WorldWideScience

Sample records for synchronous moons implications

  1. The full moon as a synchronizer of circa-monthly biological rhythms: Chronobiologic perspectives based on multidisciplinary naturalistic research.

    Science.gov (United States)

    Reinberg, Alain; Smolensky, Michael H; Touitou, Yvan

    Biological rhythmicity is presumed to be an advantageous genetic adaptation of fitness and survival value resulting from evolution of life forms in an environment that varies predictably-in-time during the 24 h, month, and year. The 24 h light/dark cycle is the prime synchronizer of circadian periodicities, and its modulation over the course of the year, in terms of daytime photoperiod length, is a prime synchronizer of circannual periodicities. Circadian and circannual rhythms have been the major research focus of most scientists. Circa-monthly rhythms triggered or synchronized by the 29.5 day lunar cycle of nighttime light intensity, or specifically the light of the full moon, although explored in waterborne and certain other species, have received far less study, perhaps because of associations with ancient mythology and/or an attitude naturalistic studies are of lesser merit than ones that entail molecular mechanisms. In this editorial, we cite our recent discovery through multidisciplinary naturalistic investigation of a highly integrated circadian, circa-monthly, and circannual time structure, synchronized by the natural ambient nyctohemeral, lunar, and annual light cycles, of the Peruvian apple cactus (C. peruvianus) flowering and reproductive processes that occur in close temporal coordination with like rhythms of the honey bee as its pollinator. This finding led us to explore the preservation of this integrated biological time structure, synchronized and/or triggered by environmental light cues and cycles, in the reproduction of other species, including Homo sapiens, and how the artificial light environment of today in which humans reside may be negatively affecting human reproduction efficiency.

  2. The Wibbly-Wobbly Moon: Rotational Dynamics of the Moon After Large Impacts

    Science.gov (United States)

    Keane, J. T.; Johnson, B. C.; Matsuyama, I.; Siegler, M.

    2017-12-01

    The spins of planets are not constant with time; they continuously evolve in response to both external and internal forces. One of the most dramatic ways a planet's spin can change is via impacts. Impacts change the planet's angular momentum, energy, and moments of inertia. These changes can have important consequences for the geology of the planet. For the well-studied case of the Moon, these repercussions include everything from changing the orientation of the magnetic field, controlling the geometry of fault networks, and altering the stability of volatiles (e.g. water ice) in permanently shadowed regions. While previous studies have investigated the dynamical effects of impacts on the Moon, most use simplistic models for the impact basin formation process—often only considering the impulsive change in the Moon's angular momentum, and occasionally the change in the Moon's moments of inertia from a simplified basin geometry (e.g. a cylindrical hole surrounded by a cylindrical ejecta blanket). These simplifications obscure some of the subtler and more complicated dynamics that occur in the aftermath of an impact. In this work, we present new model results for the rotational dynamics of the Moon after large, basin-forming impacts. We couple iSALE hydrocode simulations with the analytical and numerical formalisms of rotational dynamics. These simulations allow us to quantitatively track how different impact processes alter the Moon's moments of inertia, including basin formation, mantle uplift, impact heating, and ejecta-blanket emplacement. This unique combination of techniques enables us to more accurately track the spin of the Moon in the aftermath of these impacts, including periods of non-synchronous and non-principal-axis rotation, libration, and long-term reorientation (true polar wander). We find that the perturbation of the Moon's moments of inertia immediately after impact is several times larger than what is expected based on the present-day gravity

  3. Bridging the reductive and the synthetic: some reflections on the clinical implications of synchronicity.

    Science.gov (United States)

    Connolly, Angela

    2015-04-01

    When Jung introduced the concepts of synchronicity and the psychoid unconscious, he expanded analytical psychology into decidedly uncanny territory. Despite the early interest shown by Freud, anomalous phenomena such as telepathy have become a taboo subject in psychoanalysis. Today, however, there is an increasing interest in thought transference and synchronicity, thus opening the way for a fruitful exchange between different psychoanalytical schools on their clinical implications. I propose to examine some of the ambiguities of Jung's thinking, to clarify how we define synchronicity, the relationship between synchronicities and parapsychological events, and their clinical significance. At the present moment, we are still unsure if such events should be considered as normal and a way of facilitating individuation, or as an indication of psychopathology in the patient or in the analyst, just as we are uncertain about the particular characteristics of the intersubjective field that can lead to synchronicities. Making use of the typology of mind-matter correlations presented by Atmanspacher and Fach, and the distinction they draw between acategorial and non-categorial states of mind, I will use two clinical vignettes to illustrate the different states of mind in analyst and analysand that can lead to synchronicities. In particular I will focus on the relationship between analytical reverie and synchronicity. © 2015, The Society of Analytical Psychology.

  4. The Moon's near side megabasin and far side bulge

    CERN Document Server

    Byrne, Charles

    2013-01-01

    Since Luna and Lunar Orbiter photographed the far side of the Moon, the mysterious dichotomy between the face of the Moon as we see it from Earth and the side of the Moon that is hidden has puzzled lunar scientists. As we learned more from the Apollo sample return missions and later robotic satellites, the puzzle literally deepened, showing asymmetry of the crust and mantle, all the way to the core of the Moon. This book summarizes the author’s successful search for an ancient impact feature, the Near Side Megabasin of the Moon and the extensions to impact theory needed to find it. The implications of this ancient event are developed to answer many of the questions about the history of the Moon.

  5. The Electrostatic Environments of the Moon and Mars: Implications for Human Missions

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James; Cox, Rachel E.

    2016-01-01

    Lacking a substantial atmosphere, the moon is exposed to the full spectrum of solar radiation as well as to cosmic rays. Electrostatically, the moon is a charged body in a plasma. A Debye sheet meters high on the dayside of the moon and kilometers high on the night side envelops the moon. This sheet isolates the lunar surface from high energy particles coming from the sun. The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  6. The origin of the moon and the early history of the earth - A chemical model. Part 1: The moon

    International Nuclear Information System (INIS)

    O'Neill, H. St.C.

    1991-01-01

    The chemical implications of a giant impact model for the origin of the moon are examined, both for the moon and for the earth. The Impactor is taken to be an approximately Mars-sized body. It is argued that the likeliest bulk chemical composition of the moon is quite similar to that of the earth's mantle, and that this composition may be explained in detail if about 80% of the moon came from the primitive earth's mantle after segregation of the earth's core. The other 20% of the moon is modelled as coming from (a) the Impactor, which is constrained to be an oxidized, probably undifferentiated body of roughly CI chondritic composition (on a volatile free basis) and (b) a late stage veneer, with a composition and oxidation state similar to that of the H-group ordinary chondrites. This latter component is the source of all the volatile elements in the moon, which failed to condense from the earth-and Impactor-derived materials; this component constitutes about 4% of the moon. It is argued that Mo may behave as a volatile element under the relatively oxidising conditions necessary for the condensation of the proto-moon. The model accounts satisfactorily for most of the siderophile elements, including Fe, Ni, Co, W, P, and Cu. The relatively well-constrained lunar abundances of V, Cr, and Mn are also accounted for; their depletion in the moon is inherited from the earth's mantle

  7. First record of multi-species synchronous coral spawning from Malaysia.

    Science.gov (United States)

    Chelliah, Alvin; Amar, Halimi Bin; Hyde, Julian; Yewdall, Katie; Steinberg, Peter D; Guest, James R

    2015-01-01

    Knowledge about the timing and synchrony of coral spawning has important implications for both the ecology and management of coral reef ecosystems. Data on the timing of spawning and extent of synchrony, however, are still lacking for many coral reefs, particularly from equatorial regions and from locations within the coral triangle. Here we present the first documentation of a multi-species coral spawning event from reefs around Pulau Tioman, Peninsular Malaysia, a popular diving and tourist destination located on the edge of the coral triangle. At least 8 coral species from 3 genera (Acropora, Montipora and Porites) participated in multi-species spawning over five nights in April 2014, between two nights before and two nights after the full moon. In addition, two Acropora species were witnessed spawning one night prior to the full moon in October 2014. While two of the Acropora species that reproduced in April (A. millepora and A. nasuta) exhibited highly synchronous spawning (100% of sampled colonies), two other common species (A. hyacinthus and A. digitifera) did not contain visible eggs in the majority of colonies sampled (i.e., Malaysia. These data provide further support for the contention that this phenomenon is a feature of all speciose coral assemblages, including equatorial reefs. More research is needed, however, to determine the seasonal cycles and extent of spawning synchrony on these reefs and elsewhere in Malaysia.

  8. MOON MOON DEVI

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. MOON MOON DEVI. Articles written in Pramana – Journal of Physics. Volume 88 Issue 5 May 2017 pp 79 Research Article. Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO) · A KUMAR A M VINOD KUMAR ABHIK JASH AJIT K MOHANTY ...

  9. Space architecture for MoonVillage

    Science.gov (United States)

    Sherwood, Brent

    2017-10-01

    The concept of a multinational MoonVillage, as proposed by Jan Wörner of ESA, is analyzed with respect to diverse factors affecting its implementation feasibility: potential activities and scale as a function of location, technology, and purpose; potential participants and their roles; business models for growth and sustainability as compared to the ISS; and implications for the field of space architecture. Environmental and operations constraints that govern all types of MoonVillage are detailed. Findings include: 1) while technically feasible, a MoonVillage would be more distributed and complex a project than the ISS; 2) significant and distinctive opportunities exist for willing participants, at all evolutionary scales and degrees of commercialization; 3) the mixed-use space business park model is essential for growth and permanence; 4) growth depends on exporting lunar material products, and the rate and extent of growth depends on export customers including terrestrial industries; 5) industrial-scale operations are a precondition for lunar urbanism, which goal in turn dramatically drives technology requirements; but 6) industrial viability cannot be discerned until significant in situ operations occur; and therefore 7) government investment in lunar surface operations is a strictly enabling step. Because of the resources it could apply, the U.S. government holds the greatest leverage on growth, no matter who founds a MoonVillage. The interplanetary business to be built may because for engagement.

  10. Fitness for synchronization of network motifs

    DEFF Research Database (Denmark)

    Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.

    2004-01-01

    We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...... that the fitness for synchronization correlates well with motifs interconnectedness and structural complexity. Possible implications for present debates about network evolution in biological and other systems are discussed....

  11. ON THE DYNAMICS AND ORIGIN OF HAUMEA'S MOONS

    International Nuclear Information System (INIS)

    Ćuk, Matija; Ragozzine, Darin; Nesvorný, David

    2013-01-01

    The dwarf planet Haumea has two large satellites, Namaka and Hi'iaka, which orbit at relatively large separations. Both moons have significant eccentricities and inclinations in a pattern that is consistent with a past orbital resonance. Based on our analysis, we find that the present system is not consistent with satellite formation close to the primary and tidal evolution through mean-motion resonances. We propose that Namaka experienced only limited tidal evolution, leading to the mutual 8:3 mean-motion resonance which redistributed eccentricities and inclinations between the moons. This scenario requires that the original orbit of Hi'iaka was mildly eccentric; we propose that this eccentricity was either primordial or acquired through encounters with other trans-Neptunian objects. Both dynamical stability and our preferred tidal evolution model imply that the moons' masses are only about one-half of previously estimated values, suggesting high albedos and low densities. Because the present orbits of the moons strongly suggest formation from a flat disk close to their present locations, we conclude that Hi'iaka and Namaka may be second-generation moons, formed after the breakup of a larger past moon, previously proposed as the parent body of the Haumea family. We derive plausible parameters of that moon, consistent with the current models of Haumea's formation. An interesting implication of this hypothesis is that Hi'iaka and Namaka may orbit retrograde with respect to Haumea's spin. Retrograde orbits of Haumea's moons would be in full agreement with available observations and our dynamical analysis, and could provide a unique confirmation of the ''disrupted satellite'' scenario for the origin of the family

  12. Early Dynamics of the Moon's Core

    Science.gov (United States)

    Cuk, Matija; Hamilton, Douglas; Stewart, Sarah T.

    2018-04-01

    The Moon has a small molten iron core (Williams et al. 2006). Remanent magnetization in lunar rocks likely derives from a past lunar dynamo (Wieczorek 2018 and references therein), which may have been powered by differential precession between the mantle and the core. The rotations of the lunar mantle and core were largely decoupled for much of lunar history, with a large mutual offset during the Cassini State Transition (Meyer and Wisdom, 2011). It is likely that the past work underestimated lunar obliquities, and therefore core offsets, during early lunar history (Cuk et al. 2016). Here we investigate the dynamics of the lunar core and mantle using a Lie-Poisson numerical integrator (Touma and Wisdom 2001) which includes interactions between triaxial core and mantle, as well as all gravitational and tidal effects included in the model of Cuk et al. (2016). Since we assume a rigid triaxial mantle, this model is applicable to the Moon only once it has acquired its current shape, which probably happened before the Moon reached 25 Earth radii. While some details of the core dynamics depend on our assumptions about the shape of the lunar core-mantle boundary, we can report some robust preliminary findings. The presence of the core does not change significantly the evolutionary scenario of Cuk et al. (2016). The core and mantle are indeed decoupled, with the core having a much smaller obliquity to the ecliptic than the mantle for almost all of the lunar history. The core was largely in an equivalent of Cassini State 2, with the vernal equinoxes (wrt the ecliptic) of the core and the mantle being anti-aligned. The core-mantle spin axis offset has been very large during the Moon's first billion years (this is true both in canonical and high-inclination tidal evolution), causing the lunar core to be sub-synchronous. If the ancient lunar magnetic dipole was rotating around the core axis that was inclined to the Moon's spin axis, then the magnetic poles would move across

  13. MoonNEXT: A European Mission to the Moon

    Science.gov (United States)

    Carpenter, J. D.; Koschny, D.; Crawford, I.; Falcke, H.; Kempf, S.; Lognonne, P.; Ricci, C.; Houdou, B.; Pradier, A.

    2008-09-01

    MoonNEXT is a mission currently being studied, under the direction of the European Space Agency, whose launch is foreseen between 2015 and 2018. MoonNEXT is intended to prepare the way for future exploration activities on the Moon, while addressing key science questions. Exploration Objectives The primary goal for the MoonNEXT mission is to demonstrate autonomous soft precision landing with hazard avoidance; a key capability for future exploration missions. The nominal landing site is at the South Pole of the Moon, at the edge of the Aitken basin and in the region of Shackleton crater, which has been identified as an optimal location for a future human outpost by the NASA lunar architecture team [1]. This landing site selection ensures a valuable contribution by MoonNEXT to the Global Exploration Strategy [2]. MoonNEXT will also prepare for future lunar exploration activities by characterising the environment at the lunar surface. The potentially hazardous radiation environment will me monitored while a dedicated instrument package will investigate the levitation and mobility of lunar dust. Experience on Apollo demonstrated the potentially hazardous effects of dust for surface operations and human activities and so an understanding of these processes is important for the future. Life sciences investigations will be carried out into the effects of the lunar environment (including radiation, gravity and illumination conditions) on a man made ecosystem analogous to future life support systems. In doing so MoonNEXT will demonstrate the first extraterrestrial man made ecosystem and develop valuable expertise for future missions. Geological and geochemical investigations will explore the possibilities for In Situ Resource Utilisation (ISRU), which will be essential for long term human habitation on the Moon and is of particular importance at the proposed landing site, given its potential as a future habitat location. Science Objectives In addition to providing extensive

  14. Effects of frustration on explosive synchronization

    Science.gov (United States)

    Huang, Xia; Gao, Jian; Sun, Yu-Ting; Zheng, Zhi-Gang; Xu, Can

    2016-12-01

    In this study, we consider the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and frustration is included in the system. This assumption can enhance or delay the explosive transition to synchronization. Interestingly, a de-synchronization phenomenon occurs and the type of phase transition is also changed. Furthermore, we provide an analytical treatment based on a star graph, which resembles that obtained in scale-free networks. Finally, a self-consistent approach is implemented to study the de-synchronization regime. Our findings have important implications for controlling synchronization in complex networks because frustration is a controllable parameter in experiments and a discontinuous abrupt phase transition is always dangerous in engineering in the real world.

  15. Moonlight controls lunar-phase-dependency and regular oscillation of clock gene expressions in a lunar-synchronized spawner fish, Goldlined spinefoot.

    Science.gov (United States)

    Takeuchi, Yuki; Kabutomori, Ryo; Yamauchi, Chihiro; Miyagi, Hitomi; Takemura, Akihiro; Okano, Keiko; Okano, Toshiyuki

    2018-04-18

    Goldlined spinefoot, Siganus guttatus, inhabits tropical and subtropical waters and synchronizes its spawning around the first quarter moon likely using an hourglass-like lunar timer. In previous studies, we have found that clock genes (Cryptochrome3 and Period1) could play the role of state variable in the diencephalon when determining the lunar phase for spawning. Here, we identified three Cry, two Per, two Clock, and two Bmal genes in S. guttatus and investigated their expression patterns in the diencephalon and pituitary gland. We further evaluated the effect on their expression patterns by daily interruptions of moonlight stimuli for 1 lunar cycle beginning at the new moon. It significantly modified the expression patterns in many of the examined clock(-related) genes including Cry3 in the diencephalon and/or pituitary gland. Acute interruptions of moonlight around the waxing gibbous moon upregulated nocturnal expressions of Cry1b and Cry2 in the diencephalon and pituitary gland, respectively, but did not affect expression levels of the other clock genes. These results highlighted the importance of repetitive moonlight illumination for stable or lunar-phase-specific daily expression of clock genes in the next lunar cycle that may be important for the lunar-phase-synchronized spawning on the next first quarter moon.

  16. Europa the ocean moon : search for an alien biosphere

    CERN Document Server

    Greenberg, Richard

    2004-01-01

    Europa - The Ocean Moon tells the story of the Galileo spacecraft probe to Jupiter's moon, Europa. It provides a detailed description of the physical processes, including the dominating tidal forces that operate on Europa, and includes a comprehensive tour of Europa using images taken by Galileo's camera. The book reviews and evaluates the interpretative work carried out to date, providing a philosophical discussion of the scientific process of analyzing results and the pitfalls that accompany it. It also examines the astrobiological constraints on this possible biosphere, and implications for future research, exploration and planetary biological protection. Europa - The Ocean Moon provides a unique understanding of the Galileo images of Europa, discusses the theory of tidal processes that govern its icy ridged and disrupted surface, and examines in detail the physical setting that might sustain extra-terrestrial life in Europa's ocean and icy crust.

  17. First record of multi-species synchronous coral spawning from Malaysia

    Directory of Open Access Journals (Sweden)

    Alvin Chelliah

    2015-02-01

    Full Text Available Knowledge about the timing and synchrony of coral spawning has important implications for both the ecology and management of coral reef ecosystems. Data on the timing of spawning and extent of synchrony, however, are still lacking for many coral reefs, particularly from equatorial regions and from locations within the coral triangle. Here we present the first documentation of a multi-species coral spawning event from reefs around Pulau Tioman, Peninsular Malaysia, a popular diving and tourist destination located on the edge of the coral triangle. At least 8 coral species from 3 genera (Acropora, Montipora and Porites participated in multi-species spawning over five nights in April 2014, between two nights before and two nights after the full moon. In addition, two Acropora species were witnessed spawning one night prior to the full moon in October 2014. While two of the Acropora species that reproduced in April (A. millepora and A. nasuta exhibited highly synchronous spawning (100% of sampled colonies, two other common species (A. hyacinthus and A. digitifera did not contain visible eggs in the majority of colonies sampled (i.e., <15% of colonies in either April or October, suggesting that these species spawn at other times of the year. To the best of our knowledge, this is the first detailed documented observation of multi-species coral spawning from reefs in Malaysia. These data provide further support for the contention that this phenomenon is a feature of all speciose coral assemblages, including equatorial reefs. More research is needed, however, to determine the seasonal cycles and extent of spawning synchrony on these reefs and elsewhere in Malaysia.

  18. ON THE DYNAMICS AND ORIGIN OF HAUMEA'S MOONS

    Energy Technology Data Exchange (ETDEWEB)

    Ćuk, Matija [Carl Sagan Center, SETI Institute, 189 North Bernardo Avenue, Mountain View, CA 94043 (United States); Ragozzine, Darin [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Nesvorný, David, E-mail: mcuk@seti.org [Southwest Research Institute, Boulder, CO 80302 (United States)

    2013-10-01

    The dwarf planet Haumea has two large satellites, Namaka and Hi'iaka, which orbit at relatively large separations. Both moons have significant eccentricities and inclinations in a pattern that is consistent with a past orbital resonance. Based on our analysis, we find that the present system is not consistent with satellite formation close to the primary and tidal evolution through mean-motion resonances. We propose that Namaka experienced only limited tidal evolution, leading to the mutual 8:3 mean-motion resonance which redistributed eccentricities and inclinations between the moons. This scenario requires that the original orbit of Hi'iaka was mildly eccentric; we propose that this eccentricity was either primordial or acquired through encounters with other trans-Neptunian objects. Both dynamical stability and our preferred tidal evolution model imply that the moons' masses are only about one-half of previously estimated values, suggesting high albedos and low densities. Because the present orbits of the moons strongly suggest formation from a flat disk close to their present locations, we conclude that Hi'iaka and Namaka may be second-generation moons, formed after the breakup of a larger past moon, previously proposed as the parent body of the Haumea family. We derive plausible parameters of that moon, consistent with the current models of Haumea's formation. An interesting implication of this hypothesis is that Hi'iaka and Namaka may orbit retrograde with respect to Haumea's spin. Retrograde orbits of Haumea's moons would be in full agreement with available observations and our dynamical analysis, and could provide a unique confirmation of the ''disrupted satellite'' scenario for the origin of the family.

  19. Unique Moon Formation Model: Two Impacts of Earth and After Moon's Birth

    Science.gov (United States)

    Miura, Y.

    2018-04-01

    The Moon rocks are mixed with two impact-processes of Earth's impact breccias and airless Moon's impact breccias; discussed voids-rich texture and crust-like composition. The present model might be explained as cave-rich interior on the airless-and waterless Moon.

  20. Moon (Form-Origin)

    Science.gov (United States)

    Tsiapas, Elias; Soumelidou, Despina; Tsiapas, Christos

    2017-04-01

    When the Earth was formed, it was in a state of burning heat. As time went by, temperature on the planet's surface was falling due to radiation and heat transfer, and various components (crusts) began taking solid form at the Earth's poles. The formation of crusts took place at the Earth's poles, because the stirring of burning and fluid masses on the surface of the Earth was significantly slighter there than it was on the equator. Due to centrifugal force and Coriolis Effect, these solid masses headed towards the equator; those originating from the North Pole followed a south-western course, while those originating from the South Pole followed a north-western course and there they rotated from west to east at a lower speed than the underlying burning and liquid earth, because of their lower initial linear velocity, their solid state and inertia. Because inertia is proportional to mass, the initially larger solid body swept all new solid ones, incorporating them to its western side. The density of the new solid masses was higher, because the components on the surface would freeze and solidify first, before the underlying thicker components. As a result, the western side of the initial islet of solid rocks submerged, while the east side elevated. . As a result of the above, this initial islet began to spin in reverse, and after taking on the shape of a sphere, it formed the "heart" of the Moon. The Moon-sphere, rolling on the equator, would sink the solid rocks that continued to descend from the Earth's poles. The sinking rocks partially melted because of higher temperatures in the greater depths that the Moon descended to, while part of the rocks' mass bonded with the Moon and also served as a heat-insulating material, preventing the descended side of the sphere from melting. Combined with the Earth's liquid mass that covered its emerging eastern surface, new sphere-shaped shells were created, with increased density and very powerful structural cohesion. During the

  1. The Moon

    Science.gov (United States)

    Warren, P. H.

    2003-12-01

    Oxygen isotopic data suggest that there is a genetic relationship between the constituent matter of the Moon and Earth (Wiechert et al., 2001). Yet lunar materials are obviously different from those of the Earth. The Moon has no hydrosphere, virtually no atmosphere, and compared to the Earth, lunar materials uniformly show strong depletions of even mildly volatile constituents such as potassium, in addition to N2, O2, and H2O (e.g., Wolf and Anders, 1980). Oxygen fugacity is uniformly very low ( BVSP, 1981) and even the earliest lunar magmas seem to have been virtually anhydrous. These features have direct and far-reaching implications for mineralogical and geochemical processes. Basically, they imply that mineralogical diversity and thus variety of geochemical processes are subdued; a factor that to some extent offsets the comparative dearth of available data for lunar geochemistry.The Moon's gross physical characteristics play an important role in the more limited range of selenochemical compared to terrestrial geochemical processes. Although exceptionally large (radius=1,738 km) in relation to its parent planet, the Moon is only 0.012 times as massive as Earth. By terrestrial standards, pressures inside the Moon are feeble: the upper mantle gradient is 0.005 GPa km -1 (versus 0.033 GPa km -1 in Earth) and the central pressure is slightly less than 5 GPa. However, lunar interior pressures are sufficient to profoundly influence igneous processes (e.g., Warren and Wasson, 1979b; Longhi, 1992, 2002), and in this sense the Moon more resembles a planet than an asteroid.Another direct consequence of the Moon's comparatively small size was early, rapid decay of its internal heat engine. But the Moon's thermal disadvantage has resulted in one great advantage for planetology. Lunar surface terrains, and many of the rock samples acquired from them, retain for the most part characteristics acquired during the first few hundred million years of solar system existence. The

  2. Structure of the moon's surface

    CERN Document Server

    Fielder, Gilbert

    1961-01-01

    Structure of the Moon's Surface aims to assemble and marshal relevant matter, and to produce a largely unprejudiced text which brings lunar studies up to date and stresses the importance of certain features of the Moon which have frequently been disregarded in the past, largely because of lack of knowledge about them. The book contains 14 chapters organized into two parts. Part I reviews and summarizes important physical problems. These include the liberations of the moon; height determinations of points of the moon's surface; the figure of the moon; and the moon's temperature and atmosphere.

  3. Synchronicity from Synchronized Chaos

    Directory of Open Access Journals (Sweden)

    Gregory S. Duane

    2015-03-01

    Full Text Available The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related eventsmysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1 synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2 the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable interpretations if the quantum world resides on a generalized synchronization “manifold”.

  4. Physics and astronomy of the Moon

    CERN Document Server

    Kopal, Zdenek

    2013-01-01

    Physics and Astronomy of the Moon focuses on the application of principles of physics in the study of the moon, including perturbations, equations, light scattering, and photometry. The selection first offers information on the motion of the moon in space and libration of the moon. Topics include Hill's equations of motion, non-solar perturbations, improved lunar ephemeris, optical and physical libration of the moon, and adjustment of heliometric observations of the moon's libration. The text then elaborates on the dynamics of the earth-moon system, photometry of the moon, and polarization of

  5. Indigenous abundances of siderophile elements in the lunar highlands: implications for the origin of the Moon

    International Nuclear Information System (INIS)

    Delano, J.W.; Ringwood, A.E.

    1978-01-01

    Substantial indigeneous abundances of siderophile elements have been found to be present in the lunar highlands. The abundances of 13 siderophile elements in the parental magma were estimated by using a simple model. It is shown that metal/silicate fractionation within the Moon cannot have been the cause of the siderophile element abundances in the parental highlands magma and primitive, low-Ti mare basalts. The relative abundances of the indigenous siderophile elements in highlands and mare samples seem, instead, to be the result of complex processes which operated prior to the Moon's accretion. The abundances of the relatively involatile, siderophile elements in the parental highlands magma are strikingly similar to the abundances observed in terrestrial oceanic tholeiites. Furthermore, the abundances of the relatively volatile, siderophile elements in the parental highlands magma are also systematically related to the corresponding abundances in terrestrial oceanic tholeiites. In fact, the parental magma of the lunar highlands can be essentially regarded as having been a volatile-depleted terrestrial oceanic tholeite. The origin of the moon is discussed in the context of the results. The probability that depletion of siderophile elements occurred in an earlier generation of differentiated planetesimals similar to those which formed the basaltic achondrites, stony-irons, and irons is examined but can be dismissed on several grounds. It seems that the uniquely terrestrial 'siderophile signature' within the Moon can be explained only if the Moon was derived from the Earth's mantle subsequent to core-formation. (Auth.)

  6. Moons a very short introduction

    CERN Document Server

    Rothery, David A

    2015-01-01

    Moons: A Very Short Introduction introduces the reader to the varied and fascinating moons of our Solar System. Beginning with the early discoveries of Galileo and others, it describes their variety of mostly mythological names, and the early use of Jupiter’s moons to establish position at sea and to estimate the speed of light. It discusses the structure, formation, and profound influence of our Moon, those of the other planets, and ends with the recent discovery of moons orbiting asteroids, whilst looking forward to the possibility of discovering microbial life beyond Earth and of finding moons of exoplanets in planetary systems far beyond our own.

  7. Plutonian Moon confirmed

    Science.gov (United States)

    In late February, two separate observations confirmed the 1978 discovery by U.S. Naval Observatory scientist James W. Christy of a moon orbiting the planet Pluto. According to the U.S. Naval Observatory, these two observations were needed before the International Astronomical Society (IAS) would officially recognize the discovery.Two types of observations of the moon, which was named Charon after the ferryman in Greek mythology who carried the dead to Pluto's realm, were needed for confirmation: a transit, in which the moon passes in front of Pluto, and an occultation, in which the moon passes behind the planet. These two phenomena occur only during an 8-year period every 124 years that had been calculated to take place during 1984-1985. Both events were observed in late February.

  8. Tidal Friction in the Earth-Moon System and Laplace Planes: Darwin Redux

    Science.gov (United States)

    Rubincam, David P.

    2015-01-01

    The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2deg. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.

  9. Formation of the Lunar Fossil Bulges and Its Implication for the Early Earth and Moon

    Science.gov (United States)

    Qin, Chuan; Zhong, Shijie; Phillips, Roger

    2018-02-01

    First recognized by Laplace over two centuries ago, the Moon's present tidal-rotational bulges are significantly larger than hydrostatic predictions. They are likely relics of a former hydrostatic state when the Moon was closer to the Earth and had larger bulges, and they were established when stresses in a thickening lunar lithosphere could maintain the bulges against hydrostatic adjustment. We formulate the first dynamically self-consistent model of this process and show that bulge formation is controlled by the relative timing of lithosphere thickening and lunar orbit recession. Viable solutions indicate that lunar bulge formation was a geologically slow process lasting several hundred million years, that the process was complete about 4 Ga when the Moon-Earth distance was less than 32 Earth radii, and that the Earth in Hadean was significantly less dissipative to lunar tides than during the last 4 Gyr, possibly implying a frozen hydrosphere due to the fainter young Sun.

  10. Moon-bevægelsen

    DEFF Research Database (Denmark)

    Pedersen, René Dybdal

    2014-01-01

    Moon-bevægelsen er det populære navn for religionen "Family Federation for World peace and Unification", som også tidligere kaldte sig "Unification Church". Moon-bevægelsen ser sig selv som den sande kristne kirke. Til forskel fra mange andre kristne kirker mener Moon-bevægelsen, at Gud ønskede...

  11. Moon over Mauna Loa - a review of hypotheses of formation of earth's moon

    International Nuclear Information System (INIS)

    Wood, J.A.

    1986-01-01

    The present paper examines five models of lunar formation after considering the following constraints: (1) the large mass of the moon and the substantial prograde angular momentum of the earth-moon system; (2) the moon's depletion in volatile elements and iron, (3) the correspondence of oxygen isotope signatures in earth and moon, and (4) the lunar magma ocean. The models considered are: (1) capture from an independent heliocentric orbit, (2) coaccretion from a swarm of planetesimals in geocentric orbit, (3) fission from a rapidly rotating earth, (4) collisional ejection, and (5) disintegrative capture. 99 references

  12. Face-to-face talk and synchronous chat as learning tools in tutorial ...

    African Journals Online (AJOL)

    The findings suggest that although synchronous chat and small-group discussion share certain characteristics, they are also distinct in several significant ways. The implications that these differences hold for language instruction are then discussed. Keywords: synchronous CMC, tutorials, CLT, group work, blended learning, ...

  13. The moon as a symbol of death in "The Romance of the Moon, Moon"

    Directory of Open Access Journals (Sweden)

    William Leonardo Perdomo Vanegas

    2008-02-01

    Full Text Available The following article is an approach to semiotic analysis of the artistic text, specifically the poem. It takes up the thesis that consider poetic language as an integral element of semiotics, not linguistics. From a semiotic perspective, the text discusses the symbol of death in the Ballad of the Moon, Moon by Federico García Lorca, the analysis establishes a relationship between natural language and poetic language, reflecting part of Gypsy culture.

  14. Blended synchronous learning environment: Student perspectives

    Directory of Open Access Journals (Sweden)

    Conklina Sheri

    2017-06-01

    Full Text Available Distance education environments can take many forms, from asynchronous to blended synchronous environments. Blended synchronous learning environment (BSLE can be defined as an innovative setting in which students can decide to attend classes either face-to-face or via a synchronous virtual connection. Many educators are unfamiliar teaching in BSLE because of lack of experience or exposure to this delivery method. Thus, it is important to understand the optimal organisational structures and the effective management of BSLE courses to facilitate student learning and interaction. Seeking to understand this teaching method, an exploratory mixed-method study was conducted to examine graduate students’ perceptions of the BSLE. Quantitative and qualitative data was collected from a questionnaire and analysed. The findings revealed that students were satisfied with the BSLE, interactions, and the instructor. However, findings showed that the instructor divided attention between face-to-face and online synchronous students, which can cause cognitive overload and compromise the quality of instruction. Additionally, this study suggests that technical difficulties can affect students’ satisfaction with BSLE courses. Implications for further research and limitations are discussed.

  15. Art on the Moon?

    DEFF Research Database (Denmark)

    Lee, Rosemary; Minch, Manuel

    2018-01-01

    Manuel Minch launched Internet Moon Gallery in 2016 with the intention of exploring new modes of creating and engaging with digital art. This article is the result of a collaborative conversation between Manuel Minch and Rosemary Lee, which has evolved from their work together on the exhibition...... “Memory Palace”, launched on Internet Moon Gallery on the full moon, May 2017....

  16. LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    McKinley, B.; Briggs, F. [Research School of Astronomy and Astrophysics, Australian National University, Canberra (Australia); Kaplan, D. L. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Greenhill, L. J.; Bernardi, G.; De Oliveira-Costa, A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Tingay, S. J.; Gaensler, B. M. [ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO), School of Physics, The University of Sydney, Sydney, NSW (Australia); Oberoi, D. [National Centre for Radio Astrophysics, Tata Institute for Fundamental Research, Pune (India); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Arcus, W.; Emrich, D. [International Centre for Radio Astronomy Research, Curtin University, Perth (Australia); Barnes, D. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne (Australia); Bunton, J. D. [CSIRO Astronomy and Space Science, Canberra (Australia); Cappallo, R. J.; Corey, B. E. [MIT Haystack Observatory, Westford, MA (United States); Deshpande, A. [Raman Research Institute, Bangalore (India); DeSouza, L. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney (Australia); Goeke, R. [MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA (United States); and others

    2013-01-01

    A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of the Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system.

  17. Moon nature and culture

    CERN Document Server

    Williams, Edgar

    2014-01-01

    Long before a rocket hit the Man in the Moon in the eye in Georges Méliès's early film Le Voyage dans la Lune, the earth's lone satellite had entranced humans. We have worshipped it as a deity, believed it to cause madness, used it as a means of organizing time, and we now know that it manipulates the tides-our understanding of the moon continues to evolve. Following the moon from its origins to its rich cultural resonance in literature, art, religion, and politics, Moon provides a comprehensive account of the significance of our lunar companion. Edgar Williams explores the interdependence of

  18. The Tethered Moon

    Science.gov (United States)

    Zahnle, Kevin; Lupu, Roxana Elena; Dubrovolskis, A. R.

    2014-01-01

    A reasonable initial condition on Earth after the Moonforming impact is that it begins as a hot global magma ocean1,2. We therefore begin our study with the mantle as a liquid ocean with a surface temperature on the order of 3000- 4000 K at a time some 100-1000 years after the impact, by which point we can hope that early transients have settled down. A 2nd initial condition is a substantial atmosphere, 100-1000 bars of H2O and CO2, supplemented by smaller amounts of CO, H2, N2, various sulfur-containing gases, and a suite of geochemical volatiles evaporated from the magma. Third, we start the Moon with its current mass at the relevant Roche limit. The 4th initial condition is the angular momentum of the Earth-Moon system. Canonical models hold this constant, whilst some recent models begin with considerably more angular momentum than is present today. Here we present a ruthlessly simplified model of Earth's cooling magmasphere based on a full-featured atmosphere and including tidal heating by the newborn Moon. Thermal blanketing by H2O-CO2 atmospheres slows cooling of a magma ocean. Geochemical volatiles - chiefly S, Na, and Cl - raise the opacity of the magma ocean's atmosphere and slow cooling still more. We assume a uniform mantle with a single internal (potential) temperature and a global viscosity. The important "freezing point" is the sharp rheological transition between a fluid carrying suspended crystals and a solid matrix through which fluids percolate. Most tidal heating takes place at this "freezing point" in a gel that is both pliable and viscous. Parameterized convection links the cooling rate to the temperature and heat generation inside the Earth. Tidal heating is a major effect. Tidal dissipation in the magma ocean is described by viscosity. The Moon is entwined with Earth by the negative feedback between thermal blanketing and tidal heating that comes from the temperature-dependent viscosity of the magma ocean. Because of this feedback, the rate

  19. Spectroscopic observations of the Moon at the lunar surface

    Science.gov (United States)

    Wu, Yunzhao; Hapke, Bruce

    2018-02-01

    The Moon's reflectance spectrum records many of its important properties. However, prior to Chang'E-3 (CE-3), no spectra had previously been measured on the lunar surface. Here we show the in situ reflectance spectra of the Moon acquired on the lunar surface by the Visible-Near Infrared Spectrometer (VNIS) onboard the CE-3 rover. The VNIS detected thermal radiation from the lunar regolith, though with much shorter wavelength range than typical thermal radiometer. The measured temperatures are higher than expected from theoretical model, indicating low thermal inertia of the lunar soil and the effects of grain facet on soil temperature in submillimeter scale. The in situ spectra also reveal that 1) brightness changes visible from orbit are related to the reduction in maturity due to the removal of the fine and weathered particles by the lander's rocket exhaust, not the smoothing of the surface and 2) the spectra of the uppermost soil detected by remote sensing exhibit substantial differences with that immediately beneath, which has important implications for the remote compositional analysis. The reflectance spectra measured by VNIS not only reveal the thermal, compositional, and space-weathering properties of the Moon but also provide a means for the calibration of optical instruments that view the surface remotely.

  20. Synchronization and fault-masking in redundant real-time systems

    Science.gov (United States)

    Krishna, C. M.; Shin, K. G.; Butler, R. W.

    1983-01-01

    A real time computer may fail because of massive component failures or not responding quickly enough to satisfy real time requirements. An increase in redundancy - a conventional means of improving reliability - can improve the former but can - in some cases - degrade the latter considerably due to the overhead associated with redundancy management, namely the time delay resulting from synchronization and voting/interactive consistency techniques. The implications of synchronization and voting/interactive consistency algorithms in N-modular clusters on reliability are considered. All these studies were carried out in the context of real time applications. As a demonstrative example, we have analyzed results from experiments conducted at the NASA Airlab on the Software Implemented Fault Tolerance (SIFT) computer. This analysis has indeed indicated that in most real time applications, it is better to employ hardware synchronization instead of software synchronization and not allow reconfiguration.

  1. Synchronization of chaos in RCL-shunted Josephson junction using a simple adaptive controller

    International Nuclear Information System (INIS)

    Guo, R; Vincent, U E; Idowu, B A

    2009-01-01

    In this paper, a simple adaptive control is proposed for the synchronization of chaotic dynamics of resistive-capacitive-inductive-shunted Josephson junctions (RCLSJ). The synchronization problem is investigated based on a drive-response system configuration consisting of two identical RCLSJ with and without identical system parameters. In addition, the synchronization when the system parameters are unknown is considered based on adaptive parameter control estimation. Sufficient conditions for global asymptotic synchronization are given and numerical simulations are employed to demonstrate the efficiency of the adaptive control scheme. In the presence of noise, we also show that the synchronization is robust and discuss the implication of our adaptive control technique in rapid single flux quantum (RSFQ) devices.

  2. Production of solar photovoltaic cells on the Moon

    Science.gov (United States)

    Criswell, David R.; Ignatiev, Alex

    1991-01-01

    Solar energy is directly available on the sunward lunar surface. Most, if not all, the materials are available on the Moon to make silicon based solar photovoltaic cells. A few additional types are possible. There is a small but growing literature on production of lunar derived solar cells. This literature is reviewed. Topics explored include trade-offs of local production versus import of key materials, processing options, the scale and nature of production equipment, implications of storage requirements, and the end-uses of the energy. Directions for future research and demonstrations are indicated.

  3. FOOLISH MOON

    OpenAIRE

    Wang, Jingjing

    2017-01-01

    Foolish Moon is a product design for Chinese young adults who come to big Chinese cities to fight for their dreams to help them to slow down, to think more, to be practical and patient under the influence of fast culture which makes people eager to quick success. It has two physical parts, a moon phase clock anda work journal book, and three functions: 1) a new time experience of slow, stable and circular; 2) to encourage people to write down their goals and plans; 3) to make time capsules to...

  4. Synchronization of two Hodgkin-Huxley neurons due to internal noise

    International Nuclear Information System (INIS)

    Casado, Jose Manuel

    2003-01-01

    It is well known that a strong coupling can synchronize a population of nonlinear oscillators. This fact has deep implications for the current understanding of information processing by the brain. The focus of this Letter is on the role of conductance noise on a system of two coupled Hodgkin-Huxley neurons in the so-called excitable region, where both neurons are at rest in the absence of noise. It is shown that, in this region, conductance noise allows the neurons to achieve both frequency and phase synchronization. This suggests that internal noise could play a role in the emergence of synchronous neural activity in populations of weakly coupled neurons

  5. Experience the Moon

    Science.gov (United States)

    Ortiz-Gil, A.; Benacchio, L.; Boccato, C.

    2011-10-01

    The Moon is, together with the Sun, the very first astronomical object that we experience in our life. As this is an exclusively visual experience, people with visual impairments need a different mode to experience it too. This statement is especially true when events, such as more and more frequent public observations of sky, take place. This is the reason why we are preparing a special package for visual impaired people containing three brand new items: 1. a tactile 3D Moon sphere in Braille with its paper key in Braille. To produce it we used imaging data obtained by NASA's mission Clementine, along with free image processing and 3D rendering software. In order to build the 3D small scale model funding by Europlanet and the Italian Ministry for Research have been used. 2. a multilingual web site for visually impaired users of all ages, on basic astronomy together with an indepth box about the Moon; 3. a book in Braille with the same content of the Web site mentioned above. All the items will be developed with the collaboration of visually impaired people that will check each step of the project and support their comments and criticism to improve it. We are going to test this package during the next International Observe the Moon Night event. After a first testing phase we'll collect all the feedback data in order to give an effective form to the package. Finally the Moon package could be delivered to all those who will demand it for outreach or educational goals.

  6. Flagellar Synchronization Is a Simple Alternative to Cell Cycle Synchronization for Ciliary and Flagellar Studies.

    Science.gov (United States)

    Dutta, Soumita; Avasthi, Prachee

    2017-01-01

    The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas . This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small

  7. Hot moons and cool stars

    Directory of Open Access Journals (Sweden)

    Heller René

    2013-04-01

    Full Text Available The exquisite photometric precision of the Kepler space telescope now puts the detection of extrasolar moons at the horizon. Here, we firstly review observational and analytical techniques that have recently been proposed to find exomoons. Secondly, we discuss the prospects of characterizing potentially habitable extrasolar satellites. With moons being much more numerous than planets in the solar system and with most exoplanets found in the stellar habitable zone being gas giants, habitable moons could be as abundant as habitable planets. However, satellites orbiting planets in the habitable zones of cool stars will encounter strong tidal heating and likely appear as hot moons.

  8. Apollo 11 Moon Landing

    Science.gov (United States)

    1969-01-01

    The crowning achievement for the Saturn V rocket came when it launched Apollo 11 astronauts, Neil Armstrong, Edwin (Buzz) Aldrin, and Michael Collins, to the Moon in July 1969. In this photograph, astronaut Aldrin takes his first step onto the surface of the Moon.

  9. A child's view of the moon

    OpenAIRE

    Grilc, Tina

    2014-01-01

    This diploma paper is divided into two parts, the theoretical and the practical one. The first part describes the history of travelling and landing on the Moon, general information on the Moon (its evolution, composition, surface, visibility, and moon phases), and the astronomical instruments. The development of a child's way of thinking is also briefly presented. The second, more practical part, is introduced by a questionnaire consisting of 10 general questions about the Moon. The aim ...

  10. Distributed synchronization for Beyond 4G Indoor Femtocells

    DEFF Research Database (Denmark)

    Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão; Mahmood, Nurul Huda

    2013-01-01

    strict time synchronization between the cells. This paper deals with distributed runtime synchronization for Beyond 4G femtocells. A simple random scheduling solution for the clock distribution messages is proposed, as well as different clock update mechanisms. Simulation results for a dense cell...... scenario with two stripes of apartments show that a ‘multiplicative clock update’ exhibits an initial large time divergence among neighbor cells, but is able to achieve a lower long-term error floor than ‘additive clock update’. Practical implications of the residual time misalignment on the Beyond 4G...... system design are also addressed....

  11. "A Nightmare Land, a Place of Death": An Exploration of the Moon as a Motif in Herge's "Destination Moon" (1953) and "Explorers on the Moon" (1954)

    Science.gov (United States)

    Beauvais, Clementine

    2010-01-01

    This article analyses the symbolic meaning of the Moon in two "bande dessinee" books from the Tintin series, Herge's "Destination Moon" ("Objectif Lune," 1953) and its sequel "Explorers on the Moon" ("On a Marche sur la Lune," 1954). It argues that these two volumes stand out in the series for their graphic, narrative and philosophical emphasis on…

  12. Science on the Moon: The Wailing Wall of Space Exploration

    Science.gov (United States)

    Wilson, Thomas

    2008-01-01

    Science on and from the Moon has important implications for expanding human knowledge and understanding, a prospect for the 21st Century that has been under discussion for at least the past 25 years. That having been said, however, there remain many issues of international versus national priorities, strategy, economy, and politics that come into play. The result is a very complex form of human behavior where science and exploration take center stage, but many other important human options are sacrificed. To renew this dialogue about the Moon, it seems we are already rushing pell-mell into it as has been done in the past. The U.S., Japan, China, India, and Russia either have sent or plan to send satellites and robotic landers there at this time. What does a return to the Moon mean, why are we doing this now, who should pay for it, and how? The only semblance of such a human enterprise seems to be the LHC currently coming online at CERN. Can it be used as a model of international collaboration rather than a sports or military event focused on national competition? Who decides and what is the human sacrifice? There are compelling arguments for establishing science on the Moon as one of the primary goals for returning to the Moon and venturing beyond. A number of science endeavors will be summarized, beyond lunar and planetary science per se. These include fundamental physics experiments that are background-limited by the Earth's magnetic dipole moment and noise produced by its atmosphere and seismic interior. The Moon is an excellent platform for some forms of astronomy. Other candidate Moon-based experiments vary from neutrino and gravitational wave astronomy, particle astrophysics, and cosmic-ray calorimeters, to space physics and fundamental physics such as proton decay. The list goes on and includes placing humans in a hostile environment to study the long-term effects of space weather. The list is long, and even newer ideas will come from this COSPAR conference

  13. Science on the Moon: The Wailing Wall of Space Exploration

    Science.gov (United States)

    Wilson, Thomas

    Science on and from the Moon has important implications for expanding human knowledge and understanding, a prospect for the 21st Century that has been under discussion for at least the past 25 years [1-3]. That having been said, however, there remain many issues of international versus national priorities, strategy, economy, and politics that come into play. The result is a very complex form of human behavior where science and exploration take center stage, but many other important human options are sacrificed. To renew this dialogue about the Moon, it seems we are already rushing pell-mell into it as has been done in the past. The U.S., Japan, China, India, and Russia either have sent or plan to send satellites and robotic landers there at this time. What does a return to the Moon mean, why are we doing this now, who should pay for it, and how? The only semblance of such a human enterprise seems to be the LHC currently coming online at CERN. Can it be used as a model of international collaboration rather than a sports or military event focused on national competition? Who decides and what is the human sacrifice? There are compelling arguments for establishing science on the Moon as one of the primary goals for returning to the Moon and venturing beyond. A number of science endeavors will be summarized, beyond lunar and planetary science per se. These include fundamental physics experiments that are background-limited by the Earth's magnetic dipole moment and noise produced by its atmosphere and seismic interior. The Moon is an excellent platform for some forms of astronomy. Other candidate Moon-based experiments vary from neutrino and gravitational wave astronomy, particle astrophysics, and cosmic-ray calorimeters, to space physics and fundamental physics such as proton decay. The list goes on and includes placing humans in a hostile environment to study the long-term effects of space weather. The list is long, and even newer ideas will come from this COSPAR

  14. Synchronization and anti-synchronization coexist in Chen-Lee chaotic systems

    International Nuclear Information System (INIS)

    Chen, J.-H.; Chen, H.-K.; Lin, Y.-K.

    2009-01-01

    This study demonstrates that synchronization and anti-synchronization can coexist in Chen-Lee chaotic systems by direct linear coupling. Based on Lyapunov's direct method, a linear controller was designed to assure that two different types of synchronization can simultaneously be achieved. Further, the hybrid projective synchronization of Chen-Lee chaotic systems was studied using a nonlinear control scheme. The nonlinear controller was designed according to the Lyapunov stability theory to guarantee the hybrid projective synchronization, including synchronization, anti-synchronization, and projective synchronization. Finally, numerical examples are presented in order to illustrate the proposed synchronization approach.

  15. In Situ Biological Contamination Studies of the Moon: Implications for Future Planetary Protection and Life Detection Missions

    Science.gov (United States)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there yet a planetary protection category for human missions. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  16. Moons Around Saturn

    Science.gov (United States)

    1996-01-01

    This series of 10 Hubble Space Telescope images captures several small moons orbiting Saturn. Hubble snapped the five pairs of images while the Earth was just above the ring plane and the Sun below it. The telescope captured a pair of images every 97 minutes as it circled the Earth. Moving out from Saturn, the visible rings are: the broad C Ring, the Cassini Division, and the narrow F Ring.The first pair of images shows the large, bright moon Dione, near the middle of the frames. Two smaller moons, Pandora (the brighter one closer to Saturn) and Prometheus, appear as if they're touching the F Ring. In the second frame, Mimas emerges from Saturn's shadow and appears to be chasing Prometheus.In the second image pair, Mimas has moved towards the tip of the F Ring. Rhea, another bright moon, has just emerged from behind Saturn. Prometheus, the closest moon to Saturn, has rounded the F Ring's tip and is approaching the planet. The slightly larger moon Epimetheus has appeared.The third image pair shows Epimetheus, as a tiny dot just beyond the tip of the F Ring. Prometheus is in the lower right corner. An elongated clump or arc of debris in the F ring is seen as a slight brightening on the far side of this thin ring.In the fourth image pair, Epimetheus, in the lower right corner, streaks towards Saturn. The long ring arc can be seen in both frames.The fifth image pair again captures Mimas, beyond the tip of the F Ring. The same ring arc is still visible.In addition to the satellites, a pair of stars can be seen passing behind the rings, appearing to move towards the lower left due to Saturn's motion across the sky.The images were taken Nov. 21, 1995 with Wide Field Planetary Camera-2.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space

  17. Dream recall and the full moon.

    Science.gov (United States)

    Schredl, Michael; Fulda, Stephany; Reinhard, Iris

    2006-02-01

    There is ongoing debate on whether the full moon is associated with sleep and dreaming. The analysis of diaries kept by the participants (N = 196) over 28 to 111 nights showed no association of a full moon and dream recall. Psychological factors might explain why some persons associate a full moon with increased dream recall.

  18. New Moon water, exploration, and future habitation

    CERN Document Server

    Crotts, Arlin

    2014-01-01

    Explore Earth's closest neighbor, the Moon, in this fascinating and timely book and discover what we should expect from this seemingly familiar but strange, new frontier. What startling discoveries are being uncovered on the Moon? What will these tell us about our place in the Universe? How can exploring the Moon benefit development on Earth? Discover the role of the Moon in Earth's past and present; read about the lunar environment and how it could be made more habitable for humans; consider whether continued exploration of the Moon is justified; and view rare Apollo-era photos and film still

  19. Shooting the Moon

    Science.gov (United States)

    Andrews, Daniel R.

    2011-01-01

    This story is about an unlikely NASA mission to the Moon. It was unlikely because it was started with far too little time and too-little money to complete. It was unlikely because it was able to take chances to accept risk of failure. It was unlikely because it was searching for the unthinkable: water-ice on the moon... Figure 1-1: LCROSS Mission. The mission of the Lunar CRater Observation and Sensing Satellite (LCROSS) was to investigate the possibility of water ice in craters on the Moon s poles. This is certainly an interesting scientific topic in itself, but I intend to focus on the compelling experience of managing the LCROSS Project in the context of this storied Agency. Perhaps most interesting are the implications this story has for managing any development effort, lunar or not, and working a balance to achieve success. NASA is by design a risk-taking agency within the US Government. It could be argued that NASA s purpose in the aerospace community is to take on the really big challenges that either the corporate world can t afford, are not yet profitable endeavors, or are just too risky for private corporations to entertain. However, expectations of the Agency have evolved. A combination of grim human tragedies and some very public cost and schedule overruns have challenged the public s and Congress s tolerance for risk-taking within the Agency. NASA, which is supposed to be in the business of taking risks to do bold, difficult things, has become less and less able to do so within its cost framework. Yet effectively replacing prudent risk management with attempts to "risk-eliminate" is completely unaffordable. So where does risk-taking fit within the Agency, or within private/corporate organizations for that matter? Where astronauts play there is clearly concern about risk. When an organization puts humans in harm s way, it is understandably going to take extra effort to assure nobody gets hurt. Doing so, of course, costs money - a lot of money to pay for

  20. Non-rocket Earth-Moon transportation system

    Science.gov (United States)

    Bolonkin, A.

    Author suggests and researches one of his methods of flights to outer Space, described in book "Non Rocket Flights in Space", which is prepared and offered for publication. In given report the method and facilities named "Bolonkin Transport System" (BTS) for delivering of payload and people to Moon and back is presented. BTS can be used also for free trip to outer Space up at altitude 60,000 km and more. BTS can be applying as a trust system for atmospheric supersonic aircrafts, and as a free energy source. This method uses, in general, the rotary and kinetic energy of the Moon. The manuscript contains the theory and results of computation of special Project. This project uses three cables (main and two for driving of loads) from artificial material: fiber, whiskers, nanotubes, with the specific tensile strength (ratio the tensile stress to density) k=/=4*10^7 or more. The nanotubes with same and better parameters are received in scientific laboratories. Theoretical limit of nanotubes SWNT is about k=100*10^7. The upper end of the cable is connected to the Moon. The lower end of the cable is connected to an aircraft (or buoy), which flies (i.e. glides or slides) in Earth atmosphere along the planet's surface. The aircraft (and Moon) has devices, which allows the length of cables to be changed. The device would consists of a spool, motor, brake, transmission, and controller. The facility could have devices for delivering people and payloads t o the Moon and back using the suggested Transport System. The delivery devices include: containers, cables, motors, brakes, and controllers. If the aircraft is small and the cable is strong the motion of the Moon can be used to move the airplane. For example (see enclosed project), if the airplane weighs 15 tons and has an aerodynamic ratio (the lift force to the drag force) equal 5, a thrust of 3000 kg would be enough for the aircraft to fly for infinity without requiring any fuel. The aircraft could use a small turbine engine

  1. The formation of the moon

    Science.gov (United States)

    O'Keefe, J. A., III

    1974-01-01

    Supporting evidence for the fission hypothesis for the origin of the moon is offered. The maximum allowable amount of free iron now present in the moon would not suffice to extract the siderophiles from the lunar silicates with the observed efficiency. Hence extraction must have been done with a larger amount of iron, as in the mantle of the earth, of which the moon was once a part, according to the fission hypothesis. The fission hypothesis gives a good resolution of the tektite paradox. Tektites are chemically much like products of the mantle of the earth; but no physically possible way has been found to explain their production from the earth itself. Perhaps they are a product of late, deep-seated lunar volcanism. If so, the moon must have inside it some material with a strong resemblance to the earth's mantle.

  2. Moon Effect on Paciic Basin Stock Markets

    Directory of Open Access Journals (Sweden)

    Rayenda Khresna Brahman

    2014-08-01

    Full Text Available This is an empirical study on the inluences of moon on seven stock markets, which are Indonesia, Malaysia, United Kingdom, United States, Philippines, Japan, and Thailand. The period is from January 1999 until December 2009 in daily basis. This study investigates the relationship  between  moon  phase  and  market  returns.  We  divided  moon  phases  into  new moon  and  full  moon.  While  literature  mention  the  relationship  between  moon  phase  and market returns, our research reject the null hypothesis in regression analysis. However, the descriptive  catches  the  indication  and  conirmed  previous  research.  It  also  proposes  that the market is still rational and not moon-mood inluenced. This result is not contending the EMH theorem. Further research is needed in term of investigating the relationship between psychology  factors  (heuristic  bias,  information  ignorance,  and  other  factors  and  investor behavior. The effect of moon on certain anomalies has to examine speciically. ";} // -->activate javascript

  3. Moon. Prospective energy and material resources

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, Viorel (ed.) [Polytechnic Univ. of Bucharest (Romania). Candida Oancea Inst.

    2012-07-01

    The Earth has limited material and energy resources. Further development of the humanity will require going beyond our planet for mining and use of extraterrestrial mineral resources and search of power sources. The exploitation of the natural resources of the Moon is a first natural step on this direction. Lunar materials may contribute to the betterment of conditions of people on Earth but they also may be used to establish permanent settlements on the Moon. This will allow developing new technologies, systems and flight operation techniques to continue space exploration. In fact, a new branch of human civilization could be established permanently on Moon in the next century. But, meantime, an inventory and proper social assessment of Moon's prospective energy and material resources is required. This book investigates the possibilities and limitations of various systems supplying manned bases on Moon with energy and other vital resources. The book collects together recent proposals and innovative options and solutions. It is a useful source of condensed information for specialists involved in current and impending Moon-related activities and a good starting point for young researchers. (orig.)

  4. DISCOVERY OF A MAKEMAKEAN MOON

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Alex H.; Buie, Marc W. [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Grundy, Will M. [Lowell Observatory, Flagstaff, AZ (United States); Noll, Keith S., E-mail: aparker@boulder.swri.edu [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-07-01

    We describe the discovery of a satellite in orbit about the dwarf planet (136472) Makemake. This satellite, provisionally designated S/2015 (136472) 1, was detected in imaging data collected with the Hubble Space Telescope ’s Wide Field Camera 3 on UTC 2015 April 27 at 7.80 ± 0.04 mag fainter than Makemake and at a separation of 0.″57. It likely evaded detection in previous satellite searches due to a nearly edge-on orbital configuration, placing it deep within the glare of Makemake during a substantial fraction of its orbital period. This configuration would place Makemake and its satellite near a mutual event season. Insufficient orbital motion was detected to make a detailed characterization of its orbital properties, prohibiting a measurement of the system mass with the discovery data alone. Preliminary analysis indicates that if the orbit is circular, its orbital period must be longer than 12.4 days and must have a semimajor axis ≳21,000 km. We find that the properties of Makemake’s moon suggest that the majority of the dark material detected in the system by thermal observations may not reside on the surface of Makemake, but may instead be attributable to S/2015 (136472) 1 having a uniform dark surface. This “dark moon hypothesis” can be directly tested with future James Webb Space Telescope observations. We discuss the implications of this discovery for the spin state, figure, and thermal properties of Makemake and the apparent ubiquity of trans-Neptunian dwarf planet satellites.

  5. Discovery of a Makemakean Moon

    Science.gov (United States)

    Parker, Alex H.; Buie, Marc W.; Grundy, Will M.; Noll, Keith S.

    2016-01-01

    We describe the discovery of a satellite in orbit about the dwarf planet (136472) Makemake. This satellite, provisionally designated S/2015 (136472) 1, was detected in imaging data collected with the Hubble Space Telescope's Wide Field Camera 3 on UTC 2015 April 27 at 7.80 +/- 0.04 mag fainter than Makemake and at a separation of 0farcs57. It likely evaded detection in previous satellite searches due to a nearly edge-on orbital configuration, placing it deep within the glare of Makemake during a substantial fraction of its orbital period. This configuration would place Makemake and its satellite near a mutual event season. Insufficient orbital motion was detected to make a detailed characterization of its orbital properties, prohibiting a measurement of the system mass with the discovery data alone. Preliminary analysis indicates that if the orbit is circular, its orbital period must be longer than 12.4 days and must have a semimajor axis > or approx. = 21,000 km. We find that the properties of Makemake's moon suggest that the majority of the dark material detected in the system by thermal observations may not reside on the surface of Makemake, but may instead be attributable to S/2015 (136472) 1 having a uniform dark surface. This dark moon hypothesis can be directly tested with future James Webb Space Telescope observations. We discuss the implications of this discovery for the spin state, figure, and thermal properties of Makemake and the apparent ubiquity of trans-Neptunian dwarf planet satellites.

  6. Inefficient volatile loss from the Moon-forming disk: Reconciling the giant impact hypothesis and a wet Moon

    Science.gov (United States)

    Nakajima, Miki; Stevenson, David J.

    2018-04-01

    The Earth's Moon is thought to have formed from a circumterrestrial disk generated by a giant impact between the proto-Earth and an impactor approximately 4.5 billion years ago. Since this impact was energetic, the disk would have been hot (4000-6000 K) and partially vaporized (20-100% by mass). This formation process is thought to be responsible for the geochemical observation that the Moon is depleted in volatiles (e.g., K and Na). To explain this volatile depletion, some studies suggest the Moon-forming disk was rich in hydrogen, which was dissociated from water, and it escaped from the disk as a hydrodynamic wind accompanying heavier volatiles (hydrodynamic escape). This model predicts that the Moon should be significantly depleted in water, but this appears to contradict some of the recently measured lunar water abundances and D/H ratios that suggest that the Moon is more water-rich than previously thought. Alternatively, the Moon could have retained its water if the upper parts (low pressure regions) of the disk were dominated by heavier species because hydrogen would have had to diffuse out from the heavy-element rich disk, and therefore the escape rate would have been limited by this slow diffusion process (diffusion-limited escape). To identify which escape the disk would have experienced and to quantify volatiles loss from the disk, we compute the thermal structure of the Moon-forming disk considering various bulk water abundances (100-1000 ppm) and mid-plane disk temperatures (2500-4000 K). Assuming that the disk consists of silicate (SiO2 or Mg2SiO4) and water and that the disk is in the chemical equilibrium, our calculations show that the upper parts of the Moon-forming disk are dominated by heavy atoms or molecules (SiO and O at Tmid > 2500- 2800 K and H2O at Tmid lost water and hydrogen would have been small compared to the initial abundance assumed. This result indicates that the giant impact hypothesis can be consistent with the water-rich Moon

  7. Student Moon Observations and Spatial-Scientific Reasoning

    Science.gov (United States)

    Cole, Merryn; Wilhelm, Jennifer; Yang, Hongwei

    2015-07-01

    Relationships between sixth grade students' moon journaling and students' spatial-scientific reasoning after implementation of an Earth/Space unit were examined. Teachers used the project-based Realistic Explorations in Astronomical Learning curriculum. We used a regression model to analyze the relationship between the students' Lunar Phases Concept Inventory (LPCI) post-test score variables and several predictors, including moon journal score, number of moon journal entries, student gender, teacher experience, and pre-test score. The model shows that students who performed better on moon journals, both in terms of overall score and number of entries, tended to score higher on the LPCI. For every 1 point increase in the overall moon journal score, participants scored 0.18 points (out of 20) or nearly 1% point higher on the LPCI post-test when holding constant the effects of the other two predictors. Similarly, students who increased their scores by 1 point in the overall moon journal score scored approximately 1% higher in the Periodic Patterns (PP) and Geometric Spatial Visualization (GSV) domains of the LPCI. Also, student gender and teacher experience were shown to be significant predictors of post-GSV scores on the LPCI in addition to the pre-test scores, overall moon journal score, and number of entries that were also significant predictors on the LPCI overall score and the PP domain. This study is unique in the purposeful link created between student moon observations and spatial skills. The use of moon journals distinguishes this study further by fostering scientific observation along with skills from across science, technology, engineering, and mathematics disciplines.

  8. Yes, there was a moon race

    Science.gov (United States)

    Oberg, James E.

    1990-01-01

    Examination of newly disclosed evidence confirms that the Soviets were indeed striving to reach the moon before the U.S. in 1969. It is noted that a Soviet unmanned lunar probe crashed on the moon's surface only hours before the U.S. Apollo landing. Now confirmed openly are moon-exploration schedules that were competitive with Apollo plans, the names and histories of Soviet lunar boosters and landers, identities of the lunar cosmonauts; and even photos of manned lunar craft are available. Additional details on the troubled moon-probe program are presented: technical problems, continuous changes in goals, schedules, and planning, vehicle and personnel disasters, transfer of authority between ministries, and political power struggles in the scientific community.

  9. Development and validation of a learning progression for change of seasons, solar and lunar eclipses, and moon phases

    Science.gov (United States)

    Testa, Italo; Galano, Silvia; Leccia, Silvio; Puddu, Emanuella

    2015-12-01

    In this paper, we report about the development and validation of a learning progression about the Celestial Motion big idea. Existing curricula, research studies on alternative conceptions about these phenomena, and students' answers to an open questionnaire were the starting point to develop initial learning progressions about change of seasons, solar and lunar eclipses, and Moon phases; then, a two-tier multiple choice questionnaire was designed to validate and improve them. The questionnaire was submitted to about 300 secondary students of different school levels (14 to 18 years old). Item response analysis and curve integral method were used to revise the hypothesized learning progressions. Findings support that spatial reasoning is a key cognitive factor for building an explanatory framework for the Celestial Motion big idea, but also suggest that causal reasoning based on physics mechanisms underlying the phenomena, as light flux laws or energy transfers, may significantly impact a students' understanding. As an implication of the study, we propose that the teaching of the three discussed astronomy phenomena should follow a single teaching-learning path along the following sequence: (i) emphasize from the beginning the geometrical aspects of the Sun-Moon-Earth system motion; (ii) clarify consequences of the motion of the Sun-Moon-Earth system, as the changing solar radiation flow on the surface of Earth during the revolution around the Sun; (iii) help students moving between different reference systems (Earth and space observer's perspective) to understand how Earth's rotation and revolution can change the appearance of the Sun and Moon. Instructional and methodological implications are also briefly discussed.

  10. More Sophisticated Fits of the Oribts of Haumea's Interacting Moons

    Science.gov (United States)

    Oldroyd, William Jared; Ragozzine, Darin; Porter, Simon

    2018-04-01

    Since the discovery of Haumea's moons, it has been a challenge to model the orbits of its moons, Hi’iaka and Namaka. With many precision HST observations, Ragozzine & Brown 2009 succeeded in calculating a three-point mass model which was essential because Keplerian orbits were not a statistically acceptable fit. New data obtained in 2010 could be fit by adding a J2 and spin pole to Haumea, but new data from 2015 was far from the predicted locations, even after an extensive exploration using Bayesian Markov Chain Monte Carlo methods (using emcee). Here we report on continued investigations as to why our model cannot fit the full 10-year baseline of data. We note that by ignoring Haumea and instead examining the relative motion of the two moons in the Hi’iaka centered frame leads to adequate fits for the data. This suggests there are additional parameters connected to Haumea that will be required in a full model. These parameters are potentially related to photocenter-barycenter shifts which could be significant enough to affect the fitting process; these are unlikely to be caused by the newly discovered ring (Ortiz et al. 2017) or by unknown satellites (Burkhart et al. 2016). Additionally, we have developed a new SPIN+N-bodY integrator called SPINNY that self-consistently calculates the interactions between n-quadrupoles and is designed to test the importance of other possible effects (Haumea C22, satellite torques on the spin-pole, Sun, etc.) on our astrometric fits. By correctly determining the orbit of Haumea’s satellites we develop a better understanding of the physical properties of each of the objects with implications for the formation of Haumea, its moons, and its collisional family.

  11. Pristine rocks (8th Foray) - Plagiophile element ratios, crustal genesis, and the bulk composition of the moon

    International Nuclear Information System (INIS)

    Warren, P.H.; Kallemeyn, G.W.

    1984-01-01

    Eu/Al, Sr/Al, Eu/Sr, and similar ratios among pristine lunar nonmare lithologies with implications for nonmare petrogenesis and for the bulk composition of the moon are examined. On a plot of Eu/Al versus mg, ferroan anorthosites are separated from all other pristine nonmare rocks by a considerable gap. A nonrandom process must be invoked to account for the gap in the spectrum of ratios. A single magma probably cannot account for even the Mg-rich pristine rocks subset, based on diversity of plagiophile ratios among samples with similar mg ratios. Plagiophile ratios also constrain the bulk composition of the moon. Plagiophile ratios among ferroan anorthosites exactly match those expected under a model in which ferroan anorthosites formed by flotation of plagioclase cumulates over a primordial magmasphere. Ratios among nonvolatile elements confirm that the moon formed out of materials akin to chondritic meteorites

  12. Effective Methods of Teaching Moon Phases

    Science.gov (United States)

    Jones, Heather; Hintz, E. G.; Lawler, M. J.; Jones, M.; Mangrubang, F. R.; Neeley, J. E.

    2010-01-01

    This research investigates the effectiveness of several commonly used methods for teaching the causes of moon phases to sixth grade students. Common teaching methods being investigated are the use of diagrams, animations, modeling/kinesthetics and direct observations of moon phases using a planetarium. Data for each method will be measured by a pre and post assessment of students understanding of moon phases taught using one of the methods. The data will then be used to evaluate the effectiveness of each teaching method individually and comparatively, as well as the method's ability to discourage common misconceptions about moon phases. Results from this research will provide foundational data for the development of educational planetarium shows for the deaf or other linguistically disadvantage children.

  13. The earth and the moon

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    The moon is the only body in the solar system outside of the Earth that has been visited by humans. More than 440 pounds of lunar material are brought by NASA and Soviet space missions to Earth for study. The information gleaned about the moon from this relatively small pile of rocks is mind-boggling and stands as the greatest proof that Martian planetary science would be greatly enhanced by returning samples to Earth. Compositional studies of lunar rocks show that the moon and the Earth are made of similar material, and because lunar material has not been reworked through erosion and plate te

  14. NIMPH - Nano Icy Moons Propellant Harvester

    Data.gov (United States)

    National Aeronautics and Space Administration — The latest Decadal Survey lists multiple sample return missions to the Moon, Mars and Jovian moons as high priority goals. In particular, a mission to Jupiter's...

  15. Synchronization of metronomes

    Science.gov (United States)

    Pantaleone, James

    2002-10-01

    Synchronization is a common phenomenon in physical and biological systems. We examine the synchronization of two (and more) metronomes placed on a freely moving base. The small motion of the base couples the pendulums causing synchronization. The synchronization is generally in-phase, with antiphase synchronization occurring only under special conditions. The metronome system provides a mechanical realization of the popular Kuramoto model for synchronization of biological oscillators, and is excellent for classroom demonstrations and an undergraduate physics lab.

  16. Impact of delays on the synchronization transitions of modular neuronal networks with hybrid synapses

    Science.gov (United States)

    Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok

    2013-09-01

    The combined effects of the information transmission delay and the ratio of the electrical and chemical synapses on the synchronization transitions in the hybrid modular neuronal network are investigated in this paper. Numerical results show that the synchronization of neuron activities can be either promoted or destroyed as the information transmission delay increases, irrespective of the probability of electrical synapses in the hybrid-synaptic network. Interestingly, when the number of the electrical synapses exceeds a certain level, further increasing its proportion can obviously enhance the spatiotemporal synchronization transitions. Moreover, the coupling strength has a significant effect on the synchronization transition. The dominated type of the synapse always has a more profound effect on the emergency of the synchronous behaviors. Furthermore, the results of the modular neuronal network structures demonstrate that excessive partitioning of the modular network may result in the dramatic detriment of neuronal synchronization. Considering that information transmission delays are inevitable in intra- and inter-neuronal networks communication, the obtained results may have important implications for the exploration of the synchronization mechanism underlying several neural system diseases such as Parkinson's Disease.

  17. Dynamics of the Sun-Earth-Moon System

    Indian Academy of Sciences (India)

    The dynamics of the Sun-Earth-Moon system is discussed with special attention to the effects of. Sun's perturbations on the Moon's orbit around the Earth. Important secular effects are the re- gression of the nodes, the advance of the perigee and the increase in the Moon's mean longitude. We discuss the relationship of the ...

  18. Production Function of Outgassed Volatiles on Mercury: Implications for Polar Volatiles on Mercury and the Moon

    Science.gov (United States)

    Deutsch, A. N.; Head, J. W.

    2018-05-01

    We are interested in the flux of volatiles delivered to the polar regions of Mercury and the Moon through time. We integrate the production functions for volatile delivery from impacts, solar wind, and volcanism, which we focus on initially.

  19. Towards A Moon Village: Vision and Opportunities

    Science.gov (United States)

    Foing, Bernard

    2016-04-01

    The new DG of ESA, Jan Wörner, has expressed from the very beginning of his duty a clear ambition towards a Moon Village, where Europe could have a lead role. The concept of Moon Village is basically to start with a robotic lunar village and then develop a permanent station on the Moon with different countries and partners that can participate and contribute with different elements, experiments, technologies, and overall support. ESA's DG has communicated about this programme and invited inputs from all the potential stakeholders, especially member states, engineers, industry, scientists, innovators and diverse representatives from the society. In order to fulfill this task, a series of Moon Village workshops have been organized first internally at ESA and then at international community events, and are also planned for the coming months, to gather stakeholders to present their ideas, their developments and their recommendations on how to put Moon Village into the minds of Europeans, international partners and prepare relevant actions for upcoming International Lunar Decade. Moon Village Workshop: The Moon Village Workshop in ESTEC on the 14th December was organized by ILEWG & ESTEC Staff Association in conjunction with the Moon 2020-2030 Symposium. It gathered people coming from all around the world, with many young professionals involved, as well as senior experts and representatives, with a very well gender balanced and multidisciplinary group. Engineers, business experts, managers, scientists, architects, artists, students presented their views and work done in the field of Lunar Exploration. Participants included colleagues from ESA, SGAC Space Generation Advisory Council, NASA, and industries such as OHB SE, TAS, Airbus DS, CGI, etc… and researchers or students from various Universities in Europe, America, and Asia. Working groups include: Moon Habitat Design, Science and Technology potentials on the Moon Village, and Engaging Stakeholders. The Moon

  20. Lunar Plants Prototype for Moon Express

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of our project is to bring the first full life cycle to the moon: to demonstrate germination of plants in lunar gravity and radiation.The Moon Express...

  1. Protecting the Moon for research: ILEWG report

    Science.gov (United States)

    Foing, Bernard H.

    We give a report on recommendations with emphasis on environment protection, and since last COSPAR from ILEWG International conferences Exploration and Utilisation of the Moon on held at Cape Canaveral in 2008 (ICEUM10), and in Beijing in May 2010 with IAF (GLUC -ICEUM11). We discuss the different rationale for Moon exploration, as debated at ILEWG. ILEWG Science task group has listed priorities for scientific investigations: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), records astrobiology, survival of organics; past, present and future life; sciences from a biology lunar laboratory. We discuss how to preserve Moon research potential in these areas while operating with instruments, landers, rover during a cooperative robotic village, and during the transition form lunar human outpost to permanent sustainable human base. We discuss how Moon-Mars Exploration can inspire solutions to global Earth sustained development with the trade-off of In-Situ Utilisation of resources; Establishment of permanent robotic infrastructures, Environmental and planetary protection aspects and lessons for Mars; Life sciences laboratories, and support to human exploration. Co-authors: ILEWG Task Groups on Science, Technology and Human Lunar Bases ILEWG Reference documents: http://sci.esa.int/ilewg -10th ILEWG Conference on Exploration and Utilisation of the Moon, NASA Lunar Ex-ploration Analysis Group-PSace Resources Roundtable, Cape Canaveral October 2008, pro-gramme online at http://sci.esa.int/ilewg/ -9th ILEWG Conference on Exploration and Utilisation of the Moon, ICEUM9 Sorrento 2007, programme online at http://sci.esa.int/ilewg/ -8th ILEWG Conference on Exploration and Utilisation of the Moon, Beijing July 2006, programme online at http://sci.esa.int/ilewg/ -The Moon and Near Earth Objects (P. Ehrenfreund , B.H. Foing, A

  2. GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation

    Science.gov (United States)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-01-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the

  3. GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation

    Science.gov (United States)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon

  4. Did Triton Destroy Neptune's First Moons?

    Science.gov (United States)

    Kohler, Susanna

    2017-11-01

    Neptunes moon system is not what we would expect for a gas giant in our solar system. Scientists have now explored the possibility that Neptune started its life with an ordinary system of moons that was later destroyed by the capture of its current giant moon, Triton.An Odd SystemOur current understanding of giant-planet formation predicts a period of gas accretion to build up the large size of these planets. According to models, the circumplanetary gas disks that surround the planets during this time then become the birthplaces of the giant planets satellite systems, producing systems of co-planar and prograde (i.e., orbiting in the same direction as the planets rotation) satellites similar to the many-moon systems of Jupiter or Saturn.Tritons orbit is tilted relative to the inner Neptunian satellite orbits. [NASA, ESA, and A. Feild (STScI)]Neptune, however, is quirky. This gas giant has surprisingly few satellites only 14 compared to, say, the nearly 70 moons of Jupiter and most of them are extremely small. One of Neptunes moons is an exception to this, however: Triton, which contains 99.7% of the mass of Neptunes entire satellite system!Tritons orbit has a number of unusual properties. The orbit is retrograde Triton orbits in the opposite direction as Neptunes rotation which is unique behavior among large moons in our solar system. Tritons orbit is also highly inclined, and yet the moons path is nearly circular and lies very close to Neptune.The distribution of impact velocities in the authors simulations for primordial satellite interactions with Triton, in three cases of different satellite mass ratios. In the low-mass case a third of the mass ratio of the Uranian satellite system 88% of simulations ended with Triton surviving on its high-inclination orbit. The survival rate was only 12% in the high-mass case. [Adapted from Rufu et al. 2017]How did this monster of a satellite get its strange properties, and why is Neptunes system so odd compared to what we

  5. More Saturnian Moons

    Science.gov (United States)

    2000-10-01

    Saturn takes the lead Following the discovery of at least four additional moons of that planet, Saturn has again taken the lead as the planet with the greatest number of known natural satellites. A corresponding announcement was made today by an international team of astronomers [1] at a meeting of the Division for Planetary Sciences (DPS) of the American Astronomical Society (AAS) in Pasadena (California, USA). The four new faint bodies were spotted during observations in August-September 2000 at several astronomical telescopes around the world. Subsequent orbital calculations have indicated that these objects are almost certainly new satellites of the giant planet. Two Saturnian moons found at La Silla ESO PR Photo 29a/00 ESO PR Photo 29a/00 [Preview - JPEG: 263 x 400 pix - 26k] [Normal - JPEG: 525 x 800 pix - 93k] ESO PR Photo 29b/00 ESO PR Photo 29b/00 [Preview - JPG: 289 x 400 pix - 43k] [Normal - JPG: 578 x 800 pix - 432k] ESO PR Photo 29c/00 ESO PR Photo 29c/00 [Animated GIF: 330 x 400 pix - 208k] Captions : The photos show the discovery images of two new Saturnian moons, as registered on August 7, 2000, with the Wide-Field Imager (WFI) camera at the MPG/ESO 2.2-m telescope at the La Silla Observatory. Photo PR 29a/00 displays the faint image of the newly discovered moon S/2000 S 1 in the lower right corner of the field. A spiral galaxy is seen in the upper left corner of this photo. The other objects are (background) stars in the Milky Way. Photo PR 29b/00 is a combination of three successive WFI exposures of the second moon, S/2000 S 2 . Because of its motion, there are three images (to the left). Photo PR 29c/00 is an animated GIF image of the same three exposures that demonstrates this motion. Technical details are found below. The observations of the first two objects are described on a Circular of the International Astronomical Union (IAU) that was issued today [2]. The images of these new moons were first registered on exposures made on August 7, 2000

  6. An Alternative view of Earth's Tectonics : The Moon's explosive origin out of SE Asia.

    Science.gov (United States)

    Coleman, P. F.

    2017-12-01

    A lunar birth scar is typically considered untenable, under the standard paradigm (GTS-4.6-0 Ga, Giant Impact/Plate Tectonics), since it would have been erased by a combination of Wilson recycling, and erosion. This paradigm, while supported by robust, absolute dating, is still provisional, and, like all scientifc paradigms, is nonetheless open to refutation. It cannot, a priori, rule out such a scar. If empirical evidence were to be discovered, in favor of a lunar birthmark, it would have profound implications for the standard view. Coleman (2015) proposed an alternative paradigm based on an internal explosion of Proto-Earth (PE) that ejected the Moon into orbit and left coeval global signatures, such as; ocean-continent antipodality, the global geoid, origin of water, continents, trenches, fault lines, LIPs, hotspots, seamount chains, from the high TP shock/seismic waves. The abrupt deceleration also led to inertial effects of PE's crustal layers, possibly explaining subduction/obduction and fold and thrust fold belts. One major, first order, line of evidence is the actual fission signature ( 4000+ km long) where the Moon was explosively thrust tangentially (to the core) through ductile mantle (see Fig B) to escape into orbit. The proposed path, (locus Moon's center) is from (0°, 78.5°E) (Fig A), near present day India, to (+14.4°, 119°E) out of SE Asia (See Fig C). Possible evidence in favor of this path (but not limited to) include: the Indian Geoid Anomaly Low ( Moon's exhumation?), the Himalayas and Tibetan Plateau (generated by the Moon's NE collisional movement and temporary hole and mantle rebound), SE Asia with many minor plates and back arc basins ( the Moon's exit zone), the East African Rifts (EARs) form a NE-directed pull apart region (explained as a set explosive crustal fragments or "plates") moving towards this relic unconsolidated Asian sink hole (See Fig D). The existence of a fossilised lunar birth points to a recent Earth-Moon, since

  7. A soft X-ray image of the Moon

    International Nuclear Information System (INIS)

    Schmitt, J.H.M.M.; Aschenbach, B.; Hasinger, G.; Pfeffermann, E.; Predehl, P.; Truemper, J.; Snowden, S.L.; Wisconsin Univ., Madison, WI

    1991-01-01

    A soft X-ray image of the Moon obtained by the Roentgen Observatory Satellite ROSAT clearly shows a sunlit crescent, demonstrating that the Moon's X-ray luminosity arises from backscattering of solar X-rays. The Moon's optically dark side is also X-ray dark, and casts a distinct shadow on the diffuse cosmic X-ray background. Unexpectedly, the dark side seems to emit X-rays at a level about one per cent that of the bright side; this emission very probably results from energetic solar-wind electrons striking the Moon's surface. (author)

  8. Tracking Apollo to the Moon

    CERN Document Server

    Lindsay, Hamish

    2001-01-01

    This is perhaps the most complete, detailed and readable story of manned space-flight ever published Beginning with the historical origins of the dream of walking on the Moon, Tracking Apollo to the Moon is the complete story of manned spaceflight, from the earliest Mercury and Gemini flights through to the end of the Apollo era In readable, fascinating detail, Hamish Lindsay - who was directly involved in all three programs - chronicles mankind's greatest adventure with a great narrative, interviews, quotes and masses of photographs, including some previously unpublished As well as bringing the history of these missions to life Tracking Apollo to the Moon serves as a detailed reference for space enthusiasts and students Having seen the manuscript, the Smithsonian requested two copies of the finished book, and Buzz Aldrin asked for five!

  9. Moon Prospective Energy and Material Resources

    CERN Document Server

    2012-01-01

    The Earth has limited material and energy resources. Further development of the humanity will require going beyond our planet for mining and use of extraterrestrial mineral resources and search of power sources. The exploitation of the natural resources of the Moon is a first natural step on this direction. Lunar materials may contribute to the betterment of conditions of people on Earth but they also may be used to establish permanent settlements on the Moon. This will allow developing new technologies, systems and flight operation techniques to continue space exploration.   In fact, a new branch of human civilization could be established permanently on Moon in the next century. But, meantime, an inventory and proper social assessment of Moon’s prospective energy and material resources is required. This book investigates the possibilities and limitations of various systems supplying manned bases on Moon with energy and other vital resources. The book collects together recent proposals and innovative optio...

  10. Survival of extrasolar giant planet moons in planet-planet scattering

    Science.gov (United States)

    CIAN HONG, YU; Lunine, Jonathan; Nicholson, Phillip; Raymond, Sean

    2015-12-01

    Planet-planet scattering is the best candidate mechanism for explaining the eccentricity distribution of exoplanets. Here we study the survival and dynamics of exomoons under strong perturbations during giant planet scattering. During close encounters, planets and moons exchange orbital angular momentum and energy. The most common outcomes are the destruction of moons by ejection from the system, collision with the planets and the star, and scattering of moons onto perturbed but still planet-bound orbits. A small percentage of interesting moons can remain bound to ejected (free-floating) planets or be captured by a different planet. Moons' survival rate is correlated with planet observables such as mass, semi-major axis, eccentricity and inclination, as well as the close encounter distance and the number of close encounters. In addition, moons' survival rate and dynamical outcomes are predetermined by the moons' initial semi-major axes. The survival rate drops quickly as moons' distances increase, but simulations predict a good chance of survival for the Galilean moons. Moons with different dynamical outcomes occupy different regions of orbital parameter space, which may enable the study of moons' past evolution. Potential effects of planet obliquity evolution caused by close encounters on the satellites’ stability and dynamics will be reported, as well as detailed and systematic studies of individual close encounter events.

  11. Overview of Cell Synchronization.

    Science.gov (United States)

    Banfalvi, Gaspar

    2017-01-01

    The widespread interest in cell synchronization is maintained by the studies of control mechanism involved in cell cycle regulation. During the synchronization distinct subpopulations of cells are obtained representing different stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cycle at the level of macromolecular biosynthesis (DNA synthesis, gene expression, protein synthesis), protein phosphorylation, development of new drugs, etc. Although several synchronization methods have been described, it is of general interest that scientists get a compilation and an updated view of these synchronization techniques. This introductory chapter summarizes: (1) the basic concepts and principal criteria of cell cycle synchronizations, (2) the most frequently used synchronization methods, such as physical fractionation (flow cytometry, dielectrophoresis, cytofluorometric purification), chemical blockade, (3) synchronization of embryonic cells, (4) synchronization at low temperature, (5) comparison of cell synchrony techniques, (6) synchronization of unicellular organisms, and (7) the effect of synchronization on transfection.

  12. Radio astronomy on the moon

    International Nuclear Information System (INIS)

    Burns, J.O.; Asbell, J.

    1987-01-01

    The advantages and opportunities for radio astronomy on the moon during the early to mid 21st century are reviewed. In particular, it is argued that the lack of atmosphere, the extremely low seismic activity, the low RF background, and the natural cryogenic environment make the moon (particularly the far side and the poles) a nearly ideal locale for submillimeter/FIR to VLF (below 10 MHz) radio astronomy. 22 references

  13. A New Moon for the Twenty-First Century

    Science.gov (United States)

    Taylor, G. J.

    2000-08-01

    Thirty years of lunar sample studies supplemented by spotty remote sensing and geophysical data gave us the broad outline of the nature and geologic history of the Moon. Many cherished beliefs are now being questioned on the basis of global data returned by two bargain-basement missions sent to the Moon in the 1990s, Clementine and Lunar Prospector. These data are being integrated with new and old lunar sample data, to give us new, though still controversial, ideas about the nature of the Moon. Two articles in a special section of the Journal of Geophysical Research (Planets) illustrate the point. Brad Jolliff and his colleagues at Washington University in St. Louis, Jeff Gillis, Larry Haskin, Randy Korotev, and Mark Wieczorek (now at the Massachusetts Institute of Technology) divide the Moon's crust into distinct geochemical provinces quite different from the traditional highlands (or terra) and maria. In a separate paper, Randy Korotev presents a detailed analysis of a common rock type among the samples returned by the Apollo missions. This rock type, nicknamed enigmatically "LKFM," was thought by many of us to represent the composition of the lower crust everywhere on the Moon. Korotev argues that it is confined to only one of Jolliff's provinces. If correct, this changes our estimates of the composition of the lunar crust, hence of the entire Moon. Although other lunar scientists will scrutinize these new views of the Moon, it is clear that some long-held ideas about the Moon might be modified significantly, if not tossed out completely.

  14. sanghoon moon

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. SANGHOON MOON. Articles written in Journal of Genetics. Volume 96 Issue 6 December 2017 pp 1041-1046 Research article. Genome-based exome sequencing analysis identifies GYG1, DIS3L and DDRGK1 are associated with myocardial infarction in Koreans · JI-YOUNG LEE ...

  15. New type of chaos synchronization in discrete-time systems: the F-M synchronization

    Directory of Open Access Journals (Sweden)

    Ouannas Adel

    2018-04-01

    Full Text Available In this paper, a new type of synchronization for chaotic (hyperchaotic maps with different dimensions is proposed. The novel scheme is called F – M synchronization, since it combines the inverse generalized synchronization (based on a functional relationship F with the matrix projective synchronization (based on a matrix M. In particular, the proposed approach enables F – M synchronization with index d to be achieved between n-dimensional drive system map and m-dimensional response system map, where the synchronization index d corresponds to the dimension of the synchronization error. The technique, which exploits nonlinear controllers and Lyapunov stability theory, proves to be effective in achieving the F – M synchronization not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m. Finally, simulation results are reported, with the aim to illustrate the capabilities of the novel scheme proposed herein.

  16. New type of chaos synchronization in discrete-time systems: the F-M synchronization

    Science.gov (United States)

    Ouannas, Adel; Grassi, Giuseppe; Karouma, Abdulrahman; Ziar, Toufik; Wang, Xiong; Pham, Viet-Thanh

    2018-04-01

    In this paper, a new type of synchronization for chaotic (hyperchaotic) maps with different dimensions is proposed. The novel scheme is called F - M synchronization, since it combines the inverse generalized synchronization (based on a functional relationship F) with the matrix projective synchronization (based on a matrix M). In particular, the proposed approach enables F - M synchronization with index d to be achieved between n-dimensional drive system map and m-dimensional response system map, where the synchronization index d corresponds to the dimension of the synchronization error. The technique, which exploits nonlinear controllers and Lyapunov stability theory, proves to be effective in achieving the F - M synchronization not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m. Finally, simulation results are reported, with the aim to illustrate the capabilities of the novel scheme proposed herein.

  17. The Moon: Resources, Future Development and Colonization

    Science.gov (United States)

    Schrunk, David; Sharpe, Burton; Cooper, Bonnie; Thangavelu, Madhu

    1999-07-01

    This unique, visionary and innovative book describes how the Moon could be colonised and developed as a platform for science, industrialization and exploration of our Solar System and beyond. Thirty years ago, the world waited with baited breath to watch history in the making, as man finally stepped onto the moon's surface. In the last few years, there has been growing interest in the idea of a return to the moon. This book describes the reasons why we should now start lunar development and settlement, and how this goal may be accomplished. The authors, all of whom are hugely experienced space scientists, consider the rationale and steps necessary for establishing permanent bases on the Moon. Their innovative and scientific-based analysis concludes that the Moon has sufficient resources for large-scale human development. Their case for development includes arguments for a solar-powered electric grid and railroad, creation of a utilities infrastructure, habitable facilities, scientific operations and the involvement of private enterprise with the public sector in the macroproject. By transferring and adapting existing technologies to the lunar environment, the authors argue that it will be possible to use lunar resources and solar power to build a global lunar infrastructure embracing power, communication, transportation, and manufacturing. This will support the migration of increasing numbers of people from Earth, and realization of the Moon's scientific potential. As an inhabited world, the Moon is an ideal site for scientific laboratories dedicated to geosciences, astronomy and life sciences, and most importantly, it would fulfil a role as a proving ground and launch pad for future Solar System exploration. The ten chapters in this book go beyond the theoretical and conceptual. With vision and foresight, the authors offer practical means for establishing permanent bases on the Moon. The book will make fascinating and stimulating reading for students in

  18. Lunar and Planetary Science XXXV: Moon and Mercury

    Science.gov (United States)

    2004-01-01

    The session" Moon and Mercury" included the following reports:Helium Production of Prompt Neutrinos on the Moon; Vapor Deposition and Solar Wind Implantation on Lunar Soil-Grain Surfaces as Comparable Processes; A New Lunar Geologic Mapping Program; Physical Backgrounds to Measure Instantaneous Spin Components of Terrestrial Planets from Earth with Arcsecond Accuracy; Preliminary Findings of a Study of the Lunar Global Megaregolith; Maps Characterizing the Lunar Regolith Maturity; Probable Model of Anomalies in the Polar Regions of Mercury; Parameters of the Maximum of Positive Polarization of the Moon; Database Structure Development for Space Surveying Results by Moon -Zond Program; CM2-type Micrometeoritic Lunar Winds During the Late Heavy Bombardment; A Comparison of Textural and Chemical Features of Spinel Within Lunar Mare Basalts; The Reiner Gamma Formation as Characterized by Earth-based Photometry at Large Phase Angles; The Significance of the Geometries of Linear Graben for the Widths of Shallow Dike Intrusions on the Moon; Lunar Prospector Data, Surface Roughness and IR Thermal Emission of the Moon; The Influence of a Magma Ocean on the Lunar Global Stress Field Due to Tidal Interaction Between the Earth and Moon; Variations of the Mercurian Photometric Relief; A Model of Positive Polarization of Regolith; Ground Truth and Lunar Global Thorium Map Calibration: Are We There Yet?;and Space Weathering of Apollo 16 Sample 62255: Lunar Rocks as Witness Plates for Deciphering Regolith Formation Processes.

  19. On Synchronization Primitive Systems.

    Science.gov (United States)

    The report studies the question: what synchronization primitive should be used to handle inter-process communication. A formal model is presented...between these synchronization primitives. Although only four synchronization primitives are compared, the general methods can be used to compare other... synchronization primitives. Moreover, in the definitions of these synchronization primitives, conditional branches are explicitly allowed. In addition

  20. MIGRATION OF SMALL MOONS IN SATURN's RINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-02-20

    The motions of small moons through Saturn's rings provide excellent tests of radial migration models. In theory, torque exchange between these moons and ring particles leads to radial drift. We predict that moons with Hill radii r {sub H} {approx} 2-24 km should migrate through the A ring in 1000 yr. In this size range, moons orbiting in an empty gap or in a full ring eventually migrate at the same rate. Smaller moons or moonlets-such as the propellers-are trapped by diffusion of disk material into corotating orbits, creating inertial drag. Larger moons-such as Pan or Atlas-do not migrate because of their own inertia. Fast migration of 2-24 km moons should eliminate intermediate-size bodies from the A ring and may be responsible for the observed large-radius cutoff of r {sub H} {approx} 1-2 km in the size distribution of the A ring's propeller moonlets. Although the presence of Daphnis (r {sub H} Almost-Equal-To 5 km) inside the Keeler gap challenges this scenario, numerical simulations demonstrate that orbital resonances and stirring by distant, larger moons (e.g., Mimas) may be important factors. For Daphnis, stirring by distant moons seems the most promising mechanism to halt fast migration. Alternatively, Daphnis may be a recent addition to the ring that is settling into a low inclination orbit in {approx}10{sup 3} yr prior to a phase of rapid migration. We provide predictions of observational constraints required to discriminate among possible scenarios for Daphnis.

  1. GRAVITY ANOMALIES OF THE MOON

    Directory of Open Access Journals (Sweden)

    S. G. Pugacheva

    2015-01-01

    Full Text Available The source of gravity anomalies of the Moon are large mascons with a high mass concentration at a depth of volcanic plains and lunar Maria. New data on the gravitational field of the Moon were obtained from two Grail spacecrafts. The article presents the data of physical and mechanical properties of the surface soil layer of the lunar Maria and gives an assessment of the chemical composition of the soil. There have been calculated heterogeneity parameters of the surface macro-relief of the lunar Maria: albedo, soil density, average grain diameter of the particles forming the surface layer and the volume fraction occupied by particles. It can be assumed that mascons include rich KREEP rocks with a high content of thorium and iron oxide. Formation of mascons is connected with intensive development of basaltic volcanism on the Moon in the early periods of its existence.

  2. Stages of chaotic synchronization.

    Science.gov (United States)

    Tang, D. Y.; Dykstra, R.; Hamilton, M. W.; Heckenberg, N. R.

    1998-09-01

    In an experimental investigation of the response of a chaotic system to a chaotic driving force, we have observed synchronization of chaos of the response system in the forms of generalized synchronization, phase synchronization, and lag synchronization to the driving signal. In this paper we compare the features of these forms of synchronized chaos and study their relations and physical origins. We found that different forms of chaotic synchronization could be interpreted as different stages of nonlinear interaction between the coupled chaotic systems. (c) 1998 American Institute of Physics.

  3. Synchronous ethernet and IEEE 1588 in telecoms next generation synchronization networks

    CERN Document Server

    2013-01-01

    This book addresses the multiple technical aspects of the distribution of synchronization in new generation telecommunication networks, focusing in particular on synchronous Ethernet and IEEE1588 technologies. Many packet network engineers struggle with understanding the challenges that precise synchronization distribution can impose on networks. The usual “why”, “when” and particularly “how” can cause problems for many engineers. In parallel to this, some other markets have identical synchronization requirements, but with their own design requirements, generating further questions. This book attempts to respond to the different questions by providing background technical information. Invaluable information on state of-the-art packet network synchronization and timing architectures is provided, as well as an unbiased view on the synchronization technologies that have been internationally standardized over recent years, with the aim of providing the average reader (who is not skilled in the art) wi...

  4. The Moon's Moment in the Sun - Extending Public Engagement after the Total Solar Eclipse with International Observe the Moon Night

    Science.gov (United States)

    Bleacher, L.; Jones, A. P.; Wasser, M. L.; Petro, N. E.; Wright, E. T.; Ladd, D.; Keller, J. W.

    2017-12-01

    2017 presented an amazing opportunity to engage the public in learning about lunar and space science, the motions of the Earth-Moon-Sun system, and NASA's fleet of space missions, beginning with the 2017 total solar eclipse on 21 August and continuing with International Observe the Moon Night (InOMN) on 28 October. On 21 August 2017, everyone in the continental United States had the opportunity to witness a solar eclipse, weather permitting, in total or partial form. The path of totality, in which the Sun was completely obscured from view by the Moon, stretched from Oregon to South Carolina. The Education and Communication Team of NASA's Lunar Reconnaissance Orbiter (LRO) worked to highlight the Moon, the "central player" in the total solar eclipse, in a variety of ways for the public. Efforts included collaborating with Minor League Baseball teams to host eclipse-viewing events along the path of totality, communicating the Moon's role in the eclipse through public engagement products, communicating about InOMN as an experiential opportunity beyond the eclipse, and more. InOMN is an annual event, during which everyone on Earth is invited to observe and learn about the Moon and its connection to planetary science, and to share personal and community connections we all have to the Moon [2, 3, 4 and references therein]. For viewers across the United States, the total solar eclipse of 21 August provided an exciting opportunity to watch a New Moon cross in front of the Sun, casting the viewer in shadow and providing amazing views of the solar corona. The public observed the Moon in a different part of its orbit, when reflected sunlight revealed a fascinating lunar landscape - and extended their excitement for space science - by participating in InOMN on 28 October. With InOMN taking place barely two months after the total solar eclipse, it offered an opportunity to sustain and grow public interest in lunar and space science generated by the eclipse. We will report on

  5. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Discussion of the nature, origin and role of the intercrater plains of Mercury and the Moon. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    The nature and origin of the intercrater plains of Mercury and the Moon as determined through geologic mapping, crater statistics, and remotely sensed data are summarized. Implications of these results regarding scarp formation, absolute ages, and terrestrial planet surfaces are included. The role of the intercrater plains is defined and future work which might lead to a better understanding of these units and terrestrial planet evolution is outlined.

  6. Moon 101: Introducing Students to Lunar Science and Exploration

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2011-12-01

    Moon 101 is designed with the purpose of familiarizing students with lunar geology and exploration. Armed with guiding questions, students read articles covering various lunar science topics and browse images from past and current lunar missions to familiarize themselves with available lunar data sets. Moon 101 was originally created for high school students preparing to conduct open-inquiry, lunar research. Most high school students' knowledge of lunar science is limited to lunar phases and tides, and their knowledge of lunar exploration is close to non-existent. Moon 101 provides a summary of the state of knowledge of the Moon's formation and evolution, and the exploration that has helped inform the lunar science community. Though designed for high school students, Moon 101 is highly appropriate for the undergraduate classroom, especially at the introductory level where resources for teaching lunar science are scarce. Moon 101 is comprised of two sections covering lunar science (formation and geologic evolution of the Moon) and one section covering lunar exploration. Students read information on the formation and geologic evolution of the Moon from sources such as the Planetary Science Research Discoveries (PSRD) website and the USGS professional paper A Geologic History of the Moon by Wilhelms. While these resources are not peer-reviewed journals, the information is presented at a level more advanced than articles from newspapers and popular science magazines. This ensures that the language is accessible to students who do not have a strong lunar/planetary science background, or a strong science background in general. Formation readings include information on older and current formation hypotheses, including the Giant Impact Hypothesis, the Magma Ocean hypothesis, and the age of the lunar crust. Lunar evolution articles describe ideas such as the Late Heavy Bombardment and geologic processes such as volcanism and impact cratering. After reading the articles

  7. Impulsive Synchronization and Adaptive-Impulsive Synchronization of a Novel Financial Hyperchaotic System

    Directory of Open Access Journals (Sweden)

    Xiuli Chai

    2013-01-01

    Full Text Available The impulsive synchronization and adaptive-impulsive synchronization of a novel financial hyperchaotic system are investigated. Based on comparing principle for impulsive functional differential equations, several sufficient conditions for impulsive synchronization are derived, and the upper bounds of impulsive interval for stable synchronization are estimated. Furthermore, a nonlinear adaptive-impulsive control scheme is designed to synchronize the financial system using invariant principle of impulsive dynamical systems. Moreover, corresponding numerical simulations are presented to illustrate the effectiveness and feasibility of the proposed methods.

  8. The Moon is a Planet Too: Lunar Science and Robotic Exploration

    Science.gov (United States)

    Cohen, Barbara A.

    2009-01-01

    This slide presentation reviews some of what is known about the moon, and draws parallels between the moon and any other terrestrial planet. The Moon is a cornerstone for all rocky planets The Moon is a terrestrial body, formed and evolved similarly to Earth, Mars, Mercury, Venus, and large asteroids The Moon is a differentiated body, with a layered internal structure (crust, mantle, and core) The Moon is a cratered body, preserving a record of bombardment history in the inner solar system The Moon is an active body, experiencing moonquakes, releasing primordial heat, conducting electricity, sustaining bombardment, and trapping volatile molecules Lunar robotic missions provide early science return to obtain important science and engineering objectives, rebuild a lunar science community, and keep our eyes on the Moon. These lunar missions, both past and future are reviewed.

  9. Nystagmus in Laurence-Moon-Biedl Syndrome

    Directory of Open Access Journals (Sweden)

    A. Bruce Janati

    2015-01-01

    Full Text Available Introduction. Laurence-Moon-Biedl (LMB syndrome is a rare autosomal-recessive ciliopathy with manifold symptomatology. The cardinal clinical features include retinitis pigmentosa, obesity, intellectual delay, polydactyly/syndactyly, and hypogenitalism. In this paper, the authors report on three siblings with Laurence-Moon-Biedl syndrome associated with a probable pseudocycloid form of congenital nystagmus. Methods. This was a case study conducted at King Khaled Hospital. Results. The authors assert that the nystagmus in Laurence-Moon-Biedl syndrome is essentially similar to idiopathic motor-defect nystagmus and the nystagmus seen in optic nerve hypoplasia, ocular albinism, and bilateral opacities of the ocular media. Conclusion. The data support the previous hypothesis that there is a common brain stem motor abnormality in sensory-defect and motor-defect nystagmus.

  10. Global effects of moon phase on nocturnal acoustic scattering layers

    KAUST Repository

    Prihartato, Perdana; Irigoien, Xabier; Genton, Marc G.; Kaartvedt, Stein

    2016-01-01

    © Inter-Research 2016. The impact of moon phase on the global nocturnal vertical distribution of acoustic scattering layers (SLs) in the upper 200 m was studied during the Malaspina expedition that circumnavigated the world. We assessed the nocturnal weighted mean depths and the vertical extension of the SL (the range between the upper 25th percentile and lower 75th percentile of the backscatter) and used a generalized additive model to reveal the relationship between the nocturnal vertical distribution of the SL and moon phase, as well as other environmental factors. Moon phase significantly affected the SL distribution on a global scale, in contrast to other factors such as dissolved oxygen, temperature and fluorescence, which each correlated with nocturnal SL distribution during the large geographic coverage. Full moon caused a deepening effect on the nocturnal SL. Contrary to expectations, the shallowest distribution was not observed during the darkest nights (new moon) and there was no difference in vertical distribution between new moon and intermediate moon phases. We conclude that the trend of deepening SL during approximately full moon (bright nights) is a global phenomenon related to anti-predator behavior.

  11. Global effects of moon phase on nocturnal acoustic scattering layers

    KAUST Repository

    Prihartato, PK

    2016-01-18

    © Inter-Research 2016. The impact of moon phase on the global nocturnal vertical distribution of acoustic scattering layers (SLs) in the upper 200 m was studied during the Malaspina expedition that circumnavigated the world. We assessed the nocturnal weighted mean depths and the vertical extension of the SL (the range between the upper 25th percentile and lower 75th percentile of the backscatter) and used a generalized additive model to reveal the relationship between the nocturnal vertical distribution of the SL and moon phase, as well as other environmental factors. Moon phase significantly affected the SL distribution on a global scale, in contrast to other factors such as dissolved oxygen, temperature and fluorescence, which each correlated with nocturnal SL distribution during the large geographic coverage. Full moon caused a deepening effect on the nocturnal SL. Contrary to expectations, the shallowest distribution was not observed during the darkest nights (new moon) and there was no difference in vertical distribution between new moon and intermediate moon phases. We conclude that the trend of deepening SL during approximately full moon (bright nights) is a global phenomenon related to anti-predator behavior.

  12. Optimal autaptic and synaptic delays enhanced synchronization transitions induced by each other in Newman–Watts neuronal networks

    International Nuclear Information System (INIS)

    Wang, Baoying; Gong, Yubing; Xie, Huijuan; Wang, Qi

    2016-01-01

    Highlights: • Optimal autaptic delay enhanced synchronization transitions induced by synaptic delay in neuronal networks. • Optimal synaptic delay enhanced synchronization transitions induced by autaptic delay. • Optimal coupling strength enhanced synchronization transitions induced by autaptic or synaptic delay. - Abstract: In this paper, we numerically study the effect of electrical autaptic and synaptic delays on synchronization transitions induced by each other in Newman–Watts Hodgkin–Huxley neuronal networks. It is found that the synchronization transitions induced by synaptic delay vary with varying autaptic delay and become strongest when autaptic delay is optimal. Similarly, the synchronization transitions induced by autaptic delay vary with varying synaptic delay and become strongest at optimal synaptic delay. Also, there is optimal coupling strength by which the synchronization transitions induced by either synaptic or autaptic delay become strongest. These results show that electrical autaptic and synaptic delays can enhance synchronization transitions induced by each other in the neuronal networks. This implies that electrical autaptic and synaptic delays can cooperate with each other and more efficiently regulate the synchrony state of the neuronal networks. These findings could find potential implications for the information transmission in neural systems.

  13. The evolution of the Earth-Moon system

    International Nuclear Information System (INIS)

    Finch, D.G.

    1982-01-01

    The tidally-induced couple acting on the Moon, due to friction between the oceans and their beds, is calculated as a function of the Earth-Moon separation. The function is found to be proportional to 1 +d/R 3 , and not the previously used 1/R 6 . By use of this new function it is found that the present rate of lunar recession gives an acceptable history for the system if it is assumed the Moon was initially in a close geo-stationary orbit 4 billion years ago, when perturbed by the condensation of the Earth's core. (Auth.)

  14. Working Memory and Auditory Imagery Predict Sensorimotor Synchronization with Expressively Timed Music.

    Science.gov (United States)

    Colley, Ian D; Keller, Peter E; Halpern, Andrea R

    2017-08-11

    Sensorimotor synchronization (SMS) is prevalent and readily studied in musical settings, as most people are able to perceive and synchronize with a beat (e.g. by finger tapping). We took an individual differences approach to understanding SMS to real music characterized by expressive timing (i.e. fluctuating beat regularity). Given the dynamic nature of SMS, we hypothesized that individual differences in working memory and auditory imagery-both fluid cognitive processes-would predict SMS at two levels: 1) mean absolute asynchrony (a measure of synchronization error), and 2) anticipatory timing (i.e. predicting, rather than reacting to beat intervals). In Experiment 1, participants completed two working memory tasks, four auditory imagery tasks, and an SMS-tapping task. Hierarchical regression models were used to predict SMS performance, with results showing dissociations among imagery types in relation to mean absolute asynchrony, and evidence of a role for working memory in anticipatory timing. In Experiment 2, a new sample of participants completed an expressive timing perception task to examine the role of imagery in perception without action. Results suggest that imagery vividness is important for perceiving and control is important for synchronizing with, irregular but ecologically valid musical time series. Working memory is implicated in synchronizing by anticipating events in the series.

  15. Pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions

    International Nuclear Information System (INIS)

    Yan-Li, Zou; Guan-Rong, Chen

    2009-01-01

    This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the controlled network to an extended network of N+1 nodes without controls. It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded. Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded, but it has a critical value when the synchronized region is bounded. In the former case, therefore, it is possible to control the network to achieve synchronization by pinning only one node. In the latter case, the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value. (general)

  16. Inter-subject synchronization of brain responses during natural music listening

    Science.gov (United States)

    Abrams, Daniel A.; Ryali, Srikanth; Chen, Tianwen; Chordia, Parag; Khouzam, Amirah; Levitin, Daniel J.; Menon, Vinod

    2015-01-01

    Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real-world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. PMID:23578016

  17. Effects of irradiation on hygiene quality of moon cake

    International Nuclear Information System (INIS)

    Zhang Fengjiao; Chen Bin; Guo Yaping; Gao Meixu; Li Haipeng; Sun Baozhong

    2007-01-01

    To explore the influence of controllable conditions with different doses of irradiation and store time on the safe and the quality of Moon Cake, the indexes including peroxide value, acid value, mould, coli group coliform group, total numbers of colony and taste of Moon Cake were concerned about. The results show that the peroxide value were increased and acid value were decreased gradually with the increased value of 60 Co γ-irradiation. Meanwhile, the microorganism growth in the moon cake were controlled. It is concluded that the taste of Moon Cake was not changed and the shelf life of ones were prolonged by 3 months when doses of irradiation was 8 kGy, in addition, Tea-polyphenols could prevent the lipid in Moon Cake from lipid oxidation effectively. (authors)

  18. Simulating the Phases of the Moon Shortly after Its Formation

    Science.gov (United States)

    Noordeh, Emil; Hall, Patrick; Cuk, Matija

    2014-01-01

    The leading theory for the origin of the Moon is the giant impact hypothesis, in which the Moon was formed out of the debris left over from the collision of a Mars sized body with the Earth. Soon after its formation, the orbit of the Moon may have been very different than it is today. We have simulated the phases of the Moon in a model for its…

  19. V, Cr, and Mn in the Earth, Moon, EPB, and SPB and the origin of the Moon: Experimental studies

    International Nuclear Information System (INIS)

    Drake, M.J.; Capobianco, C.J.; Newsom, H.E.

    1989-01-01

    The abundances of V, Cr, and Mn inferred for the mantles of the Earth and Moon decrease in that order and are similar, but are distinct from those inferred for the mantles of the Eucrite Parent Body (EPB) and Shergottite Parent Body (SPB). This similarity between Earth and Moon has been used to suggest that the Moon is derived substantially or entirely from Earth mantle material following terrestrial core formation. To test this hypothesis, the authors have determined the partitioning of V, Cr, and Mn between solid iron metal, S-rich metallic liquid, and synthetic basaltic silicate liquid at 1,260 degree C and one bar pressure. The sequence of compatibility in the metallic phases is Cr > V > Mn at high oxygen fugacity and V > Cr > Mn at low oxygen fugacities. Solubilities in liquid metal always exceed solubilities in solid metal. These partition coefficients suggest that the abundances of V, Cr, and Mn do not reflect core formation in the Earth. Rather, they are consistent with the relative volatilities of these elements. The similarity in the depletion patterns of V, Cr, and Mn inferred for the mantles of the Earth and Moon is a necessary, but not sufficient, condition for the Moon to have been derived wholly or in part from the Earth's mantle

  20. Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants.

    Science.gov (United States)

    Wamelink, G W Wieger; Frissel, Joep Y; Krijnen, Wilfred H J; Verwoert, M Rinie; Goedhart, Paul W

    2014-01-01

    When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant); the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils.

  1. Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants.

    Directory of Open Access Journals (Sweden)

    G W Wieger Wamelink

    Full Text Available When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant; the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils.

  2. Launching to the Moon, Mars, and Beyond

    Science.gov (United States)

    Sumrall, John P.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission today, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. Unlike the Apollo program of the 1960s, this phase of exploration will be a journey, not a race. In 1966, the NASA's budget was 4 percent of federal spending. Today, with 6/10 of 1 percent of the budget, NASA must incrementally develop the vehicles, infrastructure, technology, and organization to accomplish this goal. Fortunately, our knowledge and experience are greater than they were 40 years ago. NASA's goal is a return to the Moon by 2020. The Moon is the first step to America's exploration of Mars. Many questions about the Moon's history and how its history is linked to that of Earth remain even after the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment. The Moon also will serve as a training ground in several respects before embarking on the longer, more perilous trip to Mars. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit on the Ares I and a second launch to orbit the lunar lander and the Earth Departure Stage to send the lander and crew vehicle to the Moon. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on proven hardware and decades of experience derived from

  3. Moon Phase as a Context for Teaching Scale Factor

    Science.gov (United States)

    Wallace, Ann; Dickerson, Daniel; Hopkins, Sara

    2007-01-01

    The Sun and the Moon are our most visible neighbors in space, yet their distance and size relative to the Earth are often misunderstood. Science textbooks fuel this misconception because they regularly depict linear images of Moon phases without respect to the actual sizes of the Sun, Earth, and Moon, nor their correlated distances from one…

  4. TRANSIT MODEL OF PLANETS WITH MOON AND RING SYSTEMS

    International Nuclear Information System (INIS)

    Tusnski, Luis Ricardo M.; Valio, Adriana

    2011-01-01

    Since the discovery of the first exoplanets, those most adequate for life to begin and evolve have been sought. Due to observational bias, however, most of the discovered planets so far are gas giants, precluding their habitability. However, if these hot Jupiters are located in the habitable zones of their host stars, and if rocky moons orbit them, then these moons may be habitable. In this work, we present a model for planetary transit simulation considering the presence of moons and planetary rings around a planet. The moon's orbit is considered to be circular and coplanar with the planetary orbit. The other physical and orbital parameters of the star, planet, moon, and rings can be adjusted in each simulation. It is possible to simulate as many successive transits as desired. Since the presence of spots on the surface of the star may produce a signal similar to that of the presence of a moon, our model also allows for the inclusion of starspots. The result of the simulation is a light curve with a planetary transit. White noise may also be added to the light curves to produce curves similar to those obtained by the CoRoT and Kepler space telescopes. The goal is to determine the criteria for detectability of moons and/or ring systems using photometry. The results show that it is possible to detect moons with radii as little as 1.3 R ⊕ with CoRoT and 0.3 R ⊕ with Kepler.

  5. Prosody and synchronization in cognitive neuroscience

    Directory of Open Access Journals (Sweden)

    Orsucci Franco

    2013-12-01

    Full Text Available We introduce our methodological study with a short review of the main literature on embodied language, including some recent studies in neuroscience. We investigated this component of natural language using Recurrence Quantification Analysis (RQA. RQA is a relatively new statistical methodology, particularly effective in complex systems. RQA provided a reliable quantitative description of recurrences in text sequences at the orthographic level. In order to provide examples of the potential impact of this methodology, we used RQA to measure structural coupling and synchronization in natural and clinical verbal interactions. Results show the efficacy of this methodology and possible implications.

  6. Synchronization on effective networks

    International Nuclear Information System (INIS)

    Zhou Tao; Zhao Ming; Zhou Changsong

    2010-01-01

    The study of network synchronization has attracted increasing attentionrecently. In this paper, we strictly define a class of networks, namely effective networks, which are synchronizable and orientable networks. We can prove that all the effective networks with the same size have the same spectra, and are of the best synchronizability according to the master stability analysis. However, it is found that the synchronization time for different effective networks can be quite different. Further analysis shows that the key ingredient affecting the synchronization time is the maximal depth of an effective network: the larger depth results in a longer synchronization time. The secondary factor is the number of links. The increasing number of links connecting nodes in the same layer (horizontal links) will lead to longer synchronization time, whereas the increasing number of links connecting nodes in neighboring layers (vertical links) will accelerate the synchronization. Our analysis of the relationship between the structure and synchronization properties of the original and effective networks shows that the purely directed effective network can provide an approximation of the original weighted network with normalized input strength. Our findings provide insights into the roles of depth, horizontal and vertical links in the synchronizing process, and suggest that the spectral analysis is helpful yet insufficient for the comprehensive understanding of network synchronization.

  7. Synchronization on effective networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tao [Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhao Ming [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhou Changsong, E-mail: cszhou@hkbu.edu.h [Department of Physics, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-04-15

    The study of network synchronization has attracted increasing attentionrecently. In this paper, we strictly define a class of networks, namely effective networks, which are synchronizable and orientable networks. We can prove that all the effective networks with the same size have the same spectra, and are of the best synchronizability according to the master stability analysis. However, it is found that the synchronization time for different effective networks can be quite different. Further analysis shows that the key ingredient affecting the synchronization time is the maximal depth of an effective network: the larger depth results in a longer synchronization time. The secondary factor is the number of links. The increasing number of links connecting nodes in the same layer (horizontal links) will lead to longer synchronization time, whereas the increasing number of links connecting nodes in neighboring layers (vertical links) will accelerate the synchronization. Our analysis of the relationship between the structure and synchronization properties of the original and effective networks shows that the purely directed effective network can provide an approximation of the original weighted network with normalized input strength. Our findings provide insights into the roles of depth, horizontal and vertical links in the synchronizing process, and suggest that the spectral analysis is helpful yet insufficient for the comprehensive understanding of network synchronization.

  8. The Moon and how to observe it an advanced handbook for students of the Moon in the 21st century

    CERN Document Server

    Grego, Peter

    2005-01-01

    This revolutionary new book is written for practical amateur astronomers who not only want to observe, but want to know the details of exactly what they are looking at. The Moon is the most commonly observed of all astronomical objects. This is the first book to deal equally with the Moon itself - its formation, geology, and history - as well as the practical aspects of observation. The concept of the book - and of the series - is to present an up-to-date detailed description of the Moon, including its origins, history, and geology (part one); and then (part two) to consider how best to observe and record it successfully using commercially-available equipment. The Moon and How to Observe It is a mine of information for all levels of amateur observers, from the beginner to the experienced.

  9. Direct Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon

    Science.gov (United States)

    Sirk, Aislinn H. C.; Sadoway, Donald R.; Sibille, Laurent

    2010-01-01

    When considering the construction of a lunar base, the high cost ($ 100,000 a kilogram) of transporting materials to the surface of the moon is a significant barrier. Therefore in-situ resource utilization will be a key component of any lunar mission. Oxygen gas is a key resource, abundant on earth and absent on the moon. If oxygen could be produced on the moon, this provides a dual benefit. Not only does it no longer need to be transported to the surface for breathing purposes; it can also be used as a fuel oxidizer to support transportation of crew and other materials more cheaply between the surface of the moon, and lower earth orbit (approximately $20,000/kg). To this end a stable, robust (lightly manned) system is required to produce oxygen from lunar resources. Herein, we investigate the feasibility of producing oxygen, which makes up almost half of the weight of the moon by direct electrolysis of the molten lunar regolith thus achieving the generation of usable oxygen gas while producing primarily iron and silicon at the cathode from the tightly bound oxides. The silicate mixture (with compositions and mechanical properties corresponding to that of lunar regolith) is melted at temperatures near 1600 C. With an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in production of molten metallic products at the cathode and oxygen gas at the anode. The effect of anode material, sweep rate, and electrolyte composition on the electrochemical behavior was investigated and implications for scale-up are considered. The activity and stability of the candidate anode materials as well as the effect of the electrolyte composition were determined. Additionally, ex-situ capture and analysis of the anode gas to calculate the current efficiency under different voltages, currents and melt chemistries was carried out.

  10. Astrobiology field research in Moon/Mars Analogue

    NARCIS (Netherlands)

    Foing, B.H.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the

  11. The Role of Leadership in Self-Synchronized Operations - Implications for the U.S. Military

    National Research Council Canada - National Science Library

    Still, Bryan

    2003-01-01

    .... It identifies three leadership skills essential to self-synchronized operations the ability to delegate authority, the ability to communicate a clear commander's intent, and the ability to tolerate...

  12. Synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Pecora, Louis M.; Carroll, Thomas L.

    2015-01-01

    We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators

  13. Learning the moon's phases through CL

    Science.gov (United States)

    Barbera, Maria

    2013-04-01

    This work is a CLIL experience for a class of 14-year-old students, a first grade of a Secondary school, level B1/B2. It is presented an Astronomy lesson whose topic is about the Moon's phases, a quite difficult phenomenon to visualize. Students' attention is attracted by presenting them songs and a short documentary; comprehension is made easier using both Internet-based materials and a card game using Cooperative Learning strategies through Johnsons' ' Learning Together'. The lesson consists of three steps for a total length of three hours. The teacher assigns a time limit for each activity. During the pre-task step, students' interest for present-day music is used to catch their attention and make them aware of the importance of the Moon as an inspiring subject for artistic expression such as popular or rock music. Then the students are requested to brainstorm some simple ideas of ther own about the moon. In the task step, a clear short BBC video is shown in order to stimulate students' listening and comprehension skills and an animation is proposed to help them view the moon cycle. In the post-task step, students are engaged in a card game through Johnsons' 'Learning Together'.Learners are divided into pairs and they have to cooperate to rebuild the moon's cicle as fast as they can. Then the two pairs join together to form groups of four and check their answers. The Assessor shares the group's keys with the whole class. The teacher gives feedback. The groups celebrate their success by clapping their hands and saying what they appreciated regarding their way of working together as pairs and groups.

  14. Lunar paleotides and the origin of the earth-moon system

    International Nuclear Information System (INIS)

    Anderson, A.J.

    1978-01-01

    A new method for determining the early history of the Earth-Moon system is described. Called the study of lunar paleotides, it describes a method for explaining features of the remnant lunar gravity field, and the generation of the lunar mascons. A method for the determination of Earth-Moon distances compared with the radiometric ages of the maria is developed. It is shown that the Moon underwent strong anomalous gravitational tidal forces, for a duration t 6 yr, prior to the formation of the mascon surfaces. As these tidal forces had not been present at the time of the formation of the Moon, this shows that the Moon could not have been formed in orbit about the Earth. (Auth.)

  15. The Pyrexia transient receptor potential channel mediates circadian clock synchronization to low temperature cycles in Drosophila melanogaster.

    Science.gov (United States)

    Wolfgang, Werner; Simoni, Alekos; Gentile, Carla; Stanewsky, Ralf

    2013-10-07

    Circadian clocks are endogenous approximately 24 h oscillators that temporally regulate many physiological and behavioural processes. In order to be beneficial for the organism, these clocks must be synchronized with the environmental cycles on a daily basis. Both light : dark and the concomitant daily temperature cycles (TCs) function as Zeitgeber ('time giver') and efficiently entrain circadian clocks. The temperature receptors mediating this synchronization have not been identified. Transient receptor potential (TRP) channels function as thermo-receptors in animals, and here we show that the Pyrexia (Pyx) TRP channel mediates temperature synchronization in Drosophila melanogaster. Pyx is expressed in peripheral sensory organs (chordotonal organs), which previously have been implicated in temperature synchronization. Flies deficient for Pyx function fail to synchronize their behaviour to TCs in the lower range (16-20°C), and this deficit can be partially rescued by introducing a wild-type copy of the pyx gene. Synchronization to higher TCs is not affected, demonstrating a specific role for Pyx at lower temperatures. In addition, pyx mutants speed up their clock after being exposed to TCs. Our results identify the first TRP channel involved in temperature synchronization of circadian clocks.

  16. Mass dependent fractionation of stable chromium isotopes in mare basalts: Implications for the formation and the differentiation of the Moon

    Science.gov (United States)

    Bonnand, Pierre; Parkinson, Ian J.; Anand, Mahesh

    2016-02-01

    We present the first stable chromium isotopic data from mare basalts in order to investigate the similarity between the Moon and the Earth's mantle. A double spike technique coupled with MC-ICP-MS measurements was used to analyse 19 mare basalts, comprising high-Ti, low-Ti and KREEP-rich varieties. Chromium isotope ratios (δ53Cr) for mare basalts are positively correlated with indices of magmatic differentiation such as Mg# and Cr concentration which suggests that Cr isotopes were fractionated during magmatic differentiation. Modelling of the results provides evidence that spinel and pyroxene are the main phases controlling the Cr isotopic composition during fractional crystallisation. The most evolved samples have the lightest isotopic compositions, complemented by cumulates that are isotopically heavy. Two hypotheses are proposed to explain this fractionation: (i) equilibrium fractionation where heavy isotopes are preferentially incorporated into the spinel lattice and (ii) a difference in isotopic composition between Cr2+ and Cr3+ in the melt. However, both processes require magmatic temperatures below 1200 °C for appreciable Cr3+ to be present at the low oxygen fugacities found in the Moon (IW -1 to -2 log units). There is no isotopic difference between the most primitive high-Ti, low-Ti and KREEP basalts, which suggest that the sources of these basalts were homogeneous in terms of stable Cr isotopes. The least differentiated sample in our sample set is the low-Ti basalt 12016, characterised by a Cr isotopic composition of -0.222 ± 0.025‰, which is within error of the current BSE value (-0.124 ± 0.101‰). The similarity between the mantles of the Moon and Earth is consistent with a terrestrial origin for a major fraction of the lunar Cr. This similarity also suggests that Cr isotopes were not fractionated by core formation on the Moon.

  17. Content-based intermedia synchronization

    Science.gov (United States)

    Oh, Dong-Young; Sampath-Kumar, Srihari; Rangan, P. Venkat

    1995-03-01

    Inter-media synchronization methods developed until now have been based on syntactic timestamping of video frames and audio samples. These methods are not fully appropriate for the synchronization of multimedia objects which may have to be accessed individually by their contents, e.g. content-base data retrieval. We propose a content-based multimedia synchronization scheme in which a media stream is viewed as hierarchial composition of smaller objects which are logically structured based on the contents, and the synchronization is achieved by deriving temporal relations among logical units of media object. content-based synchronization offers several advantages such as, elimination of the need for time stamping, freedom from limitations of jitter, synchronization of independently captured media objects in video editing, and compensation for inherent asynchronies in capture times of video and audio.

  18. Sketching the moon an astronomical artist's guide

    CERN Document Server

    Handy, Richard; McCague, Thomas; Rix, Erika; Russell, Sally

    2012-01-01

    Soon after you begin studying the sky through your small telescope or binoculars, you will probably be encouraged by others to make sketches of what you see. Sketching is a time-honored tradition in amateur astronomy and dates back to the earliest times, when telescopes were invented. Even though we have lots of new imaging technologies nowadays, including astrophotography, most observers still use sketching to keep a record of what they see, make them better observers, and in hopes of perhaps contributing something to the body of scientific knowledge about the Moon. Some even sketch because it satisfies their artistic side. The Moon presents some unique challenges to the astronomer-artist, the Moon being so fond of tricks of the light. Sketching the Moon: An Astronomical Artist’s Guide, by five of the best lunar observer-artists working today, will guide you along your way and help you to achieve really high-quality sketches. All the major types of lunar features are covered, with a variety of sketching te...

  19. Tectonic evolution of mercury; comparison with the moon

    International Nuclear Information System (INIS)

    Thomas, P.G.; Masson, P.

    1983-01-01

    With regard to the Earth or to Mars, the Moon and Mercury look like tectonicless planetary bodies, and the prominent morphologies of these two planets are due to impact and volcanic processes. Despite these morphologies, several types of tectonic activities may be shown. Statistical studies of lineaments direction indicate that Mercury, as well as the Moon, have a planet wide lineament pattern, known as a ''grid''. Statistical studies of Mercury scarps and the Moon grabens indicate an interaction between planetary lithospheric evolution and large impact basins. Detailed studies of the largest basins indicate specific tectonic motions directly or indirectly related to impacts. These three tectonic types have been compared on each planet. The first tectonic type seems to be identical for Mercury and the Moon. But the two other types seem to be different, and are consistent with the planets' thermal evolution

  20. Transits of extrasolar moons around luminous giant planets

    Science.gov (United States)

    Heller, R.

    2016-04-01

    Beyond Earth-like planets, moons can be habitable, too. No exomoons have been securely detected, but they could be extremely abundant. Young Jovian planets can be as hot as late M stars, with effective temperatures of up to 2000 K. Transits of their moons might be detectable in their infrared photometric light curves if the planets are sufficiently separated (≳10 AU) from the stars to be directly imaged. The moons will be heated by radiation from their young planets and potentially by tidal friction. Although stellar illumination will be weak beyond 5 AU, these alternative energy sources could liquify surface water on exomoons for hundreds of Myr. A Mars-mass H2O-rich moon around β Pic b would have a transit depth of 1.5 × 10-3, in reach of near-future technology.

  1. Exploring the Moon

    CERN Document Server

    Harland, David M

    2008-01-01

    David Harland opens with a review of the robotic probes, namely the Rangers which returned television before crashing into the Moon, the Surveyors which ''soft landed'' in order to investigate the nature of the surface, and the Lunar Orbiters which mapped prospective Apollo landing sites. He then outlines the historic landing by Apollo 11 in terms of what was discovered, and how over the next several missions the program was progressively geared up to enable the final three missions each to spend three days on comprehensive geological investigations. He concludes with a review of the robotic spacecraft that made remote-sensing observations of the Moon. Although aimed at the enthusiast, and can be read as an adventure in exploration, the book develops the scientific theme of lunar geology, and therefore will be of use as background reading for undergraduate students of planetary sciences. In addition, with the prospect of a resumption of human missions, it will help journalists understand what Apollo achieved ...

  2. Proposal for revisions of the United Nations Moon Treaty

    Science.gov (United States)

    Fernandes, Vera; Abreu, Neyda; Fritz, J.; Knapmeyer, Martin; Smeenk, Lisa; Ten Kate, Inge; Trüninger, Monica

    During this new 2010-decade, it will be imperative to reconsider the effectiveness of the current United Nations (U.N.) Moon Treaty (c.1979). Amendments are necessary to underline the mandatory human stewardship of this fragile planetary body of our Solar System, indispensible to life on Earth. After the very successful Apollo and Luna missions to the Moon (ending in 1976), which brought a wide array of data (samples, surface and orbital experiments), the Moon lost its exploratory attraction in favor of other programs, such as the International Space Station and potential human exploration of Mars. However, since the mid-90's, the enthusiasm for the Moon has been revived, which resulted in several space agencies worldwide (NASA, ESA, ISRO, JAXA, and the Chinese Space Agency) having made great efforts to re-start ex-ploratory and scientific campaigns even though budgetary changes may delay the process. As a result, a wide array of peoples and their interests are put together in each mission planned to reach the Moon (e.g., orbiters and landers). Up to now, mission plans focus on technical requirements and the desires of scientists and engineers, but hardly any other aspects. Field specialists on issues regarding the social, economic, political, cultural, ethical and environmen-tal impacts of Moon exploration and colonization have had little to no involvement in current and past lunar missions. However, these fields would provide different and essential points of view regarding the planning of lunar missions. Moreover, recent documents written by the scientific community, such as "The Scientific Context for Exploration of the Moon: Final Re-port" Committee on the Scientific Context for Exploration of the Moon, National Research Council (2007), or the recent (summer 2009) White Papers for the National Research Council Planetary Science Decadal Survey 2011-2020, do not seem to leave space for a multidisciplinary approach regarding the future lunar exploration either

  3. Does the Man in the Moon Ever Sleep? An Analysis of Student Answers about Simple Astronomical Events: A Case Study.

    Science.gov (United States)

    Dove, Jane

    2002-01-01

    Analyzes the answers provided by (n=98) 12-year-old students to questions on an end-of-the-year science examination. Points out that although students are able to explain day and night, they have difficulties explaining why the moon always presents the same face to Earth. Addresses implications for teaching and learning. (Contains 17 references.)…

  4. Fast Self-Synchronization between LowVoltage Microgrid and Inverter using Virtual Synchronous Converter

    Directory of Open Access Journals (Sweden)

    Md Ruhul Amin

    2017-12-01

    Full Text Available In this paper, a fast self-synchronization known as virtual synchronous converter (VSCon between single-phase microgrid and inverter in low-voltage microgrid, has been developed in Matlab/Simulink. The idea is to any phase locked loop (PLL circuit for inverter-microgrid synchronization in order to improve the synchronization time. As known, it is difficult and lengthy process to tune the PLL gain parameters to reach suitable performance for synchronizing among the voltage, phase-angle and frequency between them. Due to this problem, a fast self synchronization technique is needed in order to minimize the time losses at the microgrid connection. Therefore, the VSCon has been developed which is based on the synchronous generator mathematical model but in virtual environment representation. It has been applied in the inverter control for generating switching pattern to the inverter switches in order to respond to the grid voltage for improve the synchronization. For a prove of concept, several simulation tests in MATLAB models have been conducted, in order to see the effectiveness of this VSCon. First test has been conducted, when a 240V, 50Hz frequency grid source is used for observing the self-synchronization the system with the power flows output. Furthermore, the next test is conducted when the grid frequency is changed from the rated frequency at 50Hz to 51Hz and the result shows the VSCon in inverter control takes nearly 40ms to synchronize to this new frequency value. The test on grid phase-angle delay also been tested when ac grid voltage has 150 phase delay. As from all the results, the improved inverter control with VSCon structure is able to have fast and self-synchronized between the invertergrid connection before the power from the inverter can be transferred.

  5. Two Moons and the Pleiades from Mars

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Inverted image of two moons and the Pleiades from Mars Taking advantage of extra solar energy collected during the day, NASA's Mars Exploration Rover Spirit recently settled in for an evening of stargazing, photographing the two moons of Mars as they crossed the night sky. In this view, the Pleiades, a star cluster also known as the 'Seven Sisters,' is visible in the lower left corner. The bright star Aldebaran and some of the stars in the constellation Taurus are visible on the right. Spirit acquired this image the evening of martian day, or sol, 590 (Aug. 30, 2005). The image on the right provides an enhanced-contrast view with annotation. Within the enhanced halo of light is an insert of an unsaturated view of Phobos taken a few images later in the same sequence. On Mars, Phobos would be easily visible to the naked eye at night, but would be only about one-third as large as the full Moon appears from Earth. Astronauts staring at Phobos from the surface of Mars would notice its oblong, potato-like shape and that it moves quickly against the background stars. Phobos takes only 7 hours, 39 minutes to complete one orbit of Mars. That is so fast, relative to the 24-hour-and-39-minute sol on Mars (the length of time it takes for Mars to complete one rotation), that Phobos rises in the west and sets in the east. Earth's moon, by comparison, rises in the east and sets in the west. The smaller martian moon, Deimos, takes 30 hours, 12 minutes to complete one orbit of Mars. That orbital period is longer than a martian sol, and so Deimos rises, like most solar system moons, in the east and sets in the west. Scientists will use images of the two moons to better map their orbital positions, learn more about their composition, and monitor the presence of nighttime clouds or haze. Spirit took the five images that make up this composite with the panoramic camera, using the camera's broadband filter, which was designed specifically

  6. Towards a Moon Village : Community Workshops Highlights

    Science.gov (United States)

    Foing, Bernard H.

    2016-07-01

    A series of Moon Village Workshops were organised at ESTEC and at ILEWG community events in 2015 and 2016. They gathered a multi-disciplinary group of professionals from all around the world to discuss their ideas about the concept of a Moon Village, the vision of ESA's Director General (DG) Jan Woerner of a permanent lunar base within the next decades [1]. Three working groups focused on 1) Moon Habitat Design; 2) science and technology potentials of the Moon Village, and 3) engaging stake-holders [2-3]. Their results and recommendations are presented in this abstract. The Moon Habitat Design group identified that the lunar base design is strongly driven by the lunar environment, which is characterized by high radiation, meteoroids, abrasive dust particles, low gravity and vacuum. The base location is recommended to be near the poles to provide optimized illumination conditions for power generation, permanent communication to Earth, moderate temperature gradients at the surface and interesting subjects to scientific investigations. The abundance of nearby available resources, especially ice at the dark bottoms of craters, can be exploited in terms of In-Situ Resources Utilization (ISRU). The identified infrastructural requirements include a navigation, data- & commlink network, storage facilities and sustainable use of resources. This involves a high degree of recycling, closed-loop life support and use of 3D-printing technology, which are all technologies with great potential for terrestrial spin-off applications. For the site planning of the Moon Village, proven ideas from urban planning on Earth should be taken into account. A couple of principles, which could improve the quality of a long-term living milieu on the Moon, are creating spacious environments, visibility between interior and exterior spaces, areas with flora, such as gardens and greenhouses, establishing a sustainable community and creating social places for astronauts to interact and relax. The

  7. The Enigmatic Face of the Moon

    Science.gov (United States)

    Galles, C. D.; Gallagher, C. J.

    2011-06-01

    Whilst Man's only way of observing the Moon was with the naked eye, attempts at explaining the spots on her surface remained highly speculative. The telescopic observation by Galileo of previously unknown spots, differing from the earlier ones by their variability in time, was to signify a radical change to the hereto medieval ideas on the material composition of the Moon. And curiously enough, this new scenario was a revindication of Plutarch's hypothesis construed more than a millennium before.

  8. Launching to the Moon, Mars, and Beyond

    Science.gov (United States)

    Dumbacher, Daniel L.

    2006-01-01

    The U.S. Vision for Space Exploration, announced in 2004, calls on NASA to finish constructing the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return to the Moon and go on the Mars. By exploring space, America continues the tradition of great nations who mastered the Earth, air, and sea, and who then enjoyed the benefits of increased commerce and technological advances. The progress being made today is part of the next chapter in America's history of leadership in space. In order to reach the Moon and Mars within the planned timeline and also within the allowable budget, NASA is building upon the best of proven space transportation systems. Journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. What America learns in reaching for the Moon will teach astronauts how to prepare for the first human footprints on Mars. While robotic science may reveal information about the nature of hydrogen on the Moon, it will most likely tale a human being with a rock hammer to find the real truth about the presence of water, a precious natural resource that opens many possibilities for explorers. In this way, the combination of astronauts using a variety of tools and machines provides a special synergy that will vastly improve our understanding of Earth's cosmic neighborhood.

  9. Non-Rocket Earth-Moon Transport System

    Science.gov (United States)

    Bolonkin, Alexander

    2002-01-01

    This paper proposes a new method and transportation system to travel to the Moon. This transportation system uses a mechanical energy transfer and requires only minimal energy so that it provides a 'Free Trip' into space. The method uses the rotary and kinetic energy of the Moon. This paper presents the theory and results of computations for the project provided Free Trips (without rockets and spend a big energy) to the Moon for six thousand people annually. The project uses artificial materials like nanotubes and whiskers that have a ratio of tensile strength to density equal 4 million meters. In the future, nanotubes will be produced that can reach a specific stress up 100 millions meter and will significantly improve the parameters of suggested project. The author is prepared to discuss the problems with serious organizations that want to research and develop these innovations.

  10. Synchronization of Multipoint Hoists

    Science.gov (United States)

    A contractor has conceived an electrohydraulic feedback system that will provide position synchronization of four aircraft cargo hoists. To... synchronized hoist system. Test results show that the feedback system concept provides adequate synchronization control; i.e., the platform pitch and roll

  11. Galileo's Medicean Moons (IAU S269)

    Science.gov (United States)

    Barbieri, Cesare; Chakrabarti, Supriya; Coradini, Marcello; Lazzarin, Monica

    2010-11-01

    Preface; 1. Galileo's telescopic observations: the marvel and meaning of discovery George V. Coyne, S. J.; 2. Popular perceptions of Galileo Dava Sobel; 3. The slow growth of humility Tobias Owen and Scott Bolton; 4. A new physics to support the Copernican system. Gleanings from Galileo's works Giulio Peruzzi; 5. The telescope in the making, the Galileo first telescopic observations Alberto Righini; 6. The appearance of the Medicean Moons in 17th century charts and books. How long did it take? Michael Mendillo; 7. Navigation, world mapping and astrometry with Galileo's moons Kaare Aksnes; 8. Modern exploration of Galileo's new worlds Torrence V. Johnson; 9. Medicean Moons sailing through plasma seas: challenges in establishing magnetic properties Margaret G. Kivelson, Xianzhe Jia and Krishan K. Khurana; 10. Aurora on Jupiter: a magnetic connection with the Sun and the Medicean Moons Supriya Chakrabarti and Marina Galand; 11. Io's escaping atmosphere: continuing the legacy of surprise Nicholas M. Schneider; 12. The Jovian Rings Wing-Huen Ip; 13. The Juno mission Scott J. Bolton and the Juno Science Team; 14. Seeking Europa's ocean Robert T. Pappalardo; 15. Europa lander mission: a challenge to find traces of alien life Lev Zelenyi, Oleg Korablev, Elena Vorobyova, Maxim Martynov, Efraim L. Akim and Alexander Zakahrov; 16. Atmospheric moons Galileo would have loved Sushil K. Atreya; 17. The study of Mercury Louise M. Prockter and Peter D. Bedini; 18. Jupiter and the other giants: a comparative study Thérèse Encrenaz; 19. Spectroscopic and spectrometric differentiation between abiotic and biogenic material on icy worlds Kevin P. Hand, Chris McKay and Carl Pilcher; 20. Other worlds, other civilizations? Guy Consolmagno, S. J.; 21. Concluding remarks Roger M. Bonnet; Posters; Author index; Object index.

  12. Magnetism and the history of the moon

    Science.gov (United States)

    Strangway, D. W.; Gose, W. A.; Pearce, G. W.; Carnes, J. G.

    1973-01-01

    All lunar samples measured to date contain a weak but stable remanent magnetization of lunar origin. The magnetization is carried by metallic iron and is considered to be caused by cooling from above the Curie point in the presence of a magnetic field. Although at present the moon does not have a global field, the remanent magnetization of the rock samples and the presence of magnetic anomalies, both on the near and far side of the moon, imply that the moon experienced a magnetic field during some portion of its history. The field could have been generated in a liquid iron core sustaining a self-exciting dynamo, but there are some basic thermal and geochemical objections that need to be resolved.

  13. Boundary conditions for the formation of the Moon

    NARCIS (Netherlands)

    Reuver, Maarten; de Meijer, R. J.; ten Kate, I. L.; van Westrenen, W.

    Recent measurements of the chemical and isotopic composition of lunar samples indicate that the Moon's bulk composition shows great similarities with the composition of the silicate Earth. Moon formation models that attempt to explain these similarities make a wide variety of assumptions about the

  14. Deconstructing the shallow internal structure of the Moon using GRAIL gravity and LOLA topography

    Science.gov (United States)

    Zuber, M. T.

    2015-12-01

    Globally-distributed, high-resolution gravity and topography observations of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission and Lunar Orbiter Laser Altimeter (LOLA) instrument aboard the Lunar Reconnaissance Orbiter (LRO) spacecraft afford the unprecedented opportunity to explore the shallow internal structure of the Moon. Gravity and topography can be combined to produce Bouguer gravity that reveals the distribution of mass in the subsurface, with high degrees in the spherical harmonic expansion of the Bouguer anomalies sensitive to shallowest structure. For isolated regions of the lunar highlands and several basins we have deconstructed the gravity field and mapped the subsurface distribution of density anomalies. While specified spherical harmonic degree ranges can be used to estimate contributions at different depths, such analyses require considerable caution in interpretation. A comparison of filtered Bouguer gravity with forward models of disk masses with plausible densities illustrates the interdependencies of the gravitational power of density anomalies with depth and spatial scale. The results have implications regarding the limits of interpretation of lunar subsurface structure.

  15. The moon as a high temperature condensate.

    Science.gov (United States)

    Anderson, D. L.

    1973-01-01

    The accretion during condensation mechanism, if it occurs during the early over-luminous stage of the sun, can explain the differences in composition of the terrestrial planets and the moon. An important factor is the variation of pressure and temperature with distance from the sun, and in the case of the moon and captured satellites of other planets, with distance from the median plane. Current estimates of the temperature and pressure in the solar nebula suggest that condensation will not be complete in the vicinity of the terrestrial planets, and that depending on location, iron, magnesium silicates and the volatiles will be at least partially held in the gaseous phase and subject to separation from the dust by solar wind and magnetic effects associated with the transfer of angular momentum just before the sun joins the Main Sequence. Many of the properties of the moon, including the 'enrichment' in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the 'depletion' in Fe, Rb, K, Na and other volatiles can be understood if the moon represents a high temperature condensate from the solar nebula.

  16. Unmasking Europa the search for life on Jupiter's ocean moon

    CERN Document Server

    Greenberg, Richard

    2008-01-01

    Jupiter's ice moon Europa is widely regarded as the most likely place to find extraterrestrial life. This book tells the engaging story of Europa, the oceanic moon. It features a large number of stunning images of the ocean moon's surface, clearly displaying the spectacular crack patterns, extensive rifts and ridges, and refrozen pools of exposed water filled with rafts of displaced ice. Coverage also features firsthand accounts of Galileo's mission to Jupiter and its moons. The book tells the rough and tumble inside story of a very human enterprise in science that lead to the discovery of a f

  17. Cell Division Synchronization

    Science.gov (United States)

    The report summarizes the progress in the design and construction of automatic equipment for synchronizing cell division in culture by periodic...Concurrent experiments in hypothermic synchronization of algal cell division are reported.

  18. India plans to land near moon's south pole

    Science.gov (United States)

    Bagla, Pallava

    2018-02-01

    Sometime this summer, an Indian spacecraft orbiting over the moon's far side will release a lander. The craft will ease to a soft landing just after lunar sunrise on an ancient, table-flat plain about 600 kilometers from the south pole. There, it will unleash a rover into territory never before explored at the surface. That's the ambitious vision for India's second voyage to the moon in a decade, due to launch in the coming weeks. If Chandrayaan-2 is successful, it will pave the way for even more ambitious Indian missions, such as landings on Mars and an asteroid, as well as a Venus probe. Lunar scientists have much at stake, too. Chandrayaan-2 will collect data on the moon's thin envelope of plasma, as well as isotopes such as helium-3, a potential fuel for future fusion energy reactors. And it will follow up on a stunning discovery by India's first lunar foray, which found water molecules on the moon in 2009.

  19. Moon bound choosing and preparing NASA's lunar astronauts

    CERN Document Server

    Burgess, Colin

    2013-01-01

    Often lost in the shadow of the first group of astronauts for the Mercury missions, the second and third groups included the leading figures for NASA's activities for the following two decades. “Moon Bound” complements the author’s recently published work, “Selecting the Mercury Seven” (2011), extending the story of the men who helped to launch human spaceflight and broaden the American space program. Although the initial 1959 group became known as the legendary pioneering Mercury astronauts, the astronauts of Groups 2 and 3 gave us many household names. Sixteen astronauts from both groups traveled to the Moon in Project Apollo, with several actually walking on the Moon, one of them being Neil Armstrong. This book draws on interviews to tell the astronauts' personal stories and recreate the drama of that time. It describes the process by which they were selected as astronauts and explains how the criteria had changed since the first group. “Moon Bound” is divided into two parts, recounting the b...

  20. On Signal Modeling of Moon-Based Synthetic Aperture Radar (SAR Imaging of Earth

    Directory of Open Access Journals (Sweden)

    Zhen Xu

    2018-03-01

    Full Text Available The Moon-based Synthetic Aperture Radar (Moon-Based SAR, using the Moon as a platform, has a great potential to offer global-scale coverage of the earth’s surface with a high revisit cycle and is able to meet the scientific requirements for climate change study. However, operating in the lunar orbit, Moon-Based SAR imaging is confined within a complex geometry of the Moon-Based SAR, Moon, and Earth, where both rotation and revolution have effects. The extremely long exposure time of Moon-Based SAR presents a curved moving trajectory and the protracted time-delay in propagation makes the “stop-and-go” assumption no longer valid. Consequently, the conventional SAR imaging technique is no longer valid for Moon-Based SAR. This paper develops a Moon-Based SAR theory in which a signal model is derived. The Doppler parameters in the context of lunar revolution with the removal of ‘stop-and-go’ assumption are first estimated, and then characteristics of Moon-Based SAR imaging’s azimuthal resolution are analyzed. In addition, a signal model of Moon-Based SAR and its two-dimensional (2-D spectrum are further derived. Numerical simulation using point targets validates the signal model and enables Doppler parameter estimation for image focusing.

  1. Synchronization dynamics of two different dynamical systems

    International Nuclear Information System (INIS)

    Luo, Albert C.J.; Min Fuhong

    2011-01-01

    Highlights: → Synchronization dynamics of two distinct dynamical systems. → Synchronization, de-synchronization and instantaneous synchronization. → A controlled pendulum synchronizing with the Duffing oscillator. → Synchronization invariant set. → Synchronization parameter map. - Abstract: In this paper, synchronization dynamics of two different dynamical systems is investigated through the theory of discontinuous dynamical systems. The necessary and sufficient conditions for the synchronization, de-synchronization and instantaneous synchronization (penetration or grazing) are presented. Using such a synchronization theory, the synchronization of a controlled pendulum with the Duffing oscillator is systematically discussed as a sampled problem, and the corresponding analytical conditions for the synchronization are presented. The synchronization parameter study is carried out for a better understanding of synchronization characteristics of the controlled pendulum and the Duffing oscillator. Finally, the partial and full synchronizations of the controlled pendulum with periodic and chaotic motions are presented to illustrate the analytical conditions. The synchronization of the Duffing oscillator and pendulum are investigated in order to show the usefulness and efficiency of the methodology in this paper. The synchronization invariant domain is obtained. The technique presented in this paper should have a wide spectrum of applications in engineering. For example, this technique can be applied to the maneuvering target tracking, and the others.

  2. FPGA based fast synchronous serial multi-wire links synchronization

    Science.gov (United States)

    Pozniak, Krzysztof T.

    2013-10-01

    The paper debates synchronization method of multi-wire, serial link of constant latency, by means of pseudo-random numbers generators. The solution was designed for various families of FPGA circuits. There were debated synchronization algorithm and functional structure of parameterized transmitter and receiver modules. The modules were realized in VHDL language in a behavioral form.

  3. Origin of the earth and moon

    International Nuclear Information System (INIS)

    Ringwood, A.E.

    1981-01-01

    The composition of the Earth's interior and its bearing on the Earth's origin are discussed. It seems likely that the terrestrial planets formed by the accretion of solid planetisimals from the nebula of dust and gas left behind during the formation of the Sun. The scenario proposed is simpler than others. New evidence based upon a comparison of siderophile element abundances in the Earth's mantle and in the Moon imply that the Moon was derived from the Earth's mantle after the Earth's core had segregated

  4. Synchronizing Strategies under Partial Observability

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Laursen, Simon; Srba, Jiri

    2014-01-01

    Embedded devices usually share only partial information about their current configurations as the communication bandwidth can be restricted. Despite this, we may wish to bring a failed device into a given predetermined configuration. This problem, also known as resetting or synchronizing words, has...... been intensively studied for systems that do not provide any information about their configurations. In order to capture more general scenarios, we extend the existing theory of synchronizing words to synchronizing strategies, and study the synchronization, short-synchronization and subset...

  5. When Moons Collide

    Science.gov (United States)

    Rufu, Raluca; Aharonson, Oded

    2017-10-01

    Impacts between two orbiting satellites is a natural consequence of Moon formation. Mergers between moonlets are especially important for the newly proposed multiple-impact hypothesis as these moonlets formed from different debris disks merge together to form the final Moon. However, this process is relevant also for the canonical giant impact, as previous work shows that multiple moonlets are formed from the same debris disk.The dynamics of impacts between two orbiting bodies is substantially different from previously heavily studied planetary-sized impacts. Firstly, the impact velocities are smaller and limited to, thus heating is limited. Secondly, both fragments have similar mass therefore, they would contribute similarly and substantially to the final satellite. Thirdly, this process can be more erosive than planetary impacts as the velocity of ejected material required to reach the mutual Hill sphere is smaller than the escape velocity, altering the merger efficiency. Previous simulations show that moonlets inherit different isotopic signatures from their primordial debris disk, depending on the parameters of the collision with the planet. We therefore, evaluate the degree of mixing in moonlet-moonlet collisions in the presence of a planetary gravitational field, using Smooth Particle Hydrodynamics (SPH). Preliminary results show that the initial thermal state of the colliding moonlets has only a minor influence on the amount of mixing, compared to the effects of velocity and impact angle over their likely ranges. For equal mass bodies in accretionary collisions, impact angular momentum enhances mixing. In the hit-and-run regime, only small amounts of material are transferred between the bodies therefore mixing is limited. Overall, these impacts can impart enough energy to melt ~15-30% of the mantle extending the magma ocean phase of the final Moon.

  6. Towards a Moon Village: Young Lunar Explorers Report

    Science.gov (United States)

    Kamps, Oscar; Foing, Bernard; Batenburg, Peter

    2016-04-01

    Introduction: The Moon Village Workshop at ESTEC on the 14th December 2015 was organized by ILEWG/ESTEC in conjunction with the Moon 2020-2030 Symposium. It gathered a multi-disciplinary group of professionals from all around the world to discuss their ideas about the concept of a Moon Village, the vision of ESA's Director General (DG) Jan Woerner of a permanent lunar base within the next decades [1]. The workshop participants split in three working groups focusing on Moon Habitat Design, science and technology potentials of the Moon Village, and engaging stakeholders [2-3]. Their results and recommendations are presented in this abstract. The Moon Habitat Design group identified that the lunar base design is strongly driven by the lunar environment, which is characterized by high radiation, meteoroids, abrasive dust particles, low gravity and vacu-um. The base location is recommended to be near the poles to provide optimized illumination conditions for power generation, permanent communication to Earth, moderate temperature gradients at the surface and interesting subjects to scientific investigations. The abundance of nearby available resources, especially ice at the dark bottoms of craters, can be exploited in terms of In-Situ Resources Utilization (ISRU). The identified infrastructural requirements include a navigation, data- & commlink network, storage facilities and sustainable use of resources. This involves a high degree of recycling, closed-loop life support and use of 3D-printing technology, which are all technologies with great potential for terrestrial spin-off applications. For the site planning of the Moon Village, proven ideas from urban planning on Earth should be taken into account. A couple of principles, which could improve the quality of a long-term living milieu on the Moon, are creating spacious environments, visibility between interior and exterior spaces, areas with flora, such as gardens and greenhouses, establishing a sustainable community

  7. Astronomy from the Moon and International Lunar Observatory Missions

    Science.gov (United States)

    Durst, S.; Takahashi, Y. D.

    2018-04-01

    Astronomy from the Moon provides a promising new frontier for 21st century astrophysics and related science activity. International Lunar Observatory Association is an enterprise advancing missions to the Moon for observation and communication.

  8. Biologically Inspired Intercellular Slot Synchronization

    Directory of Open Access Journals (Sweden)

    Alexander Tyrrell

    2009-01-01

    Full Text Available The present article develops a decentralized interbase station slot synchronization algorithm suitable for cellular mobile communication systems. The proposed cellular firefly synchronization (CelFSync algorithm is derived from the theory of pulse-coupled oscillators, common to describe synchronization phenomena in biological systems, such as the spontaneous synchronization of fireflies. In order to maintain synchronization among base stations (BSs, even when there is no direct link between adjacent BSs, some selected user terminals (UTs participate in the network synchronization process. Synchronization emerges by exchanging two distinct synchronization words, one transmitted by BSs and the other by active UTs, without any a priori assumption on the initial timing misalignments of BSs and UTs. In large-scale networks with inter-BS site distances up to a few kilometers, propagation delays severely affect the attainable timing accuracy of CelFSync. We show that by an appropriate combination of CelFSync with the timing advance procedure, which aligns uplink transmission of UTs to arrive simultaneously at the BS, a timing accuracy within a fraction of the inter-BS propagation delay is retained.

  9. Exploration of the Moon to Enable Lunar and Planetary Science

    Science.gov (United States)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  10. Exploiting Schemas in Data Synchronization

    DEFF Research Database (Denmark)

    Foster, J. Nathan; Greenwald, Michael B.; Kirkegaard, Christian

    2005-01-01

    Increased reliance on optimistic data replication has led to burgeoning interest in tools and frameworks for disconnected updates to replicated data.We have implemented a generic synchronization framework, called HARMONY, that can be used to build state-based synchronizers for a wide variety...... of tree-structureddata formats. A novel feature of this framework is that the synchronization process - in particular, the recognition of conflicts - is driven by the schema of the structures being synchronized.We formalize HARMONY's synchronization algorithm, state a simple and intuitive specification......, and illustrate, using simple address books as a case study, how it can be used to synchronize trees representing a variety of specific forms of applicationdata, including sets, records, tuples, and relations....

  11. From the Moon: Bringing Space Science to Diverse Audiences

    Science.gov (United States)

    Runyon, C. J.; Hall, C.; Joyner, E.; Meyer, H. M.; M3 Science; E/PO Team

    2011-12-01

    NASA's Apollo missions held a place in the mindset of many Americans - we dared to go someplace where humans had never set foot, a place unknown and beyond our imaginations. These early NASA missions and discoveries resulted in an enhanced public understanding of the Moon. Now, with the human element so far removed from space exploration, students must rely on textbooks, TV's, and computers to build their understanding of our Moon. However, NASA educational materials about the Moon are stale and out-of-date. In addition, they do not effectively address 21st Century Skills, an essential for today's classrooms. Here, we present a three-part model for developing opportunities in lunar science education professional development that is replicable and sustainable and integrates NASA mission-derived data (e.g., Moon Mineralogy Mapper (M3)/Chandrayaan-1). I) With the return of high resolution/high spatial data from M3/Chandrayaan-1, we can now better explore and understand the compositional variations on the lunar surface. Data and analysis techniques from the imaging spectrometer are incorporated into the M3 Educator's Guide: Seeing the Moon in a New Light. The guide includes an array of activities and lessons to help educators and students understand how NASA is currently exploring the Moon. The guide integrates NASA maps and data into the interactive lessons, bringing the excitement of scientific exploration and discovery into the classroom. II) Utilizing the M3 Educator's Guide as well as educational activities from more current NASA lunar missions, we offer two sustained professional development opportunities for educators to explore the Moon through interactive and creative strategies. 1) Geology of the Moon, an online course offered through Montana State University's National Teacher Enhancement Network, is a 3-credit graduate course. 2) Fly Me to the Moon, offered through the College of Charleston's Office of Professional Development in Education, is a two

  12. The Moon and the U-47 in Scapa Flow

    Science.gov (United States)

    Schaefer, B. E.

    2005-12-01

    The skies above affect historical events here on Earth more than is generally realized. Events during wars are often tied to the Moon through operational requirements for illumination (or dark), high tides (or low), and even links to events in lunar calendars. World War II has many famous battles, commando operations, and naval sorties dictated in date by the Moon. Famous examples are D-Day (needing low tides and Full Moon illumination), the amphibious landing on Tarawa (needing but not getting high tides), El Alamein (requiring Full Moon light for the mine-clearers), the Great Escape from Stalag Luft III (chosen for the stealth possible with a New Moon), Mussolini's invasion of Albania (on Good Friday), and even Rudolf Hess' flight to Scotland (timed by a six-planet conjunction and aided in navigation by the Full Moon). This paper will concentrate on one event for which the Moon provided the primary trick for a major Nazi naval victory, while an aurora saved the British from an even worse disaster. The story is set in Scapa Flow, the huge anchorage in the Orkney Islands that was used as a primary base for the British Navy in blockading the North Sea. During World War I, German submarines had twice tried to slip into Scapa Flow but were sunk both times, and the anchorage later became the last resting place of the scuttled German High Seas Fleet. At the outbreak of World War II, then Commodore Karl Doenitz suggested that his ace U-boat captain consider sneaking into Scapa Flow to loose salvos of torpedoes at all the anchored ships. Captain Gunther Prien of the U-47 took up the challenge after realizing that the British had not completely blocked a narrow inlet. His plan was to surface the submarine and go in over the sunken block ships at the highest of spring tides. Spring tides require a syzygy (New or Full Moon), during which the high tides occur near noon or midnight. To be unobserved by onshore guards, the Moon should not be in the sky illuminating the waters

  13. The Sodium Tail of the Moon

    Science.gov (United States)

    Matta, M.; Smith, S.; Baumgardner, J.; Wilson, J.; Martinis, C.; Mendillo, M.

    2009-01-01

    During the few days centered about new Moon, the lunar surface is optically hidden from Earth-based observers. However, the Moon still offers an observable: an extended sodium tail. The lunar sodium tail is the escaping "hot" component of a coma-like exosphere of sodium generated by photon-stimulated desorption, solar wind sputtering and meteoroid impact. Neutral sodium atoms escaping lunar gravity experience solar radiation pressure that drives them into the anti-solar direction forming a comet-like tail. During new Moon time, the geometry of the Sun, Moon and Earth is such that the anti-sunward sodium flux is perturbed by the terrestrial gravitational field resulting in its focusing into a dense core that extends beyond the Earth. An all-sky camera situated at the El Leoncito Observatory (CASLEO) in Argentina has been successfully imaging this tail through a sodium filter at each lunation since April 2006. This paper reports on the results of the brightness of the lunar sodium tail spanning 31 lunations between April 2006 and September 2008. Brightness variability trends are compared with both sporadic and shower meteor activity, solar wind proton energy flux and solar near ultra violet (NUV) patterns for possible correlations. Results suggest minimal variability in the brightness of the observed lunar sodium tail, generally uncorrelated with any single source, yet consistent with a multi-year period of minimal solar activity and non-intense meteoric fluxes.

  14. The Moon Challenge

    Science.gov (United States)

    Fitzsimmons, Pat; Leddy, Diana; Johnson, Lindy; Biggam, Sue; Locke, Suzan

    2013-01-01

    This article describes a first-grade research project that incorporates trade books and challenges misconceptions. Educators see the power of their students' wonder at work in their classrooms on a daily basis. This wonder must be nourished by students' own experiences--observing the moon on a crystal clear night--as well as by having…

  15. Materials refining on the Moon

    Science.gov (United States)

    Landis, Geoffrey A.

    2007-05-01

    Oxygen, metals, silicon, and glass are raw materials that will be required for long-term habitation and production of structural materials and solar arrays on the Moon. A process sequence is proposed for refining these materials from lunar regolith, consisting of separating the required materials from lunar rock with fluorine. The fluorine is brought to the Moon in the form of potassium fluoride, and is liberated from the salt by electrolysis in a eutectic salt melt. Tetrafluorosilane produced by this process is reduced to silicon by a plasma reduction stage; the fluorine salts are reduced to metals by reaction with metallic potassium. Fluorine is recovered from residual MgF and CaF2 by reaction with K2O.

  16. Asynchronized synchronous machines

    CERN Document Server

    Botvinnik, M M

    1964-01-01

    Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids” of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv

  17. Integration of Apollo Lunar Sample Data into Google Moon

    Science.gov (United States)

    Dawson, Melissa D.; Todd, Nancy S.; Lofgren, Gary

    2010-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is a continuation of the Apollo 15 Google Moon Add-On project, which provides a scientific and educational tool for the study of the Moon and its geologic features. The main goal of this project is to provide a user-friendly interface for an interactive and educational outreach and learning tool for the Apollo missions. Specifically, this project?s focus is the dissemination of information about the lunar samples collected during the Apollo missions by providing any additional information needed to enhance the Apollo mission data on Google Moon. Apollo missions 15 and 16 were chosen to be completed first due to the availability of digitized lunar sample photographs and the amount of media associated with these missions. The user will be able to learn about the lunar samples collected in these Apollo missions, as well as see videos, pictures, and 360 degree panoramas of the lunar surface depicting the lunar samples in their natural state, following collection and during processing at NASA. Once completed, these interactive data layers will be submitted for inclusion into the Apollo 15 and 16 missions on Google Moon.

  18. GCR-Induced Photon Luminescence of the Moon

    Science.gov (United States)

    Lee, K. T.; Wilson, T. L.

    2008-01-01

    It is shown that the Moon has a ubiquitous photon luminescence induced by Galactic cosmic-rays (GCRs), using the Monte Carlo particle-physics program FLUKA. Both the fluence and the flux of the radiation can be determined by this method, but only the fluence will be presented here. This is in addition to thermal radiation emitted due to the Moon s internal temperature and radioactivity. This study is a follow-up to an earlier discussion [1] that addressed several misconceptions regarding Moonshine in the Earth-Moon system (Figure 1) and predicted this effect. There also exists a related x-ray fluorescence induced by solar energetic particles (SEPs, <350 MeV) and solar photons at lower x-ray energies, although this latter fluorescence was studied on Apollo 15 and 16 [2- 5], Lunar Prospector [6], and even EGRET [7].

  19. Motivation of Citizen Scientists Participating in Moon Zoo

    Science.gov (United States)

    Brown, Shanique; Gay, P. L.; Daus, C. S.

    2011-01-01

    Moon Zoo is an online citizen science project with the aim of providing detailed crater counts for as much of the Moon's surface as possible. In addition to focusing on craters, volunteers are encouraged to remain vigilant for sightings of atypical features which may lead to new discoveries. Volunteers accomplish these tasks by exploring images captured by NASA's Lunar Reconnaissance Orbiter (LRO) which has a resolution of 50cm per pixel. To be successful, Moon Zoo needs to attract and retain a large population of citizen scientists. In this study, we examine the factors motivating Moon Zoo participants who invest many hours exploring these images. In this, the first of a two-phased study, we conducted a qualitative analysis using semi-structured interviews as a means of data collection. A stratified sample of participants was used in an attempt to uncover the driving forces behind decisions to participate from a wide-range of participants. Inquiring and probing questions were asked about factors which led volunteers to Moon Zoo as well as reasons which kept them committed to exploring the Moon's surface through this online portal. Responses were then categorized using a grounded theory approach, and frequency distributions are calculated where appropriate. Aggregate results from these interviews are presented here including the demographics of the sample and motivators as per the content analysis. The information gathered from this phase will be used to guide the development of an online survey to further explore volunteers’ motivation based on the presented classification schemes. The survey will then be used to guide future research and development in the area of citizen science in the field of astronomy. These findings will also be useful in charting new boundaries for future research.

  20. GLOBAL INSTABILITY OF THE EXO-MOON SYSTEM TRIGGERED BY PHOTO-EVAPORATION

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Xie, Ji-Wei; Zhou, Ji-Lin; Liu, Hui-Gen; Zhang, Hui, E-mail: jwxie@nju.edu.cn, E-mail: zhoujl@nju.edu.cn [School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, 210093 (China)

    2016-12-10

    Many exoplanets have been found in orbits close to their host stars and thus they are subject to the effects of photo-evaporation. Previous studies have shown that a large portion of exoplanets detected by the Kepler mission have been significantly eroded by photo-evaporation. In this paper, we numerically study the effects of photo-evaporation on the orbital evolution of a hypothesized moon system around a planet. We find that photo-evaporation is crucial to the stability of the moon system. Photo-evaporation can erode the atmosphere of the planet thus leading to significant mass loss. As the planet loses mass, its Hill radius shrinks and its moons increase their orbital semimajor axes and eccentricities. When some moons approach their critical semimajor axes, global instability of the moon system would be triggered, which usually ends up with two, one or even zero surviving moons. Some lost moons could escape from the moon system to become a new planet orbiting the star or run away further to become a free-floating object in the Galaxy. Given the destructive role of photo-evaporation, we speculate that exomoons are less common for close-in planets (<0.1 au), especially those around M-type stars, because they are more X-ray luminous and thus enhancing photo-evaporation. The lessons we learn in this study may be helpful for the target selection of on-going/future exomoon searching programs.

  1. Origin of the Moon new concept geochemistry and dynamics

    CERN Document Server

    Galimov, Erik M

    2012-01-01

    The origin of the Moon remains an unsolved problem of the planetary science. Researchers engaged in celestial dynamics, geophysics, and geochemistry are still discussing various models of creation of our closest cosmic neighbour. The most popular scenario, the impact hypothesis involving a collision early in the Earth's history, has been substantially challenged by the new data. The birth and development of a planet-moon system always play a role in the formation of an entire planetary system around our Sun or around another star. This way, the story of our Moon acquires broader ramifications

  2. MoonBEAM: Gamma-Ray Burst Detectors on SmallSAT

    Science.gov (United States)

    Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.

    2018-01-01

    Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between a spacecraft in Earth and cislunar orbit. MoonBEAM is designed with high TRL components to be flight ready. This instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.

  3. Astrobiology Field Research in Moon/Mars Analogue Environments: Preface

    Science.gov (United States)

    Foing, B. H.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the key astrobiology results are presented in this special issue on Astrobiology field research in Moon/Mars analogue environments relevant to investigate the link between geology, minerals, organics and biota. Preliminary results from a multidisciplinary field campaign at Rio Tinto in Spain are presented.

  4. The dark side of the moon: Impact of moon phases on long-term survival, mortality and morbidity of surgery for lung cancer

    Directory of Open Access Journals (Sweden)

    Kuehnl A

    2009-04-01

    Full Text Available Abstract Objective Superstition is common and causes discomfiture or fear, especially in patients who have to undergo surgery for cancer. One superstition is, that moon phases influence surgical outcome. This study was performed to analyse lunar impact on the outcome following lung cancer surgery. Methods 2411 patients underwent pulmonary resection for lung cancer in the past 30 years at our institution. Intra-and postoperative complications as well as long-term follow-up data were entered in our lung-cancer database. Factors influencing mortality, morbidity and survival were analyzed. Results Rate of intra-operative complications as well as rate of post-operative morbidity and mortality was not significantly affected by moon phases. Furthermore, there was no significant impact of the lunar cycle on long-term survial. Conclusion In this study there was no evidence that outcome of surgery for lung cancer is affected by the moon. These results may help the physician to quite the mind of patients who are somewhat afraid of wrong timing of surgery with respect to the moon phases. However, patients who strongly believe in the impact of moon phase should be taken seriously and correct timing of operations should be conceded to them as long as key-date scheduling doesn't constrict evidence based treatment regimens.

  5. Control of non-conventional synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,

  6. Anti-synchronization of chaotic oscillators

    International Nuclear Information System (INIS)

    Kim, Chil-Min; Rim, Sunghwan; Kye, Won-Ho; Ryu, Jung-Wan; Park, Young-Jai

    2003-01-01

    We have observed anti-synchronization phenomena in coupled identical chaotic oscillators. Anti-synchronization can be characterized by the vanishing of the sum of relevant variables. We have qualitatively analyzed its base mechanism by using the dynamics of the difference and the sum of the relevant variables in coupled chaotic oscillators. Near the threshold of the synchronization and anti-synchronization transition, we have obtained the novel characteristic relation

  7. MOM-E: Moon-Orbiting Mothership Explorer

    Science.gov (United States)

    Murphy, Gloria A.

    2010-01-01

    The National Aeronautics and Space Administration proposed that a new class of robotic space missions and spacecrafts be introduced to "ensure that future missions are safe, sustainable and affordable". Indeed, the United States space program aims for a return to manned space missions beyond Earth orbit, and robotic explorers are intended to pave the way. This vision requires that all future missions become less costly, provide a sustainable business plan, and increase in safety. Over the course of several fast feasibility studies that considered the 3 drivers above, the small-scale, consumer-driven Moon-Orbiting Mothership Explorer (MOM-E) mission was born. MOM-E's goals are to enable space exploration by offering a scaled down platform which carries multiple small space explorers to the Moon. Each payload will be dropped at their desired destination, offering a competitive price to customers. MOM-E's current scope of operations is limited to the Moon and will be used as a proof of concept mission. However, MOM-E is specifically designed with the idea that the platform is scalable.

  8. MRS2016: Rigid Moon Rotation Series in the Relativistic Approximation

    Science.gov (United States)

    Pashkevich, V. V.

    2017-03-01

    The rigid Moon rotation problem is studied for the relativistic (kinematical) case, in which the geodetic perturbations in the Moon rotation are taken into account. As the result of this research the high-precision Moon Rotation Series MRS2016 in the relativistic approximation was constructed for the first time and the discrepancies between the high-precision numerical and the semi-analytical solutions of the rigid Moon rotation were investigated with respect to the fixed ecliptic of epoch J2000, by the numerical and analytical methods. The residuals between the numerical solution and MRS2016 in the perturbing terms of the physical librations do not exceed 80 mas and 10 arc seconds over 2000 and 6000 years, respectively.

  9. Estimation of Gravitation Parameters of Saturnian Moons Using Cassini Attitude Control Flight Data

    Science.gov (United States)

    Krening, Samantha C.

    2013-01-01

    A major science objective of the Cassini mission is to study Saturnian satellites. The gravitational properties of each Saturnian moon is of interest not only to scientists but also to attitude control engineers. When the Cassini spacecraft flies close to a moon, a gravity gradient torque is exerted on the spacecraft due to the mass of the moon. The gravity gradient torque will alter the spin rates of the reaction wheels (RWA). The change of each reaction wheel's spin rate might lead to overspeed issues or operating the wheel bearings in an undesirable boundary lubrication condition. Hence, it is imperative to understand how the gravity gradient torque caused by a moon will affect the reaction wheels in order to protect the health of the hardware. The attitude control telemetry from low-altitude flybys of Saturn's moons can be used to estimate the gravitational parameter of the moon or the distance between the centers of mass of Cassini and the moon. Flight data from several low altitude flybys of three Saturnian moons, Dione, Rhea, and Enceladus, were used to estimate the gravitational parameters of these moons. Results are compared with values given in the literature.

  10. Sun, Moon and Earthquakes

    Science.gov (United States)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  11. The moon's origins

    International Nuclear Information System (INIS)

    Boss, P.; Benz, W.

    1987-01-01

    Planet formation theory is recalled. The different existing hypothesis on the moon's origins are reviewed also to see how much they are compatible with the planet formation theory. Up to now, the giant impact model seems to be the only model to satisfy all the constraints. Computerized simulation results have been presented in colloquiums and their scenarios are recalled [fr

  12. Blooming rhythms of cactus Cereus peruvianus with nocturnal peak at full moon during seasons of prolonged daytime photoperiod.

    Science.gov (United States)

    Ben-Attia, Mossadok; Reinberg, Alain; Smolensky, Michael H; Gadacha, Wafa; Khedaier, Achraf; Sani, Mamane; Touitou, Yvan; Boughamni, Néziha Ghanem

    2016-01-01

    Cereus peruvianus (Peruvian apple cactus) is a large erect and thorny succulent cactus characterized by column-like (cereus [L]: column), that is, candle-shaped, appendages. For three successive years (1100 days), between early April and late November, we studied the flowering patterns of eight cacti growing in public gardens and rural areas of north and central Tunisia, far from nighttime artificial illumination, in relation to natural environmental light, temperature, relative humidity and precipitation parameters. Flower blooming was assessed nightly between 23:00 h and until at least 02:00 h, and additionally around-the-clock at ~1 h intervals for 30 consecutive days during the late summer of each year of study to quantify both nyctohemeral (day-night) and lunar patterns. During the summer months of prolonged daytime photoperiod, flower blooming of C. peruvianus exhibited predictable-in-time variation as "waves" with average period of 29.5 days synchronized by the light of the full moon. The large-sized flower (~16 cm diameter) opens almost exclusively at night, between sunset and sunrise, as a 24 h rhythm during a specific 3-4-day span of the lunar cycle (full moon), with a strong correlation between moon phase and number and proportion of flowers in bloom (ranging from r = +0.59 to +0.91). Black, blue and red cotton sheets were used to filter specific spectral bands of nighttime moonlight from illuminating randomly selected plant appendages as a means to test the hypothesis of a "gating" 24 h rhythm phenomenon of photoreceptors at the bud level. Relative to control conditions (no light filtering), black sheet covering inhibited flower bud induction by 87.5%, red sheet covering by 46.6% and blue sheet covering by 34%, and the respective inhibiting effects on number of flowers in bloom were essentially 100%, ~81% and ~44%. C. peruvianus is a unique example of a terrestrial plant that exhibits a circadian flowering rhythm (peak ~00:00 h) "gated" by 24 h, lunar

  13. Dating the Moon: Teaching Lunar Stratigraphy and the Nature of Science

    Science.gov (United States)

    Murphy, Edward; Bell, Randy

    2013-01-01

    As our closest celestial neighbor, the Moon is a familiar and inspiring object to investigate using a small telescope, binoculars, or even photographs or one of the many high quality maps available online. The wondrously varied surface of the Moon--filled with craters, mountains, volcanic flows, scarps, and rilles--makes the Moon an excellent…

  14. Coexistence and switching of anticipating synchronization and lag synchronization in an optical system

    International Nuclear Information System (INIS)

    Wu, Liang; Zhu, Shiqun

    2003-01-01

    The chaotic synchronization between two bi-directionally coupled external cavity single-mode semiconductor lasers is investigated. Numerical simulation shows that anticipating synchronization and lag synchronization coexist and switch between each other in certain parameter regime. The anticipating time with different effects that were discussed quite differently in the previous theoretical analysis and experimental observation is determined by the involved parameters in the system

  15. Live from the Moon ExoLab: EuroMoonMars Simulation at ESTEC 2017

    Science.gov (United States)

    Neklesa, A.; Foing, B. H.; Lillo, A.; Evellin, P.; Kołodziejczyk, A.; Jonglez, C.; Heinicke, C.; Harasymczuk, M.; Authier, L.; Blanc, A.; Chahla, C.; Tomic, A.; Mirino, M.; Schlacht, I.; Hettrich, S.; Pacher, T.

    2017-10-01

    Space enthusiasts simulated the landing on the Moon having pre-landed Habitat ExoHab, ExoLab 2.0, supported by the control centre on Earth. We give here the first-hand experience from a reporter (A.N.) who joined the space crew.

  16. Adaptive Backoff Synchronization Techniques

    Science.gov (United States)

    1989-07-01

    Percentage of synchronization and non- synchronisation references that cause invalidations in directory schemes with 2, 3, 4, 5, and 64 pointers...processors to arrive. The slight relative increase of synchronisation overhead in all cases when going from two to five pointers is because synchronization ...MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS q~JU VLSI Memo No. 89-547 It July 1989 Adaptive Backoff Synchronization Techniques Anant

  17. Synchronicity and Leadership

    NARCIS (Netherlands)

    Merry, Philip

    2017-01-01

    LAY SUMMARY SYNCHRONICITY AND LEADERSHIP TILBURG PHD DISSERTATION, PHILIP MERRY World’s First PhD to Research Synchronicity And Leadership Using Grounded Theory OUT OF THE BLUE COINCIDENCES: research topic Most people have had the experience of thinking of someone and then, almost magically have

  18. Synchronous implementation of optoelectronic NOR and XNOR logic gates using parallel synchronization of three chaotic lasers

    International Nuclear Information System (INIS)

    Yan Sen-Lin

    2014-01-01

    The parallel synchronization of three chaotic lasers is used to emulate optoelectronic logic NOR and XNOR gates via modulating the light and the current. We deduce a logical computational equation that governs the chaotic synchronization, logical input, and logical output. We construct fundamental gates based on the three chaotic lasers and define the computational principle depending on the parallel synchronization. The logic gate can be implemented by appropriately synchronizing two chaotic lasers. The system shows practicability and flexibility because it can emulate synchronously an XNOR gate, two NOR gates, and so on. The synchronization can still be deteceted when mismatches exist with a certain range. (general)

  19. Non-rocket Earth-Moon transport system

    Science.gov (United States)

    Bolonkin, Alexander

    2003-06-01

    This paper proposes a new transportation system for travel between Earth and Moon. This transportation system uses mechanical energy transfer and requires only minimal energy, using an engine located on Earth. A cable directly connects a pole of the Earth through a drive station to the lunar surface_ The equation for an optimal equal stress cable for complex gravitational field of Earth-Moon has been derived that allows significantly lower cable masses. The required strength could be provided by cables constructed of carbon nanotubes or carbon whiskers. Some of the constraints on such a system are discussed.

  20. Nuclear technologies for Moon and Mars exploration

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs

  1. Supporting a Deep Space Gateway with Free-Return Earth-Moon Periodic Orbits

    Science.gov (United States)

    Genova, A. L.; Dunham, D. W.; Hardgrove, C.

    2018-02-01

    Earth-Moon periodic orbits travel between the Earth and Moon via free-return circumlunar segments and can host a station that can provide architecture support to other nodes near the Moon and Mars while enabling science return from cislunar space.

  2. Instructor's guide : - synchronized skating school

    OpenAIRE

    Mokkila, Eveliina

    2011-01-01

    The starting point to the Instructor’s guide for synchronized skating school was the situation that Turun Riennon Taitoluistelu figure skating club constantly struggles to get enough skaters to the Beginner team in synchronized skating. The guidebook was written to guide the skating school instructors towards providing more synchronized skating teaching in their lessons. As a result from introducing synchronized skating more in the skating school, it is expected to have more children conti...

  3. Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems

    Science.gov (United States)

    Chen, Ming; He, Jing; Cao, Zizheng; Tang, Jin; Chen, Lin; Wu, Xian

    2014-09-01

    In this paper, we propose and experimentally demonstrate a symbol synchronization and sampling frequency synchronization techniques in real-time direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) system, over 100-km standard single mode fiber (SSMF) using a cost-effective directly modulated distributed feedback (DFB) laser. The experiment results show that the proposed symbol synchronization based on training sequence (TS) has a low complexity and high accuracy even at a sampling frequency offset (SFO) of 5000-ppm. Meanwhile, the proposed pilot-assisted sampling frequency synchronization between digital-to-analog converter (DAC) and analog-to-digital converter (ADC) is capable of estimating SFOs with an accuracy of technique can also compensate SFO effects within a small residual SFO caused by deviation of SFO estimation and low-precision or unstable clock source. The two synchronization techniques are suitable for high-speed DDO-OFDM transmission systems.

  4. Short desynchronization episodes prevail in synchronous dynamics of human brain rhythms.

    Science.gov (United States)

    Ahn, Sungwoo; Rubchinsky, Leonid L

    2013-03-01

    Neural synchronization is believed to be critical for many brain functions. It frequently exhibits temporal variability, but it is not known if this variability has a specific temporal patterning. This study explores these synchronization/desynchronization patterns. We employ recently developed techniques to analyze the fine temporal structure of phase-locking to study the temporal patterning of synchrony of the human brain rhythms. We study neural oscillations recorded by electroencephalograms in α and β frequency bands in healthy human subjects at rest and during the execution of a task. While the phase-locking strength depends on many factors, dynamics of synchrony has a very specific temporal pattern: synchronous states are interrupted by frequent, but short desynchronization episodes. The probability for a desynchronization episode to occur decreased with its duration. The transition matrix between synchronized and desynchronized states has eigenvalues close to 0 and 1 where eigenvalue 1 has multiplicity 1, and therefore if the stationary distribution between these states is perturbed, the system converges back to the stationary distribution very fast. The qualitative similarity of this patterning across different subjects, brain states and electrode locations suggests that this may be a general type of dynamics for the brain. Earlier studies indicate that not all oscillatory networks have this kind of patterning of synchronization/desynchronization dynamics. Thus, the observed prevalence of short (but potentially frequent) desynchronization events (length of one cycle of oscillations) may have important functional implications for the brain. Numerous short desynchronizations (as opposed to infrequent, but long desynchronizations) may allow for a quick and efficient formation and break-up of functionally significant neuronal assemblies.

  5. Impacts of moonlight on fish reproduction.

    Science.gov (United States)

    Ikegami, Taro; Takeuchi, Yuki; Hur, Sung-Pyo; Takemura, Akihiro

    2014-04-01

    The waxing and waning cycle of the moon is repeated at approximately 1-month intervals, and concomitant changes occur in the levels of moonlight and cueing signals detected by organisms on the earth. In the goldlined spinefoot Siganus guttatus, a spawner lunar-synchronized around the first quarter moon, periodic changes in moonlight are used to cue gonadal development and gamete release. Rearing of mature fish under artificial constant full moon and new moon conditions during the spawning season leads to disruption or delay of synchronous spawning around the predicted moon phase. Melatonin, an endogenous transducer of the environmental light/dark cycle, increases in the blood and in the pineal gland around the new moon period and decreases around the full moon period. In synchrony with melatonin fluctuation, melatonin receptor(s) mRNA abundance is higher during the new moon period than during the full moon. The melatonin/melatonin receptor system is likely affected by moonlight. Measurements of the expression patterns of clock genes in neural tissues demonstrate that Cryptochrome (Cry1 and Cry3) and Period (Per2) fluctuate with lunar periodicity, the former peaking in the medial part of the brain around the first quarter moon period, and the latter peaking in the pineal gland around the full moon. Some clock genes may respond to periodic changes in moon phase and appear to be involved in the generation of lunar-related rhythmicity in lunar spawners. Thus, some fish use moonlight-related periodicities as reliable information for synchronizing the timing of reproductive events. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Synchronization of Concurrent Processes

    Science.gov (United States)

    1975-07-01

    Pettersen Stanford Ur.iversity Artificial Intelligence Laboratory ABSTRACT Th oaoer gives an overview of commonly used synchronization primitives and...wr.ters . ut.l.z.ng the DroDo4d synchronization primitive . The solution is simpler and shorter than other known S’ms The first sections of the paper...un reicr»» side il nrcttaary and Identity by block number) Scheduling, process scheduling, synchronization , mutual exclusion, semaphores , critical

  7. Cross-spectrum symbol synchronization

    Science.gov (United States)

    Mccallister, R. D.; Simon, M. K.

    1981-01-01

    A popular method of symbol synchronization exploits one aspect of generalized harmonic analysis, normally referred to as the cross-spectrum. Utilizing nonlinear techniques, the input symbol energy is effectively concentrated onto multiples of the symbol clock frequency, facilitating application of conventional phase lock synchronization techniques. A general treatment of the cross-spectrum technique is developed and shown to be applicable across a broad class of symbol modulation formats. An important specific symbol synchronization application is then treated, focusing the general development to provide both insight and quantitative measure of the performance impact associated with variation in these key synchronization parameters: symbol modulation format, symbol transition probability, symbol energy to noise density ratio, and symbol rate to filter bandwidth ratio.

  8. Identical synchronization of nonidentical oscillators: when only birds of different feathers flock together

    Science.gov (United States)

    Zhang, Yuanzhao; Motter, Adilson E.

    2018-01-01

    An outstanding problem in the study of networks of heterogeneous dynamical units concerns the development of rigorous methods to probe the stability of synchronous states when the differences between the units are not small. Here, we address this problem by presenting a generalization of the master stability formalism that can be applied to heterogeneous oscillators with large mismatches. Our approach is based on the simultaneous block diagonalization of the matrix terms in the variational equation, and it leads to dimension reduction that simplifies the original equation significantly. This new formalism allows the systematic investigation of scenarios in which the oscillators need to be nonidentical in order to reach an identical state, where all oscillators are completely synchronized. In the case of networks of identically coupled oscillators, this corresponds to breaking the symmetry of the system as a means to preserve the symmetry of the dynamical state— a recently discovered effect termed asymmetry-induced synchronization (AISync). Our framework enables us to identify communication delay as a new and potentially common mechanism giving rise to AISync, which we demonstrate using networks of delay-coupled Stuart-Landau oscillators. The results also have potential implications for control, as they reveal oscillator heterogeneity as an attribute that may be manipulated to enhance the stability of synchronous states.

  9. Geographic envelope of the Moon and the identification of Moon landscapes with the use of the axiomatic method

    Directory of Open Access Journals (Sweden)

    Kyryliuk Serhii

    2017-09-01

    Full Text Available Three consequent concepts that build up the algorithm of the identification of modern landscapes on the Moon surface are suggested. They are anaglyphonosphere axiomatic and landscape concepts obtained with the use of the axiomatic method. The first concept depicts the geographic envelope of the Moon as an anaglyphonosphere layer (relief that is a continuum (total environment. The latter becomes the research subject for both a geomorphologist and a landscape researcher. Continuity, dynamics, range (amplitude, and erosion potential determine anaglyphonosphere. Axiomatic concept means constructing the sole scheme (mathematically determined of the search for the elementary surface units using the geometric interpretation of surface patterns of the Moon and its landscape interpretation. The landscape concept is based on the classical principles of the landscape theory and the axiomatic principles of the previous concept. The synthesis of concepts is implemented in the models of Moon landscapes of four scales: zero, linear, two- and three-dimensional. The paper offers the last two models of Davy Catena. Proposed concepts with appropriate correction can be used in parallel studies of the natural environment: geological, geomorphological, climatic, etc. The advantages of the axiomatic method consist in the objective approach to the division of the surface into specific units (the landscapes in our case. The proposed method of identifying and displaying the landscape complexes on the lunar surface can be a significant complement for the study and mapping of terrestrial planets, satellites of planet-giants, etc.

  10. Unidirectional synchronization of Hodgkin-Huxley neurons

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo-Perez, Octavio [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: octavio@ipicyt.edu.mx; Femat, Ricardo [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: rfemat@ipicyt.edu.mx

    2005-07-01

    Synchronization dynamics of two noiseless Hodgkin-Huxley (HH) neurons under the action of feedback control is studied. The spiking patterns of the action potentials evoked by periodic external modulations attain synchronization states under the feedback action. Numerical simulations for the synchronization dynamics of regular-irregular desynchronized spiking sequences are displayed. The results are discussed in context of generalized synchronization. It is also shown that the HH neurons can be synchronized in face of unmeasured states.

  11. Hybrid synchronization of hyperchaotic Lu system

    Indian Academy of Sciences (India)

    In this paper, we study the hybrid synchronization between two identical hyperchaotic Lu systems. Hybrid synchronization of hyperchaotic Lu system is achieved through synchronization of two pairs of states and anti-synchronization of the other two pairs of states. Active controls are designed to achieve hybrid ...

  12. CosmoQuest MoonMappers: Citizen Lunar Exploration

    Science.gov (United States)

    Gay, P. L.; Antonenko, I.; Robbins, S. J.; Bracey, G.; Lehan, C.; Moore, J.; Huang, D.

    2012-09-01

    The MoonMappers citizen science project is part of CosmoQuest, a virtual research facility designed for the public. CosmoQuest seeks to take the best aspects of a research center - research, seminars, journal clubs, and community discussions - and provide them to a community of citizen scientists through a virtual facility. MoonMappers was the first citizen science project within CosmoQuest, and is being used to define best practices in getting the public to effectively learn and do science.

  13. Moon Zoo - Examples of Interesting Lunar Morphology

    Science.gov (United States)

    Cook, A. C.; Wilkinson, J.

    2012-09-01

    The MoonMappers citizen science project is part of CosmoQuest, a virtual research facility designed for the public. CosmoQuest seeks to take the best aspects of a research center - research, seminars, journal clubs, and community discussions - and provide them to a community of citizen scientists through a virtual facility. MoonMappers was the first citizen science project within CosmoQuest, and is being used to define best practices in getting the public to effectively learn and do science.

  14. Introduction to EGU session "Lunar Science and Exploration Towards Moon Village"

    Science.gov (United States)

    Foing, Bernard

    2017-04-01

    The EGU PS2.2 session "Lunar Science and Exploration" Towards Moon Village" will address: - Recent lunar results: geochemistry, geophysics in the context of open planetary science and exploration - Synthesis of results from SMART-1, Kaguya, Chang'e 1, 2 and 3, Chandrayaan-1, LCROSS, LADEE, Lunar Reconnaissance Orbiter and, Artemis and GRAIL - Goals and Status of missions under preparation: orbiters, Luna-Glob, Google Lunar X Prize, Luna Resurs polar lander, SLIM, Chandrayaan2, Chang'E 4 & 5, Lunar Resource Prospector, Future landers, Lunar sample return missions - Precursor missions, instruments and investigations for landers, rovers, sample return, and human cis-lunar activities and human lunar surface sorties - Preparation for International Lunar Decade: databases, instruments, missions, terrestrial field campaigns, support studies - ILEWG and Global Exploration roadmaps towards a global robotic/human Moon village - Strategic Knowledge Gaps, and key science Goals relevant to Lunar Global Exploration Lunar science and exploration are developing further with new and exciting missions being developed by China, the US, Japan, India, Russia, Korea and Europe, and with new stakeholders. The Moon Village is an open concept proposed by ESA DG with the goal of a sustainable human and robotic presence on the lunar surface as an ensemble where multiple users can carry out multiple activities. Multiple goals of the Moon Village include planetary science, life sciences, astronomy, fundamental research, resources utilisation, human spaceflight, peaceful cooperation, economical development, inspiration, training and capacity building. ESA director general has revitalized and enhanced the original concept of MoonVillage discussed in the last decade. Space exploration builds on international collaboration. COSPAR and its ILEWG International Lunar Exploration Working Group (created in 1994) have fostered collaboration between lunar missions [4-8]. A flotilla of lunar orbiters has

  15. Santa and the Moon

    NARCIS (Netherlands)

    Barthel, P.

    This article reflects on the use of illustrations of the Moon in images of Santa Claus, on Christmas gift-wrapping paper and in children's books, in two countries which have been important in shaping the image of Santa Claus and his predecessor Sinterklaas: the USA and the Netherlands. The

  16. Moon manned missions radiation safety analysis

    Science.gov (United States)

    Tripathi, R. K.; Wilson, J. W.; de Anlelis, G.; Badavi, F. F.

    An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to obtain mission scenarios minimizing the astronaut radiation exposure and at the same time controlling the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The optimization process has been realized through minimization of mass along all phases of a mission scenario, in terms of time frame (dates, transfer time length and trajectory, radiation environment), equipment (vehicles, in terms of shape, volume, onboard material choice, size and structure), location (if in space, on the surface, inside or outside a certain habitats), crew characteristics (number, gender, age, tasks) and performance required (spacecraft and habitat volumes), radiation exposure annual and career limit constraint (from NCRP 132), and implementation of the ALARA principle (shelter from the occurrence of Solar Particle Events). On the lunar surface the most important contribution to radiation exposure is given by background Galactic Cosmic Rays (GCR) particles, mostly protons, alpha particles, and some heavy ions, and by locally induced particles, mostly neutrons, created by the interaction between GCR and surface material and emerging from below the surface due to backscattering processes. In this environment manned habitats are to host future crews involved in the construction and/or in the utilization of moon based infrastructure. Three different kinds of lunar missions are considered in the analysis, Moon Base Construction Phase, during which astronauts are on the surface just to build an outpost for future resident crews, Moon Base Outpost Phase, during which astronaut crews are resident but continuing exploration and installation activities, and Moon Base Routine Phase, with long-term shifting resident crews. In each scenario various kinds of habitats

  17. Synchronous adenocarcinomas of the colon presenting as synchronous colocolic intussusceptions in an adult

    Directory of Open Access Journals (Sweden)

    Chen Chuang-Wei

    2012-12-01

    Full Text Available Abstract Intussusception is uncommon in adults. To our knowledge, synchronous colocolic intussusceptions have never been reported in the literature. Here we described the case of a 59-year-old female of synchronous colocolic intussusceptions presenting as acute abdomen that was diagnosed by CT preoperatively. Laparotomy with radical right hemicolectomy and sigmoidectomy was undertaken without reduction of the invagination due to a significant risk of associated malignancy. The final diagnosis was synchronous adenocarcinoma of proximal transverse colon and sigmoid colon without lymph nodes or distant metastasis. The patient had an uneventful recovery. The case also emphasizes the importance of thorough exploration during surgery for bowel invagination since synchronous events may occur.

  18. Moons of the solar system from giant Ganymede to dainty Dactyl

    CERN Document Server

    Hall III, James A

    2016-01-01

    This book captures the complex world of planetary moons, which are more diverse than Earth's sole satellite might lead you to believe. New missions continue to find more of these planetary satellites, making an up to date guide more necessary than ever.  Why do Mercury and Venus have no moons at all? Earth's  Moon, of course, is covered in the book with highly detailed maps. Then we move outward to the moons of Mars, then on to many of the more notable asteroid moons, and finally to a list of less-notable ones. All the major moons of the gas giant planets are covered in great detail, while the lesser-known satellites of these worlds are also touched on.  Readers will learn of the remarkable trans-Neptunian Objects – Pluto, Eris, Sedna, Quaoar –including many of those that have been given scant attention in the literature. More than just objects to read about, the planets' satellites provide us with important information about the history of the solar system. Projects to help us learn more abo...

  19. Moon Zoo: Educating side-by-side with Doing Science (Invited)

    Science.gov (United States)

    Gay, P. L.; Moon Zoo Team

    2010-12-01

    The Moon Zoo citizen science project (http://www.moonzoo.org) engages individuals - primarily members of the public - in identifying geological (and sometimes technological) features on the lunar surface. Using a flash-based interface that runs in a web browser, users can mark craters, linear features, and even left-behind lunar landers on Lunar Reconnaissance Orbiter images. These science tools are embedded in an environment designed to encourage learning and collaboration. On the main Moon Zoo site users can explore educational content, including video tutorials, articles, glossary terms, and flash interactive activities. Additionally, there is a blog and a forum to encourage collaboration and social learning, and a twitter feed for general communications. Through this suite of software Moon Zoo users can contribute to science while learning about the Moon and geology. The Moon Zoo educational content is designed with one purpose in mind: To make sure that a curious user can find information quickly, easily, and on (or within 1-click of) the Moon Zoo site. The Internet is filled with many excellent lunar educational products, and many high-quality digital products exist in offline archives. Finding desired resources, however, can sometimes be a challenge even for professional educators. In order to make finding content easier, we developed a glossary list and a basic concept map for our website that addresses geology, lunar exploration, observing, and the moon in history and culture, and then we populated these terms and concepts with already available materials. We also do things in a way that encourages both doing science tasks and learning at the same time! Specifically, we use pop-out audio and video players that allow users to listen, learn, and classify the lunar surface all at once. To try and understand our users better we are conducting both learning and motivations studies while also monitoring site usage. Our learning assessments use an assessment tool

  20. Impact History of the Moon

    Science.gov (United States)

    Cohen, B. A.; Bottke, W. F.; Norman, M. V.; van der Bogert, C. H.; Fassett, C. I.; Hiesinger, H.; Joy, K. H.; Mazrouei, S. A.; Nemchin, A.; Neumann, G. A.; Zellner, N. E. B.

    2018-04-01

    Establishing an absolute planetary chronology has important ramifications for understanding the early structure of the solar system and the geologic history of the planets. The Moon is the cornerstone for understanding this impact history.

  1. Geochemical Constraints on the Size of the Moon-Forming Giant Impact

    Science.gov (United States)

    Piet, Hélène; Badro, James; Gillet, Philippe

    2017-12-01

    Recent models involving the Moon-forming giant impact hypothesis have managed to reproduce the striking isotopic similarity between the two bodies, albeit using two extreme models: one involves a high-energy small impactor that makes the Moon out of Earth's proto-mantle; the other supposes a gigantic collision between two half-Earths creating the Earth-Moon system from both bodies. Here we modeled the geochemical influence of the giant impact on Earth's mantle and found that impactors larger than 15% of Earth mass result in mantles always violating the present-day concentrations of four refractory moderately siderophile trace elements (Ni, Co, Cr, and V). In the aftermath of the impact, our models cannot further discriminate between a fully and a partially molten bulk silicate Earth. Then, the preservation of primordial geochemical reservoirs predating the Moon remains the sole argument against a fully molten mantle after the Moon-forming impact.

  2. Breaking projective chaos synchronization secure communication using filtering and generalized synchronization

    International Nuclear Information System (INIS)

    Alvarez, G.; Li Shujun; Montoya, F.; Pastor, G.; Romera, M.

    2005-01-01

    This paper describes the security weaknesses of a recently proposed secure communication method based on chaotic masking using projective synchronization of two chaotic systems. We show that the system is insecure and how to break it in two different ways, by high-pass filtering and by generalized synchronization

  3. OUTCOMES AND DURATION OF TIDAL EVOLUTION IN A STAR-PLANET-MOON SYSTEM

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Barnes, Jason W.; O'Brien, David P.

    2012-01-01

    We formulated tidal decay lifetimes for hypothetical moons orbiting extrasolar planets with both lunar and stellar tides. Previous works neglected the effect of lunar tides on planet rotation, and are therefore applicable only to systems in which the moon's mass is much less than that of the planet. This work, in contrast, can be applied to the relatively large moons that might be detected around newly discovered Neptune-mass and super-Earth planets. We conclude that moons are more stable when the planet/moon systems are further from the parent star, the planets are heavier, or the parent stars are lighter. Inclusion of lunar tides allows for significantly longer lifetimes for a massive moon relative to prior formulations. We expect that the semimajor axis of the planet hosting the first detected exomoon around a G-type star is 0.4-0.6 AU and is 0.2-0.4 AU for an M-type star.

  4. Fault-tolerant clock synchronization in distributed systems

    Science.gov (United States)

    Ramanathan, Parameswaran; Shin, Kang G.; Butler, Ricky W.

    1990-01-01

    Existing fault-tolerant clock synchronization algorithms are compared and contrasted. These include the following: software synchronization algorithms, such as convergence-averaging, convergence-nonaveraging, and consistency algorithms, as well as probabilistic synchronization; hardware synchronization algorithms; and hybrid synchronization. The worst-case clock skews guaranteed by representative algorithms are compared, along with other important aspects such as time, message, and cost overhead imposed by the algorithms. More recent developments such as hardware-assisted software synchronization and algorithms for synchronizing large, partially connected distributed systems are especially emphasized.

  5. Five Fabulous Flybys of the Small Inner Moons of Saturn by the Cassini Spacecraft

    Science.gov (United States)

    Buratti, B. J.; Momary, T.; Clark, R. N.; Brown, R. H.; Filacchione, G.; Mosher, J. A.; Baines, K. H.; Nicholson, P. D.

    2017-12-01

    The Saturn system possesses a number of small unique moons, including the coorbitals Janus and Epimetheus; the ring moons Pan and Daphnis; and Prometheus, Pandora, and Atlas, which orbit near the edge of the main ring system. During the last phases of the Cassini mission, when the spacecraft executed close passes to the F-ring of Saturn, five "best-ever" flybys of these moons occurred. Pan, Daphnis, Atlas, Pandora, and Epimetheus were approached at distances ranging from 6000-40,000 km. The Visual Infrared Mapping Spectrometer (VIMS) captured data from the spectral range spanning 0.35-5.1 microns, as well as capturing solar phase angles not observed before. When combined with spectra from different regions of the moons obtained throughout the mission, the VIMS observations reveal substantial changes in the depth of water-ice absorption bands and color over the moons' surfaces. These measurements show the accretion of main-ring material onto the moons, with leading sides exhibiting stronger water-ice signatures in general. Atlas and Pandora have red visible spectra similar to the A-ring and unlike other icy moons, which are blue, further revealing accretion of main ring material onto the small inner moons. In general the visible spectra of the moons gets bluer with distance from Saturn until the surface of the moons is dominated by contamination from the E-ring, which is composed of fresh ice. There is a weak correlation between color and albedo, with lower-albedo moons being redder, suggesting the existence of a dark reddish contaminant from the main ring system. The solar phase curves of the moons are similar to those of larger icy moons (unfortunately no opposition surge data was gathered). 2017 California Institute of Technology. Government sponsorship acknowledged.

  6. Clementine Observes the Moon, Solar Corona, and Venus

    Science.gov (United States)

    1997-01-01

    In 1994, during its flight, the Clementine spacecraft returned images of the Moon. In addition to the geologic mapping cameras, the Clementine spacecraft also carried two Star Tracker cameras for navigation. These lightweight (0.3 kg) cameras kept the spacecraft on track by constantly observing the positions of stars, reminiscent of the age-old seafaring tradition of sextant/star navigation. These navigation cameras were also to take some spectacular wide angle images of the Moon.In this picture the Moon is seen illuminated solely by light reflected from the Earth--Earthshine! The bright glow on the lunar horizon is caused by light from the solar corona; the sun is just behind the lunar limb. Caught in this image is the planet Venus at the top of the frame.

  7. Medical issues in synchronized skating.

    Science.gov (United States)

    Abbott, Kristin; Hecht, Suzanne

    2013-01-01

    Synchronized skating is a unique sport of team skating and currently represents the largest competitive discipline in U.S. Figure Skating. Synchronized skating allows skaters to compete as part of a team with opportunities to represent their country in international competitions. As the popularity of the sport continues to grow, more of these athletes will present to sports medicine clinics with injuries and illnesses related to participation in synchronized skating. The purpose of this article is to review the common injuries and medical conditions affecting synchronized skaters.

  8. STUDYING BUSINESS CYCLES SYNCHRONIZATION

    Directory of Open Access Journals (Sweden)

    N. Servetnyk

    2014-06-01

    Full Text Available The paper researches business cycles synchronization. The fluctuations in post-Soviet countries are considered. The study examines different measures of synchronization in groups of countries according to some criteria.

  9. International lunar observatory / power station: from Hawaii to the Moon

    Science.gov (United States)

    Durst, S.

    Astronomy's great advantages from the Moon are well known - stable surface, diffuse atmosphere, long cool nights (14 days), low gravity, far side radio frequency silence. A large variety of astronomical instruments and observations are possible - radio, optical and infrared telescopes and interferometers; interferometry for ultra- violet to sub -millimeter wavelengths and for very long baselines, including Earth- Moon VLBI; X-ray, gamma-ray, cosmic ray and neutrino detection; very low frequency radio observation; and more. Unparalleled advantages of lunar observatories for SETI, as well as for local surveillance, Earth observation, and detection of Earth approaching objects add significant utility to lunar astronomy's superlatives. At least nine major conferences in the USA since 1984 and many elsewhere, as well as ILEWG, IAF, IAA, LEDA and other organizations' astronomy-from-the-Moon research indicate a lunar observatory / power station, robotic at first, will be one of the first mission elements for a permanent lunar base. An international lunar observatory will be a transcending enterprise, highly principled, indispensable, soundly and broadly based, and far- seeing. Via Astra - From Hawaii to the Moon: The astronomy and scie nce communities, national space agencies and aerospace consortia, commercial travel and tourist enterprises and those aspiring to advance humanity's best qualities, such as Aloha, will recognize Hawaii in the 21st century as a new major support area and pan- Pacific port of embarkation to space, the Moon and beyond. Astronomical conditions and facilities on Hawaii's Mauna Kea provide experience for construction and operation of observatories on the Moon. Remote and centrally isolated, with diffuse atmosphere, sub-zero temperature and limited working mobility, the Mauna Kea complex atop the 4,206 meter summit of the largest mountain on the planet hosts the greatest collection of large astronomical telescopes on Earth. Lunar, extraterrestrial

  10. Clock synchronization and dispersion

    International Nuclear Information System (INIS)

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Wong, Franco N C

    2002-01-01

    We present a method to defeat effects of dispersion of timing signals when synchronizing clocks. It is based on the recently proposed 'conveyor belt synchronization' scheme and on the quantum dispersion cancellation effect

  11. Natural radioactivity of the rocks from the Moon and planets

    Energy Technology Data Exchange (ETDEWEB)

    Surkov, Yu.A. (AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)

    1982-01-01

    Tha data on natural radioactivity of rocks (U, Th and K contents) from the Moon, Venus and Mars obtained by means of cosmic means are analyzed. The Moon rock radioactivity has been measured in situ (from orbital vehicles) as well as in the samples of lunar material delivered to the Earth and as for Venus and Mars rocks - by landing vehicles. It has been found that the main specific feature of the Moon and the Earth group planets is the presence of two geomorphological types of the structure of their surface composed by two different types of the matter. The ancient continent regions are made up by feldspar rock - gabbroanorthosite at the Moon (and possibly at the Mars) and granite-metamorphic at the Earth (and possibly at the Venus). The younger ''marine'' regions are composed by basalt rock. The presence at the Moon of two types of crust (marine and continental ones) having a different nature is clearly reflected on the Moon radioactivity map where marine regions (15% of the total surface) which have high radioactivity and continental regions with a relatively low radioactivity can be seen. The discovery of rocks on the Venus surface highly enriched by U, Th and K speaks of their melting from the primary matter in the depth of the Earth. The Marsian rock by the natural radioelement content is close to igneous rocks of the Earth crust of the basic composition and lunar marine basalts.

  12. Natural radioactivity of the rocks from the Moon and planets

    International Nuclear Information System (INIS)

    Surkov, Yu.A.

    1982-01-01

    Tha data on natural radioactivity of rocks (U, Th and K contents) from the Moon, Venus and Mars obtained by means of cosmic means are analyzed. The Moon rock radioactivity has been measured in situ (from orbital vehicles) as well as in the samples of lunar material delivered to the Earth and as for Venus and Mars rocks - by landing vehicles. It has been found that the main specific feature of the Moon and the Earth group planets is the presence of two geomorphological types of the structure of their surface composed by two different types of the matter. The ancient contineent regions are made up by feldspar rock - gabbroanorthosite at the Moon (and possibly at the Mars) and granite-metamorphic at the Earth (and possibly at the Venus). The younger ''marine'' regions are composed by basalt rock. The presence at the Moon of two types of crust (marine and continental ones) having a different nature is clearly reflected on the Moon radioactivity map where marine regions (15% of the total surface) which have high radioactivity and continental regions with a relatively low radioactivity can be seen. The discovery of rocks on the Venus surface highly enriched by U, Th and K speaks of their melting from the primary matter in the depth of the Earth. The Marsian rock by the natural radioelement content is close to igneous rocks of the Earth crust of the basic composition and lunar marine basalts

  13. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  14. Synchronization in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  15. Chaos synchronization of coupled hyperchaotic system

    International Nuclear Information System (INIS)

    Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng

    2009-01-01

    Chaos synchronization, as an important topic, has become an active research subject in nonlinear science. Over the past two decades, chaos synchronization between nonlinear systems has been extensively studied, and many types of synchronization have been announced. This paper introduces synchronization of coupled hyperchaotic system, based on the Lapunov stability theory, asymptotic stability of the system is guaranteed by means of Lapunov function. The numerical simulation was provided in order to show the effectiveness of this method for the synchronization of the chaotic hyperchaotic Chen system and Rossler system.

  16. Electron holes observed in the Moon Plasma Wake

    Science.gov (United States)

    Hutchinson, I. H.; Malaspina, D.; Zhou, C.

    2017-10-01

    Electrostatic instabilities are predicted in the magnetized wake of plasma flowing past a non-magnetic absorbing object such as a probe or the moon. Analysis of the data from the Artemis satellites, now orbiting the moon at distances ten moon radii and less, shows very clear evidence of fast-moving isolated solitary potential structures causing bipolar electric field excursions as they pass the satellite's probes. These structures have all the hallmarks of electron holes: BGK solitons typically a few Debye-lengths in size, self-sustaining by a deficit of phase-space density on trapped orbits. Electron holes are now observed to be widespread in space plasmas. They have been observed in PIC simulations of the moon wake to be the non-linear consequence of the predicted electron instabilities. Simulations document hole prevalence, speed, length, and depth; and theory can explain many of these features from kinetic analysis. The solar wind wake is certainly the cause of the overwhelming majority of the holes observed by Artemis, because we observe almost all holes to be in or very near to the wake. We compare theory and simulation of the hole generation, lifetime, and transport mechanisms with observations. Work partially supported by NASA Grant NNX16AG82G.

  17. The Moon as a unifying sociological attraction

    Science.gov (United States)

    Barbieri, C.; Pachera, S.; Ciucci, A.

    We propose to develop an economic, fully automated telescope to equip a variety of public and private buildings, such as disco dancings, pubs, resting houses, hospitals, schools etc., optimized to image and project the Moon, both in daylight and nightime. We strongly believe that the wide spread conscience of being part of a common Universe, by imaging the real Moon ( not a series of computer files) and following its changing course, distributed in places where the soul is usually taken in a wave of loneliness, can have a profound effect. In fact, living such an experience of observation in places where people of all ages usually meet, can help them to mix up socially and have fun and acquire new interests and fulfillment. They could confront their doubts, opinions, curiosity. The Moon is the natural choice, being visible even in polluted cities, it comes to the Zenith of a large band on the Earth encompassing each emisphere, it has deeply rooted meanings in all civilizations, and it is therefore the perfect astronomical object towards which humanity should direct its view above the ground. The possibility of the instrument to zoom in and out and to move across the surface of the Moon or to observe in real time the slowly moving line of the terminator, is intended just for the sheer wonder of it. No didactic use is meant to begin with, although interest is sure to be stimulated and may be followed up in many ways. Our object is indeed to make young and older people throughout the world feel our satellite nearer and more familiar in the shapes and names of its features, truly a constant presence in our everyday natural surroundings. When the time will come for human coloniz ation, the Moon could no longer be considered such an extraneous, exotic and faraway new home. The telescope can be built in very large quantities by a variety of firms practically even in underdeveloped countries, easily automated and connected to the world wide web.

  18. Bursting synchronization in clustered neuronal networks

    International Nuclear Information System (INIS)

    Yu Hai-Tao; Wang Jiang; Deng Bin; Wei Xi-Le

    2013-01-01

    Neuronal networks in the brain exhibit the modular (clustered) property, i.e., they are composed of certain subnetworks with differential internal and external connectivity. We investigate bursting synchronization in a clustered neuronal network. A transition to mutual-phase synchronization takes place on the bursting time scale of coupled neurons, while on the spiking time scale, they behave asynchronously. This synchronization transition can be induced by the variations of inter- and intracoupling strengths, as well as the probability of random links between different subnetworks. Considering that some pathological conditions are related with the synchronization of bursting neurons in the brain, we analyze the control of bursting synchronization by using a time-periodic external signal in the clustered neuronal network. Simulation results show a frequency locking tongue in the driving parameter plane, where bursting synchronization is maintained, even in the presence of external driving. Hence, effective synchronization suppression can be realized with the driving parameters outside the frequency locking region. (interdisciplinary physics and related areas of science and technology)

  19. Taking Europe To The Moon

    Science.gov (United States)

    1998-03-01

    The first step in this ESA initiated programme is a unique project called 'Euromoon 2000' which is currently being studied by ESA engineers/ scientists and key European Space Industries. The project is intended to celebrate Europe's entry into the New Millennium; and to promote public awareness and interest in science, technology and space exploration. Euromoon 2000 has an innovative and ambitious implementation plan. This includes a 'partnership with industry' and a financing scheme based on raising part of the mission's budget from sponsorship through a dynamic public relations strategy and marketing programme. The mission begins in earnest with the small (approx. 100 kg) LunarSat orbiter satellite, to be designed and built by 50 young scientists and engineers from across Europe. Scheduled for launch in 2000 as a secondary payload on a European Ariane 5 rocket, it will then orbit the Moon, mapping the planned landing area in greater detail in preparation of the EuroMoon Lander in 2001. The Lander's 40 kg payload allocation will accommodate amongst others scientific instrumentation for in-situ investigation of the unique site. Elements of specific support to the publicity and fund-raising campaign will also be considered. The Lander will aim for the 'Peak of Eternal Light' on the rim of the 20 km-diameter, 3 km-deep Shackleton South Pole crater - a site uniquely suited for establishing a future outpost. This location enjoys almost continuous sunlight thus missions can rely on solar power instead of bulky batteries or costly and potentially hazardous nuclear power generation. As a consequence of the undulating South Pole terrain there are also permanently shadowed areas - amongst the coldest in the Solar System resulting in conditions highly favourable for the formation of frozen volatiles (as suggested by the Clementine mission in 1994). Earlier this year (7th January 1998), NASA launched its Lunar Prospector satellite which is currently performing polar lunar

  20. Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints.

    Science.gov (United States)

    Deng, Zhenhua; Shang, Jing; Nian, Xiaohong

    2015-11-01

    In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Using GRIDVIEW to Better Understand the Early Bombardment History of the Moon, Mars and Earth

    Science.gov (United States)

    Frey, Herbert

    2012-01-01

    ) on the Moon (Frey and Burgess, 2012, this meeting), with obvious implications for the early bombardment history of the Earth.

  2. Neural Synchronization and Cryptography

    Science.gov (United States)

    Ruttor, Andreas

    2007-11-01

    Neural networks can synchronize by learning from each other. In the case of discrete weights full synchronization is achieved in a finite number of steps. Additional networks can be trained by using the inputs and outputs generated during this process as examples. Several learning rules for both tasks are presented and analyzed. In the case of Tree Parity Machines synchronization is much faster than learning. Scaling laws for the number of steps needed for full synchronization and successful learning are derived using analytical models. They indicate that the difference between both processes can be controlled by changing the synaptic depth. In the case of bidirectional interaction the synchronization time increases proportional to the square of this parameter, but it grows exponentially, if information is transmitted in one direction only. Because of this effect neural synchronization can be used to construct a cryptographic key-exchange protocol. Here the partners benefit from mutual interaction, so that a passive attacker is usually unable to learn the generated key in time. The success probabilities of different attack methods are determined by numerical simulations and scaling laws are derived from the data. They show that the partners can reach any desired level of security by just increasing the synaptic depth. Then the complexity of a successful attack grows exponentially, but there is only a polynomial increase of the effort needed to generate a key. Further improvements of security are possible by replacing the random inputs with queries generated by the partners.

  3. Targeting engineering synchronization in chaotic systems

    Science.gov (United States)

    Bhowmick, Sourav K.; Ghosh, Dibakar

    2016-07-01

    A method of targeting engineering synchronization states in two identical and mismatch chaotic systems is explained in detail. The method is proposed using linear feedback controller coupling for engineering synchronization such as mixed synchronization, linear and nonlinear generalized synchronization and targeting fixed point. The general form of coupling design to target any desire synchronization state under unidirectional coupling with the help of Lyapunov function stability theory is derived analytically. A scaling factor is introduced in the coupling definition to smooth control without any loss of synchrony. Numerical results are done on two mismatch Lorenz systems and two identical Sprott oscillators.

  4. Interculturallity and traditional knowledge about the moon in teacher training at the/of rural education

    Directory of Open Access Journals (Sweden)

    Rodrigo dos Santos Crepalde

    2017-12-01

    Full Text Available ABSTRACT: The treatment given to traditional knowledge by school science tends to devalue it, subjecting it to naive, common sense, and even mythological vision. As a way of promoting dialogue and exchange between different cultures, which populate the classroom, interculturallity assumes that science education should be considered as the acquisition of yet another culture, without overcoming the validity of the others. This article presents a concrete case of teaching and learning of the physical sciences as an example of promoting the recognition of traditional knowledge about the Moon in a context of intercultural rural science teacher education. They are discussed representative excerpts of written productions of undergraduate rural education, major in natural sciences, conducted in the discipline of Introduction to Physics that aimed to argue about how scientific and traditional knowledge are related to the Moon and its implications for science teaching. It is noted that traditional knowledge is strongly intertwined with the social practices of communities of these graduates, pointing out the necessary inclusion of this knowledge in the intercultural rural science teacher education that stimulates the exchange and mutual enrichment.

  5. Formation, habitability, and detection of extrasolar moons.

    Science.gov (United States)

    Heller, René; Williams, Darren; Kipping, David; Limbach, Mary Anne; Turner, Edwin; Greenberg, Richard; Sasaki, Takanori; Bolmont, Emeline; Grasset, Olivier; Lewis, Karen; Barnes, Rory; Zuluaga, Jorge I

    2014-09-01

    The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1-0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology.

  6. Physical Layer Ethernet Clock Synchronization

    Science.gov (United States)

    2010-11-01

    42 nd Annual Precise Time and Time Interval (PTTI) Meeting 77 PHYSICAL LAYER ETHERNET CLOCK SYNCHRONIZATION Reinhard Exel, Georg...oeaw.ac.at Nikolaus Kerö Oregano Systems, Mohsgasse 1, 1030 Wien, Austria E-mail: nikolaus.keroe@oregano.at Abstract Clock synchronization ...is a service widely used in distributed networks to coordinate data acquisition and actions. As the requirement to achieve tighter synchronization

  7. Nonlinear Dynamics of Controlled Synchronizations of Manipulator System

    Directory of Open Access Journals (Sweden)

    Qingkai Han

    2014-01-01

    Full Text Available The nonlinear dynamics of the manipulator system which is controlled to achieve the synchronization motions is investigated in the paper. Firstly, the control strategies and modeling approaches of the manipulator system are given, in which the synchronization goal is defined by both synchronization errors and its derivatives. The synchronization controllers applied on the manipulator system include neuron synchronization controller, improved OPCL synchronization controller, and MRAC-PD synchronization controller. Then, an improved adaptive synchronized control strategy is proposed in order to estimate online the unknown structure parameters and state variables of the manipulator system and to realize the needed synchronous compensation. Furthermore, a robust adaptive synchronization controller is also researched to guarantee the dynamic stability of the system. Finally, the stability of motion synchronizations of the manipulator system possessing nonlinear component is discussed, together with the effect of control parameters and joint friction and others. Some typical motions such as motion bifurcations and the loss of synchronization of it are obtained and illustrated as periodic, multiperiodic, and/or chaotic motion patterns.

  8. Continuous and discontinuous transitions to synchronization.

    Science.gov (United States)

    Wang, Chaoqing; Garnier, Nicolas B

    2016-11-01

    We describe how the transition to synchronization in a system of globally coupled Stuart-Landau oscillators changes from continuous to discontinuous when the nature of the coupling is moved from diffusive to reactive. We explain this drastic qualitative change as resulting from the co-existence of a particular synchronized macrostate together with the trivial incoherent macrostate, in a range of parameter values for which the latter is linearly stable. In contrast to the paradigmatic Kuramoto model, this particular state observed at the synchronization transition contains a finite, non-vanishing number of synchronized oscillators, which results in a discontinuous transition. We consider successively two situations where either a fully synchronized state or a partially synchronized state exists at the transition. Thermodynamic limit and finite size effects are briefly discussed, as well as connections with recently observed discontinuous transitions.

  9. Magmatism on the Moon

    Science.gov (United States)

    Michaut, Chloé; Thorey, Clément; Pinel, Virginie

    2016-04-01

    Volcanism on the Moon is dominated by large fissure eruptions of mare basalt and seems to lack large, central vent, shield volcanoes as observed on all the other terrestrial planets. Large shield volcanoes are constructed over millions to several hundreds of millions of years. On the Moon, magmas might not have been buoyant enough to allow for a prolonged activity at the same place over such lengths of time. The lunar crust was indeed formed by flotation of light plagioclase minerals on top of the lunar magma ocean, resulting in a particularly light and relatively thick crust. This low-density crust acted as a barrier for the denser primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basins where at least part of the crust was removed by the impact process. Thus, the ascent of lunar magmas might have been limited by their reduced buoyancy, leading to storage zone formation deep in the lunar crust. Further magma ascent to shallower depths might have required local or regional tensional stresses. Here, we first review evidences of shallow magmatic intrusions within the lunar crust of the Moon that consist in surface deformations presenting morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. We then study the preferential zones of magma storage in the lunar crust as a function of the local and regional state of stress. Evidences of shallow intrusions are often contained within complex impact craters suggesting that the local depression caused by the impact exerted a strong control on magma ascent. The depression is felt over a depth equivalent to the crater radius. Because many of these craters have a radius less than 30km, the minimum crust thickness, this suggests that the magma was already stored in deeper intrusions before ascending at shallower depth. All the evidences for intrusions are also preferentially located in the internal

  10. Adaptive feedback synchronization of Lue system

    International Nuclear Information System (INIS)

    Han, X.; Lu, J.-A.; Wu, X.

    2004-01-01

    This letter further improves and extends the works of Chen and Lue [Chaos, Solitons and Fractals 14 (2002) 643] and Wang et al. [Phys. Lett. A 312 (2003) 34]. In detail, the linear feedback synchronization and adaptive feedback synchronization for Lue system are discussed. And the lower bound of the feedback gain in linear feedback synchronization is presented. The adaptive feedback synchronization with only one controller is designed, which improves the proof in the work by Wang et al. The adaptive synchronization with two controllers for completely uncertain Lue system is also discussed, which extends the work of Chen and Lue. Also, numerical simulations show the effectiveness of these methods

  11. Formation and growth of embryos of the Earth-Moon system

    Science.gov (United States)

    Ipatov, Sergei I.

    2016-07-01

    Galimov and Krivtsov [1] made computer simulations of the formation of the embryos of the Earth and the Moon as a result of contraction of a rarefied condensation. The angular momentum needed for such contraction could not be acquired during formation of the condensation from a protoplanetary disk. Using the formulas presented in [2], we obtained that the angular momentum of the present Earth-Moon system could be acquired at a collision of two rarefied condensations with a total mass not smaller than 0.1M_{e}, where M_{e} is the Earth mass. In principle, the angular momentum of the condensation needed for formation of the Earth-Moon system could be acquired by accumulation only of small objects, but for such model, the parental condensations of Venus and Mars could also get the angular momentum that was enough for formation of large satellites. Probably, the condensations that contracted and formed the embryos of the terrestrial planets other than the Earth did not collide with massive condensations, and therefore they did not get a large enough angular momentum needed to form massive satellites. The embryos formed as a result of contraction of the condensation grew by accumulation of solid planetesimals. The mass of the rarefied condensation that was a parent for the embryos of the Earth and the Moon could be relatively small (0.02M_{e} or even less), if we take into account the growth of the angular momentum of the embryos at the time when they accumulated planetesimals. There could be also the second main collision of the parental rarefied condensation with another condensation, at which the radius of the Earth's embryo condensation was smaller than the semi-major axis of the orbit of the Moon's embryo. The second main collision (or a series of similar collisions) could change the tilt of the Earth to its present value. For large enough eccentricities of planetesimals, the effective radii of proto-Earth and proto-Moon were proportional to r (where r is the

  12. Generalized synchronization between chimera states

    Science.gov (United States)

    Andrzejak, Ralph G.; Ruzzene, Giulia; Malvestio, Irene

    2017-05-01

    Networks of coupled oscillators in chimera states are characterized by an intriguing interplay of synchronous and asynchronous motion. While chimera states were initially discovered in mathematical model systems, there is growing experimental and conceptual evidence that they manifest themselves also in natural and man-made networks. In real-world systems, however, synchronization and desynchronization are not only important within individual networks but also across different interacting networks. It is therefore essential to investigate if chimera states can be synchronized across networks. To address this open problem, we use the classical setting of ring networks of non-locally coupled identical phase oscillators. We apply diffusive drive-response couplings between pairs of such networks that individually show chimera states when there is no coupling between them. The drive and response networks are either identical or they differ by a variable mismatch in their phase lag parameters. In both cases, already for weak couplings, the coherent domain of the response network aligns its position to the one of the driver networks. For identical networks, a sufficiently strong coupling leads to identical synchronization between the drive and response. For non-identical networks, we use the auxiliary system approach to demonstrate that generalized synchronization is established instead. In this case, the response network continues to show a chimera dynamics which however remains distinct from the one of the driver. Hence, segregated synchronized and desynchronized domains in individual networks congregate in generalized synchronization across networks.

  13. How Apollo Flew to the Moon

    CERN Document Server

    Woods, W. David

    2008-01-01

    Out of the technological battlefield of World War II came a team of gifted German engineers and designers who developed the vengeance weapon, the V-2, which evolved into the peaceful, powerful Saturn V rocket to take men to the Moon. David Woods tells the exciting story, starting from America’s post war astronautical research facilities, that used the V-2 for the development of the robust, resilient and reliable Saturn V launcher. He describes the initial launches through manned orbital spaceflights, comprehensively detailing each step, including computer configuration, the role of ground control, trajectory planning, lunar orbiting, separation of the lander, walking and working on the Moon, retrieval of the lunar astronauts and returning to Earth in this massive technical accomplishment.

  14. Outer Synchronization of Complex Networks by Impulse

    International Nuclear Information System (INIS)

    Sun Wen; Yan Zizong; Chen Shihua; Lü Jinhu

    2011-01-01

    This paper investigates outer synchronization of complex networks, especially, outer complete synchronization and outer anti-synchronization between the driving network and the response network. Employing the impulsive control method which is uncontinuous, simple, efficient, low-cost and easy to implement in practical applications, we obtain some sufficient conditions of outer complete synchronization and outer anti-synchronization between two complex networks. Numerical simulations demonstrate the effectiveness of the proposed impulsive control scheme. (general)

  15. Precursor life science experiments and closed life support systems on the Moon

    Science.gov (United States)

    Rodriguez, A.; Paille, C.; Rebeyre, P.; Lamaze, B.; Lobo, M.; Lasseur, C.

    Nowadays the Moon is not only a scientific exploration target but also potentially also a launch pad for deeper space exploration. Establishing an extended human presence on the Moon could reduce the cost of further space exploration, and gather the technical and scientific experience that would make possible the next steps of space exploration, namely manned-missions to Mars. To enable the establishment of such a Moon base, a reliable and regenerative life support system (LSS) is required: without any recycling of metabolic consumables (oxygen, water and food), a 6-person crew during the course of one year would require a supply of 12t from Earth (not including water for hygiene purposes), with a prohibitive associated cost! The recycling of consumables is therefore mandatory for a combination of economic, logistical and also safety reasons. Currently the main regenerative technologies used, namely water recycling in the ISS, are physical-chemical but they do not solve the issue of food production. In the European Space Agency, for the last 15 years, studies are being performed on several life support topics, namely in air revitalisation, food, water and waste management, contaminants, monitoring and control. Ground demonstration, namely the MELiSSA Pilot Plant and Concordia Station, and simulation studies demonstrated the studies feasibility and the recycling levels are promising. To be able to build LSS in a Moon base, the temperature amplitude, the dust and its 14-day night, which limits solar power supply, should be regarded. To reduce these technical difficulties, a landing site should be carefully chosen. Considering the requirements of a mission to the Moon and within the Aurora programme phase I, a preliminary configuration for a regenerative LSS can be proposed as an experiment for a precursor mission to the Moon. An overview of the necessary LSS to a Moon base will be presented, identifying Moon?s specific requirements and showing preliminary

  16. Impaired coupling of local and global functional feedbacks underlies abnormal synchronization and negative symptoms of schizophrenia.

    Science.gov (United States)

    Noh, Kyungchul; Shin, Kyung Soon; Shin, Dongkwan; Hwang, Jae Yeon; Kim, June Sic; Jang, Joon Hwan; Chung, Chun Kee; Kwon, Jun Soo; Cho, Kwang-Hyun

    2013-04-10

    Abnormal synchronization of brain oscillations is found to be associated with various core symptoms of schizophrenia. However, the underlying mechanism of this association remains yet to be elucidated. In this study, we found that coupled local and global feedback (CLGF) circuits in the cortical functional network are related to the abnormal synchronization and also correlated to the negative symptom of schizophrenia. Analysis of the magnetoencephalography data obtained from patients with chronic schizophrenia during rest revealed an increase in beta band synchronization and a reduction in gamma band power compared to healthy controls. Using a feedback identification method based on non-causal impulse responses, we constructed functional feedback networks and found that CLGF circuits were significantly reduced in schizophrenia. From computational analysis on the basis of the Wilson-Cowan model, we unraveled that the CLGF circuits are critically involved in the abnormal synchronization and the dynamical switching between beta and gamma bands power in schizophrenia. Moreover, we found that the abundance of CLGF circuits was negatively correlated with the development of negative symptoms of schizophrenia, suggesting that the negative symptom is closely related to the impairment of this circuit. Our study implicates that patients with schizophrenia might have the impaired coupling of inter- and intra-regional functional feedbacks and that the CLGF circuit might serve as a critical bridge between abnormal synchronization and the negative symptoms of schizophrenia.

  17. There are days ... and moons. Self-poisoning is not lunacy.

    Science.gov (United States)

    Buckley, N A; Whyte, I M; Dawson, A H

    To determine whether there are significant circadian, weekly or lunar variations in self-poisoning presentations and whether patients' names or dates of birth have an influence on the likelihood of self-poisoning by analysing biorhythms, numerology and star sign. Hunter Valley, Australia. Consecutive adult patients admitted with self-poisoning between January 1987 and June 1993. There were 2215 patients admitted. There was a marked circadian variation. Over 6% of all admissions occurred in each of the hours between 6 p.m. and 1 a.m. compared with less than 2% per hour between 5 a.m. and 9 a.m. This pattern was not different for patients with a diagnosis of depression. Numerology, biorhythms and star signs had no significant correlations with self-poisoning, nor was there a significant weekly or yearly variation in presentations. There was a small but statistically significant sex difference in presentations analysed by lunar phases. At the new moon 60% of self-poisonings were in women, compared with 45% when the moon was full. The odds ratios (OR) for women to be admitted at full moon and at new moon were 1.27 (95% confidence interval [CI], 0.92-1.66; P value not significant) and 0.73 (95% CI, 0.57-0.92; P = 0.009) respectively. The mean illumination of the moon at the time of overdose was 50.63% +/- 0.91% for men, compared with 47.45% +/- 0.85% for women (P = 0.014). The circadian cycle (but not weekly, yearly or mystical cycles) should be taken into account when determining staffing levels for poison information and casualty services. The full moon is protective for women.

  18. A chimeric path to neuronal synchronization

    Science.gov (United States)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an "all or none" phenomenon, but can pass through an intermediate stage (chimera).

  19. A chimeric path to neuronal synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L. [School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709 (United States)

    2015-01-15

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  20. A chimeric path to neuronal synchronization

    International Nuclear Information System (INIS)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  1. Astrobiology Results from ILEWG EuroMoonMars Analogue Field Research

    Science.gov (United States)

    Foing, Bernard H.

    . v’t Houd (8), A. Bruneau (6,9), M. Cross (6,7), V. Maivald (10), C. Orgel (6), A. Elsaesser (4), S.O.L. Direito (2,4), W.F.M. Röling (2), G.R. Davies (2); EuroGeoMars2009 Team, DOMMEX-ILEWG EuroMoonMars 2010-2013 Teams (1) ESA/ ESTEC, Postbus 299, 2200 AG Noordwik, NL; (2) Vrije Universiteit, Amsterdam, Faculty of Earth & Life Sciences, De Boelelaan 1085, 1081 HV Amsterdam, NL; (3) NASA Ames Research Centre; US; (4) Leiden Institute of Chemistry, NL; (5) Space Policy Institute, GWU, Washington D.C., USA; (6) ILEWG; (7) CPSX; (8) Cerberus Blackshore, ESIC Noordwijk, NL; (9) ENSC Bordeaux; (10) DLR, Bremen References: Foing, Stoker & Ehrenfreund (Editors, 2011) “Astrobiology field Research in Moon/Mars Analogue Environments”, Special Issue of International Journal of Astrobiology , IJA 2011, 10, vol.3. 137-305; [1] Foing B. et al. (2011) Field astrobiology research at Moon-Mars analogue site: Instruments and methods, IJA 2011, 10 (3), 141; [2] Clarke, J., Stoker, C. Concretions in exhumed & inverte channels near Hanksville Utah: implications for Mars, (IJA 2011, 10 (3), 162; [3] Thiel et al., (2011) PCR-based analysis of microbial communities during the EuroGeoMars campaign at Mars Desert Research Station, Utah. (IJA 2011, 10 (3), 177; [4] Direito et al. (2011). A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah). (IJA 2011, 10 (3), 191; [5] Orzechowska, G. et al (20110 analysis of Mars Analog soils using solid Phase Microextraction, Organics solvent extraction and GCMS, (IJA 2011, 10 (3), 209; [6] Kotler et al. (2011). Analysis of mineral matrices of planetary soils analogs from the Utah Desert. (IJA 2011, 10 (3), 221; [7] Martins et al. (2011). Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah. (IJA 2011, 10 (3), 231; [8] Ehrenfreund et al. (2011) Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals

  2. The Origin of the Moon Within a Terrestrial Synestia

    Science.gov (United States)

    Lock, Simon J.; Stewart, Sarah T.; Petaev, Michail I.; Leinhardt, Zoë; Mace, Mia T.; Jacobsen, Stein B.; Cuk, Matija

    2018-04-01

    The giant impact hypothesis remains the leading theory for lunar origin. However, current models struggle to explain the Moon's composition and isotopic similarity with Earth. Here we present a new lunar origin model. High-energy, high-angular-momentum giant impacts can create a post-impact structure that exceeds the corotation limit, which defines the hottest thermal state and angular momentum possible for a corotating body. In a typical super-corotation-limit body, traditional definitions of mantle, atmosphere, and disk are not appropriate, and the body forms a new type of planetary structure, named a synestia. Using simulations of cooling synestias combined with dynamic, thermodynamic, and geochemical calculations, we show that satellite formation from a synestia can produce the main features of our Moon. We find that cooling drives mixing of the structure, and condensation generates moonlets that orbit within the synestia, surrounded by tens of bars of bulk silicate Earth vapor. The moonlets and growing moon are heated by the vapor until the first major element (Si) begins to vaporize and buffer the temperature. Moonlets equilibrate with bulk silicate Earth vapor at the temperature of silicate vaporization and the pressure of the structure, establishing the lunar isotopic composition and pattern of moderately volatile elements. Eventually, the cooling synestia recedes within the lunar orbit, terminating the main stage of lunar accretion. Our model shifts the paradigm for lunar origin from specifying a certain impact scenario to achieving a Moon-forming synestia. Giant impacts that produce potential Moon-forming synestias were common at the end of terrestrial planet formation.

  3. ISS as testbed towards food production on the Moon

    Science.gov (United States)

    Kuebler, Ulrich; Thallemer, Axel; Kern, Peter; Schwarzwaelder, Achim

    Almost all major space faring nations are presently investigating concepts for the exploration of extra terrestrial planetary bodies, including Earth's Moon and Mars. One major objective to sustain any human exploration plans will be the provision of fresh food. Even if a delivery from Earth to Moon is still possible with regular preservation techniques as for the international space station, there will be a big psychological impact from the ability to grow fresh food on a Moon Basis. Various architectural and agricultural concepts have been proposed. A comprehensive summary of the related requirements and constraints shall be presented as a baseline for further studies. One presently unknown constraint is the question of the gravity threshold for the genetic stability of plants or more specifically the level of gravity which is needed for normal growth and reproduction of plants. This paper shall focus on a roadmap towards a food production facility a planetary surface using the International Space Station as a test bed. Presented will be 1.) The concept of a Food Research Rotor for the artificial gravity facility EMCS. This Rotor shall allow the investigation into the gravity dependence of growth and reproduction of nutritionally relevant plants like radishes, tomatoes, bell peppers or lettuce. An important answer from this research could be if the Moon Gravity of 1/6g is sufficient for a vegetative food production or if additional artificial gravity is needed for a Moon Greenhouse. 2.) An inflatable demonstrator for ATV as scaled down version of a proposed planetary greenhouse

  4. "The Moon Village and Journey to Mars enable each other"

    Science.gov (United States)

    Beldavs, Vidvuds

    2016-07-01

    NASA has proposed the Journey to Mars, a multi-decade collaborative international effort to establish permanent manned operations on the Martian surface as well as in orbit, most likely on the Martian moons. NASA's proposed the Journey to Mars has come under politically motivated attack as illusory, as beyond NASA's capabilities and anticipated NASA budgets in the foreseeable future. [1]. Other concerns come from various communities of researchers concerned about securing sustaining funding for their largely robotic research missions. ESA's Director General Dietrich Woerner's proposed Moon Village faces challenges ESA member states concerned about sustaining funding for projects already underway or in planning. Both the Journey to Mars and Moon Village raise the question - who will or who can pay for it? The 2013 US Research Council study suggested potential benefits to a mission to Mars from activities on the Moon [2]. The NASA funded Flexible Lunar Architecture study came to similar conclusions using a different methodology [3]. A logistics analysis by an MIT team suggested the possibility of cost savings through use of lunar water for propellant to reach Mars [4]. The highly promising private-public financing approach has been examined for potential application to funding the costs of reaching Mars [5]. Insofar as the feasibility of utilization of lunar water has not been determined these conclusions are speculative. This study will examine the following alternative scenarios for establishing sustainable, manned operations on Mars and permanent manned operations on the Moon: A. NASA-led Journey to Mars without an ESA-led Moon Village B. ESA-led Moon Village without NASA-led Journey to Mars C. NASA-led Journey to Mars with an ESA-led Moon Village D. Shared Infrastructure scenario - NASA-led Journey to Mars with ESA-led Moon Village and with a potential JAXA-led space-based-solar power initiative E. Space Industrialization scenario - Shared Infrastructure scenario

  5. Chaos synchronization between Chen system and Genesio system

    International Nuclear Information System (INIS)

    Wu Xianyong; Guan Zhihong; Wu Zhengping; Li Tao

    2007-01-01

    This Letter presents two synchronization schemes between two different chaotic systems. Active control synchronization and adaptive synchronization between Chen system and Genesio system are studied, different controllers are designed to synchronize the drive and response systems, active control synchronization is used when system parameters are known; adaptive synchronization is employed when system parameters are unknown or uncertain. Simulation results show the effectiveness of the proposed schemes

  6. Synchronization of indirectly coupled Lorenz oscillators

    Indian Academy of Sciences (India)

    Synchronization of indirectly coupled Lorenz oscillators: An experimental study. Amit Sharma Manish Dev Shrimali. Synchronization, Coupled Systems and Networks Volume 77 Issue 5 November 2011 pp 881-889 ... The in-phase and anti-phase synchronization of indirectly coupled chaotic oscillators reported in Phys. Rev ...

  7. A synchronous game for binary constraint systems

    Science.gov (United States)

    Kim, Se-Jin; Paulsen, Vern; Schafhauser, Christopher

    2018-03-01

    Recently, Slofstra proved that the set of quantum correlations is not closed. We prove that the set of synchronous quantum correlations is not closed, which implies his result, by giving an example of a synchronous game that has a perfect quantum approximate strategy but no perfect quantum strategy. We also exhibit a graph for which the quantum independence number and the quantum approximate independence number are different. We prove new characterisations of synchronous quantum approximate correlations and synchronous quantum spatial correlations. We solve the synchronous approximation problem of Dykema and the second author, which yields a new equivalence of Connes' embedding problem in terms of synchronous correlations.

  8. Trace element evidence for a laterally inhomogeneous moon

    International Nuclear Information System (INIS)

    Jovanovic, S.; Reed, G.W. Jr.

    1978-01-01

    A number of trace element interrelations support the concept of a laterally inhomogeneous moon based orginally in Cl/sub r//P 2 O 5 ratios. The correspondence between Cl/sub r//P 2 O 5 and Rb/Sr ratios in basalts are of special interest since the isotopic evolution of the latter pair of elements relates to the earliest history of the moon. This implies the times when the Cl/sub r//P 2 O 5 relations were established. The early magma ocean is conjectured to have been made up of nonintermixing seas resulting either from large convection cells or large body accretion. These mutually exclusive regions could be lunar geological provinces. It is proposed that the diversity of basalts from the Apollo 17 site is related to the lateral inhomogeneity of the moon. Ca/Na ratios in basalts show a trend which parallels that of Ru/Os and in a corresponding fashion may serve as a depth indicator. 4 figures, 4 tables, 12 references

  9. Control synchronization of differential mobile robots

    NARCIS (Netherlands)

    Nijmeijer, H.; Rodriguez Angeles, A.; Allgoewer, F.

    2004-01-01

    In this paper a synchronization controller for differential mobile robots is proposed. The synchronization goal is to control the angular position of each wheel to a desired trajectory and at the same time the differential (or synchronization) error between the angular positions of the two wheels.

  10. Frame Synchronization Without Attached Sync Markers

    Science.gov (United States)

    Hamkins, Jon

    2011-01-01

    We describe a method to synchronize codeword frames without making use of attached synchronization markers (ASMs). Instead, the synchronizer identifies the code structure present in the received symbols, by operating the decoder for a handful of iterations at each possible symbol offset and forming an appropriate metric. This method is computationally more complex and doesn't perform as well as frame synchronizers that utilize an ASM; nevertheless, the new synchronizer acquires frame synchronization in about two seconds when using a 600 kbps software decoder, and would take about 15 milliseconds on prototype hardware. It also eliminates the need for the ASMs, which is an attractive feature for short uplink codes whose coding gain would be diminished by the overheard of ASM bits. The lack of ASMs also would simplify clock distribution for the AR4JA low-density parity-check (LDPC) codes and adds a small amount to the coding gain as well (up to 0.2 dB).

  11. Analysis of remote synchronization in complex networks

    Science.gov (United States)

    Gambuzza, Lucia Valentina; Cardillo, Alessio; Fiasconaro, Alessandro; Fortuna, Luigi; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2013-12-01

    A novel regime of synchronization, called remote synchronization, where the peripheral nodes form a phase synchronized cluster not including the hub, was recently observed in star motifs [Bergner et al., Phys. Rev. E 85, 026208 (2012)]. We show the existence of a more general dynamical state of remote synchronization in arbitrary networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon is almost negligible in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks.

  12. The Moon In The Classic Maya World

    Science.gov (United States)

    Romano, Giuliano

    During the Classic Period of the Maya civilization (250-900 A.D.) we have many documents in which it is possible to see the interest of this people on the principal lunar phenomena as the phases and the eclipses in particular. On a number of stelae, lintels and many other inscriptions (in Copan, Quirigua, Tikal, etc.), we can see that in correspondence of the dedication date of the monument, the Maya point out the phase of the Moon and its position in a period of six months corresponding to half year of eclipse. In some parts of the Dresda Codex (one of the four original codices of the Maya) we can see some pages in which were indicated the days of the Tzolkin calendar (the religious calendar of 260 days) in which it is possible to observe a lunar or solar eclipse. The periods of 177 or 148 days are allotted in a sequence that corresponds to the exact interval between the eclipses. The accuracy in the observations and in the calculations of the phases of the Moon, also in very old epochs, is an interesting evidence of the fundamental importance of the Moon in the Maya civilisation.

  13. Astronaut Aldrin is photographed by Astronaut Armstrong on the Moon

    Science.gov (United States)

    1969-01-01

    Apollo 11 Onboard Film -- The deployment of scientific experiments by Astronaut Edwin Aldrin Jr. is photographed by Astronaut Neil Armstrong. Man's first landing on the Moon occurred today at 4:17 p.m. as Lunar Module 'Eagle' touched down gently on the Sea of Tranquility on the east side of the Moon.

  14. A Correlational Study of Seven Projective Spatial Structures with Regard to the Phases of the MOON^

    Science.gov (United States)

    Wellner, Karen Linette

    1995-01-01

    This study investigated the relationship between projective spatial structures and the ability to construct a scientific model. In addition, gender-related performance and the influence of prior astronomy experience on task success were evaluated. Sixty-one college science undergraduates were individually administered Piagetian tasks to assess for projective spatial structures and the ability to set up a phases of the moon model. The spatial tasks included: (a) Mountains task (coordination of perspectives); (b) Railroad task (size and intervals of objects with increasing distance); (c) Telephone Poles task (masking and ordering objects); and (d) Shadows task (spatial relationships between an object and its shadow, dependent upon the object's orientation). Cramer coefficient analyses indicated that significant relationships existed between Moon task and spatial task success. In particular, the Shadows task, requiring subjects to draw shadows of objects in different orientations, proved most difficult and was most strongly associated with with a subject's understanding of lunar phases. Chi-square tests for two independent samples were used to analyze gender performance differences on each of the Ave tasks. Males performed significantly better at a.05 significance level in regard to the Shadows task and the Moon task. Chi-square tests for two independent samples showed no significant difference in Moon task performance between subjects with astronomy or Earth science coursework, and those without such science classroom experience. Overall, only six subjects passed all seven projective spatial structure tasks. Piaget (1967) contends that concrete -operational spatial structures must be established before an individual is able to develop formal-operational patterns of thinking. The results of this study indicate that 90% of the interviewed science majors are still operating at the concrete-operational level. Several educational implications were drawn from this study

  15. Europe rediscovers the Moon with SMART-1

    Science.gov (United States)

    2006-08-01

    The whole story began in September 2003, when an Ariane 5 launcher blasted off from Kourou, French Guiana, to deliver the European Space Agency’s lunar spacecraft SMART-1 into Earth orbit. SMART-1 is a small unmanned satellite weighing 366 kilograms and roughly fitting into a cube just 1 metre across, excluding its 14-metre solar panels (which were folded during launch). After launch and injection into an elliptical orbit around the Earth, the gentle but steady push provided by the spacecraft’s highly innovative electric propulsion engine forcefully expelling xenon gas ions caused SMART-1 to spiral around the Earth, increasing its distance from our planet until, after a long journey of about 14 months, it was “captured” by the Moon’s gravity. To cover the 385,000 km distance that separates the Earth from the Moon if one travelled in a straight line, this remarkably efficient engine brought the spacecraft on a 100 million km long spiralling journey on only 60 litres of fuel! The spacecraft was captured by the Moon in November 2004 and started its scientific mission in March 2005 in an elliptical orbit around its poles. ESA’s SMART-1 is currently the only spacecraft around the Moon, paving the way for the fleet of international lunar orbiters that will be launched from 2007 onwards. The story is now close to ending. On the night of Saturday 2 to Sunday 3 September, looking at the Moon with a powerful telescope, one may be able to see something special happening. Like most of its lunar predecessors, SMART-1 will end its journey and exploration of the Moon by landing in a relatively abrupt way. It will impact the lunar surface in an area called the “Lake of Excellence”, situated in the mid-southern region of the Moon’s visible disc at 07:41 CEST (05:41 UTC), or five hours before if it finds an unknown peak on the way. The story is close to ending After 16 months harvesting scientific results in an elliptical orbit around the Moon’s poles (at

  16. RUN LENGTH SYNCHRONIZATION TECHNIQUES

    Science.gov (United States)

    An important aspect of digital communications is the problem of determining efficient methods for acquiring block synchronization . In this paper we...utilizes an N-digit sync sequence as prefix to the data blocks. The results of this study show that this technique is a practical method for acquiring block synchronization .

  17. Human Space Exploration: The Moon, Mars, and Beyond

    Science.gov (United States)

    Sexton, Jeffrey D.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed, to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. Why the Moon? Many questions about the Moon's potential resources and how its history is linked to that of Earth were spurred by the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment for extended expeditions. The Moon also will serve as a training ground before embarking on the longer, more difficult trip to Mars. NASA plans to build a lunar outpost at one of the lunar poles, learn to live off the land, and reduce dePendence on Earth for longer missions. America needs to extend its ability to survive in hostile environments close to our home planet before astronauts will reach Mars, a planet very much like Earth. NASA has worked with scientists to define lunar exploration goals and is addressing the opportunities for a range of scientific study on Mars. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I

  18. Complete synchronization of two Chen-Lee systems

    International Nuclear Information System (INIS)

    Sheu, L-J; Chen, J-H; Chen, H-K; Tam, L-M; Lao, S-K; Chen, W-C; Lin, K-T

    2008-01-01

    This study demonstrates that complete synchronization of two Chen-Lee chaotic systems can be easily achieved. The upper bound of the Chen-Lee chaotic system is estimated numerically. A controller is designed to synchronize two chaotic systems. Sufficient conditions for synchronization are obtained using Lyapunov's direct method. Two numerical examples are presented to verify the proposed synchronization approach

  19. Temporal Expression of a Master Regulator Drives Synchronous Sporulation in Budding Yeast

    Directory of Open Access Journals (Sweden)

    Minghao Chia

    2016-11-01

    Full Text Available Yeast cells enter and undergo gametogenesis relatively asynchronously, making it technically challenging to perform stage-specific genomic and biochemical analyses. Cell-to-cell variation in the expression of the master regulator of entry into sporulation, IME1, has been implicated to be the underlying cause of asynchronous sporulation. Here, we find that timing of IME1 expression is of critical importance for inducing cells to undergo sporulation synchronously. When we force expression of IME1 from an inducible promoter in cells incubated in sporulation medium for 2 hr, the vast majority of cells exhibit synchrony during premeiotic DNA replication and meiotic divisions. Inducing IME1 expression too early or too late affects the synchrony of sporulation. Surprisingly, our approach for synchronous sporulation does not require growth in acetate-containing medium, but can be achieved in cells grown in rich medium until saturation. Our system requires solely IME1, because the expression of the N6-methyladenosine methyltransferase IME4, another key regulator of early sporulation, is controlled by IME1 itself. The approach described here can be combined easily with other stage-specific synchronization methods, and thereby applied to study specific stages of sporulation, or the complete sporulation program.

  20. Temporal Expression of a Master Regulator Drives Synchronous Sporulation in Budding Yeast.

    Science.gov (United States)

    Chia, Minghao; van Werven, Folkert J

    2016-09-07

    Yeast cells enter and undergo gametogenesis relatively asynchronously, making it technically challenging to perform stage-specific genomic and biochemical analyses. Cell-to-cell variation in the expression of the master regulator of entry into sporulation IME1, has been implicated to be the underlying cause of asynchronous sporulation. Here we find that timing of IME1 expression is of critical importance for inducing cells to undergo sporulation synchronously. When we force expression of IME1 from an inducible promoter in cells incubated in sporulation medium for two hours, the vast majority of cells exhibit synchrony during pre-meiotic DNA replication and meiotic divisions. Inducing IME1 expression too early or too late affects the synchrony of sporulation. Surprisingly, our approach for synchronous sporulation does not require growth in acetate containing medium, but can be achieved in cells grown in rich medium until saturation. Our system solely requires IME1 because the expression of the N6-methyladenosine methyltransferase IME4, another key regulator of early sporulation, is controlled by IME1 itself. The approach described here can be easily combined with other stage specific synchronization methods, and thereby applied to study specific stages of sporulation or the complete sporulation program. Copyright © 2016 Author et al.

  1. Surface material of the moon

    Science.gov (United States)

    Warren, C.R.

    1963-01-01

    A skeletal fuzz that consists mostly of open space probably covers the moon to a depth of several millimeters or centimeters. The solid part of the fuzz probably consists of randomly oriented linear units, with or without enlarged nodes, which either anastomose in a mesh or are branching.

  2. Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors.

    Science.gov (United States)

    Chen, Qiang; Ren, Xuemei; Na, Jing

    2015-09-01

    In this paper, a robust finite-time chaos synchronization scheme is proposed for two uncertain third-order permanent magnet synchronous motors (PMSMs). The whole synchronization error system is divided into two cascaded subsystems: a first-order subsystem and a second-order subsystem. For the first subsystem, we design a finite-time controller based on the finite-time Lyapunov stability theory. Then, according to the backstepping idea and the adding a power integrator technique, a second finite-time controller is constructed recursively for the second subsystem. No exogenous forces are required in the controllers design but only the direct-axis (d-axis) and the quadrature-axis (q-axis) stator voltages are used as manipulated variables. Comparative simulations are provided to show the effectiveness and superior performance of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Synchronization in Quantum Key Distribution Systems

    Directory of Open Access Journals (Sweden)

    Anton Pljonkin

    2017-10-01

    Full Text Available In the description of quantum key distribution systems, much attention is paid to the operation of quantum cryptography protocols. The main problem is the insufficient study of the synchronization process of quantum key distribution systems. This paper contains a general description of quantum cryptography principles. A two-line fiber-optic quantum key distribution system with phase coding of photon states in transceiver and coding station synchronization mode was examined. A quantum key distribution system was built on the basis of the scheme with automatic compensation of polarization mode distortions. Single-photon avalanche diodes were used as optical radiation detecting devices. It was estimated how the parameters used in quantum key distribution systems of optical detectors affect the detection of the time frame with attenuated optical pulse in synchronization mode with respect to its probabilistic and time-domain characteristics. A design method was given for the process that detects the time frame that includes an optical pulse during synchronization. This paper describes the main quantum communication channel attack methods by removing a portion of optical emission. This paper describes the developed synchronization algorithm that takes into account the time required to restore the photodetector’s operation state after the photon has been registered during synchronization. The computer simulation results of the developed synchronization algorithm were analyzed. The efficiency of the developed algorithm with respect to synchronization process protection from unauthorized gathering of optical emission is demonstrated herein.

  4. Low energy trajectories for the Moon-to-Earth space flight

    Indian Academy of Sciences (India)

    The Moon-to-Earth low energy trajectories of 'detour' type are found and studied within the frame ... km from the Earth where the Sun gravitation decreases the particle orbit perigee distance to a small value .... The solid curve in fig- ... the Moon, respectively, as is the semimajor axis .... inclination i0 = 90 .... Then, according to.

  5. Origin of the Moon Unveiled by its Heavy Iron Isotope Composition

    Science.gov (United States)

    Poitrasson, F.; Halliday, A. N.; Lee, D.; Levasseur, S.; Teutsch, N.

    2002-12-01

    The origin of the Moon has long been of interest and although the Giant Impact theory is currently the preferred explanation, unequivocal supporting evidence has been lacking. We have measured the iron isotope compositions of Shergotty-Nakhla-Chassigny meteorites and eucrites thought to come from Mars and Vesta, as well as samples from the Moon and the mafic Earth using high precision plasma source mass spectrometry. The mean iron isotope composition of the lunar samples, expressed in the conventional delta notation (d57Fe/54Fe) with respect to the IRMM-14 isotopic standard, is heavier (0.221 per mil (0.041: one standard deviation, 10 samples)) than those of the Earth (0.119 per mil (0.044, 7 samples)), which themselves are heavier than Martian meteorites (0.009 per mil (0.024, 6 samples)) and the eucrites measured (0.033 per mil (0.038, 7 samples)). Student's t-test calculations show that the Moon and Earth means are different from each other and from those of the other planetary bodies at >99% level of significance. The iron isotope compositions show no simple relationship with planetary heliocentric position, mantle oxygen fugacity, volatile content, or planet size. Similarly, these results do not support an origin of the Moon through co-accretion with the Earth, or as a fragment ejected from the Earth's mantle, or as another planet captured by the early Earth. In contrast, these data can be explained if the Earth, and especially the Moon, went through partial vaporisation and condensation leading to kinetic iron isotopic fractionation. Our data are also consistent with the suggested levels of enrichment of refractory elements for the bulk Earth and Moon. These new iron isotope results thus provide strong support for the origin of the Moon through a giant impact between the proto-Earth and another planet. Raleigh kinetic fractionation calculations indicate that only 1% loss of the current Fe budget of the Moon is required to explain its heavier isotopic

  6. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....

  7. V123 Beam Synchronous Encoder Module

    International Nuclear Information System (INIS)

    Kerner, T.; Conkling, C. R.; Oerter, B.

    1999-01-01

    The V123 Synchronous Encoder Module transmits events to distributed trigger modules and embedded decoders around the RHIC rings where they are used to provide beam instrumentation triggers [1,2,3]. The RHIC beam synchronous event link hardware is mainly comprised of three VMEbus board designs, the central input modules (V201), and encoder modules (V123), and the distributed trigger modules (V124). Two beam synchronous links, one for each ring, are distributed via fiberoptic and fanned out via twisted wire pair cables. The V123 synchronizes with the RF system clock derived from the beam bucket frequency and a revolution fiducial pulse. The RF system clock is used to create the beam synchronous event link carrier and events are synchronized with the rotation fiducial. A low jitter RF clock is later recovered from this carrier by phase lock loops in the trigger modules. Prioritized hardware and software triggers fill up to 15 beam event code transmission slots per revolution while tracking the ramping RF acceleration frequency and storage frequency. The revolution fiducial event is always the first event transmitted which is used to synchronize the firing of the abort kicker and to locate the first bucket for decoders distributed about the ring

  8. Synchronization and desynchronization in the Olami-Feder-Christensen earthquake model and potential implications for real seismicity

    Directory of Open Access Journals (Sweden)

    S. Hergarten

    2011-09-01

    Full Text Available The Olami-Feder-Christensen model is probably the most studied model in the context of self-organized criticality and reproduces several statistical properties of real earthquakes. We investigate and explain synchronization and desynchronization of earthquakes in this model in the nonconservative regime and its relevance for the power-law distribution of the event sizes (Gutenberg-Richter law and for temporal clustering of earthquakes. The power-law distribution emerges from synchronization, and its scaling exponent can be derived as τ = 1.775 from the scaling properties of the rupture areas' perimeter. In contrast, the occurrence of foreshocks and aftershocks according to Omori's law is closely related to desynchronization. This mechanism of foreshock and aftershock generation differs strongly from the widespread idea of spontaneous triggering and gives an idea why some even large earthquakes are not preceded by any foreshocks in nature.

  9. The extreme ultraviolet albedos of the planet Mercury and of the moon

    Science.gov (United States)

    Wu, H. H.; Broadfoot, A. L.

    1977-01-01

    The albedo of the moon in the far UV was measured by Mariner 10 at a solar phase angle of 74 deg, and the geometric albedo of Mercury was measured in same wavelength range (584-1657 A) at solar phase angles ranging from 50 to 120 deg. For both the moon and Mercury there is a general increase in albedo for wavelengths decreasing from 1657 to 584 A. The ratio of the albedos of Mercury and the moon increases from about 0.6 to 0.8 in the range 600-1600 A. This merely points to a difference in the surfaces of the moon and Mercury, there being insufficient data to make any conclusions regarding the nature of the difference.

  10. System and method to allow a synchronous motor to successfully synchronize with loads that have high inertia and/or high torque

    Science.gov (United States)

    Melfi, Michael J.

    2015-10-20

    A mechanical soft-start type coupling is used as an interface between a line start, synchronous motor and a heavy load to enable the synchronous motor to bring the heavy load up to or near synchronous speed. The soft-start coupling effectively isolates the synchronous motor from the load for enough time to enable the synchronous motor to come up to full speed. The soft-start coupling then brings the load up to or near synchronous speed.

  11. Periodic orbit-attitude solutions along planar orbits in a perturbed circular restricted three-body problem for the Earth-Moon system

    Science.gov (United States)

    Bucci, Lorenzo; Lavagna, Michèle; Guzzetti, Davide; Howell, Kathleen C.

    2018-06-01

    Interest on Large Space Structures (LSS), orbiting in strategic and possibly long-term stable locations, is nowadays increasing in the space community. LSS can serve as strategic outpost to support a variety of manned and unmanned mission, or may carry scientific payloads for astronomical observations. The paper focuses on analysing LSS in the Earth-Moon system, exploring dynamical structures that are available within a multi-body gravitational environment. Coupling between attitude and orbital dynamics is investigated, with particular interest on the gravity gradient torque exerted by the two massive attractors. First, natural periodic orbit-attitude solutions are obtained; a LSS that exploits such solutions would benefit of a naturally periodic body rotation synchronous with the orbital motion, easing the effort of the attitude control system to satisfy pointing requirements. Then, the solar radiation pressure is introduced into the fully coupled dynamical model and its effects investigated, discovering novel periodic attitude solutions. Benefits of periodic behaviours that incorporate solar radiation pressure are discussed, and analysed via the variation of some parameters (e.g reflection/absorption coefficients, position of the centre of pressure). As a final step to refine the current perturbed orbit-attitude model, a structure flexibility is also superimposed to a reference orbit-attitude rigid body motion via a simple, yet effective model. The coupling of structural vibrations and attitude motion is preliminarily explored, and allows identification of possible challenges, that may be faced to position a LSS in a periodic orbit within the Earth-Moon system.

  12. Moon Trek: An Interactive Web Portal for Current and Future Lunar Missions

    Science.gov (United States)

    Day, B.; Law, E.

    2017-09-01

    NASA's Moon Trek (https://moontrek.jpl.nasa.gov) is the successor to and replacement for NASA's Lunar Mapping and Modeling Portal (LMMP). Released in 2017, Moon Trek features a new interface with improved ways to access, visualize, and analyse data. Moon Trek provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped lunar data products from past and current lunar missions.

  13. Grid Synchronization of Wind Turbine Converters under Transient Grid Faults using a Double Synchronous Reference Frame PLL

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Blaabjerg, Frede; Rodriguez, P.

    2008-01-01

    This work employs the Double Synchronous Reference Frame PLL (DSRF-PLL) as an effective method for grid synchronization of WT's power converters in the presence of transient faults in the grid. The DSRF-PLL exploits a dual synchronous reference frame voltage characterization, adding a decoupling...... network to a standard SRF-PLL in order to effectively separate the positive- and negative-sequence voltage components in a fast and accurate way. Experimental evaluation of the proposed grid synchronization method and simulations regarding its application to ride through transient faults verify...

  14. 40 CFR 93.128 - Traffic signal synchronization projects.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Traffic signal synchronization... synchronization projects. Traffic signal synchronization projects may be approved, funded, and implemented without... include such regionally significant traffic signal synchronization projects. ...

  15. Partial Synchronization Manifolds for Linearly Time-Delay Coupled Systems

    OpenAIRE

    Steur, Erik; van Leeuwen, Cees; Michiels, Wim

    2014-01-01

    Sometimes a network of dynamical systems shows a form of incomplete synchronization characterized by synchronization of some but not all of its systems. This type of incomplete synchronization is called partial synchronization. Partial synchronization is associated with the existence of partial synchronization manifolds, which are linear invariant subspaces of C, the state space of the network of systems. We focus on partial synchronization manifolds in networks of system...

  16. Definition of Physical Height Systems for Telluric Planets and Moons

    Science.gov (United States)

    Tenzer, Robert; Foroughi, Ismael; Sjöberg, Lars E.; Bagherbandi, Mohammad; Hirt, Christian; Pitoňák, Martin

    2018-01-01

    In planetary sciences, the geodetic (geometric) heights defined with respect to the reference surface (the sphere or the ellipsoid) or with respect to the center of the planet/moon are typically used for mapping topographic surface, compilation of global topographic models, detailed mapping of potential landing sites, and other space science and engineering purposes. Nevertheless, certain applications, such as studies of gravity-driven mass movements, require the physical heights to be defined with respect to the equipotential surface. Taking the analogy with terrestrial height systems, the realization of height systems for telluric planets and moons could be done by means of defining the orthometric and geoidal heights. In this case, however, the definition of the orthometric heights in principle differs. Whereas the terrestrial geoid is described as an equipotential surface that best approximates the mean sea level, such a definition for planets/moons is irrelevant in the absence of (liquid) global oceans. A more natural choice for planets and moons is to adopt the geoidal equipotential surface that closely approximates the geometric reference surface (the sphere or the ellipsoid). In this study, we address these aspects by proposing a more accurate approach for defining the orthometric heights for telluric planets and moons from available topographic and gravity models, while adopting the average crustal density in the absence of reliable crustal density models. In particular, we discuss a proper treatment of topographic masses in the context of gravimetric geoid determination. In numerical studies, we investigate differences between the geodetic and orthometric heights, represented by the geoidal heights, on Mercury, Venus, Mars, and Moon. Our results reveal that these differences are significant. The geoidal heights on Mercury vary from - 132 to 166 m. On Venus, the geoidal heights are between - 51 and 137 m with maxima on this planet at Atla Regio and Beta

  17. Solar sail trajectory design in the Earth-Moon circular restricted three body problem

    Science.gov (United States)

    Das, Ashwati

    The quest to explore the Moon has helped resolve scientific questions, has spurred leaps in technology development, and has revealed Earth's celestial companion to be a gateway to other destinations. With a renewed focus on returning to the Moon in this decade, alternatives to chemical propulsion systems are becoming attractive methods to efficiently use scarce resources and support extended mission durations. Thus, an investigation is conducted to develop a general framework, that facilitates propellant-free Earth-Moon transfers by exploiting sail dynamics in combination with advantageous transfer options offered in the Earth-Moon circular restricted multi-body dynamical model. Both periodic orbits in the vicinity of the Earth-Moon libration points, and lunar-centric long-term capture orbits are incorporated as target destinations to demonstrate the applicability of the general framework to varied design scanarios, each incorporating a variety of complexities and challenges. The transfers are comprised of three phases - a spiral Earth escape, a transit period, and, finally, the capture into a desirable orbit in the vicinity of the Moon. The Earth-escape phase consists of spiral trajectories constructed using three different sail steering strategies - locally optimal, on/off and velocity tangent. In the case of the Earth-libration point transfers, naturally occurring flow structures (e.g., invariant manifolds) arising from the mutual gravitational interaction of the Earth and Moon are exploited to link an Earth departure spiral with a destination orbit. In contrast, sail steering alone is employed to establish a link between the Earth-escape phase and capture orbits about the Moon due to a lack of applicable natural structures for the required connection. Metrics associated with the transfers including flight-time and the influence of operational constraints, such as occultation events, are investigated to determine the available capabilities for Earth-Moon

  18. Sediments Of The Moon And Earth As End-Members For Comparative Planetology

    Science.gov (United States)

    Basu, Abhijit; Molinaroli, Emanuela

    Processes of production, transport, deposition, lithification, and preservation of sediments of the Moon and Earth are extremely different. The differences arise primarily from the dissimilarity in the origins and sizes of the Moon and Earth. The consequence is that the Moon does not have an atmosphere, a hydrosphere (the Moon is totally dry), a biosphere (the Moon is totally life-less), a magnetosphere, and any tectonic force. Pristine rocks on the exposed surface of the Moon are principally anorthositic and basaltic, but those on the Earth are granitic (discounting suboceanic rocks). Sediments on these two bodies probably represent two end-members on rocky planetary bodies. Sediments on other rocky planetary bodies (atmosphere-free Mercury and asteroids, Venus with a thick atmosphere but possibly no water on its surface, and Mars with a currently dry surface sculptured by running water in the past) are intermediate in character. New evidence suggests that characteristics of Martian sediments may be in-between those of the Moon and Earth. For example, impacts generate most Martian sediments as on the Moon, and, Martian sediments are wind-blown to form dunes as on Earth. A comparative understanding of sediments of the Moon and Earth helps us anticipate and interpret the sedimentary record of other planetary bodies. Impact processes, large and small, have produced the sediments of the Moon. Unlike Earth, the surface of the Moon is continuously bombarded by micrometeorites and solar wind. Processes of chemical and mechanical weathering aided by biological activity produce sediments on Earth, fixing a significant amount of carbon in the solid state. Whereas solar wind produces minor chemical changes in lunar sediments, chemical weathering significantly alters and affects the character of Earth sediments. Primarily ballistic and electrostatic forces transport lunar sediments but Earth sediments are transported by air, water, and ice. Whereas Earth sediments accumulate

  19. Synchronous machines. General principles and structures; Machines synchrones. Principes generaux et structures

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ahmed, H.; Feld, G.; Multon, B. [Ecole Normale Superieure de Cachan, Lab. SATIE, Systemes et Applications des Technologies de l' Information et de l' Energie, UMR CNRS 8029, 94 (France); Bernard, N. [Institut Universitaire de Saint-Nazaire, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 44 - Nantes (France)

    2005-10-01

    Power generation is mainly performed by synchronous rotating machines which consume about a third of the world primary energy. Electric motors used in industrial applications convert about two thirds of this electricity. Therefore, synchronous machines are present everywhere at different scales, from micro-actuators of few micro-watts to thermo-mechanical production units of more than 1 GW, and represent a large variety of structures which have in common the synchronism between the frequency of the power supply currents and the relative movement of the fixed part with respect to the mobile part. Since several decades, these machines are more and more used as variable speed motors with permanent magnets. The advances in power electronics have contributed to the widening of their use in various applications with a huge range of powers. This article presents the general principle of operation of electromechanical converters of synchronous type: 1 - electromechanical conversion in electromagnetic systems: basic laws and elementary structures (elementary structure, energy conversion cycle, case of a system working in linear magnetic regime), rotating fields structure (magneto-motive force and Ferraris theorem, superficial air gap permeance, air gap magnetic induction, case of a permanent magnet inductor, magnetic energy and electromagnetic torque, conditions for reaching a non-null average torque, application to common cases); 2 - constitution, operation modes and efficiency: constitution and main types of synchronous machines, efficiency - analysis by similarity laws (other expression of the electromagnetic torque, thermal limitation in permanent regime, scale effects, effect of pole pairs number, examples of efficiencies and domains of use), operation modes. (J.S.)

  20. Chaos synchronization based on contraction principle

    International Nuclear Information System (INIS)

    Wang Junwei; Zhou Tianshou

    2007-01-01

    This paper introduces contraction principle. Based on such a principle, a novel scheme is proposed to synchronize coupled systems with global diffusive coupling. A rigorous sufficient condition on chaos synchronization is derived. As an example, coupled Lorenz systems with nearest-neighbor diffusive coupling are investigated, and numerical simulations are given to validate the proposed synchronization approach

  1. Generalized synchronization in discrete maps. New point of view on weak and strong synchronization

    International Nuclear Information System (INIS)

    Koronovskii, Alexey A.; Moskalenko, Olga I.; Shurygina, Svetlana A.; Hramov, Alexander E.

    2013-01-01

    In the present Letter we show that the concept of the generalized synchronization regime in discrete maps needs refining in the same way as it has been done for the flow systems Koronovskii et al. [Koronovskii AA, Moskalenko OI, Hramov AE. Nearest neighbors, phase tubes, and generalized synchronization. Phys Rev E 2011;84:037201]. We have shown that, in the general case, when the relationship between state vectors of the interacting chaotic maps are considered, the prehistory must be taken into account. We extend the phase tube approach to the systems with a discrete time coupled both unidirectionally and mutually and analyze the essence of the generalized synchronization by means of this technique. Obtained results show that the division of the generalized synchronization into the weak and the strong ones also must be reconsidered. Unidirectionally coupled logistic maps and Hénon maps coupled mutually are used as sample systems.

  2. Injuries and medical issues in synchronized Olympic sports.

    Science.gov (United States)

    Mountjoy, Margo

    2009-01-01

    Spectators of the Olympic Games can enjoy a wide variety of sports, including strength, team, timed, endurance, and artistic sports. In the Olympic program, there are two synchronized events: synchronized diving and synchronized swimming. The precision of the synchronization of the athlete's movements and skills is an added feature of entertainment. Synchronized athletes have additional training requirements to perfect the synchronization of their skills. The physical demands on the athlete from the repetition of training required for the perfection of synchronization result in injuries unique to these sports. Although both traumatic and overuse injuries occur, overuse injuries are more common. As these disciplines are artistic, judged sports, these athletes also are susceptible to eating disorders and the female athlete triad. This article reviews the training regimen of these athletes and outlines the injuries and health concerns that are common in the synchronized sports.

  3. Traffic signal synchronization.

    Science.gov (United States)

    Huang, Ding-wei; Huang, Wei-neng

    2003-05-01

    The benefits of traffic signal synchronization are examined within the cellular automata approach. The microsimulations of traffic flow are obtained with different settings of signal period T and time delay delta. Both numerical results and analytical approximations are presented. For undersaturated traffic, the green-light wave solutions can be realized. For saturated traffic, the correlation among the traffic signals has no effect on the throughput. For oversaturated traffic, the benefits of synchronization are manifest only when stochastic noise is suppressed.

  4. Injuries in synchronized skating.

    Science.gov (United States)

    Dubravcic-Simunjak, S; Kuipers, H; Moran, J; Simunjak, B; Pecina, M

    2006-06-01

    Synchronized skating is a relatively new competitive sport and data about injuries in this discipline are lacking. Therefore the purpose of this study was to investigate the frequency and pattern of acute and overuse injuries in synchronized skaters. Before and during the World Synchronized Skating Championship 2004, a questionnaire inquiring about the frequency of injuries in this skating discipline was given to 23 participating teams. A total of 514 women and 14 men senior skaters completed the questionnaires (100 % response). Two hundred and eighteen (42.4 %) female and 6 (42.9 %) male skaters had suffered from acute injuries during their synchronized skating career. As some skaters had suffered from more than one injury, the total number of acute injuries in females was 398 and in males 14. In female skaters 19.8 % of acute injuries were head injuries, 7.1 % trunk, 33.2 % upper, and 39.9 % lower extremity injuries. In male skaters 14.3 % were head injuries, 28.6 % upper, and 57.1 % lower extremity injuries, with no report of trunk injuries. Sixty-nine female and 2 male skaters had low back problems and 112 female and 2 male skaters had one or more overuse syndromes during their skating career. Of 155 overuse injuries in female skaters, 102 (65.8 %) occurred during their figure skating career, while 53 injuries (34.2 %) only occurred when they skated in synchronized skating teams. In male skaters, out of 5 overuse injuries, 4 (80 %) occurred in their figure skating career, while 1 (20 %) occurred during their synchronized skating career. Out of the total of 412 injuries, 338 (82 %) occurred during on-ice practice, while 74 (18 %) happened during off-ice training. Ninety-one (26.9 %) acute injures occurred while practicing individual elements, and 247 (73.1 %) on-ice injuries occurred while practicing different team elements. We conclude that injuries in synchronized skating should be of medical concern due to an increasing number of acute injuries, especially

  5. Measures of Quantum Synchronization in Continuous Variable Systems

    Science.gov (United States)

    Mari, A.; Farace, A.; Didier, N.; Giovannetti, V.; Fazio, R.

    2013-09-01

    We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.

  6. Nonlinearity induced synchronization enhancement in mechanical oscillators

    Science.gov (United States)

    Czaplewski, David A.; Lopez, Omar; Guest, Jeffrey R.; Antonio, Dario; Arroyo, Sebastian I.; Zanette, Damian H.

    2018-05-08

    An autonomous oscillator synchronizes to an external harmonic force only when the forcing frequency lies within a certain interval, known as the synchronization range, around the oscillator's natural frequency. Under ordinary conditions, the width of the synchronization range decreases when the oscillation amplitude grows, which constrains synchronized motion of micro- and nano-mechanical resonators to narrow frequency and amplitude bounds. The present invention shows that nonlinearity in the oscillator can be exploited to manifest a regime where the synchronization range increases with an increasing oscillation amplitude. The present invention shows that nonlinearities in specific configurations of oscillator systems, as described herein, are the key determinants of the effect. The present invention presents a new configuration and operation regime that enhances the synchronization of micro- and nano-mechanical oscillators by capitalizing on their intrinsic nonlinear dynamics.

  7. Life cycle synchronization is a viral drug resistance mechanism.

    Directory of Open Access Journals (Sweden)

    Iulia A Neagu

    2018-02-01

    Full Text Available Viral infections are one of the major causes of death worldwide, with HIV infection alone resulting in over 1.2 million casualties per year. Antiviral drugs are now being administered for a variety of viral infections, including HIV, hepatitis B and C, and influenza. These therapies target a specific phase of the virus's life cycle, yet their ultimate success depends on a variety of factors, such as adherence to a prescribed regimen and the emergence of viral drug resistance. The epidemiology and evolution of drug resistance have been extensively characterized, and it is generally assumed that drug resistance arises from mutations that alter the virus's susceptibility to the direct action of the drug. In this paper, we consider the possibility that a virus population can evolve towards synchronizing its life cycle with the pattern of drug therapy. The periodicity of the drug treatment could then allow for a virus strain whose life cycle length is a multiple of the dosing interval to replicate only when the concentration of the drug is lowest. This process, referred to as "drug tolerance by synchronization", could allow the virus population to maximize its overall fitness without having to alter drug binding or complete its life cycle in the drug's presence. We use mathematical models and stochastic simulations to show that life cycle synchronization can indeed be a mechanism of viral drug tolerance. We show that this effect is more likely to occur when the variability in both viral life cycle and drug dose timing are low. More generally, we find that in the presence of periodic drug levels, time-averaged calculations of viral fitness do not accurately predict drug levels needed to eradicate infection, even if there is no synchronization. We derive an analytical expression for viral fitness that is sufficient to explain the drug-pattern-dependent survival of strains with any life cycle length. We discuss the implications of these findings for

  8. Adaptive H∞ Chaos Anti-synchronization

    International Nuclear Information System (INIS)

    Ahn, Choon Ki

    2010-01-01

    A new adaptive H ∞ anti-synchronization (AHAS) method is proposed for chaotic systems in the presence of unknown parameters and external disturbances. Based on the Lyapunov theory and linear matrix inequality formulation, the AHAS controller with adaptive laws of unknown parameters is derived to not only guarantee adaptive anti-synchronization but also reduce the effect of external disturbances to an H ∞ norm constraint. As an application of the proposed AHAS method, the H ∞ anti-synchronization problem for Genesio–Tesi chaotic systems is investigated. (general)

  9. Mars via the Moon the next giant leap

    CERN Document Server

    Seedhouse, Erik

    2016-01-01

    MOMENTUM IS BUILDING for a return to the Moon. NASA’s international partners on the International Space Station are in favor of returning to the lunar surface, as are India and China. The horizon goal may be Mars, but the political, funding and the technological and medical infeasibility of such an objective means the next logical step is a return to the Moon. While much has been learned about the Moon over the years, we don’t understand its resource wealth potential and the technologies to exploit those resources have yet to be developed, but there are a number of companies that are developing these capabilities. And, with the discovery of water in the lunar polar regions, plans are in the works to exploit these resources for fuel for transportation operations in cis-lunar space and in low Earth orbit (LEO). The time has come for commercial enterprise to lead the way back to the lunar surface. Embarking on such a venture requires little in the way of new technologies. We don’t need to develop super-fas...

  10. Synchronization Of TRIMs Principles In The Legislation Of Mining Sector In Indonesia

    Directory of Open Access Journals (Sweden)

    Agus Lanini

    2015-08-01

    Full Text Available The aims of this research are to know and explain synchronizing the principles of TRIMs at the foreign direct investment FDI and mining regulation in Indonesia. The research using normative research that conducted through library or document study such legal resources as primary sources secondary and tertiary sources that will be studied with applied legal approach comparative history and conceptual approach. Research results are revealing that synchronizing between the principles of TRIMs and Investment act 2007and Mineral and Coal act 2009 were not harmonized. It should be TRIMs and investment act 2007 have some similarity principles as harmonized even though Mineral and Coal act 2009 does not enough accessibility for the principles of TRIMs. Implication of the Mineral and Coal act 2009 raise a strong and real authority of the state even central or local government. Those policy results an overlap regulation caused state management system over natural resources ineffective.

  11. Low energy trajectories for the Moon-to-Earth space flight

    Indian Academy of Sciences (India)

    The Moon-to-Earth low energy trajectories of `detour'type are found and studied within the frame of the Moon –Earth –Sun-particle system. ... This results in the particle flight to a distance of about 1.5 million km from the Earth where the Sun gravitation decreases the particle orbit perigee distance to a small value that leads to ...

  12. Randomized, controlled trial comparing synchronized intermittent mandatory ventilation and synchronized intermittent mandatory ventilation plus pressure support in preterm infants.

    Science.gov (United States)

    Reyes, Zenaida C; Claure, Nelson; Tauscher, Markus K; D'Ugard, Carmen; Vanbuskirk, Silvia; Bancalari, Eduardo

    2006-10-01

    Prolonged mechanical ventilation is associated with lung injury in preterm infants. In these infants, weaning from synchronized intermittent mandatory ventilation may be delayed by their inability to cope with increased respiratory loads. The addition of pressure support to synchronized intermittent mandatory ventilation can offset these loads and may facilitate weaning. The purpose of this work was to compare synchronized intermittent mandatory ventilation and synchronized intermittent mandatory ventilation plus pressure support in weaning from mechanical ventilation and the duration of supplemental oxygen dependency in preterm infants with respiratory failure. Preterm infants weighing 500 to 1000 g at birth who required mechanical ventilation during the first postnatal week were randomly assigned to synchronized intermittent mandatory ventilation or synchronized intermittent mandatory ventilation plus pressure support. In both groups, weaning followed a set protocol during the first 28 days. Outcomes were assessed during the first 28 days and until discharge or death. There were 107 infants enrolled (53 synchronized intermittent mandatory ventilation plus pressure support and 54 synchronized intermittent mandatory ventilation). Demographic and perinatal data, mortality, and morbidity did not differ between groups. During the first 28 days, infants in the synchronized intermittent mandatory ventilation plus pressure support group reached minimal ventilator settings and were extubated earlier than infants in the synchronized intermittent mandatory ventilation group. Total duration of mechanical ventilation, duration of oxygen dependency, and oxygen need at 36 weeks' postmenstrual age alone or combined with death did not differ between groups. However, infants in synchronized intermittent mandatory ventilation plus pressure support within the 700- to 1000-g birth weight strata had a shorter oxygen dependency. The results of this study suggest that the addition of

  13. Radio Astronomy on and Around the Moon

    Science.gov (United States)

    Falcke, Heino; Klein Wolt, Mark; Ping, Jinsong; Chen, Linjie

    2018-06-01

    The exploration of remote places on other planets has now become a major goal in current space flight scenarios. On the other hand, astronomers have always sought the most remote and isolated sites to place their observatories and to make their most precise and most breath taking discoveries. Especially for radio astronomy, lunar exploration offers a complete new window to the universe. The polar region and the far-side of the moon are acknowledged as unique locations for a low-frequency radio telescope providing scientific data at wavelengths that cannot be obtained from the Earth nor from single satellites. Scientific areas to be covered range from radio surveys, to solar-system studies, exo-planet detection, and astroparticle physics. The key science area, however, is the detection and measurement of cosmological 21 cm hydrogen emission from the still unexplored dark ages of the universe. Developing a lunar radio facility can happen in steps and may involve small satellites, rover-based radio antennas, of free- flying constellations around the moon. A first such step could be the Netherlands-Chinese Long Wavelength Explorer (NCLE), which is supposed to be launched in 2018 as part of the ChangE’4 mission to the moon-earth L2 point.

  14. Spontaneous group synchronization of movements and respiratory rhythms.

    Directory of Open Access Journals (Sweden)

    Erwan Codrons

    Full Text Available We tested whether pre-assigned arm movements performed in a group setting spontaneously synchronized and whether synchronization extended to heart and respiratory rhythms. We monitored arm movements, respiration and electrocardiogram at rest and during spontaneous, music and metronome-associated arm-swinging. No directions were given on whether or how the arm swinging were to be synchronized between participants or with the external cues. Synchronization within 3 groups of 10 participants studied collectively was compared with pseudo-synchronization of 3 groups of 10 participants that underwent an identical protocol but in an individual setting. Motor synchronization was found to be higher in the collective groups than in the individuals for the metronome-associated condition. On a repetition of the protocol on the following day, motor synchronization in the collective groups extended to the spontaneous, un-cued condition. Breathing was also more synchronized in the collective groups than in the individuals, particularly at rest and in the music-associated condition. Group synchronization occurs without explicit instructions, and involves both movements and respiratory control rhythms.

  15. Capture of terrestrial-sized moons by gas giant planets.

    Science.gov (United States)

    Williams, Darren M

    2013-04-01

    Terrestrial moons with masses >0.1 M (symbol in text) possibly exist around extrasolar giant planets, and here we consider the energetics of how they might form. Binary-exchange capture can occur if a binary-terrestrial object (BTO) is tidally disrupted during a close encounter with a giant planet and one of the binary members is ejected while the other remains as a moon. Tidal disruption occurs readily in the deep gravity wells of giant planets; however, the large encounter velocities in the wells make binary exchange more difficult than for planets of lesser mass. In addition, successful capture favors massive binaries with large rotational velocities and small component mass ratios. Also, since the interaction tends to leave the captured moons on highly elliptical orbits, permanent capture is only possible around planets with sizable Hill spheres that are well separated from their host stars.

  16. Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars

    Science.gov (United States)

    Murray, B.; Malin, M. C.; Greeley, R.

    1981-01-01

    The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

  17. Vestibular hearing and neural synchronization.

    Science.gov (United States)

    Emami, Seyede Faranak; Daneshi, Ahmad

    2012-01-01

    Objectives. Vestibular hearing as an auditory sensitivity of the saccule in the human ear is revealed by cervical vestibular evoked myogenic potentials (cVEMPs). The range of the vestibular hearing lies in the low frequency. Also, the amplitude of an auditory brainstem response component depends on the amount of synchronized neural activity, and the auditory nerve fibers' responses have the best synchronization with the low frequency. Thus, the aim of this study was to investigate correlation between vestibular hearing using cVEMPs and neural synchronization via slow wave Auditory Brainstem Responses (sABR). Study Design. This case-control survey was consisted of twenty-two dizzy patients, compared to twenty healthy controls. Methods. Intervention comprised of Pure Tone Audiometry (PTA), Impedance acoustic metry (IA), Videonystagmography (VNG), fast wave ABR (fABR), sABR, and cVEMPs. Results. The affected ears of the dizzy patients had the abnormal findings of cVEMPs (insecure vestibular hearing) and the abnormal findings of sABR (decreased neural synchronization). Comparison of the cVEMPs at affected ears versus unaffected ears and the normal persons revealed significant differences (P < 0.05). Conclusion. Safe vestibular hearing was effective in the improvement of the neural synchronization.

  18. Synchronization in complex networks with switching topology

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Qing-guo

    2011-01-01

    This Letter investigates synchronization issues of complex dynamical networks with switching topology. By constructing a common Lyapunov function, we show that local and global synchronization for a linearly coupled network with switching topology can be evaluated by the time average of second smallest eigenvalues corresponding to the Laplacians of switching topology. This result is quite powerful and can be further used to explore various switching cases for complex dynamical networks. Numerical simulations illustrate the effectiveness of the obtained results in the end. -- Highlights: → Synchronization of complex networks with switching topology is investigated. → A common Lyapunov function is established for synchronization of switching network. → The common Lyapunov function is not necessary to monotonically decrease with time. → Synchronization is determined by the second smallest eigenvalue of its Laplacian. → Synchronization criterion can be used to investigate various switching cases.

  19. Three types of generalized synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Yang Junzhong [School of Science, Beijing University of Posts and Telecomunications, Beijing 100876 (China)]. E-mail: jzyang@bupt.edu.cn; Hu Gang [China Center for Advanced Science and Technology (CCAST) (World Laboratory), PO Box 8730, Beijing 100080 (China) and Department of Physics, Beijing Normal University, Beijing 100875 (China)]. E-mail: ganghu@bnu.edu.cn

    2007-02-05

    The roles played by drive and response systems on generalized chaos synchronization (GS) are studied. And the generalized synchronization is classified, based on these roles, to three distinctive types: the passive GS which is mainly determined by the response system and insensitive to the driving signal; the resonant GS where phase synchronization between the drive and response systems is preceding GS; and the interacting GS where both the drive and response have influences on the status of GS. The features of these GS types and the possible changes from one types to others are investigated.

  20. Three types of generalized synchronization

    International Nuclear Information System (INIS)

    Yang Junzhong; Hu Gang

    2007-01-01

    The roles played by drive and response systems on generalized chaos synchronization (GS) are studied. And the generalized synchronization is classified, based on these roles, to three distinctive types: the passive GS which is mainly determined by the response system and insensitive to the driving signal; the resonant GS where phase synchronization between the drive and response systems is preceding GS; and the interacting GS where both the drive and response have influences on the status of GS. The features of these GS types and the possible changes from one types to others are investigated

  1. Synchronous Half-Wave Rectifier

    Science.gov (United States)

    Rippel, Wally E.

    1989-01-01

    Synchronous rectifying circuit behaves like diode having unusually low voltage drop during forward-voltage half cycles. Circuit particularly useful in power supplies with potentials of 5 Vdc or less, where normal forward-voltage drops in ordinary diodes unacceptably large. Fabricated as monolithic assembly or as hybrid. Synchronous half-wave rectifier includes active circuits to attain low forward voltage drop and high rectification efficiency.

  2. Cosmic acceleration of Earth and the Moon by dark matter

    Science.gov (United States)

    Nordtvedt, Kenneth L.

    1994-01-01

    In order to test the hypothesis that the gravitational interaction between our Galaxy's dark matter and the ordinary matter in Earth and the Moon might not fulfill the equivalence principle (universality of free fall), we consider the pertinent perturbation of the lunar orbit -- a sidereal month period range oscillation resulting from a spatially fixed polarization of the orbit. Lunar laser ranging (LLR) data can measure this sidereal perturbation to an accuracy equal to or better than its existing measurement of the synodic month period range oscillation amplitude (+/- 3 cm) which has been used for testing whether Earth and the Moon accelerate at equal rates toward the Sun. Because of the slow precession rate of the Moon's perigree (8.9 yr period), the lunar orbit is particularly sensitive to a cosmic acceleration; the LLR fit of the orbit places an upper limit of 10(exp -13) cm/sq. s for any cosmic differential acceleration between Earth (Fe) and the Moon (silicates). This is 10(exp -5) of the total galactic acceleration of the solar system, of which, it has been suggested, a large portion is produced by dark matter.

  3. The MOON-1 detector construction and the study of backgrounds from radioactive isotopes

    International Nuclear Information System (INIS)

    Ogama, T; Nakamura, H; Ejiri, H; Fushimi, K; Ichihara, K; Matsuoka, K; Nomachi, M; Hazama, R; Umehara, S; Yoshida, S; Sakiuchi, T; Hai, V H; Sugaya, Y

    2006-01-01

    MOON is a multilayer system of plastic scintillators and 100 Mo films for 100 Mo 0νββ decays. A prototype detector MOON-1 was built with 6 layers of plastic scintillators and 142g of 100Mo films for background (BG), energy and position resolution studies of the MOON detector. No serious BG from natural radioactive isotopes (RI) for 0νββ detection was found

  4. Introduction to media synchronization (Mediasync)

    NARCIS (Netherlands)

    M.A. Montagud Climent (Mario); P.S. Cesar Garcia (Pablo Santiago); F. Boronat (Fernando); A.J. Jansen (Jack)

    2018-01-01

    textabstractMedia synchronization is a core research area in multimedia systems. This chapter introduces the area by providing key definitions, classifications, and examples. It also discusses the relevance of different types of media synchronization to ensure satisfactory Quality of Experience

  5. The full moon and motorcycle related mortality: population based double control study.

    Science.gov (United States)

    Redelmeier, Donald A; Shafir, Eldar

    2017-12-11

    To test whether a full moon contributes to motorcycle related deaths. Population based, individual level, double control, cross sectional analysis. Nighttime (4 pm to 8 am), United States. 13 029 motorcycle fatalities throughout the United States, 1975 to 2014 (40 years). Motorcycle fatalities during a full moon. 13 029 motorcyclists were in fatal crashes during 1482 relevant nights. The typical motorcyclist was a middle aged man (mean age 32 years) riding a street motorcycle with a large engine in a rural location who experienced a head-on frontal impact and was not wearing a helmet. 4494 fatal crashes occurred on the 494 nights with a full moon (9.10/night) and 8535 on the 988 control nights without a full moon (8.64/night). Comparisons yielded a relative risk of 1.05 associated with the full moon (95% confidence interval 1.02 to 1.09, P=0.005), a conditional odds ratio of 1.26 (95% confidence interval 1.17 to 1.37, Pmotorcycle crashes, although potential confounders cannot be excluded. An awareness of the risk might encourage motorcyclists to ride with extra care during a full moon and, more generally, to appreciate the power of seemingly minor distractions at all times. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. International Lunar Observatory Association Advancing 21st Century Astronomy from the Moon

    Science.gov (United States)

    Durst, Steve

    2015-08-01

    Long considered a prime location to conduct astronomical observations, the Moon is beginning to prove its value in 21st Century astronomy through the Lunar Ultraviolet Telescope aboard China’s Chang’e-3 Moon lander and through the developing missions of the International Lunar Observatory Association (ILOA). With 24 hours / Earth day of potential operability facilitating long-duration observations, the stable platform of the lunar surface and extremely thin exosphere guaranteeing superior observation conditions, zones of radio-quiet for radio astronomy, and the resources and thermal stability at the lunar South Pole, the Moon provides several pioneering advantages for astronomy. ILOA, through MOUs with NAOC and CNSA, has been collaborating with China to make historic Galaxy observations with the Chang’e-3 LUT, including imaging Galaxy M101 in December 2014. LUT has an aperture of 150mm, covers a wavelength range of 245 to 340 nanometers and is capable of detecting objects at a brightness down to 14 mag. The success of China’s mission has provided support and momentum for ILOA’s mission to place a 2-meter dish, multifunctional observatory at the South Pole of the Moon NET 2017. ILOA also has plans to send a precursor observatory instrument (ILO-X) on the inaugural mission of GLXP contestant Moon Express. Advancing astronomy and astrophysics from the Moon through public-private and International partnerships will provide many valuable research opportunities while also helping to secure humanity’s position as multi world species.

  7. Robust synchronization of chaotic systems via feedback

    Energy Technology Data Exchange (ETDEWEB)

    Femat, Ricardo [IPICYT, San Luis Potosi (Mexico). Dept. de Matematicas Aplicadas; Solis-Perales, Gualberto [Universidad de Guadalajara, Centro Univ. de Ciencias Exactas e Ingenierias (Mexico). Div. de Electronica y Computacion

    2008-07-01

    This volume includes the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, the concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behaviour and what synchronization phenomena can be found under feedback interconnection. A compilation of these findings is described in this book. This book shows a perspective on synchronization of chaotic systems. (orig.)

  8. Synchronization of ;light-sensitive; Hindmarsh-Rose neurons

    Science.gov (United States)

    Castanedo-Guerra, Isaac; Steur, Erik; Nijmeijer, Henk

    2018-04-01

    The suprachiasmatic nucleus is a network of synchronized neurons whose electrical activity follows a 24 h cycle. The synchronization phenomenon (among these neurons) is not completely understood. In this work we study, via experiments and numerical simulations, the phenomenon in which the synchronization threshold changes under the influence of an external (bifurcation) parameter in coupled Hindmarsh-Rose neurons. This parameter ;shapes; the activity of the individual neurons the same way as some neurons in the brain react to light. We corroborate this experimental finding with numerical simulations by quantifying the amount of synchronization using Pearson's correlation coefficient. In order to address the local stability problem of the synchronous state, Floquet theory is applied in the case where the dynamic systems show continuous periodic solutions. These results show how the sufficient coupling strength for synchronization between these neurons is affected by an external cue (e.g. light).

  9. Distributed Synchronization in Communication Networks

    Science.gov (United States)

    2018-01-24

    synchronization. Secondly, it is known that identical oscillators with sin() coupling functions are guaranteed to synchronize in phase on a complete...provide sufficient conditions for phase- locking , i.e., convergence to a stable equilibrium almost surely. We additionally find conditions when the

  10. Symbol Synchronization for Diffusion-Based Molecular Communications.

    Science.gov (United States)

    Jamali, Vahid; Ahmadzadeh, Arman; Schober, Robert

    2017-12-01

    Symbol synchronization refers to the estimation of the start of a symbol interval and is needed for reliable detection. In this paper, we develop several symbol synchronization schemes for molecular communication (MC) systems where we consider some practical challenges, which have not been addressed in the literature yet. In particular, we take into account that in MC systems, the transmitter may not be equipped with an internal clock and may not be able to emit molecules with a fixed release frequency. Such restrictions hold for practical nanotransmitters, e.g., modified cells, where the lengths of the symbol intervals may vary due to the inherent randomness in the availability of food and energy for molecule generation, the process for molecule production, and the release process. To address this issue, we develop two synchronization-detection frameworks which both employ two types of molecule. In the first framework, one type of molecule is used for symbol synchronization and the other one is used for data detection, whereas in the second framework, both types of molecule are used for joint symbol synchronization and data detection. For both frameworks, we first derive the optimal maximum likelihood (ML) symbol synchronization schemes as performance upper bounds. Since ML synchronization entails high complexity, for each framework, we also propose three low-complexity suboptimal schemes, namely a linear filter-based scheme, a peak observation-based scheme, and a threshold-trigger scheme, which are suitable for MC systems with limited computational capabilities. Furthermore, we study the relative complexity and the constraints associated with the proposed schemes and the impact of the insertion and deletion errors that arise due to imperfect synchronization. Our simulation results reveal the effectiveness of the proposed synchronization schemes and suggest that the end-to-end performance of MC systems significantly depends on the accuracy of the symbol

  11. Synchronization of coupled metronomes on two layers

    Science.gov (United States)

    Zhang, Jing; Yu, Yi-Zhen; Wang, Xin-Gang

    2017-12-01

    Coupled metronomes serve as a paradigmatic model for exploring the collective behaviors of complex dynamical systems, as well as a classical setup for classroom demonstrations of synchronization phenomena. Whereas previous studies of metronome synchronization have been concentrating on symmetric coupling schemes, here we consider the asymmetric case by adopting the scheme of layered metronomes. Specifically, we place two metronomes on each layer, and couple two layers by placing one on top of the other. By varying the initial conditions of the metronomes and adjusting the friction between the two layers, a variety of synchronous patterns are observed in experiment, including the splay synchronization (SS) state, the generalized splay synchronization (GSS) state, the anti-phase synchronization (APS) state, the in-phase delay synchronization (IPDS) state, and the in-phase synchronization (IPS) state. In particular, the IPDS state, in which the metronomes on each layer are synchronized in phase but are of a constant phase delay to metronomes on the other layer, is observed for the first time. In addition, a new technique based on audio signals is proposed for pattern detection, which is more convenient and easier to apply than the existing acquisition techniques. Furthermore, a theoretical model is developed to explain the experimental observations, and is employed to explore the dynamical properties of the patterns, including the basin distributions and the pattern transitions. Our study sheds new lights on the collective behaviors of coupled metronomes, and the developed setup can be used in the classroom for demonstration purposes.

  12. Human factors for the Moon: the gap in anthropometric data.

    Science.gov (United States)

    Lia Schlacht, Irene; Foing, Bernard H.; Rittweger, Joern; Masali, Melchiorre; Stevenin, Hervé

    2016-07-01

    Since the space era began, we learned first to survive and then to live in space. In the state of the art, we know how important human factors research and development is to guarantee maximum safety and performance for human missions. With the extension of the duration of space missions, we also need to learn how habitability and comfort factors are closely related to safety and performance. Humanities disciplines such as design, architecture, anthropometry, and anthropology are now involved in mission design from the start. Actual plans for building a simulated Moon village in order to simulate and test Moon missions are now being carried out using a holistic approach, involving multidisciplinary experts cooperating concurrently with regard to the interactions among humans, technology, and the environment. However, in order to implement such plans, we need basic anthropometrical data, which is still missing. In other words: to optimize performance, we need to create doors and ceilings with dimensions that support a natural human movement in the reduced gravity environment of the Moon, but we are lacking detailed anthropometrical data on human movement on the Moon. In the Apollo missions more than 50 years ago, no anthropometrical studies were carried in hypogravity out as far as we know. The necessity to collect data is very consistent with state-of-the-art research. We still have little knowledge of how people will interact with the Moon environment. Specifically, it is not known exactly which posture, which kind of walking and running motions astronauts will use both inside and outside a Moon station. Considering recent plans for a Moon mission where humans will spend extensive time in reduced gravity conditions, the need for anthropometric, biomechanics and kinematics field data is a priority in order to be able to design the right architecture, infrastructure, and interfaces. Objective of this paper: Bring knowledge on the relevance of anthropometrical and

  13. To the Moon on a Shoestring

    Science.gov (United States)

    Mortensen, T. F.; Rasmussen, S.

    2013-09-01

    The Euroluna Team is one of the around 30 teams competing in the Google Lunar X PRIZE Competition. The goal of the competition is to be the first team to successfully land a vehicle on the Moon, drive 500 m, and send video of the drive back to Earth. The Euroluna Team was formed in 2007, and the first flight hardware was acquired in 2010. Euroluna is financed privately with small funds. We have not received any external financial support. Therefore we have made an effort to keep all investments low. This has resulted in a design that uses new technologies and old technologies in a new way. Components are largely based on the Cubesat family and an ion thruster is being used for propulsion. A special strategy for landing on the Moon is under development. Special software of own design is being used for simulation of trajectories and energy consumption.

  14. On the Moon the apollo journals

    CERN Document Server

    Heiken, Grant

    2007-01-01

    Public interest in the first lunar landing transcended political, economic and social borders – the world was briefly united by the courage of the crew, and the wonder of the accomplishment. Prompted by the rivalry of the Cold War, Apollo 11 and the five missions that subsequently landed on the Moon were arguably the finest feats of exploration in human history. But these were more than exercises in ‘flags and footprints’, because the missions involved the crews making geological field trips on a low gravity site while wearing pressure suits, carrying life-support systems on their backs and working against an unforgiving time line. The missions delivered not only samples of moonrock, but also hard-learned lessons for how to work on the surface of another planet, and this experience will be crucial to planning the resumption of the human exploration of the Moon and going on to Mars.

  15. Chaos synchronization based on intermittent state observer

    Institute of Scientific and Technical Information of China (English)

    Li Guo-Hui; Zhou Shi-Ping; Xu De-Ming

    2004-01-01

    This paper describes the method of synchronizing slave to the master trajectory using an intermittent state observer by constructing a synchronizer which drives the response system globally tracing the driving system asymptotically. It has been shown from the theory of synchronization error-analysis that a satisfactory result of chaos synchronization is expected under an appropriate intermittent period and state observer. Compared with continuous control method,the proposed intermittent method can target the desired orbit more efficiently. The application of the method is demonstrated on the hyperchaotic Rossler systems. Numerical simulations show that the length of the synchronization interval rs is of crucial importance for our scheme, and the method is robust with respect to parameter mismatch.

  16. Synchronization of Coupled Neurons Controlled by a Pacemaker

    International Nuclear Information System (INIS)

    Li Mei-Sheng; Zhang Hong-Hui; Zhao Yong; Shi Xia

    2011-01-01

    We investigate synchronization of Hindmarsh—Rose neurons with gap junctions under the control of a pacemaker. In a ring Hindmarsh—Rose neuronal network, the coupled neurons with the pacemaker can occur in synchronization more easily than those without the pacemaker. Furthermore, the pacemaker can induce phase synchronization or nearly-complete synchronization of nonidentical neurons. This synchronization can occur more easily when time delay is considered. Theses results can be helpful to understand the activities of the real neuronal system. (general)

  17. Moon and sun shadowing effect measurements

    International Nuclear Information System (INIS)

    Medeiros, Michelle Mesquita de; Gomes, Ricardo Avelino

    2011-01-01

    Full text: The deficit due to the absorption of cosmic rays by the Moon and the Sun can be observed detecting the muon flux generated in extensive air showers. This phenomenon, known as cosmic ray shadow, can be used to study the behaviour of the geomagnetic, solar and interplanetary magnetic fields, to measure the antiproton-proton ratio and to determine the angular resolution and alignment of the detectors to confirm its accuracy and precision. Many experiments using surface or underground detectors have measured the Moon and Sun shadow: MINOS, CYGNUS, CASA, Tibet, MACRO, Soudan2, L3+C, Milagro, BUST, GRAPE and HEGRA. The MINOS experiment (Main Injector Neutrino Oscillation Search) uses two layered steel and plastic scintillator detectors (Near Detector and Far Detector) along with a muon neutrino beam (NuMI - Neutrinos at the Main Injector) to search for ν μ disappearance, and thus neutrino oscillations. However the magnetic field and the fiducial volume of the underground Far Detector at Soudan Underground Mine State Park (Minnesota, USA) allow a great opportunity to investigate cosmic rays at TeV surface energy. The deficit caused by the Moon and the Sun was detected by the MINOS Far Detector and this could also be done using the Near Detector. In this report we describe the motivation of measuring this effect. We present the recent results from MINOS along with its experimental apparatus and, in addition, the main results from the various experiments. We also make considerations about the possibility of doing such a measurement with the MINOS Near Detector. (author)

  18. Small-world networks exhibit pronounced intermittent synchronization

    Science.gov (United States)

    Choudhary, Anshul; Mitra, Chiranjit; Kohar, Vivek; Sinha, Sudeshna; Kurths, Jürgen

    2017-11-01

    We report the phenomenon of temporally intermittently synchronized and desynchronized dynamics in Watts-Strogatz networks of chaotic Rössler oscillators. We consider topologies for which the master stability function (MSF) predicts stable synchronized behaviour, as the rewiring probability (p) is tuned from 0 to 1. MSF essentially utilizes the largest non-zero Lyapunov exponent transversal to the synchronization manifold in making stability considerations, thereby ignoring the other Lyapunov exponents. However, for an N-node networked dynamical system, we observe that the difference in its Lyapunov spectra (corresponding to the N - 1 directions transversal to the synchronization manifold) is crucial and serves as an indicator of the presence of intermittently synchronized behaviour. In addition to the linear stability-based (MSF) analysis, we further provide global stability estimate in terms of the fraction of state-space volume shared by the intermittently synchronized state, as p is varied from 0 to 1. This fraction becomes appreciably large in the small-world regime, which is surprising, since this limit has been otherwise considered optimal for synchronized dynamics. Finally, we characterize the nature of the observed intermittency and its dominance in state-space as network rewiring probability (p) is varied.

  19. Global chaos synchronization with channel time-delay

    International Nuclear Information System (INIS)

    Jiang Guoping; Zheng Weixing; Chen Guanrong

    2004-01-01

    This paper addresses a practical issue in chaos synchronization where there is a time-delay in the receiver as compared with the transmitter. A new synchronization scheme and a general criterion for global chaos synchronization are proposed and developed from the approach of unidirectional linear error feedback coupling with time-delay. The chaotic Chua's circuit is used for illustration, where the coupling parameters are determined according to the criterion under which the global chaos synchronization of the time-delay coupled systems is achieved

  20. Global chaos synchronization of coupled parametrically excited ...

    Indian Academy of Sciences (India)

    In this paper, we study the synchronization behaviour of two linearly coupled parametrically excited chaotic pendula. The stability of the synchronized state is examined using Lyapunov stability theory and linear matrix inequality (LMI); and some sufficient criteria for global asymptotic synchronization are derived from which ...

  1. Full state hybrid projective synchronization in hyperchaotic systems

    International Nuclear Information System (INIS)

    Chu Yandong; Chang Yingxiang; Zhang Jiangang; Li Xianfeng; An Xinlei

    2009-01-01

    In this letter, we investigate the full state hybrid projective synchronization (FSHPS) which includes complete synchronization, anti-synchronization and projective synchronization as its special items. Based on Lyapunov stability theory a controller can be designed for achieving the FSHPS of hyperchaotic systems. Numerical simulations are provided to verify the effectiveness of the proposed scheme.

  2. Synchronizing noisy nonidentical oscillators by transient uncoupling

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, Aditya, E-mail: adityat@iitk.ac.in; Mannattil, Manu, E-mail: mmanu@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India); Schröder, Malte, E-mail: malte@nld.ds.mpg.de [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Timme, Marc, E-mail: timme@nld.ds.mpg.de [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Department of Physics, Technical University of Darmstadt, 64289 Darmstadt (Germany); Chakraborty, Sagar, E-mail: sagarc@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India); Mechanics and Applied Mathematics Group, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India)

    2016-09-15

    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.

  3. Synchronization modulation increases transepithelial potentials in MDCK monolayers through Na/K pumps.

    Directory of Open Access Journals (Sweden)

    Vu Tran

    Full Text Available Transepithelial potential (TEP is the voltage across a polarized epithelium. In epithelia that have active transport functions, the force for transmembrane flux of an ion is dictated by the electrochemical gradient in which TEP plays an essential role. In epithelial injury, disruption of the epithelial barrier collapses the TEP at the wound edge, resulting in the establishment of an endogenous wound electric field (∼100 mV/mm that is directed towards the center of the wound. This endogenous electric field is implicated to enhance wound healing by guiding cell migration. We thus seek techniques to enhance the TEP, which may increase the wound electric fields and enhance wound healing. We report a novel technique, termed synchronization modulation (SM using a train of electric pulses to synchronize the Na/K pump activity, and then modulating the pumping cycles to increase the efficiency of the Na/K pumps. Kidney epithelial monolayers (MDCK cells maintain a stable TEP and transepithelial resistance (TER. SM significantly increased TEP over four fold. Either ouabain or digoxin, which block Na/K pump, abolished SM-induced TEP increases. In addition to the pump activity, basolateral distribution of Na/K pumps is essential for an increase in TEP. Our study for the first time developed an electrical approach to significantly increase the TEP. This technique targeting the Na/K pump may be used to modulate TEP, and may have implication in wound healing and in diseases where TEP needs to be modulated.

  4. Synchronization in complex networks with a modular structure.

    Science.gov (United States)

    Park, Kwangho; Lai, Ying-Cheng; Gupte, Saurabh; Kim, Jong-Won

    2006-03-01

    Networks with a community (or modular) structure arise in social and biological sciences. In such a network individuals tend to form local communities, each having dense internal connections. The linkage among the communities is, however, much more sparse. The dynamics on modular networks, for instance synchronization, may be of great social or biological interest. (Here by synchronization we mean some synchronous behavior among the nodes in the network, not, for example, partially synchronous behavior in the network or the synchronizability of the network with some external dynamics.) By using a recent theoretical framework, the master-stability approach originally introduced by Pecora and Carroll in the context of synchronization in coupled nonlinear oscillators, we address synchronization in complex modular networks. We use a prototype model and develop scaling relations for the network synchronizability with respect to variations of some key network structural parameters. Our results indicate that random, long-range links among distant modules is the key to synchronization. As an application we suggest a viable strategy to achieve synchronous behavior in social networks.

  5. Automated Spacecraft Conjunction Assessment at Mars and the Moon

    Science.gov (United States)

    Berry, David; Guinn, Joseph; Tarzi, Zahi; Demcak, Stuart

    2012-01-01

    Conjunction assessment and collision avoidance are areas of current high interest in space operations. Most current conjunction assessment activity focuses on the Earth orbital environment. Several of the world's space agencies have satellites in orbit at Mars and the Moon, and avoiding collisions there is important too. Smaller number of assets than Earth, and smaller number of organizations involved, but consequences similar to Earth scenarios.This presentation will examine conjunction assessment processes implemented at JPL for spacecraft in orbit at Mars and the Moon.

  6. Origin of the earth's moon: constraints from alkali volatile trace elements

    International Nuclear Information System (INIS)

    Kreutzberger, M.E.; Drake, M.J.; Jones, J.H.

    1986-01-01

    Although the Moon is depleted in volatile elements compared to the Earth, these depletions are not in accord with simple volatility. For example, the Cs/Rb ratios of the Earth and Moon inferred from basalts are approximately one seventh and one half of the CI ratio, respectively. Volatility considerations alone predict that the lunar Cs/Rb ratio should be equal to or lower than the terrestrial ratio if the Moon was derived entirely from Earth mantle material. Thus hypotheses such as rotational fission which invoke derivation of lunar material entirely from the Earth's mantle may be excluded. The collisional ejection hypothesis of lunar origin requires at least 18% of lunar material to be derived from a projectile with dehydrated CI composition to match the lunar Cs/Rb ratio, and 25% to 50% to match both the lunar Cs/Rb ratio and absolute concentrations of Cs and Rb. It remains to be demonstrated that this relatively large contribution of projectile material is consistent with other elemental abundances and element ratios in the Moon. (author)

  7. Business cycle synchronization in Europe

    DEFF Research Database (Denmark)

    Bergman, Ulf Michael; Jonung, Lars

    2011-01-01

    In this paper we study business cycle synchronization in the three Scandinavian countries Denmark, Norway and Sweden prior to, during and after the Scandinavian Currency Union 1873–1913. We find that the degree of synchronization tended to increase during the currency union, thus supporting earlier...

  8. Digital synchronization and communication techniques

    Science.gov (United States)

    Lindsey, William C.

    1992-01-01

    Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.

  9. Nonlinear observer based phase synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Meng Juan; Wang Xingyuan

    2007-01-01

    This Letter analyzes the phase synchronization problem of autonomous chaotic systems. Based on the nonlinear state observer algorithm and the pole placement technique, a phase synchronization scheme is designed. The phase synchronization of a new chaotic system is achieved by using this observer controller. Numerical simulations further demonstrate the effectiveness of the proposed phase synchronization scheme

  10. Structural damage detection robust against time synchronization errors

    International Nuclear Information System (INIS)

    Yan, Guirong; Dyke, Shirley J

    2010-01-01

    Structural damage detection based on wireless sensor networks can be affected significantly by time synchronization errors among sensors. Precise time synchronization of sensor nodes has been viewed as crucial for addressing this issue. However, precise time synchronization over a long period of time is often impractical in large wireless sensor networks due to two inherent challenges. First, time synchronization needs to be performed periodically, requiring frequent wireless communication among sensors at significant energy cost. Second, significant time synchronization errors may result from node failures which are likely to occur during long-term deployment over civil infrastructures. In this paper, a damage detection approach is proposed that is robust against time synchronization errors in wireless sensor networks. The paper first examines the ways in which time synchronization errors distort identified mode shapes, and then proposes a strategy for reducing distortion in the identified mode shapes. Modified values for these identified mode shapes are then used in conjunction with flexibility-based damage detection methods to localize damage. This alternative approach relaxes the need for frequent sensor synchronization and can tolerate significant time synchronization errors caused by node failures. The proposed approach is successfully demonstrated through numerical simulations and experimental tests in a lab

  11. Moon Zoo: Making the public part of a crater survey algorithm

    Science.gov (United States)

    Gay, P. L.; Brown, S.; Huang, D.; Daus, C.; Lehan, C.; Robbins, S.

    2011-10-01

    The Moon Zoo citizen science website launched in May 2010 and invited the public to annotate images from the Lunar Reconnaissance Orbiter's Narrow Angle Camera (NAC). Tasks included marking the edges of craters with an ellipse tool, indicating where linear features (e.g. scarps) and special types of craters (e.g. dark haloed) are located with a box, and rating the number of boulders in an image. The goal of this project is to create crater and feature catalogues for large areas of the moon. In addition to doing science, Moon Zoo also seeks to educate its audience through educational content, to engage them through social media, and to understand them through research into their motivations and behaviors.

  12. Asymmetric shock heating and the terrestrial magma ocean origin of the Moon.

    Science.gov (United States)

    Karato, Shun-ichiro

    2014-01-01

    One of the difficulties of the current giant impact model for the origin of the Moon is to explain the marked similarity in the isotopic compositions and the substantial differences in the major element chemistry. Physics of shock heating is analyzed to show that the degree of heating is asymmetric between the impactor and the target, if the target (the proto-Earth) had a magma-ocean but the impactor did not. The magma ocean is heated much more than the solid impactor and the vapor-rich jets come mainly from the magma-ocean from which the Moon might have been formed. In this scenario, the similarity and differences in the composition between the Moon and Earth would be explained as a natural consequence of a collision in the later stage of planetary formation. Including the asymmetry in shock heating is the first step toward explaining the chemical composition of the Moon.

  13. Pilotless Frame Synchronization Using LDPC Code Constraints

    Science.gov (United States)

    Jones, Christopher; Vissasenor, John

    2009-01-01

    A method of pilotless frame synchronization has been devised for low- density parity-check (LDPC) codes. In pilotless frame synchronization , there are no pilot symbols; instead, the offset is estimated by ex ploiting selected aspects of the structure of the code. The advantag e of pilotless frame synchronization is that the bandwidth of the sig nal is reduced by an amount associated with elimination of the pilot symbols. The disadvantage is an increase in the amount of receiver data processing needed for frame synchronization.

  14. Acoustophoretic Synchronization of Mammalian Cells in Microchannels

    DEFF Research Database (Denmark)

    Thévoz, P.; Adams, J.D.; Shea, H.

    2010-01-01

    We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel to selec......We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel...

  15. Communicating via robust synchronization of chaotic lasers

    International Nuclear Information System (INIS)

    Lopez-Gutierrez, R.M.; Posadas-Castillo, C.; Lopez-Mancilla, D.; Cruz-Hernandez, C.

    2009-01-01

    In this paper, the robust synchronization problem for coupled chaotic Nd:YAG lasers is addressed. We resort to complex systems theory to achieve chaos synchronization. Based on stability theory, it is shown that the state trajectories of the perturbed error synchronization are ultimately bounded, provided the unperturbed synchronization error system is exponentially stable, and some conditions on the bounds of the perturbation terms are satisfied. So that, encoding, transmission, and decoding in chaotic optical communications are presented. We analyze the transmission and recovery of encrypted information when parameter mismatches are considered. Computer simulations are provided to show the effectiveness of this robustness synchronization property, we present the encrypted transmission of image messages, and we show that, the transmitted image is faithfully recovered.

  16. Communicating via robust synchronization of chaotic lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Gutierrez, R.M. [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico); Posadas-Castillo, C. [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico); FIME, Autonomous University of Nuevo Leon (UANL), Pedro de Alba, S.N., Cd. Universitaria, San Nicolas de los Garza, NL (Mexico); Lopez-Mancilla, D. [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de los Lagos, Universidad de Guadalajara (CULagos-UdeG), Enrique Diaz de Leon s/n, 47460 Lagos de Moreno, Jal. (Mexico); Cruz-Hernandez, C. [Electronics and Telecommunications Department, Scientific Research and Advanced Studies of Ensenada (CICESE), Km. 107 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico)], E-mail: ccruz@cicese.mx

    2009-10-15

    In this paper, the robust synchronization problem for coupled chaotic Nd:YAG lasers is addressed. We resort to complex systems theory to achieve chaos synchronization. Based on stability theory, it is shown that the state trajectories of the perturbed error synchronization are ultimately bounded, provided the unperturbed synchronization error system is exponentially stable, and some conditions on the bounds of the perturbation terms are satisfied. So that, encoding, transmission, and decoding in chaotic optical communications are presented. We analyze the transmission and recovery of encrypted information when parameter mismatches are considered. Computer simulations are provided to show the effectiveness of this robustness synchronization property, we present the encrypted transmission of image messages, and we show that, the transmitted image is faithfully recovered.

  17. Adaptive Synchronization of Robotic Sensor Networks

    OpenAIRE

    Yıldırım, Kasım Sinan; Gürcan, Önder

    2014-01-01

    The main focus of recent time synchronization research is developing power-efficient synchronization methods that meet pre-defined accuracy requirements. However, an aspect that has been often overlooked is the high dynamics of the network topology due to the mobility of the nodes. Employing existing flooding-based and peer-to-peer synchronization methods, are networked robots still be able to adapt themselves and self-adjust their logical clocks under mobile network dynamics? In this paper, ...

  18. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Nicholas W. [GE Energy Management, Atlanta, GA (United States); Leonardi, Bruno [GE Energy Management, Atlanta, GA (United States); D' Aquila, Robert [GE Energy Management, Atlanta, GA (United States); Clark, Kara [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-17

    The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar and wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable

  19. Fear of darkness, the full moon and the nocturnal ecology of African lions.

    Science.gov (United States)

    Packer, Craig; Swanson, Alexandra; Ikanda, Dennis; Kushnir, Hadas

    2011-01-01

    Nocturnal carnivores are widely believed to have played an important role in human evolution, driving the need for night-time shelter, the control of fire and our innate fear of darkness. However, no empirical data are available on the effects of darkness on the risks of predation in humans. We performed an extensive analysis of predatory behavior across the lunar cycle on the largest dataset of lion attacks ever assembled and found that African lions are as sensitive to moonlight when hunting humans as when hunting herbivores and that lions are most dangerous to humans when the moon is faint or below the horizon. At night, people are most active between dusk and 10:00 pm, thus most lion attacks occur in the first weeks following the full moon (when the moon rises at least an hour after sunset). Consequently, the full moon is a reliable indicator of impending danger, perhaps helping to explain why the full moon has been the subject of so many myths and misconceptions.

  20. The moon as a radiometric reference source for on-orbit sensor stability calibration

    Science.gov (United States)

    Stone, T.C.

    2009-01-01

    The wealth of data generated by the world's Earth-observing satellites, now spanning decades, allows the construction of long-term climate records. A key consideration for detecting climate trends is precise quantification of temporal changes in sensor calibration on-orbit. For radiometer instruments in the solar reflectance wavelength range (near-UV to shortwave-IR), the Moon can be viewed as a solar diffuser with exceptional stability properties. A model for the lunar spectral irradiance that predicts the geometric variations in the Moon's brightness with ???1% precision has been developed at the U.S. Geological Survey in Flagstaff, AZ. Lunar model results corresponding to a series of Moon observations taken by an instrument can be used to stabilize sensor calibration with sub-percent per year precision, as demonstrated by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The inherent stability of the Moon and the operational model to utilize the lunar irradiance quantity provide the Moon as a reference source for monitoring radiometric calibration in orbit. This represents an important capability for detecting terrestrial climate change from space-based radiometric measurements.

  1. Fear of darkness, the full moon and the nocturnal ecology of African lions.

    Directory of Open Access Journals (Sweden)

    Craig Packer

    Full Text Available Nocturnal carnivores are widely believed to have played an important role in human evolution, driving the need for night-time shelter, the control of fire and our innate fear of darkness. However, no empirical data are available on the effects of darkness on the risks of predation in humans. We performed an extensive analysis of predatory behavior across the lunar cycle on the largest dataset of lion attacks ever assembled and found that African lions are as sensitive to moonlight when hunting humans as when hunting herbivores and that lions are most dangerous to humans when the moon is faint or below the horizon. At night, people are most active between dusk and 10:00 pm, thus most lion attacks occur in the first weeks following the full moon (when the moon rises at least an hour after sunset. Consequently, the full moon is a reliable indicator of impending danger, perhaps helping to explain why the full moon has been the subject of so many myths and misconceptions.

  2. A Planetary Park system for the Moon and beyond

    Science.gov (United States)

    Cockell, Charles; Horneck, Gerda

    Deutschland International space exploration programs foresee the establishment of human settlements on the Moon and on Mars within the next decades, following a series of robotic precursor missions. These increasing robotic visits and eventual human exploration and settlements may have an environmental impact on scientifically important sites and sites of natural beauty in the form of contamination with microorganisms and spacecraft parts, or even pollution as a consequence of in situ resource use. This concern has already been reflected in the Moon Treaty, "The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies" of the United Nations, which follows the Outer Space Treaty of the UN. However, so far, the Moon Treaty has not been ratified by any nation which engages in human space programs or has plans to do so. Planetary protection guidelines as formulated by the Committee on Space Research (COSPAR) are based on the Outer Space Treaty and follow the objectives: (i) to prevent contamination by terrestrial microorganisms if this might jeopardize scientific investi-gations of possible extraterrestrial life forms, and (ii) to protect the Earth from the potential hazard posed by extraterrestrial material brought back to the Earth. As a consequence, they group exploratory missions according to the type of mission and target body in five different categories, requesting specific means of cleaning and sterilization. However, the protection of extraterrestrial environments might also encompass ethical and other non-instrumental reasons. In order to allow intense scientific research and exploitation, and on the other hand to preserve regions of the Moon for research and use by future generations, we proposed the introduction of a planetary (or lunar) park system, which would protect areas of scientific, historic and intrinsic value under a common scheme. A similar placePlaceNamePlanetary PlaceTypePark system could be established on Mars well

  3. The Moon in Close-up A Next Generation Astronomer's Guide

    CERN Document Server

    Wilkinson, John

    2010-01-01

    Information collected by recent space probes sent to explore the Moon by the USA, the European Space Agency, Japan, China and India has changed our knowledge and understanding of the Moon, particularly its geology, since the Apollo missions. This book presents those findings in a way that will be welcomed by amateur astronomers, students, educators and anyone interested in the Moon. Enhanced by many colour photos, it combines newly acquired scientific understanding with detailed descriptions and labelled photographic maps of the lunar surface. Guided by observation methods explained in the book and 17 Study Areas presented and carefully explained in the last chapter, amateur astronomers can observe these features from Earth using telescopes and binoculars. Readers who consult the photographic maps will gain a better understanding about the Moon’s topography and geology. The book is rounded out by a helpful glossary.

  4. Apollo Lunar Sample Integration into Google Moon: A New Approach to Digitization

    Science.gov (United States)

    Dawson, Melissa D.; Todd, nancy S.; Lofgren, Gary E.

    2011-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is part of a larger, LASER-funded 4-year lunar rock photo restoration project by NASA s Acquisition and Curation Office [1]. The objective of this project is to enhance the Apollo mission data already available on Google Moon with information about the lunar samples collected during the Apollo missions. To this end, we have combined rock sample data from various sources, including Curation databases, mission documentation and lunar sample catalogs, with newly available digital photography of rock samples to create a user-friendly, interactive tool for learning about the Apollo Moon samples

  5. Perfect synchronization in networks of phase-frustrated oscillators

    Science.gov (United States)

    Kundu, Prosenjit; Hens, Chittaranjan; Barzel, Baruch; Pal, Pinaki

    2017-11-01

    Synchronizing phase-frustrated Kuramoto oscillators, a challenge that has found applications from neuronal networks to the power grid, is an eluding problem, as even small phase lags cause the oscillators to avoid synchronization. Here we show, constructively, how to strategically select the optimal frequency set, capturing the natural frequencies of all oscillators, for a given network and phase lags, that will ensure perfect synchronization. We find that high levels of synchronization are sustained in the vicinity of the optimal set, allowing for some level of deviation in the frequencies without significant degradation of synchronization. Demonstrating our results on first- and second-order phase-frustrated Kuramoto dynamics, we implement them on both model and real power grid networks, showing how to achieve synchronization in a phase-frustrated environment.

  6. Synchronization Analysis of the Supermarket Refrigeration System

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Chen, Liang; Larsen, Lars Finn Sloth

    2009-01-01

    is analyzed using the bifurcation and chaos theory. It is demonstrated that the system can have a complex chaotic behavior, which is far from the synchronization. This shows that making the system chaotic is a good choice for a de-synchronization strategy. The positive maximum Lyapunov exponent is usually...... taken as an indication of the existence of chaos. It is used in the paper as a measure of performance for the tendency of the system to synchronize, that is, the higher value of the maximum Lyapunov exponent the lower risk for synchronization....

  7. Price synchronization in retailing: some empirical evidence

    Directory of Open Access Journals (Sweden)

    Marcelo Resende

    2014-06-01

    Full Text Available The paper investigates the synchronization of price changes in the context of retail tire dealers in São Paulo-Brazil and selected items in supermarkets for cleaning supplies and food in Rio de Janeiro-Brazil. Results indicate similar and non-negligible synchronization for different brands, although magnitudes are distant from a perfect synchronization pattern. We find interesting patterns in inter-firm competition, with similar magnitudes across different tire types. Intra-chain synchronization is substantial, indicating that a common price adjustment policy tends to be sustained for each chain across different products.

  8. How Apollo Flew to the Moon

    CERN Document Server

    Woods, W David

    2011-01-01

    This new and expanded edition of the bestselling How Apollo Flew to the Moon tells the exciting story of how the Apollo missions were conducted and follows a virtual flight to the Moon and back. New material includes: - the exploration of the lunar surface; - more illustrations; - more technical explanations and anecdotes. From launch to splashdown, hitch a ride in the incredible Apollo spaceships, the most sophisticated machines of their time. Explore each step of the journey and glimpse the enormous range of disciplines, techniques, and procedures the Apollo crews had to master. Although the tremendous technological accomplishments are well documented, the human dimension is not forgotten, and the book calls on the testimony of the people who were there at the time. A wealth of fascinating and accessible material is provided, including: the role of the powerful Saturn V; the reasoning  behind trajectories; the day-to-day concerns of human and spacecraft health; the triumphs and difficulties of working in...

  9. Thermal history, thermal state, and related tectonism of a moon of fission origin

    International Nuclear Information System (INIS)

    Binder, A.B.; Lange, M.A.

    1980-01-01

    Thermal history of an initially totally molten moon of fission origin properly accounts for (1) the mare basalt epoch, in terms of its duration, the depth of the source region, and degrees of partial melting which produced the magmas; (2) the present-day heat flow of 17--18 ergs cm -2 s -1 ; and (3) the current high temperatures of the lower mantle as deduced from magnetic and seismic data. The model moon has a radius decrease of 5.4 km (3.1 x 10 -3 R) during lunar history. This value is within the rather poorly defined limits for the maximum change of the lunar radius of 10 -3 -10 -2 R. The majority of the thermoelastic stresses produced by the cooling of the moon have been dissipated via aseismic creep in the upper parts of the lunar mantle, not via faulting activity. A lower limit of 10 24 P for the viscosity of the mantle of the moon (at subsolidus temperatures) is suggested, based on the apparent absence of solid state convection in the moon at any time during its history. This is 10 3 times larger than that for the terrestrial mantle. The energy derived from the thermoelastic stresses in the type A moonquake zone is orders of magnitude smaller than the available tidal energy. Hence the thermoelastic stresses are not an important energy source for the tidal moon-quakes. The thermoelastic stresses can easily supply the energy for the high-frequency tele-seismic moonquakes. The relative rarity of HFT's is explained by the long times (10 8 -10 9 years) needed to accumulate the energy required to initiate faulting in the predicted source regions. These regions are in the uppermost mantle (depths between 80 and 200 km), where tensional quakes can occur, and at 10-km depths in the crust, where compressional quakes can occur. The consistency between our thermal history model results and the corresponding characteristics now known for the moon add further support for the fission model for the origin of the moon

  10. Deep electromagnetic sounding of the moon with Lunokhod 2 data

    Science.gov (United States)

    Vanyan, L. L.; Yegorov, I. V.; Faynberg, E. B.

    1977-01-01

    Results of electromagnetic sounding distinguished an outer high resistance shell about 200 km thick in the moon's structure. A preliminary petrological interpretation of the moon's layers indicated their origin as a consequence of differentiation of the initial peridotite material. Upon melting, 20% to 40% of the material melts and is removed to form a high resistance basaltic shell underlain by a layer of spinal peridotites enriched in divalent iron oxides and having a reduced resistance.

  11. Synchronization of Estrus in Cattle: A Review

    Directory of Open Access Journals (Sweden)

    R. Islam

    2011-06-01

    Full Text Available Numbers of estrus synchronization programmes are available in cattle based on the use of various hormones like progesterone, prostaglandin F2a and their various combinations with other hormones like estrogen and Gonadotrophin Releasing hormone (GnRH. Selection of appropriate estrus synchronization protocol should be made on the basis of management capabilities and expectations of the farmer. Synchronization of oestrus can be accomplished with the injection of prostaglandin F2a alone, but it needs proper detection of the ovarian status of the cows as prostaglandin F2a is active in only functional corpus luteum in between 8 to 17 days of estrous cycle. Progesterone may reduce fertility up to 14 percent, but short time progesterone exposure (less than 14 days is beneficial. Addition of GnRH in the Progesterone or Prostaglandin based synchronization programme is helpful for more synchrony in estrus as GnRH may be helpful to synchronize the oestrous cycle in delayed pubertal heifers and post partum cows (Post partum anoestrum and further a single, timed artificial insemination is possible with this method. New methods of synchronizing estrus in which the GnRH-PG protocol is preceded by progesterone treatment offer effective synchronization of estrus with high fertility. [Vet. World 2011; 4(3.000: 136-141

  12. Synchronization of coupled nonidentical multidelay feedback systems

    International Nuclear Information System (INIS)

    Hoang, Thang Manh; Nakagawa, Masahiro

    2007-01-01

    We present the lag synchronization of coupled nonidentical multidelay feedback systems, in which the synchronization signal is the sum of nonlinearly transformed components of delayed state variable. The sufficient condition for synchronization is considered by the Krasovskii-Lyapunov theory. The specific examples will demonstrate and verify the effectiveness of the proposed model

  13. Impulsive synchronization of Chen's hyperchaotic system

    International Nuclear Information System (INIS)

    Haeri, Mohammad; Dehghani, Mahsa

    2006-01-01

    In this Letter the impulsive synchronization of the Chen's hyperchaotic systems is discussed. Some new and sufficient conditions on varying impulsive distance are established in order to guarantee the synchronizabillity of the systems using the synchronization method. In particular, some simple conditions are derived in synchronizing the systems by equal impulsive distances. Two illustrative examples are provided to show the feasibility and the effectiveness of the proposed method. The boundaries of the stable regions are also estimated

  14. A True Open-Loop Synchronization Technique

    DEFF Research Database (Denmark)

    Golestan, Saeed; Vidal, Ana; Yepes, Alejandro G.

    2016-01-01

    Synchronization techniques can be broadly classified into two major categories: Closed-loop and open-loop methods. The open-loop synchronization (OLS) techniques, contrary to the closed-loop ones, are unconditionally stable and benefit from a fast dynamic response. Their performance, however, tends...... is to develop a true OLS (and therefore, unconditionally stable) technique without any need for the calculation of sine and cosine functions. The effectiveness of the proposed synchronization technique is confirmed through the simulation and experimental results....

  15. Impact landing ends SMART-1 mission to the Moon

    Science.gov (United States)

    2006-09-01

    SMART-1 scientists, engineers and space operations experts witnessed the final moments of the spacecraft’s life in the night between Saturday 2 and Sunday 3 September at ESA’s European Space Operations Centre (ESOC), in Darmstadt, Germany. The confirmation of the impact reached ESOC at 07:42:22 CEST (05:42:22 UT) when ESA’s New Norcia ground station in Australia suddenly lost radio contact with the spacecraft. SMART-1 ended its journey in the Lake of Excellence, in the point situated at 34.4º South latitude and 46.2º West longitude. The SMART-1 impact took place on the near side of the Moon, in a dark area just near the terminator (the line separating the day side from the night side), at a “grazing” angle of about one degree and a speed of about 2 kilometres per second. The impact time and location was planned to favour observations of the impact event from telescopes on Earth, and was achieved by a series of orbit manoeuvres and corrections performed during the course of summer 2006, the last of which was on 1 September. Professional and amateur ground observers all around the world - from South Africa to the Canary Islands, South America, the continental United States, Hawaii, and many other locations - were watching before and during the small SMART-1 impact, hoping to spot the faint impact flash and to obtain information about the impact dynamics and about the lunar surface excavated by the spacecraft. The quality of the data and images gathered from the ground observatories - a tribute to the end of the SMART-1 mission and a possible additional contribution to lunar science - will be assessed in the days to come. For the last 16 months and until its final orbits, SMART-1 has been studying the Moon, gathering data about the morphology and mineralogical composition of the surface in visible, infrared and X-ray light. “The legacy left by the huge wealth of SMART-1 data, to be analysed in the months and years to come, is a precious contribution to

  16. Synchronization of delay-coupled nonlinear oscillators: an approach based on the stability analysis of synchronized equilibria.

    Science.gov (United States)

    Michiels, Wim; Nijmeijer, Henk

    2009-09-01

    We consider the synchronization problem of an arbitrary number of coupled nonlinear oscillators with delays in the interconnections. The network topology is described by a directed graph. Unlike the conventional approach of deriving directly sufficient synchronization conditions, the approach of the paper starts from an exact stability analysis in a (gain, delay) parameter space of a synchronized equilibrium and extracts insights from an analysis of its bifurcations and from the corresponding emerging behavior. Instrumental to this analysis a factorization of the characteristic equation is employed that not only facilitates the analysis and reduces computational cost but also allows to determine the precise role of the individual agents and the topology of the network in the (in)stability mechanisms. The study provides an algorithm to perform a stability and bifurcation analysis of synchronized equilibria. Furthermore, it reveals fundamental limitations to synchronization and it explains under which conditions on the topology of the network and on the characteristics of the coupling the systems are expected to synchronize. In the second part of the paper the results are applied to coupled Lorenz systems. The main results show that for sufficiently large coupling gains, delay-coupled Lorenz systems exhibit a generic behavior that does not depend on the number of systems and the topology of the network, as long as some basic assumptions are satisfied, including the strong connectivity of the graph. Here the linearized stability analysis is strengthened by a nonlinear stability analysis which confirms the predictions based on the linearized stability and bifurcation analysis. This illustrates the usefulness of the exact linearized analysis in a situation where a direct nonlinear stability analysis is not possible or where it yields conservative conditions from which it is hard to get qualitative insights in the synchronization mechanisms and their scaling properties

  17. The origin of the moon and the early history of the earth - a chemical model. Part 2: The earth

    International Nuclear Information System (INIS)

    O'Neill, H.St.C.

    1991-01-01

    The geochemical implications for the earth of a giant impact model for the origin of the earth-moon system are discussed, using a mass balance between three components: the proto-earth, the Impactor, and a late veneer. It is argued that the proto-earth accretes from material resembling a high temperature condensate from the solar nebula. Core formation takes place under very reducing conditions, resulting in the mantle of the proto-earth being completely stripped of all elements more siderophile than Fe, and partly depleted in the barely siderophile elements V, Cr, and perhaps Si. The Impactor then collides with the proto-earth, causing vaporisation of both the Impactor and a substantial portion of the earth's mantle. Most of this material recondenses to the earth, but some forms the moon. The Impactor adds most of the complement of the siderophile elements of the present mantle in an oxidized form. The oxidation state of the mantle is set near to its present, oxidized level. Finally, the addition of a late veneer, of composition similar to that of the H-group ordinary chondrites, accounts for the complement of the highly siderophile elements of the present mantle. The model accounts at least semi-quantitatively for the siderophile element abundances of the present mantle. Implications for the composition of the earth's core are discussed; the model predicts that neither S, O, nor Si should be present in sufficient quantities to provide the required light element in the core, whose identity, therefore, remains enigmatic

  18. Synchronization in networks with heterogeneous coupling delays

    Science.gov (United States)

    Otto, Andreas; Radons, Günter; Bachrathy, Dániel; Orosz, Gábor

    2018-01-01

    Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency lag operator which contains the topology of the network as well as the corresponding coupling delays. This generalizes the master stability function approach, which was developed for homogenous delays. As a result the network dynamics can be analyzed by delay differential equations with distributed delay, where different delay distributions emerge for different network modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.

  19. World-Wide Outreach through International Observe the Moon Night

    Science.gov (United States)

    Buxner, S.; Jones, A. P.; Bleacher, L.; Shaner, A. J.; Day, B. H.; Wenger, M.; Joseph, E.; Canipe, M.

    2016-12-01

    International Observe the Moon Night (InOMN) is an annual worldwide public event that encourages observation, appreciation, and understanding of our Moon and its connection to NASA planetary science and exploration. Everyone on Earth is invited to join the celebration by hosting or attending an InOMN event - and uniting on one day each year to look at and learn about the Moon together. Events are hosted by a variety of institutions including astronomy clubs, observatories, schools, and universities, museums, planetaria, schools, universities, observatories, parks, private businesses and private homes. Events hosts are supported with event flyers, information sheets, Moon maps for observing, activities to use during events, presentations, certificates of participation, and evaluation materials to be used by hosts. 2016 is the seventh year of worldwide participation in InOMN which will be held on October 8th. In the last six years, over 3,000 events were registered worldwide from almost 100 different countries and almost all 50 states and the District of Columbia in the United States. Evaluation of InOMN is conducted by an external evaluation group and includes analysis of event registrations, facilitator surveys, and visitor surveys. Evaluation results demonstrate that InOMN events are successful in raising visitors' awareness of lunar science and exploration, providing audiences with information about lunar science and exploration, and inspiring visitors to want to learn more about the Moon. Additionally, preliminary analysis of social media has shown that there is a virtual network of individuals connecting about InOMN. A large fraction of events have been held by institutions for more than one year showing sustained interest in participation. During this presentation, we will present data for all seven years of InOMN including lessons learned through supporting and evaluating a worldwide event. InOMN is sponsored by NASA's Lunar Reconnaissance Orbiter, NASA

  20. Synchronization of hyperchaotic oscillators via single unidirectional chaotic-coupling

    International Nuclear Information System (INIS)

    Zou Yanli; Zhu Jie; Chen Guanrong; Luo Xiaoshu

    2005-01-01

    In this paper, synchronization of two hyperchaotic oscillators via a single variable's unidirectional coupling is studied. First, the synchronizability of the coupled hyperchaotic oscillators is proved mathematically. Then, the convergence speed of this synchronization scheme is analyzed. In order to speed up the response with a relatively large coupling strength, two kinds of chaotic coupling synchronization schemes are proposed. In terms of numerical simulations and the numerical calculation of the largest conditional Lyapunov exponent, it is shown that in a given range of coupling strengths, chaotic-coupling synchronization is quicker than the typical continuous-coupling synchronization. Furthermore, A circuit realization based on the chaotic synchronization scheme is designed and Pspice circuit simulation validates the simulated hyperchaos synchronization mechanism

  1. NEXT GENERATION OF TELESCOPES OR DYNAMICS REQUIRED TO DETERMINE IF EXO-MOONS HAVE PROGRADE OR RETROGRADE ORBITS

    International Nuclear Information System (INIS)

    Lewis, Karen M.; Fujii, Yuka

    2014-01-01

    We survey the methods proposed in the literature for detecting moons of extrasolar planets in terms of their ability to distinguish between prograde and retrograde moon orbits, an important tracer of the moon formation channel. We find that most moon detection methods, in particular, sensitive methods for detecting moons of transiting planets, cannot observationally distinguishing prograde and retrograde moon orbits. The prograde and retrograde cases can only be distinguished where the dynamical evolution of the orbit due to, e.g., three body effects is detectable, where one of the two cases is dynamically unstable, or where new observational facilities, which can implement a technique capable of differentiating the two cases, come online. In particular, directly imaged planets are promising targets because repeated spectral and photometric measurements, which are required to determine moon orbit direction, could also be conducted with the primary interest of characterizing the planet itself

  2. Two novel synchronization criterions for a unified chaotic system

    International Nuclear Information System (INIS)

    Tao Chaohai; Xiong Hongxia; Hu Feng

    2006-01-01

    Two novel synchronization criterions are proposed in this paper. It includes drive-response synchronization and adaptive synchronization schemes. Moreover, these synchronization criterions can be applied to a large class of chaotic systems and are very useful for secure communication

  3. Synchronization of Rikitake chaotic attractor using active control

    International Nuclear Information System (INIS)

    Vincent, U.E.

    2005-01-01

    Using synchronization technique based on control theory, we design an active controller which enables the synchronization of two identical Rikitake two-disc dynamo systems. Numerical simulations are used to show the robustness of the active control scheme in synchronizing coupled Rikitake dynamical systems. On the sequential application of the active control, transitions from temporary phase locking (TPL) state to complete synchronization state were found

  4. Robust Timing Synchronization in Aeronautical Mobile Communication Systems

    Science.gov (United States)

    Xiong, Fu-Qin; Pinchak, Stanley

    2004-01-01

    This work details a study of robust synchronization schemes suitable for satellite to mobile aeronautical applications. A new scheme, the Modified Sliding Window Synchronizer (MSWS), is devised and compared with existing schemes, including the traditional Early-Late Gate Synchronizer (ELGS), the Gardner Zero-Crossing Detector (GZCD), and the Sliding Window Synchronizer (SWS). Performance of the synchronization schemes is evaluated by a set of metrics that indicate performance in digital communications systems. The metrics are convergence time, mean square phase error (or root mean-square phase error), lowest SNR for locking, initial frequency offset performance, midstream frequency offset performance, and system complexity. The performance of the synchronizers is evaluated by means of Matlab simulation models. A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting of a Quadrature Phase Shift Keying modulator, an additive white Gaussian noise channel, and a demodulator front end. Simulation results show that the MSWS provides the most robust performance at the cost of system complexity. The GZCD provides a good tradeoff between robustness and system complexity for communication systems that require high symbol rates or low overall system costs. The ELGS has a high system complexity despite its average performance. Overall, the SWS, originally designed for multi-carrier systems, performs very poorly in single-carrier communications systems. Table 5.1 in Section 5 provides a ranking of each of the synchronization schemes in terms of the metrics set forth in Section 4.1. Details of comparison are given in Section 5. Based on the results presented in Table 5, it is safe to say that the most robust synchronization scheme examined in this work is the high-sample-rate Modified Sliding Window Synchronizer. A close second is its low-sample-rate cousin. The tradeoff between complexity and lowest mean-square phase error determines

  5. Habitability in the Solar System and on Extrasolar Planets and Moons

    Science.gov (United States)

    McKay, Christopher P.

    2015-01-01

    The criteria for a habitable world initially was based on Earth and centered around liquid water on the surface, warmed by a Sun-like star. The moons of the outer Solar System, principally Europa and Enceladus, have demonstrated that liquid water can exist below the surface warmed by tidal forces from a giant planet. Titan demonstrates that surface liquids other than water - liquid methane/ethane - may be common on other worlds. Considering the numerous extrasolar planets so far discovered and the prospect of discovering extrasolar moons it is timely to reconsider the possibilities for habitability in the Solar System and on extrasolar planets and moons and enumerate the attributes and search methods for detecting habitable worlds and evidence of life.

  6. Mixed synchronization in chaotic oscillators using scalar coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmick, Sourav K.; Hens, Chittaranjan [CSIR – Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India); Ghosh, Dibakar, E-mail: drghosh_math@yahoo.co.in [Department of Mathematics, University of Kalyani, West Bengal 741235 (India); Dana, Syamal K. [CSIR – Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India)

    2012-07-23

    We report experimental evidence of mixed synchronization in two unidirectionally coupled chaotic oscillators using a scalar coupling. In this synchronization regime, some of the state variables may be in complete synchronization while others may be in anti-synchronization state. We extended the theory by using an adaptive controller with an updating law based on Lyapunov function stability to include parameter fluctuation. Using the scheme, we implemented a cryptographic encoding for digital signal through parameter modulation. -- Highlights: ► We provided experimental evidence of the mixed synchronization scheme while other methods are mostly theoretical nature. ► We numerically studied adaptive mixed synchronization when the parameters are not completely known using scalar coupling. ► We proposed a secure communication system where three digital messages are transmitted using parameter modulation.

  7. Detection of generalized synchronization using echo state networks

    Science.gov (United States)

    Ibáñez-Soria, D.; Garcia-Ojalvo, J.; Soria-Frisch, A.; Ruffini, G.

    2018-03-01

    Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences interleaved with unsynchronized ones. Correctly tuned, echo state networks are able to efficiently discriminate between unsynchronized and synchronized sequences even in the presence of relatively high levels of noise. Compared to other state-of-the-art techniques of synchronization detection, the online capabilities of the proposed Echo State Network based methodology make it a promising choice for real-time applications aiming to monitor dynamical synchronization changes in continuous signals.

  8. Moon Teachings for the Masses at the U.Mass. Sunwheel and around the World

    Science.gov (United States)

    Young, J. S.

    2004-12-01

    With the culmination of the 18.6 year cycle of the Moon in 2006, the major lunar standstill, we are afforded the unique opportunity to teach the public about the monthly, annual, and 18.6-year wanderings of the Moon. The 18.6 year cycle is caused by the precession of the plane of the lunar orbit, while this orbit maintains a 5 degree tilt relative to the ecliptic. At the peak of this cycle, the Moon's declination swings from -28.8 to +28.8 degrees each month. And even though we are more than 1 year away from the peak of the 18.6-year cycle, already the Moon's declination ranges each month between -28 and +28 degrees. What this means is that each month for the years 2005-2007, the Moon can be seen to rise and set more northerly and also more southerly than the solar extremes, and will transit monthly with altitudes which are higher in the sky than the summer Sun and lower in the sky than the winter Sun. The U.Mass. Sunwheel is a stone circle calendar constructed in 1997 on the campus of U.Mass. Amherst, with 8'-10' tall stones marking the cardinal directions, the solstice sunrise and sunset directions, and the northernmost and southernmost moonrise and moonset directions. Over 13,000 people have visited the Sunwheel since its construction, and over 5,000 have attended the seasonal sunrise and sunset gatherings which I host. Already, late in 2004, I have begun showning the public the Moon at it's extremes, and there will be monthly opportunities over the next several years for all of us to notice the very high or very low transiting Moon. Finally, Moon teachings from calendar sites at Callanish, Chaco Canyon, and Stonehenge will be presented.

  9. Main Difference with Formed Process of the Moon and Earth Minerals and Fluids

    Science.gov (United States)

    Kato, T.; Miura, Y.

    2018-04-01

    Minerals show large and global distribution on Earth system, but small and local formation on the Moon. Fluid water is formed as same size and distribution on Earth and the Moon based on their body-systems.

  10. Synchronization of delay-coupled nonlinear oscillators : an approach based on the stability analysis of synchronized equilibria

    NARCIS (Netherlands)

    Michiels, W.; Nijmeijer, H.

    2009-01-01

    We consider the synchronization problem of an arbitrary number of coupled nonlinear oscillators with delays in the interconnections. The network topology is described by a directed graph. Unlike the conventional approach of deriving directly sufficient synchronization conditions, the approach of the

  11. Synchronization and comparison of Lifelog audio recordings

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai

    2008-01-01

    as a preprocessing step to select and synchronize recordings before further processing. The two methods perform similarly in classification, but fingerprinting scales better with the number of recordings, while cross-correlation can offer sample resolution synchronization. We propose and investigate the benefits...... of combining the two. In particular we show that the combination allows sample resolution synchronization and scalability....

  12. Periods, poles, and shapes of Saturn's irregular moons

    Science.gov (United States)

    Denk, Tilmann; Mottola, Stefano

    2016-10-01

    We report rotational-lightcurve observations of irregular moons of Saturn based on disk-integrated observations with the Narrow-Angle Camera of the Cassini spacecraft. From 24 measured rotation periods, 20 are now known with an accuracy of ~2% or better. The numbers are as follows (in hours; an '*' marks the less reliable periods): Hati 5.42; Mundilfari 6.74; Loge 6.94*; Skoll 7.26; Kari 7.70; Suttungr 7.82*, Bergelmir 8.13; Phoebe 9.274; Siarnaq 10.188; Narvi 10.21; Tarvos 10.69; Skathi 11.30; Ymir 11.922; Hyrrokkin 12.76; Greip 12.79*; Ijiraq 13.03; Albiorix 13.32; Bestla 14.624; Bebhionn 16.40; Paaliaq 18.75; Kiviuq 21.96; Erriapus 28.15; Thrymr 35 or >45* Tarqeq 76.8.More recent data strengthen the notion that objects in orbits with an inclination supplemental angle i' > 27° have significantly slower spin rates than those at i' 27°, Siarnaq, stands opposed to at least eight objects with faster spins and i' 27° bin contains all nine known prograde moons and four retrograde objects.A total of 25 out of 38 known outer moons has been observed with Cassini, and there is no chance to observe the 13 missing objects until end-of-mission. However, all unobserved objects are part of the i' 27° are known, and none of them is a fast rotator, with no exception.Several objects were observed repeatedly to determine pole directions, sidereal periods, and convex shapes. A few lightcurves have been observed to show three maxima and three minima even at low phase angles, suggesting objects with a triangular equatorial cross-section. Some objects with 2 maxima/ 2 minima are probably quite elongated. One moon even shows lightcurves with 4 maxima/ 4 minima.

  13. Is the Moon Illusion a Celestial Ames Demonstration?

    Science.gov (United States)

    Brecher, Kenneth

    2010-01-01

    To most naked eye observers, the Moon appears larger when seen near the horizon than it does when seen near the zenith. This "Moon Illusion” has been reported from as early as the fourth century BC and has been the subject of hundreds of papers and two books. Its explanation does not lie in the realm of physics (atmospheric refraction) or astronomy (eccentric lunar orbit) but, rather, in the realm of visual perception. Theories for the cause of the effect abound but, at present, there is no universally accepted explanation. Because the effect can be easily observed in many locations and during the course of an academic year, the moon illusion can provide a nice astronomical example that involves both direct observations and theoretical analysis. As part of the NSF funded "Project LITE: Light Inquiry Through Experiments", we have been developing inexpensive experiments and demonstrations that can be done at home. One of these is a miniature version of the classic "Ames Room". The life size version was originally developed by Adelbert Ames, Jr. and can be seen in many science museums. Our "digital” Ames Room has been designed to be printed on heavy paper using an inexpensive inkjet printer from a PDF file that is posted on the Project LITE web site http://lite.bu.edu and then cut and folded to make the room. When viewed through one wall using a commonly available door viewer, it dramatically demonstrates how the eye and brain system assesses the relative size of objects by making comparisons with the surrounding environment in which the objects are placed. In this presentation we will discuss some insights that the Ames Room provides that may offer clues to the correct explanation for the Moon Illusion. Project LITE is supported by the NSF through DUE Grant # 0715975.

  14. A Spatiotemporal-Chaos-Based Cryptosystem Taking Advantage of Both Synchronous and Self-Synchronizing Schemes

    Science.gov (United States)

    Lü, Hua-Ping; Wang, Shi-Hong; Li, Xiao-Wen; Tang, Guo-Ning; Kuang, Jin-Yu; Ye, Wei-Ping; Hu, Gang

    2004-06-01

    Two-dimensional one-way coupled map lattices are used for cryptography where multiple space units produce chaotic outputs in parallel. One of the outputs plays the role of driving for synchronization of the decryption system while the others perform the function of information encoding. With this separation of functions the receiver can establish a self-checking and self-correction mechanism, and enjoys the advantages of both synchronous and self-synchronizing schemes. A comparison between the present system with the system of advanced encryption standard (AES) is presented in the aspect of channel noise influence. Numerical investigations show that our system is much stronger than AES against channel noise perturbations, and thus can be better used for secure communications with large channel noise.

  15. Guide to Synchronization of Video Systems to IRIG Timing

    Science.gov (United States)

    1992-07-01

    and industry. 1-2 CHAPTER 2 SYNCHRONISATION Before delving into the details of synchronization , a review is needed of the reasons for synchronizing ... Synchronization of Video Systems to IRIG Timing Optical Systems Group Range Commanders Council White Sands Missile Range, NM 88002-5110 RCC Document 456-92 Range...This document addresses a broad field of video synchronization to IRIG timing with emphasis on color synchronization . This document deals with

  16. Comments on 'The origin of the Earth-Moon system'

    International Nuclear Information System (INIS)

    Savic, P.; Teleki, G.

    1986-01-01

    The main points are presented of a new hypothesis of the origin of the Earth-Moon system, developed on the basis of Savic's (1961) theory of the origin of rotation of celestial bodies. The cooling off and contraction due to gravitational attraction on vast particle systems, with the pushing out of electrons from atom shells result in a continually increasing density. Depending on the amount of mass, this pushing out can lead to the expulsion of electrons and the creation of a magnetic field by which a rotational motion is brought about. These conditions are satisfied for the Earth's mass and all larger masses. If the Earth and the Moon formed a unique body, the protoplanet, then once rotational motion had begun, the primeval spherical body must have taken the shape of a large Jacobi ellipsoid. New condensation followed, however no longer solely around the centre of the protoplanet, but also along the edge of the ellipsoid, the process leading to the creation of the dual Earth-Moon system. (Auth.)

  17. Planetary Drilling and Resources at the Moon and Mars

    Science.gov (United States)

    George, Jeffrey A.

    2012-01-01

    Drilling on the Moon and Mars is an important capability for both scientific and resource exploration. The unique requirements of spaceflight and planetary environments drive drills to different design approaches than established terrestrial technologies. A partnership between NASA and Baker Hughes Inc. developed a novel approach for a dry rotary coring wireline drill capable of acquiring continuous core samples at multi-meter depths for low power and mass. The 8.5 kg Bottom Hole Assembly operated at 100 We and without need for traditional drilling mud or pipe. The technology was field tested in the Canadian Arctic in sandstone, ice and frozen gumbo. Planetary resources could play an important role in future space exploration. Lunar regolith contains oxygen and metals, and water ice has recently been confirmed in a shadowed crater at the Moon.s south pole. Mars possesses a CO2 atmosphere, frozen water ice at the poles, and indications of subsurface aquifers. Such resources could provide water, oxygen and propellants that could greatly simplify the cost and complexity of exploration and survival. NASA/JSC/EP/JAG

  18. The Kaguya Lunar Atlas The Moon in High Resolution

    CERN Document Server

    Shirao, Motomaro

    2011-01-01

    In late 2007 the Japan Aerospace Exploration Agency placed the Kaguya/Selene spacecraft in orbit around the Moon. Like previous lunar orbiters, Kaguya carried scientific instruments to probe the Moon’s surface and interior. But it also had the first high-definition television camera (HDTV) sent to the Moon. Sponsored by the Japanese NHK TV network, the HDTV has amazed both scientists and the public with its magnificent views of the lunar surface. What makes the images much more engaging than standard vertical-view lunar photographs is that they were taken looking obliquely along the flight path. Thus, they show the Moon as it would be seen by an astronaut looking through a porthole window while orbiting only 100 km above the lunar surface. This is the view we all would wish to have, but are never likely to, except vicariously through the awe-inspiring Kaguya HDTV images. The remarkable Kaguya/Selene HDTV images are used here to create a new type of lunar atlas. Because of the unique perspective of the imag...

  19. Quantum synchronization in an optomechanical system based on Lyapunov control.

    Science.gov (United States)

    Li, Wenlin; Li, Chong; Song, Heshan

    2016-06-01

    We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.

  20. A Semantics of Synchronization.

    Science.gov (United States)

    1980-09-01

    suggestion of having very hungry philosophers. One can easily imagine the complexity of the equivalent implementation using semaphores . Synchronization types...Edinburgh, July 1978. [STAR79] Stark, E.W., " Semaphore Primitives and Fair Mutual Exclusion," TM-158, Laboratory for Computer Science, M.I.T., Cambridge...AD-AQ91 015 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC F/S 9/2 A SEMANTICS OF SYNCHRONIZATION .(U) .C SEP 80 C A SEAQUIST N00015-75

  1. Mr.Seah Moon Ming Leadership & Management

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Life and Work Philosophy Seah Moon Ming considers life a continuous journey of learning,adaptation and attainment of goals.He believes that as long as there are changes,you will need to learn - to learn to adapt and to play a useful role in a dynamic and ever-changing world.

  2. Protecting Clock Synchronization: Adversary Detection through Network Monitoring

    Directory of Open Access Journals (Sweden)

    Elena Lisova

    2016-01-01

    Full Text Available Nowadays, industrial networks are often used for safety-critical applications with real-time requirements. Such applications usually have a time-triggered nature with message scheduling as a core property. Scheduling requires nodes to share the same notion of time, that is, to be synchronized. Therefore, clock synchronization is a fundamental asset in real-time networks. However, since typical standards for clock synchronization, for example, IEEE 1588, do not provide the required level of security, it raises the question of clock synchronization protection. In this paper, we identify a way to break synchronization based on the IEEE 1588 standard, by conducting a man-in-the-middle (MIM attack followed by a delay attack. A MIM attack can be accomplished through, for example, Address Resolution Protocol (ARP poisoning. Using the AVISPA tool, we evaluate the potential to perform a delay attack using ARP poisoning and analyze its consequences showing both that the attack can, indeed, break clock synchronization and that some design choices, such as a relaxed synchronization condition mode, delay bounding, and using knowledge of environmental conditions, can make the network more robust/resilient against these kinds of attacks. Lastly, a Configuration Agent is proposed to monitor and detect anomalies introduced by an adversary performing attacks targeting clock synchronization.

  3. Linear Synchronous Motor Repeatability Tests

    International Nuclear Information System (INIS)

    Ward, C.R.

    2002-01-01

    A cart system using linear synchronous motors was being considered for the Plutonium Immobilization Plant (PIP). One of the applications in the PIP was the movement of a stack of furnace trays, filled with the waste form (pucks) from a stacking/unstacking station to several bottom loaded furnaces. A system was ordered to perform this function in the PIP Ceramic Prototype Test Facility (CPTF). This system was installed and started up in SRTC prior to being installed in the CPTF. The PIP was suspended and then canceled after the linear synchronous motor system was started up. This system was used to determine repeatability of a linear synchronous motor cart system for the Modern Pit Facility

  4. Synchronicity, instant messaging, and performance among financial traders.

    Science.gov (United States)

    Saavedra, Serguei; Hagerty, Kathleen; Uzzi, Brian

    2011-03-29

    Successful animal systems often manage risk through synchronous behavior that spontaneously arises without leadership. In critical human systems facing risk, such as financial markets or military operations, our understanding of the benefits associated with synchronicity is nascent but promising. Building on previous work illuminating commonalities between ecological and human systems, we compare the activity patterns of individual financial traders with the simultaneous activity of other traders--an individual and spontaneous characteristic we call synchronous trading. Additionally, we examine the association of synchronous trading with individual performance and communication patterns. Analyzing empirical data on day traders' second-to-second trading and instant messaging, we find that the higher the traders' synchronous trading is, the less likely they are to lose money at the end of the day. We also find that the daily instant messaging patterns of traders are closely associated with their level of synchronous trading. This result suggests that synchronicity and vanguard technology may help traders cope with risky decisions in complex systems and may furnish unique prospects for achieving collective and individual goals.

  5. Chaos synchronizations of chaotic systems via active nonlinear control

    International Nuclear Information System (INIS)

    Huang, J; Xiao, T J

    2008-01-01

    This paper not only investigates the chaos synchronization between two LCC chaotic systems, but also discusses the chaos synchronization between LCC system and Genesio system. Some novel active nonlinear controllers are designed to achieve synchronizations between drive and response systems effectively. Moreover, the sufficient conditions of synchronizations are derived by using Lyapunov stability theorem. Numerical simulations are presented to verify the theoretical analysis, which shows that the synchronization schemes are global effective

  6. Quantum synchronization of a driven self-sustained oscillator.

    Science.gov (United States)

    Walter, Stefan; Nunnenkamp, Andreas; Bruder, Christoph

    2014-03-07

    Synchronization is a universal phenomenon that is important both in fundamental studies and in technical applications. Here we investigate synchronization in the simplest quantum-mechanical scenario possible, i.e., a quantum-mechanical self-sustained oscillator coupled to an external harmonic drive. Using the power spectrum we analyze synchronization in terms of frequency entrainment and frequency locking in close analogy to the classical case. We show that there is a steplike crossover to a synchronized state as a function of the driving strength. In contrast to the classical case, there is a finite threshold value in driving. Quantum noise reduces the synchronized region and leads to a deviation from strict frequency locking.

  7. Synchronization of modified Colpitts oscillators with structural perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Kammogne, Soup Tewa; Fotsin, H B, E-mail: hbfotsin@yahoo.fr [Laboratoire d' electronique, Departement de Physique, Faculte des sciences, Universite de Dschang, PO Box 067, Dschang (Cameroon)

    2011-06-01

    This paper deals with the problem of the synchronization of uncertain modified Colpitts oscillators. Considering the effect of external disturbances on the system parameters and nonlinear control inputs, a robust controller based on Lyapunov theory is designed for the output synchronization between a slave system and a master system in order to ensure the synchronization of uncertain modified Colpitts oscillator systems. This approach was chosen not only to guarantee a stable synchronization but also to reduce the effect of external perturbation. Nonadaptive feedback synchronization with only one controller for the system is investigated. Numerical simulations are performed to confirm the efficiency of the proposed control scheme.

  8. Stroboscope Based Synchronization of Full Frame CCD Sensors.

    Science.gov (United States)

    Shen, Liang; Feng, Xiaobing; Zhang, Yuan; Shi, Min; Zhu, Dengming; Wang, Zhaoqi

    2017-04-07

    The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD) consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equipment, the proposed approach greatly reduces the cost by using inexpensive CCD cameras and one stroboscope. The results show that our method could reach a high accuracy much better than the frame-level synchronization of traditional software methods.

  9. Polymerization of Building Blocks of Life on Europa and Other Icy Moons.

    Science.gov (United States)

    Kimura, Jun; Kitadai, Norio

    2015-06-01

    The outer Solar System may provide a potential habitat for extraterrestrial life. Remote sensing data from the Galileo spacecraft suggest that the jovian icy moons--Europa, Ganymede, and possibly Callisto--may harbor liquid water oceans underneath their icy crusts. Although compositional information required for the discussion of habitability is limited because of significantly restricted observation data, organic molecules are ubiquitous in the Universe. Recently, in situ spacecraft measurements and experiments suggest that amino acids can be formed abiotically on interstellar ices and comets. These amino acids could be continuously delivered by meteorite or comet impacts to icy moons. Here, we show that polymerization of organic monomers, in particular amino acids and nucleotides, could proceed spontaneously in the cold environment of icy moons, in particular the jovian icy moon Europa as a typical example, based on thermodynamic calculations, though kinetics of formation are not addressed. Observed surface temperature on Europa is 120 and 80 K in the equatorial region and polar region, respectively. At such low temperatures, Gibbs energies of polymerization become negative, and the estimated thermal structure of the icy crust should contain a shallow region (i.e., at a depth of only a few kilometers) favorable for polymerization. Investigation of the possibility of organic monomer polymerization on icy moons could provide good constraints on the origin and early evolution of extraterrestrial life.

  10. Impulsive generalized function synchronization of complex dynamical networks

    International Nuclear Information System (INIS)

    Zhang, Qunjiao; Chen, Juan; Wan, Li

    2013-01-01

    This Letter investigates generalized function synchronization of continuous and discrete complex networks by impulsive control. By constructing the reasonable corresponding impulsively controlled response networks, some criteria and corollaries are derived for the generalized function synchronization between the impulsively controlled complex networks, continuous and discrete networks are both included. Furthermore, the generalized linear synchronization and nonlinear synchronization are respectively illustrated by several examples. All the numerical simulations demonstrate the correctness of the theoretical results

  11. Stroboscope Based Synchronization of Full Frame CCD Sensors

    OpenAIRE

    Shen, Liang; Feng, Xiaobing; Zhang, Yuan; Shi, Min; Zhu, Dengming; Wang, Zhaoqi

    2017-01-01

    The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD) consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equi...

  12. Methodology for GPS Synchronization Evaluation with High Accuracy

    OpenAIRE

    Li Zan; Braun Torsten; Dimitrova Desislava

    2015-01-01

    Clock synchronization in the order of nanoseconds is one of the critical factors for time based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper we are particularly interested in GPS based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. Ou...

  13. Methodology for GPS Synchronization Evaluation with High Accuracy

    OpenAIRE

    Li, Zan; Braun, Torsten; Dimitrova, Desislava Cvetanova

    2015-01-01

    Clock synchronization in the order of nanoseconds is one of the critical factors for time-based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper, we are particularly interested in GPS-based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. O...

  14. Simulation of the cosmic ray Moon shadow in the geomagnetic field

    International Nuclear Information System (INIS)

    Di Sciascio, Giuseppe; Iuppa, Roberto

    2011-01-01

    An accurate Monte Carlo simulation of the deficit of primary cosmic rays in the direction of the Moon has been developed to interpret the observations reported in the TeV energy region until now. Primary particles are propagated through the geomagnetic field in the Earth-Moon system. The algorithm is described and the contributions of the detector resolution and of the geomagnetic field are disentangled.

  15. OMEGA SYSTEM SYNCHRONIZATION.

    Science.gov (United States)

    TIME SIGNALS, * SYNCHRONIZATION (ELECTRONICS)), NETWORKS, FREQUENCY, STANDARDS, RADIO SIGNALS, ERRORS, VERY LOW FREQUENCY, PROPAGATION, ACCURACY, ATOMIC CLOCKS, CESIUM, RADIO STATIONS, NAVAL SHORE FACILITIES

  16. Synchronization of mobile chaotic oscillator networks

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Naoya, E-mail: fujiwara@csis.u-tokyo.ac.jp [Center for Spatial Information Science, The University of Tokyo, 277-8568 Chiba (Japan); Kurths, Jürgen [Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam, Germany and Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen (United Kingdom); Díaz-Guilera, Albert [Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona (Spain)

    2016-09-15

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  17. Synchronization of mobile chaotic oscillator networks

    International Nuclear Information System (INIS)

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-01-01

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  18. Synchronization of mobile chaotic oscillator networks.

    Science.gov (United States)

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-09-01

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  19. Bodily Synchronization Underlying Joke Telling

    Directory of Open Access Journals (Sweden)

    R. C. Schmidt

    2014-08-01

    Full Text Available Advances in video and time series analysis have greatly enhanced our ability to study the bodily synchronization that occurs in natural interactions. Past research has demonstrated that the behavioral synchronization involved in social interactions is similar to dynamical synchronization found generically in nature. The present study investigated how the bodily synchronization in a joke telling task is spread across different nested temporal scales. Pairs of participants enacted knock-knock jokes and times series of their bodily activity were recorded. Coherence and relative phase analyses were used to evaluate the synchronization of bodily rhythms for the whole trial as well as at the subsidiary time scales of the whole joke, the setup of the punch line, the two-person exchange and the utterance. The analyses revealed greater than chance entrainment of the joke teller’s and joke responder’s movements at all time scales and that the relative phasing of the teller’s movements led those of the responder at the longer time scales. Moreover, this entrainment was greater when visual information about the partner’s movements was present but was decreased particularly at the shorter time scales when explicit gesturing in telling the joke was performed. In short, the results demonstrate that a complex interpersonal bodily dance occurs during structured conversation interactions and that this dance is constructed from a set of rhythms associated with the nested behavioral structure of the interaction.

  20. Multivalued synchronization by Poincaré coupling

    Science.gov (United States)

    Ontañón-García, L. J.; Campos-Cantón, E.; Femat, R.; Campos-Cantón, I.; Bonilla-Marín, M.

    2013-10-01

    This work presents multivalued chaotic synchronization via coupling based on the Poincaré plane. The coupling is carried out by an underdamped signal, triggered every crossing event of the trajectory of the master system through a previously defined Poincaré plane. A master-slave system is explored, and the synchronization between the systems is detected via the auxiliary system approach and the maximum conditional Lyapunov exponent. Due to the response to specific conditions two phenomena may be obtained: univalued and multivalued synchronization. Since the Lyapunov exponent is not enough to detect these two phenomena, the distance between the pieces of trajectories of the slave and auxiliary systems with different initial conditions is also used as a tool for the detection of multivalued synchronization. Computer simulations using the benchmark chaotic systems of Lorenz and Rössler are used to exemplify the approach proposed.

  1. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications

    Science.gov (United States)

    Mishkin, Andrew; Lee, Young; Korth, David; LeBlanc, Troy

    2007-01-01

    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  2. On synchronized regions of discrete-time complex dynamical networks

    International Nuclear Information System (INIS)

    Duan Zhisheng; Chen Guanrong

    2011-01-01

    In this paper, the local synchronization of discrete-time complex networks is studied. First, it is shown that for any natural number n, there exists a discrete-time network which has at least left floor n/2 right floor +1 disconnected synchronized regions for local synchronization, which implies the possibility of intermittent synchronization behaviors. Different from the continuous-time networks, the existence of an unbounded synchronized region is impossible for discrete-time networks. The convexity of the synchronized regions is also characterized based on the stability of a class of matrix pencils, which is useful for enlarging the stability region so as to improve the network synchronizability.

  3. Usability of synchronization for cognitive modeling

    International Nuclear Information System (INIS)

    Diebner, Hans H.; Grond, Florian

    2005-01-01

    We discuss the synchronization features of a previously introduced adaptive system for dynamics recognition in more detail. We investigate the usability of synchronization for modeling and parameter estimations. It is pointed out inhowfar the adaptive system based on synchronization can become a powerful tool in modeling. The adaptive system can store modules of pre-adapted dynamics and is potentially capable of undergoing self-modification. We compare the stored modules with pre-knowledge that a modeler puts into his or her models. In this sense the adaptive system functions like an expert system

  4. The Moon Zoo citizen science project: Preliminary results for the Apollo 17 landing site

    OpenAIRE

    Bugiolacchi, Roberto; Bamford, Steven; Tar, Paul; Thacker, Neil; Crawford, Ian A.; Joy, Katherine H.; Grindrod, Peter M.; Lintott, Chris

    2016-01-01

    Moon Zoo is a citizen science project that utilises internet crowd-sourcing techniques. Moon Zoo users are asked to review high spatial resolution images from the Lunar Reconnaissance Orbiter Camera (LROC), onboard NASA’s LRO spacecraft, and perform characterisation such as measuring impact crater sizes and identify morphological ‘features of interest’. The tasks are designed to address issues in lunar science and to aid future exploration of the Moon. We have tested various methodologies and...

  5. Linearly and nonlinearly bidirectionally coupled synchronization of hyperchaotic systems

    International Nuclear Information System (INIS)

    Zhou Jin; Lu Junan; Wu Xiaoqun

    2007-01-01

    To date, there have been many results about unidirectionally coupled synchronization of chaotic systems. However, much less work is reported on bidirectionally-coupled synchronization. In this paper, we investigate the synchronization of two bidirectionally coupled Chen hyperchaotic systems, which are coupled linearly and nonlinearly respectively. Firstly, linearly coupled synchronization of two hyperchaotic Chen systems is investigated, and a theorem on how to choose the coupling coefficients are developed to guarantee the global asymptotical synchronization of two coupled hyperchaotic systems. Analysis shows that the choice of the coupling coefficients relies on the bound of the chaotic system. Secondly, the nonlinearly coupled synchronization is studied; a sufficient condition for the locally asymptotical synchronization is derived, which is independent of the bound of the hyperchaotic system. Finally, numerical simulations are included to verify the effectiveness and feasibility of the developed theorems

  6. Stroboscope Based Synchronization of Full Frame CCD Sensors

    Directory of Open Access Journals (Sweden)

    Liang Shen

    2017-04-01

    Full Text Available The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equipment, the proposed approach greatly reduces the cost by using inexpensive CCD cameras and one stroboscope. The results show that our method could reach a high accuracy much better than the frame-level synchronization of traditional software methods.

  7. 30 CFR 56.19008 - Friction hoist synchronizing mechanisms.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Friction hoist synchronizing mechanisms. 56... Personnel Hoisting Hoists § 56.19008 Friction hoist synchronizing mechanisms. Where creep or slip may alter the effective position of safety devices, friction hoists shall be equipped with synchronizing...

  8. The Gravitation of the Moon Plays Pivotal Roles in the Occurrence of the Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Ryotaro Wake

    2008-01-01

    Full Text Available Acute myocardial infarction (AMI is a social burden. However, being able to predict AMI could lead to prevention. A previous study showed only the relation between the lunar phase and the occurrence of AMI, but the period it takes for the moon to orbit around the earth and the period of the lunar phase differ. This study investigated the effect of the gravitation of the moon on AMI. Data was comprised of 1369 consecutive patients with first AMI at 5 hospitals from October, 1984 to December, 1997. The universal gravitation of the moon was calculated and compared to the earth onset time of AMI. Universal gravitation of the moon was derived by G*m/d2 (G: universal gravitation constant, m: the mass of the moon, d: the distance between the center of the moon and the center of the earth. The relationship between m/d2 and the cases of AMI was determined. There was an increase in cases, when there is a distance of more than 399864 km from the center of the earth to the center of the moon. The gravitation of more than 399864 km was determined to be weaker gravitation. It is confirmed that the number of AMI patients significantly increases at weaker gravitation periods in this multicenter trial. In conclusion, these results suggest that the gravitation of the moon may have an influence on the occurrence of AMI.

  9. [Synchronous sigmoideum- and caecum volvulus].

    Science.gov (United States)

    Berg, Anna Korsgaard; Perdawood, Sharaf Karim

    2015-09-21

    This case presents a synchronous sigmoid- and caecum volvulus in a 69-year old man with Parkinson's disease, hypertension and previous history of colonic volvulus. On admission the patient had abdominal pain, nausea, vomiting and constipation. The CT scan showed a sigmoid volvulus with a dilated caecum. The synchronous sigmoideum- and caecum volvulus was diagnosed intraoperatively. Total colectomy and ileostomy was performed.

  10. Can Plants Grow on Mars and the Moon: A Growth Experiment on Mars and Moon Soil Simulants

    NARCIS (Netherlands)

    Wamelink, G.W.W.; Frissel, J.Y.; Krijnen, W.H.J.; Verwoert, M.R.; Goedhart, P.W.

    2014-01-01

    When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars

  11. Integrated Oil spill detection and forecasting using MOON real time data

    OpenAIRE

    De Dominicis, M.; Pinardi, N.; Coppini, G.; Tonani, M.; Guarnieri, A.; Zodiatis, G.; Lardner, R.; Santoleri, R.

    2009-01-01

    MOON (Mediterranean Operational Oceanography Network) is an operational distributed system ready to provide quality controlled and timely marine observations (in situ and satellite) and environmental analyses and predictions for management of oil spill accidents. MOON operational systems are based upon the real time functioning of an integrated system composed of the Real Time Observing system, the regional, sub-regional and coastal forecasting systems and a products dissemination system. All...

  12. Origin of the Earth–Moon system

    Indian Academy of Sciences (India)

    However, during the course of time some incon- sistencies of the impact hypothesis have surfaced. It is not the ... At the same time, there are some important differences between the composition of the Earth and that of ... primitive carbonaceous chondrites but to a much lesser degree. At first glance, depletion of the Moon in ...

  13. Pinning Synchronization of Linear Complex Coupling Synchronous Generators Network of Hydroelectric Generating Set

    Directory of Open Access Journals (Sweden)

    Xuefei Wu

    2014-01-01

    Full Text Available A novel linear complex system for hydroturbine-generator sets in multimachine power systems is suggested in this paper and synchronization of the power-grid networks is studied. The advanced graph theory and stability theory are combined to solve the problem. Here we derive a sufficient condition under which the synchronous state of power-grid networks is stable in disturbance attenuation. Finally, numerical simulations are provided to illustrate the effectiveness of the results by the IEEE 39 bus system.

  14. Synchronization of two chaotic systems: Dynamic compensator approach

    International Nuclear Information System (INIS)

    Chen, C.-K.; Lai, T.-W.; Yan, J.-J.; Liao, T.-L.

    2009-01-01

    This study is concerned with the identical synchronization problem for a class of chaotic systems. A dynamic compensator is proposed to achieve the synchronization between master and slave chaotic systems using only the accessible output variables. A sufficient condition is also proposed to ensure the global synchronization. Furthermore, the strictly positive real (SPR) restriction, which is normally required in most of the observer-based synchronization schemes, is released in our approach. Two numerical examples are included to illustrate the proposed scheme.

  15. Emergent explosive synchronization in adaptive complex networks

    Science.gov (United States)

    Avalos-Gaytán, Vanesa; Almendral, Juan A.; Leyva, I.; Battiston, F.; Nicosia, V.; Latora, V.; Boccaletti, S.

    2018-04-01

    Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.

  16. Asian-American deaths near the Harvest Moon Festival.

    Science.gov (United States)

    Smith, Gary

    2004-01-01

    Reexamine the claim that elderly Chinese-American women are able to prolong their lives until after the celebration of the Harvest Moon Festival. See if independent 1985 to 2000 data for Chinese-, Korean-, and Vietnamese-Americans replicate results that were reported using 1960 to 1984 data for Chinese-Americans. The original 1960 to 1984 data do not support the death-postponement theory unless deaths that occur on the festival day are classified as having occurred after the festival. The new data do not support the theory, no matter how deaths on the festival day are classified. These data do not support the hypothesis that elderly Chinese-, Korean-, or Vietnamese-American women are able to prolong their lives until after the celebration of the Harvest Moon Festival.

  17. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used to...

  18. Galilean Moons, Kepler's Third Law, and the Mass of Jupiter

    Science.gov (United States)

    Bates, Alan

    2013-01-01

    Simulations of physical systems are widely available online, with no cost, and are ready to be used in our classrooms. Such simulations offer an accessible tool that can be used for a range of interactive learning activities. The Jovian Moons Apple allows the user to track the position of Jupiter's four Galilean moons with a variety of…

  19. Synchronization in slowly switching networks of coupled oscillators

    Science.gov (United States)

    Zhou, Jie; Zou, Yong; Guan, Shuguang; Liu, Zonghua; Boccaletti, S.

    2016-01-01

    Networks whose structure of connections evolves in time constitute a big challenge in the study of synchronization, in particular when the time scales for the evolution of the graph topology are comparable with (or even longer than) those pertinent to the units’ dynamics. We here focus on networks with a slow-switching structure, and show that the necessary conditions for synchronization, i.e. the conditions for which synchronization is locally stable, are determined by the time average of the largest Lyapunov exponents of transverse modes of the switching topologies. Comparison between fast- and slow-switching networks allows elucidating that slow-switching processes prompt synchronization in the cases where the Master Stability Function is concave, whereas fast-switching schemes facilitate synchronization for convex curves. Moreover, the condition of slow-switching enables the introduction of a control strategy for inducing synchronization in networks with arbitrary structure and coupling strength, which is of evident relevance for broad applications in real world systems. PMID:27779253

  20. Synchronized flow in oversaturated city traffic.

    Science.gov (United States)

    Kerner, Boris S; Klenov, Sergey L; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael

    2013-11-01

    Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. E 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.

  1. Main injector synchronous timing system

    International Nuclear Information System (INIS)

    Blokland, W.; Steimel, J.

    1998-01-01

    The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System. copyright 1998 American Institute of Physics

  2. Main injector synchronous timing system

    International Nuclear Information System (INIS)

    Blokland, Willem; Steimel, James

    1998-01-01

    The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System

  3. Fermi Timing and Synchronization System

    International Nuclear Information System (INIS)

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D'Auria, G.

    2006-01-01

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed

  4. Fermi Timing and Synchronization System

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D' Auria, G.

    2006-07-19

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.

  5. Synchronization in complex networks with adaptive coupling

    International Nuclear Information System (INIS)

    Zhang Rong; Hu Manfeng; Xu Zhenyuan

    2007-01-01

    Generally it is very difficult to realized synchronization for some complex networks. In order to synchronize, the coupling coefficient of networks has to be very large, especially when the number of coupled nodes is larger. In this Letter, we consider the problem of synchronization in complex networks with adaptive coupling. A new concept about asymptotic stability is presented, then we proved by using the well-known LaSalle invariance principle, that the state of such a complex network can synchronize an arbitrary assigned state of an isolated node of the network as long as the feedback gain is positive. Unified system is simulated as the nodes of adaptive coupling complex networks with different topologies

  6. Compositional evidence for an impact origin of the Moon's Procellarum basin

    Science.gov (United States)

    Nakamura, Ryosuke; Yamamoto, Satoru; Matsunaga, Tsuneo; Ishihara, Yoshiaki; Morota, Tomokatsu; Hiroi, Takahiro; Takeda, Hiroshi; Ogawa, Yoshiko; Yokota, Yasuhiro; Hirata, Naru; Ohtake, Makiko; Saiki, Kazuto

    2012-11-01

    The asymmetry between the nearside and farside of the Moon is evident in the distribution of mare basalt, crustal thickness and concentrations of radioactive elements, but its origin remains controversial. According to one attractive scenario, a gigantic impact early in the Moon's history produced the observed dichotomy; the putative 3,000-km-diameter Procellarum basin has been suggested to be a relic of this ancient impact. Low-calcium pyroxene can be formed during an impact by melting a mixture of crust and mantle materials or by excavating differentiated cumulates from the lunar magma ocean. Therefore, the association of low-calcium pyroxene with a lunar basin could indicate an impact origin. Here we use spectral mapping data from KAGUYA/SELENE (ref. ) to show that low-calcium pyroxene is concentrated around two established impact structures, the South Pole-Aitken and Imbrium basins. In addition, we detect a high concentration of low-calcium pyroxene at Procellarum, which supports an impact origin of the ancient basin. We propose that, in forming the largest known basin on the Moon, the impact excavated the nearside's primary feldspathic crust, which derived from the lunar magma ocean. A secondary feldspathic crust would have later recrystallized from the sea of impact melt, leading to two distinct sides of the Moon.

  7. Synchronization in Complex Networks of Nonlinear Dynamical Systems

    CERN Document Server

    Wu, Chai Wah

    2007-01-01

    This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ide

  8. Explosive synchronization transitions in complex neural networks

    Science.gov (United States)

    Chen, Hanshuang; He, Gang; Huang, Feng; Shen, Chuansheng; Hou, Zhonghuai

    2013-09-01

    It has been recently reported that explosive synchronization transitions can take place in networks of phase oscillators [Gómez-Gardeñes et al. Phys. Rev. Lett. 106, 128701 (2011)] and chaotic oscillators [Leyva et al. Phys. Rev. Lett. 108, 168702 (2012)]. Here, we investigate the effect of a microscopic correlation between the dynamics and the interacting topology of coupled FitzHugh-Nagumo oscillators on phase synchronization transition in Barabási-Albert (BA) scale-free networks and Erdös-Rényi (ER) random networks. We show that, if natural frequencies of the oscillations are positively correlated with node degrees and the width of the frequency distribution is larger than a threshold value, a strong hysteresis loop arises in the synchronization diagram of BA networks, indicating the evidence of an explosive transition towards synchronization of relaxation oscillators system. In contrast to the results in BA networks, in more homogeneous ER networks, the synchronization transition is always of continuous type regardless of the width of the frequency distribution. Moreover, we consider the effect of degree-mixing patterns on the nature of the synchronization transition, and find that the degree assortativity is unfavorable for the occurrence of such an explosive transition.

  9. Detection of a strongly negative surface potential at Saturn's moon Hyperion.

    Science.gov (United States)

    Nordheim, T A; Jones, G H; Roussos, E; Leisner, J S; Coates, A J; Kurth, W S; Khurana, K K; Krupp, N; Dougherty, M K; Waite, J H

    2014-10-28

    On 26 September 2005, Cassini conducted its only close targeted flyby of Saturn's small, irregularly shaped moon Hyperion. Approximately 6 min before the closest approach, the electron spectrometer (ELS), part of the Cassini Plasma Spectrometer (CAPS) detected a field-aligned electron population originating from the direction of the moon's surface. Plasma wave activity detected by the Radio and Plasma Wave instrument suggests electron beam activity. A dropout in energetic electrons was observed by both CAPS-ELS and the Magnetospheric Imaging Instrument Low-Energy Magnetospheric Measurement System, indicating that the moon and the spacecraft were magnetically connected when the field-aligned electron population was observed. We show that this constitutes a remote detection of a strongly negative (∼ -200 V) surface potential on Hyperion, consistent with the predicted surface potential in regions near the solar terminator.

  10. First Results at the Moon from the SMART-1 / AMIE Experiment

    Science.gov (United States)

    Josset, J. L.; Beauvivre, S.; AMIE Team

    2005-08-01

    The Advanced Moon micro-Imager Experiment (AMIE), on board ESA SMART-1, the first European mission to the Moon (launched on 27th September 2003), is an imaging system with scientific, technical and public outreach oriented objectives. The science objectives are to image the Lunar South Pole, permanent shadow areas (ice deposit), eternal light (crater rims), ancient Lunar Non-mare volcanism, local spectro-photometry and physical state of the lunar surface, and to map high latitudes regions (south) mainly at far side (South Pole Aitken basin). The technical objectives are to perform a laserlink experiment (detection of laser beam emitted by ESA/Tenerife ground station), flight demonstration of new technologies and on-board autonomy navigation. The public outreach and educational objectives are to promote planetary exploration. We present here the first results obtained during the cruise phase and at the Moon.

  11. Precession of the Earth-Moon System

    Science.gov (United States)

    Urbassek, Herbert M.

    2009-01-01

    The precession rate of the Earth-Moon system by the gravitational influence of the Sun is derived. Attention is focussed on a physically transparent but complete presentation accessible to first- or second-year physics students. Both a shortcut and a full analysis are given, which allows the inclusion of this material as an example of the physics…

  12. Modern mysteries of the Moon what we still don’t know about our lunar companion

    CERN Document Server

    Foster, Vincent S

    2016-01-01

    There are still many questions that remain about the Moon. From concentric craters to lunar swirls, water vapor and lunar reverberations on impact, Foster collects it all for a fascinating tour that will illuminate the backyard observer's understanding of this easily viewed, yet also imperfectly understood, celestial object. Data from Apollo and a flotilla of unmanned Moon orbiters, crashers, and landers have all contributed to our understanding of the Moon, but these mysteries linger despite decades of research. When Project Apollo brought back lunar rocks and soil samples, it opened a new chapter of understanding Earth's lone natural satellite, a process that continues to this day, as old results are revisited and new techniques are used on existing samples. Topics such as the origin, evolution, structure and composition of the Moon, however, are still under debate. Lunar research is still an active field of study. New technologies make it possible to continue to learn. But even so, the Moon continues to h...

  13. Synchronization Of Parallel Discrete Event Simulations

    Science.gov (United States)

    Steinman, Jeffrey S.

    1992-01-01

    Adaptive, parallel, discrete-event-simulation-synchronization algorithm, Breathing Time Buckets, developed in Synchronous Parallel Environment for Emulation and Discrete Event Simulation (SPEEDES) operating system. Algorithm allows parallel simulations to process events optimistically in fluctuating time cycles that naturally adapt while simulation in progress. Combines best of optimistic and conservative synchronization strategies while avoiding major disadvantages. Algorithm processes events optimistically in time cycles adapting while simulation in progress. Well suited for modeling communication networks, for large-scale war games, for simulated flights of aircraft, for simulations of computer equipment, for mathematical modeling, for interactive engineering simulations, and for depictions of flows of information.

  14. Permutation parity machines for neural synchronization

    International Nuclear Information System (INIS)

    Reyes, O M; Kopitzke, I; Zimmermann, K-H

    2009-01-01

    Synchronization of neural networks has been studied in recent years as an alternative to cryptographic applications such as the realization of symmetric key exchange protocols. This paper presents a first view of the so-called permutation parity machine, an artificial neural network proposed as a binary variant of the tree parity machine. The dynamics of the synchronization process by mutual learning between permutation parity machines is analytically studied and the results are compared with those of tree parity machines. It will turn out that for neural synchronization, permutation parity machines form a viable alternative to tree parity machines

  15. Post-Formation Sodium Loss on the Moon: A Bulk Estimate

    Science.gov (United States)

    Saxena, P.; Killen, R. M.; Airapetian, V.; Petro, N. E.; Mandell, A. M.

    2018-01-01

    The Moon and Earth are generally similar in terms of composition, but there exist variations in the abundance of certain elements among the two bodies. These differences are a likely consequence of differing physical evolution of the two bodies over the solar system's history. While previous works have assumed this may be due to conditions during the Moonâ€"TM"s formation, we explore the likelihood that the observed depletion in Sodium in lunar samples may be partially due to post-formation mechanisms. Solar effects, loss from a primordial atmosphere and impacts are some of the dominant post-formation mechanisms that we examine. We describe how our past and current modeling efforts indicate that a significant fraction of the observed depletion of sodium in lunar samples relative to a bulk silicate earth composition may have been due to solar activity, atmospheric loss and impacts. Using profiles of sodium abundances from lunar crustal samples may thus serve as a powerful tool towards exploring conditions on the Moon's surface throughout solar system history. Conditions on the Moon immediately after formation may still be recorded in the lunar crust and may provide a window towards interpreting observations from some of the first rocky exoplanets that will be most amenable to characterization. Potential spatial variation of sodium in the lunar crust may be a relevant consideration for future sample return efforts. Sodium Depletion in the Lunar Crust: Lunar

  16. International Observe the Moon Night: Providing Opportunities for the Public to Engage in Lunar Observation

    Science.gov (United States)

    Hsu, B. C.; Bleacher, L.; Day, B. H.; Daou, D.; Jones, A. P.; Mitchell, B.; Shaner, A. J.; Shipp, S. S.

    2010-12-01

    International Observe the Moon Night (InOMN) is designed to engage lunar science and education communities, our partner networks, amateur astronomers, space enthusiasts, and the general public in annual lunar observation campaigns that share the excitement of lunar science and exploration. InOMN enables the public to maintain its curiosity about the Moon and gain a better understanding of the Moon's formation, its evolution, and its place in the sky. For 2010, members of the public were encouraged to host their own InOMN events. InOMN hosts such as astronomy clubs, museums, schools, or other groups could find helpful resources and share information about InOMN events they organized on the InOMN website (http://observethemoonnight.org). Images, feedback, and lessons learned from the 2010 InOMN event will be shared in order to encourage increased planning and hosting of InOMN events in 2011. From various interpretations of the lunar “face,” early pictograms of the Moon’s phases, or to the use of the lunar cycle for festivals or harvests, the Moon has an undeniable influence on human civilization. We have chosen the 2011 InOMN theme to provide an opportunity for individuals to share their personal or cultural connections to the Moon. For 2011, the InOMN website will include a ‘lunar bulletin board’ where InOMN participants can post pictures and share stories of what the Moon means to them. The 2011 InOMN contest will encourage people to submit their works of art, poems, short stories, or music about the Moon all centered around the theme “What does the Moon mean to you?” As with the winners of previous contests, winning entries will be incorporated into the following year’s InOMN advertisements and events.

  17. An approach of parameter estimation for non-synchronous systems

    International Nuclear Information System (INIS)

    Xu Daolin; Lu Fangfang

    2005-01-01

    Synchronization-based parameter estimation is simple and effective but only available to synchronous systems. To come over this limitation, we propose a technique that the parameters of an unknown physical process (possibly a non-synchronous system) can be identified from a time series via a minimization procedure based on a synchronization control. The feasibility of this approach is illustrated in several chaotic systems

  18. MERI: an ultra-long-baseline Moon-Earth radio interferometer.

    Science.gov (United States)

    Burns, J. O.

    Radiofrequency aperture synthesis, pioneered by Ryle and his colleagues at Cambridge in the 1960's, has evolved to ever longer baselines and larger arrays in recent years. The limiting resolution at a given frequency for modern ground-based very-long-baseline interferometry is simply determined by the physical diameter of the Earth. A second-generation, totally space-based VLB network was proposed recently by a group at the Naval Research Laboratory. The next logical extension of space-based VLBI would be a station or stations on the Moon. The Moon could serve as an outpost or even the primary correlator station for an extended array of space-based antennas.

  19. Development of a synchronous subset of AADL

    DEFF Research Database (Denmark)

    Filali, Mamoun; Lawall, Julia

    2010-01-01

    We study the definition and the mapping of an AADL subset: the so called synchronous subset. We show that the data port protocol used for delayed and immediate connections between periodic threads can be interpreted in a  synchronous way. In this paper, we formalize this interpretation and study ...... the development of its mapping such that the original synchronous semantics is preserved. For that purpose, we use refinements through the Event B method....

  20. Method for Converter Synchronization with RF Injection

    OpenAIRE

    Joshua P. Bruckmeyer; Ivica Kostanic

    2015-01-01

    This paper presents an injection method for synchronizing analog to digital converters (ADC). This approach can eliminate the need for precision routed discrete synchronization signals of current technologies, such as JESD204. By eliminating the setup and hold time requirements at the conversion (or near conversion) clock rate, higher sample rate systems can be synchronized. Measured data from an existing multiple ADC conversion system was used to evaluate the method. Coherent beams were simu...

  1. Complete switched modified function projective synchronization of a ...

    Indian Academy of Sciences (India)

    This paper extends previous work, where CSMFPS of chaotic systems means that all the state variables of the drive system synchronize with different state variables of the response system. As the synchronization scheme has many combined forms, it is a promising type of synchronization and can provide greater security in ...

  2. Logistics and operations implications of manual control of spacecraft docking maneuvers

    Science.gov (United States)

    Brody, Adam R.; Ellis, Stephen R.

    1991-01-01

    The implications of logistics and operations on the manual control of spacecraft docking are discussed. The results of simulation studies to investigate fuel and time cost tradeoffs are reviewed and discussed. Comparisons of acceleration control and pulse control are presented to evaluate the effects of astronauts being instructed to use pulse mode for fuel conservation. The applications of the findings to moon and Mars missions are addressed.

  3. Synchronous-flux-generator (SFG)

    Energy Technology Data Exchange (ETDEWEB)

    Zweygbergk, S.V.; Ljungstroem, O. (ed.)

    1976-01-01

    The synchronous machine is the most common rotating electric machine for producing electric energy in a large scale, but it is also used for other purposes. One well known everyday example is its use as driving motor in the electric synchronous clock. One has in this connection made full use of one of the main qualities of this kind of machine--its rotating speed is bound to the frequency of the feeding voltage, either if it is working as a motor or as a generator. Characteristics are discussed.

  4. Pulse Synchronization System (PSS)

    International Nuclear Information System (INIS)

    1977-06-01

    This document is intended to serve as an operations manual, as well as a documentation of the backup analyses pertinent to the design as delivered. A history of earlier unsuccessful versions of the Pulse Synchronization System (PSS) is not included. The function of the PSS is to synchronize the time of arrival at the fusion target of laser pulses that are propagated through the 20 amplifier chains of the SHIVA laser. The positional accuracy requirement is +-1.5 mm (+-5 psec), and is obtained by the PSS with a wide margin factor

  5. The Electrostatic Environments of Mars and the Moon

    Science.gov (United States)

    Calle, Carlos I.

    2011-01-01

    The electrical activity present in the environment near the surfaces of Mars and the moon has very different origins and presents a challenge to manned and robotic planetary exploration missions. Mars is covered with a layer of dust that has been redistributed throughout the entire planet by global dust storms. Dust, levitated by these storms as well as by the frequent dust devils, is expected to be electrostatically charged due to the multiple grain collisions in the dust-laden atmosphere. Dust covering the surface of the moon is expected to be electrostatically charged due to the solar wind, cosmic rays, and the solar radiation itself through the photoelectric effect. Electrostatically charged dust has a large tendency to adhere to surfaces. NASA's Mars exploration rovers have shown that atmospheric dust falling on solar panels can decrease their efficiency to the point of rendering the rover unusable. And as the Apollo missions to the moon showed, lunar dust adhesion can hinder manned and unmanned lunar exploration activities. Taking advantage of the electrical activity on both planetary system bodies, dust removal technologies are now being developed that use electrostatic and dielectrophoretic forces to produce controlled dust motion. This paper presents a short review of the theoretical and semiempirical models that have been developed for the lunar and Martian electrical environments.

  6. The electrostatic environments of Mars and the Moon

    International Nuclear Information System (INIS)

    Calle, C I

    2011-01-01

    The electrical activity present in the environment near the surfaces of Mars and the moon has very different origins and presents a challenge to manned and robotic planetary exploration missions. Mars is covered with a layer of dust that has been redistributed throughout the entire planet by global dust storms. Dust, levitated by these storms as well as by the frequent dust devils, is expected to be electrostatically charged due to the multiple grain collisions in the dust-laden atmosphere. Dust covering the surface of the moon is expected to be electrostatically charged due to the solar wind, cosmic rays, and the solar radiation itself through the photoelectric effect. Electrostatically charged dust has a large tendency to adhere to surfaces. NASA's Mars exploration rovers have shown that atmospheric dust falling on solar panels can decrease their efficiency to the point of rendering the rover unusable. And as the Apollo missions to the moon showed, lunar dust adhesion can hinder manned and unmanned lunar exploration activities. Taking advantage of the electrical activity on both planetary system bodies, dust removal technologies are now being developed that use electrostatic and dielectrophoretic forces to produce controlled dust motion. This paper presents a short review of the theoretical and semiempirical models that have been developed for the lunar and Martian electrical environments.

  7. Identical synchronization of coupled Rossler systems

    DEFF Research Database (Denmark)

    Yanchuk, S.; Maistrenko, Y.; Mosekilde, Erik

    1999-01-01

    Analyzing the transverse stability of low periodic orbits embedded in the synchronized chaotic state for a system of two coupled Rössler oscillators, we obtain the conditions for synchronization and determine the coupling parameters for which riddled basins of attraction may arise. It is shown how...

  8. Synchronization of oscillators in complex networks

    Indian Academy of Sciences (India)

    Abstract. Theory of identical or complete synchronization of identical oscillators in arbitrary networks is introduced. In addition, several graph theory concepts and results that augment the synchronization theory and a tie in closely to random, semirandom, and regular networks are introduced. Combined theories are used to ...

  9. Synchronization of oscillators in complex networks

    Indian Academy of Sciences (India)

    Theory of identical or complete synchronization of identical oscillators in arbitrary networks is introduced. In addition, several graph theory concepts and results that augment the synchronization theory and a tie in closely to random, semirandom, and regular networks are introduced. Combined theories are used to explore ...

  10. Are children like werewolves? Full moon and its association with sleep and activity behaviors in an international sample of children

    Directory of Open Access Journals (Sweden)

    Jean-Philippe eChaput

    2016-03-01

    Full Text Available In order to verify if the full moon is associated with sleep and activity behaviors, we used a 12-country study providing 33710 24-hour accelerometer recordings of sleep and activity. The present observational, cross-sectional study included 5812 children ages 9-11 years from study sites that represented all inhabited continents and wide ranges of human development (Australia, Brazil, Canada, China, Colombia, Finland, India, Kenya, Portugal, South Africa, United Kingdom and United States. Three moon phases were used in this analysis: full moon (±4 days; reference, half moon (±5-9 days and new moon (±10-14 days from nearest full moon. Nocturnal sleep duration, moderate-to-vigorous physical activity (MVPA, light-intensity physical activity (LPA and total sedentary time (SED were monitored over 7 consecutive days using a waist-worn accelerometer worn 24 hours a day. Only sleep duration was found to significantly differ between moon phases (~5 min per night shorter during full moon compared to new moon. Differences in MVPA, LPA and SED between moon phases were negligible and non-significant (<2 min per day difference. There was no difference in the associations between study sites. In conclusion, sleep duration was 1% shorter at full moon compared to new moon while activity behaviors were not significantly associated with the lunar cycle in this global sample of children. Whether this seemingly minimal difference is clinically meaningful is questionable.

  11. An International Parallax Campaign to Measure Distance to the Moon and Mars

    Science.gov (United States)

    Cenadelli, D.; Zeni, M.; Bernagozzi, A.; Calcidese, P.; Ferreira, L.; Hoang, C.; Rijsdijk, C.

    2009-01-01

    Trigonometric parallax is a powerful method to work out the distance of celestial bodies, and it was used in the past to measure the distance of the Moon, Venus, Mars and nearby stars. We set up an observation campaign for high school and undergraduate students with the purpose to measure both the Moon's and Mars' parallax. To have a large enough…

  12. Moving Stimuli Facilitate Synchronization But Not Temporal Perception.

    Science.gov (United States)

    Silva, Susana; Castro, São Luís

    2016-01-01

    Recent studies have shown that a moving visual stimulus (e.g., a bouncing ball) facilitates synchronization compared to a static stimulus (e.g., a flashing light), and that it can even be as effective as an auditory beep. We asked a group of participants to perform different tasks with four stimulus types: beeps, siren-like sounds, visual flashes (static) and bouncing balls. First, participants performed synchronization with isochronous sequences (stimulus-guided synchronization), followed by a continuation phase in which the stimulus was internally generated (imagery-guided synchronization). Then they performed a perception task, in which they judged whether the final part of a temporal sequence was compatible with the previous beat structure (stimulus-guided perception). Similar to synchronization, an imagery-guided variant was added, in which sequences contained a gap in between (imagery-guided perception). Balls outperformed flashes and matched beeps (powerful ball effect) in stimulus-guided synchronization but not in perception (stimulus- or imagery-guided). In imagery-guided synchronization, performance accuracy decreased for beeps and balls, but not for flashes and sirens. Our findings suggest that the advantages of moving visual stimuli over static ones are grounded in action rather than perception, and they support the hypothesis that the sensorimotor coupling mechanisms for auditory (beeps) and moving visual stimuli (bouncing balls) overlap.

  13. Farside explorer : Unique science from a mission to the farside of the moon

    NARCIS (Netherlands)

    Mimoun, D.; Wieczorek, M.A.; Gurvits, L.

    2012-01-01

    Farside Explorer is a proposed Cosmic Vision medium-size mission to the farside of theMoon consisting of two landers and an instrumented relay satellite. The farside of the Moon is a unique scientific platform in that it is shielded from terrestrial radio-frequency interference, it recorded the

  14. Adaptive synchronization of Rossler system with uncertain parameters

    International Nuclear Information System (INIS)

    Park, Ju H.

    2005-01-01

    This article addresses control for the chaos synchronization of Rossler systems with three uncertain parameters. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two identical Rossler systems asymptotically synchronized. A numerical simulations is presented to show the effectiveness of the proposed chaos synchronization scheme

  15. Does synchronization reflect a true interaction in the cardiorespiratory system?

    Science.gov (United States)

    Toledo, E; Akselrod, S; Pinhas, I; Aravot, D

    2002-01-01

    Cardiorespiratory synchronization, studied within the framework of phase synchronization, has recently raised interest as one of the interactions in the cardiorespiratory system. In this work, we present a quantitative approach to the analysis of this nonlinear phenomenon. Our primary aim is to determine whether synchronization between HR and respiration rate is a real phenomenon or a random one. First, we developed an algorithm, which detects epochs of synchronization automatically and objectively. The algorithm was applied to recordings of respiration and HR obtained from 13 normal subjects and 13 heart transplant patients. Surrogate data sets were constructed from the original recordings, specifically lacking the coupling between HR and respiration. The statistical properties of synchronization in the two data sets and in their surrogates were compared. Synchronization was observed in all groups: in normal subjects, in the heart transplant patients and in the surrogates. Interestingly, synchronization was less abundant in normal subjects than in the transplant patients, indicating that the unique physiological condition of the latter promote cardiorespiratory synchronization. The duration of synchronization epochs was significantly shorter in the surrogate data of both data sets, suggesting that at least some of the synchronization epochs are real. In view of those results, cardiorespiratory synchronization, although not a major feature of cardiorespiratory interaction, seems to be a real phenomenon rather than an artifact.

  16. Mars-Moons Exploration, Reconnaissance and Landed Investigation (MERLIN)

    Science.gov (United States)

    Murchie, S. L.; Chabot, N. L.; Buczkowski, D.; Arvidson, R. E.; Castillo, J. C.; Peplowski, P. N.; Ernst, C. M.; Rivkin, A.; Eng, D.; Chmielewski, A. B.; Maki, J.; trebi-Ollenu, A.; Ehlmann, B. L.; Spence, H. E.; Horanyi, M.; Klingelhoefer, G.; Christian, J. A.

    2015-12-01

    The Mars-Moons Exploration, Reconnaissance and Landed Investigation (MERLIN) is a NASA Discovery mission proposal to explore the moons of Mars. Previous Mars-focused spacecraft have raised fundamental questions about Mars' moons: What are their origins and compositions? Why do the moons resemble primitive outer solar system D-type objects? How do geologic processes modify their surfaces? MERLIN answers these questions through a combination of orbital and landed measurements, beginning with reconnaissance of Deimos and investigation of the hypothesized Martian dust belts. Orbital reconnaissance of Phobos occurs, followed by low flyovers to characterize a landing site. MERLIN lands on Phobos, conducting a 90-day investigation. Radiation measurements are acquired throughout all mission phases. Phobos' size and mass provide a low-risk landing environment: controlled descent is so slow that the landing is rehearsed, but gravity is high enough that surface operations do not require anchoring. Existing imaging of Phobos reveals low regional slope regions suitable for landing, and provides knowledge for planning orbital and landed investigations. The payload leverages past NASA investments. Orbital imaging is accomplished by a dual multispectral/high-resolution imager rebuilt from MESSENGER/MDIS. Mars' dust environment is measured by the refurbished engineering model of LADEE/LDEX, and the radiation environment by the flight spare of LRO/CRaTER. The landed workspace is characterized by a color stereo imager updated from MER/HazCam. MERLIN's arm deploys landed instrumentation using proven designs from MER, Phoenix, and MSL. Elemental measurements are acquired by a modified version of Rosetta/APXS, and an uncooled gamma-ray spectrometer. Mineralogical measurements are acquired by a microscopic imaging spectrometer developed under MatISSE. MERLIN delivers seminal science traceable to NASA's Strategic Goals and Objectives, Science Plan, and the Decadal Survey. MERLIN's science

  17. Anti-synchronization between different chaotic complex systems

    International Nuclear Information System (INIS)

    Liu Ping; Liu Shutang

    2011-01-01

    Many studies on the anti-synchronization of nonlinear real dynamic systems have been carried out, whereas the anti-synchronization of chaotic complex systems has not been studied extensively. In this work, the anti-synchronization between a new chaotic complex system and a complex Lorenz system and that between a new chaotic complex system and a complex Lue system were separately investigated by active control and nonlinear control methods, and explicit expressions were derived for the controllers that are used to achieve the anti-synchronization of chaotic complex systems. These expressions were tested numerically and excellent agreement was found. Concerning the new chaotic complex system, we discuss its dynamical properties including dissipation, chaotic behavior, fixed points, and their stability and invariance.

  18. Synchronization of low- and high-threshold motor units.

    Science.gov (United States)

    Defreitas, Jason M; Beck, Travis W; Ye, Xin; Stock, Matt S

    2014-04-01

    We examined the degree of synchronization for both low- and high-threshold motor unit (MU) pairs at high force levels. MU spike trains were recorded from the quadriceps during high-force isometric leg extensions. Short-term synchronization (between -6 and 6 ms) was calculated for every unique MU pair for each contraction. At high force levels, earlier recruited motor unit pairs (low-threshold) demonstrated relatively low levels of short-term synchronization (approximately 7.3% extra firings than would have been expected by chance). However, the magnitude of synchronization increased significantly and linearly with mean recruitment threshold (reaching 22.1% extra firings for motor unit pairs recruited above 70% MVC). Three potential mechanisms that could explain the observed differences in synchronization across motor unit types are proposed and discussed. Copyright © 2013 Wiley Periodicals, Inc.

  19. The synchronization of three fractional differential systems

    International Nuclear Information System (INIS)

    Li Changpin; Yan Jianping

    2007-01-01

    In this paper, a new method is proposed and applied to the synchronization of fractional differential systems (or 'differential systems with fractional orders'), where both drive and response systems have the same dimensionality and are coupled by the driving signal. The present technique is based on the stability criterion of linear fractional systems. This method is implemented in (chaos) synchronization of the fractional Lorenz system, Chen system and Chua circuit. Numerical simulations show the present synchronization method works well

  20. Synchronizing a class of uncertain chaotic systems

    International Nuclear Information System (INIS)

    Chen Maoyin; Zhou Donghua; Shang Yun

    2005-01-01

    This Letter deals with the synchronization of a class of uncertain chaotic systems in the drive-response framework. A robust adaptive observer based response system is designed to synchronize a given chaotic system with unknown parameters and external disturbances. Lyapunov stability ensures the global synchronization between the drive and response systems even if Lipschitz constants on function matrices and bounds on uncertainties are unknown. Numerical simulation of Genesio-Tesi system verifies the effectiveness of this scheme

  1. Synchronization and emergence in complex systems

    Indian Academy of Sciences (India)

    ... complex systems. Fatihcan M Atay. Synchronization, Coupled Systems and Networks Volume 77 Issue 5 November 2011 pp 855-863 ... We show how novel behaviour can emerge in complex systems at the global level through synchronization of the activities of their constituent units. Two mechanisms are suggested for ...

  2. Humor Appreciation Involves Parametric and Synchronized Activity in the Medial Prefrontal Cortex and Hippocampus.

    Science.gov (United States)

    Iidaka, Tetsuya

    2017-12-01

    Humor perception is a ubiquitous phenomenon in human societies. In theories of humor perception, three factors, non-seriousness, social context, and incongruity, have been implicated in humor. In another theory, however, elaboration and reinterpretation of contexts are considered to play a role in eliciting humor. Although the neural correlates of humor appreciation have been investigated using neuroimaging methods, only a few studies have conducted such experiments under natural conditions. In the present study, two functional magnetic resonance imaging experiments, using a comedy movie as a stimulus, were conducted to investigate the neural correlates of humor under natural conditions. The subjects' brain activity was measured while watching and enjoying a movie. In experiment 1, a parametric analysis showed that the medial prefrontal cortex (MPFC) and hippocampus/amygdala had a positive relationship with the subjective rating of funniness. In experiment 2, intersubject correlation was analyzed to investigate synchronized activity across all participants. Signal synchronization that paralleled increased funniness ratings was observed in the MPFC and hippocampus. Thus, it appears that both parametric and synchronized activity in the MPFC and hippocampus are important during humor appreciation. The present study has revealed the brain regions that are predominantly involved in humor sensation under natural condition. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Time Synchronization and Distribution Mechanisms for Space Networks

    Science.gov (United States)

    Woo, Simon S.; Gao, Jay L.; Clare, Loren P.; Mills, David L.

    2011-01-01

    This work discusses research on the problems of synchronizing and distributing time information between spacecraft based on the Network Time Protocol (NTP), where NTP is a standard time synchronization protocol widely used in the terrestrial network. The Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol was designed and developed for synchronizing spacecraft that are in proximity where proximity is less than 100,000 km distant. A particular application is synchronization between a Mars orbiter and rover. Lunar scenarios as well as outer-planet deep space mother-ship-probe missions may also apply. Spacecraft with more accurate time information functions as a time-server, and the other spacecraft functions as a time-client. PITS can be easily integrated and adaptable to the CCSDS Proximity-1 Space Link Protocol with minor modifications. In particular, PITS can take advantage of the timestamping strategy that underlying link layer functionality provides for accurate time offset calculation. The PITS algorithm achieves time synchronization with eight consecutive space network time packet exchanges between two spacecraft. PITS can detect and avoid possible errors from receiving duplicate and out-of-order packets by comparing with the current state variables and timestamps. Further, PITS is able to detect error events and autonomously recover from unexpected events that can possibly occur during the time synchronization and distribution process. This capability achieves an additional level of protocol protection on top of CRC or Error Correction Codes. PITS is a lightweight and efficient protocol, eliminating the needs for explicit frame sequence number and long buffer storage. The PITS protocol is capable of providing time synchronization and distribution services for a more general domain where multiple entities need to achieve time synchronization using a single point-to-point link.

  4. Design of a new type synchronous focusing mechanism

    Science.gov (United States)

    Zhang, Jintao; Tan, Ruijun; Chen, Zhou; Zhang, Yongqi; Fu, Panlong; Qu, Yachen

    2018-05-01

    Aiming at the dual channel telescopic imaging system composed of infrared imaging system, low-light-level imaging system and image fusion module, In the fusion of low-light-level images and infrared images, it is obvious that using clear source images is easier to obtain high definition fused images. When the target is imaged at 15m to infinity, focusing is needed to ensure the imaging quality of the dual channel imaging system; therefore, a new type of synchronous focusing mechanism is designed. The synchronous focusing mechanism realizes the focusing function through the synchronous translational imaging devices, mainly including the structure of the screw rod nut, the shaft hole coordination structure and the spring steel ball eliminating clearance structure, etc. Starting from the synchronous focusing function of two imaging devices, the structure characteristics of the synchronous focusing mechanism are introduced in detail, and the focusing range is analyzed. The experimental results show that the synchronous focusing mechanism has the advantages of ingenious design, high focusing accuracy and stable and reliable operation.

  5. Short-term capture of the Earth-Moon system

    Science.gov (United States)

    Qi, Yi; de Ruiter, Anton

    2018-06-01

    In this paper, the short-term capture (STC) of an asteroid in the Earth-Moon system is proposed and investigated. First, the space condition of STC is analysed and five subsets of the feasible region are defined and discussed. Then, the time condition of STC is studied by parameter scanning in the Sun-Earth-Moon-asteroid restricted four-body problem. Numerical results indicate that there is a clear association between the distributions of the time probability of STC and the five subsets. Next, the influence of the Jacobi constant on STC is examined using the space and time probabilities of STC. Combining the space and time probabilities of STC, we propose a STC index to evaluate the probability of STC comprehensively. Finally, three potential STC asteroids are found and analysed.

  6. The design of the MOONS-VLT spectrometer

    NARCIS (Netherlands)

    Oliva, E.; Diolaiti, E.; Garilli, B.; Gratton, R.; Lorenzetti, D.; Schipani, P.; Scuderi, S.; Vanzella, E.; Cirasuolo, M.; Afonso, J.; Bender, R.; Bonifacio, P.; Kaper, L.; Vanzi, L.; Baffa, C.; Bianco, A.; Bonoli, C.; Bortoletto, F.; Bruno, P.; Carbonaro, L.; Centrone, M.; Cresci, G.; De Caprio, V.; Del Vecchio, C.; Di Marcantonio, P.; Di Paola, A.; D'Alessio, F.; D'Alessandro, M.; D'Orsi, S.; Falcini, G.; Ferruzzi, D.; Fontana, A.; Foppiani, I.; Fumana, M.; Giani, E.; Leone, F.; Li Causi, G.; Lombini, M.; Maiolino, R.; Mannucci, F.; Marty, L.; Miglietta, L.; Munari, M.; Navarro, R.; Origlia, L.; Paioro, L.; Pedichini, F.; Pragt, J.; Randich, S.; Scodeggio, M.; Spano, P.; Speziali, R.; Stuik, R.; Tozzi, A.; Vitali, F.

    2012-01-01

    MOONS is a new conceptual design for a multi-object spectrograph for the ESO Very Large Telescope (VLT) which will provide the ESO astronomical community with a powerful, unique instrument able to serve a wide range of Galactic, Extragalactic and Cosmological studies. The instrument foresees 1000

  7. Stennis engineer part of LCROSS moon mission

    Science.gov (United States)

    2009-01-01

    Karma Snyder, a project manager at NASA's John C. Stennis Space Center, was a senior design engineer on the RL10 liquid rocket engine that powered the Centaur, the upper stage of the rocket used in NASA's Lunar CRater Observation and Sensing Satellite (LCROSS) mission in October 2009. Part of the LCROSS mission was to search for water on the moon by striking the lunar surface with a rocket stage, creating a plume of debris that could be analyzed for water ice and vapor. Snyder's work on the RL10 took place from 1995 to 2001 when she was a senior design engineer with Pratt & Whitney Rocketdyne. Years later, she sees the project as one of her biggest accomplishments in light of the LCROSS mission. 'It's wonderful to see it come into full service,' she said. 'As one of my co-workers said, the original dream was to get that engine to the moon, and we're finally realizing that dream.'

  8. Transmission delays in hardware clock synchronization

    Science.gov (United States)

    Shin, Kang G.; Ramanathan, P.

    1988-01-01

    Various methods, both with software and hardware, have been proposed to synchronize a set of physical clocks in a system. Software methods are very flexible and economical but suffer an excessive time overhead, whereas hardware methods require no time overhead but are unable to handle transmission delays in clock signals. The effects of nonzero transmission delays in synchronization have been studied extensively in the communication area in the absence of malicious or Byzantine faults. The authors show that it is easy to incorporate the ideas from the communication area into the existing hardware clock synchronization algorithms to take into account the presence of both malicious faults and nonzero transmission delays.

  9. Synchronization of two coupled turbulent fires

    Science.gov (United States)

    Takagi, Kazushi; Gotoda, Hiroshi; Miyano, Takaya; Murayama, Shogo; Tokuda, Isao T.

    2018-04-01

    We numerically study the scale-free nature of a buoyancy-induced turbulent fire and synchronization of two coupled turbulent fires. A scale-free structure is detected in weighted networks between vortices, while its lifetime obeys a clear power law, indicating intermittent appearances, disappearances, and reappearances of the scale-free property. A significant decrease in the distance between the two fire sources gives rise to a synchronized state in the near field dominated by the unstable motion of large-scale of transverse vortex rings. The synchronized state vanishes in the far field forming well-developed turbulent plumes, regardless of the distance between the two fire sources.

  10. Chaos synchronization between two different chaotic dynamical systems

    International Nuclear Information System (INIS)

    Park, Ju H.

    2006-01-01

    This work presents chaos synchronization between two different chaotic systems by nonlinear control laws. First, synchronization problem between Genesio system and Rossler system has been investigated, and then the similar approach is applied to the synchronization problem between Genesio system and a new chaotic system developed recently in the literature. The control performances are verified by two numerical examples

  11. Chaos synchronization in autonomous chaotic system via hybrid feedback control

    International Nuclear Information System (INIS)

    Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng; Chang Yingxiang

    2009-01-01

    This paper presents the synchronization of chaos by designing united controller. First, this method is implemented in synchronization of a simple system, then we realize the synchronization of Lue hyperchaotic system, we also take tracking control to realize the synchronization of Lue hyperchaotic system. Comparing with results, we can find that hybrid feedback control approach is more effective than tracking control for hyperchaotic system. Numerical simulations show the united synchronization method works well.

  12. Evolution of the earliest mantle caused by the magmatism-mantle upwelling feedback: Implications for the Moon and the Earth

    Science.gov (United States)

    Ogawa, M.

    2017-12-01

    The two most important agents that cause mantle evolution are magmatism and mantle convection. My earlier 2D numerical models of a coupled magmatism-mantle convection system show that these two agents strongly couple each other, when the Rayleigh number Ra is sufficiently high: magmatism induced by a mantle upwelling flow boosts the upwelling flow itself. The mantle convection enhanced by this positive feedback (the magmatism-mantle upwelling, or MMU, feedback) causes vigorous magmatism and, at the same time, strongly stirs the mantle. I explored how the MMU feedback influences the evolution of the earliest mantle that contains the magma ocean, based on a numerical model where the mantle is hot and its topmost 1/3 is partially molten at the beginning of the calculation: The evolution drastically changes its style, as Ra exceeds the threshold for onset of the MMU feedback, around 107. At Ra 107, however, the mantle remains compositionally more homogeneous in spite of the widespread magmatism, and the deep mantle remains hotter than the shallow mantle, because of the strong convective stirring caused by the feedback. The threshold value suggests that the mantle of a planet larger than Mars evolves in a way substantially different from that in the Moon does. Indeed, in my earlier models, magmatism makes the early mantle compositionally stratified in the Moon, but the effects of strong convective stirring overwhelms that of magmatism to keep the mantle compositionally rather homogeneous in Venus and the Earth. The MMU feedback is likely to be a key to understanding why vestiges of the magma ocean are so scarce in the Earth.

  13. Synchronous GISTs associated with multiple sporadic tumors: a case report

    Directory of Open Access Journals (Sweden)

    Danila Comandini

    2017-08-01

    Full Text Available Gastrointestinal stromal tumors (GISTs are rare neoplasms, but they also represent the most common mesenchymal tumors of the gastrointestinal tract originating from the cell of Cajal. GIST incidence ranges around 1% of all gastrointestinal malignancies. Approximately 5% of all GISTs have a hereditary etiology. The remaining 95% of GISTs are considered sporadic events, with up to 75% of cases driven by a constitutional activation of the c-KIT proto-oncogene. GISTs are generally solitary lesions. Nonetheless, multiple sporadic GISTs can occur and present as synchronous or metachronous tumors, usually associated with familial GIST. Here, we report a case of primary prostate and lung tumors associated with gastric and small bowel GISTs, unrelated to any known hereditary syndrome. Also, in the case we describe, the prostatic tumor came before the GISTs, while the lung tumor occurred later in time and led to pulmonary lobectomy plus lymphoadenectomy, with a diagnosis of nonsmall cell lung cancer. With the exception of a slight difference in lymphoid infiltration, the abdominal and gastric GIST nodules shared the same proliferative MIB1 index and mitotic count. However, the genetic analysis revealed that the gastric GIST and abdominal tumors were characterized by two different c-KIT mutations. This molecular heterogeneity supported the hypothesis of two different synchronous GISTs arising from stomach and ileum. At present, the patient is disease free and has already completed the third year of adjuvant therapy with imatinib. This case supports the importance of the analysis of c-KIT mutational status to distinguish metastases from synchronous multicentric GISTs, with relevant implications in therapeutic decisions, as well as the importance of a dedicated multidisciplinary team and of a radiological follow-up after the diagnosis of a primary GIST, to discover a relapse of the GIST or, possibly, additional malignancies.

  14. Exploration of the Moon:Chandrayaan1 and Chandrayaan-2

    Science.gov (United States)

    Goswami, J. N.

    The Indian mission to Moon, Chandrayaan-1, has discovered signatures of water (H2O) molecule and hydroxyl (OH) on surface layers of exposed lunar surface (rocks and soils) that is more prominent near the cooler lunar polar regions. Several new and some unexpected results obtained in this mission are:(i)Possible presence of water and carbon-di-oxide molecules in the tenuous lunar atmosphere, an unexpected result, (ii)Sub-surface ice in permanently shadowed crater in the polar region confirming previous indication from the Clementine mission,(iii)Detection of reflected solar wind component as well as presence of solar wind on night side, unexpected new results, (iv)localized mini-magnetosphere, confirmation of earlier result using a new improved approach,(v)Presence of “refractory” rock-types not identified earlier (also reported by “Kaguya” mission), (vi)Elemental (Mg, Al, Si, Ca and Fe) composition of several areas of lunar surface by X-ray fluorescence technique, a new result,(vii)Three dimensional high resolution map of the lunar surface revealing new features,(viii)Radiation environment in the earth-moon and lunar space, and (ix) High energy X-ray continuum background on moon due to cosmic ray interactions with lunar surface. These results coupled with those obtained by Kaguya (Japan) and LRO and LCROSS (USA) missions have revealed a new face of the moon. The Chandrayaan-2 mission, that will have a Orbiter-Lander-Rover configuration, will carry close to a dozen payloads. The instruments on the Orbiter will extend studies conducted by Chandrayyan-1 mission with higher sensitivity. This will be supplemented by in-depth investigations of lunar surface properties in the polar region using several instruments in the lander and the rover. The present status of the mission and expected scientific results will be presented.

  15. Time Optimal Synchronization Procedure and Associated Feedback Loops

    CERN Document Server

    Angoletta, Maria Elena; CERN. Geneva. ATS Department

    2016-01-01

    A procedure to increase the speed of currently used synchronization loops in a synchrotron by an order of magnitude is presented. Beams dynamics constraint imposes an upper limit on excursions in stable phase angle, and the procedure presented exploits this limit to arrive in the synchronized state from an arbitrary initial state in the fastest possible way. Detailed corrector design for beam phase loop, differential frequency loop and final synchronization loop is also presented. Finally, an overview of the synchronization methods currently deployed in some other CERN’s machines is provided, together with a brief comparison with the newly proposed time-optimal algorithm.

  16. Remote synchronization reveals network symmetries and functional modules.

    Science.gov (United States)

    Nicosia, Vincenzo; Valencia, Miguel; Chavez, Mario; Díaz-Guilera, Albert; Latora, Vito

    2013-04-26

    We study a Kuramoto model in which the oscillators are associated with the nodes of a complex network and the interactions include a phase frustration, thus preventing full synchronization. The system organizes into a regime of remote synchronization where pairs of nodes with the same network symmetry are fully synchronized, despite their distance on the graph. We provide analytical arguments to explain this result, and we show how the frustration parameter affects the distribution of phases. An application to brain networks suggests that anatomical symmetry plays a role in neural synchronization by determining correlated functional modules across distant locations.

  17. Output synchronization of chaotic systems under nonvanishing perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Mancilla, Didier [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de los Lagos, Universidad de Guadalajara (CULagos-UdeG), Enrique Diaz de Leon s/n, 47460 Lagos de Moreno, Jal. (Mexico)], E-mail: didier@uabc.mx; Cruz-Hernandez, Cesar [Electronics and Telecommunications Department, Scientific Research and Advanced Studies of Ensenada (CICESE), Km. 107, Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico)], E-mail: ccruz@cicese.mx

    2008-08-15

    In this paper, an analysis for chaos synchronization under nonvanishing perturbations is presented. In particular, we use model-matching approach from nonlinear control theory for output synchronization of identical and nonidentical chaotic systems under nonvanishing perturbations in a master-slave configuration. We show that the proposed approach is indeed suitable to synchronize a class of perturbed slaves with a chaotic master system; that is the synchronization error trajectories remain bounded if the perturbations satisfy some conditions. In order to illustrate this robustness synchronization property, we present two cases of study: (i) for identical systems, a pair of coupled Roessler systems, the first like a master and the other like a perturbed slave, and (ii) for nonidentical systems, a Chua's circuit driving a Roessler/slave system with a perturbed control law, in both cases a quantitative analysis on the perturbation is included.

  18. Output synchronization of chaotic systems under nonvanishing perturbations

    International Nuclear Information System (INIS)

    Lopez-Mancilla, Didier; Cruz-Hernandez, Cesar

    2008-01-01

    In this paper, an analysis for chaos synchronization under nonvanishing perturbations is presented. In particular, we use model-matching approach from nonlinear control theory for output synchronization of identical and nonidentical chaotic systems under nonvanishing perturbations in a master-slave configuration. We show that the proposed approach is indeed suitable to synchronize a class of perturbed slaves with a chaotic master system; that is the synchronization error trajectories remain bounded if the perturbations satisfy some conditions. In order to illustrate this robustness synchronization property, we present two cases of study: (i) for identical systems, a pair of coupled Roessler systems, the first like a master and the other like a perturbed slave, and (ii) for nonidentical systems, a Chua's circuit driving a Roessler/slave system with a perturbed control law, in both cases a quantitative analysis on the perturbation is included

  19. Global synchronization algorithms for the Intel iPSC/860

    Science.gov (United States)

    Seidel, Steven R.; Davis, Mark A.

    1992-01-01

    In a distributed memory multicomputer that has no global clock, global processor synchronization can only be achieved through software. Global synchronization algorithms are used in tridiagonal systems solvers, CFD codes, sequence comparison algorithms, and sorting algorithms. They are also useful for event simulation, debugging, and for solving mutual exclusion problems. For the Intel iPSC/860 in particular, global synchronization can be used to ensure the most effective use of the communication network for operations such as the shift, where each processor in a one-dimensional array or ring concurrently sends a message to its right (or left) neighbor. Three global synchronization algorithms are considered for the iPSC/860: the gysnc() primitive provided by Intel, the PICL primitive sync0(), and a new recursive doubling synchronization (RDS) algorithm. The performance of these algorithms is compared to the performance predicted by communication models of both the long and forced message protocols. Measurements of the cost of shift operations preceded by global synchronization show that the RDS algorithm always synchronizes the nodes more precisely and costs only slightly more than the other two algorithms.

  20. Efficient synchronization of structurally adaptive coupled Hindmarsh-Rose neurons

    International Nuclear Information System (INIS)

    Moujahid, A.; D'Anjou, A.; Torrealdea, F.J.; Torrealdea, F.

    2011-01-01

    Highlights: → Neural activity might be constrained by a requirement of energy efficiency. → Signaling in synchrony is a normal way to propagate information between neurons. → Quality of synchrony affects the capacity to exchange information and the energy cost. → Adaptive mechanism leads to high degree of synchronization between nonidentical neurons. - Abstract: The use of spikes to carry information between brain areas implies complete or partial synchronization of the neurons involved. The degree of synchronization reached by two coupled systems and the energy cost of maintaining their synchronized behavior is highly dependent on the nature of the systems. For non-identical systems the maintenance of a synchronized regime is energetically a costly process. In this work, we study conditions under which two non-identical electrically coupled neurons can reach an efficient regime of synchronization at low energy cost. We show that the energy consumption required to keep the synchronized regime can be spontaneously reduced if the receiving neuron has adaptive mechanisms able to bring its biological parameters closer in value to the corresponding ones in the sending neuron.