproportionately from the effects of radiation on survival due to differences in sex roles during reproduction, radiation-induced mortality may result in male-skewed adult sex ratios.We estimated the effects of low-dose radiation on adult survival rates in birds by determining age ratios of adults captured in mist nets during the breeding season in relation to background radiation levels around Chernobyl and in nearby uncontaminated control areas. Age ratios were skewed towards yearlings, especially in the most contaminated areas, implying that adult survival rates were reduced in contaminated areas, and that populations in such areas could only be maintained through immigration from nearby uncontaminated areas. Differential mortality in females resulted in a strongly male-skewed sex ratio in the most contaminated areas. In addition, males sang disproportionately commonly in the most contaminated areas where the sex ratio was male skewed presumably because males had difficulty finding and acquiring mates when females were rare. The results were not caused by permanent emigration by females from the most contaminated areas because none of the recaptured birds had changed breeding site, and the proportion of individuals with morphological abnormalities did not differ significantly between the sexes for areas with normal and higher levels of contamination.These findings are consistent with the hypothesis that the adult survival rate of female birds is particularly susceptible to the effects of low-dose radiation, resulting in male skewed sex ratios at high levels of radiation. Such skewed age ratios towards yearlings in contaminated areas are consistent with the hypothesis that an area exceeding 30,000 km(2 in Chernobyl's surroundings constitutes an

  2. Genetic influences on phase synchrony of brain oscillations supporting response inhibition.

    Science.gov (United States)

    Müller, Viktor; Anokhin, Andrey P; Lindenberger, Ulman

    2017-05-01

    Phase synchronization of neuronal oscillations is a fundamental mechanism underlying cognitive processing and behavior, including context-dependent response production and inhibition. Abnormalities in neural synchrony can lead to abnormal information processing and contribute to cognitive and behavioral deficits in neuropsychiatric disorders. However, little is known about genetic and environmental contributions to individual differences in cortical oscillatory dynamics underlying response inhibition. This study examined heritability of event-related phase synchronization of brain oscillations in 302 young female twins including 94 MZ and 57 DZ pairs performing a cued Go/No-Go version of the Continuous Performance Test (CPT). We used the Phase Locking Index (PLI) to assess inter-trial phase clustering (synchrony) in several frequency bands in two time intervals after stimulus onset (0-300 and 301-600ms). Response inhibition (i.e., successful response suppression in No-Go trials) was characterized by a transient increase in phase synchronization of delta- and theta-band oscillations in the fronto-central midline region. Genetic analysis showed significant heritability of the phase locking measures related to response inhibition, with 30 to 49% of inter-individual variability being accounted for by genetic factors. This is the first study providing evidence for heritability of task-related neural synchrony. The present results suggest that PLI can serve as an indicator of genetically transmitted individual differences in neural substrates of response inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Collective Efficacy in Sports and Physical Activities: Perceived Emotional Synchrony and Shared Flow

    Science.gov (United States)

    Zumeta, Larraitz N.; Oriol, Xavier; Telletxea, Saioa; Amutio, Alberto; Basabe, Nekane

    2016-01-01

    This cross-sectional study analyzes the relationship between collective efficacy and two psychosocial processes involved in collective sport-physical activities. It argues that in-group identification and fusion with the group will affect collective efficacy (CE). A sample of 276 university students answered different scales regarding their participation in collective physical and sport activities. Multiple-mediation analyses showed that shared flow and perceived emotional synchrony mediate the relationship between in-group identification and CE, whereas the relationship between identity fusion and CE was only mediated by perceived emotional synchrony. Results suggest that both psychosocial processes explain the positive effects of in-group identification and identity fusion with the group in collective efficacy. Specifically, the role of perceived emotional synchrony in explaining the positive effects of participation in collective sport-physical activities is underlined. In sum, this study highlights the utility of collective actions and social identities to explain the psychosocial processes related to collective efficacy in physical and sports activities. Finally, practical implications are discussed. PMID:26779077

  4. Collective efficacy in sports and physical activities: perceived emotional synchrony and shared flow

    Directory of Open Access Journals (Sweden)

    Larraitz Nerea Zumeta

    2016-01-01

    Full Text Available This cross-sectional study analyzes the relationship between collective efficacy and two psychosocial processes involved in collective sport-physical activities. It argues that in-group identification and fusion with the group will affect collective efficacy (CE. A sample of 276 university students answered different scales regarding their participation in collective physical and sport activities. Multiple-mediation analyses showed that shared flow and perceived emotional synchrony mediate the relationship between in-group identification and CE, whereas the relationship between identity fusion and CE was only mediated by perceived emotional synchrony. Results suggest that both psychosocial processes explain the positive effects of in-group identification and identity fusion with the group in collective efficacy. Especially, the role of perceived emotional synchrony in explaining the positive effects of participation in collective sport-physical activities is underlined. In sum, this study remarks the utility of collective actions and social identities to explain the psychosocial processes related to collective efficacy in physical and sports activities. Finally, practical implications are discussed.

  5. Interactional synchrony in chimpanzees: Examination through a finger-tapping experiment.

    Science.gov (United States)

    Yu, Lira; Tomonaga, Masaki

    2015-05-11

    Humans often unconsciously coordinate behaviour with that of others in daily life. This interpersonal coordination, including mimicry and interactional synchrony, has been suggested to play a fundamental role in social interaction. If this coordinative behavior is socially adaptive, it may be shared with other highly social animal species. The current study targeted chimpanzees, which phylogenetically are the closest living relatives of humans and live in complex social groups, and examined whether interactional synchrony would emerge in pairs of chimpanzees when auditory information about a partner's movement was provided. A finger-tapping task was introduced via touch panels to elicit repetitive and rhythmic movement from each chimpanzee. We found that one of four chimpanzees produced significant changes in both tapping tempo and timing of the tapping relative to its partner's tap when auditory sounds were provided. Although the current results may have limitations in generalizing to chimpanzees as a species, we suggest that a finger-tapping task is one potential method to investigate interactional synchrony in chimpanzees under a laboratory setup.

  6. The Effect of Delayed Visual Feedback on Synchrony Perception in a Tapping Task

    Directory of Open Access Journals (Sweden)

    Mirjam Keetels

    2011-10-01

    Full Text Available Sensory events following a motor action are, within limits, interpreted as a causal consequence of those actions. For example, the clapping of the hands is initiated by the motor system, but subsequently visual, auditory, and tactile information is provided and processed. In the present study we examine the effect of temporal disturbances in this chain of motor-sensory events. Participants are instructed to tap a surface with their finger in synchrony with a chain of 20 sound clicks (ISI 750 ms. We examined the effect of additional visual information on this ‘tap-sound’-synchronization task. During tapping, subjects will see a video of their own tapping hand on a screen in front of them. The video can either be in synchrony with the tap (real-time recording, or can be slightly delayed (∼40–160 ms. In a control condition, no video is provided. We explore whether ‘tap-sound’ synchrony will be shifted as a function of the delayed visual feedback. Results will provide fundamental insights into how the brain preserves a causal interpretation of motor actions and their sensory consequences.

  7. Naturalistic music and dance: Cortical phase synchrony in musicians and dancers.

    Science.gov (United States)

    Poikonen, Hanna; Toiviainen, Petri; Tervaniemi, Mari

    2018-01-01

    Expertise in music has been investigated for decades and the results have been applied not only in composition, performance and music education, but also in understanding brain plasticity in a larger context. Several studies have revealed a strong connection between auditory and motor processes and listening to and performing music, and music imagination. Recently, as a logical next step in music and movement, the cognitive and affective neurosciences have been directed towards expertise in dance. To understand the versatile and overlapping processes during artistic stimuli, such as music and dance, it is necessary to study them with continuous naturalistic stimuli. Thus, we used long excerpts from the contemporary dance piece Carmen presented with and without music to professional dancers, musicians, and laymen in an EEG laboratory. We were interested in the cortical phase synchrony within each participant group over several frequency bands during uni- and multimodal processing. Dancers had strengthened theta and gamma synchrony during music relative to silence and silent dance, whereas the presence of music decreased systematically the alpha and beta synchrony in musicians. Laymen were the only group of participants with significant results related to dance. Future studies are required to understand whether these results are related to some other factor (such as familiarity to the stimuli), or if our results reveal a new point of view to dance observation and expertise.

  8. Naturalistic music and dance: Cortical phase synchrony in musicians and dancers

    Science.gov (United States)

    Toiviainen, Petri; Tervaniemi, Mari

    2018-01-01

    Expertise in music has been investigated for decades and the results have been applied not only in composition, performance and music education, but also in understanding brain plasticity in a larger context. Several studies have revealed a strong connection between auditory and motor processes and listening to and performing music, and music imagination. Recently, as a logical next step in music and movement, the cognitive and affective neurosciences have been directed towards expertise in dance. To understand the versatile and overlapping processes during artistic stimuli, such as music and dance, it is necessary to study them with continuous naturalistic stimuli. Thus, we used long excerpts from the contemporary dance piece Carmen presented with and without music to professional dancers, musicians, and laymen in an EEG laboratory. We were interested in the cortical phase synchrony within each participant group over several frequency bands during uni- and multimodal processing. Dancers had strengthened theta and gamma synchrony during music relative to silence and silent dance, whereas the presence of music decreased systematically the alpha and beta synchrony in musicians. Laymen were the only group of participants with significant results related to dance. Future studies are required to understand whether these results are related to some other factor (such as familiarity to the stimuli), or if our results reveal a new point of view to dance observation and expertise. PMID:29672597

  9. Some homological properties of skew PBW extensions arising in non-commutative algebraic geometry

    Directory of Open Access Journals (Sweden)

    Lezama Oswaldo

    2017-06-01

    Full Text Available In this short paper we study for the skew PBW (Poincar-Birkhoff-Witt extensions some homological properties arising in non-commutative algebraic geometry, namely, Auslander-Gorenstein regularity, Cohen-Macaulayness and strongly noetherianity. Skew PBW extensions include a considerable number of non-commutative rings of polynomial type such that classical PBW extensions, quantum polynomial rings, multiplicative analogue of the Weyl algebra, some Sklyanin algebras, operator algebras, diffusion algebras, quadratic algebras in 3 variables, among many others. Parametrization of the point modules of some examples is also presented.

  10. Widely Linear Equalization for IQ Imbalance and Skew Compensation in Optical Coherent Receivers

    DEFF Research Database (Denmark)

    Porto da Silva, Edson; Zibar, Darko

    2016-01-01

    In this paper, an alternative approach to design linear equalization algorithms for optical coherent receivers is introduced. Using widely linear complex analysis, a general analytical model it is shown, where In-phase/quadrature (IQ) imbalances and IQ skew at the coherent receiver front-end are ......In this paper, an alternative approach to design linear equalization algorithms for optical coherent receivers is introduced. Using widely linear complex analysis, a general analytical model it is shown, where In-phase/quadrature (IQ) imbalances and IQ skew at the coherent receiver front...

  11. Large-scale genomic 2D visualization reveals extensive CG-AT skew correlation in bird genomes

    Directory of Open Access Journals (Sweden)

    Deng Xuemei

    2007-11-01

    Full Text Available Abstract Background Bird genomes have very different compositional structure compared with other warm-blooded animals. The variation in the base skew rules in the vertebrate genomes remains puzzling, but it must relate somehow to large-scale genome evolution. Current research is inclined to relate base skew with mutations and their fixation. Here we wish to explore base skew correlations in bird genomes, to develop methods for displaying and quantifying such correlations at different scales, and to discuss possible explanations for the peculiarities of the bird genomes in skew correlation. Results We have developed a method called Base Skew Double Triangle (BSDT for exhibiting the genome-scale change of AT/CG skew as a two-dimensional square picture, showing base skews at many scales simultaneously in a single image. By this method we found that most chicken chromosomes have high AT/CG skew correlation (symmetry in 2D picture, except for some microchromosomes. No other organisms studied (18 species show such high skew correlations. This visualized high correlation was validated by three kinds of quantitative calculations with overlapping and non-overlapping windows, all indicating that chicken and birds in general have a special genome structure. Similar features were also found in some of the mammal genomes, but clearly much weaker than in chickens. We presume that the skew correlation feature evolved near the time that birds separated from other vertebrate lineages. When we eliminated the repeat sequences from the genomes, the AT and CG skews correlation increased for some mammal genomes, but were still clearly lower than in chickens. Conclusion Our results suggest that BSDT is an expressive visualization method for AT and CG skew and enabled the discovery of the very high skew correlation in bird genomes; this peculiarity is worth further study. Computational analysis indicated that this correlation might be a compositional characteristic

  12. A robust and efficient finite volume scheme for the discretization of diffusive flux on extremely skewed meshes in complex geometries

    Science.gov (United States)

    Traoré, Philippe; Ahipo, Yves Marcel; Louste, Christophe

    2009-08-01

    In this paper an improved finite volume scheme to discretize diffusive flux on a non-orthogonal mesh is proposed. This approach, based on an iterative technique initially suggested by Khosla [P.K. Khosla, S.G. Rubin, A diagonally dominant second-order accurate implicit scheme, Computers and Fluids 2 (1974) 207-209] and known as deferred correction, has been intensively utilized by Muzaferija [S. Muzaferija, Adaptative finite volume method for flow prediction using unstructured meshes and multigrid approach, Ph.D. Thesis, Imperial College, 1994] and later Fergizer and Peric [J.H. Fergizer, M. Peric, Computational Methods for Fluid Dynamics, Springer, 2002] to deal with the non-orthogonality of the control volumes. Using a more suitable decomposition of the normal gradient, our scheme gives accurate solutions in geometries where the basic idea of Muzaferija fails. First the performances of both schemes are compared for a Poisson problem solved in quadrangular domains where control volumes are increasingly skewed in order to test their robustness and efficiency. It is shown that convergence properties and the accuracy order of the solution are not degraded even on extremely skewed mesh. Next, the very stable behavior of the method is successfully demonstrated on a randomly distorted grid as well as on an anisotropically distorted one. Finally we compare the solution obtained for quadrilateral control volumes to the ones obtained with a finite element code and with an unstructured version of our finite volume code for triangular control volumes. No differences can be observed between the different solutions, which demonstrates the effectiveness of our approach.

  13. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain

    Directory of Open Access Journals (Sweden)

    Patricia A. Broderick

    2013-06-01

    Full Text Available The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI, based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata and somatodendrites (ventral tegmentum of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs, serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of

  14. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain.

    Science.gov (United States)

    Broderick, Patricia A

    2013-06-21

    The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters

  15. Synchrony dynamics in monkey V1 predict success in visual detection

    NARCIS (Netherlands)

    van der Togt, C.; Kalitzin, S.; Spekreijse, H.; Lamme, V.A.F.; Supèr, H.

    2006-01-01

    Behavioral measures such as expectancy and attention have been associated with the strength of synchronous neural activity. On this basis, it is hypothesized that synchronous activity affects our ability to detect and recognize visual objects. To investigate the role of synchronous activity in

  16. Subordinate wasps are more aggressive in colonies with low reproductive skew

    DEFF Research Database (Denmark)

    Fanelli, D.; Boomsma, Jacobus Jan; Turillazzi, S.

    2008-01-01

    The small societies of primitively eusocial wasps have provided interesting testing grounds for reproductive skew theory because all individuals have similar reproductive potential, which is unusual in social insects but common in vertebrate societies. Aggression is a key parameter in testing the...

  17. Development of a Skewed Pipe Shear Connector for Precast Concrete Structures.

    Science.gov (United States)

    Kim, Sang-Hyo; Choi, Jae-Gu; Park, Sejun; Lee, Hyunmin; Heo, And Won-Ho

    2017-05-13

    Joint connection methods, such as shear key and loop bar, improve the structural performance of precast concrete structures; consequently, there is usually decreased workability or constructional efficiency. This paper proposes a high-efficiency skewed pipe shear connector. To resist shear and pull-out forces, the proposed connectors are placed diagonally between precast concrete segments and a cast-in-place concrete joint part on a girder. Design variables (such as the pipe diameter, length, and insertion angle) have been examined to investigate the connection performance of the proposed connector. The results of our testing indicate that the skewed pipe shear connectors have 50% higher ductility and a 15% higher ratio of maximum load to yield strength as compared to the corresponding parameters of the loop bar. Finite element analysis was used for validation. The resulting validation indicates that, compared to the loop bar, the skewed pipe shear connector has a higher ultimate shear and pull-out resistance. These results indicate that the skewed pipe shear connector demonstrates more idealized behavior than the loop bar in precast concrete structures.

  18. On the skew-symmetric character of the couple-stress tensor

    OpenAIRE

    Hadjesfandiari, Ali R.

    2013-01-01

    In this paper, the skew-symmetric character of the couple-stress tensor is established as the result of arguments from tensor analysis. Consequently, the couple-stress pseudo-tensor has a true vectorial character. The fundamental step in this development is that the isotropic couple-stress tensor cannot exist.

  19. The generalised Sylvester matrix equations over the generalised bisymmetric and skew-symmetric matrices

    Science.gov (United States)

    Dehghan, Mehdi; Hajarian, Masoud

    2012-08-01

    A matrix P is called a symmetric orthogonal if P = P T = P -1. A matrix X is said to be a generalised bisymmetric with respect to P if X = X T = PXP. It is obvious that any symmetric matrix is also a generalised bisymmetric matrix with respect to I (identity matrix). By extending the idea of the Jacobi and the Gauss-Seidel iterations, this article proposes two new iterative methods, respectively, for computing the generalised bisymmetric (containing symmetric solution as a special case) and skew-symmetric solutions of the generalised Sylvester matrix equation ? (including Sylvester and Lyapunov matrix equations as special cases) which is encountered in many systems and control applications. When the generalised Sylvester matrix equation has a unique generalised bisymmetric (skew-symmetric) solution, the first (second) iterative method converges to the generalised bisymmetric (skew-symmetric) solution of this matrix equation for any initial generalised bisymmetric (skew-symmetric) matrix. Finally, some numerical results are given to illustrate the effect of the theoretical results.

  20. An algorithm to construct the basic algebra of a skew group algebra

    NARCIS (Netherlands)

    Horobeţ, E.

    2016-01-01

    We give an algorithm for the computation of the basic algebra Morita equivalent to a skew group algebra of a path algebra by obtaining formulas for the number of vertices and arrows of the new quiver Qb. We apply this algorithm to compute the basic algebra corresponding to all simple quaternion

  1. Consistent paternity skew through ontogeny in Peron's tree frog (Litoria peronii.

    Directory of Open Access Journals (Sweden)

    Craig D H Sherman

    Full Text Available BACKGROUND: A large number of studies in postcopulatory sexual selection use paternity success as a proxy for fertilization success. However, selective mortality during embryonic development can lead to skews in paternity in situations of polyandry and sperm competition. Thus, when assessment of paternity fails to incorporate mortality skews during early ontogeny, this may interfere with correct interpretation of results and subsequent evolutionary inference. In a previous series of in vitro sperm competition experiments with amphibians (Litoria peronii, we showed skewed paternity patterns towards males more genetically similar to the female. METHODOLOGY/PRINCIPAL FINDINGS: Here we use in vitro fertilizations and sperm competition trials to test if this pattern of paternity of fully developed tadpoles reflects patterns of paternity at fertilization and if paternity skews changes during embryonic development. We show that there is no selective mortality through ontogeny and that patterns of paternity of hatched tadpoles reflects success of competing males in sperm competition at fertilization. CONCLUSIONS/SIGNIFICANCE: While this study shows that previous inferences of fertilization success from paternity data are valid for this species, rigorous testing of these assumptions is required to ensure that differential embryonic mortality does not confound estimations of true fertilization success.

  2. Genotype and phenotype in Klinefelter syndrome - impact of androgen receptor polymorphism and skewed X inactivation

    DEFF Research Database (Denmark)

    Bojesen, A; Hertz, J M; Gravholt, C H

    2011-01-01

    The phenotypic variation of Klinefelter syndrome (KS) is wide and may by caused by various genetic and epigenetic effects. Skewed inactivation of the supra-numerical X chromosome and polymorphism in the androgen receptor (AR) have been suggested as plausible causes. We wanted to describe X...

  3. Widely Linear Blind Adaptive Equalization for Transmitter IQ-Imbalance/Skew Compensation in Multicarrier Systems

    DEFF Research Database (Denmark)

    Porto da Silva, Edson; Zibar, Darko

    2016-01-01

    Simple analytical widely linear complex-valued models for IQ-imbalance and IQ-skew effects in multicarrier transmitters are presented. To compensate for such effects, a 4×4 MIMO widely linear adaptive equalizer is proposed and experimentally validated....

  4. Bayesian semiparametric mixture Tobit models with left censoring, skewness, and covariate measurement errors.

    Science.gov (United States)

    Dagne, Getachew A; Huang, Yangxin

    2013-09-30

    Common problems to many longitudinal HIV/AIDS, cancer, vaccine, and environmental exposure studies are the presence of a lower limit of quantification of an outcome with skewness and time-varying covariates with measurement errors. There has been relatively little work published simultaneously dealing with these features of longitudinal data. In particular, left-censored data falling below a limit of detection may sometimes have a proportion larger than expected under a usually assumed log-normal distribution. In such cases, alternative models, which can account for a high proportion of censored data, should be considered. In this article, we present an extension of the Tobit model that incorporates a mixture of true undetectable observations and those values from a skew-normal distribution for an outcome with possible left censoring and skewness, and covariates with substantial measurement error. To quantify the covariate process, we offer a flexible nonparametric mixed-effects model within the Tobit framework. A Bayesian modeling approach is used to assess the simultaneous impact of left censoring, skewness, and measurement error in covariates on inference. The proposed methods are illustrated using real data from an AIDS clinical study. . Copyright © 2013 John Wiley & Sons, Ltd.

  5. The Use of the Skew T, Log P Diagram in Analysis and Forecasting. Revision

    Science.gov (United States)

    1990-03-01

    28 x 30 been added to further enhance the value of the inches. This version now includes the Apple - diagram. A detailed description of the Skew T, man...airocrau rqor we ovailable. The eauning lIkIaatte U the lop rate Is. at times. recorded as swot - adobaik wheun the mulm leave* a cloud Up and ener

  6. Cavitation Simulation on Conventional and Highly-Skewed Propellers in the Behind Condition

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul; Mikkelsen, Robert Flemming

    2011-01-01

    The cavitating flows around conventional and highly-skewed propellers in the behind-hull condition are simulated by an in-house RANS solver, EllipSys (Sørensen 2003), with the cavitation model, based on the homogeneous equilibrium modeling (HEM) approach and a vapor transport equation. The valida...

  7. Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization

    Science.gov (United States)

    Tan, Kun; An, Lei; Miao, Kai; Ren, Likun; Hou, Zhuocheng; Tao, Li; Zhang, Zhenni; Wang, Xiaodong; Xia, Wei; Liu, Jinghao; Wang, Zhuqing; Xi, Guangyin; Gao, Shuai; Sui, Linlin; Zhu, De-Sheng; Wang, Shumin; Wu, Zhonghong; Bach, Ingolf; Chen, Dong-bao; Tian, Jianhui

    2016-01-01

    Dynamic epigenetic reprogramming occurs during normal embryonic development at the preimplantation stage. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, the skewed sex ratio, an indicator of reproductive hazards, was reported in bovine and porcine embryos and even human IVF newborns. However, since the first case of sex skewing reported in 1991, the underlying mechanisms remain unclear. We reported herein that sex ratio is skewed in mouse IVF offspring, and this was a result of female-biased peri-implantation developmental defects that were originated from impaired imprinted X chromosome inactivation (iXCI) through reduced ring finger protein 12 (Rnf12)/X-inactive specific transcript (Xist) expression. Compensation of impaired iXCI by overexpression of Rnf12 to up-regulate Xist significantly rescued female-biased developmental defects and corrected sex ratio in IVF offspring. Moreover, supplementation of an epigenetic modulator retinoic acid in embryo culture medium up-regulated Rnf12/Xist expression, improved iXCI, and successfully redeemed the skewed sex ratio to nearly 50% in mouse IVF offspring. Thus, our data show that iXCI is one of the major epigenetic barriers for the developmental competence of female embryos during preimplantation stage, and targeting erroneous epigenetic modifications may provide a potential approach for preventing IVF-associated complications. PMID:26951653

  8. Effects of trophic skewing of species richness on ecosystem functioning in a diverse marine community.

    Directory of Open Access Journals (Sweden)

    Pamela L Reynolds

    Full Text Available Widespread overharvesting of top consumers of the world's ecosystems has "skewed" food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs, while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms generally emerged in communities with greater predator to prey richness (the more top-rich food webs. These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions.

  9. Century-scale Changes in Environmental Synchrony and Variability and their Effects on Populations of Birds and Reproduction of Trees

    Science.gov (United States)

    Koenig, W.

    2016-12-01

    The ecological impacts of modern global climate change are detectable in a wide variety of phenomena ranging from shifts in species ranges to changes in community composition and human disease dynamics. Thus far, however, little attention has been given to temporal changes in environmental spatial synchrony-the coincident change in abundance or value across the landscape-or environmental variability, despite the importance of these factors as drivers of population rescue and extinction and reproductive dynamics of both animal and plant populations. We quantified spatial synchrony of widespread North American wintering birds species using Audubon Christmas Bird Counts over the past 50 years and seed set variability (mast fruiting) among trees over the past century and found that both spatial synchrony of the birds and seed set variability have significantly increased over these time periods. The first of these results was mirrored by significant increases in spatial synchrony of mean maximum air temperature across North America, primarily during the summer, while the second is consistent with the hypothesis that climate change is resulting in greater seed set variability. These findings suggest the potential for temporal changes in envioronmental synchrony and variability to be affecting a wide range of ecological phenomena by influencing the probability of population rescue and extinction and by affecting ecosystem processes that rely on the resource pulses provided by mast fruiting plants.

  10. Bio-behavioral synchrony promotes the development of conceptualized emotions.

    Science.gov (United States)

    Atzil, Shir; Gendron, Maria

    2017-10-01

    As adults, we have structured conceptual representations of our emotions that help us to make sense of and regulate our ongoing affective experience. The ability to use emotion concepts is critical to make predictions about the world and choose appropriate action, such as 'I am afraid, and going to run away' or 'I am hungry and going to eat'. Thus, emotion concepts have an important role in helping us maintain our ongoing physiological balance, or allostasis. We will suggest here that infants can learn emotion concepts for the purpose of allostasis regulation, and that conceptualization is key component in emotional development. Moreover, we will suggest that social dyads facilitate concept learning because of a robust evolutionary feature seen in newborns of social species: they cannot survive alone and depend on conspecifics for allostasis regulation. Such social dependency creates a robust driving force for social learning of emotion concepts, and makes the social dyad, which is designed to regulate the infant's allostasis, an optimal medium for concept learning. In line with that, we will review evidence showing that the neural reference space for emotion overlaps with neural circuits that support allostasis (striatum, amygdala, and hypothalamus) and conceptualization (medial prefrontal cortex, posterior cingulate cortex), and that their developmental trajectories are interrelated, and depend on synchronous social care. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Dual Gamma Rhythm Generators Control Interlaminar Synchrony in Auditory Cortex

    Science.gov (United States)

    Ainsworth, Matthew; Lee, Shane; Cunningham, Mark O.; Roopun, Anita K.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.

    2013-01-01

    Rhythmic activity in populations of cortical neurons accompanies, and may underlie, many aspects of primary sensory processing and short-term memory. Activity in the gamma band (30 Hz up to > 100 Hz) is associated with such cognitive tasks and is thought to provide a substrate for temporal coupling of spatially separate regions of the brain. However, such coupling requires close matching of frequencies in co-active areas, and because the nominal gamma band is so spectrally broad, it may not constitute a single underlying process. Here we show that, for inhibition-based gamma rhythms in vitro in rat neocortical slices, mechanistically distinct local circuit generators exist in different laminae of rat primary auditory cortex. A persistent, 30 – 45 Hz, gap-junction-dependent gamma rhythm dominates rhythmic activity in supragranular layers 2/3, whereas a tonic depolarization-dependent, 50 – 80 Hz, pyramidal/interneuron gamma rhythm is expressed in granular layer 4 with strong glutamatergic excitation. As a consequence, altering the degree of excitation of the auditory cortex causes bifurcation in the gamma frequency spectrum and can effectively switch temporal control of layer 5 from supragranular to granular layers. Computational modeling predicts the pattern of interlaminar connections may help to stabilize this bifurcation. The data suggest that different strategies are used by primary auditory cortex to represent weak and strong inputs, with principal cell firing rate becoming increasingly important as excitation strength increases. PMID:22114273

  12. Gamma synchrony: towards a translational biomarker for the treatment resistant symptoms of schizophrenia

    Science.gov (United States)

    Gandal, Michael J.; Edgar, J. Christopher; Klook, Kerstin; Siegel, Steven J.

    2011-01-01

    The lack of efficacy for antipsychotics with respect to negative symptoms and cognitive deficits is a significant obstacle for the treatment of schizophrenia. Developing new drugs to target these symptoms requires appropriate neural biomarkers that can be investigated in model organisms, be used to track treatment response, and provide insight into pathophysiological disease mechanisms. A growing body of evidence indicates that neural oscillations in the gamma frequency range (30–80 Hz) are disturbed in schizophrenia. Gamma synchrony has been shown to mediate a host of sensory and cognitive functions, including perceptual encoding, selective attention, salience, and working memory – neurocognitive processes that are dysfunctional in schizophrenia and largely refractory to treatment. This review summarizes the current state of clinical literature with respect to gamma band responses (GBRs) in schizophrenia, focusing on resting and auditory paradigms. Next, preclinical studies of schizophrenia that have investigated gamma band activity are reviewed to gain insight into neural mechanisms associated with these deficits. We conclude that abnormalities in gamma synchrony are ubiquitous in schizophrenia and likely reflect an elevation in baseline cortical gamma synchrony (‘noise’) coupled with reduced stimulus-evoked GBRs (‘signal’). Such a model likely reflects hippocampal and cortical dysfunction, as well as reduced glutamatergic signaling with downstream GABAergic deficits, but is probably less influenced by dopaminergic abnormalities implicated in schizophrenia. Finally, we propose that analogous signal-to-noise deficits in the flow of cortical information in preclinical models are useful targets for the development of new drugs that target the treatment-resistant symptoms of schizophrenia. PMID:21349276

  13. Morningness/eveningness and the synchrony effect for spatial attention.

    Science.gov (United States)

    Dorrian, Jillian; McLean, Benjamin; Banks, Siobhan; Loetscher, Tobias

    2017-02-01

    There is evidence that a decrease in alertness is associated with a rightward shift of attention. Alertness fluctuates throughout the day and peak times differ between individuals. Some individuals feel most alert in the morning; others in the evening. Our aim was to investigate the influence of morningness/eveningness and time of testing on spatial attention. It was predicted that attention would shift rightwards when individuals were tested at their non-optimal time as compared to tests at peak times. A crowdsourcing internet marketplace, Amazon Mechanical Turk (AMT) was used to collect data. Given questions surrounding the quality of data drawn from such virtual environments, this study also investigated the sensitivity of data to demonstrate known effects from the literature. Five-hundred and thirty right-handed participants took part between 6 am and 11 pm. Participants answered demographic questions, completed a question from the Horne and Östberg Morningness/Eveningness Scale, and performed a spatial attentional task (landmark task). For the landmark task, participants indicated whether the left or right segment of each of 72 pre-bisected lines was longer (longer side counterbalanced). Response bias was calculated by subtracting the 'number of left responses' from the 'number of right responses', and dividing by the number of trials. Negative values indicate a leftward attentional bias, and positive values a rightward bias. Well-supported relationships between variables were reflected in the dataset. Controlling for age, there was a significant interaction between morningness/eveningness and time of testing (morning=6 am-2.30 pm, evening=2.30 pm-11 pm) (pattention from peak to off-peak times of testing for those identifying as morning types, but not evening types. Findings support the utility of crowdsourcing internet marketplaces as data collection vehicles for research. Results also suggest that the deployment of spatial attention is modulated by an

  14. Oscillating in synchrony with a metronome: serial dependence, limit cycle dynamics, and modeling.

    Science.gov (United States)

    Torre, Kjerstin; Balasubramaniam, Ramesh; Delignières, Didier

    2010-07-01

    We analyzed serial dependencies in periods and asynchronies collected during oscillations performed in synchrony with a metronome. Results showed that asynchronies contain 1/f fluctuations, and the series of periods contain antipersistent dependence. The analysis of the phase portrait revealed a specific asymmetry induced by synchronization. We propose a hybrid limit cycle model including a cycle-dependent stiffness parameter provided with fractal properties, and a parametric driving function based on velocity. This model accounts for most experimentally evidenced statistical features, including serial dependence and limit cycle dynamics. We discuss the results and modeling choices within the framework of event-based and emergent timing.

  15. Differential frontal-parietal phase synchrony during hypnosis as a function of hypnotic suggestibility.

    Science.gov (United States)

    Terhune, Devin Blair; Cardeña, Etzel; Lindgren, Magnus

    2011-10-01

    Spontaneous dissociative alterations in awareness and perception among highly suggestible individuals following a hypnotic induction may result from disruptions in the functional coordination of the frontal-parietal network. We recorded EEG and self-reported state dissociation in control and hypnosis conditions in two sessions with low and highly suggestible participants. Highly suggestible participants reliably experienced greater state dissociation and exhibited lower frontal-parietal phase synchrony in the alpha2 frequency band during hypnosis than low suggestible participants. These findings suggest that highly suggestible individuals exhibit a disruption of the frontal-parietal network that is only observable following a hypnotic induction. Copyright © 2011 Society for Psychophysiological Research.

  16. Validation of a pretreatment delivery quality assurance method for the CyberKnife Synchrony system

    Energy Technology Data Exchange (ETDEWEB)

    Mastella, E., E-mail: edoardo.mastella@cnao.it [Medical Physics Unit, CNAO Foundation—National Centre for Oncological Hadron Therapy, Pavia I-27100, Italy and Medical Physics Unit, IEO—European Institute of Oncology, Milan I-20141 (Italy); Vigorito, S.; Rondi, E.; Cattani, F. [Medical Physics Unit, IEO—European Institute of Oncology, Milan I-20141 (Italy); Piperno, G.; Ferrari, A.; Strata, E.; Rozza, D. [Department of Radiation Oncology, IEO—European Institute of Oncology, Milan I-20141 (Italy); Jereczek-Fossa, B. A. [Department of Radiation Oncology, IEO—European Institute of Oncology, Milan I-20141, Italy and Department of Oncology and Hematology Oncology, University of Milan, Milan I-20122 (Italy)

    2016-08-15

    Purpose: To evaluate the geometric and dosimetric accuracies of the CyberKnife Synchrony respiratory tracking system (RTS) and to validate a method for pretreatment patient-specific delivery quality assurance (DQA). Methods: An EasyCube phantom was mounted on the ExacTrac gating phantom, which can move along the superior–inferior (SI) axis of a patient to simulate a moving target. The authors compared dynamic and static measurements. For each case, a Gafchromic EBT3 film was positioned between two slabs of the EasyCube, while a PinPoint ionization chamber was placed in the appropriate space. There were three steps to their evaluation: (1) the field size, the penumbra, and the symmetry of six secondary collimators were measured along the two main orthogonal axes. Dynamic measurements with deliberately simulated errors were also taken. (2) The delivered dose distributions (from step 1) were compared with the planned ones, using the gamma analysis method. The local gamma passing rates were evaluated using three acceptance criteria: 3% local dose difference (LDD)/3 mm, 2%LDD/2 mm, and 3%LDD/1 mm. (3) The DQA plans for six clinical patients were irradiated in different dynamic conditions, to give a total of 19 cases. The measured and planned dose distributions were evaluated with the same gamma-index criteria used in step 2 and the measured chamber doses were compared with the planned mean doses in the sensitive volume of the chamber. Results: (1) A very slight enlargement of the field size and of the penumbra was observed in the SI direction (on average <1 mm), in line with the overall average CyberKnife system error for tracking treatments. (2) Comparison between the planned and the correctly delivered dose distributions confirmed the dosimetric accuracy of the RTS for simple plans. The multicriteria gamma analysis was able to detect the simulated errors, proving the robustness of their method of analysis. (3) All of the DQA clinical plans passed the tests, both in

  17. Utilizing time-frequency amplitude and phase synchrony measure to assess feedback processing in a gambling task.

    Science.gov (United States)

    Watts, Adreanna T M; Tootell, Anne V; Fix, Spencer T; Aviyente, Selin; Bernat, Edward M

    2018-04-29

    The neurophysiological mechanisms involved in the evaluation of performance feedback have been widely studied in the ERP literature over the past twenty years, but understanding has been limited by the use of traditional time-domain amplitude analytic approaches. Gambling outcome valence has been identified as an important factor modulating event-related potential (ERP) components, most notably the feedback negativity (FN). Recent work employing time-frequency analysis has shown that processes indexed by the FN are confounded in the time-domain and can be better represented as separable feedback-related processes in the theta (3-7 Hz) and delta (0-3 Hz) frequency bands. In addition to time-frequency amplitude analysis, phase synchrony measures have begun to further our understanding of performance evaluation by revealing how feedback information is processed within and between various brain regions. The current study aimed to provide an integrative assessment of time-frequency amplitude, inter-trial phase synchrony, and inter-channel phase synchrony changes following monetary feedback in a gambling task. Results revealed that time-frequency amplitude activity explained separable loss and gain processes confounded in the time-domain. Furthermore, phase synchrony measures explained unique variance above and beyond amplitude measures and demonstrated enhanced functional integration between medial prefrontal and bilateral frontal, motor, and occipital regions for loss relative to gain feedback. These findings demonstrate the utility of assessing time-frequency amplitude, inter-trial phase synchrony, and inter-channel phase synchrony together to better elucidate the neurophysiology of feedback processing. Copyright © 2017. Published by Elsevier B.V.

  18. Skew Projection of Echo-Detected EPR Spectra for Increased Sensitivity and Resolution

    Science.gov (United States)

    Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.

    2013-01-01

    The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier Transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five. PMID:23644351

  19. Demographic origins of skewed operational and adult sex ratios: perturbation analyses of two-sex models.

    Science.gov (United States)

    Veran, Sophie; Beissinger, Steven R

    2009-02-01

    Skewed sex ratios - operational (OSR) and Adult (ASR) - arise from sexual differences in reproductive behaviours and adult survival rates due to the cost of reproduction. However, skewed sex-ratio at birth, sex-biased dispersal and immigration, and sexual differences in juvenile mortality may also contribute. We present a framework to decompose the roles of demographic traits on sex ratios using perturbation analyses of two-sex matrix population models. Metrics of sensitivity are derived from analyses of sensitivity, elasticity, life-table response experiments and life stage simulation analyses, and applied to the stable stage distribution instead of lambda. We use these approaches to examine causes of male-biased sex ratios in two populations of green-rumped parrotlets (Forpus passerinus) in Venezuela. Female local juvenile survival contributed the most to the unbalanced OSR and ASR due to a female-biased dispersal rate, suggesting sexual differences in philopatry can influence sex ratios more strongly than the cost of reproduction.

  20. Surveying and optical tooling technologies combined to align a skewed beamline at the LAMPF accelerator

    International Nuclear Information System (INIS)

    Bauke, W.; Clark, D.A.; Trujillo, P.B.

    1985-01-01

    Optical Tooling evolved from traditional surveying, and both technologies are sometimes used interchangeably in large industrial installations, since the instruments and their specialized adapters and supports complement each other well. A unique marriage of both technologies was accomplished in a novel application at LAMPF, the Los Alamos Meson Physics Facility. LAMPF consists of a linear accelerator with multiple target systems, one of which had to be altered to accommodate a new beamline for a neutrino experiment. The new line was to be installed into a crowded beam tunnel and had to be skewed and tilted in compound angles to avoid existing equipment. In this paper we describe how Optical Tooling was used in conjunction with simple alignment and reference fixtures to set fiducials on the magnets and other mechanical components of the beamline, and how theodolites and sight levels were then adapted to align these components along the calculated skew planes. Design tolerances are compared with measured alignment results

  1. Multi-objective mean-variance-skewness model for generation portfolio allocation in electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Pindoriya, N.M.; Singh, S.N. [Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Singh, S.K. [Indian Institute of Management Lucknow, Lucknow 226013 (India)

    2010-10-15

    This paper proposes an approach for generation portfolio allocation based on mean-variance-skewness (MVS) model which is an extension of the classical mean-variance (MV) portfolio theory, to deal with assets whose return distribution is non-normal. The MVS model allocates portfolios optimally by considering the maximization of both the expected return and skewness of portfolio return while simultaneously minimizing the risk. Since, it is competing and conflicting non-smooth multi-objective optimization problem, this paper employed a multi-objective particle swarm optimization (MOPSO) based meta-heuristic technique to provide Pareto-optimal solution in a single simulation run. Using a case study of the PJM electricity market, the performance of the MVS portfolio theory based method and the classical MV method is compared. It has been found that the MVS portfolio theory based method can provide significantly better portfolios in the situation where non-normally distributed assets exist for trading. (author)

  2. SKEWNESS IN STOCK RETURNS: EVIDENCE FROM THE BUCHAREST STOCK EXCHANGE DURING 2000 – 2011

    Directory of Open Access Journals (Sweden)

    IULIAN PANAIT

    2012-05-01

    Full Text Available Our paper investigates the symmetry in stock returns of the 30 most liquid companies traded on Bucharest Stock Exchange during 2000 – 2011 and also the most representative 5 market indices. Our daily data shows that skewness estimates are slightly negative for most indices and individual stocks, but only a few present values significantly different from the characteristics of a normal distribution. We compare our results with skewness estimates for 21 major and emerging stock market indices around the world and find that such results are similar to other low capitalization and trading volume markets. For all the Romanian and international assets studied, the Studentized-Range (St-R and Jarque-Bera (J-B tests reject the hypothesis of normal distribution of daily returns.

  3. Breeding system and reproductive skew in a highly polygynous ant population

    DEFF Research Database (Denmark)

    Haag-Liautard, C.; Pedersen, Jes Søe; Ovaskainen, O.

    2008-01-01

    of mature queens by mark-release-recapture in 29 nests and dissected a sub-sample of queens to assess their reproductive status. We also used microsatellites to estimate relatedness within and between all classes of nestmates (queens, their mates, worker brood, queen brood and male brood). Queen number...... Factors affecting relatedness among nest members in ant colonies with high queen number are still poorly understood. In order to identify the major determinants of nest kin structure, we conducted a detailed analysis of the breeding system of the ant Formica exsecta. We estimated the number...... was very high, with an arithmetic mean of 253 per nest. Most queens (90%) were reproductively active, consistent with the genetic analyses revealing that there was only a minimal reproductive skew among nestmate queens. Despite the high queen number and low reproductive skew, almost all classes...

  4. Multi-objective mean-variance-skewness model for generation portfolio allocation in electricity markets

    International Nuclear Information System (INIS)

    Pindoriya, N.M.; Singh, S.N.; Singh, S.K.

    2010-01-01

    This paper proposes an approach for generation portfolio allocation based on mean-variance-skewness (MVS) model which is an extension of the classical mean-variance (MV) portfolio theory, to deal with assets whose return distribution is non-normal. The MVS model allocates portfolios optimally by considering the maximization of both the expected return and skewness of portfolio return while simultaneously minimizing the risk. Since, it is competing and conflicting non-smooth multi-objective optimization problem, this paper employed a multi-objective particle swarm optimization (MOPSO) based meta-heuristic technique to provide Pareto-optimal solution in a single simulation run. Using a case study of the PJM electricity market, the performance of the MVS portfolio theory based method and the classical MV method is compared. It has been found that the MVS portfolio theory based method can provide significantly better portfolios in the situation where non-normally distributed assets exist for trading. (author)

  5. Dip and anisotropy effects on flow using a vertically skewed model grid.

    Science.gov (United States)

    Hoaglund, John R; Pollard, David

    2003-01-01

    Darcy flow equations relating vertical and bedding-parallel flow to vertical and bedding-parallel gradient components are derived for a skewed Cartesian grid in a vertical plane, correcting for structural dip given the principal hydraulic conductivities in bedding-parallel and bedding-orthogonal directions. Incorrect-minus-correct flow error results are presented for ranges of structural dip (0 strike and dip, and a solver that can handle off-diagonal hydraulic conductivity terms.

  6. Fast and Accurate Ground Truth Generation for Skew-Tolerance Evaluation of Page Segmentation Algorithms

    Directory of Open Access Journals (Sweden)

    Okun Oleg

    2006-01-01

    Full Text Available Many image segmentation algorithms are known, but often there is an inherent obstacle in the unbiased evaluation of segmentation quality: the absence or lack of a common objective representation for segmentation results. Such a representation, known as the ground truth, is a description of what one should obtain as the result of ideal segmentation, independently of the segmentation algorithm used. The creation of ground truth is a laborious process and therefore any degree of automation is always welcome. Document image analysis is one of the areas where ground truths are employed. In this paper, we describe an automated tool called GROTTO intended to generate ground truths for skewed document images, which can be used for the performance evaluation of page segmentation algorithms. Some of these algorithms are claimed to be insensitive to skew (tilt of text lines. However, this fact is usually supported only by a visual comparison of what one obtains and what one should obtain since ground truths are mostly available for upright images, that is, those without skew. As a result, the evaluation is both subjective; that is, prone to errors, and tedious. Our tool allows users to quickly and easily produce many sufficiently accurate ground truths that can be employed in practice and therefore it facilitates automatic performance evaluation. The main idea is to utilize the ground truths available for upright images and the concept of the representative square [9] in order to produce the ground truths for skewed images. The usefulness of our tool is demonstrated through a number of experiments with real-document images of complex layout.

  7. Stock Markets Volatility Spillovers during Financial Crises : A DCC-MGARCH with Skew-t Approach

    OpenAIRE

    Bala, Dahiru A.; Takimoto, Taro

    2016-01-01

    We investigate stock markets volatility spillovers in selected emerging and major developed markets using multivariate GARCH (MGARCH) models [namely; DVECH, CCC-MGARCH, CCC-VARMA-(A)MGARCH, VAR-EGARCH, BEKK-(A)MGARCH, DCC-MGARCH (with Gaussian and t distributions) and DCC-with-skew-t density]. The paper analyses the impacts of recent global financial crisis (2007{2009) on stock market volatility and examines their dynamic interactions using several MGARCH model variants. Structural break dete...

  8. How does synchrony with host plant affect the performance of an outbreaking insect defoliator?

    Science.gov (United States)

    Fuentealba, Alvaro; Pureswaran, Deepa; Bauce, Éric; Despland, Emma

    2017-08-01

    Phenological mismatch has been proposed as a key mechanism by which climate change can increase the severity of insect outbreaks. Spruce budworm (Choristoneura fumiferana) is a serious defoliator of North American conifers that feeds on buds in the early spring. Black spruce (Picea mariana) has traditionally been considered a poor-quality host plant since its buds open later than those of the preferred host, balsam fir (Abies balsamea). We hypothesize that advancing black spruce budbreak phenology under a warmer climate would improve its phenological synchrony with budworm and hence increase both its suitability as a host plant and resulting defoliation damage. We evaluated the relationship between tree phenology and both budworm performance and tree defoliation by placing seven cohorts of budworm larvae on black spruce and balsam fir branches at different lags with tree budburst. Our results show that on both host plants, spruce budworm survival and pupal mass decrease sharply when budbreak occurs prior to larval emergence. By contrast, emergence before budbreak decreases survival, but does not negatively impact growth or reproductive output. We also document phytochemical changes that occur as needles mature and define a window of opportunity for the budworm. Finally, larvae that emerged in synchrony with budbreak had the greatest defoliating effect on black spruce. Our results suggest that in the event of advanced black spruce phenology due to climate warming, this host species will support better budworm survival and suffer increased defoliation.

  9. Structural (operational) synchrony of EEG alpha activity during an auditory memory task.

    Science.gov (United States)

    Fingelkurts, Andrew; Fingelkurts, Alexander; Krause, Christina; Kaplan, Alexander; Borisov, Sergei; Sams, Mikko

    2003-09-01

    Memory paradigms are often used in psycho-physiological experiments in order to understand the neural basis underlying cognitive processes. One of the fundamental problems encountered in memory research is how specific and complementary cortical structures interact with each other during episodic encoding and retrieval. A key aspect of the research described below was estimating the coupling of rapid transition processes (in terms of EEG description) which occur in separate cortical areas rather than estimating the routine phase-frequency synchrony in terms of correlation and coherency. It is assumed that these rapid transition processes in the EEG amplitude correspond to the "switching on/off" of brain elemental operations. By making a quantitative estimate of the EEG structural synchrony of alpha-band power between different EEG channels, it was shown that short-term memory has the emergent property of a multiregional neuronal network, and is not the product of strictly hierarchical processing based on convergence through association regions. Moreover, it was demonstrated that the dynamic temporal structure of alpha activity is strongly correlated to the dynamic structure of working memory.

  10. Abnormal synchrony and effective connectivity in patients with schizophrenia and auditory hallucinations

    Science.gov (United States)

    de la Iglesia-Vaya, Maria; Escartí, Maria José; Molina-Mateo, Jose; Martí-Bonmatí, Luis; Gadea, Marien; Castellanos, Francisco Xavier; Aguilar García-Iturrospe, Eduardo J.; Robles, Montserrat; Biswal, Bharat B.; Sanjuan, Julio

    2014-01-01

    Auditory hallucinations (AH) are the most frequent positive symptoms in patients with schizophrenia. Hallucinations have been related to emotional processing disturbances, altered functional connectivity and effective connectivity deficits. Previously, we observed that, compared to healthy controls, the limbic network responses of patients with auditory hallucinations differed when the subjects were listening to emotionally charged words. We aimed to compare the synchrony patterns and effective connectivity of task-related networks between schizophrenia patients with and without AH and healthy controls. Schizophrenia patients with AH (n = 27) and without AH (n = 14) were compared with healthy participants (n = 31). We examined functional connectivity by analyzing correlations and cross-correlations among previously detected independent component analysis time courses. Granger causality was used to infer the information flow direction in the brain regions. The results demonstrate that the patterns of cortico-cortical functional synchrony differentiated the patients with AH from the patients without AH and from the healthy participants. Additionally, Granger-causal relationships between the networks clearly differentiated the groups. In the patients with AH, the principal causal source was an occipital–cerebellar component, versus a temporal component in the patients without AH and the healthy controls. These data indicate that an anomalous process of neural connectivity exists when patients with AH process emotional auditory stimuli. Additionally, a central role is suggested for the cerebellum in processing emotional stimuli in patients with persistent AH. PMID:25379429

  11. On a Possible Relationship between Linguistic Expertise and EEG Gamma Band Phase Synchrony

    Science.gov (United States)

    Reiterer, Susanne; Pereda, Ernesto; Bhattacharya, Joydeep

    2011-01-01

    Recent research has shown that extensive training in and exposure to a second language can modify the language organization in the brain by causing both structural and functional changes. However it is not yet known how these changes are manifested by the dynamic brain oscillations and synchronization patterns subserving the language networks. In search for synchronization correlates of proficiency and expertise in second language acquisition, multivariate EEG signals were recorded from 44 high and low proficiency bilinguals during processing of natural language in their first and second languages. Gamma band (30–45 Hz) phase synchronization (PS) was calculated mainly by two recently developed methods: coarse-graining of Markov chains (estimating global phase synchrony, measuring the degree of PS between one electrode and all other electrodes), and phase lag index (PLI; estimating bivariate phase synchrony, measuring the degree of PS between a pair of electrodes). On comparing second versus first language processing, global PS by coarse-graining Markov chains indicated that processing of the second language needs significantly higher synchronization strength than first language. On comparing the proficiency groups, bivariate PS measure (i.e., PLI) revealed that during second language processing the low proficiency group showed stronger and broader network patterns than the high proficiency group, with interconnectivities between a left fronto-parietal network. Mean phase coherence analysis also indicated that the network activity was globally stronger in the low proficiency group during second language processing. PMID:22125542

  12. Dance on cortex: enhanced theta synchrony in experts when watching a dance piece.

    Science.gov (United States)

    Poikonen, Hanna; Toiviainen, Petri; Tervaniemi, Mari

    2018-03-01

    When watching performing arts, a wide and complex network of brain processes emerge. These processes can be shaped by professional expertise. When compared to laymen, dancers have enhanced processes in observation of short dance movement and listening to music. But how do the cortical processes differ in musicians and dancers when watching an audio-visual dance performance? In our study, we presented the participants long excerpts from the contemporary dance choreography of Carmen. During multimodal movement of a dancer, theta phase synchrony over the fronto-central electrodes was stronger in dancers when compared to musicians and laymen. In addition, alpha synchrony was decreased in all groups during large rapid movement when compared to nearly motionless parts of the choreography. Our results suggest an enhanced cortical communication in dancers when watching dance and, further, that this enhancement is rather related to multimodal, cognitive and emotional processes than to simple observation of dance movement. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Multiscale synchrony behaviors of paired financial time series by 3D multi-continuum percolation

    Science.gov (United States)

    Wang, M.; Wang, J.; Wang, B. T.

    2018-02-01

    Multiscale synchrony behaviors and nonlinear dynamics of paired financial time series are investigated, in an attempt to study the cross correlation relationships between two stock markets. A random stock price model is developed by a new system called three-dimensional (3D) multi-continuum percolation system, which is utilized to imitate the formation mechanism of price dynamics and explain the nonlinear behaviors found in financial time series. We assume that the price fluctuations are caused by the spread of investment information. The cluster of 3D multi-continuum percolation represents the cluster of investors who share the same investment attitude. In this paper, we focus on the paired return series, the paired volatility series, and the paired intrinsic mode functions which are decomposed by empirical mode decomposition. A new cross recurrence quantification analysis is put forward, combining with multiscale cross-sample entropy, to investigate the multiscale synchrony of these paired series from the proposed model. The corresponding research is also carried out for two China stock markets as comparison.

  14. Delivering Left-Skewed Portfolio Payoff Distributions in the Presence of Transaction Costs

    Directory of Open Access Journals (Sweden)

    Jacek B Krawczyk

    2015-08-01

    Full Text Available For pension-savers, a low payoff is a financial disaster. Such investors will most likely prefer left-skewed payoff distributions over right-skewed payoff distributions. We explore how such distributions can be delivered. Cautious-relaxed utility measures are cautious in ensuring that payoffs don’t fall much below a reference value, but relaxed about exceeding it. We find that the payoff distribution delivered by a cautious-relaxed utility measure has appealing features which payoff distributions delivered by traditional utility functions don’t. In particular, cautious-relaxed distributions can have the mass concentrated on the left, hence be left-skewed. However, cautious-relaxed strategies prescribe frequent portfolio adjustments which may be expensive if transaction costs are charged. In contrast, more traditional strategies can be time-invariant. Thus we investigate the impact of transaction costs on the appeal of cautious-relaxed strategies. We find that relatively high transaction fees are required for the cautious-relaxed strategy to lose its appeal. This paper contributes to the literature which compares utility measures by the payoff distributions they produce and finds that a cautious-relaxed utility measure will deliver payoffs that many investors will prefer.

  15. Partially linear mixed-effects joint models for skewed and missing longitudinal competing risks outcomes.

    Science.gov (United States)

    Lu, Tao; Lu, Minggen; Wang, Min; Zhang, Jun; Dong, Guang-Hui; Xu, Yong

    2017-12-18

    Longitudinal competing risks data frequently arise in clinical studies. Skewness and missingness are commonly observed for these data in practice. However, most joint models do not account for these data features. In this article, we propose partially linear mixed-effects joint models to analyze skew longitudinal competing risks data with missingness. In particular, to account for skewness, we replace the commonly assumed symmetric distributions by asymmetric distribution for model errors. To deal with missingness, we employ an informative missing data model. The joint models that couple the partially linear mixed-effects model for the longitudinal process, the cause-specific proportional hazard model for competing risks process and missing data process are developed. To estimate the parameters in the joint models, we propose a fully Bayesian approach based on the joint likelihood. To illustrate the proposed model and method, we implement them to an AIDS clinical study. Some interesting findings are reported. We also conduct simulation studies to validate the proposed method.

  16. Approaches to characterise chromatographic column performance based on global parameters accounting for peak broadening and skewness.

    Science.gov (United States)

    Baeza-Baeza, J J; Pous-Torres, S; Torres-Lapasió, J R; García-Alvarez-Coque, M C

    2010-04-02

    Peak broadening and skewness are fundamental parameters in chromatography, since they affect the resolution capability of a chromatographic column. A common practice to characterise chromatographic columns is to estimate the efficiency and asymmetry factor for the peaks of one or more solutes eluted at selected experimental conditions. This has the drawback that the extra-column contributions to the peak variance and skewness make the peak shape parameters depend on the retention time. We propose and discuss here the use of several approaches that allow the estimation of global parameters (non-dependent on the retention time) to describe the column performance. The global parameters arise from different linear relationships that can be established between the peak variance, standard deviation, or half-widths with the retention time. Some of them describe exclusively the column contribution to the peak broadening, whereas others consider the extra-column effects also. The estimation of peak skewness was also possible for the approaches based on the half-widths. The proposed approaches were applied to the characterisation of different columns (Spherisorb, Zorbax SB, Zorbax Eclipse, Kromasil, Chromolith, X-Terra and Inertsil), using the chromatographic data obtained for several diuretics and basic drugs (beta-blockers). Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Squaring the Circle: Geometric Skewness and Symmetry Breaking for Passive Scalar Transport in Ducts and Pipes.

    Science.gov (United States)

    Aminian, Manuchehr; Bernardi, Francesca; Camassa, Roberto; McLaughlin, Richard M

    2015-10-09

    We study the role geometry plays in the emergence of asymmetries in diffusing passive scalars advected by pressure-driven flows in ducts and pipes of different aspect ratios. We uncover nonintuitive, multi-time-scale behavior gauged by a new statistic, which we term "geometric skewness" S^{G}, which measures instantaneously forming asymmetries at short times due to flow geometry. This signature distinguishes elliptical pipes of any aspect ratio, for which S^{G}=0, from rectangular ducts whose S^{G} is generically nonzero, and, interestingly, shows that a special duct of aspect ratio ≈0.53335 behaves like a circular pipe as its geometric skewness vanishes. Using a combination of exact solutions, novel short-time asymptotics, and Monte Carlo simulations, we establish the relevant time scales for plateaus and extrema in the evolution of the skewness and kurtosis for our class of geometries. For ducts limiting to channel geometries, we present new exact, single-series formulas for the first four moments on slices used to benchmark Monte Carlo simulations.

  18. The skewed weak lensing likelihood: why biases arise, despite data and theory being sound.

    Science.gov (United States)

    Sellentin, Elena; Heymans, Catherine; Harnois-Déraps, Joachim

    2018-04-01

    We derive the essentials of the skewed weak lensing likelihood via a simple Hierarchical Forward Model. Our likelihood passes four objective and cosmology-independent tests which a standard Gaussian likelihood fails. We demonstrate that sound weak lensing data are naturally biased low, since they are drawn from a skewed distribution. This occurs already in the framework of ΛCDM. Mathematically, the biases arise because noisy two-point functions follow skewed distributions. This form of bias is already known from CMB analyses, where the low multipoles have asymmetric error bars. Weak lensing is more strongly affected by this asymmetry as galaxies form a discrete set of shear tracer particles, in contrast to a smooth shear field. We demonstrate that the biases can be up to 30% of the standard deviation per data point, dependent on the properties of the weak lensing survey and the employed filter function. Our likelihood provides a versatile framework with which to address this bias in future weak lensing analyses.

  19. Analysis of financial time series using multiscale entropy based on skewness and kurtosis

    Science.gov (United States)

    Xu, Meng; Shang, Pengjian

    2018-01-01

    There is a great interest in studying dynamic characteristics of the financial time series of the daily stock closing price in different regions. Multi-scale entropy (MSE) is effective, mainly in quantifying the complexity of time series on different time scales. This paper applies a new method for financial stability from the perspective of MSE based on skewness and kurtosis. To better understand the superior coarse-graining method for the different kinds of stock indexes, we take into account the developmental characteristics of the three continents of Asia, North America and European stock markets. We study the volatility of different financial time series in addition to analyze the similarities and differences of coarsening time series from the perspective of skewness and kurtosis. A kind of corresponding relationship between the entropy value of stock sequences and the degree of stability of financial markets, were observed. The three stocks which have particular characteristics in the eight piece of stock sequences were discussed, finding the fact that it matches the result of applying the MSE method to showing results on a graph. A comparative study is conducted to simulate over synthetic and real world data. Results show that the modified method is more effective to the change of dynamics and has more valuable information. The result is obtained at the same time, finding the results of skewness and kurtosis discrimination is obvious, but also more stable.

  20. A Bayesian estimate of the concordance correlation coefficient with skewed data.

    Science.gov (United States)

    Feng, Dai; Baumgartner, Richard; Svetnik, Vladimir

    2015-01-01

    Concordance correlation coefficient (CCC) is one of the most popular scaled indices used to evaluate agreement. Most commonly, it is used under the assumption that data is normally distributed. This assumption, however, does not apply to skewed data sets. While methods for the estimation of the CCC of skewed data sets have been introduced and studied, the Bayesian approach and its comparison with the previous methods has been lacking. In this study, we propose a Bayesian method for the estimation of the CCC of skewed data sets and compare it with the best method previously investigated. The proposed method has certain advantages. It tends to outperform the best method studied before when the variation of the data is mainly from the random subject effect instead of error. Furthermore, it allows for greater flexibility in application by enabling incorporation of missing data, confounding covariates, and replications, which was not considered previously. The superiority of this new approach is demonstrated using simulation as well as real-life biomarker data sets used in an electroencephalography clinical study. The implementation of the Bayesian method is accessible through the Comprehensive R Archive Network. Copyright © 2015 John Wiley & Sons, Ltd.

  1. The role of the SST-thermocline relationship in Indian Ocean Dipole skewness and its response to global warming

    Science.gov (United States)

    Ng, Benjamin; Cai, Wenju; Walsh, Kevin

    2014-01-01

    A positive Indian Ocean Dipole (IOD) tends to have stronger cold sea surface temperature anomalies (SSTAs) over the eastern Indian Ocean with greater impacts than warm SSTAs that occur during its negative phase. Two feedbacks have been suggested as the cause of positive IOD skewness, a positive Bjerknes feedback and a negative SST-cloud-radiation (SCR) feedback, but their relative importance is debated. Using inter-model statistics, we show that the most important process for IOD skewness is an asymmetry in the thermocline feedback, whereby SSTAs respond to thermocline depth anomalies more strongly during the positive phase than negative phase. This asymmetric thermocline feedback drives IOD skewness despite positive IODs receiving greater damping from the SCR feedback. In response to global warming, although the thermocline feedback strengthens, its asymmetry between positive and negative IODs weakens. This behaviour change explains the reduction in IOD skewness that many models display under global warming. PMID:25112717

  2. Stall inception and warning in a single-stage transonic axial compressor with axial skewed slot casing treatment

    International Nuclear Information System (INIS)

    Lim, Byeung Jun; Kwon, Se Jin; Park, Tae Choon

    2014-01-01

    Characteristic changes in the stall inception in a single-stage transonic axial compressor with an axial skewed slot casing treatment were investigated experimentally. A rotating stall occurred intermittently in a compressor with an axial skewed slot, whereas spike-type rotating stalls occurred in the case of smooth casing. The axial skewed slot suppressed stall cell growth and increased the operating range. A mild surge, the frequency of which is the Helmholtz frequency of the compressor system, occurred with the rotating stall. The irregularity in the pressure signals at the slot bottom increased decreasing flow rate. An autocorrelation-based stall warning method was applied to the measured pressure signals. Results estimate and warn against the stall margin in a compressor with an axial skewed slot.

  3. Impact of radius and skew angle on areal density in heat assisted magnetic recording hard disk drives

    Science.gov (United States)

    Cordle, Michael; Rea, Chris; Jury, Jason; Rausch, Tim; Hardie, Cal; Gage, Edward; Victora, R. H.

    2018-05-01

    This study aims to investigate the impact that factors such as skew, radius, and transition curvature have on areal density capability in heat-assisted magnetic recording hard disk drives. We explore a "ballistic seek" approach for capturing in-situ scan line images of the magnetization footprint on the recording media, and extract parametric results of recording characteristics such as transition curvature. We take full advantage of the significantly improved cycle time to apply a statistical treatment to relatively large samples of experimental curvature data to evaluate measurement capability. Quantitative analysis of factors that impact transition curvature reveals an asymmetry in the curvature profile that is strongly correlated to skew angle. Another less obvious skew-related effect is an overall decrease in curvature as skew angle increases. Using conventional perpendicular magnetic recording as the reference case, we characterize areal density capability as a function of recording position.

  4. A Skewed Student-t Value-at-Risk Approach for Long Memory Volatility Processes in Japanese Financial Markets

    Directory of Open Access Journals (Sweden)

    Seong¡-Min Yoon

    2007-06-01

    Full Text Available This paper investigates the relevance of skewed Student-t distributions in capturing long memory volatility properties in the daily return series of Japanese financial data (Nikkei 225 Index and JPY-USD exchange rate. For this purpose, we assess the performance of two long memory Value-at-Risk (VaR models (FIGARCH and FIAPARCH VaR model with three different distribution innovations: the normal, Student-t, and skewed Student-t distributions. From our results, we find that the skewed Student-t distribution model produces more accurate VaR estimations than normal and Student-t distribution models. Thus, accounting for skewness and excess kurtosis in the asset return distribution can provide suitable criteria for VaR model selection in the context of long memory volatility and enhance the performance of risk management in Japanese financial markets.

  5. Coherence and phase synchrony analyses of EEG signals in Mild Cognitive Impairment (MCI): A study of functional brain connectivity

    Science.gov (United States)

    Handayani, Nita; Haryanto, Freddy; Khotimah, Siti Nurul; Arif, Idam; Taruno, Warsito Purwo

    2018-03-01

    This paper presents an EEG study for coherence and phase synchrony in mild cognitive impairment (MCI) subjects. MCI is characterized by cognitive decline, which is an early stage of Alzheimer's disease (AD). AD is a neurodegenerative disorder with symptoms such as memory loss and cognitive impairment. EEG coherence is a statistical measure of correlation between signals from electrodes spatially separated on the scalp. The magnitude of phase synchrony is expressed in the phase locking value (PLV), a statistical measure of neuronal connectivity in the human brain. Brain signals were recorded using an Emotiv Epoc 14-channel wireless EEG at a sampling frequency of 128 Hz. In this study, we used 22 elderly subjects consisted of 10 MCI subjects and 12 healthy subjects as control group. The coherence between each electrode pair was measured for all frequency bands (delta, theta, alpha and beta). In the MCI subjects, the value of coherence and phase synchrony was generally lower than in the healthy subjects especially in the beta frequency. A decline of intrahemisphere coherence in the MCI subjects occurred in the left temporo-parietal-occipital region. The pattern of decline in MCI coherence is associated with decreased cholinergic connectivity along the path that connects the temporal, occipital, and parietal areas of the brain to the frontal area of the brain. EEG coherence and phase synchrony are able to distinguish persons who suffer AD in the early stages from healthy elderly subjects.

  6. Dynamic ErbB4 Activity in Hippocampal-Prefrontal Synchrony and Top-Down Attention in Rodents.

    Science.gov (United States)

    Tan, Zhibing; Robinson, Heath L; Yin, Dong-Min; Liu, Yu; Liu, Fang; Wang, Hongsheng; Lin, Thiri W; Xing, Guanglin; Gan, Lin; Xiong, Wen-Cheng; Mei, Lin

    2018-04-18

    Top-down attention is crucial for meaningful behaviors and impaired in various mental disorders. However, its underpinning regulatory mechanisms are poorly understood. We demonstrate that the hippocampal-prefrontal synchrony associates with levels of top-down attention. Both attention and synchrony are reduced in mutant mice of ErbB4, a receptor of neuregulin-1. We used chemical genetic and optogenetic approaches to inactivate ErbB4 kinase and ErbB4+ interneurons, respectively, both of which reduce gamma-aminobutyric acid (GABA) activity. Such inhibitions in the hippocampus impair both hippocampal-prefrontal synchrony and top-down attention, whereas those in the prefrontal cortex alter attention, but not synchrony. These observations identify a role of ErbB4-dependent GABA activity in the hippocampus in synchronizing the hippocampal-prefrontal pathway and demonstrate that acute, dynamic ErbB4 signaling is required to command top-down attention. Because both neuregulin-1 and ErbB4 are susceptibility genes of schizophrenia and major depression, our study contributes to a better understanding of these disorders. VIDEO ABSTRACT. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Some case studies of skewed (and other ab-normal) data distributions arising in low-level environmental research

    International Nuclear Information System (INIS)

    Currie, L.A.

    2001-01-01

    Three general classes of skewed data distributions have been encountered in research on background radiation, chemical and radiochemical blanks, and low levels of 85 Kr and 14 C in the atmosphere and the cryosphere. The first class of skewed data can be considered to be theoretically, or fundamentally skewed. It is typified by the exponential distribution of inter-arrival times for nuclear counting events for a Poisson process. As part of a study of the nature of low-level (anti-coincidence) Geiger- Mueller counter background radiation, tests were performed on the Poisson distribution of counts, the uniform distribution of arrival times, and the exponential distribution of inter-arrival times. The real laboratory system, of course, failed the (inter-arrival time) test - for very interesting reasons, linked to the physics of the measurement process. The second, computationally skewed, class relates to skewness induced by non-linear transformations. It is illustrated by non-linear concentration estimates from inverse calibration, and bivariate blank corrections for low-level 14 C- 12 C aerosol data that led to highly asymmetric uncertainty intervals for the biomass carbon contribution to urban ''soot''. The third, environmentally skewed, data class relates to a universal problem for the detection of excursions above blank or baseline levels: namely, the widespread occurrence of ab-normal distributions of environmental and laboratory blanks. This is illustrated by the search for fundamental factors that lurk behind skewed frequency distributions of sulfur laboratory blanks and 85 Kr environmental baselines, and the application of robust statistical procedures for reliable detection decisions in the face of skewed isotopic carbon procedural blanks with few degrees of freedom. (orig.)

  8. Some case studies of skewed (and other ab-normal) data distributions arising in low-level environmental research.

    Science.gov (United States)

    Currie, L A

    2001-07-01

    Three general classes of skewed data distributions have been encountered in research on background radiation, chemical and radiochemical blanks, and low levels of 85Kr and 14C in the atmosphere and the cryosphere. The first class of skewed data can be considered to be theoretically, or fundamentally skewed. It is typified by the exponential distribution of inter-arrival times for nuclear counting events for a Poisson process. As part of a study of the nature of low-level (anti-coincidence) Geiger-Muller counter background radiation, tests were performed on the Poisson distribution of counts, the uniform distribution of arrival times, and the exponential distribution of inter-arrival times. The real laboratory system, of course, failed the (inter-arrival time) test--for very interesting reasons, linked to the physics of the measurement process. The second, computationally skewed, class relates to skewness induced by non-linear transformations. It is illustrated by non-linear concentration estimates from inverse calibration, and bivariate blank corrections for low-level 14C-12C aerosol data that led to highly asymmetric uncertainty intervals for the biomass carbon contribution to urban "soot". The third, environmentally, skewed, data class relates to a universal problem for the detection of excursions above blank or baseline levels: namely, the widespread occurrence of ab-normal distributions of environmental and laboratory blanks. This is illustrated by the search for fundamental factors that lurk behind skewed frequency distributions of sulfur laboratory blanks and 85Kr environmental baselines, and the application of robust statistical procedures for reliable detection decisions in the face of skewed isotopic carbon procedural blanks with few degrees of freedom.

  9. Multi-species spawning synchrony within scleractinian coral assemblages in the Red Sea

    KAUST Repository

    Bouwmeester, Jessica; Baird, Andrew Hamilton; Chen, C. J.; Guest, James R.; Vicentuan, Kareen C.; Berumen, Michael L.

    2014-01-01

    Early work on coral reproduction in the far northern Red Sea suggested that the spawning times of ecologically abundant species did not overlap, unlike on the Great Barrier Reef where many species spawn with high synchrony. In contrast, recent work in the northern and central Red Sea indicates a high degree of synchrony in the reproductive condition of Acropora species: over 90 % of species sampled in April/May contain mature gametes. However, it has yet to be determined when most Acropora release their gametes. In addition, there is a lack of data for other ecologically important scleractinian species such as merulinids and poritids. Here, we document the date and time of spawning for 51 species in the central Red Sea over three consecutive years, and the month of spawning for an additional 17 species inferred from the presence of mature gametes. Spawning occurs on nights around the full moon, the spawning season lasts at least 4 months from April until July, and observations are consistent with the few other records from the Red Sea. The number of Acropora species spawning was highest in April with 13 species spawning two nights before the full moon in 2011, 13 species spawning on the night of the full moon in 2012, and eight species spawning four nights after the full moon in 2013. The total number of species spawning was high in April, May, and June and involved 15–19 species per month in 2012. Only four species spawned in July 2012. Few regions worldwide have been similarly sampled and include the Philippines, Okinawa in Japan, and Palau, where spawning patterns are very similar to those in the central Red Sea and where corals spawn on nights around the full moon over a period of 3–4 months. In particular, in all four locations, Acropora are among the first species to spawn. Our results add to a growing body of evidence indicating that multi-species spawning synchrony is a feature of all speciose coral assemblages.

  10. Multi-species spawning synchrony within scleractinian coral assemblages in the Red Sea

    KAUST Repository

    Bouwmeester, Jessica

    2014-09-21

    Early work on coral reproduction in the far northern Red Sea suggested that the spawning times of ecologically abundant species did not overlap, unlike on the Great Barrier Reef where many species spawn with high synchrony. In contrast, recent work in the northern and central Red Sea indicates a high degree of synchrony in the reproductive condition of Acropora species: over 90 % of species sampled in April/May contain mature gametes. However, it has yet to be determined when most Acropora release their gametes. In addition, there is a lack of data for other ecologically important scleractinian species such as merulinids and poritids. Here, we document the date and time of spawning for 51 species in the central Red Sea over three consecutive years, and the month of spawning for an additional 17 species inferred from the presence of mature gametes. Spawning occurs on nights around the full moon, the spawning season lasts at least 4 months from April until July, and observations are consistent with the few other records from the Red Sea. The number of Acropora species spawning was highest in April with 13 species spawning two nights before the full moon in 2011, 13 species spawning on the night of the full moon in 2012, and eight species spawning four nights after the full moon in 2013. The total number of species spawning was high in April, May, and June and involved 15–19 species per month in 2012. Only four species spawned in July 2012. Few regions worldwide have been similarly sampled and include the Philippines, Okinawa in Japan, and Palau, where spawning patterns are very similar to those in the central Red Sea and where corals spawn on nights around the full moon over a period of 3–4 months. In particular, in all four locations, Acropora are among the first species to spawn. Our results add to a growing body of evidence indicating that multi-species spawning synchrony is a feature of all speciose coral assemblages.

  11. DMN Operational Synchrony Relates to Self-Consciousness: Evidence from Patients in Vegetative and Minimally Conscious States.

    Science.gov (United States)

    Fingelkurts, Andrew A; Fingelkurts, Alexander A; Bagnato, Sergio; Boccagni, Cristina; Galardi, Giuseppe

    2012-01-01

    The default mode network (DMN) has been consistently activated across a wide variety of self-related tasks, leading to a proposal of the DMN's role in self-related processing. Indeed, there is limited fMRI evidence that the functional connectivity within the DMN may underlie a phenomenon referred to as self-awareness. At the same time, none of the known studies have explicitly investigated neuronal functional interactions among brain areas that comprise the DMN as a function of self-consciousness loss. To fill this gap, EEG operational synchrony analysis [1, 2] was performed in patients with severe brain injuries in vegetative and minimally conscious states to study the strength of DMN operational synchrony as a function of self-consciousness expression. We demonstrated that the strength of DMN EEG operational synchrony was smallest or even absent in patients in vegetative state, intermediate in patients in minimally conscious state and highest in healthy fully self-conscious subjects. At the same time the process of ecoupling of operations performed by neuronal assemblies that comprise the DMN was highest in patients in vegetative state, intermediate in patients in minimally conscious state and minimal in healthy fully self-conscious subjects. The DMN's frontal EEG operational module had the strongest decrease in operational synchrony strength as a function of selfconsciousness loss, when compared with the DMN's posterior modules. Based on these results it is suggested that the strength of DMN functional connectivity could mediate the strength of self-consciousness expression. The observed alterations similarly occurred across EEG alpha, beta1 and beta2 frequency oscillations. Presented results suggest that the EEG operational synchrony within DMN may provide an objective and accurate measure for the assessment of signs of self-(un)consciousness in these challenging patient populations. This method therefore, may complement the current diagnostic procedures for

  12. Volitional enhancement of firing synchrony and oscillation by neuronal operant conditioning: interaction with neurorehabilitation and brain-machine interface.

    Science.gov (United States)

    Sakurai, Yoshio; Song, Kichan; Tachibana, Shota; Takahashi, Susumu

    2014-01-01

    In this review, we focus on neuronal operant conditioning in which increments in neuronal activities are directly rewarded without behaviors. We discuss the potential of this approach to elucidate neuronal plasticity for enhancing specific brain functions and its interaction with the progress in neurorehabilitation and brain-machine interfaces. The key to-be-conditioned activities that this paper emphasizes are synchronous and oscillatory firings of multiple neurons that reflect activities of cell assemblies. First, we introduce certain well-known studies on neuronal operant conditioning in which conditioned enhancements of neuronal firing were reported in animals and humans. These studies demonstrated the feasibility of volitional control over neuronal activity. Second, we refer to the recent studies on operant conditioning of synchrony and oscillation of neuronal activities. In particular, we introduce a recent study showing volitional enhancement of oscillatory activity in monkey motor cortex and our study showing selective enhancement of firing synchrony of neighboring neurons in rat hippocampus. Third, we discuss the reasons for emphasizing firing synchrony and oscillation in neuronal operant conditioning, the main reason being that they reflect the activities of cell assemblies, which have been suggested to be basic neuronal codes representing information in the brain. Finally, we discuss the interaction of neuronal operant conditioning with neurorehabilitation and brain-machine interface (BMI). We argue that synchrony and oscillation of neuronal firing are the key activities required for developing both reliable neurorehabilitation and high-performance BMI. Further, we conclude that research of neuronal operant conditioning, neurorehabilitation, BMI, and system neuroscience will produce findings applicable to these interrelated fields, and neuronal synchrony and oscillation can be a common important bridge among all of them.

  13. Accounting for sampling error when inferring population synchrony from time-series data: a Bayesian state-space modelling approach with applications.

    Directory of Open Access Journals (Sweden)

    Hugues Santin-Janin

    Full Text Available BACKGROUND: Data collected to inform time variations in natural population size are tainted by sampling error. Ignoring sampling error in population dynamics models induces bias in parameter estimators, e.g., density-dependence. In particular, when sampling errors are independent among populations, the classical estimator of the synchrony strength (zero-lag correlation is biased downward. However, this bias is rarely taken into account in synchrony studies although it may lead to overemphasizing the role of intrinsic factors (e.g., dispersal with respect to extrinsic factors (the Moran effect in generating population synchrony as well as to underestimating the extinction risk of a metapopulation. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this paper was first to illustrate the extent of the bias that can be encountered in empirical studies when sampling error is neglected. Second, we presented a space-state modelling approach that explicitly accounts for sampling error when quantifying population synchrony. Third, we exemplify our approach with datasets for which sampling variance (i has been previously estimated, and (ii has to be jointly estimated with population synchrony. Finally, we compared our results to those of a standard approach neglecting sampling variance. We showed that ignoring sampling variance can mask a synchrony pattern whatever its true value and that the common practice of averaging few replicates of population size estimates poorly performed at decreasing the bias of the classical estimator of the synchrony strength. CONCLUSION/SIGNIFICANCE: The state-space model used in this study provides a flexible way of accurately quantifying the strength of synchrony patterns from most population size data encountered in field studies, including over-dispersed count data. We provided a user-friendly R-program and a tutorial example to encourage further studies aiming at quantifying the strength of population synchrony to account for

  14. Evaluation of Real-time Measurement Liver Tumor's Movement and SynchronyTM System's Accuracy of Radiosurgery using a Robot CyberKnife

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gha Jung; Shim, Su Jung; Kim, Jeong Ho; Min, Chul Kee; Chung, Weon Kuu [Konyang University College of Medicine, Daejeon (Korea, Republic of)

    2008-12-15

    This study aimed to quantitatively measure the movement of tumors in real-time and evaluate the treatment accuracy, during the treatment of a liver tumor patient, who underwent radiosurgery with a Synchrony Respiratory motion tracking system of a robot CyberKnife. Materials and Methods: The study subjects included 24 liver tumor patients who underwent CyberKnife treatment, which included 64 times of treatment with the Synchrony Respiratory motion tracking system (SynchronyTM). The treatment involved inserting 4 to 6 acupuncture needles into the vicinity of the liver tumor in all the patients using ultrasonography as a guide. A treatment plan was set up using the CT images for treatment planning uses. The position of the acupuncture needle was identified for every treatment time by Digitally Reconstructed Radiography (DRR) prepared at the time of treatment planning and X-ray images photographed in real-time. Subsequent results were stored through a Motion Tracking System (MTS) using the Mtsmain.log treatment file. In this way, movement of the tumor was measured. Besides, the accuracy of radiosurgery using CyberKnife was evaluated by the correlation errors between the real-time positions of the acupuncture needles and the predicted coordinates. Results: The maximum and the average translational movement of the liver tumor were measured 23.5 mm and 13.9{+-}5.5 mm, respectively from the superior to the inferior direction, 3.9 mm and 1.9{+-}0.9 mm, respectively from left to right, and 8.3 mm and 4.9{+-}1.9 mm, respectively from the anterior to the posterior direction. The maximum and the average rotational movement of the liver tumor were measured to be 3.3o and 2.6{+-}1.3o, respectively for X (Left-Right) axis rotation, 4.8o and 2.3{+-}1.0o, respectively for Y (Cranio-Caudal) axis rotation, 3.9o and 2.8{+-}1.1o, respectively for Z (Anterior-Posterior) axis rotation. In addition, the average correlation error, which represents the treatment's accuracy was 1

  15. The Taming of the Skew: Facts On Canada’s Energy Trade

    Directory of Open Access Journals (Sweden)

    Trevor Tombe

    2014-03-01

    Full Text Available Public perception of Canada’s energy trade is skewed towards Alberta’s oilsands and pipeline projects; a look at the facts reveals a more complex picture. Over the last decade, growth in Canada’s energy trade has been nothing short of historic. Energy exports have become so significant that the revenue is now equivalent to nearly $9,000 for every Canadian household. And it is only projected to grow much, much larger. While Western Canada leads the industry, every region — including Ontario, Quebec and Atlantic Canada — plays a key role. Today, nearly every province is a net energy exporter. The energy sector also adds much to Canada’s economy, with valueadded and productivity higher than nearly every other sector. When it comes to labour compensation, oil and gas extraction is the highest-paying sector in the country, at more than three times the average hourly earnings in the Canadian economy generally, and nearly 50 per cent higher than manufacturing. It is vital that policy debates rely on accurate information; unfortunately, this is not always the case. The often heated rhetoric neglects important aspects of Canada’s energy trade. For example, the type of energy that Canada trades has undergone a dramatic transformation. Ten years ago, natural gas was the largest energy export but today accounts for less than one-tenth of the total. Meanwhile, crude oil exports have more than quadrupled. Even more surprising to many Canadians, and perhaps even policy-makers, is how much energy Canada imports. Even Alberta, with its vast energy reserves, imports a considerable amount of energy. Alberta’s energy imports have grown faster than any other province and will soon exceed Ontario’s, a province more than three times larger with very little of its own oil production. Trade in energy is also intimately tied with Canada’s foreign investment policies. The majority of Canada’s energy trade is in the form of related-party transactions

  16. Transient resetting: a novel mechanism for synchrony and its biological examples.

    Directory of Open Access Journals (Sweden)

    Chunguang Li

    2006-08-01

    Full Text Available The study of synchronization in biological systems is essential for the understanding of the rhythmic phenomena of living organisms at both molecular and cellular levels. In this paper, by using simple dynamical systems theory, we present a novel mechanism, named transient resetting, for the synchronization of uncoupled biological oscillators with stimuli. This mechanism not only can unify and extend many existing results on (deterministic and stochastic stimulus-induced synchrony, but also may actually play an important role in biological rhythms. We argue that transient resetting is a possible mechanism for the synchronization in many biological organisms, which might also be further used in the medical therapy of rhythmic disorders. Examples of the synchronization of neural and circadian oscillators as well as a chaotic neuron model are presented to verify our hypothesis.

  17. Enhanced phase synchrony in the electroencephalograph gamma band for musicians while listening to music.

    Science.gov (United States)

    Bhattacharya, J; Petsche, H

    2001-07-01

    Multichannel electroencephalograph signals from two broad groups, 10 musicians and 10 nonmusicians, recorded in different states (in resting states or no task condition, with eyes opened and eyes closed, and with two musical tasks, listening to two different pieces of music) were studied. Degrees of phase synchrony in various frequency bands were assessed. No differences in the degree of synchronization in any frequency band were found between the two groups in resting conditions. Yet, while listening to music, significant increases of synchronization were found only in the gamma-frequency range (>30 Hz) over large cortical areas for the group of musicians. This high degree of synchronization elicited by music in the group of musicians might be due to their ability to host long-term memory representations of music and mediate access to these stored representations.

  18. Enhanced phase synchrony in the electroencephalograph γ band for musicians while listening to music

    Science.gov (United States)

    Bhattacharya, Joydeep; Petsche, Hellmuth

    2001-07-01

    Multichannel electroencephalograph signals from two broad groups, 10 musicians and 10 nonmusicians, recorded in different states (in resting states or no task condition, with eyes opened and eyes closed, and with two musical tasks, listening to two different pieces of music) were studied. Degrees of phase synchrony in various frequency bands were assessed. No differences in the degree of synchronization in any frequency band were found between the two groups in resting conditions. Yet, while listening to music, significant increases of synchronization were found only in the γ-frequency range (>30 Hz) over large cortical areas for the group of musicians. This high degree of synchronization elicited by music in the group of musicians might be due to their ability to host long-term memory representations of music and mediate access to these stored representations.

  19. Overcoming the effects of differential skewness of test items in scale construction

    Directory of Open Access Journals (Sweden)

    Johann M. Schepers

    2004-10-01

    Full Text Available The principal objective of the study was to develop a procedure for overcoming the effects of differential skewness of test items in scale construction. It was shown that the degree of skewness of test items places an upper limit on the correlations between the items, regardless of the contents of the items. If the items are ordered in terms of skewness the resulting inter correlation matrix forms a simplex or a pseudo simplex. Factoring such a matrix results in a multiplicity of factors, most of which are artifacts. A procedure for overcoming this problem was demonstrated with items from the Locus of Control Inventory (Schepers, 1995. The analysis was based on a sample of 1662 first year university students. Opsomming Die hoofdoel van die studie was om ’n prosedure te ontwikkel om die gevolge van differensiële skeefheid van toetsitems, in skaalkonstruksie, teen te werk. Daar is getoon dat die graad van skeefheid van toetsitems ’n boonste grens plaas op die korrelasies tussen die items ongeag die inhoud daarvan. Indien die items gerangskik word volgens graad van skeefheid, sal die interkorrelasiematriks van die items ’n simpleks of pseudosimpleks vorm. Indien so ’n matriks aan faktorontleding onderwerp word, lei dit tot ’n veelheid van faktore waarvan die meerderheid artefakte is. ’n Prosedure om hierdie probleem te bowe te kom, is gedemonstreer met behulp van die items van die Lokus van Beheer-vraelys (Schepers, 1995. Die ontledings is op ’n steekproef van 1662 eerstejaaruniversiteitstudente gebaseer.

  20. Content congruency and its interplay with temporal synchrony modulate integration between rhythmic audiovisual streams

    Directory of Open Access Journals (Sweden)

    Yi-Huang eSu

    2014-12-01

    Full Text Available Both lower-level stimulus factors (e.g., temporal proximity and higher-level cognitive factors (e.g., content congruency are known to influence multisensory integration. The former can direct attention in a converging manner, and the latter can indicate whether information from the two modalities belongs together. The present research investigated whether and how these two factors interacted in the perception of rhythmic, audiovisual streams derived from a human movement scenario. Congruency here was based on sensorimotor correspondence pertaining to rhythm perception. Participants attended to bimodal stimuli consisting of a humanlike figure moving regularly to a sequence of auditory beat, and detected a possible auditory temporal deviant. The figure moved either downwards (congruently or upwards (incongruently to the downbeat, while in both situations the movement was either synchronous with the beat, or lagging behind it. Greater cross-modal binding was expected to hinder deviant detection. Results revealed poorer detection for congruent than for incongruent streams, suggesting stronger integration in the former. False alarms increased in asynchronous stimuli only for congruent streams, indicating greater tendency for deviant report due to visual capture of asynchronous auditory events. In addition, a greater increase in perceived synchrony was associated with a greater reduction in false alarms for congruent streams, while the pattern was reversed for incongruent ones. These results demonstrate that content congruency as a top-down factor not only promotes integration, but also modulates bottom-up effects of synchrony. Results are also discussed regarding how theories of integration and attentional entrainment may be combined in the context of rhythmic multisensory stimuli.

  1. Content congruency and its interplay with temporal synchrony modulate integration between rhythmic audiovisual streams.

    Science.gov (United States)

    Su, Yi-Huang

    2014-01-01

    Both lower-level stimulus factors (e.g., temporal proximity) and higher-level cognitive factors (e.g., content congruency) are known to influence multisensory integration. The former can direct attention in a converging manner, and the latter can indicate whether information from the two modalities belongs together. The present research investigated whether and how these two factors interacted in the perception of rhythmic, audiovisual (AV) streams derived from a human movement scenario. Congruency here was based on sensorimotor correspondence pertaining to rhythm perception. Participants attended to bimodal stimuli consisting of a humanlike figure moving regularly to a sequence of auditory beat, and detected a possible auditory temporal deviant. The figure moved either downwards (congruently) or upwards (incongruently) to the downbeat, while in both situations the movement was either synchronous with the beat, or lagging behind it. Greater cross-modal binding was expected to hinder deviant detection. Results revealed poorer detection for congruent than for incongruent streams, suggesting stronger integration in the former. False alarms increased in asynchronous stimuli only for congruent streams, indicating greater tendency for deviant report due to visual capture of asynchronous auditory events. In addition, a greater increase in perceived synchrony was associated with a greater reduction in false alarms for congruent streams, while the pattern was reversed for incongruent ones. These results demonstrate that content congruency as a top-down factor not only promotes integration, but also modulates bottom-up effects of synchrony. Results are also discussed regarding how theories of integration and attentional entrainment may be combined in the context of rhythmic multisensory stimuli.

  2. Phenological synchrony and seasonality of understory Rubiaceae in the Atlantic Forest, Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Heitor Scarpati Liuth

    2013-03-01

    Full Text Available In tropical forests with low seasonality, climatic variables generally exert a weak influence on the phenology of species. The seasonality of phenophases in closely related taxa can be controlled by phylogenetic constraints in such environments. In this study, our aim was to describe the phenology of Rubiaceae in the understory of the Atlantic Forest in the southern part of Bahia, Brazil, as well as to evaluate the seasonality and phenological synchrony of this family. For two years, we observed 90 individuals belonging to 13 species, in an area of 0.2 ha. Leaf flushing and leaf fall did not demonstrate any seasonality, were continuous for most species and correlated with few of the climatic variables. Flowering was seasonal and correlated positively with all climatic variables. Species exhibited seasonality for this phenophase with high flowering overlap among species of Psychotria, indicating an aggregated pattern for this genus. Fruiting was also seasonal and correlated with all the climatic variables, unripe fruit development peaking at the beginning of the season during which humidity is highest and fruit ripening peaking in the season during which humidity is slightly lower. The vegetative and flowering patterns observed in the study area are commonly seen in other tropical forests. The reproductive seasonality of this family can facilitate the attraction of biotic agents, as postulated in the facilitation hypothesis. Our results demonstrate that climatic variables influenced the phenological patterns observed here, although the high reproductive seasonality and interspecific synchrony, especially in congeneric species, raises the possibility that phylogenetic proximity plays a role in the pattern of the family Rubiaceae.

  3. B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction

    OpenAIRE

    Shin, Jung Hoon; Park, Se-Ho

    2013-01-01

    CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although ?-galactosylceramide (?-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-? by NKT cells, concomitant with a d...

  4. The Universal Patient Centredness Questionnaire: scaling approaches to reduce positive skew

    Directory of Open Access Journals (Sweden)

    Bjertnaes O

    2016-11-01

    Full Text Available Oyvind Bjertnaes, Hilde Hestad Iversen, Andrew M Garratt Unit for Patient-Reported Quality, Norwegian Institute of Public Health, Oslo, Norway Purpose: Surveys of patients’ experiences typically show results that are indicative of positive experiences. Unbalanced response scales have reduced positive skew for responses to items within the Universal Patient Centeredness Questionnaire (UPC-Q. The objective of this study was to compare the unbalanced response scale with another unbalanced approach to scaling to assess whether the positive skew might be further reduced. Patients and methods: The UPC-Q was included in a patient experience survey conducted at the ward level at six hospitals in Norway in 2015. The postal survey included two reminders to nonrespondents. For patients in the first month of inclusion, UPC-Q items had standard scaling: poor, fairly good, good, very good, and excellent. For patients in the second month, the scaling was more positive: poor, good, very good, exceptionally good, and excellent. The effect of scaling on UPC-Q scores was tested with independent samples t-tests and multilevel linear regression analysis, the latter controlling for the hierarchical structure of data and known predictors of patient-reported experiences. Results: The response rate was 54.6% (n=4,970. Significantly lower scores were found for all items of the more positively worded scale: UPC-Q total score difference was 7.9 (P<0.001, on a scale from 0 to 100 where 100 is the best possible score. Differences between the four items of the UPC-Q ranged from 7.1 (P<0.001 to 10.4 (P<0.001. Multivariate multilevel regression analysis confirmed the difference between the response groups, after controlling for other background variables; UPC-Q total score difference estimate was 8.3 (P<0.001. Conclusion: The more positively worded scaling significantly lowered the mean scores, potentially increasing the sensitivity of the UPC-Q to identify differences over

  5. Uniform persistence and upper Lyapunov exponents for monotone skew-product semiflows

    International Nuclear Information System (INIS)

    Novo, Sylvia; Obaya, Rafael; Sanz, Ana M

    2013-01-01

    Several results of uniform persistence above and below a minimal set of an abstract monotone skew-product semiflow are obtained. When the minimal set has a continuous separation the results are given in terms of the principal spectrum. In the case that the semiflow is generated by the solutions of a family of non-autonomous differential equations of ordinary, delay or parabolic type, the former results are strongly improved. A method of calculus of the upper Lyapunov exponent of the minimal set is also determined. (paper)

  6. The Curious Anomaly of Skewed Judgment Distributions and Systematic Error in the Wisdom of Crowds

    DEFF Research Database (Denmark)

    Nash, Ulrik William

    2014-01-01

    about true values, when neurons categorize cues better than chance, and when the particular true value is extreme compared to what is typical and anchored upon, then populations of judges form skewed judgment distributions with high probability. Moreover, the collective error made by these people can...... positively with collective error, thereby challenging what is commonly believed about how diversity and collective intelligence relate. Data from 3053 judgment surveys about US macroeconomic variables obtained from the Federal Reserve Bank of Philadelphia and the Wall Street Journal provide strong support...

  7. Skew-t partially linear mixed-effects models for AIDS clinical studies.

    Science.gov (United States)

    Lu, Tao

    2016-01-01

    We propose partially linear mixed-effects models with asymmetry and missingness to investigate the relationship between two biomarkers in clinical studies. The proposed models take into account irregular time effects commonly observed in clinical studies under a semiparametric model framework. In addition, commonly assumed symmetric distributions for model errors are substituted by asymmetric distribution to account for skewness. Further, informative missing data mechanism is accounted for. A Bayesian approach is developed to perform parameter estimation simultaneously. The proposed model and method are applied to an AIDS dataset and comparisons with alternative models are performed.

  8. Skewed X-chromosome inactivation in female carriers of dyskeratosis congenita

    Energy Technology Data Exchange (ETDEWEB)

    Devriendt, K.; Matthijs, G.; Legius, E. [Univ. Hospital Gasthuisberg, Leuven (Belgium)] [and others

    1997-03-01

    In this study, we report on a family with X-linked dyskeratosis congenita (DC). Linkage analysis with markers in the factor VIII gene at Xq28 yielded a LOD score of 2 at a recombination of 0. Clinical manifestations of DC, such as skin lesions following the Blaschko lines, were present in two obligate carrier females. Highly skewed X inactivation was observed in white blood cells, cultured skin fibroblasts, and buccal mucosa from female carriers of DC in this family. This suggests a critical role for the DC gene in bone marrow-cell and fibroblast-cell proliferation. 23 refs., 4 figs., 1 tab.

  9. Parallel tiled Nussinov RNA folding loop nest generated using both dependence graph transitive closure and loop skewing.

    Science.gov (United States)

    Palkowski, Marek; Bielecki, Wlodzimierz

    2017-06-02

    RNA secondary structure prediction is a compute intensive task that lies at the core of several search algorithms in bioinformatics. Fortunately, the RNA folding approaches, such as the Nussinov base pair maximization, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. Polyhedral compilation techniques have proven to be a powerful tool for optimization of dense array codes. However, classical affine loop nest transformations used with these techniques do not optimize effectively codes of dynamic programming of RNA structure predictions. The purpose of this paper is to present a novel approach allowing for generation of a parallel tiled Nussinov RNA loop nest exposing significantly higher performance than that of known related code. This effect is achieved due to improving code locality and calculation parallelization. In order to improve code locality, we apply our previously published technique of automatic loop nest tiling to all the three loops of the Nussinov loop nest. This approach first forms original rectangular 3D tiles and then corrects them to establish their validity by means of applying the transitive closure of a dependence graph. To produce parallel code, we apply the loop skewing technique to a tiled Nussinov loop nest. The technique is implemented as a part of the publicly available polyhedral source-to-source TRACO compiler. Generated code was run on modern Intel multi-core processors and coprocessors. We present the speed-up factor of generated Nussinov RNA parallel code and demonstrate that it is considerably faster than related codes in which only the two outer loops of the Nussinov loop nest are tiled.

  10. Different male versus female breeding periodicity helps mitigate offspring sex ratio skews in sea turtles

    Directory of Open Access Journals (Sweden)

    Graeme Clive Hays

    2014-09-01

    Full Text Available The implications of climate change for global biodiversity may be profound with those species with little capacity for adaptation being thought to be particularly vulnerable to warming. A classic case of groups for concern are those animals exhibiting temperature-dependent sex-determination (TSD, such as sea turtles, where climate warming may produce single sex populations and hence extinction. We show that, globally, female biased hatchling sex ratios dominate sea turtle populations (exceeding 3:1 in >50% records, which, at-a-glance, reiterates concerns for extinction. However, we also demonstrate that more frequent breeding by males, empirically shown by satellite tracking 23 individuals and supported by a generalized bio-energetic life history model, generates more balanced operational sex ratios (OSRs. Hence, concerns of increasingly skewed hatchling sex ratios and reduced population viability are less acute than previously thought for sea turtles. In fact, in some scenarios skewed hatchling sex ratios in groups with TSD may be adaptive to ensure optimum OSRs.

  11. Robust bivariate error detection in skewed data with application to historical radiosonde winds

    KAUST Repository

    Sun, Ying

    2017-01-18

    The global historical radiosonde archives date back to the 1920s and contain the only directly observed measurements of temperature, wind, and moisture in the upper atmosphere, but they contain many random errors. Most of the focus on cleaning these large datasets has been on temperatures, but winds are important inputs to climate models and in studies of wind climatology. The bivariate distribution of the wind vector does not have elliptical contours but is skewed and heavy-tailed, so we develop two methods for outlier detection based on the bivariate skew-t (BST) distribution, using either distance-based or contour-based approaches to flag observations as potential outliers. We develop a framework to robustly estimate the parameters of the BST and then show how the tuning parameter to get these estimates is chosen. In simulation, we compare our methods with one based on a bivariate normal distribution and a nonparametric approach based on the bagplot. We then apply all four methods to the winds observed for over 35,000 radiosonde launches at a single station and demonstrate differences in the number of observations flagged across eight pressure levels and through time. In this pilot study, the method based on the BST contours performs very well.

  12. Partial coherence with application to the monotonicity problem of coherence involving skew information

    Science.gov (United States)

    Luo, Shunlong; Sun, Yuan

    2017-08-01

    Quantifications of coherence are intensively studied in the context of completely decoherent operations (i.e., von Neuamnn measurements, or equivalently, orthonormal bases) in recent years. Here we investigate partial coherence (i.e., coherence in the context of partially decoherent operations such as Lüders measurements). A bona fide measure of partial coherence is introduced. As an application, we address the monotonicity problem of K -coherence (a quantifier for coherence in terms of Wigner-Yanase skew information) [Girolami, Phys. Rev. Lett. 113, 170401 (2014), 10.1103/PhysRevLett.113.170401], which is introduced to realize a measure of coherence as axiomatized by Baumgratz, Cramer, and Plenio [Phys. Rev. Lett. 113, 140401 (2014), 10.1103/PhysRevLett.113.140401]. Since K -coherence fails to meet the necessary requirement of monotonicity under incoherent operations, it is desirable to remedy this monotonicity problem. We show that if we modify the original measure by taking skew information with respect to the spectral decomposition of an observable, rather than the observable itself, as a measure of coherence, then the problem disappears, and the resultant coherence measure satisfies the monotonicity. Some concrete examples are discussed and related open issues are indicated.

  13. Understanding the distinctively skewed and heavy tailed character of atmospheric and oceanic probability distributions

    Energy Technology Data Exchange (ETDEWEB)

    Sardeshmukh, Prashant D., E-mail: Prashant.D.Sardeshmukh@noaa.gov [CIRES, University of Colorado, Boulder, Colorado 80309 (United States); NOAA/Earth System Research Laboratory, Boulder, Colorado 80305 (United States); Penland, Cécile [NOAA/Earth System Research Laboratory, Boulder, Colorado 80305 (United States)

    2015-03-15

    The probability distributions of large-scale atmospheric and oceanic variables are generally skewed and heavy-tailed. We argue that their distinctive departures from Gaussianity arise fundamentally from the fact that in a quadratically nonlinear system with a quadratic invariant, the coupling coefficients between system components are not constant but depend linearly on the system state in a distinctive way. In particular, the skewness arises from a tendency of the system trajectory to linger near states of weak coupling. We show that the salient features of the observed non-Gaussianity can be captured in the simplest such nonlinear 2-component system. If the system is stochastically forced and linearly damped, with one component damped much more strongly than the other, then the strongly damped fast component becomes effectively decoupled from the weakly damped slow component, and its impact on the slow component can be approximated as a stochastic noise forcing plus an augmented nonlinear damping. In the limit of large time-scale separation, the nonlinear augmentation of the damping becomes small, and the noise forcing can be approximated as an additive noise plus a correlated additive and multiplicative noise (CAM noise) forcing. Much of the diversity of observed large-scale atmospheric and oceanic probability distributions can be interpreted in this minimal framework.

  14. Fecal bacteria from treatment-naive Crohn's disease patients can skew helper T cell responses.

    Science.gov (United States)

    Ma, Fei; Zhang, Yi; Xing, Junjie; Song, Xiaoling; Huang, Ling; Weng, Hao; Wu, Xiangsong; Walker, Emma; Wang, Zhongchuan

    2017-12-01

    Many studies have demonstrated that the inflamed mucosa of Crohn's disease (CD) patients presented a disturbed gut commensal community, and the shift in microbial composition and species variety is associated with disease severity. To establish a link between changes in the intestinal bacterial composition and the alteration of inflammation, we obtained fecal bacteria from CD patients and non-CD controls. The bacteria were then used to stimulate the peripheral blood mononuclear cells (PBMCs) from one non-CD individual. We found that the frequency of IFN-γ- and IL-17-expressing CD4 T cells was significantly higher after stimulation with CD bacteria than with non-CD bacteria, while the frequency of IL-4- and IL-10-expressing CD4 T cells was significantly decreased after stimulation with CD bacteria. A similar trend was observed in the level of cytokine expression and transcription expression. However, this difference was not clear-cut, as overlapping regions were observed between the two groups. With longer stimulation using CD bacteria, the skewing toward Th1/Th17 responses were further increased. This increase depended on the presence of monocytes/macrophages. Interestingly, we also found that B cells presented an inhibitory effect in CD bacteria-mediated skewing toward Th1/Th17 cells and promoted IL-10 secretion in CD bacteria-stimulated PBMCs. Together, our results demonstrated that CD bacteria could promote Th1/Th17 inflammation in a host factor-independent fashion. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Robust bivariate error detection in skewed data with application to historical radiosonde winds

    KAUST Repository

    Sun, Ying; Hering, Amanda S.; Browning, Joshua M.

    2017-01-01

    The global historical radiosonde archives date back to the 1920s and contain the only directly observed measurements of temperature, wind, and moisture in the upper atmosphere, but they contain many random errors. Most of the focus on cleaning these large datasets has been on temperatures, but winds are important inputs to climate models and in studies of wind climatology. The bivariate distribution of the wind vector does not have elliptical contours but is skewed and heavy-tailed, so we develop two methods for outlier detection based on the bivariate skew-t (BST) distribution, using either distance-based or contour-based approaches to flag observations as potential outliers. We develop a framework to robustly estimate the parameters of the BST and then show how the tuning parameter to get these estimates is chosen. In simulation, we compare our methods with one based on a bivariate normal distribution and a nonparametric approach based on the bagplot. We then apply all four methods to the winds observed for over 35,000 radiosonde launches at a single station and demonstrate differences in the number of observations flagged across eight pressure levels and through time. In this pilot study, the method based on the BST contours performs very well.

  16. Hölder properties of perturbed skew products and Fubini regained

    International Nuclear Information System (INIS)

    Ilyashenko, Yu; Negut, A

    2012-01-01

    In 2006, Gorodetski proved that central fibres of perturbed skew products are Hölder continuous with respect to the base point. In this paper, we give an explicit estimate of this Hölder exponent. Moreover, we extend Gorodetski's result from the case when the fibre maps are close to the identity to a much wider class of maps that satisfy the so-called modified dominated splitting condition. In many cases (for example, in the case of skew products over the solenoid or over linear Anosov diffeomorphisms of the torus), the Hölder exponent is close to 1. This allows one to overcome the so-called Fubini nightmare, in some sense. Namely, we prove that the union of central fibres that are strongly atypical from the point of view of ergodic theory, has Lebesgue measure zero despite the lack of absolute continuity of the holonomy map for the central foliation. This result is based on a new kind of ergodic theorem, which we call special. To prove our main result, we revisit the theory of Hirsch, Pugh and Shub, and estimate the contraction constant of the graph transform map. (paper)

  17. Fuel cell plates with skewed process channels for uniform distribution of stack compression load

    Science.gov (United States)

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1989-01-01

    An electrochemical fuel cell includes an anode electrode, a cathode electrode, an electrolyte matrix sandwiched between electrodes, and a pair of plates above and below the electrodes. The plate above the electrodes has a lower surface with a first group of process gas flow channels formed thereon and the plate below the electrodes has an upper surface with a second group of process gas flow channels formed thereon. The channels of each group extend generally parallel to one another. The improvement comprises the process gas flow channels on the lower surface of the plate above the anode electrode and the process gas flow channels on the upper surface of the plate below the cathode electrode being skewed in opposite directions such that contact areas of the surfaces of the plates through the electrodes are formed in crisscross arrangements. Also, the plates have at least one groove in areas of the surfaces thereof where the channels are absent for holding process gas and increasing electrochemical activity of the fuel cell. The groove in each plate surface intersects with the process channels therein. Also, the opposite surfaces of a bipolar plate for a fuel cell contain first and second arrangements of process gas flow channels in the respective surfaces which are skewed the same amount in opposite directions relative to the longitudinal centerline of the plate.

  18. Highly Efficient, Zero-Skew, Integrated Clock Distribution Networks Using Salphasic Principles

    Directory of Open Access Journals (Sweden)

    PASCA, A.

    2016-02-01

    Full Text Available The design of highly efficient clock distributions for integrated circuits is an active topic of research as there will never be a single solution for all systems. For high performance digital or mixed-signal circuits, achieving zero-skew clock over large areas usually comes with high costs in power requirements and design complexity. The present paper shows an overview of a recently proposed technique for ICs - on-die salphasic clock distribution, introduced by the author for CMOS processes. Initially reported in literature for rack-systems, the present paper shows that further refinements are needed for the concept to be applicable on a silicon die. Based on the formation of a standing wave (intrinsically presenting extended in-phase regions with a voltage peak at the input (creating a no-load condition, it is shown that any IC implementation must use transmission lines loss compensation techniques to maintain the proper standing wave configuration. Furthermore, the paper shows theoretical solutions and describes practical on-die techniques for pseudo-spherical bidimensional surfaces, which, with the already reported orthogonal and pseudo-orthogonal structures, can be used to distribute with minimal power requirements a zero-skew clock signal, over large silicon areas.

  19. Invariant graphs of a family of non-uniformly expanding skew products over Markov maps

    Science.gov (United States)

    Walkden, C. P.; Withers, T.

    2018-06-01

    We consider a family of skew-products of the form where T is a continuous, expanding, locally eventually onto Markov map and is a family of homeomorphisms of . A function is said to be an invariant graph if is an invariant set for the skew-product; equivalently, u(T(x))  =  g x (u(x)). A well-studied problem is to consider the existence, regularity and dimension-theoretic properties of such functions, usually under strong contraction or expansion conditions (in terms of Lyapunov exponents or partial hyperbolicity) in the fibre direction. Here we consider such problems in a setting where the Lyapunov exponent in the fibre direction is zero on a set of periodic orbits but expands except on a neighbourhood of these periodic orbits. We prove that u either has the structure of a ‘quasi-graph’ (or ‘bony graph’) or is as smooth as the dynamics, and we give a criteria for this to happen.

  20. Differential properties and attracting sets of a simplest skew product of interval maps

    International Nuclear Information System (INIS)

    Efremova, Lyudmila S

    2010-01-01

    For a skew product of interval maps with a closed set of periodic points, the dependence of the structure of its ω-limit sets on its differential properties is investigated. An example of a map in this class is constructed which has the maximal differentiability properties (within a certain subclass) with respect to the variable x, is C 1 -smooth in the y-variable and has one-dimensional ω-limit sets. Theorems are proved that give necessary conditions for one-dimensional ω-limit sets to exist. One of them is formulated in terms of the divergence of the series consisting of the values of a function of x; this function is the C 0 -norm of the deviation of the restrictions of the fibre maps to some nondegenerate closed interval from the identity on the same interval. Another theorem is formulated in terms of the properties of the partial derivative with respect to x of the fibre maps. A complete description is given of the ω-limit sets of certain class of C 1 -smooth skew products satisfying some natural conditions. Bibliography: 33 titles.

  1. Bayesian inference for two-part mixed-effects model using skew distributions, with application to longitudinal semicontinuous alcohol data.

    Science.gov (United States)

    Xing, Dongyuan; Huang, Yangxin; Chen, Henian; Zhu, Yiliang; Dagne, Getachew A; Baldwin, Julie

    2017-08-01

    Semicontinuous data featured with an excessive proportion of zeros and right-skewed continuous positive values arise frequently in practice. One example would be the substance abuse/dependence symptoms data for which a substantial proportion of subjects investigated may report zero. Two-part mixed-effects models have been developed to analyze repeated measures of semicontinuous data from longitudinal studies. In this paper, we propose a flexible two-part mixed-effects model with skew distributions for correlated semicontinuous alcohol data under the framework of a Bayesian approach. The proposed model specification consists of two mixed-effects models linked by the correlated random effects: (i) a model on the occurrence of positive values using a generalized logistic mixed-effects model (Part I); and (ii) a model on the intensity of positive values using a linear mixed-effects model where the model errors follow skew distributions including skew- t and skew-normal distributions (Part II). The proposed method is illustrated with an alcohol abuse/dependence symptoms data from a longitudinal observational study, and the analytic results are reported by comparing potential models under different random-effects structures. Simulation studies are conducted to assess the performance of the proposed models and method.

  2. Geographic mosaics of species' association: a definition and an example driven by plant-insect phenological synchrony.

    Science.gov (United States)

    Singer, Michael C; McBride, Carolyn S

    2012-12-01

    Spatial mosaics occur in both evolutionary and ecological properties of species' interactions. Studies of these patterns have facilitated description and prediction of evolutionary responses of interacting species to each other and to changing environments. We propose seeking complementary understanding of community assembly and dynamics by studying ecological and mechanistic properties of mosaics. We define "species' association mosaics" as deviations from a null model in which spatial variation in the extent to which particular species interact ecologically is explained solely by variation in their densities. In extreme deviations from the null, a focal species interacts exclusively with different partners at different sites despite similar abundances of potential partners. We investigate this type of mosaic involving the butterfly Euphydryas editha and its hosts, the perennial Pedicularis semibarbata (Psem) and the ephemeral annual Collinsia torreyi (Ctor). A reciprocal transplant experiment showed that the proximate, mechanistic driver of the mosaic was variation in butterfly oviposition preference: the identity of the preferred host species depended on the site of origin of the insects, not that of the plants. In contrast, the evolutionary driver was phenological asynchrony between the insects and Ctor. Censuses showed that larvae hatching from eggs laid on Ctor would have suffered significantly greater mortality from host senescence at five sites where Ctor was avoided than at two sites where it was used. These differences among sites in phenological synchrony were caused by variation in life span of Ctor. At sites where Ctor was avoided, natural selection on host preference was stabilizing because Ctor life span was too short to accommodate the development time of most larvae. At sites where Ctor was used, selection on preference was also stabilizing because larvae lacked physiological adaptation to feed on Psem. These reciprocal forces of stabilizing

  3. Families that fire together smile together: Resting state connectome similarity and daily emotional synchrony in parent-child dyads.

    Science.gov (United States)

    Lee, Tae-Ho; Miernicki, Michelle E; Telzer, Eva H

    2017-05-15

    Despite emerging evidence suggesting a biological basis to our social tiles, our understanding of the neural processes which link two minds is unknown. We implemented a novel approach, which included connectome similarity analysis using resting state intrinsic networks of parent-child dyads as well as daily diaries measured across 14 days. Intrinsic resting-state networks for both parents and their adolescent child were identified using independent component analysis (ICA). Results indicate that parents and children who had more similar RSN connectome also had more similar day-to-day emotional synchrony. Furthermore, dyadic RSN connectome similarity was associated with children's emotional competence, suggesting that being neurally in-tune with their parents confers emotional benefits. We provide the first evidence that dyadic RSN similarity is associated with emotional synchrony in what is often our first and most essential social bond, the parent-child relationship. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Semantic congruency but not temporal synchrony enhances long-term memory performance for audio-visual scenes.

    Science.gov (United States)

    Meyerhoff, Hauke S; Huff, Markus

    2016-04-01

    Human long-term memory for visual objects and scenes is tremendous. Here, we test how auditory information contributes to long-term memory performance for realistic scenes. In a total of six experiments, we manipulated the presentation modality (auditory, visual, audio-visual) as well as semantic congruency and temporal synchrony between auditory and visual information of brief filmic clips. Our results show that audio-visual clips generally elicit more accurate memory performance than unimodal clips. This advantage even increases with congruent visual and auditory information. However, violations of audio-visual synchrony hardly have any influence on memory performance. Memory performance remained intact even with a sequential presentation of auditory and visual information, but finally declined when the matching tracks of one scene were presented separately with intervening tracks during learning. With respect to memory performance, our results therefore show that audio-visual integration is sensitive to semantic congruency but remarkably robust against asymmetries between different modalities.

  5. A novel technique for phase synchrony measurement from the complex motor imaginary potential of combined body and limb action

    Science.gov (United States)

    Zhou, Zhong-xing; Wan, Bai-kun; Ming, Dong; Qi, Hong-zhi

    2010-08-01

    In this study, we proposed and evaluated the use of the empirical mode decomposition (EMD) technique combined with phase synchronization analysis to investigate the human brain synchrony of the supplementary motor area (SMA) and primary motor area (M1) during complex motor imagination of combined body and limb action. We separated the EEG data of the SMA and M1 into intrinsic mode functions (IMFs) using the EMD method and determined the characteristic IMFs by power spectral density (PSD) analysis. Thereafter, the instantaneous phases of the characteristic IMFs were obtained by the Hilbert transformation, and the single-trial phase-locking value (PLV) features for brain synchrony measurement between the SMA and M1 were investigated separately. The classification performance suggests that the proposed approach is effective for phase synchronization analysis and is promising for the application of a brain-computer interface in motor nerve reconstruction of the lower limbs.

  6. Variation in Population Synchrony in a Multi-Species Seabird Community: Response to Changes in Predator Abundance.

    Directory of Open Access Journals (Sweden)

    Gail S Robertson

    Full Text Available Ecologically similar sympatric species, subject to typical environmental conditions, may be expected to exhibit synchronous temporal fluctuations in demographic parameters, while populations of dissimilar species might be expected to show less synchrony. Previous studies have tested for synchrony in different populations of single species, and those including data from more than one species have compared fluctuations in only one demographic parameter. We tested for synchrony in inter-annual changes in breeding population abundance and productivity among four tern species on Coquet Island, northeast England. We also examined how manipulation of one independent environmental variable (predator abundance influenced temporal changes in ecologically similar and dissimilar tern species. Changes in breeding abundance and productivity of ecologically similar species (Arctic Sterna paradisaea, Common S. hirundo and Roseate Terns S. dougallii were synchronous with one another over time, but not with a species with different foraging and breeding behaviour (Sandwich Terns Thalasseus sandvicensis. With respect to changes in predator abundance, there was no clear pattern. Roseate Tern abundance was negatively correlated with that of large gulls breeding on the island from 1975 to 2013, while Common Tern abundance was positively correlated with number of large gulls, and no significant correlations were found between large gull and Arctic and Sandwich Tern populations. Large gull abundance was negatively correlated with productivity of Arctic and Common Terns two years later, possibly due to predation risk after fledging, while no correlation with Roseate Tern productivity was found. The varying effect of predator abundance is most likely due to specific differences in the behaviour and ecology of even these closely-related species. Examining synchrony in multi-species assemblages improves our understanding of how whole communities react to long-term changes

  7. Analysis of bidirectional pattern synchrony of concentration-secretion pairs: implementation in the human testicular and adrenal axes.

    Science.gov (United States)

    Liu, Peter Y; Pincus, Steven M; Keenan, Daniel M; Roelfsema, Ferdinand; Veldhuis, Johannes D

    2005-02-01

    The hypothalamo-pituitary-testicular and hypothalamo-pituitary-adrenal axes are prototypical coupled neuroendocrine systems. In the present study, we contrasted in vivo linkages within and between these two axes using methods without linearity assumptions. We examined 11 young (21-31 yr) and 8 older (62-74 yr) men who underwent frequent (every 2.5 min) blood sampling overnight for paired measurement of LH and testosterone and 35 adults (17 women and 18 men; 26-77 yr old) who underwent adrenocorticotropic hormone (ACTH) and cortisol measurements every 10 min for 24 h. To mirror physiological interactions, hormone secretion was first deconvolved from serial concentrations with a waveform-independent biexponential elimination model. Feedforward synchrony, feedback synchrony, and the difference in feedforward-feedback synchrony were quantified by the cross-approximate entropy (X-ApEn) statistic. These were applied in a forward (LH concentration template, examining pattern recurrence in testosterone secretion), reverse (testosterone concentration template, examining pattern recurrence in LH secretion), and differential (forward minus reverse) manner, respectively. Analogous concentration-secretion X-ApEn estimates were calculated from ACTH-cortisol pairs. X-ApEn, a scale- and model-independent measure of pattern reproducibility, disclosed 1) greater testosterone-LH feedback coordination than LH-testosterone feedforward synchrony in healthy men and significant and symmetric erosion of both feedforward and feedback linkages with aging; 2) more synchronous ACTH concentration-dependent feedforward than feedback drive of cortisol secretion, independent of gender and age; and 3) enhanced detection of bidirectional physiological regulation by in vivo pairwise concentration-secretion compared with concentration-concentration analyses. The linking of relevant biological input to output signals and vice versa should be useful in the dissection of the reciprocal control of

  8. Analysis of infant cortical synchrony is constrained by the number of recording electrodes and the recording montage.

    Science.gov (United States)

    Tokariev, Anton; Vanhatalo, Sampsa; Palva, J Matias

    2016-01-01

    To assess how the recording montage in the neonatal EEG influences the detection of cortical source signals and their phase interactions. Scalp EEG was simulated by forward modeling 20-200 simultaneously active sources covering the cortical surface of a realistic neonatal head model. We assessed systematically how the number of scalp electrodes (11-85), analysis montage, or the size of cortical sources affect the detection of cortical phase synchrony. Statistical metrics were developed for quantifying the resolution and reliability of the montages. The findings converge to show that an increase in the number of recording electrodes leads to a systematic improvement in the detection of true cortical phase synchrony. While there is always a ceiling effect with respect to discernible cortical details, we show that the average and Laplacian montages exhibit superior specificity and sensitivity as compared to other conventional montages. Reliability in assessing true neonatal cortical synchrony is directly related to the choice of EEG recording and analysis configurations. Because of the high conductivity of the neonatal skull, the conventional neonatal EEG recordings are spatially far too sparse for pertinent studies, and this loss of information cannot be recovered by re-montaging during analysis. Future neonatal EEG studies will need prospective planning of recording configuration to allow analysis of spatial details required by each study question. Our findings also advice about the level of details in brain synchrony that can be studied with existing datasets or by using conventional EEG recordings. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Disruption in neural phase synchrony is related to identification of inattentional deafness in real-world setting.

    Science.gov (United States)

    Callan, Daniel E; Gateau, Thibault; Durantin, Gautier; Gonthier, Nicolas; Dehais, Frédéric

    2018-06-01

    Individuals often have reduced ability to hear alarms in real world situations (e.g., anesthesia monitoring, flying airplanes) when attention is focused on another task, sometimes with devastating consequences. This phenomenon is called inattentional deafness and usually occurs under critical high workload conditions. It is difficult to simulate the critical nature of these tasks in the laboratory. In this study, dry electroencephalography is used to investigate inattentional deafness in real flight while piloting an airplane. The pilots participating in the experiment responded to audio alarms while experiencing critical high workload situations. It was found that missed relative to detected alarms were marked by reduced stimulus evoked phase synchrony in theta and alpha frequencies (6-14 Hz) from 120 to 230 ms poststimulus onset. Correlation of alarm detection performance with intertrial coherence measures of neural phase synchrony showed different frequency and time ranges for detected and missed alarms. These results are consistent with selective attentional processes actively disrupting oscillatory coherence in sensory networks not involved with the primary task (piloting in this case) under critical high load conditions. This hypothesis is corroborated by analyses of flight parameters showing greater maneuvering associated with difficult phases of flight occurring during missed alarms. Our results suggest modulation of neural oscillation is a general mechanism of attention utilizing enhancement of phase synchrony to sharpen alarm perception during successful divided attention, and disruption of phase synchrony in brain networks when attentional demands of the primary task are great, such as in the case of inattentional deafness. © 2018 Wiley Periodicals, Inc.

  10. Auto-Calibration and Fault Detection and Isolation of Skewed Redundant Accelerometers in Measurement While Drilling Systems.

    Science.gov (United States)

    Seyed Moosavi, Seyed Mohsen; Moaveni, Bijan; Moshiri, Behzad; Arvan, Mohammad Reza

    2018-02-27

    The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors.

  11. Auto-Calibration and Fault Detection and Isolation of Skewed Redundant Accelerometers in Measurement While Drilling Systems

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Seyed Moosavi

    2018-02-01

    Full Text Available The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors.

  12. Low reproductive skew despite high male-biased operational sex ratio in a glass frog with paternal care.

    Science.gov (United States)

    Mangold, Alexandra; Trenkwalder, Katharina; Ringler, Max; Hödl, Walter; Ringler, Eva

    2015-09-03

    Reproductive skew, the uneven distribution of reproductive success among individuals, is a common feature of many animal populations. Several scenarios have been proposed to favour either high or low levels of reproductive skew. Particularly a male-biased operational sex ratio and the asynchronous arrival of females is expected to cause high variation in reproductive success among males. Recently it has been suggested that the type of benefits provided by males (fixed vs. dilutable) could also strongly impact individual mating patterns, and thereby affecting reproductive skew. We tested this hypothesis in Hyalinobatrachium valerioi, a Neotropical glass frog with prolonged breeding and paternal care. We monitored and genetically sampled a natural population in southwestern Costa Rica during the breeding season in 2012 and performed parentage analysis of adult frogs and tadpoles to investigate individual mating frequencies, possible mating preferences, and estimate reproductive skew in males and females. We identified a polygamous mating system, where high proportions of males (69 %) and females (94 %) reproduced successfully. The variance in male mating success could largely be attributed to differences in time spent calling at the reproductive site, but not to body size or relatedness. Female H. valerioi were not choosy and mated indiscriminately with available males. Our findings support the hypothesis that dilutable male benefits - such as parental care - can favour female polyandry and maintain low levels of reproductive skew among males within a population, even in the presence of direct male-male competition and a highly male-biased operational sex ratio. We hypothesize that low male reproductive skew might be a general characteristic in prolonged breeders with paternal care.

  13. Long-term meditation training induced changes in the operational synchrony of default mode network modules during a resting state.

    Science.gov (United States)

    Fingelkurts, Andrew A; Fingelkurts, Alexander A; Kallio-Tamminen, Tarja

    2016-02-01

    Using theoretical analysis of self-consciousness concept and experimental evidence on the brain default mode network (DMN) that constitutes the neural signature of self-referential processes, we hypothesized that the anterior and posterior subnets comprising the DMN should show differences in their integrity as a function of meditation training. Functional connectivity within DMN and its subnets (measured by operational synchrony) has been measured in ten novice meditators using an electroencephalogram (EEG) recording in a pre-/post-meditation intervention design. We have found that while the whole DMN was clearly suppressed, different subnets of DMN responded differently after 4 months of meditation training: The strength of EEG operational synchrony in the right and left posterior modules of the DMN decreased in resting post-meditation condition compared to a pre-meditation condition, whereas the frontal DMN module on the contrary exhibited an increase in the strength of EEG operational synchrony. These findings combined with published data on functional-anatomic heterogeneity within the DMN and on trait subjective experiences commonly found following meditation allow us to propose that the first-person perspective and the sense of agency (the witnessing observer) are presented by the frontal DMN module, while the posterior modules of the DMN are generally responsible for the experience of the continuity of 'I' as embodied and localized within bodily space. Significance of these findings is discussed.

  14. Skewed Marriage Markets and Sex Ratios of Finnish People in their Twenties

    Directory of Open Access Journals (Sweden)

    Lassi Lainiala

    2014-03-01

    Full Text Available This article studies variation in regional sex ratios in Finland and outlines potential implications of the skewed sex ratios for family formation patterns. Difficulties in finding a suitable partner are typically mentioned as one of the most important reasons for remaining childless, and we explore if this reason is apparent structurally at the regional macro level. We found significant variation in sex ratios in age-groups 18–30 at the regional and sub-regional levels. Of the whole 20–29-year old population in Finland, almost 50 percent live in sub-region areas with a male surplus. As expected, a higher proportion of men compared to women appears to increase fertility of women in younger age groups. Contrary to expectations, high male-female ratios were not related to higher proportion of women living with a partner

  15. B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction.

    Science.gov (United States)

    Shin, Jung Hoon; Park, Se-Ho

    2013-10-01

    CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although α-galactosylceramide (α-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-γ by NKT cells, concomitant with a decreased level of IL-4, in the circumstance of co-culture of DCs and B Cells. Remarkably, the response promoted by B cells was dependent on CD1d expression of B cells.

  16. Bed slope effects on turbulent wave boundary layers: 2. Comparison with skewness, asymmetry, and other effects

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2009-01-01

    currents or undertow). The effects from each of the four components are isolated and quantified using a standard set of bed shear stress quantities, allowing their easy comparison. For conditions representing large shallow-water waves on steep slopes, the results suggest that converging-diverging effects......A numerical model solving incompressible Reynolds-averaged Navier-Stokes equations, combined with a two-equation k-omega model for turbulence closure, is used to systematically compare the relative strength of bed shear stress quantities and boundary layer streaming under wave motions from four...... from beach slope may make a significant onshore bed load contribution. Generally, however, the results suggest wave skewness (in addition to conventional steady streaming) as the most important onshore contribution outside the surf zone. Streaming induced within the wave boundary layer is also...

  17. Noise measurement from magnitude MRI using local estimates of variance and skewness

    International Nuclear Information System (INIS)

    Rajan, Jeny; Poot, Dirk; Juntu, Jaber; Sijbers, Jan

    2010-01-01

    In this note, we address the estimation of the noise level in magnitude magnetic resonance (MR) images in the absence of background data. Most of the methods proposed earlier exploit the Rayleigh distributed background region in MR images to estimate the noise level. These methods, however, cannot be used for images where no background information is available. In this note, we propose two different approaches for noise level estimation in the absence of the image background. The first method is based on the local estimation of the noise variance using maximum likelihood estimation and the second method is based on the local estimation of the skewness of the magnitude data distribution. Experimental results on synthetic and real MR image datasets show that the proposed estimators accurately estimate the noise level in a magnitude MR image, even without background data. (note)

  18. Assessing Potential Wind Energy Resources in Saudi Arabia with a Skew-t Distribution

    KAUST Repository

    Tagle, Felipe

    2017-03-13

    Facing increasing domestic energy consumption from population growth and industrialization, Saudi Arabia is aiming to reduce its reliance on fossil fuels and to broaden its energy mix by expanding investment in renewable energy sources, including wind energy. A preliminary task in the development of wind energy infrastructure is the assessment of wind energy potential, a key aspect of which is the characterization of its spatio-temporal behavior. In this study we examine the impact of internal climate variability on seasonal wind power density fluctuations using 30 simulations from the Large Ensemble Project (LENS) developed at the National Center for Atmospheric Research. Furthermore, a spatio-temporal model for daily wind speed is proposed with neighbor-based cross-temporal dependence, and a multivariate skew-t distribution to capture the spatial patterns of higher order moments. The model can be used to generate synthetic time series over the entire spatial domain that adequately reproduces the internal variability of the LENS dataset.

  19. A novel generalized normal distribution for human longevity and other negatively skewed data.

    Science.gov (United States)

    Robertson, Henry T; Allison, David B

    2012-01-01

    Negatively skewed data arise occasionally in statistical practice; perhaps the most familiar example is the distribution of human longevity. Although other generalizations of the normal distribution exist, we demonstrate a new alternative that apparently fits human longevity data better. We propose an alternative approach of a normal distribution whose scale parameter is conditioned on attained age. This approach is consistent with previous findings that longevity conditioned on survival to the modal age behaves like a normal distribution. We derive such a distribution and demonstrate its accuracy in modeling human longevity data from life tables. The new distribution is characterized by 1. An intuitively straightforward genesis; 2. Closed forms for the pdf, cdf, mode, quantile, and hazard functions; and 3. Accessibility to non-statisticians, based on its close relationship to the normal distribution.

  20. Skew Information for a Single Cooper Pair Box Interacting with a Single Cavity Field

    International Nuclear Information System (INIS)

    Metwally, N.; Al-Mannai, A.; Abdel-Aty, M.

    2013-01-01

    The dynamics of the skew information (SI) is investigated for a single Cooper Pair Box (CPB) interacting with a single cavity field. By suitably choosing the system parameters and precisely controlling the dynamics, novel connection is found between the SI and entanglement generation. It is shown that SI can be increased and reach its maximum value either by increasing the number of photons inside the cavity or considering the far off-resonant case. The number of oscillations of SI is increased by decreasing this ratio between the Josephson junction capacity and the gate capacity. This leads to significant improvement of the travelling time between the maximum and minimum values. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Assessing Potential Wind Energy Resources in Saudi Arabia with a Skew-t Distribution

    KAUST Repository

    Tagle, Felipe; Castruccio, Stefano; Crippa, Paola; Genton, Marc G.

    2017-01-01

    Facing increasing domestic energy consumption from population growth and industrialization, Saudi Arabia is aiming to reduce its reliance on fossil fuels and to broaden its energy mix by expanding investment in renewable energy sources, including wind energy. A preliminary task in the development of wind energy infrastructure is the assessment of wind energy potential, a key aspect of which is the characterization of its spatio-temporal behavior. In this study we examine the impact of internal climate variability on seasonal wind power density fluctuations using 30 simulations from the Large Ensemble Project (LENS) developed at the National Center for Atmospheric Research. Furthermore, a spatio-temporal model for daily wind speed is proposed with neighbor-based cross-temporal dependence, and a multivariate skew-t distribution to capture the spatial patterns of higher order moments. The model can be used to generate synthetic time series over the entire spatial domain that adequately reproduces the internal variability of the LENS dataset.

  2. Separation of variables in anisotropic models and non-skew-symmetric elliptic r-matrix

    Science.gov (United States)

    Skrypnyk, Taras

    2017-05-01

    We solve a problem of separation of variables for the classical integrable hamiltonian systems possessing Lax matrices satisfying linear Poisson brackets with the non-skew-symmetric, non-dynamical elliptic so(3)⊗ so(3)-valued classical r-matrix. Using the corresponding Lax matrices, we present a general form of the "separating functions" B( u) and A( u) that generate the coordinates and the momenta of separation for the associated models. We consider several examples and perform the separation of variables for the classical anisotropic Euler's top, Steklov-Lyapunov model of the motion of anisotropic rigid body in the liquid, two-spin generalized Gaudin model and "spin" generalization of Steklov-Lyapunov model.

  3. Low paternity skew and the influence of maternal kin in an egalitarian, patrilocal primate.

    Science.gov (United States)

    Strier, Karen B; Chaves, Paulo B; Mendes, Sérgio L; Fagundes, Valéria; Di Fiore, Anthony

    2011-11-22

    Levels of reproductive skew vary in wild primates living in multimale groups depending on the degree to which high-ranking males monopolize access to females. Still, the factors affecting paternity in egalitarian societies remain unexplored. We combine unique behavioral, life history, and genetic data to evaluate the distribution of paternity in the northern muriqui (Brachyteles hypoxanthus), a species known for its affiliative, nonhierarchical relationships. We genotyped 67 individuals (22 infants born over a 3-y period, their 21 mothers, and all 24 possible sires) at 17 microsatellite marker loci and assigned paternity to all infants. None of the 13 fathers were close maternal relatives of females with which they sired infants, and the most successful male sired a much lower percentage of infants (18%) than reported for the most successful males in other species. Our findings of inbreeding avoidance and low male reproductive skew are consistent with the muriqui's observed social and sexual behavior, but the long delay (≥2.08 y) between the onset of male sexual behavior and the age at which males first sire young is unexpected. The allocation of paternity implicates individual male life histories and access to maternal kin as key factors influencing variation in paternal--and grandmaternal--fitness. The apparent importance of lifelong maternal investment in coresident sons resonates with other recent examinations of maternal influences on offspring reproduction. This importance also extends the implications of the "grandmother hypothesis" in human evolution to include the possible influence of mothers and other maternal kin on male reproductive success in patrilocal societies.

  4. Th1-skewed tissue responses to a mycolyl glycolipid in mycobacteria-infected rhesus macaques

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Daisuke; Miyamoto, Ayumi; Hattori, Yuki; Komori, Takaya [Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Nakamura, Takashi [Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Igarashi, Tatsuhiko [Laboratory of Primate Model, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Harashima, Hideyoshi [Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Sugita, Masahiko [Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan)

    2013-11-08

    Highlights: •Glucose monomycolate (GMM) is a marker glycolipid for active tuberculosis. •Tissue responses to GMM involved up-regulation of Th1-attracting chemokines. •Th1-skewed local responses were mounted at the GMM-injected tissue. -- Abstract: Trehalose 6,6′-dimycolate (TDM) is a major glycolipid of the cell wall of mycobacteria with remarkable adjuvant functions. To avoid detection by the host innate immune system, invading mycobacteria down-regulate the expression of TDM by utilizing host-derived glucose as a competitive substrate for their mycolyltransferases; however, this enzymatic reaction results in the concomitant biosynthesis of glucose monomycolate (GMM) which is recognized by the acquired immune system. GMM-specific, CD1-restricted T cell responses have been detected in the peripheral blood of infected human subjects and monkeys as well as in secondary lymphoid organs of small animals, such as guinea pigs and human CD1-transgenic mice. Nevertheless, it remains to be determined how tissues respond at the site where GMM is produced. Here we found that rhesus macaques vaccinated with Mycobacterium bovis bacillus Calmette–Guerin mounted a chemokine response in GMM-challenged skin that was favorable for recruiting T helper (Th)1 T cells. Indeed, the expression of interferon-γ, but not Th2 or Th17 cytokines, was prominent in the GMM-injected tissue. The GMM-elicited tissue response was also associated with the expression of monocyte/macrophage-attracting CC chemokines, such as CCL2, CCL4 and CCL8. Furthermore, the skin response to GMM involved the up-regulated expression of granulysin and perforin. Given that GMM is produced primarily by pathogenic mycobacteria proliferating within the host, the Th1-skewed tissue response to GMM may function efficiently at the site of infection.

  5. Th1-skewed tissue responses to a mycolyl glycolipid in mycobacteria-infected rhesus macaques

    International Nuclear Information System (INIS)

    Morita, Daisuke; Miyamoto, Ayumi; Hattori, Yuki; Komori, Takaya; Nakamura, Takashi; Igarashi, Tatsuhiko; Harashima, Hideyoshi; Sugita, Masahiko

    2013-01-01

    Highlights: •Glucose monomycolate (GMM) is a marker glycolipid for active tuberculosis. •Tissue responses to GMM involved up-regulation of Th1-attracting chemokines. •Th1-skewed local responses were mounted at the GMM-injected tissue. -- Abstract: Trehalose 6,6′-dimycolate (TDM) is a major glycolipid of the cell wall of mycobacteria with remarkable adjuvant functions. To avoid detection by the host innate immune system, invading mycobacteria down-regulate the expression of TDM by utilizing host-derived glucose as a competitive substrate for their mycolyltransferases; however, this enzymatic reaction results in the concomitant biosynthesis of glucose monomycolate (GMM) which is recognized by the acquired immune system. GMM-specific, CD1-restricted T cell responses have been detected in the peripheral blood of infected human subjects and monkeys as well as in secondary lymphoid organs of small animals, such as guinea pigs and human CD1-transgenic mice. Nevertheless, it remains to be determined how tissues respond at the site where GMM is produced. Here we found that rhesus macaques vaccinated with Mycobacterium bovis bacillus Calmette–Guerin mounted a chemokine response in GMM-challenged skin that was favorable for recruiting T helper (Th)1 T cells. Indeed, the expression of interferon-γ, but not Th2 or Th17 cytokines, was prominent in the GMM-injected tissue. The GMM-elicited tissue response was also associated with the expression of monocyte/macrophage-attracting CC chemokines, such as CCL2, CCL4 and CCL8. Furthermore, the skin response to GMM involved the up-regulated expression of granulysin and perforin. Given that GMM is produced primarily by pathogenic mycobacteria proliferating within the host, the Th1-skewed tissue response to GMM may function efficiently at the site of infection

  6. Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing.

    Science.gov (United States)

    Sfanos, Karen Sandell; Bruno, Tullia C; Maris, Charles H; Xu, Lauren; Thoburn, Christopher J; DeMarzo, Angelo M; Meeker, Alan K; Isaacs, William B; Drake, Charles G

    2008-06-01

    Pathologic examination of prostate glands removed from patients with prostate cancer commonly reveals infiltrating CD4+ and CD8+ T cells. Little is known about the phenotype of these cells, despite accumulating evidence suggesting a potential role for chronic inflammation in the etiology of prostate cancer. We developed a technique that samples the majority of the peripheral prostate through serial needle aspirates. CD4+ prostate-infiltrating lymphocytes (PIL) were isolated using magnetic beads and analyzed for subset skewing using both flow cytometry and quantitative reverse transcription-PCR. The transcriptional profile of fluorescence-activated cell sorted prostate-infiltrating regulatory T cells (CD4+, CD25+, GITR+) was compared with naïve, peripheral blood T cells using microarray analysis. CD4+ PIL showed a paucity of TH2 (interleukin-4-secreting) cells, a surprising finding given the generally accepted association of these cells with chronic, smoldering inflammation. Instead, CD4+ PIL seemed to be skewed towards a regulatory Treg phenotype (FoxP3+) as well as towards the TH17 phenotype (interleukin-17+). We also found that a preponderance of TH17-mediated inflammation was associated with a lower pathologic Gleason score. These protein level data were reflected at the message level, as analyzed by quantitative reverse transcription-PCR. Microarray analysis of pooled prostate-infiltrating T(reg) revealed expected Treg-associated transcripts (FoxP3, CTLA-4, GITR, LAG-3) as well as a number of unique cell surface markers that may serve as additional Treg markers. Taken together, these data suggest that TH17 and/or Treg CD4+ T cells (rather than TH2 T cells) may be involved in the development or progression of prostate cancer.

  7. Spatial synchrony of malaria outbreaks in a highland region of Ethiopia.

    Science.gov (United States)

    Wimberly, Michael C; Midekisa, Alemayehu; Semuniguse, Paulos; Teka, Hiwot; Henebry, Geoffrey M; Chuang, Ting-Wu; Senay, Gabriel B

    2012-10-01

    To understand the drivers and consequences of malaria in epidemic-prone regions, it is important to know whether epidemics emerge independently in different areas as a consequence of local contingencies, or whether they are synchronised across larger regions as a result of climatic fluctuations and other broad-scale drivers. To address this question, we collected historical malaria surveillance data for the Amhara region of Ethiopia and analysed them to assess the consistency of various indicators of malaria risk and determine the dominant spatial and temporal patterns of malaria within the region. We collected data from a total of 49 districts from 1999-2010. Data availability was better for more recent years and more data were available for clinically diagnosed outpatient malaria cases than confirmed malaria cases. Temporal patterns of outpatient malaria case counts were correlated with the proportion of outpatients diagnosed with malaria and confirmed malaria case counts. The proportion of outpatients diagnosed with malaria was spatially clustered, and these cluster locations were generally consistent from year to year. Outpatient malaria cases exhibited spatial synchrony at distances up to 300 km, supporting the hypothesis that regional climatic variability is an important driver of epidemics. Our results suggest that decomposing malaria risk into separate spatial and temporal components may be an effective strategy for modelling and forecasting malaria risk across large areas. They also emphasise both the value and limitations of working with historical surveillance datasets and highlight the importance of enhancing existing surveillance efforts. © 2012 Blackwell Publishing Ltd.

  8. SYNCHRONIZATION OF HETEROGENEOUS OSCILLATORS UNDER NETWORK MODIFICATIONS: PERTURBATION AND OPTIMIZATION OF THE SYNCHRONY ALIGNMENT FUNCTION

    Science.gov (United States)

    Taylor, Dane; Skardal, Per Sebastian; Sun, Jie

    2016-01-01

    Synchronization is central to many complex systems in engineering physics (e.g., the power-grid, Josephson junction circuits, and electro-chemical oscillators) and biology (e.g., neuronal, circadian, and cardiac rhythms). Despite these widespread applications—for which proper functionality depends sensitively on the extent of synchronization—there remains a lack of understanding for how systems can best evolve and adapt to enhance or inhibit synchronization. We study how network modifications affect the synchronization properties of network-coupled dynamical systems that have heterogeneous node dynamics (e.g., phase oscillators with non-identical frequencies), which is often the case for real-world systems. Our approach relies on a synchrony alignment function (SAF) that quantifies the interplay between heterogeneity of the network and of the oscillators and provides an objective measure for a system’s ability to synchronize. We conduct a spectral perturbation analysis of the SAF for structural network modifications including the addition and removal of edges, which subsequently ranks the edges according to their importance to synchronization. Based on this analysis, we develop gradient-descent algorithms to efficiently solve optimization problems that aim to maximize phase synchronization via network modifications. We support these and other results with numerical experiments. PMID:27872501

  9. Intralaminar and medial thalamic influence on cortical synchrony, information transmission and cognition

    Directory of Open Access Journals (Sweden)

    Yuri B Saalmann

    2014-05-01

    Full Text Available The intralaminar and medial thalamic nuclei are part of the higher-order thalamus, which receives little sensory input, and instead forms extensive cortico-thalamo-cortical pathways. The large mediodorsal thalamic nucleus predominantly connects with the prefrontal cortex, the adjacent intralaminar nuclei connect with fronto-parietal cortex, and the midline thalamic nuclei connect with medial prefrontal cortex and medial temporal lobe. Taking into account this connectivity pattern, it is not surprising that the intralaminar and medial thalamus has been implicated in a variety of cognitive functions, including memory processing, attention and orienting, as well as reward-based behavior. This review addresses how the intralaminar and medial thalamus may regulate information transmission in cortical circuits. A key neural mechanism may involve intralaminar and medial thalamic neurons modulating the degree of synchrony between different groups of cortical neurons according to behavioral demands. Such a thalamic-mediated synchronization mechanism may give rise to large-scale integration of information across multiple cortical circuits, consequently influencing the level of arousal and consciousness. Overall, the growing evidence supports a general role for the higher-order thalamus in the control of cortical information transmission and cognitive processing.

  10. Attachment quality is related to the synchrony of mother and infant monitoring patterns.

    Science.gov (United States)

    Biro, Szilvia; Alink, Lenneke R A; Huffmeijer, Renske; Bakermans-Kranenburg, Marian J; Van IJzendoorn, Marinus H

    2017-06-01

    We investigated whether attachment quality is related to infant-mother dyadic patterns in monitoring animated social situations. Sixty 12-month-old infants and their mothers participated in an eye-tracking study in which they watched abstractly depicted distress interactions involving the separation of a "baby" and a "parent" character followed by reunion or further separation of the two characters. We measured infants' and their mothers' relative fixation duration to the two characters in the animations. We found that infant attachment disorganization moderated the correspondence between the monitoring patterns of infant-mother dyads during the final part of the animations resulting in reunion or separation. Organized infants and their mothers showed complementary monitoring patterns: the more the mothers focused their attention on the "baby" character, the more the infants focused their attention on the "parent" character, and vice versa. Disorganized infant-mother dyads showed the opposite pattern although the correlation was nonsignificant: mothers and their infants focused on the same character. The attachment-related differences in the nature of the synchrony in the attentional processes of infants and their mothers suggest that by 12 months the dyads' representations of social situations reflect their shared social-emotional experiences.

  11. Does spike-timing-dependent synaptic plasticity couple or decouple neurons firing in synchrony?

    Directory of Open Access Journals (Sweden)

    Andreas eKnoblauch

    2012-08-01

    Full Text Available Spike synchronization is thought to have a constructive role for feature integration, attention, associativelearning, and the formation of bidirectionally connected Hebbian cell assemblies. By contrast, theoreticalstudies on spike-timing-dependent plasticity (STDP report an inherently decoupling influence of spikesynchronization on synaptic connections of coactivated neurons. For example, bidirectional synapticconnections as found in cortical areas could be reproduced only by assuming realistic models of STDP andrate coding. We resolve this conflict by theoretical analysis and simulation of various simple and realisticSTDP models that provide a more complete characterization of conditions when STDP leads to eithercoupling or decoupling of neurons firing in synchrony. In particular, we show that STDP consistentlycouples synchronized neurons if key model parameters are matched to physiological data: First, synapticpotentiation must be significantly stronger than synaptic depression for small (positive or negative timelags between presynaptic and postsynaptic spikes. Second, spike synchronization must be sufficientlyimprecise, for example, within a time window of 5-10msec instead of 1msec. Third, axonal propagationdelays should not be much larger than dendritic delays. Under these assumptions synchronized neuronswill be strongly coupled leading to a dominance of bidirectional synaptic connections even for simpleSTDP models and low mean firing rates at the level of spontaneous activity.

  12. Oxytocin and vasopressin flatten dominance hierarchy and enhance behavioral synchrony in part via anterior cingulate cortex.

    Science.gov (United States)

    Jiang, Yaoguang; Platt, Michael L

    2018-05-29

    The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) influence social functions in many mammals. In humans and rhesus macaques, OT delivered intranasally can promote prosocial behavior in certain contexts. Yet the precise neural mechanisms mediating these behavioral effects remain unclear. Here we show that treating a group of male macaque monkeys intranasally with aerosolized OT relaxes their spontaneous social interactions with other monkeys. OT reduces differences in social behavior between dominant and subordinate monkeys, thereby flattening the status hierarchy. OT also increases behavioral synchrony within a pair. Intranasal delivery of aerosolized AVP reproduces the effects of OT with greater efficacy. Remarkably, all behavioral effects are replicated when OT or AVP is injected focally into the anterior cingulate gyrus (ACCg), a brain area linked to empathy and other-regarding behavior. ACCg lacks OT receptors but is rich in AVP receptors, suggesting exogenous OT may shape social behavior, in part, via nonspecific binding. Notably, OT and AVP alter behaviors of both the treated monkey and his untreated partner, consistent with enhanced feedback through reciprocal social interactions. These findings bear important implications for use of OT in both basic research and as a therapy for social impairments in neurodevelopmental disorders.

  13. Traces across the body: influence of music-dance synchrony on the observation of dance.

    Science.gov (United States)

    Woolhouse, Matthew Harold; Lai, Rosemary

    2014-01-01

    In previous studies investigating entrainment and person perception, synchronized movements were found to enhance memory for incidental person attributes. Although this effect is robust, including in dance, the process by which it is actuated are less well understood. In this study, two hypotheses are investigated: that enhanced memory for person attributes is the result of (1) increased gaze time between in-tempo dancers; and/or (2) greater attentional focus between in-tempo dancers. To explore these possible mechanisms in the context of observing dance, an eye-tracking study was conducted in which subjects watched videos of pairs of laterally positioned dancers; only one of the dancers was synchronized with the music, the other being asynchronous. The results were consistent with the first hypothesis-music-dance synchrony gives rise to increased visual inspection times. In addition, there was a preference for upper-body fixations over lower-body fixations across both synchronous and asynchronous conditions. A subsequent, single-dancer eye-tracking study investigated fixations across different body regions, including head, torso, legs and feet. Significantly greater dwell times were recorded for head than torso and legs; feet attracted significantly less dwell time than any other body region. Lastly, the study sought to identify dance gestures responsible for torso- and head-directed fixations. Specifically we asked whether there are features in dance that are specially designed to direct an observer's gaze towards the face-the main "communicative portal" with respect to the transmission of intent, affect and empathy.

  14. Hippocampal gamma-band Synchrony and pupillary responses index memory during visual search.

    Science.gov (United States)

    Montefusco-Siegmund, Rodrigo; Leonard, Timothy K; Hoffman, Kari L

    2017-04-01

    Memory for scenes is supported by the hippocampus, among other interconnected structures, but the neural mechanisms related to this process are not well understood. To assess the role of the hippocampus in memory-guided scene search, we recorded local field potentials and multiunit activity from the hippocampus of macaques as they performed goal-directed search tasks using natural scenes. We additionally measured pupil size during scene presentation, which in humans is modulated by recognition memory. We found that both pupil dilation and search efficiency accompanied scene repetition, thereby indicating memory for scenes. Neural correlates included a brief increase in hippocampal multiunit activity and a sustained synchronization of unit activity to gamma band oscillations (50-70 Hz). The repetition effects on hippocampal gamma synchronization occurred when pupils were most dilated, suggesting an interaction between aroused, attentive processing and hippocampal correlates of recognition memory. These results suggest that the hippocampus may support memory-guided visual search through enhanced local gamma synchrony. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Hearing visuo-tactile synchrony - Sound-induced proprioceptive drift in the invisible hand illusion.

    Science.gov (United States)

    Darnai, Gergely; Szolcsányi, Tibor; Hegedüs, Gábor; Kincses, Péter; Kállai, János; Kovács, Márton; Simon, Eszter; Nagy, Zsófia; Janszky, József

    2017-02-01

    The rubber hand illusion (RHI) and its variant the invisible hand illusion (IHI) are useful for investigating multisensory aspects of bodily self-consciousness. Here, we explored whether auditory conditioning during an RHI could enhance the trisensory visuo-tactile-proprioceptive interaction underlying the IHI. Our paradigm comprised of an IHI session that was followed by an RHI session and another IHI session. The IHI sessions had two parts presented in counterbalanced order. One part was conducted in silence, whereas the other part was conducted on the backdrop of metronome beats that occurred in synchrony with the brush movements used for the induction of the illusion. In a first experiment, the RHI session also involved metronome beats and was aimed at creating an associative memory between the brush stroking of a rubber hand and the sounds. An analysis of IHI sessions showed that the participants' perceived hand position drifted more towards the body-midline in the metronome relative to the silent condition without any sound-related session differences. Thus, the sounds, but not the auditory RHI conditioning, influenced the IHI. In a second experiment, the RHI session was conducted without metronome beats. This confirmed the conditioning-independent presence of sound-induced proprioceptive drift in the IHI. Together, these findings show that the influence of visuo-tactile integration on proprioceptive updating is modifiable by irrelevant auditory cues merely through the temporal correspondence between the visuo-tactile and auditory events. © 2016 The British Psychological Society.

  16. Neuroimaging investigations of dorsal stream processing and effects of stimulus synchrony in schizophrenia.

    Science.gov (United States)

    Sanfratello, Lori; Aine, Cheryl; Stephen, Julia

    2018-05-25

    Impairments in auditory and visual processing are common in schizophrenia (SP). In the unisensory realm visual deficits are primarily noted for the dorsal visual stream. In addition, insensitivity to timing offsets between stimuli are widely reported for SP. The aim of the present study was to test at the physiological level differences in dorsal/ventral stream visual processing and timing sensitivity between SP and healthy controls (HC) using MEG and a simple auditory/visual task utilizing a variety of multisensory conditions. The paradigm included all combinations of synchronous/asynchronous and central/peripheral stimuli, yielding 4 task conditions. Both HC and SP groups showed activation in parietal areas (dorsal visual stream) during all multisensory conditions, with parietal areas showing decreased activation for SP relative to HC, and a significantly delayed peak of activation for SP in intraparietal sulcus (IPS). We also observed a differential effect of stimulus synchrony on HC and SP parietal response. Furthermore, a (negative) correlation was found between SP positive symptoms and activity in IPS. Taken together, our results provide evidence of impairment of the dorsal visual stream in SP during a multisensory task, along with an altered response to timing offsets between presented multisensory stimuli. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Neural Oscillations and Synchrony in Brain Dysfunction and Neuropsychiatric Disorders: It's About Time.

    Science.gov (United States)

    Mathalon, Daniel H; Sohal, Vikaas S

    2015-08-01

    Neural oscillations are rhythmic fluctuations over time in the activity or excitability of single neurons, local neuronal populations or "assemblies," and/or multiple regionally distributed neuronal assemblies. Synchronized oscillations among large numbers of neurons are evident in electrocorticographic, electroencephalographic, magnetoencephalographic, and local field potential recordings and are generally understood to depend on inhibition that paces assemblies of excitatory neurons to produce alternating temporal windows of reduced and increased excitability. Synchronization of neural oscillations is supported by the extensive networks of local and long-range feedforward and feedback bidirectional connections between neurons. Here, we review some of the major methods and measures used to characterize neural oscillations, with a focus on gamma oscillations. Distinctions are drawn between stimulus-independent oscillations recorded during resting states or intervals between task events, stimulus-induced oscillations that are time locked but not phase locked to stimuli, and stimulus-evoked oscillations that are both time and phase locked to stimuli. Synchrony of oscillations between recording sites, and between the amplitudes and phases of oscillations of different frequencies (cross-frequency coupling), is described and illustrated. Molecular mechanisms underlying gamma oscillations are also reviewed. Ultimately, understanding the temporal organization of neuronal network activity, including interactions between neural oscillations, is critical for elucidating brain dysfunction in neuropsychiatric disorders.

  18. Resonance multiphoton ionization and dissociation of dimethyl ether via the {\\skew1\\tilde{\\rm C}^{\\prime}}, {\\skew1\\tilde{\\rm C}} and \\tilde{\\rm B} states

    Science.gov (United States)

    Mejia-Ospino, E.; García, G.; Guerrero, A.; Alvarez, I.; Cisneros, C.

    2005-01-01

    The three-photon resonance four-photon ionization and dissociation spectra of dimethyl ether (DME) are presented in the wavelength range 450-550 nm at 1 nm intervals. The (3+1) REMPI spectra show three prominent bands corresponding to the \\tildeB \\leftarrow \\skew1\\tildeX, {\\skew1\\tildeC} \\leftarrow \\skew1\\tildeX and {\\skew1\\tildeC^{\\prime}} \\leftarrow \\skew1\\tildeX transitions with origins at 61 457 cm-1 (7.615 eV), 59 055 cm-1 (7.322 eV) and 58 010 cm-1 (7.194 eV), respectively. Several ionized species, CH3+, CHnO+ (n = 1-3) and CH3OCH3+, are observed in the region of wavelengths studied here. In order to compare the results, a shorter wavelength multiphoton dissociation and ionization of DME at 355 nm is also presented. At this wavelength, DME undergoes neutral dissociation to CH3 and CH3O and each fragment is then ionized by multiphoton absorption. The fragmentation at 355 nm is very intense and only small fragments such as CH3+, CHO+, CH2+, CH+ and C+ ions are observed. The measurement of photoelectron energy allows us to establish that the DME ionization potential is at least 9.55 ± 0.15 eV. The experiments were performed using a Nd:YAG-OPO (optical parametric oscillator) tunable laser system coupled to a time-of-flight mass spectrometer and a hemispherical electron energy analyser.

  19. Determining the role of skewed X-chromosome inactivation in developing muscle symptoms in carriers of Duchenne muscular dystrophy.

    Science.gov (United States)

    Viggiano, Emanuela; Ergoli, Manuela; Picillo, Esther; Politano, Luisa

    2016-07-01

    Duchenne and Becker dystrophinopathies (DMD and BMD) are X-linked recessive disorders caused by mutations in the dystrophin gene that lead to absent or reduced expression of dystrophin in both skeletal and heart muscles. DMD/BMD female carriers are usually asymptomatic, although about 8 % may exhibit muscle or cardiac symptoms. Several mechanisms leading to a reduced dystrophin have been hypothesized to explain the clinical manifestations and, in particular, the role of the skewed XCI is questioned. In this review, the mechanism of XCI and its involvement in the phenotype of BMD/DMD carriers with both a normal karyotype or with X;autosome translocations with breakpoints at Xp21 (locus of the DMD gene) will be analyzed. We have previously observed that DMD carriers with moderate/severe muscle involvement, exhibit a moderate or extremely skewed XCI, in particular if presenting with an early onset of symptoms, while DMD carriers with mild muscle involvement present a random XCI. Moreover, we found that among 87.1 % of the carriers with X;autosome translocations involving the locus Xp21 who developed signs and symptoms of dystrophinopathy such as proximal muscle weakness, difficulty to run, jump and climb stairs, 95.2 % had a skewed XCI pattern in lymphocytes. These data support the hypothesis that skewed XCI is involved in the onset of phenotype in DMD carriers, the X chromosome carrying the normal DMD gene being preferentially inactivated and leading to a moderate-severe muscle involvement.

  20. Skewed X inactivation and survival: a 13-year follow-up study of elderly twins and singletons

    DEFF Research Database (Denmark)

    Mengel-From, Jonas; Thinggaard, Mikael; Christiansen, Lene

    2012-01-01

    In mammalian females, one of the two X chromosomes is inactivated in early embryonic life. Females are therefore mosaics for two cell populations, one with the maternal and one with the paternal X as the active X chromosome. A skewed X inactivation is a marked deviation from a 50:50 ratio...... mortality than the majority of women who had a more skewed DS (hazard ratio: 1.30; 95% CI: 1.04-1.64). The association between X inactivation and mortality was replicated in dizygotic twin pairs for which the co-twin with the lowest DS also had a statistically significant tendency to die first in the twin....... In populations of women past 55-60 years of age, an increased degree of skewing (DS) is found. Here the association between age-related skewing and mortality is analyzed in a 13-year follow-up study of 500 women from three cohorts (73-100 years of age at intake). Women with low DS had significantly higher...

  1. On the Empirical Importance of the Conditional Skewness Assumption in Modelling the Relationship between Risk and Return

    Science.gov (United States)

    Pipień, M.

    2008-09-01

    We present the results of an application of Bayesian inference in testing the relation between risk and return on the financial instruments. On the basis of the Intertemporal Capital Asset Pricing Model, proposed by Merton we built a general sampling distribution suitable in analysing this relationship. The most important feature of our assumptions is that the skewness of the conditional distribution of returns is used as an alternative source of relation between risk and return. This general specification relates to Skewed Generalized Autoregressive Conditionally Heteroscedastic-in-Mean model. In order to make conditional distribution of financial returns skewed we considered the unified approach based on the inverse probability integral transformation. In particular, we applied hidden truncation mechanism, inverse scale factors, order statistics concept, Beta and Bernstein distribution transformations and also a constructive method. Based on the daily excess returns on the Warsaw Stock Exchange Index we checked the empirical importance of the conditional skewness assumption on the relation between risk and return on the Warsaw Stock Market. We present posterior probabilities of all competing specifications as well as the posterior analysis of the positive sign of the tested relationship.

  2. The role of semantics, pre-emption and skew in linguistic distributions: the case of the un-construction.

    Directory of Open Access Journals (Sweden)

    Paul eIbbotson

    2013-12-01

    Full Text Available We use the Google Ngram database, a corpus of 5,195,769 digitized books containing ~4% of all books ever published, to test three ideas that are hypothesized to account for linguistic generalizations: verbal semantics, pre-emption and skew. Using 828,813 tokens of un-forms as a test case for these mechanisms, we found verbal semantics was a good predictor of the frequency of un-forms in the English language over the past 200 years – both in terms of how the frequency changed over time and their rank frequency. We did not find strong evidence for the direct competition of un-forms and their top pre-emptors, however the skew of the un-construction competitors was inversely correlated with the acceptability of the un-form. We suggest a cognitive explanation for this, namely, that the more the set of relevant pre-emptors is skewed then the more easily it is retrieved from memory. This suggests that it is not just the frequency of pre-emptive forms that must be taken into account when trying to explain usage patterns but their skew as well.

  3. In Sync and in Control: A Meta-Analysis of Parent-Child Positive Behavioral Synchrony and Youth Self-Regulation.

    Science.gov (United States)

    Davis, Molly; Bilms, Joanie; Suveg, Cynthia

    2017-12-01

    A growing body of research has highlighted the connection between parent-child positive behavioral synchrony and youth self-regulation; however, this association has yet to be the focus of a meta-analytic review. Therefore, the present meta-analysis aimed to estimate the magnitude of the relation between parent-child positive behavioral synchrony and youth self-regulation and to identify moderator variables that can explain the variability in the degree of this association across the extant literature. A thorough literature search of two major databases, in addition to scanning the reference sections of relevant articles, yielded a total of 10 peer-reviewed articles (24 effect sizes, 658 children) that were eligible for inclusion in the current meta-analysis. Results from the overall mean effect size calculation using a random-effects model indicated that parent-child positive behavioral synchrony was significantly, positively correlated with youth self-regulation and the effect size was medium. Children's ages at the time of synchrony and self-regulation measurements, as well as parent gender, served as significant moderator variables. Findings from the present meta-analysis can help to refine existing theoretical models on the role of the parent-child relationship in youth adjustment. Prevention and intervention efforts may benefit from an increased emphasis on building parent-child positive behavioral synchrony to promote youth self-regulation and thus children's overall well-being. © 2016 Family Process Institute.

  4. NPIP: A skew line needle configuration optimization system for HDR brachytherapy

    International Nuclear Information System (INIS)

    Siauw, Timmy; Cunha, Adam; Berenson, Dmitry; Atamtürk, Alper; Hsu, I-Chow; Goldberg, Ken; Pouliot, Jean

    2012-01-01

    Purpose: In this study, the authors introduce skew line needle configurations for high dose rate (HDR) brachytherapy and needle planning by integer program (NPIP), a computational method for generating these configurations. NPIP generates needle configurations that are specific to the anatomy of the patient, avoid critical structures near the penile bulb and other healthy structures, and avoid needle collisions inside the body. Methods: NPIP consisted of three major components: a method for generating a set of candidate needles, a needle selection component that chose a candidate needle subset to be inserted, and a dose planner for verifying that the final needle configuration could meet dose objectives. NPIP was used to compute needle configurations for prostate cancer data sets from patients previously treated at our clinic. NPIP took two user-parameters: a number of candidate needles, and needle coverage radius, δ. The candidate needle set consisted of 5000 needles, and a range of δ values was used to compute different needle configurations for each patient. Dose plans were computed for each needle configuration. The number of needles generated and dosimetry were analyzed and compared to the physician implant. Results: NPIP computed at least one needle configuration for every patient that met dose objectives, avoided healthy structures and needle collisions, and used as many or fewer needles than standard practice. These needle configurations corresponded to a narrow range of δ values, which could be used as default values if this system is used in practice. The average end-to-end runtime for this implementation of NPIP was 286 s, but there was a wide variation from case to case. Conclusions: The authors have shown that NPIP can automatically generate skew line needle configurations with the aforementioned properties, and that given the correct input parameters, NPIP can generate needle configurations which meet dose objectives and use as many or fewer

  5. Skew scattering dominated anomalous Hall effect in Cox(MgO)100-x granular thin films

    KAUST Repository

    Zhang, Qiang

    2017-07-31

    We investigated the mechanism(s) of the anomalous Hall effect (AHE) in magnetic granular materials by fabricating 100-nm-thick thin films of Cox(MgO)100-x with a Co volume fraction of 34≤x≤100 using co-sputtering at room temperature. We measured the temperature dependence of longitudinal resistivity (ρxx) and anomalous Hall resistivity (ρAHE) from 5 K to 300 K in all samples. We found that when x decreases from 100 to 34, the values of ρxx and ρAHE respectively increased by about four and three orders in magnitude. By linearly fitting the data, obtained at 5 K, of anomalous Hall coefficient (Rs) and of ρxx to log(Rs)~γlog(ρxx), we found that our results perfectly fell on a straight line with a slope of γ= 0.97±0.02. This fitting value of γ in Rsρxxγ clearly suggests that skew scattering dominated the AHE in this granular system. To explore the effect of the scattering on the AHE, we performed the same measurements on annealed samples. We found that although both ρxx and ρAHE significantly reduced after annealing, the correlation between them was almost the same, which was confirmed by the fitted value, γ=0.99±0.03. These data strongly suggest that the AHE originates from the skew scattering in Co-MgO granular thin films no matter how strong the scatterings of electrons by the interfaces and defects is. This observation may be of importance to the development of spintronic devices based on MgO.

  6. Unfavorable surgical outcomes in partial epilepsy with secondary bilateral synchrony: Intracranial electroencephalography study.

    Science.gov (United States)

    Sunwoo, Jun-Sang; Byun, Jung-Ick; Moon, Jangsup; Lim, Jung-Ah; Kim, Tae-Joon; Lee, Soon-Tae; Jung, Keun-Hwa; Park, Kyung-Il; Chu, Kon; Kim, Manho; Chung, Chun-Kee; Jung, Ki-Young; Lee, Sang Kun

    2016-05-01

    Secondary bilateral synchrony (SBS) indicates bilaterally synchronous epileptiform discharges arising from a focal cortical origin. The present study aims to investigate SBS in partial epilepsy with regard to surgical outcomes and intracranial EEG findings. We retrospectively reviewed consecutive patients who underwent epilepsy surgery following extraoperative intracranial electroencephalography (EEG) study from 2008 to 2012. The presence of SBS was determined based upon the results of scalp EEG monitoring performed for presurgical evaluations. We reviewed scalp EEG, neuroimaging, intracranial EEG findings, and surgical outcomes in patients with SBS. We found 12 patients with SBS who were surgically treated for intractable partial epilepsy. Nine (75%) patients had lateralized ictal semiology and only two (16.6%) patients showed localized ictal onset in scalp EEG. Brain MRI showed epileptogenic lesion in three (25%) patients. Intracranial EEG demonstrated that ictal onset zone was widespread or non-localized in six (50%) patients. Low-voltage fast activity was the most common ictal onset EEG pattern. Rapid propagation of ictal onset was noted in 10 (83.3%) patients. Eleven patients underwent resective epilepsy surgery and only two patients (18.2%) achieved seizure-freedom (median follow-up 56 months). MRI-visible brain lesions were associated with favorable outcomes (p=0.024). Patients with SBS, compared to frontal lobe epilepsy without SBS, showed lesser localization in ictal onset EEG (p=0.029) and more rapid propagation during evolution of ictal rhythm (p=0.015). The present results suggested that resective surgery for partial epilepsy with SBS should be decided carefully, especially in case of nonlesional epilepsy. Poor localization and rapid spread of ictal onset were prominent in intracranial EEG, which might contribute to incomplete resection of the epileptogenic zone and poor surgical outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony over western North America.

    Science.gov (United States)

    Kitzberger, Thomas; Brown, Peter M; Heyerdahl, Emily K; Swetnam, Thomas W; Veblen, Thomas T

    2007-01-09

    Widespread synchronous wildfires driven by climatic variation, such as those that swept western North America during 1996, 2000, and 2002, can result in major environmental and societal impacts. Understanding relationships between continental-scale patterns of drought and modes of sea surface temperatures (SSTs) such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) may explain how interannual to multidecadal variability in SSTs drives fire at continental scales. We used local wildfire chronologies reconstructed from fire scars on tree rings across western North America and independent reconstructions of SST developed from tree-ring widths at other sites to examine the relationships of multicentury patterns of climate and fire synchrony. From 33,039 annually resolved fire-scar dates at 238 sites (the largest paleofire record yet assembled), we examined forest fires at regional and subcontinental scales. Since 1550 CE, drought and forest fires covaried across the West, but in a manner contingent on SST modes. During certain phases of ENSO and PDO, fire was synchronous within broad subregions and sometimes asynchronous among those regions. In contrast, fires were most commonly synchronous across the West during warm phases of the AMO. ENSO and PDO were the main drivers of high-frequency variation in fire (interannual to decadal), whereas the AMO conditionally changed the strength and spatial influence of ENSO and PDO on wildfire occurrence at multidecadal scales. A current warming trend in AMO suggests that we may expect an increase in widespread, synchronous fires across the western U.S. in coming decades.

  8. Anatomically detailed and large-scale simulations studying synapse loss and synchrony using NeuroBox

    Directory of Open Access Journals (Sweden)

    Markus eBreit

    2016-02-01

    Full Text Available The morphology of neurons and networks plays an important role in processing electrical and biochemical signals. Based on neuronal reconstructions, which are becoming abundantly available through databases such as NeuroMorpho.org, numerical simulations of Hodgkin-Huxley-type equations, coupled to biochemical models, can be performed in order to systematically investigate the influence of cellular morphology and the connectivity pattern in networks on the underlying function. Development in the area of synthetic neural network generation and morphology reconstruction from microscopy data has brought forth the software tool NeuGen. Coupling this morphology data (either from databases, synthetic or reconstruction to the simulation platform UG 4 (which harbors a neuroscientific portfolio and VRL-Studio, has brought forth the extendible toolbox NeuroBox. NeuroBox allows users to perform numerical simulations on hybrid-dimensional morphology representations. The code basis is designed in a modular way, such that e.g. new channel or synapse types can be added to the library. Workflows can be specified through scripts or through the VRL-Studio graphical workflow representation. Third-party tools, such as ImageJ, can be added to NeuroBox workflows. In this paper, NeuroBox is used to study the electrical and biochemical effects of synapse loss vs. synchrony in neurons, to investigate large morphology data sets within detailed biophysical simulations, and used to demonstrate the capability of utilizing high-performance computing infrastructure for large scale network simulations. Using new synapse distribution methods and Finite Volume based numerical solvers for compartment-type models, our results demonstrate how an increase in synaptic synchronization can compensate synapse loss at the electrical and calcium level, and how detailed neuronal morphology can be integrated in large-scale network simulations.

  9. Spatial patterning and floral synchrony among trillium populations with contrasting histories of herbivory

    Directory of Open Access Journals (Sweden)

    Christopher R. Webster

    2015-02-01

    Full Text Available We investigated the spatial patterning and floral synchrony within and among populations of a non-clonal, forest understory herb, Trillium catesbaei. Two populations of T. catesbaei within Great Smoky Mountains National Park were monitored for five years: Cades Cove (high deer abundance and Whiteoak Sink (low deer abundance. All individuals within each population were mapped during year one and five. Only flowering and single-leaf juveniles were mapped during intervening years. Greater distances between flowering plants (plants currently in flower and substantially lower population densities and smaller patch sizes were observed at Cades Cove versus Whiteoak Sink. However, with the exception of flowering plants, contrasting histories of herbivory did not appear to fundamentally alter the spatial patterning of the T. catesbaei population at Cades Cove, an area with a long and well-documented history of deer overabundance. Regardless of browse history, non-flowering life stages were significantly clustered at all spatial scales examined. Flowering plants were clustered in all years at Whiteoak Sink, but more often randomly distributed at Cades Cove, possibly as a result of their lower abundance. Between years, however, there was a positive spatial association between the locations of flowering plants at both sites. Flowering rate was synchronous between sites, but lagged a year behind favorable spring growing conditions, which likely allowed plants to allocate photosynthate from a favorable year towards flowering the subsequent year. Collectively, our results suggest that chronically high levels of herbivory may be associated with spatial patterning of flowering within populations of a non-clonal plant. They also highlight the persistence of underlying spatial patterns, as evidenced by high levels of spatial clustering among non-flowering individuals, and the pervasive, although muted in a population subjected to chronic herbivory, influence of

  10. Traces across the body: influence of music-dance synchrony on the observation of dance

    Science.gov (United States)

    Woolhouse, Matthew Harold; Lai, Rosemary

    2014-01-01

    In previous studies investigating entrainment and person perception, synchronized movements were found to enhance memory for incidental person attributes. Although this effect is robust, including in dance, the process by which it is actuated are less well understood. In this study, two hypotheses are investigated: that enhanced memory for person attributes is the result of (1) increased gaze time between in-tempo dancers; and/or (2) greater attentional focus between in-tempo dancers. To explore these possible mechanisms in the context of observing dance, an eye-tracking study was conducted in which subjects watched videos of pairs of laterally positioned dancers; only one of the dancers was synchronized with the music, the other being asynchronous. The results were consistent with the first hypothesis—music-dance synchrony gives rise to increased visual inspection times. In addition, there was a preference for upper-body fixations over lower-body fixations across both synchronous and asynchronous conditions. A subsequent, single-dancer eye-tracking study investigated fixations across different body regions, including head, torso, legs and feet. Significantly greater dwell times were recorded for head than torso and legs; feet attracted significantly less dwell time than any other body region. Lastly, the study sought to identify dance gestures responsible for torso- and head-directed fixations. Specifically we asked whether there are features in dance that are specially designed to direct an observer’s gaze towards the face—the main “communicative portal” with respect to the transmission of intent, affect and empathy. PMID:25520641

  11. Thalamic gap junctions control local neuronal synchrony and influence macroscopic oscillation amplitude during EEG alpha rhythms

    Directory of Open Access Journals (Sweden)

    Stuart eHughes

    2011-08-01

    Full Text Available Although EEG alpha ( (8-13 Hz rhythms are often considered to reflect an ‘idling’ brain state, numerous studies indicate that they are also related to many aspects of perception. Recently, we outlined a potential cellular substrate by which such aspects of perception might be linked to basic  rhythm mechanisms. This scheme relies on a specialized subset of rhythmically bursting thalamocortical (TC neurons (high-threshold bursting cells in the lateral geniculate nucleus (LGN which are interconnected by gap junctions (GJs. By engaging GABAergic interneurons, that in turn inhibit conventional relay-mode TC neurons, these cells can lead to an effective temporal framing of thalamic relay-mode output. Although the role of GJs is pivotal in this scheme, evidence for their involvement in thalamic  rhythms has thus far mainly derived from experiments in in vitro slice preparations. In addition, direct anatomical evidence of neuronal GJs in the LGN is currently lacking. To address the first of these issues we tested the effects of the GJ inhibitors, carbenoxolone (CBX and 18-glycyrrhetinic acid (18-GA, given directly to the LGN via reverse microdialysis, on spontaneous LGN and EEG  rhythms in behaving cats. We also examined the effect of CBX on  rhythm-related LGN unit activity. Indicative of a role for thalamic GJs in these activities, 18-GA and CBX reversibly suppressed both LGN and EEG  rhythms, with CBX also decreasing neuronal synchrony. To address the second point, we used electron microscopy to obtain definitive ultrastructural evidence for the presence of GJs between neurons in the cat LGN. As interneurons show no phenotypic evidence of GJ coupling (i.e. dye-coupling and spikelets we conclude that these GJs must belong to TC neurons. The potential significance of these findings for relating macroscopic changes in  rhythms to basic cellular processes is discussed.

  12. Traces Across the Body: The Influence of Music-Dance Synchrony on the Observation of Dance

    Directory of Open Access Journals (Sweden)

    Matthew Harold Woolhouse

    2014-12-01

    Full Text Available In previous studies investigating entrainment and person perception, synchronized movements were found to enhance memory for incidental person attributes. Although this effect is robust, including in dance, the process by which it is actuated are less well understood. In this study, two hypotheses are investigated: that enhanced memory for person attributes is the result of (1 increased gaze time between in-tempo dancers, and/or (2 greater attentional focus between in-tempo dancers. To explore these possible mechanisms in the context of observing dance, an eye-tracking study was conducted in which subjects watched videos of pairs of laterally positioned dancers; only one of the dancers was synchronized with the music, the other being asynchronous. The results were consistent with the first hypothesis—music-dance synchrony gives rise to increased visual inspection times. In addition, there was a preference for upper-body fixations over lower-body fixations across both synchronous and asynchronous conditions. A subsequent, single-dancer eye-tracking study investigated fixations across different body regions, including head, torso, legs and feet. Significantly greater dwell times were recorded for head than torso and legs; feet attracted significantly less dwell time than any other body region. Lastly, the study sought to identify dance gestures responsible for torso- and head-directed fixations. Specifically we asked whether there are features in dance that are specially designed to direct an observer’s gaze towards the face—the main communicative portal with respect to the transmission of intent, affect and empathy.

  13. The simplest problem in the collective dynamics of neural networks: is synchrony stable?

    International Nuclear Information System (INIS)

    Timme, Marc; Wolf, Fred

    2008-01-01

    For spiking neural networks we consider the stability problem of global synchrony, arguably the simplest non-trivial collective dynamics in such networks. We find that even this simplest dynamical problem—local stability of synchrony—is non-trivial to solve and requires novel methods for its solution. In particular, the discrete mode of pulsed communication together with the complicated connectivity of neural interaction networks requires a non-standard approach. The dynamics in the vicinity of the synchronous state is determined by a multitude of linear operators, in contrast to a single stability matrix in conventional linear stability theory. This unusual property qualitatively depends on network topology and may be neglected for globally coupled homogeneous networks. For generic networks, however, the number of operators increases exponentially with the size of the network. We present methods to treat this multi-operator problem exactly. First, based on the Gershgorin and Perron–Frobenius theorems, we derive bounds on the eigenvalues that provide important information about the synchronization process but are not sufficient to establish the asymptotic stability or instability of the synchronous state. We then present a complete analysis of asymptotic stability for topologically strongly connected networks using simple graph-theoretical considerations. For inhibitory interactions between dissipative (leaky) oscillatory neurons the synchronous state is stable, independent of the parameters and the network connectivity. These results indicate that pulse-like interactions play a profound role in network dynamical systems, and in particular in the dynamics of biological synchronization, unless the coupling is homogeneous and all-to-all. The concepts introduced here are expected to also facilitate the exact analysis of more complicated dynamical network states, for instance the irregular balanced activity in cortical neural networks

  14. Comparing motor performance, praxis, coordination, and interpersonal synchrony between children with and without Autism Spectrum Disorder (ASD).

    Science.gov (United States)

    Kaur, Maninderjit; M Srinivasan, Sudha; N Bhat, Anjana

    2018-01-01

    Children with Autism Spectrum Disorder (ASD) have basic motor impairments in balance, gait, and coordination as well as autism-specific impairments in praxis/motor planning and interpersonal synchrony. Majority of the current literature focuses on isolated motor behaviors or domains. Additionally, the relationship between cognition, symptom severity, and motor performance in ASD is unclear. We used a comprehensive set of measures to compare gross and fine motor, praxis/imitation, motor coordination, and interpersonal synchrony skills across three groups of children between 5 and 12 years of age: children with ASD with high IQ (HASD), children with ASD with low IQ (LASD), and typically developing (TD) children. We used the Bruininks-Oseretsky Test of Motor Proficiency and the Bilateral Motor Coordination subtest of the Sensory Integration and Praxis Tests to assess motor performance and praxis skills respectively. Children were also examined while performing simple and complex rhythmic upper and lower limb actions on their own (solo context) and with a social partner (social context). Both ASD groups had lower gross and fine motor scores, greater praxis errors in total and within various error types, lower movement rates, greater movement variability, and weaker interpersonal synchrony compared to the TD group. In addition, the LASD group had lower gross motor scores and greater mirroring errors compared to the HASD group. Overall, a variety of motor impairments are present across the entire spectrum of children with ASD, regardless of their IQ scores. Both, fine and gross motor performance significantly correlated with IQ but not with autism severity; however, praxis errors (mainly, total, overflow, and rhythmicity) strongly correlated with autism severity and not IQ. Our study findings highlight the need for clinicians and therapists to include motor evaluations and interventions in the standard-of-care of children with ASD and for the broader autism community to

  15. Sensitivity to audio-visual synchrony and its relation to language abilities in children with and without ASD.

    Science.gov (United States)

    Righi, Giulia; Tenenbaum, Elena J; McCormick, Carolyn; Blossom, Megan; Amso, Dima; Sheinkopf, Stephen J

    2018-04-01

    Autism Spectrum Disorder (ASD) is often accompanied by deficits in speech and language processing. Speech processing relies heavily on the integration of auditory and visual information, and it has been suggested that the ability to detect correspondence between auditory and visual signals helps to lay the foundation for successful language development. The goal of the present study was to examine whether young children with ASD show reduced sensitivity to temporal asynchronies in a speech processing task when compared to typically developing controls, and to examine how this sensitivity might relate to language proficiency. Using automated eye tracking methods, we found that children with ASD failed to demonstrate sensitivity to asynchronies of 0.3s, 0.6s, or 1.0s between a video of a woman speaking and the corresponding audio track. In contrast, typically developing children who were language-matched to the ASD group, were sensitive to both 0.6s and 1.0s asynchronies. We also demonstrated that individual differences in sensitivity to audiovisual asynchronies and individual differences in orientation to relevant facial features were both correlated with scores on a standardized measure of language abilities. Results are discussed in the context of attention to visual language and audio-visual processing as potential precursors to language impairment in ASD. Autism Res 2018, 11: 645-653. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. Speech processing relies heavily on the integration of auditory and visual information, and it has been suggested that the ability to detect correspondence between auditory and visual signals helps to lay the foundation for successful language development. The goal of the present study was to explore whether children with ASD process audio-visual synchrony in ways comparable to their typically developing peers, and the relationship between preference for synchrony and language ability. Results showed that

  16. Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments

    KAUST Repository

    Adel, Mustafa

    2016-09-06

    The central rift of the Red Sea has 25 brine pools with different physical and geochemical characteristics. Atlantis II (ATIID), Discovery Deeps (DD) and Chain Deep (CD) are characterized by high salinity, temperature and metal content. Several studies reported microbial communities in these brine pools, but few studies addressed the brine pool sediments. Therefore, sediment cores were collected from ATIID, DD, CD brine pools and an adjacent brine-influenced site. Sixteen different lithologic sediment sections were subjected to shotgun DNA pyrosequencing to generate 1.47 billion base pairs (1.47 × 109 bp). We generated sediment-specific reads and attempted to annotate all reads. We report the phylogenetic and biochemical uniqueness of the deepest ATIID sulfur-rich brine pool sediments. In contrary to all other sediment sections, bacteria dominate the deepest ATIID sulfur-rich brine pool sediments. This decrease in virus-to-bacteria ratio in selected sections and depth coincided with an overrepresentation of mobile genetic elements. Skewing in the composition of viruses-to-mobile genetic elements may uniquely contribute to the distinct microbial consortium in sediments in proximity to hydrothermally active vents of the Red Sea and possibly in their surroundings, through differential horizontal gene transfer.

  17. Robustness of S1 statistic with Hodges-Lehmann for skewed distributions

    Science.gov (United States)

    Ahad, Nor Aishah; Yahaya, Sharipah Soaad Syed; Yin, Lee Ping

    2016-10-01

    Analysis of variance (ANOVA) is a common use parametric method to test the differences in means for more than two groups when the populations are normally distributed. ANOVA is highly inefficient under the influence of non- normal and heteroscedastic settings. When the assumptions are violated, researchers are looking for alternative such as Kruskal-Wallis under nonparametric or robust method. This study focused on flexible method, S1 statistic for comparing groups using median as the location estimator. S1 statistic was modified by substituting the median with Hodges-Lehmann and the default scale estimator with the variance of Hodges-Lehmann and MADn to produce two different test statistics for comparing groups. Bootstrap method was used for testing the hypotheses since the sampling distributions of these modified S1 statistics are unknown. The performance of the proposed statistic in terms of Type I error was measured and compared against the original S1 statistic, ANOVA and Kruskal-Wallis. The propose procedures show improvement compared to the original statistic especially under extremely skewed distribution.

  18. A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks.

    Science.gov (United States)

    Cui, Xuerong; Li, Juan; Wu, Chunlei; Liu, Jian-Hang

    2015-11-13

    Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS) are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU) vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR) environments.

  19. A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks

    Directory of Open Access Journals (Sweden)

    Xuerong Cui

    2015-11-01

    Full Text Available Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR environments.

  20. The male handicap: male-biased mortality explains skewed sex ratios in brown trout embryos.

    Science.gov (United States)

    Morán, P; Labbé, L; Garcia de Leaniz, C

    2016-12-01

    Juvenile sex ratios are often assumed to be equal for many species with genetic sex determination, but this has rarely been tested in fish embryos due to their small size and absence of sex-specific markers. We artificially crossed three populations of brown trout and used a recently developed genetic marker for sexing the offspring of both pure and hybrid crosses. Sex ratios (SR = proportion of males) varied widely one month after hatching ranging from 0.15 to 0.90 (mean = 0.39 ± 0.03). Families with high survival tended to produce balanced or male-biased sex ratios, but SR was significantly female-biased when survival was low, suggesting that males sustain higher mortality during development. No difference in SR was found between pure and hybrid families, but the existence of sire × dam interactions suggests that genetic incompatibility may play a role in determining sex ratios. Our findings have implications for animal breeding and conservation because skewed sex ratios will tend to reduce effective population size and bias selection estimates. © 2016 The Authors.

  1. Strong reproductive skew among males in the multiply mated swordtail Xiphophorus multilineatus (Teleostei).

    Science.gov (United States)

    Luo, J; Sanetra, M; Schartl, M; Meyer, A

    2005-01-01

    Male swordtails in the genus Xiphophorus display a conspicuous ventral elongation of the caudal fin, the sword, which arose through sexual selection due to female preference. Females mate regularly and are able to store sperm for at least 6 months. If multiple mating is frequent, this would raise the intriguing question about the role of female choice and male-male competition in shaping the mating system of these fishes. Size-dependent alternate mating strategies occur in Xiphophorus; one such strategy is courtship with a sigmoid display by large dominant males, while the other is gonopodial thrusting, in which small subordinate males sneak copulations. Using microsatellite markers, we observed a frequency of multiple paternity in wild-caught Xiphophorus multilineatus in 28% of families analyzed, but the actual frequency of multiple mating suggested by the correction factor PrDM was 33%. The number of fathers contributing genetically to the brood ranged from one to three. Compared to other species in the family Poeciliidae, both frequency and degree of multiple paternity were low. Paternity was found to be highly skewed, with one male on average contributing more than 70% to the offspring. Hence in this Xiphophorus mating system, typically one male dominates and sneaker males do not appear to be particularly effective. Postcopulatory mechanisms, however, such as sperm competition, are also indicated by our data, using sex-linked phenotypes among the offspring.

  2. Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization.

    Science.gov (United States)

    Mohamadzadeh, Mansour; Olson, Scott; Kalina, Warren V; Ruthel, Gordon; Demmin, Gretchen L; Warfield, Kelly L; Bavari, Sina; Klaenhammer, Todd R

    2005-02-22

    Professional antigen-presenting dendritic cells (DCs) are critical in regulating T cell immune responses at both systemic and mucosal sites. Many Lactobacillus species are normal members of the human gut microflora and most are regarded as safe when administered as probiotics. Because DCs can naturally or therapeutically encounter lactobacilli, we investigated the effects of several well defined strains, representing three species of Lactobacillus on human myeloid DCs (MDCs) and found that they modulated the phenotype and functions of human MDCs. Lactobacillus-exposed MDCs up-regulated HLA-DR, CD83, CD40, CD80, and CD86 and secreted high levels of IL-12 and IL-18, but not IL-10. IL-12 was sustained in MDCs exposed to all three Lactobacillus species in the presence of LPS from Escherichia coli, whereas LPS-induced IL-10 was greatly inhibited. MDCs activated with lactobacilli clearly skewed CD4(+) and CD8(+) T cells to T helper 1 and Tc1 polarization, as evidenced by secretion of IFN-gamma, but not IL-4 or IL-13. These results emphasize a potentially important role for lactobacilli in modulating immunological functions of DCs and suggest that certain strains could be particularly advantageous as vaccine adjuvants, by promoting DCs to regulate T cell responses toward T helper 1 and Tc1 pathways.

  3. A unique dermal dendritic cell subset that skews the immune response toward Th2.

    Directory of Open Access Journals (Sweden)

    Ryuichi Murakami

    Full Text Available Dendritic cell (DC subsets in the skin and draining lymph nodes (LNs are likely to elicit distinct immune response types. In skin and skin-draining LNs, a dermal DC subset expressing macrophage galactose-type C-type lectin 2 (MGL2/CD301b was found distinct from migratory Langerhans cells (LCs or CD103(+ dermal DCs (dDCs. Lower expression levels of Th1-promoting and/or cross-presentation-related molecules were suggested by the transcriptome analysis and verified by the quantitative real-time PCR analysis in MGL2(+ dDCs than in CD103(+ dDCs. Transfer of MGL2(+ dDCs but not CD103(+ dDCs from FITC-sensitized mice induced a Th2-type immune response in vivo in a model of contact hypersensitivity. Targeting MGL2(+ dDCs with a rat monoclonal antibody against MGL2 efficiently induced a humoral immune response with Th2-type properties, as determined by the antibody subclass. We propose that the properties of MGL2(+ dDCs, are complementary to those of CD103(+ dDCs and skew the immune response toward a Th2-type response.

  4. Skewed riskscapes and gentrified inequities: environmental exposure disparities in Seattle, Washington.

    Science.gov (United States)

    Abel, Troy D; White, Jonah

    2011-12-01

    Few studies have considered the sociohistorical intersection of environmental injustice and gentrification; a gap addressed by this case study of Seattle, Washington. This study explored the advantages of integrating air toxic risk screening with gentrification research to enhance proximity and health equity analysis methodologies. It was hypothesized that Seattle's industrial air toxic exposure risk was unevenly dispersed, that gentrification stratified the city's neighborhoods, and that the inequities of both converged. Spatial characterizations of air toxic pollution risk exposures from 1990 to 2007 were combined with longitudinal cluster analysis of census block groups in Seattle, Washington, from 1990 to 2000. A cluster of air toxic exposure inequality and socioeconomic inequity converged in 1 area of south central Seattle. Minority and working class residents were more concentrated in the same neighborhoods near Seattle's worst industrial pollution risks. Not all pollution was distributed equally in a dynamic urban landscape. Using techniques to examine skewed riskscapes and socioeconomic urban geographies provided a foundation for future research on the connections among environmental health hazard sources, socially vulnerable neighborhoods, and health inequity.

  5. Bayesian linear regression with skew-symmetric error distributions with applications to survival analysis

    KAUST Repository

    Rubio, Francisco J.

    2016-02-09

    We study Bayesian linear regression models with skew-symmetric scale mixtures of normal error distributions. These kinds of models can be used to capture departures from the usual assumption of normality of the errors in terms of heavy tails and asymmetry. We propose a general noninformative prior structure for these regression models and show that the corresponding posterior distribution is proper under mild conditions. We extend these propriety results to cases where the response variables are censored. The latter scenario is of interest in the context of accelerated failure time models, which are relevant in survival analysis. We present a simulation study that demonstrates good frequentist properties of the posterior credible intervals associated with the proposed priors. This study also sheds some light on the trade-off between increased model flexibility and the risk of over-fitting. We illustrate the performance of the proposed models with real data. Although we focus on models with univariate response variables, we also present some extensions to the multivariate case in the Supporting Information.

  6. Long-Term Trends and Temporal Synchrony in Plankton Richness, Diversity and Biomass Driven by Re-Oligotrophication and Climate across 17 Danish Lakes

    Directory of Open Access Journals (Sweden)

    Korhan Özkan

    2016-09-01

    Full Text Available A two-decade (1989–2008 time series of lake phyto- and zooplankton, water characteristics and climate in 17 Danish lakes was analysed to examine the long term changes and the effects of lake restoration efforts. The analyses of the pair-wise correlations across time series revealed a strong synchrony in climatic variables among the lakes. A significant, but weak increase in air temperature was observed and resulted in a corresponding increase in surface water temperature only in summer. Lake physico-chemical variables had weaker synchrony than climatic variables. Synchrony in water temperature and stratification was stronger than lake chemistry as the former is mostly affected by atmospheric energy flux. Synchrony in the taxonomic richness of the plankton groups and phytoplankton biomass was apparent, to a similar degree as observed for lake chemistry. The synchrony and the temporal trends in lake chemistry and plankton were more pronounced for the lakes with strong re-oligotrophication. Phytoplankton biomass decreased and plankton richness increased in these lakes, with a shift from Chlorophyta dominance towards more heterogeneous phytoplankton communities. Notably, a widespread significant positive trend in plankton richness was observed not only in lakes with strong re-oligotrophication but across all lakes. The widespread increase in plankton richness coincided with widespread decrease in phosphate and total nitrogen concentrations, as well as with the trends in climate indicating a likely joint effect of nutrient reduction and climate in driving lake plankton. However, temporal changes and synchrony as well as the recovery of richness and composition of lake plankton more coherently corresponded with the nutrient loading reduction across the Danish landscape, while the role of climate control of the lake plankton was less pronounced.

  7. High-speed broadband elastic actuator in water using induced-charge electro-osmosis with a skew structure

    Science.gov (United States)

    Sugioka, Hideyuki; Nakano, Naoki

    2018-01-01

    An artificial cilium using ac electro-osmosis (ACEO) is attractive because of its large potentiality for innovative microfluidic applications. However, the ACEO cilium has not been probed experimentally and has a shortcoming that the working frequency range is very narrow. Thus, we here propose an ACEO elastic actuator having a skew structure that broadens a working frequency range and experimentally demonstrate that the elastic actuator in water can be driven with a high-speed (˜10 Hz) and a wide frequency range (˜0.1 to ˜10 kHz). Moreover, we propose a simple self-consistent model that explains the broadband characteristic due to the skew structure with other characteristics. By comparing the theoretical results with the experimental results, we find that they agree fairly well. We believe that our ACEO elastic actuator will play an important role in microfluidics in the future.

  8. Non-skew-symmetric classical r-matrices, algebraic Bethe ansatz, and Bardeen-Cooper-Schrieffer-type integrable systems

    International Nuclear Information System (INIS)

    Skrypnyk, T.

    2009-01-01

    We construct quantum integrable systems associated with non-skew-symmetric gl(2)-valued classical r-matrices. We find a new explicit multiparametric family of such the non-skew-symmetric classical r-matrices. We consider two classes of examples of the corresponding integrable systems, namely generalized Gaudin systems with and without an external magnetic field. In the case of arbitrary r-matrices diagonal in a standard gl(2)-basis, we calculate the spectrum of the corresponding quantum integrable systems using the algebraic Bethe ansatz. We apply these results to a construction of integrable fermionic models and obtain a wide class of integrable Bardeen-Cooper-Schrieffer (BCS)-type fermionic Hamiltonians containing the pairing and electrostatic interaction terms. We also consider special cases when the corresponding integrable Hamiltonians contain only pairing interaction term and are exact analogs of the 'reduced BCS Hamiltonian' of Richardson

  9. Development and Validation of a New Blade Element Momentum Skewed-Wake Model within AeroDyn: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ning, S. A.; Hayman, G.; Damiani, R.; Jonkman, J.

    2014-12-01

    Blade element momentum methods, though conceptually simple, are highly useful for analyzing wind turbines aerodynamics and are widely used in many design and analysis applications. A new version of AeroDyn is being developed to take advantage of new robust solution methodologies, conform to a new modularization framework for National Renewable Energy Laboratory's FAST, utilize advanced skewed-wake analysis methods, fix limitations with previous implementations, and to enable modeling of highly flexible and nonstraight blades. This paper reviews blade element momentum theory and several of the options available for analyzing skewed inflow. AeroDyn implementation details are described for the benefit of users and developers. These new options are compared to solutions from the previous version of AeroDyn and to experimental data. Finally, recommendations are given on how one might select from the various available solution approaches.

  10. High-speed broadband elastic actuator in water using induced-charge electro-osmosis with a skew structure.

    Science.gov (United States)

    Sugioka, Hideyuki; Nakano, Naoki

    2018-01-01

    An artificial cilium using ac electro-osmosis (ACEO) is attractive because of its large potentiality for innovative microfluidic applications. However, the ACEO cilium has not been probed experimentally and has a shortcoming that the working frequency range is very narrow. Thus, we here propose an ACEO elastic actuator having a skew structure that broadens a working frequency range and experimentally demonstrate that the elastic actuator in water can be driven with a high-speed (∼10 Hz) and a wide frequency range (∼0.1 to ∼10 kHz). Moreover, we propose a simple self-consistent model that explains the broadband characteristic due to the skew structure with other characteristics. By comparing the theoretical results with the experimental results, we find that they agree fairly well. We believe that our ACEO elastic actuator will play an important role in microfluidics in the future.

  11. Synchrony of auditory brain responses predicts behavioral ability to keep still in children with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Yuko Yoshimura

    2016-01-01

    Full Text Available The auditory-evoked P1m, recorded by magnetoencephalography, reflects a central auditory processing ability in human children. One recent study revealed that asynchrony of P1m between the right and left hemispheres reflected a central auditory processing disorder (i.e., attention deficit hyperactivity disorder, ADHD in children. However, to date, the relationship between auditory P1m right-left hemispheric synchronization and the comorbidity of hyperactivity in children with autism spectrum disorder (ASD is unknown. In this study, based on a previous report of an asynchrony of P1m in children with ADHD, to clarify whether the P1m right-left hemispheric synchronization is related to the symptom of hyperactivity in children with ASD, we investigated the relationship between voice-evoked P1m right-left hemispheric synchronization and hyperactivity in children with ASD. In addition to synchronization, we investigated the right-left hemispheric lateralization. Our findings failed to demonstrate significant differences in these values between ASD children with and without the symptom of hyperactivity, which was evaluated using the Autism Diagnostic Observational Schedule, Generic (ADOS-G subscale. However, there was a significant correlation between the degrees of hemispheric synchronization and the ability to keep still during 12-minute MEG recording periods. Our results also suggested that asynchrony in the bilateral brain auditory processing system is associated with ADHD-like symptoms in children with ASD.

  12. On the Same Wavelength: Predictable Language Enhances Speaker–Listener Brain-to-Brain Synchrony in Posterior Superior Temporal Gyrus

    NARCIS (Netherlands)

    Dikker, Suzanne|info:eu-repo/dai/nl/374650403; Silbert, Lauren J; Hasson, Uri; Zevin, Jason D

    2014-01-01

    Recent research has shown that the degree to which speakers and listeners exhibit similar brain activity patterns during human linguistic interaction is correlated with communicative success. Here, we used an intersubject correlation approach in fMRI to test the hypothesis that a listener's ability

  13. Mapping Causes and Implications of India's Skewed Sex Ratio and Poverty problem using Fuzzy & Neutrosophic Relational Maps

    OpenAIRE

    Gaurav; Kumar, Megha; Bhutani, Kanika; Aggarwal, Swati

    2016-01-01

    Numerous studies by different researchers have confirmed that skewed sex ratio is a critical social problem in India. This enduring problem of gender imbalance is the collective result of factors like sex selective abortion, gender discrimination, son preference for the preservation of tribe, emergence of new technologies in medical field and many more factors. Another severe problem to be addressed in India is poverty. Many factors contribute to the perpetuation of poverty such as illiteracy...

  14. A comparison of methods to handle skew distributed cost variables in the analysis of the resource consumption in schizophrenia treatment.

    Science.gov (United States)

    Kilian, Reinhold; Matschinger, Herbert; Löeffler, Walter; Roick, Christiane; Angermeyer, Matthias C

    2002-03-01

    Transformation of the dependent cost variable is often used to solve the problems of heteroscedasticity and skewness in linear ordinary least square regression of health service cost data. However, transformation may cause difficulties in the interpretation of regression coefficients and the retransformation of predicted values. The study compares the advantages and disadvantages of different methods to estimate regression based cost functions using data on the annual costs of schizophrenia treatment. Annual costs of psychiatric service use and clinical and socio-demographic characteristics of the patients were assessed for a sample of 254 patients with a diagnosis of schizophrenia (ICD-10 F 20.0) living in Leipzig. The clinical characteristics of the participants were assessed by means of the BPRS 4.0, the GAF, and the CAN for service needs. Quality of life was measured by WHOQOL-BREF. A linear OLS regression model with non-parametric standard errors, a log-transformed OLS model and a generalized linear model with a log-link and a gamma distribution were used to estimate service costs. For the estimation of robust non-parametric standard errors, the variance estimator by White and a bootstrap estimator based on 2000 replications were employed. Models were evaluated by the comparison of the R2 and the root mean squared error (RMSE). RMSE of the log-transformed OLS model was computed with three different methods of bias-correction. The 95% confidence intervals for the differences between the RMSE were computed by means of bootstrapping. A split-sample-cross-validation procedure was used to forecast the costs for the one half of the sample on the basis of a regression equation computed for the other half of the sample. All three methods showed significant positive influences of psychiatric symptoms and met psychiatric service needs on service costs. Only the log- transformed OLS model showed a significant negative impact of age, and only the GLM shows a significant

  15. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease.

    Science.gov (United States)

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-05-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the

  16. Effect of an automatic triggering and cycling system on comfort and patient-ventilator synchrony during pressure support ventilation.

    Science.gov (United States)

    Vasconcelos, Renata dos S; Melo, Luíz Henrique de P; Sales, Raquel P; Marinho, Liégina S; Deulefeu, Flávio C; Reis, Ricardo C; Alves-de-Almeida, Mirizana; Holanda, Marcelo A

    2013-01-01

    The digital Auto-Trak™ system is a technology capable of automatically adjusting the triggering and cycling mechanisms during pressure support ventilation (PSV). To compare Auto-Trak with conventional settings in terms of patient-ventilator synchrony and discomfort. Twelve healthy volunteers underwent PSV via the mouth by breathing through an endotracheal tube. In the conventional setting, a pressure support of 8 cm H2O with flow cycling (25% peak inspiratory flow) and a sensitivity of 1 cm H2O was adjusted. In Auto-Trak the triggering and cycling were automatically set. Discomfort, effort of breathing, and the asynchrony index (AI) were assessed. In a complementary bench study, the inspiratory and expiratory time delays were quantified for both settings in three mechanical models: 'normal', obstructive (COPD), and restrictive (ARDS), using the ASL 5000 simulator. In the volunteer study the AI and the discomfort scores did not differ statistically between the two settings. In the bench investigation the use of Auto-Trak was associated with a greater triggering delay in the COPD model and earlier expiratory cycling in the ARDS model but with no asynchronic events. Use of the Auto-Trak system during PSV showed similar results in comparison to the conventional adjustments with respect to patient-ventilator synchrony and discomfort in simulated conditions of invasive mechanical ventilation. Copyright © 2013 S. Karger AG, Basel.

  17. Perception of audio-visual speech synchrony in Spanish-speaking children with and without specific language impairment.

    Science.gov (United States)

    Pons, Ferran; Andreu, Llorenç; Sanz-Torrent, Monica; Buil-Legaz, Lucía; Lewkowicz, David J

    2013-06-01

    Speech perception involves the integration of auditory and visual articulatory information, and thus requires the perception of temporal synchrony between this information. There is evidence that children with specific language impairment (SLI) have difficulty with auditory speech perception but it is not known if this is also true for the integration of auditory and visual speech. Twenty Spanish-speaking children with SLI, twenty typically developing age-matched Spanish-speaking children, and twenty Spanish-speaking children matched for MLU-w participated in an eye-tracking study to investigate the perception of audiovisual speech synchrony. Results revealed that children with typical language development perceived an audiovisual asynchrony of 666 ms regardless of whether the auditory or visual speech attribute led the other one. Children with SLI only detected the 666 ms asynchrony when the auditory component preceded [corrected] the visual component. None of the groups perceived an audiovisual asynchrony of 366 ms. These results suggest that the difficulty of speech processing by children with SLI would also involve difficulties in integrating auditory and visual aspects of speech perception.

  18. The structure of mode-locking regions of piecewise-linear continuous maps: II. Skew sawtooth maps

    Science.gov (United States)

    Simpson, D. J. W.

    2018-05-01

    In two-parameter bifurcation diagrams of piecewise-linear continuous maps on , mode-locking regions typically have points of zero width known as shrinking points. Near any shrinking point, but outside the associated mode-locking region, a significant proportion of parameter space can be usefully partitioned into a two-dimensional array of annular sectors. The purpose of this paper is to show that in these sectors the dynamics is well-approximated by a three-parameter family of skew sawtooth circle maps, where the relationship between the skew sawtooth maps and the N-dimensional map is fixed within each sector. The skew sawtooth maps are continuous, degree-one, and piecewise-linear, with two different slopes. They approximate the stable dynamics of the N-dimensional map with an error that goes to zero with the distance from the shrinking point. The results explain the complicated radial pattern of periodic, quasi-periodic, and chaotic dynamics that occurs near shrinking points.

  19. Comparative study of reproductive skew and pair-bond stability using genealogies from 80 small-scale human societies.

    Science.gov (United States)

    Ellsworth, Ryan M; Shenk, Mary K; Bailey, Drew H; Walker, Robert S

    2016-05-01

    Genealogies contain information on the prevalence of different sibling types that result from past reproductive behavior. Full sibling sets stem from stable monogamy, paternal half siblings primarily indicate male reproductive skew, and maternal half siblings reflect unstable pair bonds. Full and half sibling types are calculated for a total of 61,181 siblings from published genealogies for 80 small-scale societies, including foragers, horticulturalists, agriculturalists, and pastoralists from around the world. Most siblings are full (61%) followed by paternal half siblings (27%) and maternal half siblings (13%). Paternal half siblings are positively correlated with more polygynous marriages, higher at low latitudes, and slightly higher in nonforagers, Maternal half sibling fractions are slightly higher at low latitudes but do not vary with subsistence. Partible paternity societies in Amazonia have more paternal half siblings indicating higher male reproductive skew. Sibling counts from genealogies provide a convenient method to simultaneously investigate the reproductive skew and pair-bond stability dimensions of human mating systems cross-culturally. Am. J. Hum. Biol. 28:335-342, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Aerodynamic forces and galloping instability for a skewed elliptical cylinder in a flow at the critical Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wenyong [Wind Engineering Research Center, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043 (China); Liu, Qingkuan; Liu, Xiaobing [The Key Laboratory for Health Monitoring and Control of Large Structures, Hebei province, 050043 (China); Du, Xiaoqing, E-mail: ma@stdu.edu.cn, E-mail: dxq@shu.edu.cn [Department of Civil Engineering, Shanghai University, Shanghai, 200072 (China)

    2017-08-15

    The mechanism of large-amplitude aeroelastic vibrations of cylindrical bodies in the critical Reynolds number range are still unclear. This study concerns the aerodynamic forces acting on elliptical cylinders and the induced galloping instability resulting from skew flows (i.e., the direction of the flow is angled 0°–45° with respect to the central axis of the cylinder) for Reynolds numbers in the range of 37–235 k. The effects of the critical Reynolds number and the skew angle on the aerodynamic forces and the galloping instability are investigated with pressure wind tunnel tests. In all of the cases investigated in the present study, a sharp decrease in the lift coefficient with increasing angle of attack and a reduction in the drag coefficient at the critical Reynolds number could be responsible for the galloping instability. Variations in the torque coefficient leads to a torsional aerodynamic instability at the critical Reynolds number. Furthermore, the skew flow cause a critical flow state at lower Reynolds numbers. One possible reason for this behavior is that the longer effective cross section allows the flow to reattach. (paper)