WorldWideScience

Sample records for synaptonemal complex protein

  1. Identification and characterization of synaptonemal complex proteins of the rat

    NARCIS (Netherlands)

    Offenberg, H.H.

    1993-01-01

    Synaptonemal complexes (SCs) are structures that are formed between homologous chromosomes during meiotic prophase. They undergo a series of morphological alterations which closely correlate with the successive rearrangements of meiotic prophase chromatin, namely chromosome condensation,

  2. SCP2, a major protein component of the axial elements of synaptonemal complexes

    NARCIS (Netherlands)

    Schalk, J.A.C.

    1999-01-01

    Synaptonemal complexes (SCs) are ladderlike protein structures, which are formed between homologous chromosomes during the prophase of the first meiotic division. SCs consist of two axial elements, one along each chromosome, and transverse filaments (TFs), which connect the axial elements.

  3. Hydra meiosis reveals unexpected conservation of structural synaptonemal complex proteins across metazoans

    Science.gov (United States)

    Fraune, Johanna; Alsheimer, Manfred; Volff, Jean-Nicolas; Busch, Karoline; Fraune, Sebastian; Bosch, Thomas C. G.; Benavente, Ricardo

    2012-01-01

    The synaptonemal complex (SC) is a key structure of meiosis, mediating the stable pairing (synapsis) of homologous chromosomes during prophase I. Its remarkable tripartite structure is evolutionarily well conserved and can be found in almost all sexually reproducing organisms. However, comparison of the different SC protein components in the common meiosis model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealed no sequence homology. This discrepancy challenged the hypothesis that the SC arose only once in evolution. To pursue this matter we focused on the evolution of SYCP1 and SYCP3, the two major structural SC proteins of mammals. Remarkably, our comparative bioinformatic and expression studies revealed that SYCP1 and SYCP3 are also components of the SC in the basal metazoan Hydra. In contrast to previous assumptions, we therefore conclude that SYCP1 and SYCP3 form monophyletic groups of orthologous proteins across metazoans. PMID:23012415

  4. The Mr 30,000-33,000 major protein components of the lateral elements of synaptonemal complexes of the rat

    NARCIS (Netherlands)

    Lammers, H.

    1999-01-01

    Synaptonemal complexes (SCs) are intranuclear structures which are formed during meiotic prophase between homologous chromosomes. The SC consists of two protein-rich axes, either of which is found at the basis of one of the homologous chromosomes. These axes, called lateral elements (LEs),

  5. SCP1, a major protein component of synaptonemal complexes of the rat

    NARCIS (Netherlands)

    Meuwissen, R.L.J.

    1997-01-01

    Synaptonemal complexes (SCs) are structures that are formed between homologous chromosomes during meiotic prophase. SCs consist of two proteinaceous axes, one along each homologue, that are connected along their length by numerous transverse filaments (TFs). The assembly and disassembly of

  6. Meiosis in mice without a synaptonemal complex.

    Directory of Open Access Journals (Sweden)

    Anna Kouznetsova

    Full Text Available The synaptonemal complex (SC promotes fusion of the homologous chromosomes (synapsis and crossover recombination events during meiosis. The SC displays an extensive structural conservation between species; however, a few organisms lack SC and execute meiotic process in a SC-independent manner. To clarify the SC function in mammals, we have generated a mutant mouse strain (Sycp1(-/-Sycp3(-/-, here called SC-null in which all known SC proteins have been displaced from meiotic chromosomes. While transmission electron microscopy failed to identify any remnants of the SC in SC-null spermatocytes, neither formation of the cohesion axes nor attachment of the chromosomes to the nuclear membrane was perturbed. Furthermore, the meiotic chromosomes in SC-null meiocytes achieved pre-synaptic pairing, underwent early homologous recombination events and sustained a residual crossover formation. In contrast, in SC-null meiocytes synapsis and MLH1-MLH3-dependent crossovers maturation were abolished, whereas the structural integrity of chromosomes was drastically impaired. The variable consequences that SC inactivation has on the meiotic process in different organisms, together with the absence of SC in some unrelated species, imply that the SC could have originated independently in different taxonomic groups.

  7. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis.

    Directory of Open Access Journals (Sweden)

    Yong-Hyun Shin

    2010-11-01

    Full Text Available Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell-specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1(-/ (- testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1(-/ (- testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with γH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1(-/ (- ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1(-/ (- oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing.

  8. Structure and composition of synaptonemal complexes, isolated from rat spermatocytes

    NARCIS (Netherlands)

    Heyting, C.; Dietrich, A. J.; Redeker, E. J.; Vink, A. C.

    1985-01-01

    Synaptonemal complexes (SCs) (structures involved in chromosome pairing during meiosis) were isolated and purified from rat spermatocytes for the purpose of biochemical and morphological analysis. Spermatocytes were lysed in a medium, containing Triton X-100, EDTA and DTT; the resulting swollen

  9. Human synaptonemal complex protein 1 (SCP1): Isolation and characterization of the cDNA and chromosomal localization of the gene

    Energy Technology Data Exchange (ETDEWEB)

    Meuwissen, R.L.J.; Meerts, I.; Heyting, C. [Agricultural Univ., Wageningen (Netherlands)] [and others

    1997-02-01

    Synaptonemal complexes (SCs) are structures that are formed between homologous chromosomes (homologs) during meiotic prophase. They consist of two proteinaceous axes, one along each homolog, that are connected along their length by numerous transverse filaments (TFs). The cDNA encoding one major component of TFs of SCs of the rat, rnSCP1, has recently been isolated and characterized. In this paper we describe the isolation and characterization of the cDNA encoding the human protein homologous to rnSCP1, hsSCP1. hsSCP1 and rnSCP1 have 75% amino acid identity. The most prominent structural features and amino acid sequence motifs of rnSCP1 have been conserved in hsSCP1. Most probably, hsSCP1 is functionally homologous to rnSCP1. The hsSCP1 gene was assigned to human chromosome 1p12-p13 by fluorescence in situ hybridization. 44 refs., 4 figs.

  10. DNA damage response clamp 9-1-1 promotes assembly of ZMM proteins for formation of crossovers and synaptonemal complex

    Science.gov (United States)

    Shinohara, Miki; Hayashihara, Kayoko; Grubb, Jennifer T.; Bishop, Douglas K.; Shinohara, Akira

    2015-01-01

    Formation of crossovers between homologous chromosomes during meiosis is positively regulated by the ZMM proteins (also known as SIC proteins). DNA damage checkpoint proteins also promote efficient formation of interhomolog crossovers. Here, we examined, in budding yeast, the meiotic role of the heterotrimeric DNA damage response clamp composed of Rad17, Ddc1 and Mec3 (known as ‘9-1-1’ in other organisms) and a component of the clamp loader, Rad24 (known as Rad17 in other organisms). Cytological analysis indicated that the 9-1-1 clamp and its loader are not required for the chromosomal loading of RecA homologs Rad51 or Dmc1, but are necessary for the efficient loading of ZMM proteins. Interestingly, the loading of ZMM proteins onto meiotic chromosomes was independent of the checkpoint kinase Mec1 (the homolog of ATR) as well as Rad51. Furthermore, the ZMM member Zip3 (also known as Cst9) bound to the 9-1-1 complex in a cell-free system. These data suggest that, in addition to promoting interhomolog bias mediated by Rad51–Dmc1, the 9-1-1 clamp promotes crossover formation through a specific role in the assembly of ZMM proteins. Thus, the 9-1-1 complex functions to promote two crucial meiotic recombination processes, the regulation of interhomolog recombination and crossover formation mediated by ZMM. PMID:25736290

  11. Synaptonemal Complex Length Variation in Wild-Type Male Mice

    Directory of Open Access Journals (Sweden)

    Neil M. Vranis

    2010-12-01

    Full Text Available Meiosis yields haploid gametes following two successive divisions of a germ cell in the absence of intervening DNA replication. Balanced segregation of homologous chromosomes in Meiosis I is aided by a proteinaceous structure, the synaptonemal complex (SC. The objective of this study was to determine total average autosomal SC lengths in spermatocytes in three commonly used mouse strains (129S4/SvJae, C57BL/6J, and BALB/c. Our experiments revealed that the total autosomal SC length in BALB/c spermatocytes is 9% shorter than in the two other strains. Shorter SCs are also observed in spermatocytes of (BALB/c × 129S4/SvJae and (C57BL/6J × BALB/c F1 hybrids suggesting a genetic basis of SC length regulation. Along these lines, we studied expression of a selected group of genes implicated in meiotic chromosome architecture. We found that BALB/c testes express up to 6-fold less of Rec8 mRNA and 4-fold less of REC8 protein. These results suggest that the mechanism that defines the SC length operates via a REC8‑dependent process. Finally, our results demonstrate that genetic background can have an effect on meiotic studies in mice.

  12. Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1B and SMC3

    NARCIS (Netherlands)

    Eijpe, M.; Offenberg, H.H.; Jessberger, R.; Revenkova, E.; Heyting, C.

    2003-01-01

    In meiotic prophase, the sister chromatids of each chromosome develop a common axial element (AE) that is integrated into the synaptonemal complex (SC). We analyzed the incorporation of sister chromatid cohesion proteins (cohesins) and other AE components into AEs. Meiotic cohesin REC8 appeared

  13. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair.

    Directory of Open Access Journals (Sweden)

    Ewelina Bolcun-Filas

    2009-02-01

    Full Text Available In mammals, the synaptonemal complex is a structure required to complete crossover recombination. Although suggested by cytological work, in vivo links between the structural proteins of the synaptonemal complex and the proteins of the recombination process have not previously been made. The central element of the synaptonemal complex is traversed by DNA at sites of recombination and presents a logical place to look for interactions between these components. There are four known central element proteins, three of which have previously been mutated. Here, we complete the set by creating a null mutation in the Syce1 gene in mouse. The resulting disruption of synapsis in these animals has allowed us to demonstrate a biochemical interaction between the structural protein SYCE2 and the repair protein RAD51. In normal meiosis, this interaction may be responsible for promoting homologous synapsis from sites of recombination.

  14. The diverse roles of transverse filaments of synaptonemal complexes in meiosis

    NARCIS (Netherlands)

    Boer, de E.; Heyting, C.

    2006-01-01

    In most eukaryotes, homologous chromosomes (homologs) are closely apposed during the prophase of the first meiotic division by a ladderlike proteinaceous structure, the synaptonemal complex (SC) [Fawcett, J Biophys Biochem Cytol 2:403-406, 1956; Moses, J Biophys Biochem Cytol 2:215-218, 1956]. SCs

  15. The synaptonemal complex of basal metazoan hydra: more similarities to vertebrate than invertebrate meiosis model organisms.

    Science.gov (United States)

    Fraune, Johanna; Wiesner, Miriam; Benavente, Ricardo

    2014-03-20

    The synaptonemal complex (SC) is an evolutionarily well-conserved structure that mediates chromosome synapsis during prophase of the first meiotic division. Although its structure is conserved, the characterized protein components in the current metazoan meiosis model systems (Drosophila melanogaster, Caenorhabditis elegans, and Mus musculus) show no sequence homology, challenging the question of a single evolutionary origin of the SC. However, our recent studies revealed the monophyletic origin of the mammalian SC protein components. Many of them being ancient in Metazoa and already present in the cnidarian Hydra. Remarkably, a comparison between different model systems disclosed a great similarity between the SC components of Hydra and mammals while the proteins of the ecdysozoan systems (D. melanogaster and C. elegans) differ significantly. In this review, we introduce the basal-branching metazoan species Hydra as a potential novel invertebrate model system for meiosis research and particularly for the investigation of SC evolution, function and assembly. Also, available methods for SC research in Hydra are summarized. Copyright © 2014. Published by Elsevier Ltd.

  16. HTP-1 coordinates synaptonemal complex assembly with homolog alignment during meiosis in C. elegans.

    Science.gov (United States)

    Couteau, Florence; Zetka, Monique

    2005-11-15

    During meiosis, the mechanisms responsible for homolog alignment, synapsis, and recombination are precisely coordinated to culminate in the formation of crossovers capable of directing accurate chromosome segregation. An outstanding question is how the cell ensures that the structural hallmark of meiosis, the synaptonemal complex (SC), forms only between aligned pairs of homologous chromosomes. In the present study, we find that two closely related members of the him-3 gene family in Caenorhabditis elegans function as regulators of synapsis. HTP-1 functionally couples homolog alignment to its stabilization by synapsis by preventing the association of SC components with unaligned and immature chromosome axes; in the absence of the protein, nonhomologous contacts between chromosomes are inappropriately stabilized, resulting in extensive nonhomologous synapsis and a drastic decline in chiasma formation. In the absence of both HTP-1 and HTP-2, synapsis is abrogated per se and the early association of SC components with chromosomes observed in htp-1 mutants does not occur, suggesting a function for the proteins in licensing SC assembly. Furthermore, our results suggest that early steps of recombination occur in a narrow window of opportunity in early prophase that ends with SC assembly, resulting in a mechanistic coupling of the two processes to promote crossing over.

  17. Meiotic recombination modulates the structure and dynamics of the synaptonemal complex during C. elegans meiosis.

    Directory of Open Access Journals (Sweden)

    Divya Pattabiraman

    2017-03-01

    Full Text Available During meiotic prophase, a structure called the synaptonemal complex (SC assembles at the interface between aligned pairs of homologous chromosomes, and crossover recombination events occur between their DNA molecules. Here we investigate the inter-relationships between these two hallmark features of the meiotic program in the nematode C. elegans, revealing dynamic properties of the SC that are modulated by recombination. We demonstrate that the SC incorporates new subunits and switches from a more highly dynamic/labile state to a more stable state as germ cells progress through the pachytene stage of meiotic prophase. We further show that the more dynamic state of the SC is prolonged in mutants where meiotic recombination is impaired. Moreover, in meiotic mutants where recombination intermediates are present in limiting numbers, SC central region subunits become preferentially stabilized on the subset of chromosome pairs that harbor a site where pro-crossover factors COSA-1 and MutSγ are concentrated. Polo-like kinase PLK-2 becomes preferentially localized to the SCs of chromosome pairs harboring recombination sites prior to the enrichment of SC central region proteins on such chromosomes, and PLK-2 is required for this enrichment to occur. Further, late pachytene nuclei in a plk-2 mutant exhibit the more highly dynamic SC state. Together our data demonstrate that crossover recombination events elicit chromosome-autonomous stabilizing effects on the SC and implicate PLK-2 in this process. We discuss how this recombination-triggered modulation of SC state might contribute to regulatory mechanisms that operate during meiosis to ensure the formation of crossovers while at the same time limiting their numbers.

  18. Holding it together: rapid evolution and positive selection in the synaptonemal complex of Drosophila.

    Science.gov (United States)

    Hemmer, Lucas W; Blumenstiel, Justin P

    2016-05-05

    The synaptonemal complex (SC) is a highly conserved meiotic structure that functions to pair homologs and facilitate meiotic recombination in most eukaryotes. Five Drosophila SC proteins have been identified and localized within the complex: C(3)G, C(2)M, CONA, ORD, and the newly identified Corolla. The SC is required for meiotic recombination in Drosophila and absence of these proteins leads to reduced crossing over and chromosomal nondisjunction. Despite the conserved nature of the SC and the key role that these five proteins have in meiosis in D. melanogaster, they display little apparent sequence conservation outside the genus. To identify factors that explain this lack of apparent conservation, we performed a molecular evolutionary analysis of these genes across the Drosophila genus. For the five SC components, gene sequence similarity declines rapidly with increasing phylogenetic distance and only ORD and C(2)M are identifiable outside of the Drosophila genus. SC gene sequences have a higher dN/dS (ω) rate ratio than the genome wide average and this can in part be explained by the action of positive selection in almost every SC component. Across the genus, there is significant variation in ω for each protein. It further appears that ω estimates for the five SC components are in accordance with their physical position within the SC. Components interacting with chromatin evolve slowest and components comprising the central elements evolve the most rapidly. Finally, using population genetic approaches, we demonstrate that positive selection on SC components is ongoing. SC components within Drosophila show little apparent sequence homology to those identified in other model organisms due to their rapid evolution. We propose that the Drosophila SC is evolving rapidly due to two combined effects. First, we propose that a high rate of evolution can be partly explained by low purifying selection on protein components whose function is to simply hold chromosomes

  19. Synaptonemal Complex Components Are Required for Meiotic Checkpoint Function in Caenorhabditis elegans

    Science.gov (United States)

    Bohr, Tisha; Ashley, Guinevere; Eggleston, Evan; Firestone, Kyra; Bhalla, Needhi

    2016-01-01

    Synapsis involves the assembly of a proteinaceous structure, the synaptonemal complex (SC), between paired homologous chromosomes, and is essential for proper meiotic chromosome segregation. In Caenorhabditis elegans, the synapsis checkpoint selectively removes nuclei with unsynapsed chromosomes by inducing apoptosis. This checkpoint depends on pairing centers (PCs), cis-acting sites that promote pairing and synapsis. We have hypothesized that the stability of homolog pairing at PCs is monitored by this checkpoint. Here, we report that SC components SYP-3, HTP-3, HIM-3, and HTP-1 are required for a functional synapsis checkpoint. Mutation of these components does not abolish PC function, demonstrating they are bona fide checkpoint components. Further, we identify mutant backgrounds in which the instability of homolog pairing at PCs does not correlate with the synapsis checkpoint response. Altogether, these data suggest that, in addition to homolog pairing, SC assembly may be monitored by the synapsis checkpoint. PMID:27605049

  20. The width of the lateral element of the synaptonemal complex is determined by a multilayered organization of its components

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Rosario, E-mail: r_oh@ciencias.unam.mx [Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 04510, México (Mexico); Kouznetsova, Anna, E-mail: Anna.Kouznetsova@ki.se [Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm (Sweden); Echeverría-Martínez, Olga M., E-mail: omem@ciencias.unam.mx [Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 04510, México (Mexico); Vázquez-Nin, Gerardo H., E-mail: vazqueznin@ciencias.unam.mx [Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 04510, México (Mexico); Hernández-Hernández, Abrahan, E-mail: abrahan.hernandez@ki.se [Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm (Sweden)

    2016-05-15

    The synaptonemal complex (SC) is a proteinaceous structure that holds the homologous chromosomes in close proximity while they exchange genetic material in a process known as meiotic recombination. This meiotic recombination leads to genetic variability in sexually reproducing organisms. The ultrastructure of the SC is studied by electron microscopy and it is observed as a tripartite structure. Two lateral elements (LE) separated by a central region (CR) confer its classical tripartite organization. The LEs are the anchoring platform for the replicated homologous chromosomes to properly exchange genetic material with one another. An accurate assembly of the LE is indispensable for the proper completion of meiosis. Ultrastructural studies suggested that the LE is organized as a multilayered unit. However, no validation of this model has been previously provided. In this ultrastructural study, by using mice with different genetic backgrounds that affect the LE width, we provide further evidence that support a multilayered organization of the LE. Additionally, we provide data suggesting additional roles of the different cohesin complex components in the structure of the LEs of the SC. - Highlights: • The lateral element of the synaptonemal complex is a multilayered structure. • The width of the lateral element in synaptonemal complex-null mice is different. • Two cohesin complex cores plus one axial element form a wild-type lateral element. • The layers of the lateral element can be analyzed in different null mice models.

  1. Sex-specific differences in the synaptonemal complex in the genus Oreochromis (Cichlidae).

    Science.gov (United States)

    Campos-Ramos, Rafael; Harvey, Simon C; Penman, David J

    2009-04-01

    Total synaptonemal complex (SC) lengths were estimated from Oreochromis aureus Steindachner (which has a WZ/ZZ sex determination system), O. mossambicus Peters and O. niloticus L. (both of which have XX/XY sex determination systems). The total SC length in oocytes was greater than that in spermatocytes in all three species (194 +/- 30 microm and 134 +/- 13 microm, 187 +/- 22 microm and 127 +/- 17 microm, 193 +/- 37 microm and 144 +/- 19 microm, respectively). These sex-specific differences did not appear to be influenced by the type of sex determination system (the female/male total SC length ratio was 1.45 in O. aureus, 1.47 in O. mossambicus and 1.34 in O. niloticus) and do not correlate with the lack of any overall sex-specific length differences in the current Oreochromis linkage map. Although based on data from relatively few species, there appears to be no consistent relationship between sex-specific SC lengths and linkage map lengths in fish. Neomale (hormonally masculinized genetic female) O. aureus and O. mossambicus had total SC lengths of 138 +/- 13 microm and 146 +/- 13 microm respectively, more similar to normal males than to normal females. These findings agree with data from other vertebrate species that suggest that phenotypic sex, rather than genotype, determines traits such as total SC length, chiasmata position and recombination pattern, at least for the autosomes.

  2. Analysis of chromosome rearrangements on the basis of synaptonemal complexes in the offspring of mice exposed to γ-rays

    International Nuclear Information System (INIS)

    Kalikinskaya, E.I.; Bogdanov, Yu.F.; Kolomiets, O.L.; Shevchenko, V.A.

    1986-01-01

    Electron-microscopic analysis of synaptonemic complexes (SC), spread on the hypophase surface, was conducted to investigate chromosome rearrangements in sterile and semisterile F 1 malemause offsprings, exposed to 5 Gy γ-rays Paralelly Chromosome rearrangement account in diakinesis-metaphase 1 was conducted using light microscope, in the same animals. During SC analysis in pachytene chromosome rearrangements were found in 63% of spermatocytes. Under chromosome analysis in diakinesis-metaphase 1 in the same animals chromosome rearrangements were found only in 32% of cells. SC analysis allows one to reveal chromosome rearrangements, which can not be revealed in diakinesis-metaphase 1

  3. A yeast two-hybrid screen for SYP-3 interactors identifies SYP-4, a component required for synaptonemal complex assembly and chiasma formation in Caenorhabditis elegans meiosis.

    Directory of Open Access Journals (Sweden)

    Sarit Smolikov

    2009-10-01

    Full Text Available The proper assembly of the synaptonemal complex (SC between homologs is critical to ensure accurate meiotic chromosome segregation. The SC is a meiotic tripartite structure present from yeast to humans, comprised of proteins assembled along the axes of the chromosomes and central region (CR proteins that bridge the two chromosome axes. Here we identify SYP-4 as a novel structural component of the SC in Caenorhabditis elegans. SYP-4 interacts in a yeast two-hybrid assay with SYP-3, one of components of the CR of the SC, and is localized at the interface between homologs during meiosis. SYP-4 is essential for the localization of SYP-1, SYP-2, and SYP-3 CR proteins onto chromosomes, thereby playing a crucial role in the stabilization of pairing interactions between homologous chromosomes. In the absence of SYP-4, the levels of recombination intermediates, as indicated by RAD-51 foci, are elevated in mid-prophase nuclei, and crossover recombination events are significantly reduced. The lack of chiasmata observed in syp-4 mutants supports the elevated levels of chromosome nondisjunction manifested in high embryonic lethality. Altogether our findings place SYP-4 as a central player in SC formation and broaden our understanding of the structure of the SC and its assembly.

  4. Stage-specific damage to synaptonemal complexes and metaphase chromosomes induced by X rays in male mouse germ cells

    International Nuclear Information System (INIS)

    Backer, L.C.; Sontag, M.R.; Allen, J.W.

    1991-01-01

    Synaptonemal complexes (SCs) reveal mutagen-induced effects in germ cell meiotic chromosomes. The study was aimed at characterizing relationships between SC and metaphase I chromosome damage following radiation exposure at various stages of spermatogenesis. Male mice were irradiated with doses of 0, 2, or 4 Gy, and spermatocytes were harvested at times consistent with earlier exposures as spermatogonial stem cells, preleptotene cells (premeiotic DNA synthesis), or meiotic prophase cells. After stem-cell exposure, twice as many rearrangements were observed in SCs as in metaphase I chromosomes. Irradiation during premeiotic DNA synthesis resulted in dose-related increases in SC breakage and rearrangements (including novel forms) and in metaphase chromosomal aberrations. Following prophase exposure, various types and levels of SC and metaphase damage were observed. Irradiation of zygotene cells led to high frequencies of chromosome multivalents in metaphase I without a correspondingly high level of damage in preceding prophase SCs. Thus, irradiation of premeiotic and meiotic cells results in variable relationships between SC and metaphase chromosome damage

  5. [IMMUNOCYTOCHEMICAL ANALYSIS OF THE DISTURBANCES IN THE STRUCTURE OF SYNAPTONEMAL COMPLEXES IN SPERMATOCYTE NUCLEI IN MICE UNDER EXPOSURE TO ROCKET FUEL COMPONENT].

    Science.gov (United States)

    Lovinskaya, A V; Kolumbayeva, S Zh; Abilev, S K; Kolomiets, O L

    2016-01-01

    There was performed an assessment of genotoxic effects of rocket fuel component--unsymmetrical dimethylhydrazine (UDMH, heptyl)--on forming germ cells of male mice. Immunocytochemically there was studied the structure of meiotic nuclei at different times after the intraperitoneal administration of UDMH to male mice. There were revealed following types of disturbances of the structure of synaptonemal complexes (SCs) of meiotic chromosomes: single and multiple fragments of SCs associations of autosomes with a sex bivalent, atypical structure of the SCs with a frequency higher than the reference level. In addition, there were found the premature desinapsis of sex bivalents, the disorder offormation of the genital corpuscle and ring SCs. Established disorders in SCs of spermatocytes, analyzed at 38th day after the 10-days intoxication of animal by the component of rocket fuel, attest to the risk of permanent persistence of chromosomal abnormalities occurring in the pool of stem cells.

  6. Humic acid protein complexation

    Science.gov (United States)

    Tan, W. F.; Koopal, L. K.; Weng, L. P.; van Riemsdijk, W. H.; Norde, W.

    2008-04-01

    Interactions of purified Aldrich humic acid (PAHA) with lysozyme (LSZ) are investigated. In solution LSZ is moderately positively and PAHA negatively charged at the investigated pH values. The proton binding of PAHA and of LSZ is determined by potentiometric proton titrations at various KCl concentrations. It is also measured for two mixtures of PAHA-LSZ and compared with theoretically calculated proton binding assuming no mutual interaction. The charge adaptation due to PAHA-LSZ interaction is relatively small and only significant at low and high pH. Next to the proton binding, the mass ratio PAHA/LSZ at the iso-electric point (IEP) of the complex at given solution conditions is measured together with the pH using the Mütek particle charge detector. From the pH changes the charge adaptation due to the interaction can be found. Also these measurements show that the net charge adaptation is weak for PAHA-LSZ complexes at their IEP. PAHA/LSZ mass ratios in the complexes at the IEP are measured at pH 5 and 7. At pH 5 and 50 mmol/L KCl the charge of the complex is compensated for 30-40% by K +; at pH 7, where LSZ has a rather low positive charge, this is 45-55%. At pH 5 and 5 mmol/L KCl the PAHA/LSZ mass ratio at the IEP of the complex depends on the order of addition. When LSZ is added to PAHA about 25% K + is included in the complex, but no K + is incorporated when PAHA is added to LSZ. The flocculation behavior of the complexes is also different. After LSZ addition to PAHA slow precipitation occurs (6-24 h) in the IEP, but after addition of PAHA to LSZ no precipitation can be seen after 12 h. Clearly, PAHA/LSZ complexation and the colloidal stability of PAHA-LSZ aggregates depend on the order of addition. Some implications of the observed behavior are discussed.

  7. Modeling complexes of modeled proteins.

    Science.gov (United States)

    Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A

    2017-03-01

    Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C α RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. The evolutionary history of the mammalian synaptonemal complex

    OpenAIRE

    Fraune, Johanna

    2014-01-01

    Der Synaptonemalkomplex (SC) ist eine hochkonservierte Proteinstruktur. Er weist eine dreiteili-ge, leiterähnliche Organisation auf und ist für die stabile Paarung der homologen Chromosomen während der Prophase der ersten meiotischen Teilung verantwortlich, die auch als Synpase be-zeichnet wird. Fehler während der Synpase führen zu Aneuploidie oder Apoptose der sich entwi-ckelnden Keimzellen. Seit 1956 ist der SC Gegenstand intensiver Forschung. Seine Existenz wurde in zahlreichen Orga-nis...

  9. Designing microcapsules based on protein fibrils and protein - polysaccharide complexes

    NARCIS (Netherlands)

    Hua, K.N.P.

    2012-01-01

    Keywords: encapsulation, microcapsule, protein, fibril, protein-polysaccharide complex, controlled release, interfacial rheology, lysozyme, ovalbumin This thesis describes the design of encapsulation systems using mesostructures from proteins and polysaccharides. The approach was to first

  10. Designing microcapsules based on protein fibrils and protein - polysaccharide complexes

    NARCIS (Netherlands)

    Hua, K.N.P.

    2012-01-01

    Keywords: encapsulation, microcapsule, protein, fibril, protein-polysaccharide complex, controlled release, interfacial rheology, lysozyme, ovalbumin

    This thesis describes the design of encapsulation systems using mesostructures from proteins and polysaccharides. The approach

  11. Structural Studies of Protein-Surfactant Complexes

    International Nuclear Information System (INIS)

    Chodankar, S. N.; Aswal, V. K.; Wagh, A. G.

    2008-01-01

    The structure of protein-surfactant complexes of two proteins bovine serum albumin (BSA) and lysozyme in presence of anionic surfactant sodium dodecyl sulfate (SDS) has been studied using small-angle neutron scattering (SANS). It is observed that these two proteins form different complex structures with the surfactant. While BSA protein undergoes unfolding on addition of surfactant, lysozyme does not show any unfolding even up to very high surfactant concentrations. The unfolding of BSA protein is caused by micelle-like aggregation of surfactant molecules in the complex. On the other hand, for lysozyme protein there is only binding of individual surfactant molecules to protein. Lysozyme in presence of higher surfactant concentrations has protein-surfactant complex structure coexisting with pure surfactant micelles

  12. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

  13. A Protein Complex Map of Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Vahid H Gazestani

    2016-03-01

    Full Text Available The functions of the majority of trypanosomatid-specific proteins are unknown, hindering our understanding of the biology and pathogenesis of Trypanosomatida. While protein-protein interactions are highly informative about protein function, a global map of protein interactions and complexes is still lacking for these important human parasites. Here, benefiting from in-depth biochemical fractionation, we systematically interrogated the co-complex interactions of more than 3354 protein groups in procyclic life stage of Trypanosoma brucei, the protozoan parasite responsible for human African trypanosomiasis. Using a rigorous methodology, our analysis led to identification of 128 high-confidence complexes encompassing 716 protein groups, including 635 protein groups that lacked experimental annotation. These complexes correlate well with known pathways as well as for proteins co-expressed across the T. brucei life cycle, and provide potential functions for a large number of previously uncharacterized proteins. We validated the functions of several novel proteins associated with the RNA-editing machinery, identifying a candidate potentially involved in the mitochondrial post-transcriptional regulation of T. brucei. Our data provide an unprecedented view of the protein complex map of T. brucei, and serve as a reliable resource for further characterization of trypanosomatid proteins. The presented results in this study are available at: www.TrypsNetDB.org.

  14. Ontology integration to identify protein complex in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Yang Zhihao

    2011-10-01

    Full Text Available Abstract Background Protein complexes can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of protein complexes detection algorithms. Methods We have developed novel semantic similarity method, which use Gene Ontology (GO annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. Following the approach of that of the previously proposed clustering algorithm IPCA which expands clusters starting from seeded vertices, we present a clustering algorithm OIIP based on the new weighted Protein-Protein interaction networks for identifying protein complexes. Results The algorithm OIIP is applied to the protein interaction network of Sacchromyces cerevisiae and identifies many well known complexes. Experimental results show that the algorithm OIIP has higher F-measure and accuracy compared to other competing approaches.

  15. 3D complex: a structural classification of protein complexes.

    Directory of Open Access Journals (Sweden)

    Emmanuel D Levy

    2006-11-01

    Full Text Available Most of the proteins in a cell assemble into complexes to carry out their function. It is therefore crucial to understand the physicochemical properties as well as the evolution of interactions between proteins. The Protein Data Bank represents an important source of information for such studies, because more than half of the structures are homo- or heteromeric protein complexes. Here we propose the first hierarchical classification of whole protein complexes of known 3-D structure, based on representing their fundamental structural features as a graph. This classification provides the first overview of all the complexes in the Protein Data Bank and allows nonredundant sets to be derived at different levels of detail. This reveals that between one-half and two-thirds of known structures are multimeric, depending on the level of redundancy accepted. We also analyse the structures in terms of the topological arrangement of their subunits and find that they form a small number of arrangements compared with all theoretically possible ones. This is because most complexes contain four subunits or less, and the large majority are homomeric. In addition, there is a strong tendency for symmetry in complexes, even for heteromeric complexes. Finally, through comparison of Biological Units in the Protein Data Bank with the Protein Quaternary Structure database, we identified many possible errors in quaternary structure assignments. Our classification, available as a database and Web server at http://www.3Dcomplex.org, will be a starting point for future work aimed at understanding the structure and evolution of protein complexes.

  16. Structural entanglements in protein complexes

    Science.gov (United States)

    Zhao, Yani; Chwastyk, Mateusz; Cieplak, Marek

    2017-06-01

    We consider multi-chain protein native structures and propose a criterion that determines whether two chains in the system are entangled or not. The criterion is based on the behavior observed by pulling at both termini of each chain simultaneously in the two chains. We have identified about 900 entangled systems in the Protein Data Bank and provided a more detailed analysis for several of them. We argue that entanglement enhances the thermodynamic stability of the system but it may have other functions: burying the hydrophobic residues at the interface and increasing the DNA or RNA binding area. We also study the folding and stretching properties of the knotted dimeric proteins MJ0366, YibK, and bacteriophytochrome. These proteins have been studied theoretically in their monomeric versions so far. The dimers are seen to separate on stretching through the tensile mechanism and the characteristic unraveling force depends on the pulling direction.

  17. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes

    Directory of Open Access Journals (Sweden)

    Heike Angerer

    2015-02-01

    Full Text Available In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine motif proteins (LYRMs of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6 or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1 of the oxidative phosphorylation (OXPHOS core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have been provided by analyses of EM and X-ray structures of complex I from bovine and the yeast Yarrowia lipolytica, respectively. Combined structural and biochemical studies revealed that LYRM6 resides at the matrix arm close to the ubiquinone reduction site. For LYRM3, a position at the distal proton-pumping membrane arm facing the matrix space is suggested. Both LYRMs are supposed to anchor an acyl-carrier protein (ACPM independently to complex I. The function of this duplicated protein interaction of ACPM with respiratory complex I is still unknown. Analysis of protein-protein interaction screens, genetic analyses and predicted multi-domain LYRMs offer further clues on an interaction network and adaptor-like function of LYR proteins in mitochondria.

  18. Alpha complexes in protein structure prediction

    DEFF Research Database (Denmark)

    Winter, Pawel; Fonseca, Rasmus

    2015-01-01

    -complexes from scratch for every configuration encountered during the search for the native structure would make this approach hopelessly slow. However, it is argued that kinetic a-complexes can be used to reduce the computational effort of determining the potential energy when "moving" from one configuration...... to a neighboring one. As a consequence, relatively expensive (initial) construction of an a-complex is expected to be compensated by subsequent fast kinetic updates during the search process. Computational results presented in this paper are limited. However, they suggest that the applicability of a......-complexes and kinetic a-complexes in protein related problems (e.g., protein structure prediction and protein-ligand docking) deserves furhter investigation.)...

  19. Protein complexes predictions within protein interaction networks using genetic algorithms.

    Science.gov (United States)

    Ramadan, Emad; Naef, Ahmed; Ahmed, Moataz

    2016-07-25

    Protein-protein interaction networks are receiving increased attention due to their importance in understanding life at the cellular level. A major challenge in systems biology is to understand the modular structure of such biological networks. Although clustering techniques have been proposed for clustering protein-protein interaction networks, those techniques suffer from some drawbacks. The application of earlier clustering techniques to protein-protein interaction networks in order to predict protein complexes within the networks does not yield good results due to the small-world and power-law properties of these networks. In this paper, we construct a new clustering algorithm for predicting protein complexes through the use of genetic algorithms. We design an objective function for exclusive clustering and overlapping clustering. We assess the quality of our proposed clustering algorithm using two gold-standard data sets. Our algorithm can identify protein complexes that are significantly enriched in the gold-standard data sets. Furthermore, our method surpasses three competing methods: MCL, ClusterOne, and MCODE in terms of the quality of the predicted complexes. The source code and accompanying examples are freely available at http://faculty.kfupm.edu.sa/ics/eramadan/GACluster.zip .

  20. Cranberry Proanthocyanidins - Protein complexes for macrophage activation.

    Science.gov (United States)

    Carballo, Sergio M; Haas, Linda; Krueger, Christian G; Reed, Jess D

    2017-09-20

    In this work we characterize the interaction of cranberry (Vaccinium macrocarpon) proanthocyanidins (PAC) with bovine serum albumin (BSA) and hen egg-white lysozyme (HEL) and determine the effects of these complexes on macrophage activation and antigen presentation. We isolated PAC from cranberry and complexed the isolated PAC with BSA and HEL. The properties of the PAC-protein complexes were studied by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), gel electrophoresis and zeta-potential. The effects of PAC-BSA complexes on macrophage activation were studied in RAW 264.7 macrophage like cells after treatment with lipopolysaccharide (LPS). Fluorescence microscopy was used to study the endocytosis of PAC-BSA complexes. The effects of the PAC complexes on macrophage antigen presentation were studied in an in vitro model of HEL antigen presentation by mouse peritoneal mononuclear cells to a T-cell hybridoma. The mass spectra of the PAC complexes with BSA and HEL differed from the spectra of the proteins alone by the presence of broad shoulders on the singly and doubly charged protein peaks. Complexation with PAC altered the electrophoretic mobility shift assay in native agarose gel and the electrophoretic mobility (ζ-potential) values. These results indicate that the PAC-protein complexes are stable and alter the protein structure without precipitating the protein. Fluorescence microscopy showed that the RAW 264.7 macrophages endocytosed BSA and PAC-BSA complexes in discrete vesicles that surrounded the nucleus. Macrophages treated with increasing amounts of PAC-BSA complexes had significantly reduced COX-2 and iNOS expression in response to treatment with lipopolysaccharide (LPS) in comparison to the controls. The PAC-HEL complexes modulated antigen uptake, processing and presentation in murine peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL

  1. Protein Encapsulation via Polypeptide Complex Coacervation

    Energy Technology Data Exchange (ETDEWEB)

    Black, Katie A.; Priftis, Dimitrios; Perry, Sarah L.; Yip, Jeremy; Byun, William Y.; Tirrell, Matthew

    2014-10-21

    Proteins have gained increasing success as therapeutic agents; however, challenges exist in effective and efficient delivery. In this work, we present a simple and versatile method for encapsulating proteins via complex coacervation with oppositely charged polypeptides, poly(L-lysine) (PLys) and poly(D/L-glutamic acid) (PGlu). A model protein system, bovine serum albumin (BSA), was incorporated efficiently into coacervate droplets via electrostatic interaction up to a maximum loading of one BSA per PLys/PGlu pair and could be released under conditions of decreasing pH. Additionally, encapsulation within complex coacervates did not alter the secondary structure of the protein. Lastly the complex coacervate system was shown to be biocompatible and interact well with cells in vitro. A simple, modular system for encapsulation such as the one presented here may be useful in a range of drug delivery applications.

  2. MIPCE: An MI-based protein complex extraction technique

    Indian Academy of Sciences (India)

    2015-09-28

    Sep 28, 2015 ... Number of protein complex cnt(k). Number of proteins in the k-th complexes avgmi(l; k). Average mi values of the l-th protein with all cnt(k) proteins of k-th complex. C. Set of protein complexes. Ck k-th protein complex. Figure 1. Conceptual framework of our proposed method. 704. P Mahanta et al. J. Biosci.

  3. Detection of protein complex from protein-protein interaction network using Markov clustering

    International Nuclear Information System (INIS)

    Ochieng, P J; Kusuma, W A; Haryanto, T

    2017-01-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks. (paper)

  4. Characterising antimicrobial protein-membrane complexes

    International Nuclear Information System (INIS)

    Xun, Gloria; Dingley, Andrew; Tremouilhac, Pierre

    2009-01-01

    Full text: Antimicrobial proteins (AMPs) are host defence molecules that protect organisms from microbial infection. A number of hypotheses for AMP activity have been proposed which involve protein membrane interactions. However, there is a paucity of information describing AMP-membrane complexes in detail. The aim of this project is to characterise the interactions of amoebapore-A (APA-1) with membrane models using primarily solution-state NMR spectroscopy. APA-1 is an AMP which is regulated by a pH-dependent dimerisation event. Based on the atomic resolution solution structure of monomeric APA-1, it is proposed that this dimerisation is a prerequisite for ring-like hexameric pore formation. Due to the cytotoxicity of APA-1, we have developed a cell-free system to produce this protein. To facilitate our studies, we have adapted the cell-free system to isotope label APA-1. 13 C /15 N -enriched APA-1 sample was achieved and we have begun characterising APA-1 dimerisation and membrane interactions using NMR spectroscopy and other biochemical/biophysical methods. Neutron reflectometry is a surface-sensitive technique and therefore represents an ideal technique to probe how APA-1 interacts with membranes at the molecular level under different physiological conditions. Using Platypus, the pH-induced APA-1-membrane interactions should be detectable as an increase of the amount of protein adsorbed at the membrane surface and changes in the membrane properties. Specifically, detailed information of the structure and dimensions of the protein-membrane complex, the position and amount of the protein in the membrane, and the perturbation of the membrane phospholipids on protein incorporation can be extracted from the neutron reflectometry measurement. Such information will enable critical assessment of current proposed mechanisms of AMP activity in bacterial membranes and complement our NMR studies

  5. Stabilization of protein-protein interaction complexes through small molecules.

    Science.gov (United States)

    Zarzycka, Barbara; Kuenemann, Mélaine A; Miteva, Maria A; Nicolaes, Gerry A F; Vriend, Gert; Sperandio, Olivier

    2016-01-01

    Most of the small molecules that have been identified thus far to modulate protein-protein interactions (PPIs) are inhibitors. Another promising way to interfere with PPI-associated biological processes is to promote PPI stabilization. Even though PPI stabilizers are still scarce, stabilization of PPIs by small molecules is gaining momentum and offers new pharmacological options. Therefore, we have performed a literature survey of PPI stabilization using small molecules. From this, we propose a classification of PPI stabilizers based on their binding mode and the architecture of the complex to facilitate the structure-based design of stabilizers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Roles of residues in the interface of transient protein-protein complexes before complexation

    Science.gov (United States)

    Swapna, Lakshmipuram S.; Bhaskara, Ramachandra M.; Sharma, Jyoti; Srinivasan, Narayanaswamy

    2012-01-01

    Transient protein-protein interactions play crucial roles in all facets of cellular physiology. Here, using an analysis on known 3-D structures of transient protein-protein complexes, their corresponding uncomplexed forms and energy calculations we seek to understand the roles of protein-protein interfacial residues in the unbound forms. We show that there are conformationally near invariant and evolutionarily conserved interfacial residues which are rigid and they account for ∼65% of the core interface. Interestingly, some of these residues contribute significantly to the stabilization of the interface structure in the uncomplexed form. Such residues have strong energetic basis to perform dual roles of stabilizing the structure of the uncomplexed form as well as the complex once formed while they maintain their rigid nature throughout. This feature is evolutionarily well conserved at both the structural and sequence levels. We believe this analysis has general bearing in the prediction of interfaces and understanding molecular recognition. PMID:22451863

  7. Encounter complexes and dimensionality reduction in protein-protein association.

    Science.gov (United States)

    Kozakov, Dima; Li, Keyong; Hall, David R; Beglov, Dmitri; Zheng, Jiefu; Vakili, Pirooz; Schueler-Furman, Ora; Paschalidis, Ioannis Ch; Clore, G Marius; Vajda, Sandor

    2014-04-08

    An outstanding challenge has been to understand the mechanism whereby proteins associate. We report here the results of exhaustively sampling the conformational space in protein-protein association using a physics-based energy function. The agreement between experimental intermolecular paramagnetic relaxation enhancement (PRE) data and the PRE profiles calculated from the docked structures shows that the method captures both specific and non-specific encounter complexes. To explore the energy landscape in the vicinity of the native structure, the nonlinear manifold describing the relative orientation of two solid bodies is projected onto a Euclidean space in which the shape of low energy regions is studied by principal component analysis. Results show that the energy surface is canyon-like, with a smooth funnel within a two dimensional subspace capturing over 75% of the total motion. Thus, proteins tend to associate along preferred pathways, similar to sliding of a protein along DNA in the process of protein-DNA recognition. DOI: http://dx.doi.org/10.7554/eLife.01370.001.

  8. Protein complex finding and ranking: An application to Alzheimer's ...

    Indian Academy of Sciences (India)

    Pooja Sharma

    2017-07-07

    Jul 7, 2017 ... Protein complexes are known to play a major role in controlling cellular activity in a living being. Identifying complexes from raw protein–protein interactions (PPIs) is an important area of research. Earlier work has been limited mostly to yeast and a few other model organisms. Such protein complex ...

  9. Probing nanoparticle effect in protein-surfactant complexes

    Science.gov (United States)

    Mehan, Sumit; Aswal, V. K.; Kohlbrecher, J.

    2015-06-01

    SANS experiments have been carried to probe the role of anionic silica nanoparticles in the anionic BSA protein-cationic DTAB surfactant complexes. In protein-surfactant complex, surfactant molecules aggregate to form micelle-like clusters along the unfolded polypeptide chains of the protein. The nanoparticle aggregation mediated by oppositely charged protein-surfactant complex coexists with the free protein-surfactant complexes in the nanoparticle-protein-surfactant system. There is rearrangement of micelles in adsorbed protein-surfactant complex on nanoparticles in leading to their (nanoparticle) aggregation. On the other hand, the unfolding of protein in free protein-surfactant complex is found to be significantly enhanced in presence of nanoparticles.

  10. HKC: An Algorithm to Predict Protein Complexes in Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Xiaomin Wang

    2011-01-01

    Full Text Available With the availability of more and more genome-scale protein-protein interaction (PPI networks, research interests gradually shift to Systematic Analysis on these large data sets. A key topic is to predict protein complexes in PPI networks by identifying clusters that are densely connected within themselves but sparsely connected with the rest of the network. In this paper, we present a new topology-based algorithm, HKC, to detect protein complexes in genome-scale PPI networks. HKC mainly uses the concepts of highest k-core and cohesion to predict protein complexes by identifying overlapping clusters. The experiments on two data sets and two benchmarks show that our algorithm has relatively high F-measure and exhibits better performance compared with some other methods.

  11. SCPC: a method to structurally compare protein complexes.

    Science.gov (United States)

    Koike, Ryotaro; Ota, Motonori

    2012-02-01

    Protein-protein interactions play vital functional roles in various biological phenomena. Physical contacts between proteins have been revealed using experimental approaches that have solved the structures of protein complexes at atomic resolution. To examine the huge number of protein complexes available in the Protein Data Bank, an efficient automated method that compares protein complexes is required. We have developed Structural Comparison of Protein Complexes (SCPC), a novel method to structurally compare protein complexes. SCPC compares the spatial arrangements of subunits in a complex with those in another complex using secondary structure elements. Similar substructures are detected in two protein complexes and the similarity is scored. SCPC was applied to dimers, homo-oligomers and haemoglobins. SCPC properly estimated structural similarities between the dimers examined as well as an existing method, MM-align. Conserved substructures were detected in a homo-tetramer and a homo-hexamer composed of homologous proteins. Classification of quaternary structures of haemoglobins using SCPC was consistent with the conventional classification. The results demonstrate that SCPC is a valuable tool to investigate the structures of protein complexes. SCPC is available at http://idp1.force.cs.is.nagoya-u.ac.jp/scpc/. rkoike@is.nagoya-u.ac.jp Supplementary data are available at Bioinformatics online.

  12. Detecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networks.

    Science.gov (United States)

    Wu, Hao; Gao, Lin; Dong, Jihua; Yang, Xiaofei

    2014-01-01

    In this paper, we present a novel rough-fuzzy clustering (RFC) method to detect overlapping protein complexes in protein-protein interaction (PPI) networks. RFC focuses on fuzzy relation model rather than graph model by integrating fuzzy sets and rough sets, employs the upper and lower approximations of rough sets to deal with overlapping complexes, and calculates the number of complexes automatically. Fuzzy relation between proteins is established and then transformed into fuzzy equivalence relation. Non-overlapping complexes correspond to equivalence classes satisfying certain equivalence relation. To obtain overlapping complexes, we calculate the similarity between one protein and each complex, and then determine whether the protein belongs to one or multiple complexes by computing the ratio of each similarity to maximum similarity. To validate RFC quantitatively, we test it in Gavin, Collins, Krogan and BioGRID datasets. Experiment results show that there is a good correspondence to reference complexes in MIPS and SGD databases. Then we compare RFC with several previous methods, including ClusterONE, CMC, MCL, GCE, OSLOM and CFinder. Results show the precision, sensitivity and separation are 32.4%, 42.9% and 81.9% higher than mean of the five methods in four weighted networks, and are 0.5%, 11.2% and 66.1% higher than mean of the six methods in five unweighted networks. Our method RFC works well for protein complexes detection and provides a new insight of network division, and it can also be applied to identify overlapping community structure in social networks and LFR benchmark networks.

  13. Protein complex finding and ranking: An application to Alzheimer's ...

    Indian Academy of Sciences (India)

    Protein complexes are known to play a major role in controlling cellular activity in a living being. Identifying complexesfrom raw protein–protein interactions (PPIs) is an important area of research. Earlier work has been limited mostly to yeastand a few other model organisms. Such protein complex identification methods, ...

  14. Analysis of endogenous protein complexes by mass spectrometry

    NARCIS (Netherlands)

    Synowsky, S.A.

    2008-01-01

    Proteins are organized in large protein complexes that form an extensive network in the cell. They are the most versatile macromolecule in the cell and the interactions between each other are highly directed and essential for most cellular functions. The activity of protein complexes is in turn

  15. Protein complex finding and ranking: An application to Alzheimer's

    Indian Academy of Sciences (India)

    Protein complexes are known to play a major role in controlling cellular activity in a living being. Identifying complexesfrom raw protein–protein interactions (PPIs) is an important area of research. Earlier work has been limited mostly to yeastand a few other model organisms. Such protein complex identification methods, ...

  16. Protein complex finding and ranking: An application to Alzheimer's ...

    Indian Academy of Sciences (India)

    Pooja Sharma

    2017-07-07

    Jul 7, 2017 ... Protein complexes are known to play a major role in controlling cellular activity in a living being. .... 2013). A good complex finding method enables identification of overlapped protein complexes with high functional coherence. However, from the literature, we see that the best precision attained on.

  17. Protein complex prediction via dense subgraphs and false positive analysis.

    Directory of Open Access Journals (Sweden)

    Cecilia Hernandez

    Full Text Available Many proteins work together with others in groups called complexes in order to achieve a specific function. Discovering protein complexes is important for understanding biological processes and predict protein functions in living organisms. Large-scale and throughput techniques have made possible to compile protein-protein interaction networks (PPI networks, which have been used in several computational approaches for detecting protein complexes. Those predictions might guide future biologic experimental research. Some approaches are topology-based, where highly connected proteins are predicted to be complexes; some propose different clustering algorithms using partitioning, overlaps among clusters for networks modeled with unweighted or weighted graphs; and others use density of clusters and information based on protein functionality. However, some schemes still require much processing time or the quality of their results can be improved. Furthermore, most of the results obtained with computational tools are not accompanied by an analysis of false positives. We propose an effective and efficient mining algorithm for discovering highly connected subgraphs, which is our base for defining protein complexes. Our representation is based on transforming the PPI network into a directed acyclic graph that reduces the number of represented edges and the search space for discovering subgraphs. Our approach considers weighted and unweighted PPI networks. We compare our best alternative using PPI networks from Saccharomyces cerevisiae (yeast and Homo sapiens (human with state-of-the-art approaches in terms of clustering, biological metrics and execution times, as well as three gold standards for yeast and two for human. Furthermore, we analyze false positive predicted complexes searching the PDBe (Protein Data Bank in Europe database in order to identify matching protein complexes that have been purified and structurally characterized. Our analysis shows

  18. Leukemia: Derived heat shock protein gp96-peptide complex ...

    African Journals Online (AJOL)

    Leukemia: Derived heat shock protein gp96-peptide complex contribution to T cell and dendritic cell activation. ... Therefore, gp96-peptide complex derived from the tumor cells potentially represents an immunization therapy for the elimination of residual leukemia cells. Key words: Leukemia, heat shock protein gp96, ...

  19. Protein packing quality using Delaunay complexes

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; Winter, Pawel; Karplus, Kevin

    2011-01-01

    A new method for estimating the packing quality of protein structures is presented. Atoms in high quality protein crystal structures are very uniformly distributed which is difficult to reproduce using structure prediction methods. Packing quality measures can therefore be used to assess structur...

  20. Principles of assembly reveal a periodic table of protein complexes.

    Science.gov (United States)

    Ahnert, Sebastian E; Marsh, Joseph A; Hernández, Helena; Robinson, Carol V; Teichmann, Sarah A

    2015-12-11

    Structural insights into protein complexes have had a broad impact on our understanding of biological function and evolution. In this work, we sought a comprehensive understanding of the general principles underlying quaternary structure organization in protein complexes. We first examined the fundamental steps by which protein complexes can assemble, using experimental and structure-based characterization of assembly pathways. Most assembly transitions can be classified into three basic types, which can then be used to exhaustively enumerate a large set of possible quaternary structure topologies. These topologies, which include the vast majority of observed protein complex structures, enable a natural organization of protein complexes into a periodic table. On the basis of this table, we can accurately predict the expected frequencies of quaternary structure topologies, including those not yet observed. These results have important implications for quaternary structure prediction, modeling, and engineering. Copyright © 2015, American Association for the Advancement of Science.

  1. Recording information on protein complexes in an information management system.

    Science.gov (United States)

    Savitsky, Marc; Diprose, Jonathan M; Morris, Chris; Griffiths, Susanne L; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S; Blake, Richard; Stuart, David I; Esnouf, Robert M

    2011-08-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein-protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Identification and Validation of PTEN Complex, Associated Proteins

    Science.gov (United States)

    2005-11-01

    not engage in cell cycle arrest or apoptosis. If this approach will fail we will re-clone the ProteinA -CBP- PTEN fusion protein under a Tetracycline...1-0029 TITLE: Identification and Validation of PTEN Complex, Associated Proteins...TYPE Annual Summary 3. DATES COVERED (From - To) 1 Nov 2004 – 31 Oct 2005 4. TITLE AND SUBTITLE Identification and Validation of PTEN Complex

  3. Computational Modeling of Complex Protein Activity Networks

    NARCIS (Netherlands)

    Schivo, Stefano; Leijten, Jeroen; Karperien, Marcel; Post, Janine N.; Prignet, Claude

    2017-01-01

    Because of the numerous entities interacting, the complexity of the networks that regulate cell fate makes it impossible to analyze and understand them using the human brain alone. Computational modeling is a powerful method to unravel complex systems. We recently described the development of a

  4. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.

    Science.gov (United States)

    Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej

    2017-10-01

    Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.

  5. Dissecting and analyzing key residues in protein-DNA complexes.

    Science.gov (United States)

    Kulandaisamy, A; Srivastava, Ambuj; Nagarajan, R; Gromiha, M Michael

    2018-04-01

    Protein-DNA interactions are involved in various fundamental biological processes such as replication, transcription, DNA repair, and gene regulation. To understand the interaction in protein-DNA complexes, the integrative study of binding and stabilizing residues is important. In the present study, we have identified key residues that play a dual role in both binding and stability from a nonredundant dataset of 319 protein-DNA complexes. We observed that key residues are identified in very less number of complexes (29%) and only about 4% of stabilizing/binding residues are identified as key residues. Specifically, stabilizing residues have higher preference to be key residues than binding residues. These key residues include polar, nonpolar, aliphatic, aromatic, and charged amino acids. Moreover, we have analyzed and discussed the key residues in different protein-DNA complexes, which are classified based on protein structural class, function, DNA strand, and their conformations. Especially, Ser, Thr, Tyr, Arg, and Lys residues are commonly found in most of the subclasses of protein-DNA complexes. Further, we analyzed atomic contacts, which show that polar-nonpolar is more enriched than other types of contacts. In addition, the charged contacts are highly preferred in protein-DNA complexes compared with protein-protein and protein-RNA complexes. Finally, we have discussed the sequence and structural features of key residues such as conservation score, surrounding hydrophobicity, solvent accessibility, secondary structure, and long-range order. This study will be helpful to understand the recognition mechanism and structural and functional aspects of protein-DNA complexes. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Resolubilization of Protein from Water-Insoluble Phlorotannin-Protein Complexes upon Acidification

    NARCIS (Netherlands)

    Vissers, Anne M.; Blok, Annelies E.; Westphal, Adrie H.; Hendriks, Wouter H.; Gruppen, Harry; Vincken, Jean Paul

    2017-01-01

    Marine phlorotannins (PhT) from Laminaria digitata might protect feed proteins from ruminal digestion by formation of insoluble non-covalent tannin-protein complexes at rumen pH (6-7). Formation and disintegration of PhT-protein complexes was studied with β-casein (random coil) and bovine serum

  7. Functionalization of protein crystals with metal ions, complexes and nanoparticles.

    Science.gov (United States)

    Abe, Satoshi; Maity, Basudev; Ueno, Takafumi

    2018-04-01

    Self-assembled proteins have specific functions in biology. With inspiration provided by natural protein systems, several artificial protein assemblies have been constructed via site-specific mutations or metal coordination, which have important applications in catalysis, material and bio-supramolecular chemistry. Similar to natural protein assemblies, protein crystals have been recognized as protein assemblies formed of densely-packed monomeric proteins. Protein crystals can be functionalized with metal ions, metal complexes or nanoparticles via soaking, co-crystallization, creating new metal binding sites by site-specific mutations. The field of protein crystal engineering with metal coordination is relatively new and has gained considerable attention for developing solid biomaterials as well as structural investigations of enzymatic reactions, growth of nanoparticles and catalysis. This review highlights recent and significant research on functionalization of protein crystals with metal coordination and future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Operon Gene Order Is Optimized for Ordered Protein Complex Assembly

    Science.gov (United States)

    Wells, Jonathan N.; Bergendahl, L. Therese; Marsh, Joseph A.

    2016-01-01

    Summary The assembly of heteromeric protein complexes is an inherently stochastic process in which multiple genes are expressed separately into proteins, which must then somehow find each other within the cell. Here, we considered one of the ways by which prokaryotic organisms have attempted to maximize the efficiency of protein complex assembly: the organization of subunit-encoding genes into operons. Using structure-based assembly predictions, we show that operon gene order has been optimized to match the order in which protein subunits assemble. Exceptions to this are almost entirely highly expressed proteins for which assembly is less stochastic and for which precisely ordered translation offers less benefit. Overall, these results show that ordered protein complex assembly pathways are of significant biological importance and represent a major evolutionary constraint on operon gene organization. PMID:26804901

  9. Patterning protein complexes on DNA nanostructures using a GFP nanobody.

    Science.gov (United States)

    Sommese, R F; Hariadi, R F; Kim, K; Liu, M; Tyska, M J; Sivaramakrishnan, S

    2016-11-01

    DNA nanostructures have become an important and powerful tool for studying protein function over the last 5 years. One of the challenges, though, has been the development of universal methods for patterning protein complexes on DNA nanostructures. Herein, we present a new approach for labeling DNA nanostructures by functionalizing them with a GFP nanobody. We demonstrate the ability to precisely control protein attachment via our nanobody linker using two enzymatic model systems, namely adenylyl cyclase activity and myosin motility. Finally, we test the power of this attachment method by patterning unpurified, endogenously expressed Arp2/3 protein complex from cell lysate. By bridging DNA nanostructures with a fluorescent protein ubiquitous throughout cell and developmental biology and protein biochemistry, this approach significantly streamlines the application of DNA nanostructures as a programmable scaffold in biological studies. © 2016 The Protein Society.

  10. Quantifying the energetics of cooperativity in a ternary protein complex

    DEFF Research Database (Denmark)

    Andersen, Peter S; Schuck, Peter; Sundberg, Eric J

    2002-01-01

    and mathematical modeling to describe the energetics of cooperativity in a trimolecular protein complex. As a model system for quantifying cooperativity, we studied the ternary complex formed by the simultaneous interaction of a superantigen with major histocompatibility complex and T cell receptor, for which...... a structural model is available. This system exhibits positive and negative cooperativity, as well as augmentation of the temperature dependence of binding kinetics upon the cooperative interaction of individual protein components in the complex. Our experimental and theoretical analysis may be applicable...... to other systems involving cooperativity....

  11. Protein Connectivity in Chemotaxis Receptor Complexes.

    Directory of Open Access Journals (Sweden)

    Stephan Eismann

    2015-12-01

    Full Text Available The chemotaxis sensory system allows bacteria such as Escherichia coli to swim towards nutrients and away from repellents. The underlying pathway is remarkably sensitive in detecting chemical gradients over a wide range of ambient concentrations. Interactions among receptors, which are predominantly clustered at the cell poles, are crucial to this sensitivity. Although it has been suggested that the kinase CheA and the adapter protein CheW are integral for receptor connectivity, the exact coupling mechanism remains unclear. Here, we present a statistical-mechanics approach to model the receptor linkage mechanism itself, building on nanodisc and electron cryotomography experiments. Specifically, we investigate how the sensing behavior of mixed receptor clusters is affected by variations in the expression levels of CheA and CheW at a constant receptor density in the membrane. Our model compares favorably with dose-response curves from in vivo Förster resonance energy transfer (FRET measurements, demonstrating that the receptor-methylation level has only minor effects on receptor cooperativity. Importantly, our model provides an explanation for the non-intuitive conclusion that the receptor cooperativity decreases with increasing levels of CheA, a core signaling protein associated with the receptors, whereas the receptor cooperativity increases with increasing levels of CheW, a key adapter protein. Finally, we propose an evolutionary advantage as explanation for the recently suggested CheW-only linker structures.

  12. Shift-Western Blotting: Separate Analysis of Protein and DNA from Protein-DNA Complexes.

    Science.gov (United States)

    Harbers, Matthias

    2015-01-01

    The electrophoretic mobility shift assay (EMSA) is the most frequently used experiment for studying protein-DNA interactions and to identify DNA-binding proteins. Protein-DNA complexes formed during EMSA experiments can be further analyzed by shift-western blotting, where the protein and DNA components contained in a polyacrylamide gel are transferred to stacked membranes: First a nitrocellulose membrane retains the proteins while double-stranded DNA passes through the nitrocellulose membrane and binds only to a charged membrane placed below. Immobilized proteins can then be stained with specific antibodies while the DNA can be detected by a radioactive label or a nonradioactive detection system. Shift-western blotting can overcome many limitations of supershift experiments and allows for the analysis of complex protein-DNA complexes containing multiple protein factors. Moreover, proteins and/or DNA may be recovered from membranes after the blotting step for further analysis by other means.

  13. Structure study for the complex of HU protein and DNA

    International Nuclear Information System (INIS)

    Tanaka, Ichiro; Niimura, Nobuo; Tanaka, Isao; Kataoka, Mikio; Mihara, Ken-ichi; Tokunaga, Fumio; Mita, Kazuei.

    1993-01-01

    The small angle X-ray and neutron scattering experiments have revealed the structure of the complex of DNA-binding protein HU and DNA with 20 base pair long in solution. By comparing observed Rg(Radius of gyration) of the complex with calculated Rg of the model, we have concluded that HU protein binds DNA in such a manner that the protein bends the rod-like DNA, and that the binding is rather cooperative. This is the first evidence on the structure of HU-DNA complex obtained by the diffractive method in vitro. These findings give us the view that HU protein might facilitate the DNA's dynamical reactions in a cell by winding DNA like an enzyme, and that there might been a possibility that cells turn on and off the enzymatic actions by changing the concentration of HU protein. (author)

  14. Structural Characterization of Clusterin-Chaperone Client Protein Complexes*

    OpenAIRE

    Wyatt, Amy R.; Yerbury, Justin J.; Wilson, Mark R.

    2009-01-01

    Clusterin (CLU) is a potent extracellular chaperone that inhibits protein aggregation and precipitation otherwise caused by physical or chemical stresses (e.g. heat, reduction). This action involves CLU forming soluble high molecular weight (HMW) complexes with the client protein. Other than their unquantified large size, the physical characteristics of these complexes were previously unknown. In this study, HMW CLU-citrate synthase (CS), HMW CLU-fibrinogen (FGN), and HMW CLU-glutathione S-tr...

  15. Immunofluorescent localization of the proteins of nuclear ribonucleoprotein complexes

    OpenAIRE

    1980-01-01

    Antibodies were raised in chickens against heterogeneous nuclear RNA (hnRNA)-binding proteins from 30S ribonucleoprotein (RNP) complexes of mouse Taper hepatoma ascites cell nuclei. The antibody preparations were characterized for immunological specificity and purity by double- diffusion gels, binding to specific bands in SDS polyacrylamide gels, and crossed immunoelectrophoresis. Antibodies raised against either whole 30S RNP complexes or purified RNP core proteins had a strong selective aff...

  16. Dystrophin complex functions as a scaffold for signalling proteins.

    Science.gov (United States)

    Constantin, Bruno

    2014-02-01

    Dystrophin is a 427kDa sub-membrane cytoskeletal protein, associated with the inner surface membrane and incorporated in a large macromolecular complex of proteins, the dystrophin-associated protein complex (DAPC). In addition to dystrophin the DAPC is composed of dystroglycans, sarcoglycans, sarcospan, dystrobrevins and syntrophin. This complex is thought to play a structural role in ensuring membrane stability and force transduction during muscle contraction. The multiple binding sites and domains present in the DAPC confer the scaffold of various signalling and channel proteins, which may implicate the DAPC in regulation of signalling processes. The DAPC is thought for instance to anchor a variety of signalling molecules near their sites of action. The dystroglycan complex may participate in the transduction of extracellular-mediated signals to the muscle cytoskeleton, and β-dystroglycan was shown to be involved in MAPK and Rac1 small GTPase signalling. More generally, dystroglycan is view as a cell surface receptor for extracellular matrix proteins. The adaptor proteins syntrophin contribute to recruit and regulate various signalling proteins such as ion channels, into a macromolecular complex. Although dystrophin and dystroglycan can be directly involved in signalling pathways, syntrophins play a central role in organizing signalplex anchored to the dystrophin scaffold. The dystrophin associated complex, can bind up to four syntrophin through binding domains of dystrophin and dystrobrevin, allowing the scaffold of multiple signalling proteins in close proximity. Multiple interactions mediated by PH and PDZ domains of syntrophin also contribute to build a complete signalplex which may include ion channels, such as voltage-gated sodium channels or TRPC cation channels, together with, trimeric G protein, G protein-coupled receptor, plasma membrane calcium pump, and NOS, to enable efficient and regulated signal transduction and ion transport. This article is part

  17. Drosophila protein interaction map (DPiM): a paradigm for metazoan protein complex interactions.

    Science.gov (United States)

    Guruharsha, K G; Obar, Robert A; Mintseris, Julian; Aishwarya, K; Krishnan, R T; Vijayraghavan, K; Artavanis-Tsakonas, Spyros

    2012-01-01

    Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when, what and where of potential interactions, is therefore crucial to understanding the cellular function of any protein-especially those that have not been well studied by traditional molecular genetic approaches. We generated a large-scale resource of affinity-tagged expression-ready clones and used co-affinity purification combined with tandem mass-spectrometry to identify protein partners of nearly 5,000 Drosophila melanogaster proteins. The resulting protein complex "map" provided a blueprint of metazoan protein complex organization. Here we describe how the map has provided valuable insights into protein function in addition to generating hundreds of testable hypotheses. We also discuss recent technological advancements that will be critical in addressing the next generation of questions arising from the map.

  18. Traveling-wave ion mobility mass spectrometry of protein complexes

    DEFF Research Database (Denmark)

    Salbo, Rune; Bush, Matthew F; Naver, Helle

    2012-01-01

    The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization...

  19. Protein Complexes in Urine Interfere with Extracellular Vesicle Biomarker Studies

    Directory of Open Access Journals (Sweden)

    Magda Wachalska

    2016-03-01

    Full Text Available Urine exosomes (extracellular vesicles; EVs contain (microRNA (miRNA and protein biomarkers that are useful for the non-invasive diagnosis of various urological diseases. However, the urinary Tamm-Horsfall protein (THP complex, which forms at reduced temperatures, may affect EV isolation and may also lead to contamination by other molecules including microRNAs (miRNAs. Therefore, we compared the levels of three miRNAs within the purified EV fraction and THP- protein-network. Urine was collected from healthy donors and EVs were isolated by ultracentrifugation (UC, two commercial kits or sepharose size-exclusion chromatography (SEC. SEC enables the separation of EVs from protein-complexes in urine. After UC, the isolation of EV-miRNA was compared with two commercial kits. The EV isolation efficiency was evaluated by measuring the EV protein markers, Alix and TSG101, CD63 by Western blotting, or miR-375, miR-204 and miR-21 by RT-qPCR. By using commercial kits, EV isolation resulted in either low yields or dissimilar miRNA levels. Via SEC, the EVs were separated from the protein-complex fraction. Importantly, a different ratio was observed between the three miRNAs in the protein fraction compared to the EV fraction. Thus, protein-complexes within urine may influence EV-biomarker studies. Therefore, the characterization of the isolated EV fraction is important to obtain reproducible results.

  20. MIPCE: An MI-based protein complex extraction technique

    Indian Academy of Sciences (India)

    2015-09-28

    Sep 28, 2015 ... complexity of protein interaction data, many methods which are based on modelling the PPI data with graphs have been developed for analysing the structure of PPI networks. PPI networks are represented as undirected graphs with nodes corresponding to proteins and edges representing the interactions ...

  1. Porous protein crystals as catalytic vessels for organometallic complexes.

    Science.gov (United States)

    Tabe, Hiroyasu; Abe, Satoshi; Hikage, Tatsuo; Kitagawa, Susumu; Ueno, Takafumi

    2014-05-01

    Porous protein crystals, which are protein assemblies in the solid state, have been engineered to form catalytic vessels by the incorporation of organometallic complexes. Ruthenium complexes in cross-linked porous hen egg white lysozyme (HEWL) crystals catalyzed the enantioselective hydrogen-transfer reduction of acetophenone derivatives. The crystals accelerated the catalytic reaction and gave different enantiomers based on the crystal form (tetragonal or orthorhombic). This method represents a new approach for the construction of bioinorganic catalysts from protein crystals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.

    Directory of Open Access Journals (Sweden)

    Jiawei Luo

    Full Text Available Computational approaches aided by computer science have been used to predict essential proteins and are faster than expensive, time-consuming, laborious experimental approaches. However, the performance of such approaches is still poor, making practical applications of computational approaches difficult in some fields. Hence, the development of more suitable and efficient computing methods is necessary for identification of essential proteins.In this paper, we propose a new method for predicting essential proteins in a protein interaction network, local interaction density combined with protein complexes (LIDC, based on statistical analyses of essential proteins and protein complexes. First, we introduce a new local topological centrality, local interaction density (LID, of the yeast PPI network; second, we discuss a new integration strategy for multiple bioinformatics. The LIDC method was then developed through a combination of LID and protein complex information based on our new integration strategy. The purpose of LIDC is discovery of important features of essential proteins with their neighbors in real protein complexes, thereby improving the efficiency of identification.Experimental results based on three different PPI(protein-protein interaction networks of Saccharomyces cerevisiae and Escherichia coli showed that LIDC outperformed classical topological centrality measures and some recent combinational methods. Moreover, when predicting MIPS datasets, the better improvement of performance obtained by LIDC is over all nine reference methods (i.e., DC, BC, NC, LID, PeC, CoEWC, WDC, ION, and UC.LIDC is more effective for the prediction of essential proteins than other recently developed methods.

  3. Channelopathies from mutations in the cardiac sodium channel protein complex.

    Science.gov (United States)

    Adsit, Graham S; Vaidyanathan, Ravi; Galler, Carla M; Kyle, John W; Makielski, Jonathan C

    2013-08-01

    The cardiac sodium current underlies excitability in heart, and inherited abnormalities of the proteins regulating and conducting this current cause inherited arrhythmia syndromes. This review focuses on inherited mutations in non-pore forming proteins of sodium channel complexes that cause cardiac arrhythmia, and the deduced mechanisms by which they affect function and dysfunction of the cardiac sodium current. Defining the structure and function of these complexes and how they are regulated will contribute to understanding the possible roles for this complex in normal and abnormal physiology and homeostasis. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes". Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Structural Characterization of Clusterin-Chaperone Client Protein Complexes*

    Science.gov (United States)

    Wyatt, Amy R.; Yerbury, Justin J.; Wilson, Mark R.

    2009-01-01

    Clusterin (CLU) is a potent extracellular chaperone that inhibits protein aggregation and precipitation otherwise caused by physical or chemical stresses (e.g. heat, reduction). This action involves CLU forming soluble high molecular weight (HMW) complexes with the client protein. Other than their unquantified large size, the physical characteristics of these complexes were previously unknown. In this study, HMW CLU-citrate synthase (CS), HMW CLU-fibrinogen (FGN), and HMW CLU-glutathione S-transferase (GST) complexes were generated in vitro, and their structures studied using size exclusion chromatography (SEC), ELISA, SDS-PAGE, dynamic light scattering (DLS), bisANS fluorescence, and circular dichroism spectrophotometry (CD). Densitometry of Coomassie Blue-stained SDS-PAGE gels indicated that all three HMW CLU-client protein complexes had an approximate mass ratio of 1:2 (CLU:client protein). SEC indicated that all three clients formed complexes with CLU ≥ 4 × 107 Da; however, DLS estimated HMW CLU-FGN to have a diameter of 108.57 ± 18.09 nm, while HMW CLU-CS and HMW CLU-GST were smaller with estimated diameters of 51.06 ± 6.87 nm and 52.61 ± 7.71 nm, respectively. Measurements of bisANS fluorescence suggest that the chaperone action of CLU involves preventing the exposure to aqueous solvent of hydrophobic regions that are normally exposed by the client protein during heat-induced unfolding. CD analysis indicated that, depending on the individual client protein, CLU may interact with a variety of intermediates on protein unfolding pathways with different amounts of native secondary structure. In vivo, soluble complexes like those studied here are likely to serve as vehicles to dispose of otherwise dangerous aggregation-prone misfolded extracellular proteins. PMID:19535339

  5. Predicting protein complex in protein interaction network - a supervised learning based method.

    Science.gov (United States)

    Yu, Feng; Yang, Zhi; Tang, Nan; Lin, Hong; Wang, Jian; Yang, Zhi

    2014-01-01

    Protein complexes are important for understanding principles of cellular organization and function. High-throughput experimental techniques have produced a large amount of protein interactions, making it possible to predict protein complexes from protein -protein interaction networks. However, most of current methods are unsupervised learning based methods which can't utilize the information of the large amount of available known complexes. We present a supervised learning-based method for predicting protein complexes in protein - protein interaction networks. The method extracts rich features from both the unweighted and weighted networks to train a Regression model, which is then used for the cliques filtering, growth, and candidate complex filtering. The model utilizes additional "uncertainty" samples and, therefore, is more discriminative when used in the complex detection algorithm. In addition, our method uses the maximal cliques found by the Cliques algorithm as the initial cliques, which has been proven to be more effective than the method of expanding from the seeding proteins used in other methods. The experimental results on several PIN datasets show that in most cases the performance of our method are superior to comparable state-of-the-art protein complex detection techniques. The results demonstrate the several advantages of our method over other state-of-the-art techniques. Firstly, our method is a supervised learning-based method that can make full use of the information of the available known complexes instead of being only based on the topological structure of the PIN. That also means, if more training samples are provided, our method can achieve better performance than those unsupervised methods. Secondly, we design the rich feature set to describe the properties of the known complexes, which includes not only the features from the unweighted network, but also those from the weighted network built based on the Gene Ontology information. Thirdly

  6. Expression characterization and functional implication of the collagen-modifying Leprecan proteins in mouse gonadal tissue and mature sperm

    Directory of Open Access Journals (Sweden)

    Sarah M. Zimmerman

    2018-02-01

    Full Text Available The Leprecan protein family which includes the prolyl 3-hydroxylase enzymes (P3H1, P3H2, and P3H3, the closely related cartilage-associated protein (CRTAP, and SC65 (Synaptonemal complex 65, aka P3H4, LEPREL4, is involved in the post-translational modification of fibrillar collagens. Mutations in CRTAP, P3H1 and P3H2 cause human genetic diseases. We recently showed that SC65 forms a stable complex in the endoplasmic reticulum with P3H3 and lysyl hydroxylase 1 and that loss of this complex leads to defective collagen lysyl hydroxylation and causes low bone mass and skin fragility. Interestingly, SC65 was initially described as a synaptonemal complex-associated protein, suggesting a potential additional role in germline cells. In the present study, we describe the expression of SC65, CRTAP and other Leprecan proteins in postnatal mouse reproductive organs. We detect SC65 expression in peritubular cells of testis up to 4 weeks of age but not in cells within seminiferous tubules, while its expression is maintained in ovarian follicles until adulthood. Similar to bone and skin, SC65 and P3H3 are also tightly co-expressed in testis and ovary. Moreover, we show that CRTAP, a protein normally involved in collagen prolyl 3-hydroxylation, is highly expressed in follicles and stroma of the ovary and in testes interstitial cells at 4 weeks of age, germline cells and mature sperm. Importantly, CrtapKO mice have a mild but significant increase in morphologically abnormal mature sperm (17% increase compared to WT. These data suggest a role for the Leprecans in the post-translational modification of collagens expressed in the stroma of the reproductive organs. While we could not confirm that SC65 is part of the synaptonemal complex, the expression of CRTAP in the seminiferous tubules and in mature sperm suggest a role in the testis germ cell lineage and sperm morphogenesis.

  7. Emergence of Complexity in Protein Functions and Metabolic Networks

    Science.gov (United States)

    Pohorille, Andzej

    2009-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis of very large libraries of random amino acid sequences and subsequently subjecting them to in vitro evolution. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions, important clues have been uncovered. Considerable progress has been also achieved in understanding the origins of membrane proteins. We will address this issue in the example of ion channels - proteins that mediate transport of ions across cell walls. Remarkably, despite overall complexity of these proteins in contemporary cells, their structural motifs are quite simple, with -helices being most common. By combining results of experimental and computer simulation studies on synthetic models and simple, natural channels, I will show that, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during

  8. Decomposition of overlapping protein complexes: A graph theoretical method for analyzing static and dynamic protein associations

    Directory of Open Access Journals (Sweden)

    Guimarães Katia S

    2006-04-01

    Full Text Available Abstract Background Most cellular processes are carried out by multi-protein complexes, groups of proteins that bind together to perform a specific task. Some proteins form stable complexes, while other proteins form transient associations and are part of several complexes at different stages of a cellular process. A better understanding of this higher-order organization of proteins into overlapping complexes is an important step towards unveiling functional and evolutionary mechanisms behind biological networks. Results We propose a new method for identifying and representing overlapping protein complexes (or larger units called functional groups within a protein interaction network. We develop a graph-theoretical framework that enables automatic construction of such representation. We illustrate the effectiveness of our method by applying it to TNFα/NF-κB and pheromone signaling pathways. Conclusion The proposed representation helps in understanding the transitions between functional groups and allows for tracking a protein's path through a cascade of functional groups. Therefore, depending on the nature of the network, our representation is capable of elucidating temporal relations between functional groups. Our results show that the proposed method opens a new avenue for the analysis of protein interaction networks.

  9. Hydrophobic Interaction Chromatography for Bottom-Up Proteomics Analysis of Single Proteins and Protein Complexes.

    Science.gov (United States)

    Rackiewicz, Michal; Große-Hovest, Ludger; Alpert, Andrew J; Zarei, Mostafa; Dengjel, Jörn

    2017-06-02

    Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used to study post-translational modifications of proteins and drug-protein interactions. In the current manuscript we employed HIC to separate proteins, followed by bottom-up LC-MS/MS experiments. We used this approach to fractionate antibody species followed by comprehensive peptide mapping as well as to study protein complexes in human cells. HIC-reversed-phase chromatography (RPC)-mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.

  10. Displacement affinity chromatography of protein phosphatase one (PP1 complexes

    Directory of Open Access Journals (Sweden)

    Gourlay Robert

    2008-11-01

    Full Text Available Abstract Background Protein phosphatase one (PP1 is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif. Results We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIα, several nuclear helicases, NUP153 and the TRRAP complex. Conclusion This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes.

  11. Heat capacity changes in carbohydrates and protein-carbohydrate complexes.

    Science.gov (United States)

    Chavelas, Eneas A; García-Hernández, Enrique

    2009-05-13

    Carbohydrates are crucial for living cells, playing myriads of functional roles that range from being structural or energy-storage devices to molecular labels that, through non-covalent interaction with proteins, impart exquisite selectivity in processes such as molecular trafficking and cellular recognition. The molecular bases that govern the recognition between carbohydrates and proteins have not been fully understood yet. In the present study, we have obtained a surface-area-based model for the formation heat capacity of protein-carbohydrate complexes, which includes separate terms for the contributions of the two molecular types. The carbohydrate model, which was calibrated using carbohydrate dissolution data, indicates that the heat capacity contribution of a given group surface depends on its position in the saccharide molecule, a picture that is consistent with previous experimental and theoretical studies showing that the high abundance of hydroxy groups in carbohydrates yields particular solvation properties. This model was used to estimate the carbohydrate's contribution in the formation of a protein-carbohydrate complex, which in turn was used to obtain the heat capacity change associated with the protein's binding site. The model is able to account for protein-carbohydrate complexes that cannot be explained using a previous model that only considered the overall contribution of polar and apolar groups, while allowing a more detailed dissection of the elementary contributions that give rise to the formation heat capacity effects of these adducts.

  12. PRODIGY: a web server for predicting the binding affinity of protein-protein complexes.

    Science.gov (United States)

    Xue, Li C; Rodrigues, João Pglm; Kastritis, Panagiotis L; Bonvin, Alexandre Mjj; Vangone, Anna

    2016-12-01

    Gaining insights into the structural determinants of protein-protein interactions holds the key for a deeper understanding of biological functions, diseases and development of therapeutics. An important aspect of this is the ability to accurately predict the binding strength for a given protein-protein complex. Here we present PROtein binDIng enerGY prediction (PRODIGY), a web server to predict the binding affinity of protein-protein complexes from their 3D structure. The PRODIGY server implements our simple but highly effective predictive model based on intermolecular contacts and properties derived from non-interface surface. PRODIGY is freely available at: http://milou.science.uu.nl/services/PRODIGY CONTACT: a.m.j.j.bonvin@uu.nl, a.vangone@uu.nl. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Exocyst complex protein expression in the human placenta.

    Science.gov (United States)

    Gonzalez, I M; Ackerman, W E; Vandre, D D; Robinson, J M

    2014-07-01

    Protein production and secretion are essential to syncytiotrophoblast function and are associated with cytotrophoblast cell fusion and differentiation. Syncytiotrophoblast hormone secretion is a crucial determinant of maternal-fetal health, and can be misregulated in pathological pregnancies. Although, polarized secretion is a key component of placental function, the mechanisms underlying this process are poorly understood. While the octameric exocyst complex is classically regarded as a master regulator of secretion in various mammalian systems, its expression in the placenta remained unexplored. We hypothesized that the syncytiotrophoblast would express all exocyst complex components and effector proteins requisite for vesicle-mediated secretion more abundantly than cytotrophoblasts in tissue specimens. A two-tiered immunobiological approach was utilized to characterize exocyst and ancillary proteins in normal, term human placentas. Exocyst protein expression and localization was documented in tissue homogenates via immunoblotting and immunofluorescence labeling of placental sections. The eight exocyst proteins, EXOC1, 2, 3, 4, 5, 6, 7, and 8, were found in the human placenta. In addition, RAB11, an important exocyst complex modulator, was also expressed. Exocyst and Rab protein expression appeared to be regulated during trophoblast differentiation, as the syncytiotrophoblast expressed these proteins with little, if any, expression in cytotrophoblast cells. Additionally, exocyst proteins were localized at or near the syncytiotrophoblast apical membrane, the major site of placental secretion. Our findings highlight exocyst protein expression as novel indicators of trophoblast differentiation. The exocyst's regulated localization within the syncytiotrophoblast in conjunction with its well known functions suggests a possible role in placental polarized secretion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The ER membrane protein complex is a transmembrane domain insertase

    Science.gov (United States)

    Guna, Alina; Volkmar, Norbert; Christianson, John C.; Hegde, Ramanujan S.

    2018-01-01

    Insertion of proteins into membranes is an essential cellular process. The extensive biophysical and topological diversity of membrane proteins necessitates multiple insertion pathways that remain incompletely defined. Here, we found that known membrane insertion pathways fail to effectively engage tail-anchored membrane proteins with moderately hydrophobic transmembrane domains. These proteins are instead shielded in the cytosol by calmodulin. Dynamic release from calmodulin allowed sampling of the endoplasmic reticulum (ER), where the conserved ER membrane protein complex (EMC) was shown to be essential for efficient insertion in vitro and in cells. Purified EMC in synthetic liposomes catalyzed insertion of its substrates in a reconstituted system. Thus, EMC is a transmembrane domain insertase, a function that may explain its widely pleiotropic membrane-associated phenotypes across organisms. PMID:29242231

  15. Analysis of Proteins, Protein Complexes, and Organellar Proteomes Using Sheathless Capillary Zone Electrophoresis - Native Mass Spectrometry

    Science.gov (United States)

    Belov, Arseniy M.; Viner, Rosa; Santos, Marcia R.; Horn, David M.; Bern, Marshall; Karger, Barry L.; Ivanov, Alexander R.

    2017-12-01

    Native mass spectrometry (MS) is a rapidly advancing field in the analysis of proteins, protein complexes, and macromolecular species of various types. The majority of native MS experiments reported to-date has been conducted using direct infusion of purified analytes into a mass spectrometer. In this study, capillary zone electrophoresis (CZE) was coupled online to Orbitrap mass spectrometers using a commercial sheathless interface to enable high-performance separation, identification, and structural characterization of limited amounts of purified proteins and protein complexes, the latter with preserved non-covalent associations under native conditions. The performance of both bare-fused silica and polyacrylamide-coated capillaries was assessed using mixtures of protein standards known to form non-covalent protein-protein and protein-ligand complexes. High-efficiency separation of native complexes is demonstrated using both capillary types, while the polyacrylamide neutral-coated capillary showed better reproducibility and higher efficiency for more complex samples. The platform was then evaluated for the determination of monoclonal antibody aggregation and for analysis of proteomes of limited complexity using a ribosomal isolate from E. coli. Native CZE-MS, using accurate single stage and tandem-MS measurements, enabled identification of proteoforms and non-covalent complexes at femtomole levels. This study demonstrates that native CZE-MS can serve as an orthogonal and complementary technique to conventional native MS methodologies with the advantages of low sample consumption, minimal sample processing and losses, and high throughput and sensitivity. This study presents a novel platform for analysis of ribosomes and other macromolecular complexes and organelles, with the potential for discovery of novel structural features defining cellular phenotypes (e.g., specialized ribosomes). [Figure not available: see fulltext.

  16. Effects of ionizing radiations on DNA-protein complexes

    International Nuclear Information System (INIS)

    Gillard, N.

    2005-11-01

    The radio-induced destruction of DNA-protein complexes may have serious consequences for systems implicated in important cellular functions. The first system which has been studied is the lactose operon system, that regulates gene expression in Escherichia coli. First of all, the repressor-operator complex is destroyed after irradiation of the complex or of the protein alone. The damaging of the domain of repressor binding to DNA (headpiece) has been demonstrated and studied from the point of view of peptide chain integrity, conformation and amino acids damages. Secondly, dysfunctions of the in vitro induction of an irradiated repressor-unirradiated DNA complex have been observed. These perturbations, due to a decrease of the number of inducer binding sites, are correlated to the damaging of tryptophan residues. Moreover, the inducer protects the repressor when they are irradiated together, both by acting as a scavenger in the bulk, and by the masking of its binding site on the protein. The second studied system is formed by Fpg (for Formamido pyrimidine glycosylase), a DNA repair protein and a DNA with an oxidative lesion. The results show that irradiation disturbs the repair both by decreasing its efficiency of DNA lesion recognition and binding, and by altering its enzymatic activity. (author)

  17. MIPCE: An MI-based protein complex extraction technique

    Indian Academy of Sciences (India)

    Identifying protein complexes is of great importance for understanding cellular organization and functions of organisms. In this work, a method is ... Department of Computer Science and Engineering, Tezpur University, Napaam 784 028, India; Machine Intelligent Unit, Indian Statistical Institute, Kolkata 700 108, India ...

  18. Radiation damage to DNA in DNA-protein complexes

    Czech Academy of Sciences Publication Activity Database

    Spotheim Maurizot, M.; Davídková, Marie

    2011-01-01

    Roč. 711, 1-2 (2011), s. 41-48 ISSN 0027-5107 Institutional research plan: CEZ:AV0Z10480505 Keywords : DNA-protein complex * ionizing radiation * molecular structure Subject RIV: BO - Biophysics Impact factor: 2.850, year: 2011

  19. Folding Behaviors of Protein (Lysozyme) Confined in Polyelectrolyte Complex Micelle.

    Science.gov (United States)

    Wu, Fu-Gen; Jiang, Yao-Wen; Chen, Zhan; Yu, Zhi-Wu

    2016-04-19

    The folding/unfolding behavior of proteins (enzymes) in confined space is important for their properties and functions, but such a behavior remains largely unexplored. In this article, we reported our finding that lysozyme and a double hydrophilic block copolymer, methoxypoly(ethylene glycol)5K-block-poly(l-aspartic acid sodium salt)10 (mPEG(5K)-b-PLD10), can form a polyelectrolyte complex micelle with a particle size of ∼30 nm, as verified by dynamic light scattering and transmission electron microscopy. The unfolding and refolding behaviors of lysozyme molecules in the presence of the copolymer were studied by microcalorimetry and circular dichroism spectroscopy. Upon complex formation with mPEG(5K)-b-PLD10, lysozyme changed from its initial native state to a new partially unfolded state. Compared with its native state, this copolymer-complexed new folding state of lysozyme has different secondary and tertiary structures, a decreased thermostability, and significantly altered unfolding/refolding behaviors. It was found that the native lysozyme exhibited reversible unfolding and refolding upon heating and subsequent cooling, while lysozyme in the new folding state (complexed with the oppositely charged PLD segments of the polymer) could unfold upon heating but could not refold upon subsequent cooling. By employing the heating-cooling-reheating procedure, the prevention of complex formation between lysozyme and polymer due to the salt screening effect was observed, and the resulting uncomplexed lysozyme regained its proper unfolding and refolding abilities upon heating and subsequent cooling. Besides, we also pointed out the important role the length of the PLD segment played during the formation of micelles and the monodispersity of the formed micelles. Furthermore, the lysozyme-mPEG(5K)-b-PLD10 mixtures prepared in this work were all transparent, without the formation of large aggregates or precipitates in solution as frequently observed in other protein

  20. Comparative Study of Elastic Network Model and Protein Contact Network for Protein Complexes: The Hemoglobin Case

    Directory of Open Access Journals (Sweden)

    Guang Hu

    2017-01-01

    Full Text Available The overall topology and interfacial interactions play key roles in understanding structural and functional principles of protein complexes. Elastic Network Model (ENM and Protein Contact Network (PCN are two widely used methods for high throughput investigation of structures and interactions within protein complexes. In this work, the comparative analysis of ENM and PCN relative to hemoglobin (Hb was taken as case study. We examine four types of structural and dynamical paradigms, namely, conformational change between different states of Hbs, modular analysis, allosteric mechanisms studies, and interface characterization of an Hb. The comparative study shows that ENM has an advantage in studying dynamical properties and protein-protein interfaces, while PCN is better for describing protein structures quantitatively both from local and from global levels. We suggest that the integration of ENM and PCN would give a potential but powerful tool in structural systems biology.

  1. Characterization of a crosslinked nucleic acid - helix destabilizing protein complex

    Energy Technology Data Exchange (ETDEWEB)

    Karpel, R.L.; Levin, V.Y.; Haley, B.E.

    1986-05-01

    They have enzymatically synthesized /sup 3/H- and /sup 32/P-poly(A,8N/sub 3/A) from 8-N/sub 3/ADP and radiolabeled ADP, and have used this polynucleotide to photoaffinity label T4 gene 32 protein, as well as several other helix-destabilizing proteins (HDPs). Irradiation of /sup 32/P-/sup 3/H-poly(A,N/sub 3/A) mixtures for short durations produces a covalent complex, seen as a high molecular weight, radioactive band on SDS-polyacrylamide gels. Preliminary experiments on other HDPs, from prokaryotic, eukaryotic and animal viral sources, show analogous results. Several successful control experiments indicate that this system is suitable for binding site localization on /sup 32/P. Single-stranded nucleic acids competitively inhibit photolabeling. The effect of NaCl on photolabeling parallels the salt-dependence of /sup 32/P-poly(A,N/sub 3/A) binding. Photolabeling reaches a plateau after approx.1 min, and the formation of the high molecular weight complex parallels the reduction of free /sup 32/P on SDS gels. Staph. nuclease digestion of crosslinked complexes produces a diffuse, radioactive band on SDS gels, migrating just behind free /sup 32/P. When these digested complexes are subjected to reverse-phase HPLC on a C3 Ultrapore column, the nucleic acid /sup 32/P-label is seen to coelute with protein. They are currently employing RP-HPLC methods to locate the label on tryptic peptides of nuclease-digested complexes.

  2. Which clustering algorithm is better for predicting protein complexes?

    Directory of Open Access Journals (Sweden)

    Moschopoulos Charalampos N

    2011-12-01

    Full Text Available Abstract Background Protein-Protein interactions (PPI play a key role in determining the outcome of most cellular processes. The correct identification and characterization of protein interactions and the networks, which they comprise, is critical for understanding the molecular mechanisms within the cell. Large-scale techniques such as pull down assays and tandem affinity purification are used in order to detect protein interactions in an organism. Today, relatively new high-throughput methods like yeast two hybrid, mass spectrometry, microarrays, and phage display are also used to reveal protein interaction networks. Results In this paper we evaluated four different clustering algorithms using six different interaction datasets. We parameterized the MCL, Spectral, RNSC and Affinity Propagation algorithms and applied them to six PPI datasets produced experimentally by Yeast 2 Hybrid (Y2H and Tandem Affinity Purification (TAP methods. The predicted clusters, so called protein complexes, were then compared and benchmarked with already known complexes stored in published databases. Conclusions While results may differ upon parameterization, the MCL and RNSC algorithms seem to be more promising and more accurate at predicting PPI complexes. Moreover, they predict more complexes than other reviewed algorithms in absolute numbers. On the other hand the spectral clustering algorithm achieves the highest valid prediction rate in our experiments. However, it is nearly always outperformed by both RNSC and MCL in terms of the geometrical accuracy while it generates the fewest valid clusters than any other reviewed algorithm. This article demonstrates various metrics to evaluate the accuracy of such predictions as they are presented in the text below. Supplementary material can be found at: http://www.bioacademy.gr/bioinformatics/projects/ppireview.htm

  3. Dynamic protein complexes regulate NF-kappaB signaling.

    Science.gov (United States)

    Wegener, E; Krappmann, D

    2008-01-01

    NF-kappaB is a major regulator of the first-line defense against invading pathogens, antigen-specific adaptive immune responses or chemical stress. Stimulation either by extracellular ligands (e.g., inflammatory cytokines, microbial pathogens, peptide antigens) or by intracellular Stressors (e.g., genotoxic drugs) initiates signal-specific pathways that all converge at the IkappaB kinase (IKK) complex, the gatekeeper for NF-kappaB activation. During recent years, considerable progress has been made in understanding the function of NF-kappaB in the regulation of cell growth, survival and apoptosis. In this review, we will focus on the regulation of large signaling complexes on the route to NF-kappaB. Recently published data demonstrate that the assembly, maintenance and activity of the IKK complex determine downstream activation of NF-kappaB. In addition, dynamic complexes upstream of IKK are formed in response to tumor necrosis factor (TNF), antigenic peptides or DNA-damaging agents. Clustering of signaling adaptors promotes the association and activation of ubiquitin ligases that trigger the conjugation of regulatory ubiquitin to target proteins. Ubiquitination serves as a platform to recruit the IKK complex and potentially other protein kinases to trigger IKK activation. These findings support a concept whereby protein complex assembly induces regulatory ubiquitination, which in turn recruits and activates protein kinases. Notably, the great interest in a detailed description of the mechanisms that regulate NF-kappaB activity stems from many observations that link dysregulated NF-kappaB signaling with the onset or progression of various diseases, including cancer, chronic inflammation, cardiovascular disorders and neurodegenerative diseases. Thus, the formation of large signaling clusters and regulatory ubiquitin chains represents promising targets for pharmacological intervention to modulate NF-kappaB signal transduction in disease.

  4. Evolution of DNA replication protein complexes in eukaryotes and Archaea.

    Directory of Open Access Journals (Sweden)

    Nicholas Chia

    Full Text Available BACKGROUND: The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA, replication factor C (RFC, and the minichromosome maintenance (MCM complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. METHODOLOGY/PRINCIPAL FINDINGS: While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex-all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. CONCLUSION/SIGNIFICANCE: This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota.

  5. Encapsulation of Protein-Polysaccharide HIP Complex in Polymeric Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ripal Gaudana

    2011-01-01

    Full Text Available The objective of the present study is to formulate and characterize a nanoparticulate-based formulation of a macromolecule in a hydrophobic ion pairing (HIP complex form. So far, HIP complexation approach has been studied only for proteins with molecular weight of 10–20 kDa. Hence, we have selected bovine serum albumin (BSA having higher molecular weight (66.3 kDa as a model protein and dextran sulphate (DS as a complexing polymer to generate HIP complex. We have prepared and optimized the HIP complex formation process of BSA with DS. Ionic interactions between basic amino acids of BSA with sulphate groups of DS were confirmed by FTIR analysis. Further, nanoparticles were prepared and characterized with respect to size and surface morphology. We observed significant entrapment of BSA in nanoparticles prepared with minimal amounts of PLGA polymer. Finally, results of circular dichroism and intrinsic fluorescence assay have clearly indicated that HIP complexation and method of nanoparticle preparation did not alter the secondary and tertiary structures of BSA.

  6. Structural Reconstruction of Protein-Protein Complexes Involved in Intracellular Signaling.

    Science.gov (United States)

    Kirsch, Klára; Sok, Péter; Reményi, Attila

    2016-01-01

    Signaling complexes within the cell convert extracellular cues into physiological outcomes. Their assembly involves signaling enzymes, allosteric regulators and scaffold proteins that often contain long stretches of disordered protein regions, display multi-domain architectures, and binding affinity between individual components is low. These features are indispensable for their central roles as dynamic information processing hubs, on the other hand they also make reconstruction of structurally homogeneous complex samples highly challenging. In this present chapter we discuss protein machinery which influences extracellular signal reception, intracellular pathway activity, and cytoskeletal or transcriptional activity.

  7. Extreme disorder in an ultrahigh-affinity protein complex

    Science.gov (United States)

    Borgia, Alessandro; Borgia, Madeleine B.; Bugge, Katrine; Kissling, Vera M.; Heidarsson, Pétur O.; Fernandes, Catarina B.; Sottini, Andrea; Soranno, Andrea; Buholzer, Karin J.; Nettels, Daniel; Kragelund, Birthe B.; Best, Robert B.; Schuler, Benjamin

    2018-03-01

    Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes.

  8. Effects of ionizing radiations on DNA-protein complexes; Effets des radiations ionisantes sur des complexes ADN-proteine

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, N

    2005-11-15

    The radio-induced destruction of DNA-protein complexes may have serious consequences for systems implicated in important cellular functions. The first system which has been studied is the lactose operon system, that regulates gene expression in Escherichia coli. First of all, the repressor-operator complex is destroyed after irradiation of the complex or of the protein alone. The damaging of the domain of repressor binding to DNA (headpiece) has been demonstrated and studied from the point of view of peptide chain integrity, conformation and amino acids damages. Secondly, dysfunctions of the in vitro induction of an irradiated repressor-unirradiated DNA complex have been observed. These perturbations, due to a decrease of the number of inducer binding sites, are correlated to the damaging of tryptophan residues. Moreover, the inducer protects the repressor when they are irradiated together, both by acting as a scavenger in the bulk, and by the masking of its binding site on the protein. The second studied system is formed by Fpg (for Formamido pyrimidine glycosylase), a DNA repair protein and a DNA with an oxidative lesion. The results show that irradiation disturbs the repair both by decreasing its efficiency of DNA lesion recognition and binding, and by altering its enzymatic activity. (author)

  9. Protein-DNA complexation: contact profiles in DNA grooves

    Directory of Open Access Journals (Sweden)

    M. Yu. Zhitnikova

    2017-12-01

    Full Text Available Background: Investigation of the specific protein-DNA complexation mechanisms allows to establish general principles of molecular recognition, which must be taken into account while developing artificial nanostructures based on DNA, and to improve the prediction efficiency of the protein binding sites on DNA. One of the main characteristics of the protein-DNA complexes are the number and type of contacts in the binding sites of DNA and proteins. Conformational changes in the DNA double helix can cause changes in these characteristics. Objectives: The purpose of our study is to establish the features of the interactions between nucleotides and amino acid residues in the binding sites of protein-DNA complexes and their dependence on the conformation of deoxyribose and the angle γ of the polynucleotide chain. Materials and methods: At research of protein-DNA recognition process we have analyzed the contacts between amino acids and nucleotides of the 128 protein-DNA complexes from the structural databases. Conformational parameters of DNA backbone were calculated using the 3DNA/CompDNA program. The number of contacts was determined using a geometric criterion. Two protein and DNA atoms were considered to be in contact if the distance between their centers is less than 4.5 Å. Amino acid residues were arranged according to hydrophobicity scale as hydrophobic or nonpolar and polar. Results: The analysis of contacts between polar and hydrophobic residues and nucleotides with different conformations of the sugar-phosphate backbone showed that nucleotides form more contacts with polar amino acids in both grooves than with hydrophobic ones regardless of nucleotide conformation. But the profile of such contacts differs in minor and major grooves and depends on the conformation of both deoxyribose and γ angle. The contact profiles are characterized by the sequence-specificity or the different propensity of nucleotides to form contacts with the residues in

  10. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes.

    Science.gov (United States)

    Biedendieck, Rebekka

    2016-01-01

    For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data.

  11. Sequence-specific capture of protein-DNA complexes for mass spectrometric protein identification.

    Directory of Open Access Journals (Sweden)

    Cheng-Hsien Wu

    Full Text Available The regulation of gene transcription is fundamental to the existence of complex multicellular organisms such as humans. Although it is widely recognized that much of gene regulation is controlled by gene-specific protein-DNA interactions, there presently exists little in the way of tools to identify proteins that interact with the genome at locations of interest. We have developed a novel strategy to address this problem, which we refer to as GENECAPP, for Global ExoNuclease-based Enrichment of Chromatin-Associated Proteins for Proteomics. In this approach, formaldehyde cross-linking is employed to covalently link DNA to its associated proteins; subsequent fragmentation of the DNA, followed by exonuclease digestion, produces a single-stranded region of the DNA that enables sequence-specific hybridization capture of the protein-DNA complex on a solid support. Mass spectrometric (MS analysis of the captured proteins is then used for their identification and/or quantification. We show here the development and optimization of GENECAPP for an in vitro model system, comprised of the murine insulin-like growth factor-binding protein 1 (IGFBP1 promoter region and FoxO1, a member of the forkhead rhabdomyosarcoma (FoxO subfamily of transcription factors, which binds specifically to the IGFBP1 promoter. This novel strategy provides a powerful tool for studies of protein-DNA and protein-protein interactions.

  12. Extreme disorder in an ultrahigh-affinity protein complex

    DEFF Research Database (Denmark)

    Borgia, Alessandro; Borgia, Madeleine B; Bugge, Katrine

    2018-01-01

    or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex...... with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring...

  13. Chemiluminescence enzyme immunoassay using ProteinA-bacterial magnetite complex

    Science.gov (United States)

    Matsunaga, Tadashi; Sato, Rika; Kamiya, Shinji; Tanaka, Tsuyosi; Takeyama, Haruko

    1999-04-01

    Bacterial magnetic particles (BMPs) which have ProteinA expressed on their surface were constructed using magA which is a key gene in BMP biosynthesis in the magnetic bacterium Magnetospirillum sp. AMB-1. Homogenous chemiluminescence enzyme immunoassay using antibody bound ProteinA-BMP complexes was developed for detection of human IgG. A good correlation between the luminescence yield and the concentration of human IgG was obtained in the range of 1-10 3 ng/ml.

  14. Integral and peripheral association of proteins and protein complexes with Yersinia pestis inner and outer membranes

    Directory of Open Access Journals (Sweden)

    Bunai Christine L

    2009-02-01

    Full Text Available Abstract Yersinia pestis proteins were sequentially extracted from crude membranes with a high salt buffer (2.5 M NaBr, an alkaline solution (180 mM Na2CO3, pH 11.3 and membrane denaturants (8 M urea, 2 M thiourea and 1% amidosulfobetaine-14. Separation of proteins by 2D gel electrophoresis was followed by identification of more than 600 gene products by MS. Data from differential 2D gel display experiments, comparing protein abundances in cytoplasmic, periplasmic and all three membrane fractions, were used to assign proteins found in the membrane fractions to three protein categories: (i integral membrane proteins and peripheral membrane proteins with low solubility in aqueous solutions (220 entries; (ii peripheral membrane proteins with moderate to high solubility in aqueous solutions (127 entries; (iii cytoplasmic or ribosomal membrane-contaminating proteins (80 entries. Thirty-one proteins were experimentally associated with the outer membrane (OM. Circa 50 proteins thought to be part of membrane-localized, multi-subunit complexes were identified in high Mr fractions of membrane extracts via size exclusion chromatography. This data supported biologically meaningful assignments of many proteins to the membrane periphery. Since only 32 inner membrane (IM proteins with two or more predicted transmembrane domains (TMDs were profiled in 2D gels, we resorted to a proteomic analysis by 2D-LC-MS/MS. Ninety-four additional IM proteins with two or more TMDs were identified. The total number of proteins associated with Y. pestis membranes increased to 456 and included representatives of all six β-barrel OM protein families and 25 distinct IM transporter families.

  15. Immersion freezing of ice nucleation active protein complexes

    Directory of Open Access Journals (Sweden)

    S. Hartmann

    2013-06-01

    Full Text Available Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS, the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between −5 °C to −38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about −6 °C to about −10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice

  16. The Complex Kinetics of Protein Folding in Wide Temperature Ranges

    OpenAIRE

    Wang, Jin

    2004-01-01

    The complex protein folding kinetics in wide temperature ranges is studied through diffusive dynamics on the underlying energy landscape. The well-known kinetic chevron rollover behavior is recovered from the mean first passage time, with the U-shape dependence on temperature. The fastest folding temperature T0 is found to be smaller than the folding transition temperature Tf. We found that the fluctuations of the kinetics through the distribution of first passage time show rather universal b...

  17. Complex protein nanopatterns over large areas via colloidal lithography

    DEFF Research Database (Denmark)

    Kristensen, Stine H; Pedersen, Gitte Albinus; Ogaki, Ryosuke

    2013-01-01

    The patterning of biomolecules at the nanoscale provides a powerful method to investigate cellular adhesion processes. A novel method for patterning is presented that is based on colloidal monolayer templating combined with multiple and angled deposition steps. Patterns of gold and SiO2 layers...... for using sets of systematically varied samples with simpler or more complex patterns for studies of cellular adhesive behavior and reveal that the local distribution of proteins within a simple patch critically influences cell adhesion....... matrix proteins (vitronectin) or cellular ligands (the extracellular domain of E-cadherin) in the nanopatterns, whereas the selective poly(l-lysine)–poly(ethylene glycol) functionalization of the SiO2 matrix renders it protein repellent. Cell studies, as a proof of principle, demonstrate the potential...

  18. CISAPS: Complex Informational Spectrum for the Analysis of Protein Sequences

    Directory of Open Access Journals (Sweden)

    Charalambos Chrysostomou

    2015-01-01

    Full Text Available Complex informational spectrum analysis for protein sequences (CISAPS and its web-based server are developed and presented. As recent studies show, only the use of the absolute spectrum in the analysis of protein sequences using the informational spectrum analysis is proven to be insufficient. Therefore, CISAPS is developed to consider and provide results in three forms including absolute, real, and imaginary spectrum. Biologically related features to the analysis of influenza A subtypes as presented as a case study in this study can also appear individually either in the real or imaginary spectrum. As the results presented, protein classes can present similarities or differences according to the features extracted from CISAPS web server. These associations are probable to be related with the protein feature that the specific amino acid index represents. In addition, various technical issues such as zero-padding and windowing that may affect the analysis are also addressed. CISAPS uses an expanded list of 611 unique amino acid indices where each one represents a different property to perform the analysis. This web-based server enables researchers with little knowledge of signal processing methods to apply and include complex informational spectrum analysis to their work.

  19. Mannan-binding protein forms complexes with alpha-2-macroglobulin. A protein model for the interaction

    DEFF Research Database (Denmark)

    Storgaard, P; Holm Nielsen, E; Skriver, E

    1995-01-01

    We report that alpha-2-macroglobulin (alpha 2M) can form complexes with a high molecular weight porcine mannan-binding protein (pMBP-28). The alpha 2M/pMBP-28 complexes was isolated by PEG-precipitation and affinity chromatography on mannan-Sepharose, protein A-Sepharose and anti-IgM Sepharose......-PAGE, which reacted with antibodies against alpha 2M and pMBP-28, respectively, in Western blotting. Furthermore, alpha 2M/pMBP-28 complexes were demonstrated by electron microscopy. Fractionation of pMBP-containing D-mannose eluate from mannan-Sepharose on Superose 6 showed two protein peaks which reacted...

  20. Radioprotection by polyethylene glycol-protein complexes in mice

    International Nuclear Information System (INIS)

    Gray, B.H.; Stull, R.W.

    1983-01-01

    Polyethylene glycol of about 5000 D was activated with cyanuric chloride, and the activated compound was complexed to each of three proteins. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase were each radioprotectants when administered prophylactically to female B6CBF1 mice before irradiation. The dose reduction factor for these mice was 1.2 when 5000 units of polyethylene glycol-catalase was administered before 60 Co irradiation. Female B6CBF1 mice administered prophylactic intravenous injections of catalase, polyethylene glycol-albumin, or heat-denatured polyethylene glycol-catalase had survival rates similar to phosphate-buffered saline-injected control mice following 60 Co irradiation. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase have radioprotective activity in B6CBF1 mice, which appears to depend in part on enzymatic activities of the complex. However, no radioprotective effect was observed in male C57BL/6 mice injected with each polyethylene glycol-protein complex at either 3 or 24 hr before irradiation. The mechanism for radioprotection by these complexes may depend in part on other factors

  1. Encounter complexes and dimensionality reduction in protein–protein association

    Science.gov (United States)

    Kozakov, Dima; Li, Keyong; Hall, David R; Beglov, Dmitri; Zheng, Jiefu; Vakili, Pirooz; Schueler-Furman, Ora; Paschalidis, Ioannis Ch; Clore, G Marius; Vajda, Sandor

    2014-01-01

    An outstanding challenge has been to understand the mechanism whereby proteins associate. We report here the results of exhaustively sampling the conformational space in protein–protein association using a physics-based energy function. The agreement between experimental intermolecular paramagnetic relaxation enhancement (PRE) data and the PRE profiles calculated from the docked structures shows that the method captures both specific and non-specific encounter complexes. To explore the energy landscape in the vicinity of the native structure, the nonlinear manifold describing the relative orientation of two solid bodies is projected onto a Euclidean space in which the shape of low energy regions is studied by principal component analysis. Results show that the energy surface is canyon-like, with a smooth funnel within a two dimensional subspace capturing over 75% of the total motion. Thus, proteins tend to associate along preferred pathways, similar to sliding of a protein along DNA in the process of protein-DNA recognition. DOI: http://dx.doi.org/10.7554/eLife.01370.001 PMID:24714491

  2. Retinal cone photoreceptors require phosducin-like protein 1 for G protein complex assembly and signaling.

    Directory of Open Access Journals (Sweden)

    Christopher M Tracy

    Full Text Available G protein β subunits (Gβ play essential roles in phototransduction as part of G protein βγ (Gβγ and regulator of G protein signaling 9 (RGS9-Gβ5 heterodimers. Both are obligate dimers that rely on the cytosolic chaperone CCT and its co-chaperone PhLP1 to form complexes from their nascent polypeptides. The importance of PhLP1 in the assembly process was recently demonstrated in vivo in a retinal rod-specific deletion of the Phlp1 gene. To test whether this is a general mechanism that also applies to other cell types, we disrupted the Phlp1 gene specifically in mouse cones and measured the effects on G protein expression and cone visual signal transduction. In PhLP1-deficient cones, expression of cone transducin (Gt2 and RGS9-Gβ5 subunits was dramatically reduced, resulting in a 27-fold decrease in sensitivity and a 38-fold delay in cone photoresponse recovery. These results demonstrate the essential role of PhLP1 in cone G protein complex formation. Our findings reveal a common mechanism of Gβγ and RGS9-Gβ5 assembly in rods and cones, highlighting the importance of PhLP1 and CCT-mediated Gβ complex formation in G protein signaling.

  3. Improved functional overview of protein complexes using inferred epistatic relationships

    LENUS (Irish Health Repository)

    Ryan, Colm

    2011-05-23

    Abstract Background Epistatic Miniarray Profiling(E-MAP) quantifies the net effect on growth rate of disrupting pairs of genes, often producing phenotypes that may be more (negative epistasis) or less (positive epistasis) severe than the phenotype predicted based on single gene disruptions. Epistatic interactions are important for understanding cell biology because they define relationships between individual genes, and between sets of genes involved in biochemical pathways and protein complexes. Each E-MAP screen quantifies the interactions between a logically selected subset of genes (e.g. genes whose products share a common function). Interactions that occur between genes involved in different cellular processes are not as frequently measured, yet these interactions are important for providing an overview of cellular organization. Results We introduce a method for combining overlapping E-MAP screens and inferring new interactions between them. We use this method to infer with high confidence 2,240 new strongly epistatic interactions and 34,469 weakly epistatic or neutral interactions. We show that accuracy of the predicted interactions approaches that of replicate experiments and that, like measured interactions, they are enriched for features such as shared biochemical pathways and knockout phenotypes. We constructed an expanded epistasis map for yeast cell protein complexes and show that our new interactions increase the evidence for previously proposed inter-complex connections, and predict many new links. We validated a number of these in the laboratory, including new interactions linking the SWR-C chromatin modifying complex and the nuclear transport apparatus. Conclusion Overall, our data support a modular model of yeast cell protein network organization and show how prediction methods can considerably extend the information that can be extracted from overlapping E-MAP screens.

  4. Biodegradation of the chitin-protein complex in crustacean cuticle

    Science.gov (United States)

    Artur, Stankiewicz B.; Mastalerz, Maria; Hof, C.H.J.; Bierstedt, A.; Flannery, M.B.; Briggs, D.E.G.; Evershed, R.P.

    1998-01-01

    Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative analysis of amino acids (by HPLC) and chitin showed that the major loss of proteins and chitin occurred between weeks 1 and 2. After 8 weeks tyrosine, tryptophan and valine are the most prominent amino acid moieties, showing their resistance to degradation. The presence of cyclic ketones in the pyrolysates indicates that mucopolysaccharides or other bound non-chitinous carbohydrates are also resistant to decay. There is no evidence of structural degradation of chitin prior to 8 weeks when FTIR revealed a reduction in chitin-specific bands. The chemical changes are paralleled by structural changes in the cuticle, which becomes an increasingly open structure consisting of loose chitinous fibres. The rapid rate of decay in the experiments suggests that where chitin and protein are preserved in fossil cuticles degradation must have been inhibited.Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative

  5. Model of a DNA-protein complex of the architectural monomeric protein MC1 from Euryarchaea.

    Directory of Open Access Journals (Sweden)

    Françoise Paquet

    Full Text Available In Archaea the two major modes of DNA packaging are wrapping by histone proteins or bending by architectural non-histone proteins. To supplement our knowledge about the binding mode of the different DNA-bending proteins observed across the three domains of life, we present here the first model of a complex in which the monomeric Methanogen Chromosomal protein 1 (MC1 from Euryarchaea binds to the concave side of a strongly bent DNA. In laboratory growth conditions MC1 is the most abundant architectural protein present in Methanosarcina thermophila CHTI55. Like most proteins that strongly bend DNA, MC1 is known to bind in the minor groove. Interaction areas for MC1 and DNA were mapped by Nuclear Magnetic Resonance (NMR data. The polarity of protein binding was determined using paramagnetic probes attached to the DNA. The first structural model of the DNA-MC1 complex we propose here was obtained by two complementary docking approaches and is in good agreement with the experimental data previously provided by electron microscopy and biochemistry. Residues essential to DNA-binding and -bending were highlighted and confirmed by site-directed mutagenesis. It was found that the Arg25 side-chain was essential to neutralize the negative charge of two phosphates that come very close in response to a dramatic curvature of the DNA.

  6. Protein complexes are central in the yeast genetic landscape.

    Directory of Open Access Journals (Sweden)

    Magali Michaut

    2011-02-01

    Full Text Available If perturbing two genes together has a stronger or weaker effect than expected, they are said to genetically interact. Genetic interactions are important because they help map gene function, and functionally related genes have similar genetic interaction patterns. Mapping quantitative (positive and negative genetic interactions on a global scale has recently become possible. This data clearly shows groups of genes connected by predominantly positive or negative interactions, termed monochromatic groups. These groups often correspond to functional modules, like biological processes or complexes, or connections between modules. However it is not yet known how these patterns globally relate to known functional modules. Here we systematically study the monochromatic nature of known biological processes using the largest quantitative genetic interaction data set available, which includes fitness measurements for ∼5.4 million gene pairs in the yeast Saccharomyces cerevisiae. We find that only 10% of biological processes, as defined by Gene Ontology annotations, and less than 1% of inter-process connections are monochromatic. Further, we show that protein complexes are responsible for a surprisingly large fraction of these patterns. This suggests that complexes play a central role in shaping the monochromatic landscape of biological processes. Altogether this work shows that both positive and negative monochromatic patterns are found in known biological processes and in their connections and that protein complexes play an important role in these patterns. The monochromatic processes, complexes and connections we find chart a hierarchical and modular map of sensitive and redundant biological systems in the yeast cell that will be useful for gene function prediction and comparison across phenotypes and organisms. Furthermore the analysis methods we develop are applicable to other species for which genetic interactions will progressively become more

  7. Muscle Lim Protein and myosin binding protein C form a complex regulating muscle differentiation.

    Science.gov (United States)

    Arvanitis, Demetrios A; Vafiadaki, Elizabeth; Papalouka, Vasiliki; Sanoudou, Despina

    2017-12-01

    Muscle Lim Protein (MLP) is a protein with multiple functional roles in striated muscle physiology and pathophysiology. Herein, we demonstrate that MLP directly binds to slow, fast, and cardiac myosin-binding protein C (MyBP-C) during myogenesis, as shown by yeast two-hybrid and a range of protein-protein interaction assays. The minimal interacting domains involve MLP inter-LIM and MyBP-C [C4]. The interaction is sensitive to cytosolic Ca 2+ concentrations changes and to MyBP-C phosphorylation by PKA or CaMKII. Confocal microscopy of differentiating myoblasts showed MLP and MyBP-C colocalization during myoblast differentiation. Suppression of the complex formation with recombinant MyBP-C [C4] peptide overexpression, inhibited myoblast differentiation by 65%. Suppression of both MLP and MyBP-C expression in myoblasts by siRNA revealed negative synergistic effects on differentiation. The MLP/MyBP-C complex modulates the actin activated myosin II ATPase activity in vitro, which could interfere with sarcomerogenesis and myofilaments assembly during differentiation. Our data demonstrate a critical role of the MLP/MyBP-C complex during early myoblast differentiation. Its absence in muscles with mutations or aberrant expression of MLP or MyBP-C could be directly implicated in the development of cardiac and skeletal myopathies. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Major histocompatibility complex I proteins in brain development and plasticity

    Science.gov (United States)

    Elmer, Bradford M.; McAllister, A. Kimberley

    2012-01-01

    Proper development of the central nervous system (CNS) requires the establishment of appropriate connections between neurons. Recent work suggests that this process is controlled by a balance between synaptogenic molecules and proteins that negatively regulate synapse formation and plasticity. Surprisingly, many of these newly identified synapse-limiting molecules are classic “immune” proteins. In particular, major histocompatibility complex class I (MHCI) molecules regulate neurite outgrowth, the establishment and function of cortical connections, activity-dependent refinement in the visual system, and long-term and homeostatic plasticity. This review summarizes our current understanding of MHCI expression and function in the CNS, as well as the potential mechanisms used by MHCI to regulate brain development and plasticity. PMID:22939644

  9. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology.

    Science.gov (United States)

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-03-22

    A protein complex consists of two or more proteins that are linked together through protein-protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples.

  10. Structure and function analysis of protein-nucleic acid complexes

    Science.gov (United States)

    Kuznetsova, S. A.; Oretskaya, T. S.

    2016-05-01

    The review summarizes published data on the results and achievements in the field of structure and function analysis of protein-nucleic acid complexes by means of main physical and biochemical methods, including X-ray diffraction, nuclear magnetic resonance spectroscopy, electron and atomic force microscopy, small-angle X-ray and neutron scattering, footprinting and cross-linking. Special attention is given to combined approaches. The advantages and limitations of each method are considered, and the prospects of their application for wide-scale structural studies in vivo are discussed. The bibliography includes 145 references.

  11. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    International Nuclear Information System (INIS)

    Nielsen, Anders Lade

    2009-01-01

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of γ-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as β-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  12. Proximity probing assays for simultaneous visualization of protein complexes in situ

    DEFF Research Database (Denmark)

    Moreira, José; Thorsen, Stine Buch; Brünner, Nils

    2013-01-01

    for understanding the biological role(s) of protein complexes and may open new opportunities to improve clinical biomarker research. Leuchowius et al. describe an improved proximity ligation assay for in situ detection of protein complexes, which is able to detect and quantify several protein complexes...

  13. Distribution of adenosine deaminase complexing protein (ADCP) in human tissues.

    Science.gov (United States)

    Dinjens, W N; ten Kate, J; van der Linden, E P; Wijnen, J T; Khan, P M; Bosman, F T

    1989-12-01

    The normal distribution of adenosine deaminase complexing protein (ADCP) in the human body was investigated quantitatively by ADCP-specific radioimmunoassay (RIA) and qualitatively by immunohistochemistry. In these studies we used a specific rabbit anti-human ADCP antiserum. In all 19 investigated tissues, except erythrocytes, ADCP was found by RIA in the soluble and membrane fractions. From all tissues the membrane fractions contained more ADCP (expressed per mg protein) than the soluble fractions. High membrane ADCP concentrations were found in skin, renal cortex, gastrointestinal tract, and prostate. Immunoperoxidase staining confirmed the predominant membrane-associated localization of the protein. In serous sweat glands, convoluted tubules of renal cortex, bile canaliculi, gastrointestinal tract, lung, pancreas, prostate gland, salivary gland, gallbladder, mammary gland, and uterus, ADCP immunoreactivity was found confined to the luminal membranes of the epithelial cells. These data demonstrate that ADCP is present predominantly in exocrine glands and absorptive epithelia. The localization of ADCP at the secretory or absorptive apex of the cells suggests that the function of ADCP is related to the secretory and/or absorptive process.

  14. Luminescent lanthanide complexes as analytical tools in anion sensing, pH indication and protein recognition.

    Science.gov (United States)

    Shinoda, Satoshi; Tsukube, Hiroshi

    2011-02-07

    Although lanthanide complexes are recently used in luminescence labeling of bio-targets, this review focuses on sensing profiles of synthetic and biological lanthanide complexes. Rational design and combinatorial screening approaches toward synthetic lanthanide complexes applicable as luminescent sensing materials are described. Iron-carrying transferrin and ferritin proteins further form lanthanide complexes working as pH indicators and protein recognition reagents.

  15. PROXiMATE: a database of mutant protein-protein complex thermodynamics and kinetics.

    Science.gov (United States)

    Jemimah, Sherlyn; Yugandhar, K; Michael Gromiha, M

    2017-09-01

    We have developed PROXiMATE, a database of thermodynamic data for more than 6000 missense mutations in 174 heterodimeric protein-protein complexes, supplemented with interaction network data from STRING database, solvent accessibility, sequence, structural and functional information, experimental conditions and literature information. Additional features include complex structure visualization, search and display options, download options and a provision for users to upload their data. The database is freely available at http://www.iitm.ac.in/bioinfo/PROXiMATE/ . The website is implemented in Python, and supports recent versions of major browsers such as IE10, Firefox, Chrome and Opera. gromiha@iitm.ac.in. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. The Search Engine for Multi-Proteoform Complexes: An Online Tool for the Identification and Stoichiometry Determination of Protein Complexes.

    Science.gov (United States)

    Skinner, Owen S; Schachner, Luis F; Kelleher, Neil L

    2016-12-08

    Recent advances in top-down mass spectrometry using native electrospray now enable the analysis of intact protein complexes with relatively small sample amounts in an untargeted mode. Here, we describe how to characterize both homo- and heteropolymeric complexes with high molecular specificity using input data produced by tandem mass spectrometry of whole protein assemblies. The tool described is a "search engine for multi-proteoform complexes," (SEMPC) and is available for free online. The output is a list of candidate multi-proteoform complexes and scoring metrics, which are used to define a distinct set of one or more unique protein subunits, their overall stoichiometry in the intact complex, and their pre- and post-translational modifications. Thus, we present an approach for the identification and characterization of intact protein complexes from native mass spectrometry data. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  17. Structural Interface Forms and Their Involvement in Stabilization of Multidomain Proteins or Protein Complexes

    Directory of Open Access Journals (Sweden)

    Jacek Dygut

    2016-10-01

    Full Text Available The presented analysis concerns the inter-domain and inter-protein interface in protein complexes. We propose extending the traditional understanding of the protein domain as a function of local compactness with an additional criterion which refers to the presence of a well-defined hydrophobic core. Interface areas in selected homodimers vary with respect to their contribution to share as well as individual (domain-specific hydrophobic cores. The basic definition of a protein domain, i.e., a structural unit characterized by tighter packing than its immediate environment, is extended in order to acknowledge the role of a structured hydrophobic core, which includes the interface area. The hydrophobic properties of interfaces vary depending on the status of interacting domains—In this context we can distinguish: (1 Shared hydrophobic cores (spanning the whole dimer; (2 Individual hydrophobic cores present in each monomer irrespective of whether the dimer contains a shared core. Analysis of interfaces in dystrophin and utrophin indicates the presence of an additional quasi-domain with a prominent hydrophobic core, consisting of fragments contributed by both monomers. In addition, we have also attempted to determine the relationship between the type of interface (as categorized above and the biological function of each complex. This analysis is entirely based on the fuzzy oil drop model.

  18. Single Molecule Spectroscopy on Photosynthetic Pigment-Protein Complexes

    CERN Document Server

    Jelezko, F; Schuler, S; Thews, E; Tietz, C; Wechsler, A; Wrachtrup, J

    2001-01-01

    Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of t...

  19. Translation initiation mediated by nuclear cap-binding protein complex.

    Science.gov (United States)

    Ryu, Incheol; Kim, Yoon Ki

    2017-04-01

    In mammals, cap-dependent translation of mRNAs is initiated by two distinct mechanisms: cap-binding complex (CBC; a heterodimer of CBP80 and 20)-dependent translation (CT) and eIF4E-dependent translation (ET). Both translation initiation mechanisms share common features in driving cap- dependent translation; nevertheless, they can be distinguished from each other based on their molecular features and biological roles. CT is largely associated with mRNA surveillance such as nonsense-mediated mRNA decay (NMD), whereas ET is predominantly involved in the bulk of protein synthesis. However, several recent studies have demonstrated that CT and ET have similar roles in protein synthesis and mRNA surveillance. In a subset of mRNAs, CT preferentially drives the cap-dependent translation, as ET does, and ET is responsible for mRNA surveillance, as CT does. In this review, we summarize and compare the molecular features of CT and ET with a focus on the emerging roles of CT in translation. [BMB Reports 2017; 50(4): 186-193].

  20. Solving structures of protein complexes by molecular replacement with Phaser

    International Nuclear Information System (INIS)

    McCoy, Airlie J.

    2006-01-01

    Four case studies in using maximum-likelihood molecular replacement, as implemented in the program Phaser, to solve structures of protein complexes are described. Molecular replacement (MR) generally becomes more difficult as the number of components in the asymmetric unit requiring separate MR models (i.e. the dimensionality of the search) increases. When the proportion of the total scattering contributed by each search component is small, the signal in the search for each component in isolation is weak or non-existent. Maximum-likelihood MR functions enable complex asymmetric units to be built up from individual components with a ‘tree search with pruning’ approach. This method, as implemented in the automated search procedure of the program Phaser, has been very successful in solving many previously intractable MR problems. However, there are a number of cases in which the automated search procedure of Phaser is suboptimal or encounters difficulties. These include cases where there are a large number of copies of the same component in the asymmetric unit or where the components of the asymmetric unit have greatly varying B factors. Two case studies are presented to illustrate how Phaser can be used to best advantage in the standard ‘automated MR’ mode and two case studies are used to show how to modify the automated search strategy for problematic cases

  1. Protein Loop Dynamics Are Complex and Depend on the Motions of the Whole Protein

    Directory of Open Access Journals (Sweden)

    Michael T. Zimmermann

    2012-04-01

    Full Text Available We investigate the relationship between the motions of the same peptide loop segment incorporated within a protein structure and motions of free or end-constrained peptides. As a reference point we also compare against alanine chains having the same length as the loop. Both the analysis of atomic molecular dynamics trajectories and structure-based elastic network models, reveal no general dependence on loop length or on the number of solvent exposed residues. Rather, the whole structure affects the motions in complex ways that depend strongly and specifically on the tertiary structure of the whole protein. Both the Elastic Network Models and Molecular Dynamics confirm the differences in loop dynamics between the free and structured contexts; there is strong agreement between the behaviors observed from molecular dynamics and the elastic network models. There is no apparent simple relationship between loop mobility and its size, exposure, or position within a loop. Free peptides do not behave the same as the loops in the proteins. Surface loops do not behave as if they were random coils, and the tertiary structure has a critical influence upon the apparent motions. This strongly implies that entropy evaluation of protein loops requires knowledge of the motions of the entire protein structure.

  2. Cloning, overexpression and purification of functionally active Saccharomyces cerevisiae Hop1 protein from Escherichia coli.

    Science.gov (United States)

    Khan, Krishnendu; Madhavan, T P Vipin; Muniyappa, K

    2010-07-01

    One of the major limitations to the application of high-resolution biophysical techniques such as X-crystallography and spectroscopic analyses to structure-function studies of Saccharomyces cerevisiae Hop1 protein has been the non-availability of sufficient quantities of functionally active pure protein. This has, indeed, been the case of many proteins, including yeast synaptonemal complex proteins. In this study, we have performed expression screening in Escherichia coli host strains, capable of high-level expression of soluble S. cerevisiae Hop1 protein. A new protocol has been developed for expression and purification of S. cerevisiae Hop1 protein, based on the presence of hexa-histidine tag and double-stranded DNA-Cellulose chromatography. Recombinant S. cerevisiae Hop1 protein was >98% pure and exhibited DNA-binding activity with high-affinity to the Holliday junction. The availability of the recombinant HOP1 expression vector and active Hop1 protein would facilitate structure-function investigations as well as the generation of appropriate truncated and site-directed mutant proteins, respectively. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Stimulation of DNA Glycosylase Activities by XPC Protein Complex: Roles of Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Yuichiro Shimizu

    2010-01-01

    Full Text Available We showed that XPC complex, which is a DNA damage detector for nucleotide excision repair, stimulates activity of thymine DNA glycosylase (TDG that initiates base excision repair. XPC appeared to facilitate the enzymatic turnover of TDG by promoting displacement from its own product abasic site, although the precise mechanism underlying this stimulation has not been clarified. Here we show that XPC has only marginal effects on the activity of E. coli TDG homolog (EcMUG, which remains bound to the abasic site like human TDG but does not significantly interacts with XPC. On the contrary, XPC significantly stimulates the activities of sumoylated TDG and SMUG1, both of which exhibit quite different enzymatic kinetics from unmodified TDG but interact with XPC. These results point to importance of physical interactions for stimulation of DNA glycosylases by XPC and have implications in the molecular mechanisms underlying mutagenesis and carcinogenesis in XP-C patients.

  4. Development of a system for the study of protein-protein interactions in planta: characterization of a TATA-box binding protein complex in Oryza sativa.

    Science.gov (United States)

    Zhong, Jingping; Haynes, Paul A; Zhang, Shiping; Yang, Xinping; Andon, Nancy L; Eckert, Donna; Yates, John R; Wang, Xun; Budworth, Paul

    2003-01-01

    We describe a simple, rapid method for protein complex purification in planta. Using a biotin peptide as an affinity tag with TATA-box binding protein (TBP), 86 unique proteins present in the purified complex were identified by tandem mass spectrometry. We identified proteins known to be associated with TBP, and many other proteins involved in pre-mRNA processing and chromatin remodeling. The identification of these novel protein-protein associations will upon further investigations provide new insights into the mechanisms of mRNA transcription and pre-mRNA processing.

  5. INFLUENCE OF NATURAL ADDITIVES ON PROTEIN COMPLEX OF BREAD

    Directory of Open Access Journals (Sweden)

    Dana Urminská

    2010-11-01

    Full Text Available The study focuses on researching the influence of natural additives on certain technological characteristics of mixtures used for bread production, more particularly the influence of N substances in used raw material on selected qualitative parameters of bread. The blends for bread production to be analysed were prepared by mixing wheat flour with an addition of oat, buckwheat, lentil and chickpea wholegrain flour in different portions (10, 20, 30, 40 and 50 %. The experiment showed that the addition of natural additives worsened the protein complex of the blends used in bread production (worsening also qualitative parameters known as product volume. The loaves prepared with an addition of buckwheat, oat, lentil and chickpea were evaluated to be of a lesser quality from a technological viewpoint when compared with pure wheat loaves. The lower content of gluten forming proteins and the generally changed protein composition of blends due to additives caused a lower percentage of wet gluten content, its lower extensibility and swelling capacity. The sedimentation value (Zeleny index decreased proportionally with the increase of addition until the level was unsatisfactory for raw material intended for bakery purposes. The N content in experimental loaves was higher than in the reference loaves and it increased according to the selected additive and its portion in the blend (more with the addition of lentil and chickpea, less in case of buckwheat and oat which is considered as positive from a nutritional point of view. But from the technological point of view the additives did not show any positive influence and caused a lower loaf bread volume. The most significant decrease of the loaf bread volume was found with the addition of 50 % of buckwheat (- 45.6 %. Better results were obtained with a lower portion of the additive: loaf with an addition of 30 % of chickpea (volume decreased by 12.8 % > loaf with an addition of 30 % of lentil (volume

  6. Study on protein conformation and adsorption behaviors in nanodiamond particle-protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Haidong [Department of Biomedical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Niu, Catherine Hui [Department of Chemical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Yang Qiaoqin [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Badea, Ildiko, E-mail: catherine.niu@usask.ca [Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, S7N 5C9 (Canada)

    2011-04-08

    In the present research, the conformation of bovine serum albumin (BSA) in the nanodiamond particle (ND)-BSA complex was studied by Fourier transform infrared spectroscopy, fluorescence spectroscopy, UV-vis spectroscopy, and circular dichroism spectroscopy. The spectroscopic study revealed that most BSA structural features could be preserved in the complex though the BSA underwent conformational changes in the complex due to ND-BSA interaction. In addition, BSA adsorption isotherms and zeta-potential measurements were employed to investigate the pH dependence of the ND-BSA interaction. The changes in surface charge of the ND-BSA complex with pH variations indicated that the binding of BSA to ND might lead to not only the adsorption of BSA onto the ND surface but also the partial breakup of ND aggregates into relatively small ND-BSA aggregates because of the strong binding force between ND and BSA. The results show that ND is an excellent platform for protein immobilization with high affinity and holds great potential to be used for biosensor applications.

  7. Adenosine deaminase complexing protein (ADCP) immunoreactivity in colorectal adenocarcinoma.

    Science.gov (United States)

    ten Kate, J; van den Ingh, H F; Khan, P M; Bosman, F T

    1986-04-15

    Immunoreactive adenosine deaminase complexing protein (ADCP) was studied in 91 human colorectal adenocarcinomas. The expression of ADCP was correlated with that of secretory component (SC) and carcinoembryonic antigen (CEA), with the histological grade and the Dukes' stage of the carcinomas. The histological grade was scored semi-quantitatively according to 5 structural and 4 cytological variables. ADCP expression was observed in 3 different staining patterns, namely: (1) diffuse cytoplasmic (77% of the carcinomas); (2) granular cytoplasmic (13%); and (3) membrane-associated (66%). These patterns were observed alone or in combination. Eleven percent of the carcinomas exhibited no ADCP immunoreactivity. Linear regression analysis showed that the expression of ADCP correlates with that of SC and CEA. However, no significant correlation emerged between the histological parameters or the Dukes' stage and any of the immunohistological parameters. Comparison of the histological characteristics of carcinomas exhibiting little or no ADCP immunoreactivity with those showing extensive immunoreactivity, showed that membranous ADCP immunoreactivity occurs more frequently in well-differentiated carcinomas. Structural parameters showed a better correlation with membranous ADCP expression than the cytological variables. It is concluded that membranous expression of ADCP and CEA are indicators of a high level of differentiation as reflected primarily in the structural characteristics of the tumor.

  8. Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks.

    Science.gov (United States)

    Kobayashi, Naoya; Arai, Ryoichi

    2017-08-01

    The central goal of nanobiotechnology is to design and construct novel biomaterials of nanometer sizes. In this short review, we describe recent progress of several approaches for designing and creating artificial self-assembling protein complexes and primarily focus on the following biotechnological strategies for using artificial and fusion proteins as nanoscale building blocks: fusion proteins designed for symmetrical self-assembly; three-dimensional domain-swapped oligomers; self-assembling designed coiled-coil peptide modules; metal-directed self-assembling engineered proteins; computationally designed self-assembling de novo proteins; and self-assembling protein nanobuilding blocks (PN-Blocks) using an intermolecularly folded dimeric de novo protein. These state-of-the-art nanobiotechnologies for designing supramolecular protein complexes will facilitate the development of novel functional nanobiomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Site-specific covalent attachment of DNA to proteins using a photoactivatable Tus-Ter complex.

    Science.gov (United States)

    Dahdah, Dahdah B; Morin, Isabelle; Moreau, Morgane J J; Dixon, Nicholas E; Schaeffer, Patrick M

    2009-06-07

    Investigations into the photocrosslinking kinetics of the protein Tus with various bromodeoxyuridine-substituted Ter DNA variants highlight the potential use of this complex as a photoactivatable connector between proteins of interest and specific DNA sequences.

  10. Cationic versus anionic surfactant in tuning the structure and interaction of nanoparticle, protein, and surfactant complexes.

    Science.gov (United States)

    Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim

    2014-08-26

    The structure and interaction in complexes of anionic Ludox HS40 silica nanoparticle, anionic bovine serum albumin (BSA) protein, and cationic dodecyl trimethylammonium bromide (DTAB) surfactant have been studied using small-angle neutron scattering (SANS). The results are compared with similar complexes having anionic sodium dodecyl sulfate (SDS) surfactant (Mehan, S; Chinchalikar, A. J.; Kumar, S.; Aswal, V. K.; Schweins, R. Langmuir 2013, 29, 11290). In both cases (DTAB and SDS), the structure in nanoparticle-protein-surfactant complexes is predominantly determined by the interactions of the individual two-component systems. The nanoparticle-surfactant (mediated through protein-surfactant complex) and protein-surfactant interactions for DTAB, but nanoparticle-protein (mediated through protein-surfactant complex) and protein-surfactant interactions for SDS, are found to be responsible for the resultant structure of nanoparticle-protein-surfactant complexes. Irrespective of the charge on the surfactant, the cooperative binding of surfactant with protein leads to micellelike clusters of surfactant formed along the unfolded protein chain. The adsorption of these protein-surfactant complexes for DTAB on oppositely charged nanoparticles gives rise to the protein-surfactant complex-mediated aggregation of nanoparticles (similar to that of DTAB surfactant). It is unlike that of depletion-induced aggregation of nanoparticles with nonadsorption of protein-surfactant complexes for SDS in similarly charged nanoparticle systems (similar to that of protein alone). The modifications in nanoparticle aggregation as well as unfolding of protein in these systems as compared to the corresponding two-component systems have also been examined by selectively contrast matching the constituents.

  11. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    Science.gov (United States)

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method.

  12. Isotope Coded Protein Labeling Coupled Immunoprecipitation (ICPL-IP): A Novel Approach for Quantitative Protein Complex Analysis From Native Tissue*

    Science.gov (United States)

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-01-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms—including humans—are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)1 with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method. PMID:23268931

  13. A Type-2 fuzzy data fusion approach for building reliable weighted protein interaction networks with application in protein complex detection.

    Science.gov (United States)

    Mehranfar, Adele; Ghadiri, Nasser; Kouhsar, Morteza; Golshani, Ashkan

    2017-09-01

    Detecting the protein complexes is an important task in analyzing the protein interaction networks. Although many algorithms predict protein complexes in different ways, surveys on the interaction networks indicate that about 50% of detected interactions are false positives. Consequently, the accuracy of existing methods needs to be improved. In this paper we propose a novel algorithm to detect the protein complexes in 'noisy' protein interaction data. First, we integrate several biological data sources to determine the reliability of each interaction and determine more accurate weights for the interactions. A data fusion component is used for this step, based on the interval type-2 fuzzy voter that provides an efficient combination of the information sources. This fusion component detects the errors and diminishes their effect on the detection protein complexes. So in the first step, the reliability scores have been assigned for every interaction in the network. In the second step, we have proposed a general protein complex detection algorithm by exploiting and adopting the strong points of other algorithms and existing hypotheses regarding real complexes. Finally, the proposed method has been applied for the yeast interaction datasets for predicting the interactions. The results show that our framework has a better performance regarding precision and F-measure than the existing approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Observation of two different fractal structures in nanoparticle, protein and surfactant complexes

    International Nuclear Information System (INIS)

    Mehan, Sumit; Kumar, Sugam; Aswal, V. K.

    2014-01-01

    Small angle neutron scattering has been carried out from a complex of nanoparticle, protein and surfactant. Although all the components are similarly (anionic) charged, we have observed strong interactions in their complex formation. It is characterized by the coexistence of two different mass fractal structures. The first fractal structure is originated from the protein and surfactant interaction and second from the depletion effect of first fractal structure leading the nanoparticle aggregation. The fractal structure of protein-surfactant complex represents to bead necklace structure of micelle-like clusters of surfactant formed along the unfolded protein chain. Its fractal dimension depends on the surfactant to protein ratio (r) and decreases with the increase in r. However, fractal dimension of nanoparticle aggregates in nanoparticle-protein complex is found to be independent of protein concentration and governed by the diffusion limited aggregation like morphology

  15. Identification of Protein Complexes Using Weighted PageRank-Nibble Algorithm and Core-Attachment Structure.

    Science.gov (United States)

    Peng, Wei; Wang, Jianxin; Zhao, Bihai; Wang, Lusheng

    2015-01-01

    Protein complexes play a significant role in understanding the underlying mechanism of most cellular functions. Recently, many researchers have explored computational methods to identify protein complexes from protein-protein interaction (PPI) networks. One group of researchers focus on detecting local dense subgraphs which correspond to protein complexes by considering local neighbors. The drawback of this kind of approach is that the global information of the networks is ignored. Some methods such as Markov Clustering algorithm (MCL), PageRank-Nibble are proposed to find protein complexes based on random walk technique which can exploit the global structure of networks. However, these methods ignore the inherent core-attachment structure of protein complexes and treat adjacent node equally. In this paper, we design a weighted PageRank-Nibble algorithm which assigns each adjacent node with different probability, and propose a novel method named WPNCA to detect protein complex from PPI networks by using weighted PageRank-Nibble algorithm and core-attachment structure. Firstly, WPNCA partitions the PPI networks into multiple dense clusters by using weighted PageRank-Nibble algorithm. Then the cores of these clusters are detected and the rest of proteins in the clusters will be selected as attachments to form the final predicted protein complexes. The experiments on yeast data show that WPNCA outperforms the existing methods in terms of both accuracy and p-value. The software for WPNCA is available at "http://netlab.csu.edu.cn/bioinfomatics/weipeng/WPNCA/download.html".

  16. Supervised maximum-likelihood weighting of composite protein networks for complex prediction

    Directory of Open Access Journals (Sweden)

    Yong Chern Han

    2012-12-01

    Full Text Available Abstract Background Protein complexes participate in many important cellular functions, so finding the set of existent complexes is essential for understanding the organization and regulation of processes in the cell. With the availability of large amounts of high-throughput protein-protein interaction (PPI data, many algorithms have been proposed to discover protein complexes from PPI networks. However, such approaches are hindered by the high rate of noise in high-throughput PPI data, including spurious and missing interactions. Furthermore, many transient interactions are detected between proteins that are not from the same complex, while not all proteins from the same complex may actually interact. As a result, predicted complexes often do not match true complexes well, and many true complexes go undetected. Results We address these challenges by integrating PPI data with other heterogeneous data sources to construct a composite protein network, and using a supervised maximum-likelihood approach to weight each edge based on its posterior probability of belonging to a complex. We then use six different clustering algorithms, and an aggregative clustering strategy, to discover complexes in the weighted network. We test our method on Saccharomyces cerevisiae and Homo sapiens, and show that complex discovery is improved: compared to previously proposed supervised and unsupervised weighting approaches, our method recalls more known complexes, achieves higher precision at all recall levels, and generates novel complexes of greater functional similarity. Furthermore, our maximum-likelihood approach allows learned parameters to be used to visualize and evaluate the evidence of novel predictions, aiding human judgment of their credibility. Conclusions Our approach integrates multiple data sources with supervised learning to create a weighted composite protein network, and uses six clustering algorithms with an aggregative clustering strategy to

  17. Tuning structure of oppositely charged nanoparticle and protein complexes

    Science.gov (United States)

    Kumar, Sugam; Aswal, V. K.; Callow, P.

    2014-04-01

    Small-angle neutron scattering (SANS) has been used to probe the structures of anionic silica nanoparticles (LS30) and cationic lyszyme protein (M.W. 14.7kD, I.P. ˜ 11.4) by tuning their interaction through the pH variation. The protein adsorption on nanoparticles is found to be increasing with pH and determined by the electrostatic attraction between two components as well as repulsion between protein molecules. We show the strong electrostatic attraction between nanoparticles and protein molecules leads to protein-mediated aggregation of nanoparticles which are characterized by fractal structures. At pH 5, the protein adsorption gives rise to nanoparticle aggregation having surface fractal morphology with close packing of nanoparticles. The surface fractals transform to open structures of mass fractal morphology at higher pH (7 and 9) on approaching isoelectric point (I.P.).

  18. Tuning structure of oppositely charged nanoparticle and protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K., E-mail: sugam@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Callow, P. [Institut Laue Langevin, DS/LSS, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9 (France)

    2014-04-24

    Small-angle neutron scattering (SANS) has been used to probe the structures of anionic silica nanoparticles (LS30) and cationic lyszyme protein (M.W. 14.7kD, I.P. ∼ 11.4) by tuning their interaction through the pH variation. The protein adsorption on nanoparticles is found to be increasing with pH and determined by the electrostatic attraction between two components as well as repulsion between protein molecules. We show the strong electrostatic attraction between nanoparticles and protein molecules leads to protein-mediated aggregation of nanoparticles which are characterized by fractal structures. At pH 5, the protein adsorption gives rise to nanoparticle aggregation having surface fractal morphology with close packing of nanoparticles. The surface fractals transform to open structures of mass fractal morphology at higher pH (7 and 9) on approaching isoelectric point (I.P.)

  19. Tuning structure of oppositely charged nanoparticle and protein complexes

    International Nuclear Information System (INIS)

    Kumar, Sugam; Aswal, V. K.; Callow, P.

    2014-01-01

    Small-angle neutron scattering (SANS) has been used to probe the structures of anionic silica nanoparticles (LS30) and cationic lyszyme protein (M.W. 14.7kD, I.P. ∼ 11.4) by tuning their interaction through the pH variation. The protein adsorption on nanoparticles is found to be increasing with pH and determined by the electrostatic attraction between two components as well as repulsion between protein molecules. We show the strong electrostatic attraction between nanoparticles and protein molecules leads to protein-mediated aggregation of nanoparticles which are characterized by fractal structures. At pH 5, the protein adsorption gives rise to nanoparticle aggregation having surface fractal morphology with close packing of nanoparticles. The surface fractals transform to open structures of mass fractal morphology at higher pH (7 and 9) on approaching isoelectric point (I.P.)

  20. Adenosine deaminase complexing protein (ADCP): a transformation sensitive protein with potentials of a cancer marker.

    Science.gov (United States)

    Herbschleb-Voogt, E; Ten Kate, J; Meera Khan, P

    1983-01-01

    Several observations by independent investigators in the past have indicated that adenosine deaminase complexing protein (ADCP), present in considerable quantities in certain human tissues, was absent or decreased in the cancers originated from them. During the present study, electrophoretic analysis of adenosine deaminase (ADA) isozymes and radioimmunoassay for ADCP in the primary fibroblasts and the transformed as well as certain tumor derived cell lines have demonstrated that ADCP present in large quantities in the primary cells was absent or nearly absent in the transformed or tumor-derived cell lines. Though the mechanisms involved are not yet clear, the above observations indicate that ADCP has the potentials of a useful marker in the studies on transformed cells and cancer tissues.

  1. A Proteomic Strategy for Global Analysis of Plant Protein Complexes[W][OPEN

    Science.gov (United States)

    Aryal, Uma K.; Xiong, Yi; McBride, Zachary; Kihara, Daisuke; Xie, Jun; Hall, Mark C.; Szymanski, Daniel B.

    2014-01-01

    Global analyses of protein complex assembly, composition, and location are needed to fully understand how cells coordinate diverse metabolic, mechanical, and developmental activities. The most common methods for proteome-wide analysis of protein complexes rely on affinity purification-mass spectrometry or yeast two-hybrid approaches. These methods are time consuming and are not suitable for many plant species that are refractory to transformation or genome-wide cloning of open reading frames. Here, we describe the proof of concept for a method allowing simultaneous global analysis of endogenous protein complexes that begins with intact leaves and combines chromatographic separation of extracts from subcellular fractions with quantitative label-free protein abundance profiling by liquid chromatography-coupled mass spectrometry. Applying this approach to the crude cytosolic fraction of Arabidopsis thaliana leaves using size exclusion chromatography, we identified hundreds of cytosolic proteins that appeared to exist as components of stable protein complexes. The reliability of the method was validated by protein immunoblot analysis and comparisons with published size exclusion chromatography data and the masses of known complexes. The method can be implemented with appropriate instrumentation, is applicable to any biological system, and has the potential to be further developed to characterize the composition of protein complexes and measure the dynamics of protein complex localization and assembly under different conditions. PMID:25293756

  2. Discovering overlapped protein complexes from weighted PPI networks by removing inter-module hubs.

    Science.gov (United States)

    Maddi, A M A; Eslahchi, Ch

    2017-06-12

    Detecting known protein complexes and predicting undiscovered protein complexes from protein-protein interaction (PPI) networks help us to understand principles of cell organization and its functions. Nevertheless, the discovery of protein complexes based on experiment still needs to be explored. Therefore, computational methods are useful approaches to overcome the experimental limitations. Nevertheless, extraction of protein complexes from PPI network is often nontrivial. Two major constraints are large amount of noise and ignorance of occurrence time of different interactions in PPI network. In this paper, an efficient algorithm, Inter Module Hub Removal Clustering (IMHRC), is developed based on inter-module hub removal in the weighted PPI network which can detect overlapped complexes. By removing some of the inter-module hubs and module hubs, IMHRC eliminates high amount of noise in dataset and implicitly considers different occurrence time of the PPI in network. The performance of the IMHRC was evaluated on several benchmark datasets and results were compared with some of the state-of-the-art models. The protein complexes discovered with the IMHRC method show significantly better agreement with the real complexes than other current methods. Our algorithm provides an accurate and scalable method for detecting and predicting protein complexes from PPI networks.

  3. Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2.

    Science.gov (United States)

    Kovács, Krisztián A; Steinmann, Myriam; Halfon, Olivier; Magistretti, Pierre J; Cardinaux, Jean-René

    2015-11-01

    CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2

    KAUST Repository

    Kovács, Krisztián A.

    2015-11-01

    CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis. © 2015 Elsevier Inc.

  5. Identification and characterization of stable membrane protein complexes

    NARCIS (Netherlands)

    Spelbrink, R.E.J.

    2007-01-01

    Many membrane proteins exist as oligomers. Such oligomers play an important role in a broad variety of cellular processes such as ion transport, energy transduction, osmosensing and cell wall synthesis. We developed an electrophoresis-based method of identifying oligomeric membrane proteins that are

  6. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    Science.gov (United States)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  7. Discovery of protein complexes with core-attachment structures from Tandem Affinity Purification (TAP) data.

    Science.gov (United States)

    Wu, Min; Li, Xiao-Li; Kwoh, Chee-Keong; Ng, See-Kiong; Wong, Limsoon

    2012-09-01

    Many cellular functions involve protein complexes that are formed by multiple interacting proteins. Tandem Affinity Purification (TAP) is a popular experimental method for detecting such multi-protein interactions. However, current computational methods that predict protein complexes from TAP data require converting the co-complex relationships in TAP data into binary interactions. The resulting pairwise protein-protein interaction (PPI) network is then mined for densely connected regions that are identified as putative protein complexes. Converting the TAP data into PPI data not only introduces errors but also loses useful information about the underlying multi-protein relationships that can be exploited to detect the internal organization (i.e., core-attachment structures) of protein complexes. In this article, we propose a method called CACHET that detects protein complexes with Core-AttaCHment structures directly from bipartitETAP data. CACHET models the TAP data as a bipartite graph in which the two vertex sets are the baits and the preys, respectively. The edges between the two vertex sets represent bait-prey relationships. CACHET first focuses on detecting high-quality protein-complex cores from the bipartite graph. To minimize the effects of false positive interactions, the bait-prey relationships are indexed with reliability scores. Only non-redundant, reliable bicliques computed from the TAP bipartite graph are regarded as protein-complex cores. CACHET constructs protein complexes by including attachment proteins into the cores. We applied CACHET on large-scale TAP datasets and found that CACHET outperformed existing methods in terms of prediction accuracy (i.e., F-measure and functional homogeneity of predicted complexes). In addition, the protein complexes predicted by CACHET are equipped with core-attachment structures that provide useful biological insights into the inherent functional organization of protein complexes. Our supplementary material can

  8. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    International Nuclear Information System (INIS)

    Paulin, Sarah; Rosado, Helena; Taylor, Peter W; Jamshad, Mohammed; Dafforn, Timothy R; Garcia-Lara, Jorge; Foster, Simon J; Galley, Nicola F; Roper, David I

    2014-01-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function. (paper)

  9. Topological properties of complex networks in protein structures

    Science.gov (United States)

    Kim, Kyungsik; Jung, Jae-Won; Min, Seungsik

    2014-03-01

    We study topological properties of networks in structural classification of proteins. We model the native-state protein structure as a network made of its constituent amino-acids and their interactions. We treat four structural classes of proteins composed predominantly of α helices and β sheets and consider several proteins from each of these classes whose sizes range from amino acids of the Protein Data Bank. Particularly, we simulate and analyze the network metrics such as the mean degree, the probability distribution of degree, the clustering coefficient, the characteristic path length, the local efficiency, and the cost. This work was supported by the KMAR and DP under Grant WISE project (153-3100-3133-302-350).

  10. Predicting protein complexes using a supervised learning method combined with local structural information.

    Science.gov (United States)

    Dong, Yadong; Sun, Yongqi; Qin, Chao

    2018-01-01

    The existing protein complex detection methods can be broadly divided into two categories: unsupervised and supervised learning methods. Most of the unsupervised learning methods assume that protein complexes are in dense regions of protein-protein interaction (PPI) networks even though many true complexes are not dense subgraphs. Supervised learning methods utilize the informative properties of known complexes; they often extract features from existing complexes and then use the features to train a classification model. The trained model is used to guide the search process for new complexes. However, insufficient extracted features, noise in the PPI data and the incompleteness of complex data make the classification model imprecise. Consequently, the classification model is not sufficient for guiding the detection of complexes. Therefore, we propose a new robust score function that combines the classification model with local structural information. Based on the score function, we provide a search method that works both forwards and backwards. The results from experiments on six benchmark PPI datasets and three protein complex datasets show that our approach can achieve better performance compared with the state-of-the-art supervised, semi-supervised and unsupervised methods for protein complex detection, occasionally significantly outperforming such methods.

  11. The effect of protein complexation on the mechanical stability of Im9.

    Science.gov (United States)

    Hann, Eleanore; Kirkpatrick, Nadine; Kleanthous, Colin; Smith, D Alastair; Radford, Sheena E; Brockwell, David J

    2007-05-01

    Force mode microscopy can be used to examine the effect of mechanical manipulation on the noncovalent interactions that stabilize proteins and their complexes. Here we describe the effect of complexation by the high affinity protein ligand E9 on the mechanical resistance of the simple four-helical protein, Im9. When concatenated into a construct of alternating I27 domains, Im9 unfolded below the thermal noise limit of the instrument ( approximately 20 pN). Complexation of E9 had little effect on the mechanical resistance of Im9 (unfolding force approximately 30 pN) despite the high avidity of this complex (K(d) approximately 10 fM).

  12. MD Simulations of Papillomavirus DNA-E2 Protein Complexes Hints at a Protein Structural Code for DNA Deformation

    OpenAIRE

    Falconi, M.; Oteri, F.; Eliseo, T.; Cicero, D. O.; Desideri, A.

    2008-01-01

    The structural dynamics of the DNA binding domains of the human papillomavirus strain 16 and the bovine papillomavirus strain 1, complexed with their DNA targets, has been investigated by modeling, molecular dynamics simulations, and nuclear magnetic resonance analysis. The simulations underline different dynamical features of the protein scaffolds and a different mechanical interaction of the two proteins with DNA. The two protein structures, although very similar, show differences in the re...

  13. Polysaccharide charge density regulating protein adsorption to air/water interfaces by protein/polysaccharide complex formation

    NARCIS (Netherlands)

    Ganzevles, R.A.; Kosters, H.; Vliet, T. van; Stuart, M.A.C.; Jongh, H.H.J. de

    2007-01-01

    Because the formation of protein/polysaccharide complexes is dominated by electrostatic interaction, polysaccharide charge density is expected to play a major role in the adsorption behavior of the complexes. In this study, pullulan (a non-charged polysaccharide) carboxylated to four different

  14. Finding low-conductance sets with dense interactions (FLCD) for better protein complex prediction.

    Science.gov (United States)

    Wang, Yijie; Qian, Xiaoning

    2017-03-14

    Intuitively, proteins in the same protein complexes should highly interact with each other but rarely interact with the other proteins in protein-protein interaction (PPI) networks. Surprisingly, many existing computational algorithms do not directly detect protein complexes based on both of these topological properties. Most of them, depending on mathematical definitions of either "modularity" or "conductance", have their own limitations: Modularity has the inherent resolution problem ignoring small protein complexes; and conductance characterizes the separability of complexes but fails to capture the interaction density within complexes. In this paper, we propose a two-step algorithm FLCD (Finding Low-Conductance sets with Dense interactions) to predict overlapping protein complexes with the desired topological structure, which is densely connected inside and well separated from the rest of the networks. First, FLCD detects well-separated subnetworks based on approximating a potential low-conductance set through a personalized PageRank vector from a protein and then solving a mixed integer programming (MIP) problem to find the minimum-conductance set within the identified low-conductance set. At the second step, the densely connected parts in those subnetworks are discovered as the protein complexes by solving another MIP problem that aims to find the dense subnetwork in the minimum-conductance set. Experiments on four large-scale yeast PPI networks from different public databases demonstrate that the complexes predicted by FLCD have better correspondence with the yeast protein complex gold standards than other three state-of-the-art algorithms (ClusterONE, LinkComm, and SR-MCL). Additionally, results of FLCD show higher biological relevance with respect to Gene Ontology (GO) terms by GO enrichment analysis.

  15. Towards a Hierarchical Strategy to Explore Multi-Scale IP/MS Data for Protein Complexes.

    Directory of Open Access Journals (Sweden)

    Joachim Kutzera

    Full Text Available Protein interaction in cells can be described at different levels. At a low interaction level, proteins function together in small, stable complexes and at a higher level, in sets of interacting complexes. All interaction levels are crucial for the living organism, and one of the challenges in proteomics is to measure the proteins at their different interaction levels. One common method for such measurements is immunoprecipitation followed by mass spectrometry (IP/MS, which has the potential to probe the different protein interaction forms. However, IP/MS data are complex because proteins, in their diverse interaction forms, manifest themselves in different ways in the data. Numerous bioinformatic tools for finding protein complexes in IP/MS data are currently available, but most tools do not provide information about the interaction level of the discovered complexes, and no tool is geared specifically to unraveling and visualizing these different levels. We present a new bioinformatic tool to explore IP/MS datasets for protein complexes at different interaction levels and show its performance on several real-life datasets. Our tool creates clusters that represent protein complexes, but unlike previous methods, it arranges them in a tree-shaped structure, reporting why specific proteins are predicted to build a complex and where it can be divided into smaller complexes. In every data analysis method, parameters have to be chosen. Our method can suggest values for its parameters and comes with adapted visualization tools that display the effect of the parameters on the result. The tools provide fast graphical feedback and allow the user to interact with the data by changing the parameters and examining the result. The tools also allow for exploring the different organizational levels of the protein complexes in a given dataset. Our method is available as GNU-R source code and includes examples at www.bdagroup.nl.

  16. Interaction proteomics analysis of polycomb proteins defines distinct PRC1 complexes in mammalian cells

    DEFF Research Database (Denmark)

    Vandamme, Julien; Völkel, Pamela; Rosnoblet, Claire

    2011-01-01

    Polycomb group (PcG) proteins maintain transcriptional repression of hundreds of genes involved in development, signaling or cancer using chromatin-based epigenetic mechanisms. Biochemical studies in Drosophila have revealed that PcG proteins associate in at least two classes of protein complexes...

  17. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.

    Directory of Open Access Journals (Sweden)

    Xianjun Shen

    Full Text Available How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment. It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.

  18. Conformational Heterogeneity in Antibody-Protein Antigen Recognition IMPLICATIONS FOR HIGH AFFINITY PROTEIN COMPLEX FORMATION

    Czech Academy of Sciences Publication Activity Database

    Addis, P. W.; Hall, c. J.; Bruton, S.; Veverka, Václav; Wilkinson, I. C.; Muskett, F. W.; Renshaw, P. S.; Prosser, C. E.; Carrington, B.; Lawson, A. D. G.; Griffin, R.; Taylor, R. J.; Waters, L. C.; Henry, A. J.; Carr, M. D.

    2014-01-01

    Roč. 289, č. 10 (2014), s. 7200-7210 ISSN 0021-9258 Institutional support: RVO:61388963 Keywords : NMR * antibody * protein-protein interaction * protein conformation Subject RIV: CE - Biochemistry Impact factor: 4.573, year: 2014

  19. Evidence for the robustness of protein complexes to inter-species hybridization.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Leducq

    Full Text Available Despite the tremendous efforts devoted to the identification of genetic incompatibilities underlying hybrid sterility and inviability, little is known about the effect of inter-species hybridization at the protein interactome level. Here, we develop a screening platform for the comparison of protein-protein interactions (PPIs among closely related species and their hybrids. We examine in vivo the architecture of protein complexes in two yeast species (Saccharomyces cerevisiae and Saccharomyces kudriavzevii that diverged 5-20 million years ago and in their F1 hybrids. We focus on 24 proteins of two large complexes: the RNA polymerase II and the nuclear pore complex (NPC, which show contrasting patterns of molecular evolution. We found that, with the exception of one PPI in the NPC sub-complex, PPIs were highly conserved between species, regardless of protein divergence. Unexpectedly, we found that the architecture of the complexes in F1 hybrids could not be distinguished from that of the parental species. Our results suggest that the conservation of PPIs in hybrids likely results from the slow evolution taking place on the very few protein residues involved in the interaction or that protein complexes are inherently robust and may accommodate protein divergence up to the level that is observed among closely related species.

  20. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria.

    Science.gov (United States)

    Harner, Max; Neupert, Walter; Deponte, Marcel

    2011-07-15

    The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.

  1. Mathematical simulation of complex formation of protein molecules allowing for their domain structure

    Science.gov (United States)

    Koshlan, T. V.; Kulikov, K. G.

    2017-04-01

    A physical model of the interactions between protein molecules has been presented and an analysis of their propensity to form complex biological complexes has been performed. The reactivities of proteins have been studied using electrostatics methods based on the example of the histone chaperone Nap1 and histones H2A and H2B. The capability of proteins to form stable biological complexes that allow for different segments of amino acid sequences has been analyzed. The ability of protein molecules to form compounds has been considered by calculating matrices of electrostatic potential energy of amino acid residues constituting the polypeptide chain. The method of block matrices has been used in the analysis of the ability of protein molecules to form complex biological compounds.

  2. Generating functional analysis of complex formation and dissociation in large protein interaction networks

    International Nuclear Information System (INIS)

    Coolen, A C C; Rabello, S

    2009-01-01

    We analyze large systems of interacting proteins, using techniques from the non-equilibrium statistical mechanics of disordered many-particle systems. Apart from protein production and removal, the most relevant microscopic processes in the proteome are complex formation and dissociation, and the microscopic degrees of freedom are the evolving concentrations of unbound proteins (in multiple post-translational states) and of protein complexes. Here we only include dimer-complexes, for mathematical simplicity, and we draw the network that describes which proteins are reaction partners from an ensemble of random graphs with an arbitrary degree distribution. We show how generating functional analysis methods can be used successfully to derive closed equations for dynamical order parameters, representing an exact macroscopic description of the complex formation and dissociation dynamics in the infinite system limit. We end this paper with a discussion of the possible routes towards solving the nontrivial order parameter equations, either exactly (in specific limits) or approximately.

  3. AMMOS2: a web server for protein-ligand-water complexes refinement via molecular mechanics.

    Science.gov (United States)

    Labbé, Céline M; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O; Pajeva, Ilza; Miteva, Maria A

    2017-07-03

    AMMOS2 is an interactive web server for efficient computational refinement of protein-small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein-ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein-ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein-ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein-ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein-ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein-ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. On the interconnection of stable protein complexes: inter-complex hubs and their conservation in Saccharomyces cerevisiae and Homo sapiens networks.

    Science.gov (United States)

    Guerra, Concettina

    2015-01-01

    Protein complexes are key molecular entities that perform a variety of essential cellular functions. The connectivity of proteins within a complex has been widely investigated with both experimental and computational techniques. We developed a computational approach to identify and characterise proteins that play a role in interconnecting complexes. We computed a measure of inter-complex centrality, the crossroad index, based on disjoint paths connecting proteins in distinct complexes and identified inter-complex hubs as proteins with a high value of the crossroad index. We applied the approach to a set of stable complexes in Saccharomyces cerevisiae and in Homo sapiens. Just as done for hubs, we evaluated the topological and biological properties of inter-complex hubs addressing the following questions. Do inter-complex hubs tend to be evolutionary conserved? What is the relation between crossroad index and essentiality? We found a good correlation between inter-complex hubs and both evolutionary conservation and essentiality.

  5. Chaperonin Structure - The Large Multi-Subunit Protein Complex

    Directory of Open Access Journals (Sweden)

    Irena Roterman

    2009-03-01

    Full Text Available The multi sub-unit protein structure representing the chaperonins group is analyzed with respect to its hydrophobicity distribution. The proteins of this group assist protein folding supported by ATP. The specific axial symmetry GroEL structure (two rings of seven units stacked back to back - 524 aa each and the GroES (single ring of seven units - 97 aa each polypeptide chains are analyzed using the hydrophobicity distribution expressed as excess/deficiency all over the molecule to search for structure-to-function relationships. The empirically observed distribution of hydrophobic residues is confronted with the theoretical one representing the idealized hydrophobic core with hydrophilic residues exposure on the surface. The observed discrepancy between these two distributions seems to be aim-oriented, determining the structure-to-function relation. The hydrophobic force field structure generated by the chaperonin capsule is presented. Its possible influence on substrate folding is suggested.

  6. DNAproDB: an interactive tool for structural analysis of DNA-protein complexes.

    Science.gov (United States)

    Sagendorf, Jared M; Berman, Helen M; Rohs, Remo

    2017-07-03

    Many biological processes are mediated by complex interactions between DNA and proteins. Transcription factors, various polymerases, nucleases and histones recognize and bind DNA with different levels of binding specificity. To understand the physical mechanisms that allow proteins to recognize DNA and achieve their biological functions, it is important to analyze structures of DNA-protein complexes in detail. DNAproDB is a web-based interactive tool designed to help researchers study these complexes. DNAproDB provides an automated structure-processing pipeline that extracts structural features from DNA-protein complexes. The extracted features are organized in structured data files, which are easily parsed with any programming language or viewed in a browser. We processed a large number of DNA-protein complexes retrieved from the Protein Data Bank and created the DNAproDB database to store this data. Users can search the database by combining features of the DNA, protein or DNA-protein interactions at the interface. Additionally, users can upload their own structures for processing privately and securely. DNAproDB provides several interactive and customizable tools for creating visualizations of the DNA-protein interface at different levels of abstraction that can be exported as high quality figures. All functionality is documented and freely accessible at http://dnaprodb.usc.edu. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Small-angle neutron scattering study of structure and interaction of nanoparticle, protein, and surfactant complexes.

    Science.gov (United States)

    Mehan, Sumit; Chinchalikar, Akshay J; Kumar, Sugam; Aswal, Vinod K; Schweins, Ralf

    2013-09-10

    Small-angle neutron scattering (SANS) measurements have been carried out from the multicomponent system composed of Ludox HS40 silica nanoparticle, bovine serum albumin (BSA) protein, and sodium dodecyl sulfate (SDS) surfactant in an aqueous system under the solution condition that all the components are negatively charged. Although the components are similarly charged, strong structural evolutions among them have been observed. The complexes of different components in pairs (nanoparticle-protein, nanoparticle-surfactant, and protein-surfactant) have been examined to correlate the role of each component in the three-component nanoparticle-protein-surfactant system. The nanoparticle-protein system shows depletion interaction induced aggregation of nanoparticles in the presence of protein. Both nanoparticle and surfactant coexist individually in a nanoparticle-surfactant system. In the case of a protein-surfactant system, the cooperative binding of surfactant with protein leads to micelle-like clusters of surfactant formed along the unfolded protein chain. The structure of the three-component (nanoparticle-protein-surfactant) system is found to be governed by the synergetic effect of nanoparticle-protein and protein-surfactant interactions. The nanoparticle aggregates coexist with the structures of protein-surfactant complex in the three-component system. The nanoparticle aggregation as well as unfolding of protein is enhanced in this system as compared to the corresponding two-component systems.

  8. Visualization of coupled protein folding and binding in bacteria and purification of the heterodimeric complex

    Science.gov (United States)

    Wang, Haoyong; Chong, Shaorong

    2003-01-01

    During overexpression of recombinant proteins in Escherichia coli, misfolded proteins often aggregate and form inclusion bodies. If an aggregation-prone recombinant protein is fused upstream (as an N-terminal fusion) to GFP, aggregation of the recombinant protein domain also leads to misfolding of the downstream GFP domain, resulting in a decrease or loss of fluorescence. We investigated whether the GFP domain could fold correctly if aggregation of the upstream protein domain was prevented in vivo by a coupled protein folding and binding interaction. Such interaction has been previously shown to occur between the E. coli integration host factors and , and between the domains of the general transcriptional coactivator cAMP response element binding protein (CREB)-binding protein and the activator for thyroid hormone and retinoid receptors. In this study, fusion of integration host factor or the CREB-binding protein domain upstream to GFP resulted in aggregation of the fusion protein. Coexpression of their respective partners, on the other hand, allowed soluble expression of the fusion protein and a dramatic increase in fluorescence. The study demonstrated that coupled protein folding and binding could be correlated to GFP fluorescence. A modified miniintein containing an affinity tag was inserted between the upstream protein domain and GFP to allow rapid purification and identification of the heterodimeric complex. The GFP coexpression fusion system may be used to identify novel protein-protein interactions that involve coupled folding and binding or protein partners that can solubilize aggregation-prone recombinant proteins.

  9. Formation of protein-birnessite complex: XRD, FTIR, and AFM analysis.

    Science.gov (United States)

    Naidja, A; Liu, C; Huang, P M

    2002-07-01

    Limited information is available on formation chemistry of enzyme-Mn oxide complexes. Adsorption isotherm of protein molecules (tyrosinase) on birnessite (delta-MnO(2)) at pH 6.0 and room temperature (23 degrees C) was of H type, indicating a very high affinity of the enzyme protein molecules to the birnessite mineral surfaces. After thorough washing of the protein-mineral complex with deionized-distilled water, up to 89% of adsorbed protein molecules remained bound to the mineral surfaces. When a high amount of the protein was immobilized, the X-ray diffractogram shows a significant decrease in the intensity of characteristic d-spacings of birnessite. No shift to higher values of the d-spacings of protein-birnessite complex was observed, indicating that the enzyme molecules were not intercalated in the mineral structure but immobilized at the external surfaces and the edges of the mineral oxide. By comparison to the free enzyme, infrared absorption spectra of the protein-birnessite complexes show a shift by up to 11 cm(-1) to lower frequencies in the absorption bands characteristic of amide I and II modes of the polypeptides chains. The mineral surfaces exerted some strain on the protein structure, resulting in an alteration of the protein molecular conformation after binding to the mineral colloid surfaces. In the free state, the globular protein molecules had a spheroid shape with an average cross-sectional diameter of 70+/-6 nm. The unfolding and flattening of the protein molecules after immobilization is clearly shown in atomic force micrographs. Compared to the tyrosinase-birnessite complex, similar FTIR spectra and atomic force micrographs were observed for the pure protein, bovine serum albumin (BSA), after immobilization on birnessite. The information obtained in this study is of fundamental significance for understanding birnessite as an adsorbent of biopolymers and the catalytic role of the enzyme-birnessite complex.

  10. RPGR-containing protein complexes in syndromic and non ...

    Indian Academy of Sciences (India)

    2009-12-31

    Dec 31, 2009 ... 2Neurobiology-Neurodegeneration and Repair laboratory (N-NRL), National Eye Institute,. National Institutes of Health, Bethesda, MD ... According to the current model of IFT, protein and membrane cargo are ..... most human RPGR mutations were hypothesized to have a null phenotype in males; however, ...

  11. Protein/polysaccharide complexes at air/water interfaces

    NARCIS (Netherlands)

    Ganzevles, R.A.

    2007-01-01

    KEYWORDS:protein, polysaccharide,glue protein profiles in the nasuta–albomicans complex

    Indian Academy of Sciences (India)

    D. n. albomicans genomes with respect to the major glue protein fractions in their interracial hybrids, called cytoraces. These cytoraces have inherited ... identifying hybrid organisms and for characterizing patterns of introgression (Avise .... relative humidity and 22 ± 1◦C temperature in wheat cream agar medium seeded with ...

  12. Carotenoid-protein complexes and their stability towards oxygen and radiation

    International Nuclear Information System (INIS)

    Ramakrishnan, T.V.; Francis, F.J.

    1980-01-01

    Carotenoid-protein complexes isolated from fresh mangoes were found to be more stable to oxygen and radiation when dissolved in water as compared with β-carotene in petroleum ether. Part of the pigment could be released from the complex by gamma irradiation. Observations on the stability of the carotenoid (98% β-carotene) in the complex indicated that the pigment is either associated with the lipid prosthetic group of the protein or loosely attached to the protein by weak hydrophobic bonds. (author)

  13. Modifications in structure and interaction of nanoparticle-protein-surfactant complexes in electrolyte solution

    Science.gov (United States)

    Mehan, Sumit; Kumar, S.; Aswal, V. K.; Schweins, R.

    2016-05-01

    SANS experiments of three-component system of anionic silica nanoparticles, anionic BSA protein and anionic SDS surfactants have been carried out without and with electrolyte in aqueous solution. In both the cases, the interaction of surfactant with protein results in formation of bead-necklace structure of protein-surfactant complexes in solution. These protein-surfactant complexes interact very differently with nanoparticles in absence and presence of electrolyte. In absence of electrolyte, nanoparticles remain in dispersed phase in solution, whereas with the addition of electrolyte the nanoparticles fractal aggregates are formed. SANS describes the phase behavior to be governed by competition of electrostatic and depletion interactions among the components solution.

  14. Leukemia: Derived heat shock protein gp96-peptide complex ...

    African Journals Online (AJOL)

    Jane

    2011-06-27

    Jun 27, 2011 ... involved in the humoral immunoresponse (HI) and mediate immune suppression. IL-12 is the cytokine of. Th1, but P70 is a subunit functioning inhibition effect. In this study, the treatment of PBMCs and DCs with gp96- peptide complexes induced the secretion of cytokines. Compared with PBMCs, DCs were ...

  15. Complex coacervates of hyaluronic acid and lysozyme: effect on protein structure and physical stability.

    Science.gov (United States)

    Water, Jorrit J; Schack, Malthe M; Velazquez-Campoy, Adrian; Maltesen, Morten J; van de Weert, Marco; Jorgensen, Lene

    2014-10-01

    Complex coacervates of hyaluronic acid and lysozyme, a model protein, were formed by ionic interaction using bulk mixing and were characterized in terms of binding stoichiometry and protein structure and stability. The complexes were formed at pH 7.2 at low ionic strength (6mM) and the binding stoichiometry was determined using solution depletion and isothermal titration calorimetry. The binding stoichiometry of lysozyme to hyaluronic acid (870 kDa) determined by solution depletion was found to be 225.9 ± 6.6 mol, or 0.1 bound lysozyme molecules per hyaluronic acid monomer. This corresponded well with that obtained by isothermal titration calorimetry of 0.09 bound lysozyme molecules per hyaluronic acid monomer. The complexation did not alter the secondary structure of lysozyme measured by Fourier-transform infrared spectroscopy overlap analysis and had no significant impact on the Tm of lysozyme determined by differential scanning calorimetry. Furthermore, the protein stability of lysozyme was found to be improved upon complexation during a 12-weeks storage study at room temperature, as shown by a significant increase in recovered protein when complexed (94 ± 2% and 102 ± 5% depending on the polymer-protein weight to weight ratio) compared to 89 ± 2% recovery for uncomplexed protein. This study shows the potential of hyaluronic acid to be used in combination with complex coacervation to increase the physical stability of pharmaceutical protein formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Cardiolipin synthesizing enzymes form a complex that interacts with cardiolipin-dependent membrane organizing proteins.

    Science.gov (United States)

    Serricchio, Mauro; Vissa, Adriano; Kim, Peter K; Yip, Christopher M; McQuibban, G Angus

    2018-04-01

    The mitochondrial glycerophospholipid cardiolipin plays important roles in mitochondrial biology. Most notably, cardiolipin directly binds to mitochondrial proteins and helps assemble and stabilize mitochondrial multi-protein complexes. Despite their importance for mitochondrial health, how the proteins involved in cardiolipin biosynthesis are organized and embedded in mitochondrial membranes has not been investigated in detail. Here we show that human PGS1 and CLS1 are constituents of large protein complexes. We show that PGS1 forms oligomers and associates with CLS1 and PTPMT1. Using super-resolution microscopy, we observed well-organized nanoscale structures formed by PGS1. Together with the observation that cardiolipin and CLS1 are not required for PGS1 to assemble in the complex we predict the presence of a PGS1-centered cardiolipin-synthesizing scaffold within the mitochondrial inner membrane. Using an unbiased proteomic approach we found that PGS1 and CLS1 interact with multiple cardiolipin-binding mitochondrial membrane proteins, including prohibitins, stomatin-like protein 2 and the MICOS components MIC60 and MIC19. We further mapped the protein-protein interaction sites between PGS1 and itself, CLS1, MIC60 and PHB. Overall, this study provides evidence for the presence of a cardiolipin synthesis structure that transiently interacts with cardiolipin-dependent protein complexes. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes

    NARCIS (Netherlands)

    Zweers, Jessica C.; Barak, Imrich; Becher, Doerte; Driessen, Arnold J. M.; Hecker, Michael; Kontinen, Vesa P.; Saller, Manfred J.; Vavrova, L'udmila; van Dijl, Jan Maarten

    2008-01-01

    Background: The Gram-positive bacterium Bacillus subtilis is an important producer of high quality industrial enzymes and a few eukaryotic proteins. Most of these proteins are secreted into the growth medium, but successful examples of cytoplasmic protein production are also known. Therefore, one

  18. Protein complexes and cholesterol in the control of late endosomal dynamicsCholesterol and multi-protein complexes in the control of late endosomal dynamics

    NARCIS (Netherlands)

    Kant, Rik Henricus Nicolaas van der

    2013-01-01

    Late endosomal transport is disrupted in several diseases such as Niemann-Pick type C, ARC syndrome and Alzheimer’s disease. This thesis describes the regulation of late endosomal dynamics by cholesterol and multi-protein complexes. We find that cholesterol acts as a cellular tomtom that steers the

  19. Implicit solvent simulations of DNA and DNA-protein complexes: Agreement with explicit solvent vs experiment

    Czech Academy of Sciences Publication Activity Database

    Chocholoušová, Jana; Feig, M.

    2006-01-01

    Roč. 110, č. 34 (2006), s. 17240-17251 ISSN 1520-6106 Keywords : implicit solvent * explicit solvent * protein DNA complex Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.115, year: 2006

  1. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex

    Science.gov (United States)

    2003-01-01

    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  2. Proteoform-specific protein binding of small molecules in complex matrices

    Science.gov (United States)

    Characterizing the specific binding between protein targets and small molecules is critically important for drug discovery. Conventional assays require isolation and purification of small molecules from complex matrices through multistep chromatographic fractionation, which may alter their original ...

  3. Biophysical characterization of the complex between human papillomavirus E6 protein and synapse-associated protein 97

    DEFF Research Database (Denmark)

    Chi, Celestine Ngang; Bach, Anders; Engström, Åke

    2011-01-01

    The E6 protein of human papillomavirus exhibits complex interaction patterns with several host proteins and their roles in HPV mediated oncogenesis have proved challenging to study. Here we use several biophysical techniques to explore the binding of E6 to the three PDZ domains of the tumor......, this quaternary complex has the same apparent hydrodynamic volume as the unliganded PDZ region, suggesting that a conformational change occurs in the PDZ region upon binding, a conclusion supported by kinetic experiments. Using NMR, we discovered a new mode of interaction between E6 and PDZ: a subset of residues...

  4. Proteomic and functional analyses of protein-DNA complexes during gene transfer.

    Science.gov (United States)

    Badding, Melissa A; Lapek, John D; Friedman, Alan E; Dean, David A

    2013-04-01

    One of the barriers to successful nonviral gene delivery is the crowded cytoplasm, which plasmids need to actively traverse for gene expression. Relatively little is known about how this process occurs, but our lab and others have shown that the microtubule network and motors are required for plasmid movement to the nucleus. To further investigate how plasmids exploit normal physiological processes to transfect cells, we have taken a proteomics approach to identify the proteins that comprise the plasmid-trafficking complex. We have developed a live cell DNA-protein pull-down assay to isolate complexes at certain time points post-transfection (15 minutes to 4 hours) for analysis by mass spectrometry (MS). Plasmids containing promoter sequences bound hundreds of unique proteins as early as 15 minutes post-electroporation, while a plasmid lacking any eukaryotic sequences failed to bind many of the proteins. Specific proteins included microtubule-based motor proteins (e.g., kinesin and dynein), proteins involved in protein nuclear import (e.g., importin 1, 2, 4, and 7, Crm1, RAN, and several RAN-binding proteins), a number of heterogeneous nuclear ribonucleoprotein (hnRNP)- and mRNA-binding proteins, and transcription factors. The significance of several of the proteins involved in protein nuclear localization and plasmid trafficking was determined by monitoring movement of microinjected fluorescently labeled plasmids via live cell particle tracking in cells following protein knockdown by small-interfering RNA (siRNA) or through the use of specific inhibitors. While importin β1 was required for plasmid trafficking and subsequent nuclear import, importin α1 played no role in microtubule trafficking but was required for optimal plasmid nuclear import. Surprisingly, the nuclear export protein Crm1 also was found to complex with the transfected plasmids and was necessary for plasmid trafficking along microtubules and nuclear import. Our results show that various proteins

  5. The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex.

    Directory of Open Access Journals (Sweden)

    Kris E Spaeth

    2009-09-01

    Full Text Available In Gram-negative bacterial pathogens, specialized chaperones bind to secreted effector proteins and maintain them in a partially unfolded form competent for translocation by type III secretion systems/injectisomes. How diverse sets of effector-chaperone complexes are recognized by injectisomes is unclear. Here we describe a new mechanism of effector-chaperone recognition by the Chlamydia injectisome, a unique and ancestral line of these evolutionarily conserved secretion systems. By yeast two-hybrid analysis we identified networks of Chlamydia-specific proteins that interacted with the basal structure of the injectisome, including two hubs of protein-protein interactions that linked known secreted effector proteins to CdsQ, the putative cytoplasmic C-ring component of the secretion apparatus. One of these protein-interaction hubs is defined by Ct260/Mcsc (Multiple cargo secretion chaperone. Mcsc binds to and stabilizes at least two secreted hydrophobic proteins, Cap1 and Ct618, that localize to the membrane of the pathogenic vacuole ("inclusion". The resulting complexes bind to CdsQ, suggesting that in Chlamydia, the C-ring of the injectisome mediates the recognition of a subset of inclusion membrane proteins in complex with their chaperone. The selective recognition of inclusion membrane proteins by chaperones may provide a mechanism to co-ordinate the translocation of subsets of inclusion membrane proteins at different stages in infection.

  6. On the importance of polar interactions for complexes containing intrinsically disordered proteins.

    Directory of Open Access Journals (Sweden)

    Eric T C Wong

    Full Text Available There is a growing recognition for the importance of proteins with large intrinsically disordered (ID segments in cell signaling and regulation. ID segments in these proteins often harbor regions that mediate molecular recognition. Coupled folding and binding of the recognition regions has been proposed to confer high specificity to interactions involving ID segments. However, researchers recently questioned the origin of the interaction specificity of ID proteins because of the overrepresentation of hydrophobic residues in their interaction interfaces. Here, we focused on the role of polar and charged residues in interactions mediated by ID segments. Making use of the extended nature of most ID segments when in complex with globular proteins, we first identified large numbers of complexes between globular proteins and ID segments by using radius-of-gyration-based selection criteria. Consistent with previous studies, we found the interfaces of these complexes to be enriched in hydrophobic residues, and that these residues contribute significantly to the stability of the interaction interface. However, our analyses also show that polar interactions play a larger role in these complexes than in structured protein complexes. Computational alanine scanning and salt-bridge analysis indicate that interfaces in ID complexes are highly complementary with respect to electrostatics, more so than interfaces of globular proteins. Follow-up calculations of the electrostatic contributions to the free energy of binding uncovered significantly stronger Coulombic interactions in complexes harbouring ID segments than in structured protein complexes. However, they are counter-balanced by even higher polar-desolvation penalties. We propose that polar interactions are a key contributing factor to the observed high specificity of ID segment-mediated interactions.

  7. Acute phase proteins in cattle after exposure to complex stress

    DEFF Research Database (Denmark)

    Lomborg, S. R.; Nielsen, L. R.; Heegaard, Peter M. H.

    2008-01-01

    Abstract Stressors such as weaning, mixing and transportation have been shown to lead to increased blood concentrations of acute phase proteins (APP), including serum amyloid A (SAA) and haptoglobin, in calves. This study was therefore undertaken to assess whether SAA and haptoglobin levels...... concentrations of SAA and haptoglobin increased significantly in response to the stressors (P...... in blood mirror stress in adult cattle. Six clinically healthy Holstein cows and two Holstein heifers were transported for four to six hours to a research facility, where each animal was housed in solitary tie stalls. Blood samples for evaluation of leukocyte counts and serum SAA and haptoglobin...

  8. Metal transfer within the Escherichia coli HypB-HypA complex of hydrogenase accessory proteins.

    Science.gov (United States)

    Douglas, Colin D; Ngu, Thanh T; Kaluarachchi, Harini; Zamble, Deborah B

    2013-09-03

    The maturation of [NiFe]-hydrogenase in Escherichia coli is a complex process involving many steps and multiple accessory proteins. The two accessory proteins HypA and HypB interact with each other and are thought to cooperate to insert nickel into the active site of the hydrogenase-3 precursor protein. Both of these accessory proteins bind metal individually, but little is known about the metal-binding activities of the proteins once they assemble together into a functional complex. In this study, we investigate how complex formation modulates metal binding to the E. coli proteins HypA and HypB. This work lead to a re-evaluation of the HypA nickel affinity, revealing a KD on the order of 10(-8) M. HypA can efficiently remove nickel, but not zinc, from the metal-binding site in the GTPase domain of HypB, a process that is less efficient when complex formation between HypA and HypB is disrupted. Furthermore, nickel release from HypB to HypA is specifically accelerated when HypB is loaded with GDP, but not GTP. These results are consistent with the HypA-HypB complex serving as a transfer step in the relay of nickel from membrane transporter to its final destination in the hydrogenase active site and suggest that this complex contributes to the metal fidelity of this pathway.

  9. Influence of Pea Protein Aggregates on the Structure and Stability of Pea Protein/Soybean Polysaccharide Complex Emulsions

    Directory of Open Access Journals (Sweden)

    Baoru Yin

    2015-03-01

    Full Text Available The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS, and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry.

  10. An Ocular Protein Triad Can Classify Four Complex Retinal Diseases

    Science.gov (United States)

    Kuiper, J. J. W.; Beretta, L.; Nierkens, S.; van Leeuwen, R.; Ten Dam-van Loon, N. H.; Ossewaarde-van Norel, J.; Bartels, M. C.; de Groot-Mijnes, J. D. F.; Schellekens, P.; de Boer, J. H.; Radstake, T. R. D. J.

    2017-01-01

    Retinal diseases generally are vision-threatening conditions that warrant appropriate clinical decision-making which currently solely dependents upon extensive clinical screening by specialized ophthalmologists. In the era where molecular assessment has improved dramatically, we aimed at the identification of biomarkers in 175 ocular fluids to classify four archetypical ocular conditions affecting the retina (age-related macular degeneration, idiopathic non-infectious uveitis, primary vitreoretinal lymphoma, and rhegmatogenous retinal detachment) with one single test. Unsupervised clustering of ocular proteins revealed a classification strikingly similar to the clinical phenotypes of each disease group studied. We developed and independently validated a parsimonious model based merely on three proteins; interleukin (IL)-10, IL-21, and angiotensin converting enzyme (ACE) that could correctly classify patients with an overall accuracy, sensitivity and specificity of respectively, 86.7%, 79.4% and 92.5%. Here, we provide proof-of-concept for molecular profiling as a diagnostic aid for ophthalmologists in the care for patients with retinal conditions.

  11. Large, dynamic, multi-protein complexes: a challenge for structural biology

    Czech Academy of Sciences Publication Activity Database

    Bouřa, Evžen; Rozycki, B.

    2015-01-01

    Roč. 44, Suppl 1 (2015), S52 ISSN 0175-7571. [EBSA European Biophysics Congress /10./. 18.07.2015-22.07.2015, Dresden] Institutional support: RVO:61388963 Keywords : multi-protein complexes * protein structure * EROS hybrid method Subject RIV: CE - Biochemistry

  12. The Mouse Cohesin-Associated Protein PDS5B Is Expressed in Testicular Cells and Is Associated with the Meiotic Chromosome Axes

    Directory of Open Access Journals (Sweden)

    Christer Hoog

    2010-12-01

    Full Text Available During the first meiotic prophase, the cohesin complex is localized to the chromosome axis and contributes to chromosome organization, pairing, synapsis, and recombination. The PDS5 protein, an accessory factor of the cohesin complex, is known to be a component of meiotic chromosome cores in fungi and to be implicated in meiotic chromosome structure and function. We found by immunoblotting experiments that a mammalian PDS5 protein, PDS5B, is abundantly expressed in mouse testis compared to other tissues. Immunofluorescence labeling experiments revealed that PDS5B is highly expressed in spermatogonia and that most PDS5B is depleted from chromatin as cells enter meiosis. During the first meiotic prophase, PDS5B associates with the axial cores of chromosomes. The axial association of PDS5B was observed also in the absence of synaptonemal complex proteins, such as SYCP1 and SYCP3, suggesting that PDS5B is an integral part of the chromosome axis as defined by the cohesin complex. These results suggest that PDS5B modulates cohesin functions in spermatocytes as well as in spermatogonia, contributing to meiotic chromosome structure and function.

  13. R7-binding protein targets the G protein β5/R7-regulator of G protein signaling complex to lipid rafts in neuronal cells and brain

    Directory of Open Access Journals (Sweden)

    Zhang Jian-Hua

    2007-09-01

    Full Text Available Abstract Background Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins, composed of Gα, Gβ, and Gγ subunits, are positioned at the inner face of the plasma membrane and relay signals from activated G protein-coupled cell surface receptors to various signaling pathways. Gβ5 is the most structurally divergent Gβ isoform and forms tight heterodimers with regulator of G protein signalling (RGS proteins of the R7 subfamily (R7-RGS. The subcellular localization of Gβ 5/R7-RGS protein complexes is regulated by the palmitoylation status of the associated R7-binding protein (R7BP, a recently discovered SNARE-like protein. We investigate here whether R7BP controls the targeting of Gβ5/R7-RGS complexes to lipid rafts, cholesterol-rich membrane microdomains where conventional heterotrimeric G proteins and some effector proteins are concentrated in neurons and brain. Results We show that endogenous Gβ5/R7-RGS/R7BP protein complexes are present in native neuron-like PC12 cells and that a fraction is targeted to low-density, detergent-resistant membrane lipid rafts. The buoyant density of endogenous raft-associated Gβ5/R7-RGS protein complexes in PC12 cells was similar to that of lipid rafts containing the palmitoylated marker proteins PSD-95 and LAT, but distinct from that of the membrane microdomain where flotillin was localized. Overexpression of wild-type R7BP, but not its palmitoylation-deficient mutant, greatly enriched the fraction of endogenous Gβ5/R7-RGS protein complexes in the lipid rafts. In HEK-293 cells the palmitoylation status of R7BP also regulated the lipid raft targeting of co-expressed Gβ5/R7-RGS/R7BP proteins. A fraction of endogenous Gβ5/R7-RGS/R7BP complexes was also present in lipid rafts in mouse brain. Conclusion A fraction of Gβ5/R7-RGS/R7BP protein complexes is targeted to low-density, detergent-resistant membrane lipid rafts in PC12 cells and brain. In cultured cells, the palmitoylation status of

  14. A novel Pfs38 protein complex on the surface of Plasmodium falciparum blood-stage merozoites

    DEFF Research Database (Denmark)

    Paul, Gourab; Deshmukh, Arunaditya; Kaur, Inderjeet

    2017-01-01

    BACKGROUND: The Plasmodium genome encodes for a number of 6-Cys proteins that contain a module of six cysteine residues forming three intramolecular disulphide bonds. These proteins have been well characterized at transmission as well as hepatic stages of the parasite life cycle. In the present...... the development of a multi-sub-unit malaria vaccine based on some of these protein complexes on merozoite surface....

  15. Subunit Organization in the TatA Complex of the Twin Arginine Protein Translocase

    OpenAIRE

    White, Gaye F.; Schermann, Sonya M.; Bradley, Justin; Roberts, Andrew; Greene, Nicholas P.; Berks, Ben C.; Thomson, Andrew J.

    2009-01-01

    The Tat system is used to transport folded proteins across the cytoplasmic membrane in bacteria and archaea and across the thylakoid membrane of plant chloroplasts. Multimers of the integral membrane TatA protein are thought to form the protein-conducting element of the Tat pathway. Nitroxide radicals were introduced at selected positions within the transmembrane helix of Escherichia coli TatA and used to probe the structure of detergent-solubilized TatA complexes by EPR spectroscopy. A compa...

  16. Conserved features of complexes of TATA-box binding proteins with DNA.

    Science.gov (United States)

    Zanegina, Olga; Aksianov, Evgeniy; Alexeevski, Andrei V; Karyagina, Anna; Spirin, Sergei

    2016-04-01

    A comparative analysis of all available structures of complexes of TATA-box binding proteins (TBPs) with DNA is performed. Conserved features of DNA-protein interaction are described, including nine amino acid residues that form conserved hydrogen bonds, 13 residues participating in formation of two conserved hydrophobic clusters at DNA-protein interface, and four conserved water-mediated contacts. Partial symmetry of conserved contacts reflects quasi-symmetry of TBP structure.

  17. Intermolecular detergent-membrane protein noes for the characterization of the dynamics of membrane protein-detergent complexes.

    Science.gov (United States)

    Eichmann, Cédric; Orts, Julien; Tzitzilonis, Christos; Vögeli, Beat; Smrt, Sean; Lorieau, Justin; Riek, Roland

    2014-12-11

    The interaction between membrane proteins and lipids or lipid mimetics such as detergents is key for the three-dimensional structure and dynamics of membrane proteins. In NMR-based structural studies of membrane proteins, qualitative analysis of intermolecular nuclear Overhauser enhancements (NOEs) or paramagnetic resonance enhancement are used in general to identify the transmembrane segments of a membrane protein. Here, we employed a quantitative characterization of intermolecular NOEs between (1)H of the detergent and (1)H(N) of (2)H-perdeuterated, (15)N-labeled α-helical membrane protein-detergent complexes following the exact NOE (eNOE) approach. Structural considerations suggest that these intermolecular NOEs should show a helical-wheel-type behavior along a transmembrane helix or a membrane-attached helix within a membrane protein as experimentally demonstrated for the complete influenza hemagglutinin fusion domain HAfp23. The partial absence of such a NOE pattern along the amino acid sequence as shown for a truncated variant of HAfp23 and for the Escherichia coli inner membrane protein YidH indicates the presence of large tertiary structure fluctuations such as an opening between helices or the presence of large rotational dynamics of the helices. Detergent-protein NOEs thus appear to be a straightforward probe for a qualitative characterization of structural and dynamical properties of membrane proteins embedded in detergent micelles.

  18. Heat Shock Protein 90 Ensures Efficient Mumps Virus Replication by Assisting with Viral Polymerase Complex Formation.

    Science.gov (United States)

    Katoh, Hiroshi; Kubota, Toru; Nakatsu, Yuichiro; Tahara, Maino; Kidokoro, Minoru; Takeda, Makoto

    2017-03-15

    Paramyxoviral RNAs are synthesized by a viral RNA-dependent RNA polymerase (RdRp) consisting of the large (L) protein and its cofactor phosphoprotein (P protein). The L protein is a multifunctional protein that catalyzes RNA synthesis, mRNA capping, and mRNA polyadenylation. Growing evidence shows that the stability of several paramyxovirus L proteins is regulated by heat shock protein 90 (Hsp90). In this study, we demonstrated that Hsp90 activity was important for mumps virus (MuV) replication. The Hsp90 activity was required for L-protein stability and activity because an Hsp90-specific inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), destabilized the MuV L protein and suppressed viral RNA synthesis. However, once the L protein formed a mature polymerase complex with the P protein, Hsp90 activity was no longer required for the stability and activity of the L protein. When the Hsp90 activity was inhibited, the MuV L protein was degraded through the CHIP (C terminus of Hsp70-interacting protein)-mediated proteasomal pathway. High concentrations of 17-AAG showed strong cytotoxicity to certain cell types, but combined use of an Hsp70 inhibitor, VER155008, potentiated degradation of the L protein, allowing a sufficient reduction of 17-AAG concentration to block MuV replication with minimum cytotoxicity. Regulation of the L protein by Hsp90 and Hsp70 chaperones was also demonstrated for another paramyxovirus, the measles virus. Collectively, our data show that the Hsp90/Hsp70 chaperone machinery assists in the maturation of the paramyxovirus L protein and thereby in the formation of a mature RdRp complex and efficient viral replication. IMPORTANCE Heat shock protein 90 (Hsp90) is nearly universally required for viral protein homeostasis. Here, we report that Hsp90 activity is required for efficient propagation of mumps virus (MuV). Hsp90 functions in the maintenance of the catalytic subunit of viral polymerase, the large (L) protein, prior to formation of a

  19. Mdm35p imports Ups proteins into the mitochondrial intermembrane space by functional complex formation.

    Science.gov (United States)

    Tamura, Yasushi; Iijima, Miho; Sesaki, Hiromi

    2010-09-01

    Ups1p, Ups2p, and Ups3p are three homologous proteins that control phospholipid metabolism in the mitochondrial intermembrane space (IMS). The Ups proteins are atypical IMS proteins in that they lack the two major IMS-targeting signals, bipartite presequences and cysteine motifs. Here, we show that Ups protein import is mediated by another IMS protein, Mdm35p. In vitro import assays show that import of Ups proteins requires Mdm35p. Loss of Mdm35p led to a decrease in steady state levels of Ups proteins in mitochondria. In addition, mdm35Delta cells displayed a similar phenotype to ups1Deltaups2Deltaups3Delta cells. Interestingly, unlike typical import machineries, Mdm35p associated stably with Ups proteins at a steady state after import. Demonstrating that Mdm35p is a functional component of Ups-Mdm35p complexes, restoration of Ups protein levels in mdm35Delta mitochondria failed to restore phospholipid metabolism. These findings provide a novel mechanism in which the formation of functional protein complexes drives mitochondrial protein import.

  20. The Vtc proteins in vacuole fusion: coupling NSF activity to V(0) trans-complex formation

    DEFF Research Database (Denmark)

    Müller, Oliver; Bayer, Martin J; Peters, Christopher

    2002-01-01

    vacuole system has revealed two subsequent molecular events: trans-complex formation of V-ATPase proteolipid sectors (V(0)) and release of LMA1 from the membrane. We have now identified a hetero-oligomeric membrane integral complex of vacuolar transporter chaperone (Vtc) proteins integrating these events...

  1. Identification of chromatophore membrane protein complexes formed under different nitrogen availability conditions in Rhodospirillum rubrum

    DEFF Research Database (Denmark)

    Selao, Tiago Toscano; Branca, Rui; Chae, Pil Seok

    2011-01-01

    of two-dimensional Blue Native/SDS-PAGE and NSI-LC-LTQ-Orbitrap mass spectrometry. We have identified several membrane protein complexes, including components of the ATP synthase, reaction center, light harvesting, and NADH dehydrogenase complexes. Additionally, we have identified differentially...

  2. Interaction of Small Zinc Complexes with Globular Proteins and Free Tryptophan

    Directory of Open Access Journals (Sweden)

    Joann M. Butkus

    2016-01-01

    Full Text Available A series of eight water soluble anionic, cationic, and neutral zinc(II complexes were synthesized and characterized. The interaction of these complexes with bovine serum albumin (BSA, human serum albumin (HSA, lysozyme, and free tryptophan (Trp was investigated using steady-state fluorescence spectroscopy. Static and dynamic fluorescence quenching analysis based on Stern-Volmer kinetics was conducted, and the decrease in fluorescence intensity of the Trp residue(s can be ascribed predominantly to static quenching that occurs when the Zn complex binds to the protein and forms a nonfluorescent complex. The role played by the nature of the ligand, the metal, and complex charge in quenching Trp fluorescence was investigated. The binding association constants (Ka ranged from 104 to 1010 M−1 and indicate that complexes with planar aromatic features have the strongest affinity for globular proteins and free Trp. Complexes with nonaromatic features failed to interact with these proteins at or in the vicinity of the Trp residues. These interactions were studied over a range of temperatures, and binding was found to weaken with the increase in temperature and was exothermic with a negative change in entropy. The thermodynamic parameters suggest that binding of Zn complexes to the proteins is a highly spontaneous and favorable process.

  3. Three-Dimentional Structures of Autophosphorylation Complexes in Crystals of Protein Kinases

    KAUST Repository

    Dumbrack, Roland

    2016-01-26

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Several autophosphorylation complexes have been identified in crystals of protein kinases, with a known serine, threonine, or tyrosine autophosphorylation site of one kinase monomer sitting in the active site of another monomer of the same protein in the crystal. We utilized a structural bioinformatics method to identify all such autophosphorylation complexes in X-ray crystallographic structures in the Protein Data Bank (PDB) by generating all unique kinase/kinase interfaces within and between asymmetric units of each crystal and measuring the distance between the hydroxyl oxygen of potential autophosphorylation sites and the oxygen atoms of the active site aspartic acid residue side chain. We have identified 15 unique autophosphorylation complexes in the PDB, of which 5 complexes have not previously been described in the relevant publications on the crystal structures (N-terminal juxtamembrane regions of CSF1R and EPHA2, activation loop tyrosines of LCK and IGF1R, and a serine in a nuclear localization signal region of CLK2. Mutation of residues in the autophosphorylation complex interface of LCK either severely impaired autophosphorylation or increased it. Taking the autophosphorylation complexes as a whole and comparing them with peptide-substrate/kinase complexes, we observe a number of important features among them. The novel and previously observed autophosphorylation sites are conserved in many kinases, indicating that by homology we can extend the relevance of these complexes to many other clinically relevant drug targets.

  4. Computational Approaches for Designing Protein/Inhibitor Complexes and Membrane Protein Variants

    Science.gov (United States)

    Vijayendran, Krishna Gajan

    Drug discovery of small-molecule protein inhibitors is a vast enterprise that involves several scientific disciplines (i.e. genomics, cell biology, x-ray crystallography, chemistry, computer science, statistics), with each discipline focusing on a particular aspect of the process. In this thesis, I use computational and experimental approaches to explore the most fundamental aspect of drug discovery: the molecular interactions of small-molecules inhibitors with proteins. In Part I (Chapters I and II), I describe how computational docking approaches can be used to identify structurally diverse molecules that can inhibit multiple protein targets in the brain. I illustrate this approach using the examples of microtubule-stabilizing agents and inhibitors of cyclooxygenase(COX)-I and 5-lipoxygenase (5-LOX). In Part II (Chapters III and IV), I focus on membrane proteins, which are notoriously difficult to work with due to their low natural abundances, low yields for heterologous over expression, and propensities toward aggregation. I describe a general approach for designing water-soluble variants of membrane proteins, for the purpose of developing cell-free, label-free, detergent-free, solution-phase studies of protein structure and small-molecule binding. I illustrate this approach through the design of a water-soluble variant of the membrane protein Smoothened, wsSMO. This wsSMO stands to serve as a first-step towards developing membrane protein analogs of this important signaling protein and drug target.

  5. Proteomic analysis of the dysferlin protein complex unveils its importance for sarcolemmal maintenance and integrity.

    Directory of Open Access Journals (Sweden)

    Antoine de Morrée

    Full Text Available Dysferlin is critical for repair of muscle membranes after damage. Mutations in dysferlin lead to a progressive muscular dystrophy. Recent studies suggest additional roles for dysferlin. We set out to study dysferlin's protein-protein interactions to obtain comprehensive knowledge of dysferlin functionalities in a myogenic context. We developed a robust and reproducible method to isolate dysferlin protein complexes from cells and tissue. We analyzed the composition of these complexes in cultured myoblasts, myotubes and skeletal muscle tissue by mass spectrometry and subsequently inferred potential protein functions through bioinformatics analyses. Our data confirm previously reported interactions and support a function for dysferlin as a vesicle trafficking protein. In addition novel potential functionalities were uncovered, including phagocytosis and focal adhesion. Our data reveal that the dysferlin protein complex has a dynamic composition as a function of myogenic differentiation. We provide additional experimental evidence and show dysferlin localization to, and interaction with the focal adhesion protein vinculin at the sarcolemma. Finally, our studies reveal evidence for cross-talk between dysferlin and its protein family member myoferlin. Together our analyses show that dysferlin is not only a membrane repair protein but also important for muscle membrane maintenance and integrity.

  6. Protein transport in organelles: The composition, function and regulation of the Tic complex in chloroplast protein import.

    Science.gov (United States)

    Benz, J Philipp; Soll, Jürgen; Bölter, Bettina

    2009-03-01

    It is widely accepted that chloroplasts derived from an endosymbiotic event in which an early eukaryotic cell engulfed an ancient cyanobacterial prokaryote. During subsequent evolution, this new organelle lost its autonomy by transferring most of its genetic information to the host cell nucleus and therefore became dependent on protein import from the cytoplasm. The so-called 'general import pathway' makes use of two multisubunit protein translocases located in the two envelope membranes: the Toc and Tic complexes (translocon at the outer/inner envelope membrane of chloroplasts). The main function of both complexes, which are thought to work in parallel, is to provide a protein-selective channel through the envelope membrane and to exert the necessary driving force for the translocation. To achieve high efficiency of protein import, additional regulatory subunits have been developed that sense, and quickly react to, signals giving information about the status and demand of the organelle. These include calcium-mediated signals, most likely through a potential plastidic calmodulin, as well as redox sensing (e.g. via the stromal NADP(+)/NADPH pool). In this minireview, we briefly summarize the present knowledge of how the Tic complex adapted to the tasks outlined above, focusing more on the recent advances in the field, which have brought substantial progress concerning the motor function as well as the regulatory potential of this protein translocation system.

  7. Cohesin complexes with a potential to link mammalian meiosis to cancer

    Directory of Open Access Journals (Sweden)

    Alexander Strunnikov

    2013-01-01

    Full Text Available Among multiple genes aberrantly activated in cancers, invariably, there is a group related to the capacity of cell to self-renewal. Some of these genes are related to the normal process of development, including the establishment of a germline. This group, a part of growing family of Cancer/Testis (CT genes, now includes the meiosis specific subunits of cohesin complex. The first reports characterizing the SMC1 and RAD21 genes, encoding subunits of cohesin, were published 20 years ago; however the exact molecular mechanics of cohesin molecular machine in vivo remains rather obscure notwithstanding ample elegant experiments. The matters are complicated by the fact that the evolution of cohesin function, which is served by just two basic types of protein complexes in budding yeast, took an explosive turn in Metazoa. The recent characterization of a new set of genes encoding cohesin subunits specific for meiosis in vertebrates adds several levels of complexity to the task of structure-function analysis of specific cohesin pathways, even more so in relation to their aberrant functionality in cancers. These three proteins, SMC1β, RAD21L and STAG3 are likely involved in a specific function in the first meiotic prophase, genetic recombination, and segregation of homologues. However, at present, it is rather challenging to pinpoint the molecular role of these proteins, particularly in synaptonemal complex or centromere function, due to the multiplicity of different cohesins in meiosis. The roles of these proteins in cancer cell physiology, upon their aberrant activation in tumors, also remain to be elucidated. Nevertheless, as the existence of Cancer/Testis cohesin complexes in tumor cells appears to be all but certain, this brings a promise of a new target for cancer therapy and/or diagnostics.

  8. The role of protein complexes in a complex disease: molecular mechanisms of ALS

    NARCIS (Netherlands)

    Blokhuis, A.M.

    2016-01-01

    Amyotrophic Lateral Sclerosis is a devastating neurodegenerative diease caused by the selective loss of motor neurons. The pathogenic mechanism underlying the disease is largely unknown but a number of genes, proteins and cellular processes have been implicated. In this thesis we aimed to identify

  9. PRODIGY : a web server for predicting the binding affinity of protein-protein complexes

    NARCIS (Netherlands)

    Xue, Li; Garcia Lopes Maia Rodrigues, João; Kastritis, Panagiotis L; Bonvin, Alexandre Mjj; Vangone, Anna

    2016-01-01

    Gaining insights into the structural determinants of protein-protein interactions holds the key for a deeper understanding of biological functions, diseases and development of therapeutics. An important aspect of this is the ability to accurately predict the binding strength for a given

  10. Protein Labelling with Versatile Phosphorescent Metal Complexes for Live Cell Luminescence Imaging.

    Science.gov (United States)

    Connell, Timothy U; James, Janine L; White, Anthony R; Donnelly, Paul S

    2015-09-28

    To take advantage of the luminescent properties of d(6) transition metal complexes to label proteins, versatile bifunctional ligands were prepared. Ligands that contain a 1,2,3-triazole heterocycle were synthesised using Cu(I) catalysed azide-alkyne cycloaddition "click" chemistry and were used to form phosphorescent Ir(III) and Ru(II) complexes. Their emission properties were readily tuned, by changing either the metal ion or the co-ligands. The complexes were tethered to the metalloprotein transferrin using several conjugation strategies. The Ir(III)/Ru(II)-protein conjugates could be visualised in cancer cells using live cell imaging for extended periods without significant photobleaching. These versatile phosphorescent protein-labelling agents could be widely applied to other proteins and biomolecules and are useful alternatives to conventional organic fluorophores for several applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Identification of Protein Complexes from Tandem Affinity Purification/Mass Spectrometry Data via Biased Random Walk.

    Science.gov (United States)

    Cai, Bingjing; Wang, Haiying; Zheng, Huiru; Wang, Hui

    2015-01-01

    Systematic identification of protein complexes from protein-protein interaction networks (PPIs) is an important application of data mining in life science. Over the past decades, various new clustering techniques have been developed based on modelling PPIs as binary relations. Non-binary information of co-complex relations (prey/bait) in PPIs data derived from tandem affinity purification/mass spectrometry (TAP-MS) experiments has been unfairly disregarded. In this paper, we propose a Biased Random Walk based algorithm for detecting protein complexes from TAP-MS data, resulting in the random walk with restarting baits (RWRB). RWRB is developed based on Random walk with restart. The main contribution of RWRB is the incorporation of co-complex relations in TAP-MS PPI networks into the clustering process, by implementing a new restarting strategy during the process of random walk. Through experimentation on un-weighted and weighted TAP-MS data sets, we validated biological significance of our results by mapping them to manually curated complexes. Results showed that, by incorporating non-binary, co-membership information, significant improvement has been achieved in terms of both statistical measurements and biological relevance. Better accuracy demonstrates that the proposed method outperformed several state-of-the-art clustering algorithms for the detection of protein complexes in TAP-MS data.

  12. MFIB: a repository of protein complexes with mutual folding induced by binding.

    Science.gov (United States)

    Fichó, Erzsébet; Reményi, István; Simon, István; Mészáros, Bálint

    2017-11-15

    It is commonplace that intrinsically disordered proteins (IDPs) are involved in crucial interactions in the living cell. However, the study of protein complexes formed exclusively by IDPs is hindered by the lack of data and such analyses remain sporadic. Systematic studies benefited other types of protein-protein interactions paving a way from basic science to therapeutics; yet these efforts require reliable datasets that are currently lacking for synergistically folding complexes of IDPs. Here we present the Mutual Folding Induced by Binding (MFIB) database, the first systematic collection of complexes formed exclusively by IDPs. MFIB contains an order of magnitude more data than any dataset used in corresponding studies and offers a wide coverage of known IDP complexes in terms of flexibility, oligomeric composition and protein function from all domains of life. The included complexes are grouped using a hierarchical classification and are complemented with structural and functional annotations. MFIB is backed by a firm development team and infrastructure, and together with possible future community collaboration it will provide the cornerstone for structural and functional studies of IDP complexes. MFIB is freely accessible at http://mfib.enzim.ttk.mta.hu/. The MFIB application is hosted by Apache web server and was implemented in PHP. To enrich querying features and to enhance backend performance a MySQL database was also created. simon.istvan@ttk.mta.hu, meszaros.balint@ttk.mta.hu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  13. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Arati; Mandon, Elisabet C.; Gilmore, Reid; Rapoport, Tom A. (UMASS, MED); (Harvard-Med)

    2017-03-12

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.

  14. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins.

    Science.gov (United States)

    Tripathi, Arati; Mandon, Elisabet C; Gilmore, Reid; Rapoport, Tom A

    2017-05-12

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Structural analysis of DNA–protein complexes regulating the restriction–modification system Esp1396I

    International Nuclear Information System (INIS)

    Martin, Richard N. A.; McGeehan, John E.; Ball, Neil J.; Streeter, Simon D.; Thresh, Sarah-Jane; Kneale, G. G.

    2013-01-01

    Comparison of bound and unbound DNA in protein–DNA co-crystal complexes reveals insights into controller-protein binding and DNA distortion in transcriptional regulation. The controller protein of the type II restriction–modification (RM) system Esp1396I binds to three distinct DNA operator sequences upstream of the methyltransferase and endonuclease genes in order to regulate their expression. Previous biophysical and crystallographic studies have shown molecular details of how the controller protein binds to the operator sites with very different affinities. Here, two protein–DNA co-crystal structures containing portions of unbound DNA from native operator sites are reported. The DNA in both complexes shows significant distortion in the region between the conserved symmetric sequences, similar to that of a DNA duplex when bound by the controller protein (C-protein), indicating that the naked DNA has an intrinsic tendency to bend when not bound to the C-protein. Moreover, the width of the major groove of the DNA adjacent to a bound C-protein dimer is observed to be significantly increased, supporting the idea that this DNA distortion contributes to the substantial cooperativity found when a second C-protein dimer binds to the operator to form the tetrameric repression complex

  16. Synthetic strategies for efficient conjugation of organometallic complexes with pendant protein reactive markers

    KAUST Repository

    Jantke, Dominik

    2013-11-01

    Site-directed conjugation of metal centers to proteins is fundamental for biological and bioinorganic applications of transition metals. However, methods for the site-selective introduction of metal centers remain scarce. Herein, we present broadly applicable synthetic strategies for the conjugation of bioactive molecules with a range of organometallic complexes. Following three different synthetic strategies, we were able to synthesize a small library of metal conjugated protein markers featuring different types of protein reactive sites (epoxides, phenylphosphonates, fluorosulfonates and fluorophosphonate groups) as well as different late transition metals (iron, ruthenium, rhodium, palladium and platinum). The products were isolated in moderate to excellent yields and high purity. Furthermore, X-ray diffraction of the metalated protein markers corroborates structural integrity of the metal complex and the protein reactive site. © 2013 Elsevier B.V. All rights reserved.

  17. Structural and Thermodynamic Properties of Nanoparticle-Protein Complexes: A Combined SAXS and SANS Study.

    Science.gov (United States)

    Spinozzi, Francesco; Ceccone, Giacomo; Moretti, Paolo; Campanella, Gabriele; Ferrero, Claudio; Combet, Sophie; Ojea-Jimenez, Isaac; Ghigna, Paolo

    2017-03-07

    We propose a novel method for determining the structural and thermodynamic properties of nanoparticle-protein complexes under physiological conditions. The method consists of collecting a full set of small-angle X-ray and neutron-scattering measurements in solutions with different concentrations of nanoparticles and protein. The nanoparticle-protein dissociation process is described in the framework of the Hill cooperative model, based on which the whole set of X-ray and neutron-scattering data is fitted simultaneously. This method is applied to water solutions of gold nanoparticles in the presence of human serum albumin without any previous manipulation and can be, in principle, extended to all systems. We demonstrate that the protein dissociation constant, the Hill coefficient, and the stoichiometry of the nanoparticle-protein complex are obtained with a high degree of confidence.

  18. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  19. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding.

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  20. Alternative Eukaryotic Expression Systems for the Production of Proteins and Protein Complexes.

    Science.gov (United States)

    Gómez, Sara; López-Estepa, Miguel; Fernández, Francisco J; Suárez, Teresa; Vega, M Cristina

    2016-01-01

    Besides the most established expression hosts, several eukaryotic microorganisms and filamentous fungi have also been successfully used as platforms for the production of foreign proteins. Filamentous fungi and Dictyostelium discoideum are two prominent examples. Filamentous fungi, typically Aspergillus and Trichoderma, are usually employed for the industrial production of enzymes and secondary metabolites for food processing, pharmaceutical drugs production, and textile and paper applications, with multiple products already accepted for their commercialization. The low cost of culture medium components, high secretion capability directly to the extracellular medium, and the intrinsic ability to produce post-translational modifications similar to the mammalian type, have promoted this group as successful hosts for the expression of proteins, including examples from phylogenetically distant groups: humans proteins such as IL-2, IL-6 or epithelial growth factor; α-galactosidase from plants; or endoglucanase from Cellulomonas fimi, among others. D. discoideum is a social amoeba that can be used as an expression platform for a variety of proteins, which has been extensively illustrated for cytoskeletal proteins. New vectors for heterologous expression in D. discoideum have been recently developed that might increase the usefulness of this system and expand the range of protein classes that can be tackled. Continuous developments are ongoing to improve strains, promoters, production and downstream processes for filamentous fungi, D. discoideum, and other alternative eukaryotic hosts. Either for the overexpression of individual genes, or in the coexpression of multiples genes, this chapter illustrates the enormous possibilities offered by these groups of eukaryotic organisms.

  1. synMuv B proteins antagonize germline fate in the intestine and ensure C. elegans survival

    Science.gov (United States)

    Petrella, Lisa N.; Wang, Wenchao; Spike, Caroline A.; Rechtsteiner, Andreas; Reinke, Valerie; Strome, Susan

    2011-01-01

    Previous studies demonstrated that a subset of synMuv B mutants ectopically misexpress germline-specific P-granule proteins in their somatic cells, suggesting a failure to properly orchestrate a soma/germline fate decision. Surprisingly, this fate confusion does not affect viability at low to ambient temperatures. Here, we show that, when grown at high temperature, a majority of synMuv B mutants irreversibly arrest at the L1 stage. High temperature arrest (HTA) is accompanied by upregulation of many genes characteristic of germ line, including genes encoding components of the synaptonemal complex and other meiosis proteins. HTA is suppressed by loss of global regulators of germline chromatin, including MES-4, MRG-1, ISW-1 and the MES-2/3/6 complex, revealing that arrest is caused by somatic cells possessing a germline-like chromatin state. Germline genes are preferentially misregulated in the intestine, and necessity and sufficiency tests demonstrate that the intestine is the tissue responsible for HTA. We propose that synMuv B mutants fail to erase or antagonize an inherited germline chromatin state in somatic cells during embryonic and early larval development. As a consequence, somatic cells gain a germline program of gene expression in addition to their somatic program, leading to a mixed fate. Somatic expression of germline genes is enhanced at elevated temperature, leading to developmentally compromised somatic cells and arrest of newly hatched larvae. PMID:21343362

  2. Simplified Method for Predicting a Functional Class of Proteins in Transcription Factor Complexes

    KAUST Repository

    Piatek, Marek J.

    2013-07-12

    Background:Initiation of transcription is essential for most of the cellular responses to environmental conditions and for cell and tissue specificity. This process is regulated through numerous proteins, their ligands and mutual interactions, as well as interactions with DNA. The key such regulatory proteins are transcription factors (TFs) and transcription co-factors (TcoFs). TcoFs are important since they modulate the transcription initiation process through interaction with TFs. In eukaryotes, transcription requires that TFs form different protein complexes with various nuclear proteins. To better understand transcription regulation, it is important to know the functional class of proteins interacting with TFs during transcription initiation. Such information is not fully available, since not all proteins that act as TFs or TcoFs are yet annotated as such, due to generally partial functional annotation of proteins. In this study we have developed a method to predict, using only sequence composition of the interacting proteins, the functional class of human TF binding partners to be (i) TF, (ii) TcoF, or (iii) other nuclear protein. This allows for complementing the annotation of the currently known pool of nuclear proteins. Since only the knowledge of protein sequences is required in addition to protein interaction, the method should be easily applicable to many species.Results:Based on experimentally validated interactions between human TFs with different TFs, TcoFs and other nuclear proteins, our two classification systems (implemented as a web-based application) achieve high accuracies in distinguishing TFs and TcoFs from other nuclear proteins, and TFs from TcoFs respectively.Conclusion:As demonstrated, given the fact that two proteins are capable of forming direct physical interactions and using only information about their sequence composition, we have developed a completely new method for predicting a functional class of TF interacting protein partners

  3. Protein adsorption induced bridging flocculation: the dominant entropic pathway for nano-bio complexation.

    Science.gov (United States)

    Eren, Necla Mine; Narsimhan, Ganesan; Campanella, Osvaldo H

    2016-02-14

    Lysozyme-silica interactions and the resulting complexation were investigated through adsorption isotherms, dynamic and electrophoretic light scattering, circular dichroism (CD), and isothermal titration calorimetry (ITC). A thermodynamic analysis of ITC data revealed the existence of two binding modes during protein-nanoparticle complexation. Both binding modes are driven by the cooperation of a favorable enthalpy in the presence of a dominating entropy gain. The first binding mode has a higher binding affinity, a lower equilibrium stoichiometry and is driven by a higher entropic contribution compared to the second type. The observed favorable enthalpy gain in both modes is attributed to non-covalent complexation whereas the entropy gain is associated with the re-organization of the silica surface including not only the solvent and counter ion release, but also the protein's conformational changes. Possible mechanisms are proposed to explain non-covalent complexations for each binding mode by relating the changes in the zeta potential and hydrodynamic radius to the obtained adsorption isotherms and calorimetry profile. Based on all these findings, it is proposed that lysozyme adsorption on nano-silica is the result of protein-nanoparticle and protein-protein interactions that further leads to spontaneous, non-directional and random complexation of silica through bridging flocculation.

  4. Circulating growth hormone (GH)-binding protein complex: a major constituent of plasma GH in man

    International Nuclear Information System (INIS)

    Baumann, G.; Amburn, K.; Shaw, M.A.

    1988-01-01

    The recent discovery of a specific binding protein for human GH (hGH) in human plasma suggests that hGH circulates in part as a complex in association with the binding protein(s). However, the magnitude of the complexed fraction prevailing under physiological conditions is unknown because of 1) dissociation of the complex during analysis and 2) potential differences in the binding characteristics of radiolabeled and native hGH. We conducted experiments designed to minimize dissociation during analysis (gel filtration in prelabeled columns, frontal analysis, and batch molecular sieving) with both native and radioiodinated hGH. All three methods yielded similar estimates for the complexed fraction. In normal plasma the bound fraction for 22 K hGH averaged 50.1% (range, 39-59%), that for 20 K hGH averaged 28.5% (range, 26-31%). Above a hGH level of about 20 ng/ml the bound fraction declines in concentration-dependent manner due to saturation of the binding protein. We conclude that a substantial part of circulating hGH is complexed with carrier proteins. This concept has important implications for the metabolism, distribution, and biological activity of hGH

  5. Reconstitution of membrane protein complexes involved in pneumococcal septal cell wall assembly.

    Directory of Open Access Journals (Sweden)

    Marjolaine Noirclerc-Savoye

    Full Text Available The synthesis of peptidoglycan, the major component of the bacterial cell wall, is essential to cell survival, yet its mechanism remains poorly understood. In the present work, we have isolated several membrane protein complexes consisting of the late division proteins of Streptococcus pneumoniae: DivIB, DivIC, FtsL, PBP2x and FtsW, or subsets thereof. We have co-expressed membrane proteins from S. pneumoniae in Escherichia coli. By combining two successive affinity chromatography steps, we obtained membrane protein complexes with a very good purity. These complexes are functional, as indicated by the retained activity of PBP2x to bind a fluorescent derivative of penicillin and to hydrolyze the substrate analogue S2d. Moreover, we have evidenced the stabilizing role of protein-protein interactions within each complex. This work paves the way for a complete reconstitution of peptidoglycan synthesis in vitro, which will be critical to the elucidation of its intricate regulation mechanisms.

  6. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Natalia P. [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Bulteau, Anne Laure [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Salazar, Julio [Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Hirsch, Etienne C. [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Nunez, Marco T., E-mail: mnunez@uchile.cl [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile)

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that

  7. A Localized Complex of Two Protein Oligomers Controls the Orientation of Cell Polarity

    Directory of Open Access Journals (Sweden)

    Adam M. Perez

    2017-02-01

    Full Text Available Signaling hubs at bacterial cell poles establish cell polarity in the absence of membrane-bound compartments. In the asymmetrically dividing bacterium Caulobacter crescentus, cell polarity stems from the cell cycle-regulated localization and turnover of signaling protein complexes in these hubs, and yet the mechanisms that establish the identity of the two cell poles have not been established. Here, we recapitulate the tripartite assembly of a cell fate signaling complex that forms during the G1-S transition. Using in vivo and in vitro analyses of dynamic polar protein complex formation, we show that a polymeric cell polarity protein, SpmX, serves as a direct bridge between the PopZ polymeric network and the cell fate-directing DivJ histidine kinase. We demonstrate the direct binding between these three proteins and show that a polar microdomain spontaneously assembles when the three proteins are coexpressed heterologously in an Escherichia coli test system. The relative copy numbers of these proteins are essential for complex formation, as overexpression of SpmX in Caulobacter reorganizes the polarity of the cell, generating ectopic cell poles containing PopZ and DivJ. Hierarchical formation of higher-order SpmX oligomers nucleates new PopZ microdomain assemblies at the incipient lateral cell poles, driving localized outgrowth. By comparison to self-assembling protein networks and polar cell growth mechanisms in other bacterial species, we suggest that the cooligomeric PopZ-SpmX protein complex in Caulobacter illustrates a paradigm for coupling cell cycle progression to the controlled geometry of cell pole establishment.

  8. A new look on protein-polyphenol complexation during honey storage: is this a random or organized event with the help of dirigent-like proteins?

    Directory of Open Access Journals (Sweden)

    Katrina Brudzynski

    Full Text Available Honey storage initiates melanoidin formation that involves a cascade of seemingly unguided redox reactions between amino acids/proteins, reducing sugars and polyphenols. In the process, high molecular weight protein-polyphenol complexes are formed, but the mechanism involved remains unknown. The objective of this study was twofold: to determine quantitative and qualitative changes in proteins in honeys stored for prolonged times and in different temperatures and to relate these changes to the formation of protein-polyphenol complexes. Six -month storage decreased the protein content by 46.7% in all tested honeys (t-test, p<0.002 with the rapid reduction occurring during the first three month. The changes in protein levels coincided with alterations in molecular size and net charge of proteins on SDS -PAGE. Electro-blotted proteins reacted with a quinone-specific nitro blue tetrazolium (NBT on nitrocellulose membranes indicating that quinones derived from oxidized polyphenols formed covalent bonds with proteins. Protein-polyphenol complexes isolated by size-exclusion chromatography differed in size and stoichiometry and fall into two categories: (a high molecular weight complexes (230-180 kDa enriched in proteins but possessing a limited reducing activity toward the NBT and (b lower molecular size complexes (110-85 kDa enriched in polyphenols but strongly reducing the dye. The variable stoichiometry suggest that the large, "protein-type" complexes were formed by protein cross-linking, while in the smaller, "polyphenol-type" complexes polyphenols were first polymerized prior to protein binding. Quinones preferentially bound a 31 kDa protein which, by the electrospray quadrupole time of flight mass spectrometry (ESI-Qtof-MS analysis, showed homology to dirigent-like proteins known for assisting in radical coupling and polymerization of phenolic compounds. These findings provide a new look on protein-polyphenol interaction in honey where the

  9. Rev and Rex proteins of human complex retroviruses function with the MMTV Rem-responsive element

    Directory of Open Access Journals (Sweden)

    Dudley Jaquelin P

    2009-02-01

    Full Text Available Abstract Background Mouse mammary tumor virus (MMTV encodes the Rem protein, an HIV Rev-like protein that enhances nuclear export of unspliced viral RNA in rodent cells. We have shown that Rem is expressed from a doubly spliced RNA, typical of complex retroviruses. Several recent reports indicate that MMTV can infect human cells, suggesting that MMTV might interact with human retroviruses, such as human immunodeficiency virus (HIV, human T-cell leukemia virus (HTLV, and human endogenous retrovirus type K (HERV-K. In this report, we test whether the export/regulatory proteins of human complex retroviruses will increase expression from vectors containing the Rem-responsive element (RmRE. Results MMTV Rem, HIV Rev, and HTLV Rex proteins, but not HERV-K Rec, enhanced expression from an MMTV-based reporter plasmid in human T cells, and this activity was dependent on the RmRE. No RmRE-dependent reporter gene expression was detectable using Rev, Rex, or Rec in HC11 mouse mammary cells. Cell fractionation and RNA quantitation experiments suggested that the regulatory proteins did not affect RNA stability or nuclear export in the MMTV reporter system. Rem had no demonstrable activity on export elements from HIV, HTLV, or HERV-K. Similar to the Rem-specific activity in rodent cells, the RmRE-dependent functions of Rem, Rev, or Rex in human cells were inhibited by a dominant-negative truncated nucleoporin that acts in the Crm1 pathway of RNA and protein export. Conclusion These data argue that many retroviral regulatory proteins recognize similar complex RNA structures, which may depend on the presence of cell-type specific proteins. Retroviral protein activity on the RmRE appears to affect a post-export function of the reporter RNA. Our results provide additional evidence that MMTV is a complex retrovirus with the potential for viral interactions in human cells.

  10. Imaging and structural studies of DNA–protein complexes and membrane ion channels

    KAUST Repository

    Marini, Monica

    2017-01-17

    In bio-imaging by electron microscopy, damage of the sample and limited contrast are the two main hurdles for reaching high image quality. We extend a new preparation method based on nanofabrication and super-hydrophobicity to the imaging and structural studies of nucleic acids, nucleic acid-protein complexes (DNA/Rad51 repair protein complex) and neuronal ion channels (gap-junction, K+ and GABA(A) channels) as paradigms of biological significance and increasing complexity. The preparation method is based on the liquid phase and is compatible with physiological conditions. Only in the very last stage, samples are dried for TEM analysis. Conventional TEM and high-resolution TEM (HRTEM) were used to achieve a resolution of 3.3 and 1.5 angstrom, respectively. The EM dataset quality allows the determination of relevant structural and metrological information on the DNA structure, DNA-protein interactions and ion channels, allowing the identification of specific macromolecules and their structure.

  11. Horizontal Gel Electrophoresis for Enhanced Detection of Protein-RNA Complexes.

    Science.gov (United States)

    Dowdle, Megan E; Imboden, Susanne Blaser; Park, Sookhee; Ryder, Sean P; Sheets, Michael D

    2017-07-28

    Native polyacrylamide gel electrophoresis is a fundamental tool of molecular biology that has been used extensively for the biochemical analysis of RNA-protein interactions. These interactions have been traditionally analyzed with polyacrylamide gels generated between two glass plates and samples electrophoresed vertically. However, polyacrylamide gels cast in trays and electrophoresed horizontally offers several advantages. For example, horizontal gels used to analyze complexes between fluorescent RNA substrates and specific proteins can be imaged multiple times as electrophoresis progresses. This provides the unique opportunity to monitor RNA-protein complexes at several points during the experiment. In addition, horizontal gel electrophoresis makes it possible to analyze many samples in parallel. This can greatly facilitate time course experiments as well as analyzing multiple reactions simultaneously to compare different components and conditions. Here we provide a detailed protocol for generating and using horizontal native gel electrophoresis for analyzing RNA-Protein interactions.

  12. Misfolded proteins complexed with MHC class II molecules are targets for autoantibodies.

    Science.gov (United States)

    Hiwa, Ryosuke; Arase, Hisashi

    2016-01-01

    Major histocompatibility complex (MHC) molecule is important for immune system through its function of presentation of peptide antigens. MHC is the gene most strongly associated with susceptibility to many autoimmune diseases. We recently found a novel function of MHC class II molecules to transport cellular misfolded proteins to the cell surface without processing to peptides. Interestingly, misfolded proteins transported to the cell surface by MHC class II molecules were found to be a specific targets for autoantibodies produced in patients with autoimmune diseases such as rheumatoid arthritis and antiphospholipid syndrome. Furthermore, autoantibody binding to misfolded proteins complexed with MHC class II molecules is strongly associated with the susceptibility to autoimmune diseases conferred by each MHC class II allele. Therefore, misfolded proteins associated with MHC class II molecules might be involved in the pathogenesis of autoimmune diseases.

  13. Complex assembly behavior during the encapsulation of green fluorescent protein analogs in virus derived protein capsules

    NARCIS (Netherlands)

    Minten, Inge J.; Nolte, Roeland J.M.; Cornelissen, Jeroen Johannes Lambertus Maria

    2010-01-01

    Enzymes encapsulated in nanocontainers are a better model of the conditions inside a living cell than free enzymes in solution. In a first step toward the encapsulation of multiple enzymes inside the cowpea chlorotic mottle virus (CCMV) capsid, enhanced green fluorescent protein (EGFP) was attached

  14. Large, dynamic, multi-protein complexes: a challenge for structural biology

    Czech Academy of Sciences Publication Activity Database

    Rozycki, B.; Bouřa, Evžen

    2014-01-01

    Roč. 26, č. 46 (2014), 463103/1-463103/11 ISSN 0953-8984 R&D Projects: GA MŠk LO1302 EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : protein structure * multi-protein complexes * hybrid methods of structural biology Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.346, year: 2014

  15. Rational Design of Orthogonal Multipolar Interactions with Fluorine in Protein-Ligand Complexes.

    Science.gov (United States)

    Pollock, Jonathan; Borkin, Dmitry; Lund, George; Purohit, Trupta; Dyguda-Kazimierowicz, Edyta; Grembecka, Jolanta; Cierpicki, Tomasz

    2015-09-24

    Multipolar interactions involving fluorine and the protein backbone have been frequently observed in protein-ligand complexes. Such fluorine-backbone interactions may substantially contribute to the high affinity of small molecule inhibitors. Here we found that introduction of trifluoromethyl groups into two different sites in the thienopyrimidine class of menin-MLL inhibitors considerably improved their inhibitory activity. In both cases, trifluoromethyl groups are engaged in short interactions with the backbone of menin. In order to understand the effect of fluorine, we synthesized a series of analogues by systematically changing the number of fluorine atoms, and we determined high-resolution crystal structures of the complexes with menin. We found that introduction of fluorine at favorable geometry for interactions with backbone carbonyls may improve the activity of menin-MLL inhibitors as much as 5- to 10-fold. In order to facilitate the design of multipolar fluorine-backbone interactions in protein-ligand complexes, we developed a computational algorithm named FMAP, which calculates fluorophilic sites in proximity to the protein backbone. We demonstrated that FMAP could be used to rationalize improvement in the activity of known protein inhibitors upon introduction of fluorine. Furthermore, FMAP may also represent a valuable tool for designing new fluorine substitutions and support ligand optimization in drug discovery projects. Analysis of the menin-MLL inhibitor complexes revealed that the backbone in secondary structures is particularly accessible to the interactions with fluorine. Considering that secondary structure elements are frequently exposed at protein interfaces, we postulate that multipolar fluorine-backbone interactions may represent a particularly attractive approach to improve inhibitors of protein-protein interactions.

  16. High Throughput Identification, Purification and Structural Characterization of Water Soluble Protein Complexes in Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Dong,, Ming; Han, Bong-Gyoon; Liu, Hui-Hai; Malik, J.; Geller, Jil; Yang, Li; Choi, M.; Chandonia, John-Marc; Arbelaez, Pablo; Sterling, H. J.; Typke, Dieter; Shatsky, Max; Brenner, Steve; Fisher, Susan; Williams, Evan; Szakal, Evelin; Allen, S.; Hall, S. C.; Hazen, Terry; Witkowska, H. E.; Jin, Jiming; Glaeser, Robert; Biggin, Mark

    2010-05-17

    Our scheme for the tagless purification of water soluble complexes. 10 g of protein from a crude bacterial extract is first fractionated by ammonium sulfate precipitation and then by a series of chromatographic steps: anion exchange (IEX), hydrophobic interaction (HIC), and finally size exclusion (Gel Filtration). Fractions from the last chromatography step are trypsin digested and peptides labeled with iTRAQ reagents to allow multiplexing and quantitation during mass spectrometric analysis. Elution profiles of identified proteins are then subjected to clustering analysis.

  17. A Polycomb complex remains bound through DNA replication in the absence of other eukaryotic proteins

    KAUST Repository

    Lengsfeld, Bettina M.

    2012-09-17

    Propagation of chromatin states through DNA replication is central to epigenetic regulation and can involve recruitment of chromatin proteins to replicating chromatin through interactions with replication fork components. Here we show using a fully reconstituted T7 bacteriophage system that eukaryotic proteins are not required to tether the Polycomb complex PRC1 to templates during DNA replication. Instead, DNA binding by PRC1 can withstand passage of a simple replication fork.

  18. Detecting coordinated regulation of multi-protein complexes using logic analysis of gene expression

    Directory of Open Access Journals (Sweden)

    Yeates Todd O

    2009-12-01

    Full Text Available Abstract Background Many of the functional units in cells are multi-protein complexes such as RNA polymerase, the ribosome, and the proteasome. For such units to work together, one might expect a high level of regulation to enable co-appearance or repression of sets of complexes at the required time. However, this type of coordinated regulation between whole complexes is difficult to detect by existing methods for analyzing mRNA co-expression. We propose a new methodology that is able to detect such higher order relationships. Results We detect coordinated regulation of multiple protein complexes using logic analysis of gene expression data. Specifically, we identify gene triplets composed of genes whose expression profiles are found to be related by various types of logic functions. In order to focus on complexes, we associate the members of a gene triplet with the distinct protein complexes to which they belong. In this way, we identify complexes related by specific kinds of regulatory relationships. For example, we may find that the transcription of complex C is increased only if the transcription of both complex A AND complex B is repressed. We identify hundreds of examples of coordinated regulation among complexes under various stress conditions. Many of these examples involve the ribosome. Some of our examples have been previously identified in the literature, while others are novel. One notable example is the relationship between the transcription of the ribosome, RNA polymerase and mannosyltransferase II, which is involved in N-linked glycan processing in the Golgi. Conclusions The analysis proposed here focuses on relationships among triplets of genes that are not evident when genes are examined in a pairwise fashion as in typical clustering methods. By grouping gene triplets, we are able to decipher coordinated regulation among sets of three complexes. Moreover, using all triplets that involve coordinated regulation with the ribosome

  19. Isolation of a novel lutein-protein complex from Chlorella vulgaris and its functional properties.

    Science.gov (United States)

    Cai, Xixi; Huang, Qimin; Wang, Shaoyun

    2015-06-01

    A novel kind of lutein-protein complex (LPC) was extracted from heterotrophic Chlorella vulgaris through aqueous extraction. The purification procedure contained solubilization of thylakoid proteins by a zwitterionic detergent CHAPS, anion exchange chromatography and gel filtration chromatography. Both wavelength scanning and HPLC analysis confirmed that lutein was the major pigment of the protein-based complex, and the mass ratio of lutein and protein was determined to be 9.72 : 100. Besides showing lipid peroxidation inhibition activity in vitro, LPC exerted significant antioxidant effects against ABTS and DPPH radicals with IC50 of 2.90 and 97. 23 μg mL(-1), respectively. Meanwhile, in vivo antioxidant activity of the complex was evaluated using the mice hepatotoxicity model; LPC significantly suppressed the carbon tetrachloride-induced elevation of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and decreased hepatic malondialdehyde (MDA) levels and the hepatosomatic index. Moreover, LPC could effectively restore the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the treated mice livers. Our findings further the progress in the research of natural protein-based lutein complexes, suggesting that LPC has the potential in hepatoprotection against chemical induced toxicity and in increasing the antioxidant capacity of the defense system in the human body.

  20. A Conserved Endoplasmic Reticulum Membrane Protein Complex (EMC) Facilitates Phospholipid Transfer from the ER to Mitochondria

    Science.gov (United States)

    Tavassoli, Shabnam; Wong, Andrew K. O.; Choudhary, Vineet; Young, Barry P.; Loewen, Christopher J. R.; Prinz, William A.

    2014-01-01

    Mitochondrial membrane biogenesis and lipid metabolism require phospholipid transfer from the endoplasmic reticulum (ER) to mitochondria. Transfer is thought to occur at regions of close contact of these organelles and to be nonvesicular, but the mechanism is not known. Here we used a novel genetic screen in S. cerevisiae to identify mutants with defects in lipid exchange between the ER and mitochondria. We show that a strain missing multiple components of the conserved ER membrane protein complex (EMC) has decreased phosphatidylserine (PS) transfer from the ER to mitochondria. Mitochondria from this strain have significantly reduced levels of PS and its derivative phosphatidylethanolamine (PE). Cells lacking EMC proteins and the ER–mitochondria tethering complex called ERMES (the ER–mitochondria encounter structure) are inviable, suggesting that the EMC also functions as a tether. These defects are corrected by expression of an engineered ER–mitochondrial tethering protein that artificially tethers the ER to mitochondria. EMC mutants have a significant reduction in the amount of ER tethered to mitochondria even though ERMES remained intact in these mutants, suggesting that the EMC performs an additional tethering function to ERMES. We find that all Emc proteins interact with the mitochondrial translocase of the outer membrane (TOM) complex protein Tom5 and this interaction is important for PS transfer and cell growth, suggesting that the EMC forms a tether by associating with the TOM complex. Together, our findings support that the EMC tethers ER to mitochondria, which is required for phospholipid synthesis and cell growth. PMID:25313861

  1. 3D pressure field in lipid membranes and membrane-protein complexes

    DEFF Research Database (Denmark)

    Ollila, O H Samuli; Risselada, H Jelger; Louhivuori, Martti

    2009-01-01

    We calculate full 3D pressure fields for inhomogeneous nanoscale systems using molecular dynamics simulation data. The fields represent systems with increasing level of complexity, ranging from semivesicles and vesicles to membranes characterized by coexistence of two phases, including also...... a protein-membrane complex. We show that the 3D pressure field is distinctly different for curved and planar bilayers, the pressure field depends strongly on the phase of the membrane, and that an integral protein modulates the tension and elastic properties of the membrane....

  2. Understanding the GPCR biased signaling through G protein and arrestin complex structures.

    Science.gov (United States)

    Zhou, X Edward; Melcher, Karsten; Xu, H Eric

    2017-08-01

    G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and are important drug targets for many human diseases. The determination of the 3-D structure of GPCRs and their signaling complexes has promoted our understanding of GPCR biology and provided templates for structure-based drug discovery. In this review, we focus on the recent structure work on GPCR signaling complexes, the β2-adrenoreceptor-Gs and the rhodopsin-arrestin complexes in particular, and highlight the structural features of GPCR complexes involved in G protein- and arrestin-mediated signal transduction. The crystal structures reveal distinct structural mechanisms by which GPCRs recruit a G protein and an arrestin. A comparison of the two complex structures provides insight into the molecular mechanism of functionally selective GPCR signaling, and a structural basis for the discovery of G protein- and arrestin-biased treatments of human diseases related to GPCR signal transduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cooperation of TOM and TIM23 complexes during translocation of proteins into mitochondria.

    Science.gov (United States)

    Waegemann, Karin; Popov-Čeleketić, Dušan; Neupert, Walter; Azem, Abdussalam; Mokranjac, Dejana

    2015-03-13

    Translocation of the majority of mitochondrial proteins from the cytosol into mitochondria requires the cooperation of TOM and TIM23 complexes in the outer and inner mitochondrial membranes. The molecular mechanisms underlying this cooperation remain largely unknown. Here, we present biochemical and genetic evidence that at least two contacts from the side of the TIM23 complex play an important role in TOM-TIM23 cooperation in vivo. Tim50, likely through its very C-terminal segment, interacts with Tom22. This interaction is stimulated by translocating proteins and is independent of any other TOM-TIM23 contact known so far. Furthermore, the exposure of Tim23 on the mitochondrial surface depends not only on its interaction with Tim50 but also on the dynamics of the TOM complex. Destabilization of the individual contacts reduces the efficiency of import of proteins into mitochondria and destabilization of both contacts simultaneously is not tolerated by yeast cells. We conclude that an intricate and coordinated network of protein-protein interactions involving primarily Tim50 and also Tim23 is required for efficient translocation of proteins across both mitochondrial membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Brownian dynamics of a protein-polymer chain complex in a solid-state nanopore

    Science.gov (United States)

    Wells, Craig C.; Melnikov, Dmitriy V.; Gracheva, Maria E.

    2017-08-01

    We study the movement of a polymer attached to a large protein inside a nanopore in a thin silicon dioxide membrane submerged in an electrolyte solution. We use Brownian dynamics to describe the motion of a negatively charged polymer chain of varying lengths attached to a neutral protein modeled as a spherical bead with a radius larger than that of the nanopore, allowing the chain to thread the nanopore but preventing it from translocating. The motion of the protein-polymer complex within the pore is also compared to that of a freely translocating polymer. Our results show that the free polymer's standard deviations in the direction normal to the pore axis is greater than that of the protein-polymer complex. We find that restrictions imposed by the protein, bias, and neighboring chain segments aid in controlling the position of the chain in the pore. Understanding the behavior of the protein-polymer chain complex may lead to methods that improve molecule identification by increasing the resolution of ionic current measurements.

  5. G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase.

    Science.gov (United States)

    Lavine, Natalie; Ethier, Nathalie; Oak, James N; Pei, Lin; Liu, Fang; Trieu, Phan; Rebois, R Victor; Bouvier, Michel; Hebert, Terence E; Van Tol, Hubert H M

    2002-11-29

    A large number of studies have demonstrated co-purification or co-immunoprecipitation of receptors with G proteins. We have begun to look for the presence of effector molecules in these receptor complexes. Co-expression of different channel and receptor permutations in COS-7 and HEK 293 cells in combination with co-immunoprecipitation experiments established that the dopamine D(2) and D(4), and beta(2)-adrenergic receptors (beta(2)-AR) form stable complexes with Kir3 channels. The D(4)/Kir3 and D(2) receptor/Kir3 interaction does not occur when the channel and receptor are expressed separately and mixed prior to immunoprecipitation, indicating that the interaction is not an artifact of the experimental protocol and reflects a biosynthetic event. The observed complexes are stable in that they are not disrupted by receptor activation or modulation of G protein alpha subunit function. However, using a peptide that binds Gbetagamma (betaARKct), we show that Gbetagamma is critical for dopamine receptor-Kir3 complex formation, but not for maintenance of the complex. We also provide evidence that Kir3 channels and another effector, adenylyl cyclase, are stably associated with the beta(2)-adrenergic receptor and can be co-immunoprecipitated by anti-receptor antibodies. Using bioluminescence resonance energy transfer, we have shown that in living cells under physiological conditions, beta(2)AR interacts directly with Kir3.1/3.4 and Kir3.1/3.2c heterotetramers as well as with adenylyl cyclase. All of these interactions are stable in the presence of receptor agonists, suggesting that these signaling complexes persist during signal transduction. In addition, we provide evidence that the receptor-effector complexes are also found in vivo. The observation that several G protein-coupled receptors form stable complexes with their effectors suggests that this arrangement might be a general feature of G protein-coupled signal transduction.

  6. Congenital deficiency of two polypeptide subunits of the iron-protein fragment of mitochondrial complex I.

    Science.gov (United States)

    Moreadith, R W; Cleeter, M W; Ragan, C I; Batshaw, M L; Lehninger, A L

    1987-02-01

    Recently, we described a patient with severe lactic acidosis due to congenital complex I (NADH-ubiquinone oxidoreductase) deficiency. We now report further enzymatic and immunological characterizations. Both NADH and ferricyanide titrations of complex I activity (measured as NADH-ferricyanide reductase) were distinctly altered in the mitochondria from the patient's tissues. In addition, antisera against complex I immunoprecipitated NADH-ferricyanide reductase from the control but not the patient's mitochondria. However, immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of complex I polypeptides demonstrated that the majority of the 25 polypeptides comprising complex I were present in the affected mitochondria. A more detailed analysis using subunit selective antisera against the main polypeptides of the iron-protein fragments of complex I revealed a selective absence of the 75- and 13-kD polypeptides. These findings suggest that the underlying basis for this patient's disease was a congenital deficiency of at least two polypeptides comprising the iron-protein fragment of complex I, which resulted in the inability to correctly assemble a functional enzyme complex.

  7. Taxonomic distribution and origins of the extended LHC (light-harvesting complex antenna protein superfamily

    Directory of Open Access Journals (Sweden)

    Brinkmann Henner

    2010-07-01

    Full Text Available Abstract Background The extended light-harvesting complex (LHC protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS. The evolution of this complex superfamily has long remained elusive, partially due to previously missing families. Results In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae: glaucophytes, red algae and green plants (Viridiplantae. By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll a/b-binding-like protein (RedCAP family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping. Conclusions The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the

  8. Fast Photochemical Oxidation of Proteins Coupled to Multidimensional Protein Identification Technology (MudPIT): Expanding Footprinting Strategies to Complex Systems

    Science.gov (United States)

    Rinas, Aimee; Jones, Lisa M.

    2015-04-01

    Peptides containing the oxidation products of hydroxyl radical-mediated protein footprinting experiments are typically much less abundant than their unoxidized counterparts. This is inherent to the design of the experiment as excessive oxidation may lead to undesired conformational changes or unfolding of the protein, skewing the results. Thus, as the complexity of the systems studied using this method expands, the detection and identification of these oxidized species can be increasingly difficult with the limitations of data-dependent acquisition (DDA) and one-dimensional chromatography. Here we report the application of multidimensional protein identification technology (MudPIT) in combination with hydroxyl radical footprinting as a method to increase the identification of quantifiable peptides in these experiments. Using this method led to a 37% increase in unique peptide identifications as well as a 70% increase in protein group identifications over one-dimensional data-dependent acquisition on the same samples. Furthermore, we demonstrate the combination of these methods as a means to investigate megadalton complexes.

  9. Evidence for two interconverting protein isomers in the methotrexate complex of dihydrofolate reductase from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Falzone, C.J.; Benkovic, S.J. (Pennsylvania State Univ., University Park (United States)); Wright, P.E. (Research Inst. of Scripps Clinic, La Jolla, CA (United States))

    1991-02-26

    Two-dimensional {sup 1}H NMR methods and a knowledge of the X-ray crystal structure have been used to make resonance assignments for the amino acid side chains of dihydrofolate reductase from Escherichia coli complexed with methotrexate. The H7 proton on the pteridine ring of methotrexate was found to have NOEs to the methyl protons of Leu-28 which were assigned by using the L28F mutant. These NOEs indicated that the orientation of the methotrexate pteridine ring is similar in both solution and crystal structures. During the initial assignment process, it became evident that many of the resonances in this complex, unlike those of the folate complex, are severally broadened or doubled. The observation of two distinct sets of resonances in a ratio of approximately 2:1 was attributed to the presence of two protein isomers. Many of the side chains with clearly doubled resonances were located in the {beta}-sheet and the active site. Preliminary studies on the apoprotein also revealed doubled resonances in the absence of the inhibitor, indicating the existence of the protein isomers prior to methotrexate binding. In contrast to the methotrexate complex, the binary complex with folate and the ternary MTX-NADPH-DHFR complex presented a single enzyme form. These results are proposed to reflect the ability of folate and NADPH to bind predominantly to one protein isomer.

  10. Radioiodination of the protein complex of the VA-MENGOC-BC vaccine

    International Nuclear Information System (INIS)

    Caso, R.; Lastre, M.; Alvarez, L.

    1996-01-01

    In this work was made the labelling of the protein complex of the vaccine VA-MEMGOC-BC with I-125 in order to study its immunological responses. These proteins were in both forms: dissolved and conjugated with polisacarids of the C-group. There were used three methods of iodination: chloramine-T iodogen and lactoperoxidase. Was found out that dissolved proteins can be iodinated using these methods with 0,1 mCi of I-125, and the obtained specific activities were similar

  11. Electrospray droplet exposure to organic vapors: metal ion removal from proteins and protein complexes.

    Science.gov (United States)

    DeMuth, J Corinne; McLuckey, Scott A

    2015-01-20

    The exposure of aqueous nanoelectrospray droplets to various organic vapors can dramatically reduce sodium adduction on protein ions in positive ion mass spectra. Volatile alcohols, such as methanol, ethanol, and isopropanol lead to a significant reduction in sodium ion adduction but are not as effective as acetonitrile, acetone, and ethyl acetate. Organic vapor exposure in the negative ion mode, on the other hand, has essentially no effect on alkali ion adduction. Evidence is presented to suggest that the mechanism by which organic vapor exposure reduces alkali ion adduction in the positive mode involves the depletion of alkali metal ions via ion evaporation of metal ions solvated with organic molecules. The early generation of metal/organic cluster ions during the droplet desolvation process results in fewer metal ions available to condense on the protein ions formed via the charged residue mechanism. These effects are demonstrated with holomyoglobin ions to illustrate that the metal ion reduction takes place without detectable protein denaturation, which might be revealed by heme loss or an increase in charge state distribution. No evidence is observed for denaturation with exposure to any of the organic vapors evaluated in this work.

  12. A new look on protein-polyphenol complexation during honey storage: is this a random or organized event with the help of dirigent-like proteins?

    Science.gov (United States)

    Brudzynski, Katrina; Sjaarda, Calvin; Maldonado-Alvarez, Liset

    2013-01-01

    Honey storage initiates melanoidin formation that involves a cascade of seemingly unguided redox reactions between amino acids/proteins, reducing sugars and polyphenols. In the process, high molecular weight protein-polyphenol complexes are formed, but the mechanism involved remains unknown. The objective of this study was twofold: to determine quantitative and qualitative changes in proteins in honeys stored for prolonged times and in different temperatures and to relate these changes to the formation of protein-polyphenol complexes. Six -month storage decreased the protein content by 46.7% in all tested honeys (t-test, ppolyphenols formed covalent bonds with proteins. Protein-polyphenol complexes isolated by size-exclusion chromatography differed in size and stoichiometry and fall into two categories: (a) high molecular weight complexes (230-180 kDa) enriched in proteins but possessing a limited reducing activity toward the NBT and (b) lower molecular size complexes (110-85 kDa) enriched in polyphenols but strongly reducing the dye. The variable stoichiometry suggest that the large, "protein-type" complexes were formed by protein cross-linking, while in the smaller, "polyphenol-type" complexes polyphenols were first polymerized prior to protein binding. Quinones preferentially bound a 31 kDa protein which, by the electrospray quadrupole time of flight mass spectrometry (ESI-Qtof-MS) analysis, showed homology to dirigent-like proteins known for assisting in radical coupling and polymerization of phenolic compounds. These findings provide a new look on protein-polyphenol interaction in honey where the reaction of quinones with proteins and polyphenols could possibly be under assumed guidance of dirigent proteins.

  13. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein.

    Science.gov (United States)

    Trompette, Aurelien; Divanovic, Senad; Visintin, Alberto; Blanchard, Carine; Hegde, Rashmi S; Madan, Rajat; Thorne, Peter S; Wills-Karp, Marsha; Gioannini, Theresa L; Weiss, Jerry P; Karp, Christopher L

    2009-01-29

    Aeroallergy results from maladaptive immune responses to ubiquitous, otherwise innocuous environmental proteins. Although the proteins targeted by aeroallergic responses represent a tiny fraction of the airborne proteins humans are exposed to, allergenicity is a quite public phenomenon-the same proteins typically behave as aeroallergens across the human population. Why particular proteins tend to act as allergens in susceptible hosts is a fundamental mechanistic question that remains largely unanswered. The main house-dust-mite allergen, Der p 2, has structural homology with MD-2 (also known as LY96), the lipopolysaccharide (LPS)-binding component of the Toll-like receptor (TLR) 4 signalling complex. Here we show that Der p 2 also has functional homology, facilitating signalling through direct interactions with the TLR4 complex, and reconstituting LPS-driven TLR4 signalling in the absence of MD-2. Mirroring this, airway sensitization and challenge with Der p 2 led to experimental allergic asthma in wild type and MD-2-deficient, but not TLR4-deficient, mice. Our results indicate that Der p 2 tends to be targeted by adaptive immune responses because of its auto-adjuvant properties. The fact that other members of the MD-2-like lipid-binding family are allergens, and that most defined major allergens are thought to be lipid-binding proteins, suggests that intrinsic adjuvant activity by such proteins and their accompanying lipid cargo may have some generality as a mechanism underlying the phenomenon of allergenicity.

  14. Chlorophyll biosynthesis and assembly into chlorophyll-protein complexes in isolated developing chloroplasts

    International Nuclear Information System (INIS)

    Bhaya, D.; Castelfranco, P.A.

    1985-01-01

    Isolated developing plastids from greening cucumber cotyledons or from photoperiodically grown pea seedlings incorporated 14 C-labeled 5-aminolevulinic acid (ALA) into chlorophyll (Chl). Incorporation was light dependent, enhanced by S-adenosylmethionine, and linear for 1 hr. The in vitro rate of Chl synthesis from ALA was comparable to the in vivo rate of Chl accumulation. Levulinic acid and dioxoheptanoic acid strongly inhibited Chl synthesis but not plastid protein synthesis. Neither chloramphenicol nor spectinomycin affected Chl synthesis, although protein synthesis was strongly inhibited. Components of thylakoid membranes from plastids incubated with [ 14 C]ALA were resolved by electrophoresis and then subjected to autoradiography. This work showed that (i) newly synthesized Chl was assembled into Chl-protein complexes and (ii) the inhibition of protein synthesis during the incubation did not alter the labeling pattern. Thus, there was no observable short-term coregulation between Chl synthesis (from ALA) and the synthesis of membrane proteins in isolated plastids

  15. Proteomic identification of dysferlin-interacting protein complexes in human vascular endothelium

    International Nuclear Information System (INIS)

    Leung, Cleo; Utokaparch, Soraya; Sharma, Arpeeta; Yu, Carol; Abraham, Thomas; Borchers, Christoph; Bernatchez, Pascal

    2011-01-01

    Highlights: ► Bi-directional (inward and outward) movement of GFP-dysferlin in COS-7 cells. ► Dysferlin interacts with key signaling proteins for transcytosis in EC. ► Dysferlin mediates trafficking of vesicles carrying protein cargos in EC. -- Abstract: Dysferlin is a membrane-anchored protein known to facilitate membrane repair in skeletal muscles following mechanical injury. Mutations of dysferlin gene impair sarcolemma integrity, a hallmark of certain forms of muscular dystrophy in patients. Dysferlin contains seven calcium-dependent C2 binding domains, which are required to promote fusion of intracellular membrane vesicles. Emerging evidence reveal the unexpected expression of dysferlin in non-muscle, non-mechanically active tissues, such as endothelial cells, which cast doubts over the belief that ferlin proteins act exclusively as membrane repair proteins. We and others have shown that deficient trafficking of membrane bound proteins in dysferlin-deficient cells, suggesting that dysferlin might mediate trafficking of client proteins. Herein, we describe the intracellular trafficking and movement of GFP-dysferlin positive vesicles in unfixed reconstituted cells using live microscopy. By performing GST pull-down assays followed by mass spectrometry, we identified dysferlin binding protein complexes in human vascular endothelial cells. Together, our data further support the claims that dysferlin not only mediates membrane repair but also trafficking of client proteins, ultimately, help bridging dysferlinopathies to aberrant membrane signaling.

  16. Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid.

    Science.gov (United States)

    Tsai, Wen-Chieh; Pan, Zhao-Jun; Hsiao, Yu-Yun; Jeng, Mei-Fen; Wu, Ting-Feng; Chen, Wen-Huei; Chen, Hong-Hwa

    2008-05-01

    In our previous studies, we identified four DEFICIENS (DEF)-like genes and one GLOBOSA (GLO)-like gene involved in floral organ development in Phalaenopsis equestris. Revealing the DNA binding properties and protein-protein interactions of these floral homeotic MADS-box protein complexes (PeMADS) in orchids is crucial for the elucidation of the unique orchid floral morphogenesis. In this study, the interactome of B-class PeMADS proteins was assayed by the yeast two-hybrid system (Y2H) and glutathione S-transferase (GST) pull-down assays. Furthermore, the DNA binding activities of these proteins were assessed by using electrophoretic mobility shift assay (EMSA). All four DEF-like PeMADS proteins interacted individually with the GLO-like PeMADS6 in Y2H assay, yet with different strengths of interaction. Generally, the PeMADS3/PeMADS4 lineage interacted more strongly with PeMADS6 than the PeMADS2/PeMADS5 lineage did. In addition, independent homodimer formation for both PeMADS4 (DEF-like) and PeMADS6 (GLO-like) was detected. The protein-protein interactions between pairs of PeMADS proteins were further confirmed by using a GST pull-down assay. Furthermore, both the PeMADS4 homodimer and the PeMADS6 homodimer/homomultimer per se were able to bind to the MADS-box protein-binding motif CArG. The heterodimeric complexes PeMADS2-PeMADS6, PeMADS4-PeMADS6 and PeMADS5-PeMADS6 showed CArG binding activity. Taken together, these results suggest that various complexes formed among different combinations of the five B-class PeMADS proteins may increase the complexity of their regulatory functions and thus specify the molecular basis of whorl morphogenesis and combinatorial interactions of floral organ identity genes in orchids.

  17. New procyanidin B3-human salivary protein complexes by mass spectrometry. Effect of salivary protein profile, tannin concentration, and time stability.

    Science.gov (United States)

    Perez-Gregorio, Maria Rosa; Mateus, Nuno; De Freitas, Victor

    2014-10-15

    Several factors could influence the tannin-protein interaction such as the human salivary protein profile, the tannin tested, and the tannin/protein ratio. The goal of this study aims to study the effect of different salivas (A, B, and C) and different tannin concentrations (0.5 and 1 mg/mL) on the interaction process as well as the complex's stability over time. This study is focused on the identification of new procyanidin B3-human salivary protein complexes. Thus, 48 major B3-human salivary protein aggregates were identified regardless of the saliva and tannin concentration tested. A higher number of aggregates was found at lower tannin concentration. Moreover, the number of protein moieties involved in the aggregation process was higher when the tannin concentration was also higher. The selectivity of the different groups of proteins to bind tannin was also confirmed. It was also verified that the B3-human salivary protein complexes formed evolved over time.

  18. LC-MS/MS as an alternative for SDS-PAGE in blue native analysis of protein complexes.

    NARCIS (Netherlands)

    Wessels, H.C.T.; Vogel, R.O.; Heuvel, L.P.W.J. van den; Smeitink, J.A.M.; Rodenburg, R.J.T.; Nijtmans, L.G.J.; Farhoud, M.H.

    2009-01-01

    Two-dimensional blue native/SDS-PAGE is widely applied to investigate native protein-protein interactions, particularly those within membrane multi-protein complexes. MS has enabled the application of this approach at the proteome scale, typically by analysis of picked protein spots. Here, we

  19. A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria

    NARCIS (Netherlands)

    Boekema, E.J.; Hifney, A.; Yakushevska, A.E.; Piotrowski, M.; Keegstra, W.; Berry, S.; Michel, K.-P.; Pistorius, E.K.; Kruip, J.

    2001-01-01

    Cyanobacteria are abundant throughout most of the world's water bodies and contribute significantly to global primary productivity through oxygenic photosynthesis. This reaction is catalysed by two membrane-bound protein complexes, photosystem I (PSI) and photosystem II (PSII), which both contain

  20. DNA radiolysis in DNA-protein complex: a stochastic simulation of attack by hydroxyl radicals

    Czech Academy of Sciences Publication Activity Database

    Běgusová, Marie; Giliberto, S.; Gras, J.; Sy, D.; Charlier, M.; Spotheim Maurizot, M.

    2003-01-01

    Roč. 79, č. 6 (2003), s. 385-391 ISSN 0955-3002 R&D Projects: GA AV ČR IAA1048103 Institutional research plan: CEZ:AV0Z1048901 Keywords : radiolysis * DNA-protein complexes * hydroxyl radicals Subject RIV: BO - Biophysics Impact factor: 2.165, year: 2003

  1. Nuclear pore protein NUP88 activates anaphase-promoting complex to promote aneuploidy

    NARCIS (Netherlands)

    Naylor, R.M.; Jeganathan, K.B.; Cao, X.; Deursen, J.M. van

    2016-01-01

    The nuclear pore complex protein NUP88 is frequently elevated in aggressive human cancers and correlates with reduced patient survival; however, it is unclear whether and how NUP88 overexpression drives tumorigenesis. Here, we show that mice overexpressing NUP88 are cancer prone and form intestinal

  2. Structure and flexibility adaptation in nonspecific and specific protein-DNA complexes

    NARCIS (Netherlands)

    Kalodimos, Ch.; Biris, N.; Bonvin, A.M.J.J.; Levandoski, M.M.; Guennuegues, M.; Boelens, R.; Kaptein, R.

    2004-01-01

    Interaction of regulatory DNA binding proteins with their target sites is usually preceded by binding to nonspecific DNA. This speeds up the search for the target site by several orders of magnitude. We report the solution structure and dynamics of the complex of a dimeric lac repressor DNA binding

  3. Three-dimensional structure of the bacterial protein-translocation complex SecYEG.

    Science.gov (United States)

    Breyton, Cécile; Haase, Winfried; Rapoport, Tom A; Kühlbrandt, Werner; Collinson, Ian

    2002-08-08

    Transport and membrane integration of polypeptides is carried out by specific protein complexes in the membranes of all living cells. The Sec transport path provides an essential and ubiquitous route for protein translocation. In the bacterial cytoplasmic membrane, the channel is formed by oligomers of a heterotrimeric membrane protein complex consisting of subunits SecY, SecE and SecG. In the endoplasmic reticulum membrane, the channel is formed from the related Sec61 complex. Here we report the structure of the Escherichia coli SecYEG assembly at an in-plane resolution of 8 A. The three-dimensional map, calculated from two-dimensional SecYEG crystals, reveals a sandwich of two membranes interacting through the extensive cytoplasmic domains. Each membrane is composed of dimers of SecYEG. The monomeric complex contains 15 transmembrane helices. In the centre of the dimer we observe a 16 x 25 A cavity closed on the periplasmic side by two highly tilted transmembrane helices. This may represent the closed state of the protein-conducting channel.

  4. Single particle electron microscopy in combination with mass spectrometry to investigate novel complexes of membrane proteins

    NARCIS (Netherlands)

    Arteni, Ana A.; Nowaczyk, Marc; Lax, Julia; Rögner, Matthias; Boekema, Egbert J.; Kouril, R.; Rogner, M.

    2005-01-01

    Large data sets of molecular projections of the membrane proteins Photosystem I and Photosystem II from cyanobacteria were analyzed by single particle electron microscopy (EM). Analysis resulted in the averaging of 2D projections from the purified complexes but also in the simultaneous detection and

  5. Oxalic acid complexes: Promising draw solutes for forward osmosis (FO) in protein enrichment

    KAUST Repository

    Ge, Qingchun

    2015-01-01

    Highly soluble oxalic acid complexes (OACs) were synthesized through a one-pot reaction. The OACs exhibit excellent performance as draw solutes in FO processes with high water fluxes and negligible reverse solute fluxes. Efficient protein enrichment was achieved. The diluted OACs can be recycled via nanofiltration and are promising as draw solutes.

  6. Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval.

    Science.gov (United States)

    Hirst, Jennifer; Itzhak, Daniel N; Antrobus, Robin; Borner, Georg H H; Robinson, Margaret S

    2018-01-01

    The AP-5 adaptor protein complex is presumed to function in membrane traffic, but so far nothing is known about its pathway or its cargo. We have used CRISPR-Cas9 to knock out the AP-5 ζ subunit gene, AP5Z1, in HeLa cells, and then analysed the phenotype by subcellular fractionation profiling and quantitative mass spectrometry. The retromer complex had an altered steady-state distribution in the knockout cells, and several Golgi proteins, including GOLIM4 and GOLM1, were depleted from vesicle-enriched fractions. Immunolocalisation showed that loss of AP-5 led to impaired retrieval of the cation-independent mannose 6-phosphate receptor (CIMPR), GOLIM4, and GOLM1 from endosomes back to the Golgi region. Knocking down the retromer complex exacerbated this phenotype. Both the CIMPR and sortilin interacted with the AP-5-associated protein SPG15 in pull-down assays, and we propose that sortilin may act as a link between Golgi proteins and the AP-5/SPG11/SPG15 complex. Together, our findings suggest that AP-5 functions in a novel sorting step out of late endosomes, acting as a backup pathway for retromer. This provides a mechanistic explanation for why mutations in AP-5/SPG11/SPG15 cause cells to accumulate aberrant endolysosomes, and highlights the role of endosome/lysosome dysfunction in the pathology of hereditary spastic paraplegia and other neurodegenerative disorders.

  7. The TIP30 protein complex, arachidonic acid and coenzyme A are required for vesicle membrane fusion.

    Directory of Open Access Journals (Sweden)

    Chengliang Zhang

    Full Text Available Efficient membrane fusion has been successfully mimicked in vitro using artificial membranes and a number of cellular proteins that are currently known to participate in membrane fusion. However, these proteins are not sufficient to promote efficient fusion between biological membranes, indicating that critical fusogenic factors remain unidentified. We have recently identified a TIP30 protein complex containing TIP30, acyl-CoA synthetase long-chain family member 4 (ACSL4 and Endophilin B1 (Endo B1 that promotes the fusion of endocytic vesicles with Rab5a vesicles, which transport endosomal acidification enzymes vacuolar (H⁺-ATPases (V-ATPases to the early endosomes in vivo. Here, we demonstrate that the TIP30 protein complex facilitates the fusion of endocytic vesicles with Rab5a vesicles in vitro. Fusion of the two vesicles also depends on arachidonic acid, coenzyme A and the synthesis of arachidonyl-CoA by ACSL4. Moreover, the TIP30 complex is able to transfer arachidonyl groups onto phosphatidic acid (PA, producing a new lipid species that is capable of inducing close contact between membranes. Together, our data suggest that the TIP30 complex facilitates biological membrane fusion through modification of PA on membranes.

  8. The promyelocytic leukemia gene product (PML) forms stable complexes with the retinoblastoma protein

    DEFF Research Database (Denmark)

    Alcalay, M; Tomassoni, L; Colombo, E

    1998-01-01

    by the expression of PML-RAR alpha. We report that PML colocalizes with the nonphosphorylated fraction of the retinoblastoma protein (pRB) within nuclear bodies and that pRB is delocalized by PML-RAR alpha expression. Both PML and PML-RAR alpha form complexes with the nonphosphorylated form of pRB in vivo...

  9. Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval.

    Directory of Open Access Journals (Sweden)

    Jennifer Hirst

    2018-01-01

    Full Text Available The AP-5 adaptor protein complex is presumed to function in membrane traffic, but so far nothing is known about its pathway or its cargo. We have used CRISPR-Cas9 to knock out the AP-5 ζ subunit gene, AP5Z1, in HeLa cells, and then analysed the phenotype by subcellular fractionation profiling and quantitative mass spectrometry. The retromer complex had an altered steady-state distribution in the knockout cells, and several Golgi proteins, including GOLIM4 and GOLM1, were depleted from vesicle-enriched fractions. Immunolocalisation showed that loss of AP-5 led to impaired retrieval of the cation-independent mannose 6-phosphate receptor (CIMPR, GOLIM4, and GOLM1 from endosomes back to the Golgi region. Knocking down the retromer complex exacerbated this phenotype. Both the CIMPR and sortilin interacted with the AP-5-associated protein SPG15 in pull-down assays, and we propose that sortilin may act as a link between Golgi proteins and the AP-5/SPG11/SPG15 complex. Together, our findings suggest that AP-5 functions in a novel sorting step out of late endosomes, acting as a backup pathway for retromer. This provides a mechanistic explanation for why mutations in AP-5/SPG11/SPG15 cause cells to accumulate aberrant endolysosomes, and highlights the role of endosome/lysosome dysfunction in the pathology of hereditary spastic paraplegia and other neurodegenerative disorders.

  10. Unraveling the Electronic Structure of Individual Photosynthetic Pigment-Protein Complexes

    NARCIS (Netherlands)

    Oijen, Antoine M. van; Ketelaars, Martijn; Köhler, Jürgen; Aartsma, Thijs J.; Schmidt, Jan

    1999-01-01

    Low-temperature single-molecule spectroscopic techniques were applied to a light-harvesting pigment-protein complex (LH2) from purple photosynthetic bacteria. The properties of the electronically excited states of the two circular assemblies (B800 and B850) of bacteriochlorophyll a (BChl a) pigment

  11. DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex

    NARCIS (Netherlands)

    Ketterer, Philip; Ananth, Adithya N; Laman Trip, Diederik S; Mishra, Ankur; Bertosin, Eva; Ganji, Mahipal; van der Torre, Jaco; Onck, Patrick; Dietz, Hendrik; Dekker, Cees

    2018-01-01

    The nuclear pore complex (NPC) is the gatekeeper for nuclear transport in eukaryotic cells. A key component of the NPC is the central shaft lined with intrinsically disordered proteins (IDPs) known as FG-Nups, which control the selective molecular traffic. Here, we present an approach to realize

  12. Improved methodology for the affinity isolation of human protein complexes expressed at near endogenous levels

    DEFF Research Database (Denmark)

    Domanski, Michal; Molloy, Kelly; Jiang, Hua

    2012-01-01

    An efficient and reliable procedure for the capture of affinity-tagged proteins and associated complexes from human cell lines is reported. Through multiple optimizations, high yield and low background affinity-purifications are achieved from modest quantities of human cells expressing endogenous...

  13. Protein complexes in the archaeon Methanothermobacter thermautotrophicus analyzed by blue native/SDS-PAGE and mass spectrometry.

    NARCIS (Netherlands)

    Farhoud, M.H.; Wessels, H.C.T.; Steenbakkers, P.J.M.; Mattijssen, S.; Wevers, R.A.; Engelen, B.G.M. van; Jetten, M.S.M.; Smeitink, J.A.M.; Heuvel, L.P.W.J. van den; Keltjens, J.T.M.

    2005-01-01

    Methanothermobacter thermautotrophicus is a thermophilic archaeon that produces methane as the end product of its primary metabolism. The biochemistry of methane formation has been extensively studied and is catalyzed by individual enzymes and proteins that are organized in protein complexes.

  14. Role for a novel Usher protein complex in hair cell synaptic maturation.

    Directory of Open Access Journals (Sweden)

    Marisa Zallocchi

    Full Text Available The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23, protocadherin-15 (PCDH15 and the very large G-protein coupled receptor 1 (VLGR1 have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1-/- mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzer(av3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well.

  15. SPECTRUS: A Dimensionality Reduction Approach for Identifying Dynamical Domains in Protein Complexes from Limited Structural Datasets.

    Science.gov (United States)

    Ponzoni, Luca; Polles, Guido; Carnevale, Vincenzo; Micheletti, Cristian

    2015-08-04

    Identifying dynamical, quasi-rigid domains in proteins provides a powerful means for characterizing functionally oriented structural changes via a parsimonious set of degrees of freedom. In fact, the relative displacements of few dynamical domains usually suffice to rationalize the mechanics underpinning biological functionality in proteins and can even be exploited for structure determination or refinement purposes. Here we present SPECTRUS, a general scheme that, by solely using amino acid distance fluctuations, can pinpoint the innate quasi-rigid domains of single proteins or large complexes in a robust way. Consistent domains are usually obtained by using either a pair of representative structures or thousands of conformers. The functional insights offered by the approach are illustrated for biomolecular systems of very different size and complexity such as kinases, ion channels, and viral capsids. The decomposition tool is available as a software package and web server at spectrus.sissa.it. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Systematic Discovery of Chromatin-Bound Protein Complexes from ChIP-seq Datasets.

    Science.gov (United States)

    Giannopoulou, Eugenia; Elemento, Olivier

    2017-01-01

    Chromatin immunoprecipitation followed by sequencing is an invaluable assay for identifying the genomic binding sites of transcription factors. However, transcription factors rarely bind chromatin alone but often bind together with other cofactors, forming protein complexes. Here, we describe a computational method that integrates multiple ChIP-seq and RNA-seq datasets to discover protein complexes and determine their role as activators or repressors. This chapter outlines a detailed computational pipeline for discovering and predicting binding partners from ChIP-seq data and inferring their role in regulating gene expression. This work aims at developing hypotheses about gene regulation via binding partners and deciphering the combinatorial nature of DNA-binding proteins.

  17. Functional role of a high mol mass protein complex in the sea urchin yolk granule.

    Science.gov (United States)

    Perera, Aruni; Davis, Philip; Robinson, John J

    2004-04-01

    We have investigated the biochemical and functional characteristics of the major protein constituents of the yolk granule organelle present in sea urchin eggs and embryos. Compositional analysis, using sodium dodecyl sulfate polyacrylamide gel electrophoresis, revealed distinctly different polypeptide patterns under reducing and non-reducing conditions. In the presence of reducing agent, a 240 kDa species dissociated into polypeptides of apparent mol mass 160, 120 and 90 k. The relatedness of these polypeptides to the 240 kDa species was demonstrated in protein gel blot and peptide mapping analyses. The profile of yolk granule polypeptides was dynamic during embryonic development with the disappearance of the 160 kDa species and the coincidental appearance of lower mol mass polypeptides. However, the 240 kDa complex was detected even after the disappearance of the 160 kDa polypeptide. The 240 kDa complex was released from yolk granules in the absence of calcium and the purified species was shown to bind liposomes in a calcium-dependent manner. In addition, the 240 kDa complex possessed a calcium-dependent, liposome aggregating activity. The 240 kDa species could also induce the aggregation of yolk granules, previously denuded of the complex following treatment with either ethylenediaminetetraacetic acid or trypsin. Collectively, these results demonstrate the dynamic characteristics of the yolk granule 240 kDa protein complex and offer insights into a possible functional role.

  18. Characterizing Protein Complexes with UV absorption, Light Scattering, and Refractive Index Detection.

    Science.gov (United States)

    Trainoff, Steven

    2009-03-01

    Many modern pharmaceuticals and naturally occurring biomolecules consist of complexes of proteins and polyethylene glycol or carbohydrates. In the case of vaccine development, these complexes are often used to induce or amplify immune responses. For protein therapeutics they are used to modify solubility and function, or to control the rate of degradation and elimination of a drug from the body. Characterizing the stoichiometry of these complexes is an important industrial problem that presents a formidable challenge to analytical instrument designers. Traditional analytical methods, such as using florescent tagging, chemical assays, and mass spectrometry perturb the system so dramatically that the complexes are often destroyed or uncontrollably modified by the measurement. A solution to this problem consists of fractionating the samples and then measuring the fractions using sequential non-invasive detectors that are sensitive to different components of the complex. We present results using UV absorption, which is primarily sensitive to the protein fraction, Light Scattering, which measures the total weight average molar mass, and Refractive Index detection, which measures the net concentration. We also present a solution of the problem inter-detector band-broadening problem that has heretofore made this approach impractical. Presented will be instrumentation and an analysis method that overcome these obstacles and make this technique a reliable and robust way of non-invasively characterizing these industrially important compounds.

  19. Characterization of the adenoassociated virus Rep protein complex formed on the viral origin of DNA replication

    International Nuclear Information System (INIS)

    Li Zengi; Brister, J. Rodney; Im, Dong-Soo; Muzyczka, Nicholas

    2003-01-01

    Interaction between the adenoassociated virus (AAV) replication proteins, Rep68 and 78, and the viral terminal repeats (TRs) is mediated by a DNA sequence termed the Rep-binding element (RBE). This element is necessary for Rep-mediated unwinding of duplex DNA substrates, directs Rep catalyzed cleavage of the AAV origin of DNA replication, and is required for viral transcription and proviral integration. Six discrete Rep complexes with the AAV TR substrates have been observed in vitro, and cross-linking studies suggest these complexes contain one to six molecules of Rep. However, the functional relationship between Rep oligomerization and biochemical activity is unclear. Here we have characterized Rep complexes that form on the AAV TR. Both Rep68 and Rep78 appear to form the same six complexes with the AAV TR, and ATP seems to stimulate formation of specific, higher order complexes. When the sizes of these Rep complexes were estimated on native polyacrylamide gels, the four slower migrating complexes were larger than predicted by an amount equivalent to one or two TRs. To resolve this discrepancy, the molar ratio of protein and DNA was calculated for the three largest complexes. Data from these experiments indicated that the larger complexes included multiple TRs in addition to multiple Rep molecules and that the Rep-to-TR ratio was approximately 2. The two largest complexes were also associated with increased Rep-mediated, origin cleavage activity. Finally, we characterized a second, Rep-mediated cleavage event that occurs adjacent to the normal nicking site, but on the opposite strand. This second site nicking event effectively results in double-stranded DNA cleavage at the normal nicking site

  20. X-ray structure of the mammalian GIRK2-βγ G-protein complex

    Energy Technology Data Exchange (ETDEWEB)

    Whorton, Matthew R.; MacKinnon, Roderick [Rockefeller

    2013-07-30

    G-protein-gated inward rectifier K+ (GIRK) channels allow neurotransmitters, through G-protein-coupled receptor stimulation, to control cellular electrical excitability. In cardiac and neuronal cells this control regulates heart rate and neural circuit activity, respectively. Here we present the 3.5Å resolution crystal structure of the mammalian GIRK2 channel in complex with βγ G-protein subunits, the central signalling complex that links G-protein-coupled receptor stimulation to K+ channel activity. Short-range atomic and long-range electrostatic interactions stabilize four βγ G-protein subunits at the interfaces between four K+ channel subunits, inducing a pre-open state of the channel. The pre-open state exhibits a conformation that is intermediate between the closed conformation and the open conformation of the constitutively active mutant. The resultant structural picture is compatible with ‘membrane delimited’ activation of GIRK channels by G proteins and the characteristic burst kinetics of channel gating. The structures also permit a conceptual understanding of how the signalling lipid phosphatidylinositol-4,5-bisphosphate (PIP2) and intracellular Na+ ions participate in multi-ligand regulation of GIRK channels.

  1. Application of model bread baking in the examination of arabinoxylan-protein complexes in rye bread.

    Science.gov (United States)

    Buksa, Krzysztof

    2016-09-05

    The changes in molecular mass of arabinoxylan (AX) and protein caused by bread baking process were examined using a model rye bread. Instead of the normal flour, the dough contained starch, water-extractable AX and protein which were isolated from rye wholemeal. From the crumb of selected model breads, starch was removed releasing AX-protein complexes, which were further examined by size exclusion chromatography. On the basis of the research, it was concluded that optimum model mix can be composed of 3-6% AX and 3-6% rye protein isolate at 94-88% of rye starch meaning with the most similar properties to low extraction rye flour. Application of model rye bread allowed to examine the interactions between AX and proteins. Bread baked with a share of AX, rye protein and starch, from which the complexes of the highest molar mass were isolated, was characterized by the strongest structure of the bread crumb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. VS-APPLE: A Virtual Screening Algorithm Using Promiscuous Protein-Ligand Complexes.

    Science.gov (United States)

    Okuno, Tatsuya; Kato, Koya; Terada, Tomoki P; Sasai, Masaki; Chikenji, George

    2015-06-22

    As the number of structurally resolved protein-ligand complexes increases, the ligand-binding pockets of many proteins have been found to accommodate multiple different compounds. Effective use of these structural data is important for developing virtual screening (VS) methods that identify bioactive compounds. Here, we introduce a VS method, VS-APPLE (Virtual Screening Algorithm using Promiscuous Protein-Ligand complExes), based on promiscuous protein-ligand binding structures. In VS-APPLE, multiple ligands bound to a pocket are combined into a query template for screening. Both the structural match between a test compound and the multiple-ligand template and the possible collisions between the test compound and the target protein are evaluated by an efficient geometric hashing method. The performance of VS-APPLE was examined on a filtered, clustered version of the Directory of Useful Decoys data set. In Area Under the Curve analyses of this data set, VS-APPLE outperformed several popular screening programs. Judging from the performance of VS-APPLE, the structural data of promiscuous protein-ligand bindings could be further analyzed and exploited for developing VS methods.

  3. Proteins with complex architecture as potential targets for drug design: a case study of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bálint Mészáros

    2011-07-01

    Full Text Available Lengthy co-evolution of Homo sapiens and Mycobacterium tuberculosis, the main causative agent of tuberculosis, resulted in a dramatically successful pathogen species that presents considerable challenge for modern medicine. The continuous and ever increasing appearance of multi-drug resistant mycobacteria necessitates the identification of novel drug targets and drugs with new mechanisms of action. However, further insights are needed to establish automated protocols for target selection based on the available complete genome sequences. In the present study, we perform complete proteome level comparisons between M. tuberculosis, mycobacteria, other prokaryotes and available eukaryotes based on protein domains, local sequence similarities and protein disorder. We show that the enrichment of certain domains in the genome can indicate an important function specific to M. tuberculosis. We identified two families, termed pkn and PE/PPE that stand out in this respect. The common property of these two protein families is a complex domain organization that combines species-specific regions, commonly occurring domains and disordered segments. Besides highlighting promising novel drug target candidates in M. tuberculosis, the presented analysis can also be viewed as a general protocol to identify proteins involved in species-specific functions in a given organism. We conclude that target selection protocols should be extended to include proteins with complex domain architectures instead of focusing on sequentially unique and essential proteins only.

  4. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb.

    Science.gov (United States)

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-08-12

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb*

    Science.gov (United States)

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-01-01

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778

  6. MicroProtein-mediated recruitment of CONSTANS into a TOPLESS trimeric complex represses flowering in Arabidopsis

    DEFF Research Database (Denmark)

    Graeff, Moritz; Straub, Daniel; Eguen, Tenai E.

    2016-01-01

    Arabidopsis thaliana microProteins, miP1a and miP1b, physically interact with CONSTANS (CO) a potent regulator of flowering time. The miP1a/b-type microProteins evolved in dicotyledonous plants and have an additional carboxy-terminal PF(V/L)FL motif. This motif enables miP1a/b microProteins to interact......MicroProteins are short, single domain proteins that act by sequestering larger, multi-domain proteins into non-functional complexes. MicroProteins have been identified in plants and animals, where they are mostly involved in the regulation of developmental processes. Here we show that two...... with TOPLESS/TOPLESS-RELATED (TPL/TPR) proteins. Interaction of CO with miP1a/b/TPL causes late flowering due to a failure in the induction of FLOWERING LOCUS T (FT) expression under inductive long day conditions. Both miP1a and miP1b are expressed in vascular tissue, where CO and FT are active. Genetically...

  7. Alternative function for the mitochondrial SAM complex in biogenesis of alpha-helical TOM proteins.

    Science.gov (United States)

    Stojanovski, Diana; Guiard, Bernard; Kozjak-Pavlovic, Vera; Pfanner, Nikolaus; Meisinger, Chris

    2007-12-03

    The mitochondrial outer membrane contains two preprotein translocases: the general translocase of outer membrane (TOM) and the beta-barrel-specific sorting and assembly machinery (SAM). TOM functions as the central entry gate for nuclear-encoded proteins. The channel-forming Tom40 is a beta-barrel protein, whereas all Tom receptors and small Tom proteins are membrane anchored by a transmembrane alpha-helical segment in their N- or C-terminal portion. Synthesis of Tom precursors takes place in the cytosol, and their import occurs via preexisting TOM complexes. The precursor of Tom40 is then transferred to SAM for membrane insertion and assembly. Unexpectedly, we find that the biogenesis of alpha-helical Tom proteins with a membrane anchor in the C-terminal portion is SAM dependent. Each SAM protein is necessary for efficient membrane integration of the receptor Tom22, whereas assembly of the small Tom proteins depends on Sam37. Thus, the substrate specificity of SAM is not restricted to beta-barrel proteins but also includes the majority of alpha-helical Tom proteins.

  8. Proteomic analysis reveals the diversity and complexity of membrane proteins in chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Jaiswal Dinesh Kumar

    2012-10-01

    Full Text Available Abstract Background Compartmentalization is a unique feature of eukaryotes that helps in maintaining cellular homeostasis not only in intra- and inter-organellar context, but also between the cells and the external environment. Plant cells are highly compartmentalized with a complex metabolic network governing various cellular events. The membranes are the most important constituents in such compartmentalization, and membrane-associated proteins play diverse roles in many cellular processes besides being part of integral component of many signaling cascades. Results To obtain valuable insight into the dynamic repertoire of membrane proteins, we have developed a proteome reference map of a grain legume, chickpea, using two-dimensional gel electrophoresis. MALDI-TOF/TOF and LC-ESI-MS/MS analysis led to the identification of 91 proteins involved in a variety of cellular functions viz., bioenergy, stress-responsive and signal transduction, metabolism, protein synthesis and degradation, among others. Significantly, 70% of the identified proteins are putative integral membrane proteins, possessing transmembrane domains. Conclusions The proteomic analysis revealed many resident integral membrane proteins as well as membrane-associated proteins including those not reported earlier. To our knowledge, this is the first report of membrane proteome from aerial tissues of a crop plant. The findings may provide a better understanding of the biochemical machinery of the plant membranes at the molecular level that might help in functional genomics studies of different developmental pathways and stress-responses.

  9. Identification of unknown protein complex members by radiolocalization and analysis of low-abundance complexes resolved using native polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Bose, Mahuya; Adams, Brian P; Whittal, Randy M; Bose, Himangshu S

    2008-02-01

    Identification of unknown binding partners of a protein of interest can be a difficult process. Current strategies to determine protein binding partners result in a high amount of false-positives, requiring use of several different methods to confirm the accuracy of the apparent association. We have developed and utilized a method that is reliable and easily substantiated. Complexes are isolated from cell extract after exposure to the radiolabeled protein of interest, followed by resolution on a native polyacrylamide gel. Native conformations are preserved, allowing the complex members to maintain associations. By radiolabeling the protein of interest, the complex can be easily identified at detection levels below the threshold of Serva Blue, Coomassie, and silver stains. The visualized radioactive band is analyzed by MS to identify binding partners, which can be subsequently verified by antibody shift and immunoprecipitation of the complex. By using this method we have successfully identified binding partners of two proteins that reside in different locations of a cellular organelle.

  10. Mannan-binding protein forms complexes with alpha-2-macroglobulin. A protein model for the interaction

    DEFF Research Database (Denmark)

    Storgaard, P; Holm Nielsen, E; Skriver, E

    1995-01-01

    . The occurrence of alpha 2M/pMBP-28 complexes was further indicated by crossed immunoelectrophoresis and by use of an anti-alpha 2M affinity column and chelating Sepharose loaded with Zn2+. The eluates from these affinity columns showed alpha 2M subunits (94 and 180 kDa) and pMBP subunits (28kDa) in SDS-PAGE...... with anti-C1 s antibodies in ELISA, one of about 650-800 kDa, which in addition contained pMBP-28 and anti-alpha 2M reactive material, the other with an M(r) of 100-150 kDa. The latter peak revealed rhomboid molecules (7 x 15 nm) in the electron microscope and a 67 kDa band in SDS-PAGE under reducing...

  11. Phenanthrene binding by humic acid–protein complexes as studied by passive dosing technique

    International Nuclear Information System (INIS)

    Zhao, Jian; Wang, Zhenyu; Ghosh, Saikat; Xing, Baoshan

    2014-01-01

    This work investigated the binding behavior of phenanthrene by humic acids (HA-2 and HA-5), proteins (bovine serum albumin (BSA)), lysozyme and pepsin), and their complexes using a passive dosing technique. All sorption isotherms were fitted well with Freundlich model and the binding capability followed an order of HA-5 > HA-2 > BSA > pepsin > lysozyme. In NaCl solution, phenanthrene binding to HA-BSA complexes was much higher than the sum of binding to individual HA and BSA, while there was no enhancement for HA-pepsin. Positively charged lysozyme slightly lowered phenanthrene binding on both HAs due to strong aggregation of HA-lysozyme complexes, leading to reduction in the number of binding sites. The binding enhancement by HA-BSA was observed under all tested ion species and ionic strengths. This enhancement can be explained by unfolding of protein, reduction of aggregate size and formation of HA-BSA complexes with favorable conformations for binding phenanthrene. Highlights: • Phenanthrene binding capability followed an order: HA-5>HA-2>BSA>pepsin>lysozyme. • Phenanthrene binding to HA-BSA was enhanced relative to individual HA and BSA. • Binding enhancement to HA-BSA was observed under all tested solution conditions. • The enhancement is related to BSA unfolding, size reduction and HA-BSA complexation. -- Phenanthrene binding to HA-BSA complexes is much higher than the sum to individual HA and BSA while there was no binding enhancement to HA-pepsin or HA-lysozyme

  12. Predicting the effects of basepair mutations in DNA-protein complexes by thermodynamic integration.

    Science.gov (United States)

    Beierlein, Frank R; Kneale, G Geoff; Clark, Timothy

    2011-09-07

    Thermodynamically rigorous free energy methods in principle allow the exact computation of binding free energies in biological systems. Here, we use thermodynamic integration together with molecular dynamics simulations of a DNA-protein complex to compute relative binding free energies of a series of mutants of a protein-binding DNA operator sequence. A guanine-cytosine basepair that interacts strongly with the DNA-binding protein is mutated into adenine-thymine, cytosine-guanine, and thymine-adenine. It is shown that basepair mutations can be performed using a conservative protocol that gives error estimates of ∼10% of the change in free energy of binding. Despite the high CPU-time requirements, this work opens the exciting opportunity of being able to perform basepair scans to investigate protein-DNA binding specificity in great detail computationally. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Ixodes ticks belonging to the Ixodes ricinus complex encode a family of anticomplement proteins.

    Science.gov (United States)

    Daix, V; Schroeder, H; Praet, N; Georgin, J-P; Chiappino, I; Gillet, L; de Fays, K; Decrem, Y; Leboulle, G; Godfroid, E; Bollen, A; Pastoret, P-P; Gern, L; Sharp, P M; Vanderplasschen, A

    2007-04-01

    The alternative pathway of complement is an important innate defence against pathogens including ticks. This component of the immune system has selected for pathogens that have evolved countermeasures. Recently, a salivary protein able to inhibit the alternative pathway was cloned from the American tick Ixodes scapularis (Valenzuela et al., 2000; J. Biol. Chem. 275, 18717-18723). Here, we isolated two different sequences, similar to Isac, from the transcriptome of I. ricinus salivary glands. Expression of these sequences revealed that they both encode secreted proteins able to inhibit the complement alternative pathway. These proteins, called I. ricinus anticomplement (IRAC) protein I and II, are coexpressed constitutively in I. ricinus salivary glands and are upregulated during blood feeding. Also, we demonstrated that they are the products of different genes and not of alleles of the same locus. Finally, phylogenetic analyses demonstrate that ticks belonging to the Ixodes ricinus complex encode a family of relatively small anticomplement molecules undergoing diversification by positive Darwinian selection.

  14. Prediction of protein structural features from sequence data based on Shannon entropy and Kolmogorov complexity.

    Science.gov (United States)

    Bywater, Robert Paul

    2015-01-01

    While the genome for a given organism stores the information necessary for the organism to function and flourish it is the proteins that are encoded by the genome that perhaps more than anything else characterize the phenotype for that organism. It is therefore not surprising that one of the many approaches to understanding and predicting protein folding and properties has come from genomics and more specifically from multiple sequence alignments. In this work I explore ways in which data derived from sequence alignment data can be used to investigate in a predictive way three different aspects of protein structure: secondary structures, inter-residue contacts and the dynamics of switching between different states of the protein. In particular the use of Kolmogorov complexity has identified a novel pathway towards achieving these goals.

  15. Prediction of protein structural features from sequence data based on Shannon entropy and Kolmogorov complexity.

    Directory of Open Access Journals (Sweden)

    Robert Paul Bywater

    Full Text Available While the genome for a given organism stores the information necessary for the organism to function and flourish it is the proteins that are encoded by the genome that perhaps more than anything else characterize the phenotype for that organism. It is therefore not surprising that one of the many approaches to understanding and predicting protein folding and properties has come from genomics and more specifically from multiple sequence alignments. In this work I explore ways in which data derived from sequence alignment data can be used to investigate in a predictive way three different aspects of protein structure: secondary structures, inter-residue contacts and the dynamics of switching between different states of the protein. In particular the use of Kolmogorov complexity has identified a novel pathway towards achieving these goals.

  16. A new theoretical approach to analyze complex processes in cytoskeleton proteins.

    Science.gov (United States)

    Li, Xin; Kolomeisky, Anatoly B

    2014-03-20

    Cytoskeleton proteins are filament structures that support a large number of important biological processes. These dynamic biopolymers exist in nonequilibrium conditions stimulated by hydrolysis chemical reactions in their monomers. Current theoretical methods provide a comprehensive picture of biochemical and biophysical processes in cytoskeleton proteins. However, the description is only qualitative under biologically relevant conditions because utilized theoretical mean-field models neglect correlations. We develop a new theoretical method to describe dynamic processes in cytoskeleton proteins that takes into account spatial correlations in the chemical composition of these biopolymers. Our approach is based on analysis of probabilities of different clusters of subunits. It allows us to obtain exact analytical expressions for a variety of dynamic properties of cytoskeleton filaments. By comparing theoretical predictions with Monte Carlo computer simulations, it is shown that our method provides a fully quantitative description of complex dynamic phenomena in cytoskeleton proteins under all conditions.

  17. Is chloroplast import of photosynthesis proteins facilitated by an actin-TOC-TIC-VIPP1 complex?

    Science.gov (United States)

    Jouhet, Juliette; Gray, John C

    2009-10-01

    Actin filaments are major components of the cytoskeleton that interact with chloroplast envelope membranes to allow chloroplast positioning and movement, stromule mobility and gravitropism perception. We recently reported that Toc159, a component of the TOC complex of the chloroplast protein import apparatus, interacts directly with actin. The interaction of Toc159 and actin was identified by co-immunoprecipitation and co-sedimentation experiments with detergent-solubilised pea chloroplast envelope membranes. In addition, many of the components of the TOC-TIC protein import apparatus and VIPP1 (vesicle-inducing protein in plastids 1) were identified by mass spectroscopy in the material co-immunoprecipitated with antibodies to actin. Toc159 is the receptor for the import of photosynthesis proteins and VIPP1 is involved in thylakoid membrane formation by inducing vesicle formation from the chloroplast inner envelope membrane, suggesting we may have identified an actin-TOC-TIC-VIPP1 complex that may provide a means of channeling cytosolic preproteins to the thylakoid membrane. The interaction of Toc159 with actin may facilitate exchange between the putative soluble and membrane forms of Toc159 and promote the interaction of cytosolic preproteins with the TOC complex.

  18. Prediction of protein-DNA complex mobility in gel-free capillary electrophoresis.

    Science.gov (United States)

    Bao, Jiayin; Krylova, Svetlana M; Cherney, Leonid T; Hale, Robert L; Belyanskaya, Svetlana L; Chiu, Cynthia H; Arico-Muendel, Christopher C; Krylov, Sergey N

    2015-02-17

    Selection of protein binders from highly diverse combinatorial libraries of DNA-encoded small molecules is a highly promising approach for discovery of small-molecule drug leads. Methods of kinetic capillary electrophoresis provide the high efficiency of partitioning required for such selection but require the knowledge of electrophoretic mobility of the protein-ligand complex. Here we present a theoretical approach for an accurate estimate of the electrophoretic mobility of such complexes. The model is based on a theory of the thin double layer and corresponding expressions used for the mobilities of a rod-like short oligonucleotide and a sphere-like globular protein. The model uses empirical values of mobilities of free protein, free ligand, and electroosmotic flow. The model was tested with a streptavidin-dsDNA complex linked through biotin (small molecule). The deviation of the prediction from the experimental mobility did not exceed 4%, thus confirming that not only is the model adequate but it is also accurate. This model will facilitate reliable use of KCE methods for selection of drug leads from libraries of DNA-encoded small molecules.

  19. Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data

    Directory of Open Access Journals (Sweden)

    Li Min

    2012-05-01

    Full Text Available Abstract Background Identification of protein complexes and functional modules from protein-protein interaction (PPI networks is crucial to understanding the principles of cellular organization and predicting protein functions. In the past few years, many computational methods have been proposed. However, most of them considered the PPI networks as static graphs and overlooked the dynamics inherent within these networks. Moreover, few of them can distinguish between protein complexes and functional modules. Results In this paper, a new framework is proposed to distinguish between protein complexes and functional modules by integrating gene expression data into protein-protein interaction (PPI data. A series of time-sequenced subnetworks (TSNs is constructed according to the time that the interactions were activated. The algorithm TSN-PCD was then developed to identify protein complexes from these TSNs. As protein complexes are significantly related to functional modules, a new algorithm DFM-CIN is proposed to discover functional modules based on the identified complexes. The experimental results show that the combination of temporal gene expression data with PPI data contributes to identifying protein complexes more precisely. A quantitative comparison based on f-measure reveals that our algorithm TSN-PCD outperforms the other previous protein complex discovery algorithms. Furthermore, we evaluate the identified functional modules by using “Biological Process” annotated in GO (Gene Ontology. The validation shows that the identified functional modules are statistically significant in terms of “Biological Process”. More importantly, the relationship between protein complexes and functional modules are studied. Conclusions The proposed framework based on the integration of PPI data and gene expression data makes it possible to identify protein complexes and functional modules more effectively. Moveover, the proposed new framework and

  20. Characterization of biopolymers and soy protein isolate-high-methoxyl pectin complex

    Directory of Open Access Journals (Sweden)

    Mírian Luisa Faria Freitas

    Full Text Available Abstract This study aimed at characterizing the soy protein isolate and high-methoxyl pectin biopolymers individually, and the complexes formed by both at different proportions and pHs in order to find the most suitable pH and biopolymer ratios to food application as stabilizers. The biopolymers were evaluated through solubility, charges, turbidimetry, and optical microscopy analyses; the systems with the pair of biopolymers were analyzed through turbidimetry and optical microscopy. High-methoxyl pectin showed high solubility at all pHs investigated. The soy protein isolate showed low solubility at pH 4.5, which is close to its isoelectric point, and complete solubility at pH 11.0. The formation of complexes suggested an attractive interaction between the biopolymers, with high absorbance reading values and images of complexes from optical microscopy. These complexes were present in systems with pHs below the soy protein isolate's isoelectric point, with positive charges; the high-methoxyl pectin, however, had negative ones.

  1. Facilitated Unbinding via Multivalency-Enabled Ternary Complexes: New Paradigm for Protein-DNA Interactions.

    Science.gov (United States)

    Chen, Tai-Yen; Cheng, Yu-Shan; Huang, Pei-San; Chen, Peng

    2018-01-25

    free CueR proteins can facilitate the unbinding of the incumbent one on DNA through either assisted dissociation or direct substitution. Greene's group studied the unbinding of RPAs from single-stranded DNA using total internal reflection fluorescence microscopy and DNA curtain techniques. The fluorescence intensity versus time traces show faster decay with higher wild-type RPA concentrations, indicating that DNA-bound RPAs can undergo a concentration-facilitated exchange when encountering excess free RPA. van Oijen's group investigated the leading/lagging-strand polymerase exchange events in the bacteriophage T7 and E. coli replication systems using a combination of single-molecule fluorescence microscopy and DNA-flow-stretching assay. The processivity was observed to have larger decrease when the concentration of the Y526F polymerase mutant increases, indicating that the unbinding of the polymerase is also concentration-dependent. Using stroboscopic imaging and single-molecule tracking, Chen's group further advanced their study into living bacterial cells. They found CueR, as well as its homologue ZntR, shows concentration-enhanced unbinding from its DNA-binding site in vivo. Mechanistic consensus has emerged from these in vitro and in vivo single-molecule studies that encompass a range of proteins with distinct biological functions. It involves multivalent contacts between protein and DNA. The multivalency enables the formation of ternary complexes as intermediates, which subsequently give rise to concentration-enhanced protein unbinding. As multivalent contacts are ubiquitous among DNA-interacting proteins, this multivalency-enabled facilitated unbinding mechanism thus provides a potentially general mechanistic paradigm in regulating protein-DNA interactions.

  2. Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries

    Energy Technology Data Exchange (ETDEWEB)

    Pröpper, Kevin [University of Göttingen, (Germany); Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), (Spain); Meindl, Kathrin; Sammito, Massimo [Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), (Spain); Dittrich, Birger; Sheldrick, George M. [University of Göttingen, (Germany); Pohl, Ehmke, E-mail: ehmke.pohl@durham.ac.uk [Durham University, (United Kingdom); Usón, Isabel, E-mail: ehmke.pohl@durham.ac.uk [Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), (Spain); University of Göttingen, (Germany)

    2014-06-01

    The structure solution of DNA-binding protein structures and complexes based on the combination of location of DNA-binding protein motif fragments with density modification in a multi-solution frame is described. Protein–DNA interactions play a major role in all aspects of genetic activity within an organism, such as transcription, packaging, rearrangement, replication and repair. The molecular detail of protein–DNA interactions can be best visualized through crystallography, and structures emphasizing insight into the principles of binding and base-sequence recognition are essential to understanding the subtleties of the underlying mechanisms. An increasing number of high-quality DNA-binding protein structure determinations have been witnessed despite the fact that the crystallographic particularities of nucleic acids tend to pose specific challenges to methods primarily developed for proteins. Crystallographic structure solution of protein–DNA complexes therefore remains a challenging area that is in need of optimized experimental and computational methods. The potential of the structure-solution program ARCIMBOLDO for the solution of protein–DNA complexes has therefore been assessed. The method is based on the combination of locating small, very accurate fragments using the program Phaser and density modification with the program SHELXE. Whereas for typical proteins main-chain α-helices provide the ideal, almost ubiquitous, small fragments to start searches, in the case of DNA complexes the binding motifs and DNA double helix constitute suitable search fragments. The aim of this work is to provide an effective library of search fragments as well as to determine the optimal ARCIMBOLDO strategy for the solution of this class of structures.

  3. Characterization of Protein Detergent Complexes by NMR, Light Scattering, and Analytical Ultracentrifugation

    Science.gov (United States)

    Maslennikov, Innokentiy; Krupa, Martin; Dickson, Christopher; Esquivies, Luis; Blain, Katherine; Kefala, Georgia; Choe, Senyon; Kwiatkowski, Witek

    2009-01-01

    Bottlenecks in expression, solubilization, purification and crystallization hamper the structural study of integral membrane proteins (IMPs). Successful crystallization is critically dependent on the purity, stability and oligomeric homogeneity of an IMP sample. These characteristics are in turn strongly influenced by the type and concentration of the detergents used in IMP preparation. By utilizing the techniques and analytical tools we earlier developed for the characterization of protein-detergent complexes (PDCs) (Maslennikov et al., 2007), we demonstrate that for successful protein extraction from E. coli membrane fractions, the solubilizing detergent associates preferentially to IMPs rather than to membrane lipids. Notably, this result is contrary to the generally accepted mechanism of detergent-mediated IMP solubilization. We find that for one particular member of the family of proteins studied (E. coli receptor kinases, which is purified in mixed multimeric states and oligomerizes through its transmembrane region), the protein oligomeric composition is largely unaffected by a 10-fold increase in protein concentration, by alteration of micelle properties through addition of other detergents to the PDC sample, or by a 20-fold variation in the detergent concentration used for solubilization of the IMP from the membrane. We observed that the conditions used for expression of the IMP, which impact protein density in the membrane, has the greatest influence on the IMP oligomeric structure. Finally, we argue that for concentrating PDCs smaller than 30 kDa, stirred concentration cells are less prone to over-concentration of detergent and are therefore more effective than centrifugal ultrafiltration devices. PMID:19214777

  4. Proteomics strategy for identifying candidate bioactive proteins in complex mixtures: application to the platelet releasate.

    LENUS (Irish Health Repository)

    O'Connor, Roisin

    2010-01-01

    Proteomic approaches have proven powerful at identifying large numbers of proteins, but there are fewer reports of functional characterization of proteins in biological tissues. Here, we describe an experimental approach that fractionates proteins released from human platelets, linking bioassay activity to identity. We used consecutive orthogonal separation platforms to ensure sensitive detection: (a) ion-exchange of intact proteins, (b) SDS-PAGE separation of ion-exchange fractions and (c) HPLC separation of tryptic digests coupled to electrospray tandem mass spectrometry. Migration of THP-1 monocytes in response to complete or fractionated platelet releasate was assessed and located to just one of the forty-nine ion-exchange fractions. Over 300 proteins were identified in the releasate, with a wide range of annotated biophysical and biochemical properties, in particular platelet activation, adhesion, and wound healing. The presence of PEDF and involucrin, two proteins not previously reported in platelet releasate, was confirmed by western blotting. Proteins identified within the fraction with monocyte promigratory activity and not in other inactive fractions included vimentin, PEDF, and TIMP-1. We conclude that this analytical platform is effective for the characterization of complex bioactive samples.

  5. Characterization of Monoclonal Antibody–Protein Antigen Complexes Using Small-Angle Scattering and Molecular Modeling

    Directory of Open Access Journals (Sweden)

    Maria Monica Castellanos

    2017-12-01

    Full Text Available The determination of monoclonal antibody interactions with protein antigens in solution can lead to important insights guiding physical characterization and molecular engineering of therapeutic targets. We used small-angle scattering (SAS combined with size-exclusion multi-angle light scattering high-performance liquid chromatography to obtain monodisperse samples with defined stoichiometry to study an anti-streptavidin monoclonal antibody interacting with tetrameric streptavidin. Ensembles of structures with both monodentate and bidentate antibody–antigen complexes were generated using molecular docking protocols and molecular simulations. By comparing theoretical SAS profiles to the experimental data it was determined that the primary component(s were compact monodentate and/or bidentate complexes. SAS profiles of extended monodentate complexes were not consistent with the experimental data. These results highlight the capability for determining the shape of monoclonal antibody–antigen complexes in solution using SAS data and physics-based molecular modeling.

  6. Border control: selectivity of chloroplast protein import and regulation at the TOC-complex.

    Science.gov (United States)

    Demarsy, Emilie; Lakshmanan, Ashok M; Kessler, Felix

    2014-01-01

    Plants have evolved complex and sophisticated molecular mechanisms to regulate their development and adapt to their surrounding environment. Particularly the development of their specific organelles, chloroplasts and other plastid-types, is finely tuned in accordance with the metabolic needs of the cell. The normal development and functioning of plastids require import of particular subsets of nuclear encoded proteins. Most preproteins contain a cleavable sequence at their N terminal (transit peptide) serving as a signal for targeting to the organelle and recognition by the translocation machinery TOC-TIC (translocon of outer membrane complex-translocon of inner membrane complex) spanning the dual membrane envelope. The plastid proteome needs constant remodeling in response to developmental and environmental factors. Therefore selective regulation of preprotein import plays a crucial role in plant development. In this review we describe the diversity of transit peptides and TOC receptor complexes, and summarize the current knowledge and potential directions for future research concerning regulation of the different Toc isoforms.

  7. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms.

    Science.gov (United States)

    Mattick, John S

    2003-10-01

    The central dogma of biology holds that genetic information normally flows from DNA to RNA to protein. As a consequence it has been generally assumed that genes generally code for proteins, and that proteins fulfil not only most structural and catalytic but also most regulatory functions, in all cells, from microbes to mammals. However, the latter may not be the case in complex organisms. A number of startling observations about the extent of non-protein-coding RNA (ncRNA) transcription in the higher eukaryotes and the range of genetic and epigenetic phenomena that are RNA-directed suggests that the traditional view of the structure of genetic regulatory systems in animals and plants may be incorrect. ncRNA dominates the genomic output of the higher organisms and has been shown to control chromosome architecture, mRNA turnover and the developmental timing of protein expression, and may also regulate transcription and alternative splicing. This paper re-examines the available evidence and suggests a new framework for considering and understanding the genomic programming of biological complexity, autopoietic development and phenotypic variation. Copyright 2003 Wiley Periodicals, Inc.

  8. Identifying technical aliases in SELDI mass spectra of complex mixtures of proteins

    Science.gov (United States)

    2013-01-01

    Background Biomarker discovery datasets created using mass spectrum protein profiling of complex mixtures of proteins contain many peaks that represent the same protein with different charge states. Correlated variables such as these can confound the statistical analyses of proteomic data. Previously we developed an algorithm that clustered mass spectrum peaks that were biologically or technically correlated. Here we demonstrate an algorithm that clusters correlated technical aliases only. Results In this paper, we propose a preprocessing algorithm that can be used for grouping technical aliases in mass spectrometry protein profiling data. The stringency of the variance allowed for clustering is customizable, thereby affecting the number of peaks that are clustered. Subsequent analysis of the clusters, instead of individual peaks, helps reduce difficulties associated with technically-correlated data, and can aid more efficient biomarker identification. Conclusions This software can be used to pre-process and thereby decrease the complexity of protein profiling proteomics data, thus simplifying the subsequent analysis of biomarkers by decreasing the number of tests. The software is also a practical tool for identifying which features to investigate further by purification, identification and confirmation. PMID:24010718

  9. Nephrin regulates lamellipodia formation by assembling a protein complex that includes Ship2, filamin and lamellipodin.

    Directory of Open Access Journals (Sweden)

    Madhusudan Venkatareddy

    Full Text Available Actin dynamics has emerged at the forefront of podocyte biology. Slit diaphragm junctional adhesion protein Nephrin is necessary for development of the podocyte morphology and transduces phosphorylation-dependent signals that regulate cytoskeletal dynamics. The present study extends our understanding of Nephrin function by showing in cultured podocytes that Nephrin activation induced actin dynamics is necessary for lamellipodia formation. Upon activation Nephrin recruits and regulates a protein complex that includes Ship2 (SH2 domain containing 5' inositol phosphatase, Filamin and Lamellipodin, proteins important in regulation of actin and focal adhesion dynamics, as well as lamellipodia formation. Using the previously described CD16-Nephrin clustering system, Nephrin ligation or activation resulted in phosphorylation of the actin crosslinking protein Filamin in a p21 activated kinase dependent manner. Nephrin activation in cell culture results in formation of lamellipodia, a process that requires specialized actin dynamics at the leading edge of the cell along with focal adhesion turnover. In the CD16-Nephrin clustering model, Nephrin ligation resulted in abnormal morphology of actin tails in human podocytes when Ship2, Filamin or Lamellipodin were individually knocked down. We also observed decreased lamellipodia formation and cell migration in these knock down cells. These data provide evidence that Nephrin not only initiates actin polymerization but also assembles a protein complex that is necessary to regulate the architecture of the generated actin filament network and focal adhesion dynamics.

  10. Consequences of intramolecular dityrosine formation on a DNA-protein complex: a molecular modeling study

    International Nuclear Information System (INIS)

    Gras, Julien; Sy, Denise; Eon, Severine; Charlier, Michel; Spotheim-Maurizot, Melanie

    2005-01-01

    Irradiation of the free lac repressor with γ-rays abolishes protein's ability to specifically bind operator DNA. A possible radiation-induced protein damage is a dityrosine (DTyr) formed by two spatially close radiation-induced tyrosyl radicals. We performed the molecular modeling of complexes between operator DNA and DTyr-bearing parts (headpieces) of the repressor. The presence of DTyr affects the structure and the interactions between partners. A detailed analysis allows to conclude this damage can partially account for the loss of repressor ability to bind DNA

  11. Survey of large protein complexes D. vulgaris reveals great structural diversity

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.-G.; Dong, M.; Liu, H.; Camp, L.; Geller, J.; Singer, M.; Hazen, T. C.; Choi, M.; Witkowska, H. E.; Ball, D. A.; Typke, D.; Downing, K. H.; Shatsky, M.; Brenner, S. E.; Chandonia, J.-M.; Biggin, M. D.; Glaeser, R. M.

    2009-08-15

    An unbiased survey has been made of the stable, most abundant multi-protein complexes in Desulfovibrio vulgaris Hildenborough (DvH) that are larger than Mr {approx} 400 k. The quaternary structures for 8 of the 16 complexes purified during this work were determined by single-particle reconstruction of negatively stained specimens, a success rate {approx}10 times greater than that of previous 'proteomic' screens. In addition, the subunit compositions and stoichiometries of the remaining complexes were determined by biochemical methods. Our data show that the structures of only two of these large complexes, out of the 13 in this set that have recognizable functions, can be modeled with confidence based on the structures of known homologs. These results indicate that there is significantly greater variability in the way that homologous prokaryotic macromolecular complexes are assembled than has generally been appreciated. As a consequence, we suggest that relying solely on previously determined quaternary structures for homologous proteins may not be sufficient to properly understand their role in another cell of interest.

  12. Clinical spectrum and diagnostic value of antibodies against the potassium channel related protein complex.

    Science.gov (United States)

    Montojo, M T; Petit-Pedrol, M; Graus, F; Dalmau, J

    2015-06-01

    Antibodies against a protein complex that includes voltage-gated potassium channels (VGKC) have been reported in patients with limbic encephalitis, peripheral nerve hyperexcitability, Morvan's syndrome, and a large variety of neurological syndromes. In this article, a review is presented of the syndromes associated with antibodies against VGKC-related proteins and the main antigens of this protein complex, the proteins LGI1 (leucine rich glioma inactivated protein 1) and Caspr2 (contactin-associated protein-like 2). The conceptual problems and clinical implications of the description of antibodies against VGKC-related proteins other than LGI1 and Caspr2 are also discussed. Although initial studies indicated the occurrence of antibodies against VGKC, recent investigations have shown that the main antigens are a neuronal secreted protein known as LGI1 which modulates synaptic excitability, and a protein called Caspr2 located on the cell surface and processes of neurons of different brain regions, and at the juxtaparanodal region of myelinated axons. While antibodies against LGI1 preferentially associate with classical limbic encephalitis, antibodies against Caspr2 associate with a wider spectrum of symptoms, including Morvan's syndrome, peripheral nerve hyperexcitability or neuromyotonia, and limbic or more extensive encephalitis. In addition there are reports of patients with antibodies against VGKC-related proteins that are different from LGI1 or Caspr2. In these cases, the identity and location of the antigens are unknown, the syndrome association is not specific, and the response to treatment uncertain. The discovery of antigens such as LGI1 and Caspr2 has resulted in a clinical and molecular definition of the broad group of diseases previously attributed to antibodies against VGKC. Considering the literature that describes the presence of antibodies against VGKC other than LGI1 and Caspr2 proteins, we propose a practical algorithm for the diagnosis and treatment

  13. Versatile annotation and publication quality visualization of protein complexes using POLYVIEW-3D

    Directory of Open Access Journals (Sweden)

    Meller Jaroslaw

    2007-08-01

    Full Text Available Abstract Background Macromolecular visualization as well as automated structural and functional annotation tools play an increasingly important role in the post-genomic era, contributing significantly towards the understanding of molecular systems and processes. For example, three dimensional (3D models help in exploring protein active sites and functional hot spots that can be targeted in drug design. Automated annotation and visualization pipelines can also reveal other functionally important attributes of macromolecules. These goals are dependent on the availability of advanced tools that integrate better the existing databases, annotation servers and other resources with state-of-the-art rendering programs. Results We present a new tool for protein structure analysis, with the focus on annotation and visualization of protein complexes, which is an extension of our previously developed POLYVIEW web server. By integrating the web technology with state-of-the-art software for macromolecular visualization, such as the PyMol program, POLYVIEW-3D enables combining versatile structural and functional annotations with a simple web-based interface for creating publication quality structure rendering, as well as animated images for Powerpoint™, web sites and other electronic resources. The service is platform independent and no plug-ins are required. Several examples of how POLYVIEW-3D can be used for structural and functional analysis in the context of protein-protein interactions are presented to illustrate the available annotation options. Conclusion POLYVIEW-3D server features the PyMol image rendering that provides detailed and high quality presentation of macromolecular structures, with an easy to use web-based interface. POLYVIEW-3D also provides a wide array of options for automated structural and functional analysis of proteins and their complexes. Thus, the POLYVIEW-3D server may become an important resource for researches and educators in

  14. Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane.

    Science.gov (United States)

    Salanenka, Yuliya; Verstraeten, Inge; Löfke, Christian; Tabata, Kaori; Naramoto, Satoshi; Glanc, Matouš; Friml, Jiří

    2018-02-20

    The plant hormone gibberellic acid (GA) is a crucial regulator of growth and development. The main paradigm of GA signaling puts forward transcriptional regulation via the degradation of DELLA transcriptional repressors. GA has also been shown to regulate tropic responses by modulation of the plasma membrane incidence of PIN auxin transporters by an unclear mechanism. Here we uncovered the cellular and molecular mechanisms by which GA redirects protein trafficking and thus regulates cell surface functionality. Photoconvertible reporters revealed that GA balances the protein traffic between the vacuole degradation route and recycling back to the cell surface. Low GA levels promote vacuolar delivery and degradation of multiple cargos, including PIN proteins, whereas high GA levels promote their recycling to the plasma membrane. This GA effect requires components of the retromer complex, such as Sorting Nexin 1 (SNX1) and its interacting, microtubule (MT)-associated protein, the Cytoplasmic Linker-Associated Protein (CLASP1). Accordingly, GA regulates the subcellular distribution of SNX1 and CLASP1, and the intact MT cytoskeleton is essential for the GA effect on trafficking. This GA cellular action occurs through DELLA proteins that regulate the MT and retromer presumably via their interaction partners Prefoldins (PFDs). Our study identified a branching of the GA signaling pathway at the level of DELLA proteins, which, in parallel to regulating transcription, also target by a nontranscriptional mechanism the retromer complex acting at the intersection of the degradation and recycling trafficking routes. By this mechanism, GA can redirect receptors and transporters to the cell surface, thus coregulating multiple processes, including PIN-dependent auxin fluxes during tropic responses. Copyright © 2018 the Author(s). Published by PNAS.

  15. Interconversion between active and inactive TATA-binding protein transcription complexes in the mouse genome.

    Science.gov (United States)

    Choukrallah, Mohamed-Amin; Kobi, Dominique; Martianov, Igor; Pijnappel, W W M Pim; Mischerikow, Nikolai; Ye, Tao; Heck, Albert J R; Timmers, H Th Marc; Davidson, Irwin

    2012-02-01

    The TATA binding protein (TBP) plays a pivotal role in RNA polymerase II (Pol II) transcription through incorporation into the TFIID and B-TFIID complexes. The role of mammalian B-TFIID composed of TBP and B-TAF1 is poorly understood. Using a complementation system in genetically modified mouse cells where endogenous TBP can be conditionally inactivated and replaced by exogenous mutant TBP coupled to tandem affinity purification and mass spectrometry, we identify two TBP mutations, R188E and K243E, that disrupt the TBP-BTAF1 interaction and B-TFIID complex formation. Transcriptome and ChIP-seq analyses show that loss of B-TFIID does not generally alter gene expression or genomic distribution of TBP, but positively or negatively affects TBP and/or Pol II recruitment to a subset of promoters. We identify promoters where wild-type TBP assembles a partial inactive preinitiation complex comprising B-TFIID, TFIIB and Mediator complex, but lacking TFIID, TFIIE and Pol II. Exchange of B-TFIID in wild-type cells for TFIID in R188E and K243E mutant cells at these primed promoters completes preinitiation complex formation and recruits Pol II to activate their expression. We propose a novel regulatory mechanism involving formation of a partial preinitiation complex comprising B-TFIID that primes the promoter for productive preinitiation complex formation in mammalian cells.

  16. The homeotic protein HOXC13 is a member of human DNA replication complexes.

    Science.gov (United States)

    Comelli, Laura; Marchetti, Laura; Arosio, Daniele; Riva, Silvano; Abdurashidova, Gulnara; Beltram, Fabio; Falaschi, Arturo

    2009-02-01

    The homeotic (and oncogenic) HOXC13 protein was shown to have an affinity for a DNA fragment corresponding to the sequence covered by the pre-replicative complex of the human lamin B2 replication origin. We show here that HOXC13 is a member of human replicative complexes. Our fluorescent fusion-protein data demonstrate that it co-localizes with replication foci of early-S cells and that this peculiar behaviour is driven by the homeodomain. By ChIP analysis we also show that HOXC13 binds the lamin B2 replication origin and the origins located near the TOP1 and MCM4 genes in asynchronously growing cells, whereas it does not bind these origins in G(0) resting cells, consistently with its involvement in origin function.

  17. Effects of radiation damage in studies of protein-DNA complexes by cryo-EM.

    Science.gov (United States)

    Mishyna, M; Volokh, O; Danilova, Ya; Gerasimova, N; Pechnikova, E; Sokolova, O S

    2017-05-01

    Nucleic acids are responsible for the storage, transfer and realization of genetic information in the cell, which provides correct development and functioning of organisms. DNA interaction with ligands ensures the safety of this information. Over the past 10 years, advances in electron microscopy and image processing allowed to obtain the structures of key DNA-protein complexes with resolution below 4Å. However, radiation damage is a limiting factor to the potentially attainable resolution in cryo-EM. The prospect and limitations of studying protein-DNA complex interactions using cryo-electron microscopy are discussed here. We reviewed the ways to minimize radiation damage in biological specimens and the possibilities of using radiation damage (so-called 'bubblegrams') to obtain additional structural information. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Human major histocompatibility complex contains genes for the major heat shock protein HSP70

    International Nuclear Information System (INIS)

    Sargent, C.A.; Dunham, I.; Campbell, R.D.; Trowsdale, J.

    1989-01-01

    Little is known as to why a large number of human diseases are influenced by the major histocompatibility complex. In some cases, a direct involvement of the products of the polymorphic class I and class II, as well as the less variable products of the class III, genes has been proposed. During characterization of the class III region for the presence of additional loci, the authors have located a duplicated locus encoding the major heat shock protein HSP70 between the complement and tumor necrosis factor genes. The HSP70 loci are 12 kilobases apart and lie 92 kilobases telomeric of the C2 gene. As HSP70 proteins have been linked with a protective role during and after cellular stress, and HSP70 analogues are often presented as antigens in bacterial and protozoal infections, this finding may have major implications with regard to the major histocompatibility complex and associated diseases

  19. Human major histocompatibility complex contains genes for the major heat shock protein HSP70

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, C.A.; Dunham, I.; Campbell, R.D. (Medical Research Council Immunochemistry Unit , Oxford (England)); Trowsdale, J. (Imperial Cancer Research Fund, London (England))

    1989-03-01

    Little is known as to why a large number of human diseases are influenced by the major histocompatibility complex. In some cases, a direct involvement of the products of the polymorphic class I and class II, as well as the less variable products of the class III, genes has been proposed. During characterization of the class III region for the presence of additional loci, the authors have located a duplicated locus encoding the major heat shock protein HSP70 between the complement and tumor necrosis factor genes. The HSP70 loci are 12 kilobases apart and lie 92 kilobases telomeric of the C2 gene. As HSP70 proteins have been linked with a protective role during and after cellular stress, and HSP70 analogues are often presented as antigens in bacterial and protozoal infections, this finding may have major implications with regard to the major histocompatibility complex and associated diseases.

  20. Matrix proteins of Nipah and Hendra viruses interact with beta subunits of AP-3 complexes.

    Science.gov (United States)

    Sun, Weina; McCrory, Thomas S; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell; Schmitt, Anthony P

    2014-11-01

    Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998, killing 109 people

  1. Affinity capture of biotinylated proteins at acidic conditions to facilitate hydrogen/deuterium exchange mass spectrometry analysis of multimeric protein complexes

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Jørgensen, Thomas J. D.; Koefoed, Klaus

    2013-01-01

    prior to the HDX-MS experiment. However, when studying protein complexes of more than two proteins, immobilization can possibly introduce steric limitations to the interactions. Here, we present a method based on the high affinity biotin-streptavidin interaction that allows selective capture...... of biotinylated proteins even under the extreme conditions for hydrogen/deuterium exchange quenching i.e. pH 2.5 and 0 °C. This biotin-streptavidin capture strategy allows hydrogen/deuterium exchange to occur in proteins in solution and enables characterization of specific proteins in heteromultimeric protein...... complexes without interference of peptides originating from other interaction partners in the complex. The biotin-streptavidin strategy has been successfully implemented in a model system with two recombinant monoclonal antibodies that target nonoverlapping epitopes on the human epidermal growth factor...

  2. The Rieske Iron-Sulfur Protein: Import and Assembly into the Cytochrome bc 1 Complex of Yeast Mitochondria

    Science.gov (United States)

    Conte, Laura; Zara, Vincenzo

    2011-01-01

    The Rieske iron-sulfur protein, one of the catalytic subunits of the cytochrome bc 1 complex, is involved in electron transfer at the level of the inner membrane of yeast mitochondria. The Rieske iron-sulfur protein is encoded by nuclear DNA and, after being synthesized in the cytosol, is imported into mitochondria with the help of a cleavable N-terminal presequence. The imported protein, besides incorporating the 2Fe-2S cluster, also interacts with other catalytic and non-catalytic subunits of the cytochrome bc 1 complex, thereby assembling into the mature and functional respiratory complex. In this paper, we summarize the most recent findings on the import and assembly of the Rieske iron-sulfur protein into Saccharomyces cerevisiae mitochondria, also discussing a possible role of this protein both in the dimerization of the cytochrome bc 1 complex and in the interaction of this homodimer with other complexes of the mitochondrial respiratory chain. PMID:21716720

  3. The Rieske Iron-Sulfur Protein: Import and Assembly into the Cytochrome bc(1) Complex of Yeast Mitochondria.

    Science.gov (United States)

    Conte, Laura; Zara, Vincenzo

    2011-01-01

    The Rieske iron-sulfur protein, one of the catalytic subunits of the cytochrome bc(1) complex, is involved in electron transfer at the level of the inner membrane of yeast mitochondria. The Rieske iron-sulfur protein is encoded by nuclear DNA and, after being synthesized in the cytosol, is imported into mitochondria with the help of a cleavable N-terminal presequence. The imported protein, besides incorporating the 2Fe-2S cluster, also interacts with other catalytic and non-catalytic subunits of the cytochrome bc(1) complex, thereby assembling into the mature and functional respiratory complex. In this paper, we summarize the most recent findings on the import and assembly of the Rieske iron-sulfur protein into Saccharomyces cerevisiae mitochondria, also discussing a possible role of this protein both in the dimerization of the cytochrome bc(1) complex and in the interaction of this homodimer with other complexes of the mitochondrial respiratory chain.

  4. Different Types of nsP3-Containing Protein Complexes in Sindbis Virus-Infected Cells▿

    Science.gov (United States)

    Gorchakov, Rodion; Garmashova, Natalia; Frolova, Elena; Frolov, Ilya

    2008-01-01

    Alphaviruses represent a serious public health threat and cause a wide variety of diseases, ranging from severe encephalitis, which can result in death or neurological sequelae, to mild infection, characterized by fever, skin rashes, and arthritis. In the infected cells, alphaviruses express only four nonstructural proteins, which function in the synthesis of virus-specific RNAs and in modification of the intracellular environment. The results of our study suggest that Sindbis virus (SINV) infection in BHK-21 cells leads to the formation of at least two types of nsP3-containing complexes, one of which was found in association with the plasma membrane and endosome-like vesicles, while the second was coisolated with cell nuclei. The latter complexes could be solubilized only with the cytoskeleton-destabilizing detergent. Besides viral nsPs, in the mammalian cells, both complexes contained G3BP1 and G3BP2 (which were found in different ratios), YBX1, and HSC70. Rasputin, an insect cell-specific homolog of G3BP1, was found in the nsP3-containing complexes isolated from mosquito cells, which was suggestive of a high conservation of the complexes in the cells of both vertebrate and invertebrate origin. The endosome- and plasma membrane-associated complexes contained a high concentration of double-stranded RNAs (dsRNAs), which is indicative of their function in viral-RNA synthesis. The dsRNA synthesis is likely to efficiently proceed on the plasma membrane, and at least some of the protein-RNA complexes would then be transported into the cytosol in association with the endosome-like vesicular organelles. These findings provide new insight into the mechanism of SINV replication and virus-host cell interactions. PMID:18684830

  5. Different types of nsP3-containing protein complexes in Sindbis virus-infected cells.

    Science.gov (United States)

    Gorchakov, Rodion; Garmashova, Natalia; Frolova, Elena; Frolov, Ilya

    2008-10-01

    Alphaviruses represent a serious public health threat and cause a wide variety of diseases, ranging from severe encephalitis, which can result in death or neurological sequelae, to mild infection, characterized by fever, skin rashes, and arthritis. In the infected cells, alphaviruses express only four nonstructural proteins, which function in the synthesis of virus-specific RNAs and in modification of the intracellular environment. The results of our study suggest that Sindbis virus (SINV) infection in BHK-21 cells leads to the formation of at least two types of nsP3-containing complexes, one of which was found in association with the plasma membrane and endosome-like vesicles, while the second was coisolated with cell nuclei. The latter complexes could be solubilized only with the cytoskeleton-destabilizing detergent. Besides viral nsPs, in the mammalian cells, both complexes contained G3BP1 and G3BP2 (which were found in different ratios), YBX1, and HSC70. Rasputin, an insect cell-specific homolog of G3BP1, was found in the nsP3-containing complexes isolated from mosquito cells, which was suggestive of a high conservation of the complexes in the cells of both vertebrate and invertebrate origin. The endosome- and plasma membrane-associated complexes contained a high concentration of double-stranded RNAs (dsRNAs), which is indicative of their function in viral-RNA synthesis. The dsRNA synthesis is likely to efficiently proceed on the plasma membrane, and at least some of the protein-RNA complexes would then be transported into the cytosol in association with the endosome-like vesicular organelles. These findings provide new insight into the mechanism of SINV replication and virus-host cell interactions.

  6. Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs.

    Science.gov (United States)

    Navarro, Gemma; Cordomí, Arnau; Zelman-Femiak, Monika; Brugarolas, Marc; Moreno, Estefania; Aguinaga, David; Perez-Benito, Laura; Cortés, Antoni; Casadó, Vicent; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Pardo, Leonardo; García-Sáez, Ana J; McCormick, Peter J; Franco, Rafael

    2016-04-05

    G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function.

  7. NMR spectroscopic and analytical ultracentrifuge analysis of membrane protein detergent complexes

    Directory of Open Access Journals (Sweden)

    Choe Senyon

    2007-11-01

    Full Text Available Abstract Background Structural studies of integral membrane proteins (IMPs are hampered by inherent difficulties in their heterologous expression and in the purification of solubilized protein-detergent complexes (PDCs. The choice and concentrations of detergents used in an IMP preparation play a critical role in protein homogeneity and are thus important for successful crystallization. Results Seeking an effective and standardized means applicable to genomic approaches for the characterization of PDCs, we chose 1D-NMR spectroscopic analysis to monitor the detergent content throughout their purification: protein extraction, detergent exchange, and sample concentration. We demonstrate that a single NMR measurement combined with a SDS-PAGE of a detergent extracted sample provides a useful gauge of the detergent's extraction potential for a given protein. Furthermore, careful monitoring of the detergent content during the process of IMP production allows for a high level of reproducibility. We also show that in many cases a simple sedimentation velocity measurement provides sufficient data to estimate both the oligomeric state and the detergent-to-protein ratio in PDCs, as well as to evaluate the homogeneity of the samples prior to crystallization screening. Conclusion The techniques presented here facilitate the screening and selection of the extraction detergent, as well as help to maintain reproducibility in the detergent exchange and PDC concentration procedures. Such reproducibility is particularly important for the optimization of initial crystallization conditions, for which multiple purifications are routinely required.

  8. The impact of CRISPR repeat sequence on structures of a Cas6 protein-RNA complex

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruiying; Zheng, Han; Preamplume, Gan; Shao, Yaming; Li, Hong [FSU

    2012-03-15

    The repeat-associated mysterious proteins (RAMPs) comprise the most abundant family of proteins involved in prokaryotic immunity against invading genetic elements conferred by the clustered regularly interspaced short palindromic repeat (CRISPR) system. Cas6 is one of the first characterized RAMP proteins and is a key enzyme required for CRISPR RNA maturation. Despite a strong structural homology with other RAMP proteins that bind hairpin RNA, Cas6 distinctly recognizes single-stranded RNA. Previous structural and biochemical studies show that Cas6 captures the 5' end while cleaving the 3' end of the CRISPR RNA. Here, we describe three structures and complementary biochemical analysis of a noncatalytic Cas6 homolog from Pyrococcus horikoshii bound to CRISPR repeat RNA of different sequences. Our study confirms the specificity of the Cas6 protein for single-stranded RNA and further reveals the importance of the bases at Positions 5-7 in Cas6-RNA interactions. Substitutions of these bases result in structural changes in the protein-RNA complex including its oligomerization state.

  9. Fluorescence study of protein-lipid complexes with a new symmetric squarylium probe.

    Science.gov (United States)

    Ioffe, Valeriya M; Gorbenko, Galyna P; Deligeorgiev, Todor; Gadjev, Nikolai; Vasilev, Aleksey

    2007-06-01

    The novel symmetric squarylium derivative SQ-1 has been synthesized and tested for its sensitivity to the formation of protein-lipid complexes. SQ-1 binding to the model membranes composed of zwitterionic lipid phosphatidylcholine (PC) and its mixtures with anionic lipid cardiolipin (CL) in different molar ratios was found to be controlled mainly by hydrophobic interactions. Lysozyme (Lz) and ribonuclease A (RNase) exerted an influence on the probe association with lipid vesicles resulting presumably from the competition between SQ-1 and the proteins for bilayer free volume and modification of its properties. The magnitude of this effect was much higher for lysozyme which may stem from the amphipathy of protein alpha-helix involved in the membrane binding. Varying membrane composition provides evidence for the dye sensitivity to both hydrophobic and electrostatic protein-lipid interactions. Fluorescence anisotropy studies uncovered the restriction of SQ-1 rotational mobility in lipid environment in the presence of Lz and RNase being indicative of the incorporation of the proteins into bilayer interior. The results of binding, fluorescence quenching and kinetic experiments suggested lysozyme-induced local lipid demixing upon protein association with negatively charged membranes with threshold concentration of CL for the lipid demixing being 10 mol%.

  10. The PAM domain, a multi-protein complex-associated module with an all-alpha-helix fold

    Directory of Open Access Journals (Sweden)

    Izaurralde Elisa

    2003-12-01

    Full Text Available Abstract Background Multimeric protein complexes have a role in many cellular pathways and are highly interconnected with various other proteins. The characterization of their domain composition and organization provides useful information on the specific role of each region of their sequence. Results We identified a new module, the PAM domain (PCI/PINT associated module, present in single subunits of well characterized multiprotein complexes, like the regulatory lid of the 26S proteasome, the COP-9 signalosome and the Sac3-Thp1 complex. This module is an around 200 residue long domain with a predicted TPR-like all-alpha-helical fold. Conclusions The occurrence of the PAM domain in specific subunits of multimeric protein complexes, together with the role of other all-alpha-helical folds in protein-protein interactions, suggest a function for this domain in mediating transient binding to diverse target proteins.

  11. Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions.

    Science.gov (United States)

    Israeli-Ruimy, Vered; Bule, Pedro; Jindou, Sadanari; Dassa, Bareket; Moraïs, Sarah; Borovok, Ilya; Barak, Yoav; Slutzki, Michal; Hamberg, Yuval; Cardoso, Vânia; Alves, Victor D; Najmudin, Shabir; White, Bryan A; Flint, Harry J; Gilbert, Harry J; Lamed, Raphael; Fontes, Carlos M G A; Bayer, Edward A

    2017-02-10

    Protein-protein interactions play a vital role in cellular processes as exemplified by assembly of the intricate multi-enzyme cellulosome complex. Cellulosomes are assembled by selective high-affinity binding of enzyme-borne dockerin modules to repeated cohesin modules of structural proteins termed scaffoldins. Recent sequencing of the fiber-degrading Ruminococcus flavefaciens FD-1 genome revealed a particularly elaborate cellulosome system. In total, 223 dockerin-bearing ORFs potentially involved in cellulosome assembly and a variety of multi-modular scaffoldins were identified, and the dockerins were classified into six major groups. Here, extensive screening employing three complementary medium- to high-throughput platforms was used to characterize the different cohesin-dockerin specificities. The platforms included (i) cellulose-coated microarray assay, (ii) enzyme-linked immunosorbent assay (ELISA) and (iii) in-vivo co-expression and screening in Escherichia coli. The data revealed a collection of unique cohesin-dockerin interactions and support the functional relevance of dockerin classification into groups. In contrast to observations reported previously, a dual-binding mode is involved in cellulosome cell-surface attachment, whereas single-binding interactions operate for cellulosome integration of enzymes. This sui generis cellulosome model enhances our understanding of the mechanisms governing the remarkable ability of R. flavefaciens to degrade carbohydrates in the bovine rumen and provides a basis for constructing efficient nano-machines applied to biological processes.

  12. Strength and Character of Halogen Bonds in Protein-Ligand Complexes

    Czech Academy of Sciences Publication Activity Database

    Riley, Kevin Eugene; Hobza, Pavel

    2011-01-01

    Roč. 11, č. 10 (2011), s. 4272-4278 ISSN 1528-7483 R&D Projects: GA MŠk LC512 Grant - others:Research and Development for Innovations of European Social Fund(XE) CZ.1.05/2.1.00/03.0058 Institutional research plan: CEZ:AV0Z40550506 Keywords : halogen bond * protein-ligand complexes * calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.720, year: 2011

  13. Tissue-engineered cells producing complex recombinant proteins inhibit ovarian cancer in vivo

    OpenAIRE

    Stephen, Antonia E.; Masiakos, Peter T.; Segev, Dorry L.; Vacanti, Joseph P.; Donahoe, Patricia K.; MacLaughlin, David T.

    2001-01-01

    Techniques of tissue engineering and cell and molecular biology were used to create a biodegradable scaffold for transfected cells to produce complex proteins. Mullerian Inhibiting Substance (MIS) causes regression of Mullerian ducts in the mammalian embryo. MIS also causes regression in vitro of ovarian tumor cell lines and primary cells from ovarian carcinomas, which derive from Mullerian structures. In a strategy to circumvent the complicated purification protoc...

  14. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S.; Kent, Stephen B.H. (Antibody Solutions); (Toronto); (Reflexion); (UC)

    2012-10-23

    Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF{sub 165} to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {l_brace}D-protein antagonist + L-protein form of VEGF-A{r_brace}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 {angstrom}. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 {angstrom}{sup 2} in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2.

  15. PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex

    International Nuclear Information System (INIS)

    Surapureddi, Sailesh; Viswakarma, Navin; Yu Songtao; Guo Dongsheng; Rao, M. Sambasiva; Reddy, Janardan K.

    2006-01-01

    Ciprofibrate, a potent peroxisome proliferator, induces pleiotropic responses in liver by activating peroxisome proliferator-activated receptor α (PPARα), a nuclear receptor. Transcriptional regulation by liganded nuclear receptors involves the participation of coregulators that form multiprotein complexes possibly to achieve cell and gene specific transcription. SDS-PAGE and matrix-assisted laser desorption/ionization reflection time-of-flight mass spectrometric analyses of ciprofibrate-binding proteins from liver nuclear extracts obtained using ciprofibrate-Sepharose affinity matrix resulted in the identification of a new high molecular weight nuclear receptor coactivator, which we designated PRIC320. The full-length human cDNA encoding this protein has an open-reading frame that codes for a 320 kDa protein containing 2882 amino acids. PRIC320 contains five LXXLL signature motifs that mediate interaction with nuclear receptors. PRIC320 binds avidly to nuclear receptors PPARα, CAR, ERα, and RXR, but only minimally with PPARγ. PRIC320 also interacts with transcription cofactors CBP, PRIP, and PBP. Immunoprecipitation-immunoblotting as well as cellular localization studies confirmed the interaction between PPARα and PRIC320. PRIC320 acts as a transcription coactivator by stimulating PPARα-mediated transcription. We conclude that ciprofibrate, a PPARα ligand, binds a multiprotein complex and PRIC320 cloned from this complex functions as a nuclear receptor coactivator

  16. Characterization of known protein complexes using k-connectivity and other topological measures [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Suzanne R Gallagher

    2015-10-01

    Full Text Available Many protein complexes are densely packed, so proteins within complexes often interact with several other proteins in the complex. Steric constraints prevent most proteins from simultaneously binding more than a handful of other proteins, regardless of the number of proteins in the complex. Because of this, as complex size increases, several measures of the complex decrease within protein-protein interaction networks. However, k-connectivity, the number of vertices or edges that need to be removed in order to disconnect a graph, may be consistently high for protein complexes. The property of k-connectivity has been little used previously in the investigation of protein-protein interactions. To understand the discriminative power of k-connectivity and other topological measures for identifying unknown protein complexes, we characterized these properties in known Saccharomyces cerevisiae protein complexes in networks generated both from highly accurate X-ray crystallography experiments which give an accurate model of each complex, and also as the complexes appear in high-throughput yeast 2-hybrid studies in which new complexes may be discovered. We also computed these properties for appropriate random subgraphs.We found that clustering coefficient, mutual clustering coefficient, and k-connectivity are better indicators of known protein complexes than edge density, degree, or betweenness. This suggests new directions for future protein complex-finding algorithms.

  17. Novel Nuclear Protein Complexes of Dystrophin 71 Isoforms in Rat Cultured Hippocampal GABAergic and Glutamatergic Neurons.

    Directory of Open Access Journals (Sweden)

    Rafael Rodríguez-Muñoz

    Full Text Available The precise functional role of the dystrophin 71 in neurons is still elusive. Previously, we reported that dystrophin 71d and dystrophin 71f are present in nuclei from cultured neurons. In the present work, we performed a detailed analysis of the intranuclear distribution of dystrophin 71 isoforms (Dp71d and Dp71f, during the temporal course of 7-day postnatal rats hippocampal neurons culture for 1h, 2, 4, 10, 15 and 21 days in vitro (DIV. By immunofluorescence assays, we detected the highest level of nuclear expression of both dystrophin Dp71 isoforms at 10 DIV, during the temporal course of primary culture. Dp71d and Dp71f were detected mainly in bipolar GABAergic (≥60% and multipolar Glutamatergic (≤40% neurons, respectively. We also characterized the existence of two nuclear dystrophin-associated protein complexes (DAPC: dystrophin 71d or dystrophin 71f bound to β-dystroglycan, α1-, β-, α2-dystrobrevins, α-syntrophin, and syntrophin-associated protein nNOS (Dp71d-DAPC or Dp71f-DAPC, respectively, in the hippocampal neurons. Furthermore, both complexes were localized in interchromatin granule cluster structures (nuclear speckles of neuronal nucleoskeleton preparations. The present study evinces that each Dp71's complexes differ slightly in dystrobrevins composition. The results demonstrated that Dp71d-DAPC was mainly localized in bipolar GABAergic and Dp71f-DAPC in multipolar Glutamatergic hippocampal neurons. Taken together, our results show that dystrophin 71d, dystrophin 71f and DAP integrate protein complexes, and both complexes were associated to nuclear speckles structures.

  18. Novel Nuclear Protein Complexes of Dystrophin 71 Isoforms in Rat Cultured Hippocampal GABAergic and Glutamatergic Neurons.

    Science.gov (United States)

    Rodríguez-Muñoz, Rafael; Cárdenas-Aguayo, María Del Carmen; Alemán, Víctor; Osorio, Beatriz; Chávez-González, Oscar; Rendon, Alvaro; Martínez-Rojas, Dalila; Meraz-Ríos, Marco Antonio

    2015-01-01

    The precise functional role of the dystrophin 71 in neurons is still elusive. Previously, we reported that dystrophin 71d and dystrophin 71f are present in nuclei from cultured neurons. In the present work, we performed a detailed analysis of the intranuclear distribution of dystrophin 71 isoforms (Dp71d and Dp71f), during the temporal course of 7-day postnatal rats hippocampal neurons culture for 1h, 2, 4, 10, 15 and 21 days in vitro (DIV). By immunofluorescence assays, we detected the highest level of nuclear expression of both dystrophin Dp71 isoforms at 10 DIV, during the temporal course of primary culture. Dp71d and Dp71f were detected mainly in bipolar GABAergic (≥60%) and multipolar Glutamatergic (≤40%) neurons, respectively. We also characterized the existence of two nuclear dystrophin-associated protein complexes (DAPC): dystrophin 71d or dystrophin 71f bound to β-dystroglycan, α1-, β-, α2-dystrobrevins, α-syntrophin, and syntrophin-associated protein nNOS (Dp71d-DAPC or Dp71f-DAPC, respectively), in the hippocampal neurons. Furthermore, both complexes were localized in interchromatin granule cluster structures (nuclear speckles) of neuronal nucleoskeleton preparations. The present study evinces that each Dp71's complexes differ slightly in dystrobrevins composition. The results demonstrated that Dp71d-DAPC was mainly localized in bipolar GABAergic and Dp71f-DAPC in multipolar Glutamatergic hippocampal neurons. Taken together, our results show that dystrophin 71d, dystrophin 71f and DAP integrate protein complexes, and both complexes were associated to nuclear speckles structures.

  19. Monitoring prion protein expression in complex biological samples by SERS for diagnostic applications

    International Nuclear Information System (INIS)

    Manno, D; Filippo, E; Fiore, R; Serra, A; Urso, E; Rizzello, A; Maffia, M

    2010-01-01

    Surface-enhanced Raman spectroscopy (SERS) allows a new insight into the analysis of cell physiology. In this work, the difficulty of producing suitable substrates that, besides permitting the amplification of the Raman signal, do not interact with the biological material causing alteration, has been overcome by a combined method of hydrothermal green synthesis and thermal annealing. The SERS analysis of the cell membrane has been performed with special attention to the cellular prion protein PrP C . In addition, SERS has also been used to reveal the prion protein-Cu(II) interaction in four different cell models (B104, SH-SY5Y, GN11, HeLa), expressing PrP C at different levels. A significant implication of the current work consists of the intriguing possibility of revealing and quantifying prion protein expression in complex biological samples by a cheap SERS-based method, replacing the expensive and time-consuming immuno-assay systems commonly employed.

  20. Structural and optical behavior of thin films of protein (BSA)-Polyelectrolyte (PAA, PSS) complexes

    Science.gov (United States)

    Talukdar, Hrishikesh; Kundu, Sarathi

    2017-05-01

    Optical behaviors of protein (BSA) in the presence of negatively charged polyelectrolytes (PAA and PSS) in thin film confirmation are studied using UV-Vis and photoluminescence spectroscopy. The out-of-plane structures and in-plane surface morphologies of the thin films of protein-polyelectrolyte complexes (PPC) are investigated using X-ray reflectivity (XRR) and Atomic force microscopy (AFM) respectively. It is found that although the out-of-plane structure and surface morphology of PPC is nearly same as in pure polyelectrolyte but a larger red-shift of ≈ 23 nm is obtained in optical emissions from the thin films of PPC in comparison with that of the pure protein and PPC solutions. Mechanism is proposed for such larger red-shift from the thin film of PPC.

  1. Identification of a Golgi apparatus protein complex important for the asexual erythrocytic cycle of the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Hallée, Stéphanie; Theriault, Catherine; Gagnon, Dominic; Kehrer, Jessica; Frischknecht, Friedrich; Mair, Gunnar R; Richard, Dave

    2018-03-26

    Compared to other eukaryotic cell types, malaria parasites appear to possess a more rudimentary Golgi apparatus being composed of dispersed, unstacked cis and trans-cisternae. Despite playing a central role in the secretory pathway of the parasite, few Plasmodium Golgi resident proteins have been characterized. We had previously identified a new Golgi resident protein of unknown function which we had named Golgi Protein 1 and now show that it forms a complex with a previously uncharacterized transmembrane protein (Golgi Protein 2, GP2). The Golgi Protein complex localizes to the cis-Golgi throughout the erythrocytic cycle and potentially also during the mosquito stages. Analysis of parasite strains where GP1 expression is conditionally repressed and/or the GP2 gene is inactivated reveals that though the Golgi Protein complex is not essential at any stage of the parasite life cycle, it is important for optimal asexual development in the blood stages. This article is protected by copyright. All rights reserved.

  2. Direct infusion-SIM as fast and robust method for absolute protein quantification in complex samples

    Directory of Open Access Journals (Sweden)

    Christina Looße

    2015-06-01

    Full Text Available Relative and absolute quantification of proteins in biological and clinical samples are common approaches in proteomics. Until now, targeted protein quantification is mainly performed using a combination of HPLC-based peptide separation and selected reaction monitoring on triple quadrupole mass spectrometers. Here, we show for the first time the potential of absolute quantification using a direct infusion strategy combined with single ion monitoring (SIM on a Q Exactive mass spectrometer. By using complex membrane fractions of Escherichia coli, we absolutely quantified the recombinant expressed heterologous human cytochrome P450 monooxygenase 3A4 (CYP3A4 comparing direct infusion-SIM with conventional HPLC-SIM. Direct-infusion SIM revealed only 14.7% (±4.1 (s.e.m. deviation on average, compared to HPLC-SIM and a decreased processing and analysis time of 4.5 min (that could be further decreased to 30 s for a single sample in contrast to 65 min by the LC–MS method. Summarized, our simplified workflow using direct infusion-SIM provides a fast and robust method for quantification of proteins in complex protein mixtures.

  3. The role of adenosine triphosphate in the function of human origin recognition complex 4 protein

    Directory of Open Access Journals (Sweden)

    ALEKSANDRA DIVAC

    2010-03-01

    Full Text Available Human origin recognition complex 4 (ORC4 protein, a subunit of the origin recognition complex, belongs to the AAA+ superfamily of adenosine triphosphate (ATP ases. Proteins belonging to this family require ATP for their function and interactions with ATP lead to conformational changes in them or in their partners. Human ORC4 protein induces structural changes in DNA substrates, promoting renaturation and formation of non-canonical structures, as well as conversion of single-stranded into multi-stranded oligonucleotide structures. The aim of this study was to further investigate the role of ATP in the function of human ORC4 protein. For this purpose, a mutant in the conserved Walker B motif of ORC4, which is able to bind but not to hydrolyze ATP, was constructed and its activity in DNA restructuring reactions was investigated. The obtained results showed that ATP hydrolysis is not necessary for the function of human ORC4. It is proposed that ATP has a structural role as a cofactor in the function of human ORC4 as a DNA restructuring agent.

  4. Ligand-induced protein mobility in complexes of carbonic anhydrase II and benzenesulfonamides with oligoglycine chains.

    Directory of Open Access Journals (Sweden)

    Vijay M Krishnamurthy

    Full Text Available This paper describes a biophysical investigation of residual mobility in complexes of bovine carbonic anhydrase II (BCA and para-substituted benzenesulfonamide ligands with chains of 1-5 glycine subunits, and explains the previously observed increase in entropy of binding with chain length. The reported results represent the first experimental demonstration that BCA is not the rigid, static globulin that has been typically assumed, but experiences structural fluctuations upon binding ligands. NMR studies with (15N-labeled ligands demonstrated that the first glycine subunit of the chain binds without stabilization or destabilization by the more distal subunits, and suggested that the other glycine subunits of the chain behave similarly. These data suggest that a model based on ligand mobility in the complex cannot explain the thermodynamic data. Hydrogen/deuterium exchange studies provided a global estimate of protein mobility and revealed that the number of exchanged hydrogens of BCA was higher when the protein was bound to a ligand with five glycine subunits than when bound to a ligand with only one subunit, and suggested a trend of increasing number of exchanged hydrogens with increasing chain length of the BCA-bound ligand, across the series. These data support the idea that the glycine chain destabilizes the structure of BCA in a length-dependent manner, causing an increase in BCA mobility. This study highlights the need to consider ligand-induced mobility of even "static" proteins in studies of protein-ligand binding, including rational ligand design approaches.

  5. Structure of a protein-detergent complex: the balance between detergent cohesion and binding.

    Science.gov (United States)

    Khao, Jonathan; Arce-Lopera, Jaime; Sturgis, James N; Duneau, Jean-Pierre

    2011-10-01

    Despite the major interest in membrane proteins at functional, genomic, and therapeutic levels, their biochemical and structural study remains challenging, as they require, among other things, solubilization in detergent micelles. The complexity of this task derives from the dependence of membrane protein structure on their anisotropic environment, influenced by a delicate balance between many different physicochemical properties. To study such properties in a small protein-detergent complex, we used fluorescence measurements and molecular dynamics (MD) simulations on the transmembrane part of glycophorin A (GpAtm) solubilized in micelles of dihexanoylphosphatidylcholine (DHPC) detergent. Fluorescence measurements show that DHPC has limited ability to solubilize the peptide, while MD provides a possible molecular explanation for this. We observe that the detergent molecules are balanced between two different types of interactions: cohesive interactions between detergent molecules that hold the micelle together, and adhesive interactions with the peptide. While the cohesive interactions are detergent mediated, the adhesion to the peptide depends on the specific interactions between the hydrophobic parts of the detergent and the topography of the peptide dictated by the amino acids. The balance between these two parameters results in a certain frustration of the system and rather slow equilibration. These observations suggest how molecular properties of detergents could influence membrane protein stabilization and solubilization.

  6. Chemical, physicochemical and spectrophotometric properties of crystalline chlorophyll-protein complexes from Lepidium virginicum L.

    Science.gov (United States)

    Murata, T; Ishikawa, C

    1981-04-13

    Two kinds of water-soluble chlorophyll-protein complexes were prepared from leaves of Lepidium virginicum L., one (CP661) from the plant cultivated in a green house from seeds collected near Mono Lake, CA, and the other (CP-663) from a plant collected at Narashino, Chiba, Japan, by ammonium sulfate fractionation followed by column chromatography on DEAE-cellulose and Sephacryl S-200. The chlorophyll . proteins were further purified by crystallization. CP661 has absorption peaks at 661, 468, 439, 419, 380, 339 and 272 nm. CP663 had absorption peaks at 663, 469, 438, 419, 379, 338 and 272 nm. Estimated molecular weights were 78 000 for CP661 and 80 000 for CP663 by gel filtration chromatography and 83 000 for CP661 and 107 000 for CP663 by an equilibrium sedimentation method. 1 mol chlorophyll . protein contained 4 mol chlorophyll a and b with ratios of 1.0 in CP661 and 1.6 to 1.9 in CP663, but no carotenoids. These characters are different from those of chlorophyll-protein complexes which are prepared from the thylakoid membranes of chloroplasts with detergents.

  7. The laminA/NF-Y protein complex reveals an unknown transcriptional mechanism on cell proliferation.

    Science.gov (United States)

    Cicchillitti, Lucia; Manni, Isabella; Mancone, Carmine; Regazzo, Giulia; Spagnuolo, Manuela; Alonzi, Tonino; Carlomosti, Fabrizio; Dell'Anna, Maria Lucia; Dell'Omo, Giulia; Picardo, Mauro; Ciana, Paolo; Capogrossi, Maurizio C; Tripodi, Marco; Magenta, Alessandra; Rizzo, Maria Giulia; Gurtner, Aymone; Piaggio, Giulia

    2017-01-10

    Lamin A is a component of the nuclear matrix that also controls proliferation by largely unknown mechanisms. NF-Y is a ubiquitous protein involved in cell proliferation composed of three subunits (-YA -YB -YC) all required for the DNA binding and transactivation activity. To get clues on new NF-Y partner(s) we performed a mass spectrometry screening of proteins that co-precipitate with the regulatory subunit of the complex, NF-YA. By this screening we identified lamin A as a novel putative NF-Y interactor. Co-immunoprecipitation experiments and confocal analysis confirmed the interaction between the two endogenous proteins. Interestingly, this association occurs on euchromatin regions, too. ChIP experiments demonstrate lamin A enrichment in several promoter regions of cell cycle related genes in a NF-Y dependent manner. Gain and loss of function experiments reveal that lamin A counteracts NF-Y transcriptional activity. Taking advantage of a recently generated transgenic reporter mouse, called MITO-Luc, in which an NF-Y-dependent promoter controls luciferase expression, we demonstrate that lamin A counteracts NF-Y transcriptional activity not only in culture cells but also in living animals. Altogether, our data demonstrate the occurrence of lamin A/NF-Y interaction and suggest a possible role of this protein complex in regulation of NF-Y function in cell proliferation.

  8. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  9. Helicase properties of the Escherichia coli UvrAb protein complex

    International Nuclear Information System (INIS)

    Oh, E.Y.; Grossman, L.

    1987-01-01

    The Escherichia coli UvrA protein has an associated ATPase activity with a turnover number affected by the presence of UvrB protein as well as by DNA. Specifically, the structure of DNA significantly influences the turnover rate of the UvrAB ATPase activity. Double-stranded DNA maximally activates the turnover rate 10-fold whereas single-stranded DNA maximally activates the turnover rate 20-fold, suggesting that the mode of interaction of UvrAB protein with different DNAs is distinctive. We have previously shown that the UvrAB protein complex, driven by the binding energy of ATP, can locally unwind supercoiled DNA. The nature of the DNA unwinding activity and single-stranded DNA activation of ATPase activity suggest potential helicase activity. In the presence of a number of helicase substrates, the UvrAB complex, indeed, manifests a strand-displacement activity-unwinding short duplexes and D-loop DNA, thereby generating component DNA structures. The energy for the activity is derived from ATP or dATP hydrolysis. Unlike the E. coli DnaB, the UvrAB helicase is sensitive to UV-induced photoproducts

  10. iview: an interactive WebGL visualizer for protein-ligand complex.

    Science.gov (United States)

    Li, Hongjian; Leung, Kwong-Sak; Nakane, Takanori; Wong, Man-Hon

    2014-02-25

    Visualization of protein-ligand complex plays an important role in elaborating protein-ligand interactions and aiding novel drug design. Most existing web visualizers either rely on slow software rendering, or lack virtual reality support. The vital feature of macromolecular surface construction is also unavailable. We have developed iview, an easy-to-use interactive WebGL visualizer of protein-ligand complex. It exploits hardware acceleration rather than software rendering. It features three special effects in virtual reality settings, namely anaglyph, parallax barrier and oculus rift, resulting in visually appealing identification of intermolecular interactions. It supports four surface representations including Van der Waals surface, solvent excluded surface, solvent accessible surface and molecular surface. Moreover, based on the feature-rich version of iview, we have also developed a neat and tailor-made version specifically for our istar web platform for protein-ligand docking purpose. This demonstrates the excellent portability of iview. Using innovative 3D techniques, we provide a user friendly visualizer that is not intended to compete with professional visualizers, but to enable easy accessibility and platform independence.

  11. Protein-carbohydrate complex reveals circulating metastatic cells in a microfluidic assay

    KAUST Repository

    Simone, Giuseppina

    2013-02-11

    Advances in carbohydrate sequencing technologies reveal the tremendous complexity of the glycome and the role that glycomics might have to bring insight into the biological functions. Carbohydrate-protein interactions, in particular, are known to be crucial to most mammalian physiological processes as mediators of cell adhesion and metastasis, signal transducers, and organizers of protein interactions. An assay is developed here to mimic the multivalency of biological complexes that selectively and sensitively detect carbohydrate-protein interactions. The binding of β-galactosides and galectin-3 - a protein that is correlated to the progress of tumor and metastasis - is examined. The efficiency of the assay is related to the expression of the receptor while anchoring to the interaction\\'s strength. Comparative binding experiments reveal molecular binding preferences. This study establishes that the assay is robust to isolate metastatic cells from colon affected patients and paves the way to personalized medicine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Evolution of light-harvesting complex proteins from Chl c-containing algae

    Directory of Open Access Journals (Sweden)

    Puerta M Virginia

    2011-04-01

    Full Text Available Abstract Background Light harvesting complex (LHC proteins function in photosynthesis by binding chlorophyll (Chl and carotenoid molecules that absorb light and transfer the energy to the reaction center Chl of the photosystem. Most research has focused on LHCs of plants and chlorophytes that bind Chl a and b and extensive work on these proteins has uncovered a diversity of biochemical functions, expression patterns and amino acid sequences. We focus here on a less-studied family of LHCs that typically bind Chl a and c, and that are widely distributed in Chl c-containing and other algae. Previous phylogenetic analyses of these proteins suggested that individual algal lineages possess proteins from one or two subfamilies, and that most subfamilies are characteristic of a particular algal lineage, but genome-scale datasets had revealed that some species have multiple different forms of the gene. Such observations also suggested that there might have been an important influence of endosymbiosis in the evolution of LHCs. Results We reconstruct a phylogeny of LHCs from Chl c-containing algae and related lineages using data from recent sequencing projects to give ~10-fold larger taxon sampling than previous studies. The phylogeny indicates that individual taxa possess proteins from multiple LHC subfamilies and that several LHC subfamilies are found in distantly related algal lineages. This phylogenetic pattern implies functional differentiation of the gene families, a hypothesis that is consistent with data on gene expression, carotenoid binding and physical associations with other LHCs. In all probability LHCs have undergone a complex history of evolution of function, gene transfer, and lineage-specific diversification. Conclusion The analysis provides a strikingly different picture of LHC diversity than previous analyses of LHC evolution. Individual algal lineages possess proteins from multiple LHC subfamilies. Evolutionary relationships showed

  13. Computational analysis of the CB1 carboxyl-terminus in the receptor-G protein complex.

    Science.gov (United States)

    Shim, Joong-Youn; Khurana, Leepakshi; Kendall, Debra A

    2016-04-01

    Despite the important role of the carboxyl-terminus (Ct) of the activated brain cannabinoid receptor one (CB1) in the regulation of G protein signaling, a structural understanding of interactions with G proteins is lacking. This is largely due to the highly flexible nature of the CB1 Ct that dynamically adapts its conformation to the presence of G proteins. In the present study, we explored how the CB1 Ct can interact with the G protein by building on our prior modeling of the CB1-Gi complex (Shim, Ahn, and Kendall, The Journal of Biological Chemistry 2013;288:32449-32465) to incorporate a complete CB1 Ct (Glu416(Ct)-Leu472(Ct)). Based on the structural constraints from NMR studies, we employed ROSETTA to predict tertiary folds, ZDOCK to predict docking orientation, and molecular dynamics (MD) simulations to obtain two distinct plausible models of CB1 Ct in the CB1-Gi complex. The resulting models were consistent with the NMR-determined helical structure (H9) in the middle region of the CB1 Ct. The CB1 Ct directly interacted with both Gα and Gβ and stabilized the receptor at the Gi interface. The results of site-directed mutagenesis studies of Glu416(Ct), Asp423(Ct), Asp428(Ct), and Arg444(Ct) of CB1 Ct suggested that the CB1 Ct can influence receptor-G protein coupling by stabilizing the receptor at the Gi interface. This research provided, for the first time, models of the CB1 Ct in contact with the G protein. © 2016 Wiley Periodicals, Inc.

  14. Modification of the protein corona–nanoparticle complex by physiological factors

    International Nuclear Information System (INIS)

    Braun, Nicholas J.; DeBrosse, Madeleine C.; Hussain, Saber M.; Comfort, Kristen K.

    2016-01-01

    Nanoparticle (NP) effects in a biological system are driven through the formation and structure of the protein corona–NP complex, which is dynamic by nature and dependent upon factors from both the local environment and NP physicochemical parameters. To date, considerable data has been gathered regarding the structure and behavior of the protein corona in blood, plasma, and traditional cell culture medium. However, there exists a knowledge gap pertaining to the protein corona in additional biological fluids and following incubation in a dynamic environment. Using 13 nm gold NPs (AuNPs), functionalized with either polyethylene glycol or tannic acid, we demonstrated that both particle characteristics and the associated protein corona were altered when exposed to artificial physiological fluids and under dynamic flow. Furthermore, the magnitude of observed behavioral shifts were dependent upon AuNP surface chemistry. Lastly, we revealed that exposure to interstitial fluid produced protein corona modifications, reshaping of the nano-cellular interface, modified AuNP dosimetry, and induction of previously unseen cytotoxicity. This study highlights the need to elucidate both NP and protein corona behavior in biologically representative environments in an effort to increase accurate interpretation of data and transfer of this knowledge to efficacy, behavior, and safety of nano-based applications. - Highlights: • Dynamic flow increased the size of the gold nanoparticle protein corona. • Exposure to biological fluids altered protein corona size and composition. • Interstitial fluid modified the nano-cellular interface and deposition efficiency. • Tannic acid coated nanoparticles induced toxicity in an interstitial environment.

  15. Formation of a covalent complex between the terminal protein of pneumococcal bacteriophage Cp-1 and 5'-dAMP

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, P.; Hermoso, J.M.; Garcia, J.A.; Garcia, E.; Lopez, R.; Salas, M.

    1986-04-01

    Incubation of extracts of Cp-1-infected Streptococcus pneumoniae with (..cap alpha..-/sup 32/P)dATP produced a labeled protein with the electrophoretic mobility of the Cp-1 terminal protein. The reaction product was resistant to treatment with micrococcal nuclease and sensitive to treatment with proteinase K. Incubation of the /sup 32/P-labeled protein with 5 M piperidine for 4 h at 50/sup 0/C released 5'-dAMP, indicating that a covalent complex between the terminal protein and 5'-dAMP was formed in vitro. When the four deoxynucleoside triphosphates were included in the reaction mixture, a labeled complex of slower electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels than the terminal protein-dAMP complex was also found, indicating that the Cp-1 terminal protein-dAMP complex can be elongated and, therefore, that it is an initiation complex. Treatment of the /sup 32/P-labeled terminal protein-dAMP complex with 5.8 M HCl at 110/sup 0/C for 2 h yielded phosphothreonine. These results, together with the resistance of the terminal protein-DNA linkage to hydroxylamine, suggest that the Cp-1 terminal protein is covalently linked to the DNA through a phosphoester bond between L-threonine and 5'-dAMP, namely, a O-5'-deoxyadenylyl-L-threonine bond.

  16. Formation of a covalent complex between the terminal protein of pneumococcal bacteriophage Cp-1 and 5'-dAMP

    International Nuclear Information System (INIS)

    Garcia, P.; Hermoso, J.M.; Garcia, J.A.; Garcia, E.; Lopez, R.; Salas, M.

    1986-01-01

    Incubation of extracts of Cp-1-infected Streptococcus pneumoniae with [α- 32 P]dATP produced a labeled protein with the electrophoretic mobility of the Cp-1 terminal protein. The reaction product was resistant to treatment with micrococcal nuclease and sensitive to treatment with proteinase K. Incubation of the 32 P-labeled protein with 5 M piperidine for 4 h at 50 0 C released 5'-dAMP, indicating that a covalent complex between the terminal protein and 5'-dAMP was formed in vitro. When the four deoxynucleoside triphosphates were included in the reaction mixture, a labeled complex of slower electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels than the terminal protein-dAMP complex was also found, indicating that the Cp-1 terminal protein-dAMP complex can be elongated and, therefore, that it is an initiation complex. Treatment of the 32 P-labeled terminal protein-dAMP complex with 5.8 M HCl at 110 0 C for 2 h yielded phosphothreonine. These results, together with the resistance of the terminal protein-DNA linkage to hydroxylamine, suggest that the Cp-1 terminal protein is covalently linked to the DNA through a phosphoester bond between L-threonine and 5'-dAMP, namely, a O-5'-deoxyadenylyl-L-threonine bond

  17. Microencapsulation of chia seed oil using chia seed protein isolate-chia seed gum complex coacervates.

    Science.gov (United States)

    Timilsena, Yakindra Prasad; Adhikari, Raju; Barrow, Colin J; Adhikari, Benu

    2016-10-01

    Chia seed oil (CSO) microcapsules were produced by using chia seed protein isolate (CPI)-chia seed gum (CSG) complex coacervates aiming to enhance the oxidative stability of CSO. The effect of wall material composition, core-to-wall ratio and method of drying on the microencapsulation efficiency (MEE) and oxidative stability (OS) was studied The microcapsules produced using CPI-CSG complex coacervates as wall material had higher MEE at equivalent payload, lower surface oil and higher OS compared to the microcapsules produced by using CSG and CPI individually. CSO microcapsules produced by using CSG as wall material had lowest MEE (67.3%) and oxidative stability index (OSI=6.6h), whereas CPI-CSG complex coacervate microcapsules had the highest MEE (93.9%) and OSI (12.3h). The MEE and OSI of microcapsules produced by using CPI as wall materials were in between those produced by using CSG and CPI-CSG complex coacervates as wall materials. The CSO microcapsules produced by using CPI-CSG complex coacervate as shell matrix at core-to-wall ratio of 1:2 had 6 times longer storage life compared to that of unencapsulated CSO. The peroxide value of CSO microcapsule produced using CPI-CSG complex coacervate as wall material was <10meq O2/kg oil during 30 days of storage. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Ternary WD40 repeat-containing protein complexes: evolution, composition and roles in plant immunity

    Directory of Open Access Journals (Sweden)

    Jimi C. Miller

    2016-01-01

    Full Text Available Plants, like mammals, rely on their innate immune system to perceive and discriminate among the majority of their microbial pathogens. Unlike mammals, plants respond to this molecular dialogue by unleashing a complex chemical arsenal of defense metabolites to resist or evade pathogen infection. In basal or non-host resistance, plants utilize signal transduction pathways to detect non-self, damaged-self and altered-self-associated molecular patterns and translate these danger signals into largely inducible chemical defenses. The WD40 repeat (WDR-containing proteins Gβ and TTG1 are constituents of two independent ternary protein complexes functioning at opposite ends of a plant immune signaling pathway. Gβ and TTG1 are also encoded by single-copy genes that are ubiquitous in higher plants, implying the limited diversity and functional conservation of their respective complexes. In this review, we summarize what is currently known about the evolutionary history of these WDR-containing ternary complexes, their repertoire and combinatorial interactions, and their downstream effectors and pathways in plant defense.

  19. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    Science.gov (United States)

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.

  20. Identification of an FHL1 protein complex containing gamma-actin and non-muscle myosin IIB by analysis of protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Lili Wang

    Full Text Available FHL1 is multifunctional and serves as a modular protein binding interface to mediate protein-protein interactions. In skeletal muscle, FHL1 is involved in sarcomere assembly, differentiation, growth, and biomechanical stress. Muscle abnormalities may play a major role in congenital clubfoot (CCF deformity during fetal development. Thus, identifying the interactions of FHL1 could provide important new insights into its functional role in both skeletal muscle development and CCF pathogenesis. Using proteins derived from rat L6GNR4 myoblastocytes, we detected FHL1 interacting proteins by immunoprecipitation. Samples were analyzed by liquid chromatography mass spectrometry (LC-MS. Dynamic gene expression of FHL1 was studied. Additionally, the expression of the possible interacting proteins gamma-actin and non-muscle myosin IIB, which were isolated from the lower limbs of E14, E15, E17, E18, E20 rat embryos or from adult skeletal muscle was analyzed. Potential interacting proteins isolated from E17 lower limbs were verified by immunoprecipitation, and co-localization in adult gastrocnemius muscle was visualized by fluorescence microscopy. FHL1 expression was associated with skeletal muscle differentiation. E17 was found to be the critical time-point for skeletal muscle differentiation in the lower limbs of rat embryos. We also identified gamma-actin and non-muscle myosin IIB as potential binding partners of FHL1, and both were expressed in adult skeletal muscle. We then demonstrated that FHL1 exists as part of a complex, which binds gamma-actin and non-muscle myosin IIB.

  1. Identification and analysis of key residues involved in folding and binding of protein-carbohydrate complexes.

    Science.gov (United States)

    Gromiha, Michael; Shanmugam, N R Siva; Selvin, J Fermin Angelo; Veluraja, K

    2018-02-21

    Protein-carbohydrate interactions play vital roles in several biological processes in living organisms. The comparative analysis of binding site residues along with stabilizing residues in protein-carbohydrate complexes provides ample insights to understand the structure, function and recognition mechanism. In this work, we have identified 2.45% binding site residues in a non-redundant dataset of 1130 complexes using distance-based criteria and 7.07% stabilizing residues using the concepts of hydrophobicity, long-range interactions and conservation of residues. Further, 5.9% of binding and 2.04% of stabilizing residues are common to each other, which are termed as key residues. The key residues have been analyzed based on protein classes, carbohydrate types, gene ontology functional classifications, amino acid preference and structure-based parameters. We found that all-β, α+β and α/β have more key residues than other protein classes and most of the KRs are present in β-strands, which shows their importance in stability and binding of complexes. On the ligand side, L-saccharide has the highest number of key residues and it has a high percentage of KRs in SRs and BRs than other carbohydrate types. Further, polar and charged residues have a high tendency to serve as key residues. Classifications based on gene ontology terms revealed that Lys is preferred in all the three groups: molecular functions, biological processes and cellular components. Key residues have 6 to 9 contacts within the protein and make only one contact with the carbohydrate ligand. These contacts are dominant to form polar-nonpolar contacts followed by the contacts between charged atoms. Further, the influence of sequence and structural parameters such as surrounding hydrophobicity, solvent accessibility, secondary structure, long-range order and conservation score has been discussed. This analysis helps in understanding the interplay between stability and binding in protein

  2. Characterization of the liver kinase B1-mouse protein-25 -Ste-20-related adaptor protein complex in adult mouse skeletal muscle.

    Science.gov (United States)

    Smith, Cody D; Compton, Richard A; Bowler, Joshua S; Kemp, Jonathan T; Sudweeks, Sterling N; Thomson, David M; Winder, William W

    2011-12-01

    In liver, the AMP-activated protein kinase kinase (AMPKK) complex was identified as the association of liver kinase B1 (LKB1), mouse protein 25 (MO25α/β), and Ste-20-related adaptor protein (STRADα/β); however, this complex has yet to be characterized in skeletal muscle. We demonstrate the expression of the LKB1-MO25-STRAD complex in skeletal muscle, confirm the absence of mRNA splice variants, and report the relative mRNA expression levels of these proteins in control and muscle-specific LKB1 knockout (LKB1(-/-)) mouse muscle. LKB1 detection in untreated control and LKB1(-/-) muscle lysates revealed two protein bands (50 and 60 kDa), although only the heavier band was diminished in LKB1(-/-) samples [55 ± 2.5 and 13 ± 1.5 arbitrary units (AU) in control and LKB1(-/-), respectively, P protein liquid chromatography. Mass spectrometry confirmed LKB1 protein detection in the 60-kDa protein band, while none was detected in the 50-kDa band. Coimmunoprecipitation assays demonstrated LKB1-MO25-STRAD complex formation. Quantitative PCR revealed significantly reduced LKB1, MO25α, and STRADβ mRNA in LKB1(-/-) muscle. These findings demonstrate that the LKB1-MO25-STRAD complex is the principal AMPKK in skeletal muscle.

  3. Drosophila SMN complex proteins Gemin2, Gemin3, and Gemin5 are components of U bodies

    International Nuclear Information System (INIS)

    Cauchi, Ruben J.; Sanchez-Pulido, Luis; Liu, Ji-Long

    2010-01-01

    Uridine-rich small nuclear ribonucleoproteins (U snRNPs) play key roles in pre-mRNA processing in the nucleus. The assembly of most U snRNPs takes place in the cytoplasm and is facilitated by the survival motor neuron (SMN) complex. Discrete cytoplasmic RNA granules called U bodies have been proposed to be specific sites for snRNP assembly because they contain U snRNPs and SMN. U bodies invariably associate with P bodies, which are involved in mRNA decay and translational control. However, it remains unknown whether other SMN complex proteins also localise to U bodies. In Drosophila there are four SMN complex proteins, namely SMN, Gemin2/CG10419, Gemin3 and Gemin5/Rigor mortis. Drosophila Gemin3 was originally identified as the Drosophila orthologue of human and yeast Dhh1, a component of P bodies. Through an in silico analysis of the DEAD-box RNA helicases we confirmed that Gemin3 is the bona fide Drosophila orthologue of vertebrate Gemin3 whereas the Drosophila orthologue of Dhh1 is Me31B. We then made use of the Drosophila egg chamber as a model system to study the subcellular distribution of the Gemin proteins as well as Me31B. Our cytological investigations show that Gemin2, Gemin3 and Gemin5 colocalise with SMN in U bodies. Although they are excluded from P bodies, as components of U bodies, Gemin2, Gemin3 and Gemin5 are consistently found associated with P bodies, wherein Me31B resides. In addition to a role in snRNP biogenesis, SMN complexes residing in U bodies may also be involved in mRNP assembly and/or transport.

  4. In various protein complexes, disordered protomers have large per-residue surface areas and area of protein-, DNA- and RNA-binding interfaces.

    Science.gov (United States)

    Wu, Zhonghua; Hu, Gang; Yang, Jianyi; Peng, Zhenling; Uversky, Vladimir N; Kurgan, Lukasz

    2015-09-14

    We provide first large scale analysis of the peculiarities of surface areas of 5658 dissimilar (below 50% sequence similarity) proteins with known 3D-structures that bind to proteins, DNA or RNAs. We show here that area of the protein surface is highly correlated with the protein length. The size of the interface surface is only modestly correlated with the protein size, except for RNA-binding proteins where larger proteins are characterized by larger interfaces. Disordered proteins with disordered interfaces are characterized by significantly larger per-residue areas of their surfaces and interfaces when compared to the structured proteins. These result are applicable for proteins involved in interaction with DNA, RNA, and proteins and suggest that disordered proteins and binding regions are less compact and more likely to assume extended shape. We demonstrate that disordered protein binding residues in the interfaces of disordered proteins drive the increase in the per residue area of these interfaces. Our results can be used to predict in silico whether a given protomer from the DNA, RNA or protein complex is likely to be disordered in its unbound form. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Toxic and nontoxic components of botulinum neurotoxin complex are evolved from a common ancestral zinc protein

    International Nuclear Information System (INIS)

    Inui, Ken; Sagane, Yoshimasa; Miyata, Keita; Miyashita, Shin-Ichiro; Suzuki, Tomonori; Shikamori, Yasuyuki; Ohyama, Tohru; Niwa, Koichi; Watanabe, Toshihiro

    2012-01-01

    Highlights: ► BoNT and NTNHA proteins share a similar protein architecture. ► NTNHA and BoNT were both identified as zinc-binding proteins. ► NTNHA does not have a classical HEXXH zinc-coordinating motif similar to that found in all serotypes of BoNT. ► Homology modeling implied probable key residues involved in zinc coordination. -- Abstract: Zinc atoms play an essential role in a number of enzymes. Botulinum neurotoxin (BoNT), the most potent toxin known in nature, is a zinc-dependent endopeptidase. Here we identify the nontoxic nonhemagglutinin (NTNHA), one of the BoNT-complex constituents, as a zinc-binding protein, along with BoNT. A protein structure classification database search indicated that BoNT and NTNHA share a similar domain architecture, comprising a zinc-dependent metalloproteinase-like, BoNT coiled-coil motif and concanavalin A-like domains. Inductively coupled plasma-mass spectrometry analysis demonstrated that every single NTNHA molecule contains a single zinc atom. This is the first demonstration of a zinc atom in this protein, as far as we know. However, the NTNHA molecule does not possess any known zinc-coordinating motif, whereas all BoNT serotypes possess the classical HEXXH motif. Homology modeling of the NTNHA structure implied that a consensus K-C-L-I-K-X 35 -D sequence common among all NTNHA serotype molecules appears to coordinate a single zinc atom. These findings lead us to propose that NTNHA and BoNT may have evolved distinct functional specializations following their branching out from a common ancestral zinc protein.

  6. Toxic and nontoxic components of botulinum neurotoxin complex are evolved from a common ancestral zinc protein

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Ken [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Sagane, Yoshimasa [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Miyata, Keita [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Miyashita, Shin-Ichiro [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Suzuki, Tomonori [Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558 (Japan); Shikamori, Yasuyuki [Agilent Technologies International Japan, Ltd. Takaura-cho 9-1, Hachioji-shi, Tokyo 192-0033 (Japan); Ohyama, Tohru; Niwa, Koichi [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Watanabe, Toshihiro, E-mail: t-watana@bioindustry.nodai.ac.jp [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer BoNT and NTNHA proteins share a similar protein architecture. Black-Right-Pointing-Pointer NTNHA and BoNT were both identified as zinc-binding proteins. Black-Right-Pointing-Pointer NTNHA does not have a classical HEXXH zinc-coordinating motif similar to that found in all serotypes of BoNT. Black-Right-Pointing-Pointer Homology modeling implied probable key residues involved in zinc coordination. -- Abstract: Zinc atoms play an essential role in a number of enzymes. Botulinum neurotoxin (BoNT), the most potent toxin known in nature, is a zinc-dependent endopeptidase. Here we identify the nontoxic nonhemagglutinin (NTNHA), one of the BoNT-complex constituents, as a zinc-binding protein, along with BoNT. A protein structure classification database search indicated that BoNT and NTNHA share a similar domain architecture, comprising a zinc-dependent metalloproteinase-like, BoNT coiled-coil motif and concanavalin A-like domains. Inductively coupled plasma-mass spectrometry analysis demonstrated that every single NTNHA molecule contains a single zinc atom. This is the first demonstration of a zinc atom in this protein, as far as we know. However, the NTNHA molecule does not possess any known zinc-coordinating motif, whereas all BoNT serotypes possess the classical HEXXH motif. Homology modeling of the NTNHA structure implied that a consensus K-C-L-I-K-X{sub 35}-D sequence common among all NTNHA serotype molecules appears to coordinate a single zinc atom. These findings lead us to propose that NTNHA and BoNT may have evolved distinct functional specializations following their branching out from a common ancestral zinc protein.

  7. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Directory of Open Access Journals (Sweden)

    Jarosław Poznański

    Full Text Available Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  8. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Science.gov (United States)

    Poznański, Jarosław; Poznańska, Anna; Shugar, David

    2014-01-01

    Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  9. A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu–Gli protein complexes

    OpenAIRE

    Tukachinsky, Hanna; Lopez, Lyle V.; Salic, Adrian

    2010-01-01

    In vertebrates, Hedgehog (Hh) signaling initiated in primary cilia activates the membrane protein Smoothened (Smo) and leads to activation of Gli proteins, the transcriptional effectors of the pathway. In the absence of signaling, Gli proteins are inhibited by the cytoplasmic protein Suppressor of Fused (SuFu). It is unclear how Hh activates Gli and whether it directly regulates SuFu. We find that Hh stimulation quickly recruits endogenous SuFu–Gli complexes to cilia, suggesting a model in wh...

  10. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation.

    Science.gov (United States)

    Wieczorek, Marek; Abualrous, Esam T; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian

    2017-01-01

    Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell's own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors-tapasin for class I and HLA-DM for class II-contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity.

  11. Surface expression of protein A on magnetosomes and capture of pathogenic bacteria by magnetosome/ antibody complexes

    Directory of Open Access Journals (Sweden)

    Jun eXu

    2014-04-01

    Full Text Available Magnetosomes are membrane-enclosed magnetite nanocrystals synthesized by magnetotactic bacteria (MTB. They display chemical purity, narrow size ranges, and species-specific crystal morphologies. Specific transmembrane proteins are sorted to the magnetosome membrane (MM. MamC is the most abundant MM protein of Magnetospirillum gryphiswaldense strain MSR-1. MamF is the second most abundant MM protein of MSR-1 and forms stable oligomers. We expressed staphylococcal protein A (SPA, an immunoglobulin-binding protein from the cell wall of Staphylococcus aureus, on MSR-1 magnetosomes by fusion with MamC or MamF. The resulting recombinant magnetosomes were capable of self-assembly with the Fc region of mammalian antibodies (Abs and were therefore useful for functionalization of magnetosomes. Recombinant plasmids pBBR-mamC-spa and pBBR-mamF-spa were constructed by fusing spa (the gene that encodes SPA with mamC and mamF, respectively. Recombinant magnetosomes with surface expression of SPA were generated by introduction of these fusion genes into wild-type MSR-1 or a mamF mutant strain. Studies with a Zeta Potential Analyzer showed that the recombinant magnetosomes had hydrated radii significantly smaller than those of WT magnetosomes and zeta potentials less than -30 mV, indicating that the magnetosome colloids were relatively stable. Observed conjugation efficiencies were as high as 71.24 µg Ab per mg recombinant magnetosomes, and the conjugated Abs retained most of their activity. Numbers of Vibrio parahaemolyticus (a common pathogenic bacterium in seafood captured by recombinant magnetosome/ Ab complexes were measured by real-time fluorescence-based quantitative PCR. One mg of complex was capable of capturing as many as 1.74×107 Vibrio cells. The surface expression system described here will be useful for design of functionalized magnetosomes from MSR-1 and other MTB.

  12. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation

    Science.gov (United States)

    Wieczorek, Marek; Abualrous, Esam T.; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian

    2017-01-01

    Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity. PMID:28367149

  13. Membrane proteins PmpG and PmpH are major constituents of Chlamydia trachomatis L2 outer membrane complex

    DEFF Research Database (Denmark)

    Mygind, Per H; Christiansen, Gunna; Roepstorff, P

    2000-01-01

    The outer membrane complex of Chlamydia is involved in the initial adherence and ingestion of Chlamydia by the host cell. In order to identify novel proteins in the outer membrane of Chlamydia trachomatis L2, proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. By....... By silver staining of the protein profile, a major protein doublet of 100-110 kDa was detected. In-gel tryptic digestion and matrix-assisted laser desorption/ionization mass spectrometry identified these proteins as the putative outer membrane proteins PmpG and PmpH....

  14. Consistent two-dimensional visualization of protein-ligand complex series

    Directory of Open Access Journals (Sweden)

    Stierand Katrin

    2011-06-01

    Full Text Available Abstract Background The comparative two-dimensional graphical representation of protein-ligand complex series featuring different ligands bound to the same active site offers a quick insight in their binding mode differences. In comparison to arbitrary orientations of the residue molecules in the individual complex depictions a consistent placement improves the legibility and comparability within the series. The automatic generation of such consistent layouts offers the possibility to apply it to large data sets originating from computer-aided drug design methods. Results We developed a new approach, which automatically generates a consistent layout of interacting residues for a given series of complexes. Based on the structural three-dimensional input information, a global two-dimensional layout for all residues of the complex ensemble is computed. The algorithm incorporates the three-dimensional adjacencies of the active site residues in order to find an universally valid circular arrangement of the residues around the ligand. Subsequent to a two-dimensional ligand superimposition step, a global placement for each residue is derived from the set of already placed ligands. The method generates high-quality layouts, showing mostly overlap-free solutions with molecules which are displayed as structure diagrams providing interaction information in atomic detail. Application examples document an improved legibility compared to series of diagrams whose layouts are calculated independently from each other. Conclusions The presented method extends the field of complex series visualizations. A series of molecules binding to the same protein active site is drawn in a graphically consistent way. Compared to existing approaches these drawings substantially simplify the visual analysis of large compound series.

  15. Hypobaric hypoxia down-regulated junctional protein complex: Implications to vascular leakage.

    Science.gov (United States)

    Souvannakitti, Dangjai; Peerapen, Paleerath; Thongboonkerd, Visith

    2017-07-04

    Acute mountain sickness (AMS) can cause capillary hyper-permeability and vasogenic edema. However, its underlying mechanisms remained unclear and there is no previous in vitro study on AMS. We therefore conducted an in vitro study and examined whether continuous hypobaric hypoxia (CHH) could alter expression of junctional protein complex of vascular endothelial cells, causing hyper-permeabilization. EA.hy926 human endothelial cells were exposed to either CHH or normoxia for up to 24 h. Flow cytometry using annexin V/propidium iodide co-staining demonstrated that cell death had no significant difference at 12-h, but was increased by CHH at 24-h. Transendothelial resistance (TER) of endothelial cell monolayer was progressively decreased by CHH from 1-h to 24-h. Western blot analysis and immunofluorescence study demonstrated decreased expression levels of VE-cadherin, PECAM-1 and ZO-1 junctional proteins at both 12-h and 24-h exposure time-points. Interestingly, while the main form of ZO-1 (220 kDa) was decreased, its degraded form (100 kDa) was increased by 24-h CHH that might be linked to the increased cell death. Our data have demonstrated that CHH caused vascular endothelial hyper-permeability and defective junctional protein complex by reducing expression levels of VE-cadherin, PECAM-1, and ZO-1. Taken together, these data may explain pathophysiology underlying vascular hyper-permeability in AMS.

  16. Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids.

    Directory of Open Access Journals (Sweden)

    Pitter F Huesgen

    Full Text Available In organisms with complex plastids acquired by secondary endosymbiosis from a photosynthetic eukaryote, the majority of plastid proteins are nuclear-encoded, translated on cytoplasmic ribosomes, and guided across four membranes by a bipartite targeting sequence. In-depth understanding of this vital import process has been impeded by a lack of information about the transit peptide part of this sequence, which mediates transport across the inner three membranes. We determined the mature N-termini of hundreds of proteins from the model diatom Thalassiosira pseudonana, revealing extensive N-terminal modification by acetylation and proteolytic processing in both cytosol and plastid. We identified 63 mature N-termini of nucleus-encoded plastid proteins, deduced their complete transit peptide sequences, determined a consensus motif for their cleavage by the stromal processing peptidase, and found evidence for subsequent processing by a plastid methionine aminopeptidase. The cleavage motif differs from that of higher plants, but is shared with other eukaryotes with complex plastids.

  17. The EED protein–protein interaction inhibitor A-395 inactivates the PRC2 complex

    Energy Technology Data Exchange (ETDEWEB)

    He, Yupeng; Selvaraju, Sujatha; Curtin, Michael L.; Jakob, Clarissa G.; Zhu, Haizhong; Comess, Kenneth M.; Shaw, Bailin; The, Juliana; Lima-Fernandes, Evelyne; Szewczyk, Magdalena M.; Cheng, Dong; Klinge, Kelly L.; Li, Huan-Qiu; Pliushchev, Marina; Algire, Mikkel A.; Maag, David; Guo, Jun; Dietrich, Justin; Panchal, Sanjay C.; Petros, Andrew M.; Sweis, Ramzi F.; Torrent, Maricel; Bigelow, Lance J.; Senisterra, Guillermo; Li, Fengling; Kennedy, Steven; Wu, Qin; Osterling, Donald J.; Lindley, David J.; Gao, Wenqing; Galasinski, Scott; Barsyte-Lovejoy, Dalia; Vedadi, Masoud; Buchanan, Fritz G.; Arrowsmith, Cheryl H.; Chiang, Gary G.; Sun, Chaohong; Pappano , William N. (AbbVie); (Toronto)

    2017-01-30

    Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein–protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.

  18. Detection of two isomeric binding configurations in a protein-aptamer complex with a biological nanopore.

    Science.gov (United States)

    Van Meervelt, Veerle; Soskine, Misha; Maglia, Giovanni

    2014-12-23

    Protein-DNA interactions play critical roles in biological systems, and they often involve complex mechanisms and dynamics that are not easily measured by ensemble experiments. Recently, we showed that folded proteins can be internalized inside ClyA nanopores and studied by ionic current recordings at the single-molecule level. Here, we use ClyA nanopores to sample the interaction between the G-quadruplex fold of the thrombin binding aptamer (TBA) and human thrombin (HT). Surprisingly, the internalization of the HT:TBA complex inside the nanopore induced two types of current blockades with distinguished residual current and lifetime. Using single nucleobase substitutions to TBA we showed that these two types of blockades originate from TBA binding to thrombin with two isomeric orientations. Voltage dependencies and the use of ClyA nanopores with two different diameters allowed assessing the effect of the applied potential and confinement and revealed that the two binding configurations of TBA to HT display different lifetimes. These results show that the ClyA nanopores can be used to probe conformational heterogeneity in protein:DNA interactions.

  19. Enhanced conformational sampling to visualize a free-energy landscape of protein complex formation.

    Science.gov (United States)

    Iida, Shinji; Nakamura, Haruki; Higo, Junichi

    2016-06-15

    We introduce various, recently developed, generalized ensemble methods, which are useful to sample various molecular configurations emerging in the process of protein-protein or protein-ligand binding. The methods introduced here are those that have been or will be applied to biomolecular binding, where the biomolecules are treated as flexible molecules expressed by an all-atom model in an explicit solvent. Sampling produces an ensemble of conformations (snapshots) that are thermodynamically probable at room temperature. Then, projection of those conformations to an abstract low-dimensional space generates a free-energy landscape. As an example, we show a landscape of homo-dimer formation of an endothelin-1-like molecule computed using a generalized ensemble method. The lowest free-energy cluster at room temperature coincided precisely with the experimentally determined complex structure. Two minor clusters were also found in the landscape, which were largely different from the native complex form. Although those clusters were isolated at room temperature, with rising temperature a pathway emerged linking the lowest and second-lowest free-energy clusters, and a further temperature increment connected all the clusters. This exemplifies that the generalized ensemble method is a powerful tool for computing the free-energy landscape, by which one can discuss the thermodynamic stability of clusters and the temperature dependence of the cluster networks. © 2016 The Author(s).

  20. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Sánchez, Rosario; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2016-02-01

    Two sunflower hydroxyacyl-[acyl carrier protein] dehydratases evolved into two different isoenzymes showing distinctive expression levels and kinetics' efficiencies. β-Hydroxyacyl-[acyl carrier protein (ACP)]-dehydratase (HAD) is a component of the type II fatty acid synthase complex involved in 'de novo' fatty acid biosynthesis in plants. This complex, formed by four intraplastidial proteins, is responsible for the sequential condensation of two-carbon units, leading to 16- and 18-C acyl-ACP. HAD dehydrates 3-hydroxyacyl-ACP generating trans-2-enoyl-ACP. With the aim of a further understanding of fatty acid biosynthesis in sunflower (Helianthus annuus) seeds, two β-hydroxyacyl-[ACP] dehydratase genes have been cloned from developing seeds, HaHAD1 (GenBank HM044767) and HaHAD2 (GenBank GU595454). Genomic DNA gel blot analyses suggest that both are single copy genes. Differences in their expression patterns across plant tissues were detected. Higher levels of HaHAD2 in the initial stages of seed development inferred its key role in seed storage fatty acid synthesis. That HaHAD1 expression levels remained constant across most tissues suggest a housekeeping function. Heterologous expression of these genes in E. coli confirmed both proteins were functional and able to interact with the bacterial complex 'in vivo'. The large increase of saturated fatty acids in cells expressing HaHAD1 and HaHAD2 supports the idea that these HAD genes are closely related to the E. coli FabZ gene. The proposed three-dimensional models of HaHAD1 and HaHAD2 revealed differences at the entrance to the catalytic tunnel attributable to Phe166/Val1159, respectively. HaHAD1 F166V was generated to study the function of this residue. The 'in vitro' enzymatic characterization of the three HAD proteins demonstrated all were active, with the mutant having intermediate K m and V max values to the wild-type proteins.

  1. Type A botulinum neurotoxin complex proteins differentially modulate host response of neuronal cells.

    Science.gov (United States)

    Wang, Lei; Sun, Yi; Yang, Weiping; Lindo, Paul; Singh, Bal Ram

    2014-05-01

    Type A Botulinum neurotoxin (BoNT/A), the most potent poison known to mankind, is produced by Clostridium botulinum type A as a complex with neurotoxin-associated proteins (NAPs). Currently BoNT/A in purified and complex forms are both available in therapeutic and cosmetic applications to treat neuromuscular disorders. Whereas Xeomin(®) (incobotulinumtoxin A, Merz Pharmaceuticals, Germany) is free from complexing proteins, Botox(®) (onabotulinumtoxin A, Allergan, USA) contains NAPs, which by themselves have no known role in the intracellular biochemical process involved in the blockade of neurotransmitter release. Since the fate and possible interactions of NAPs with patient tissues after intramuscular injection are not known, it was the aim of this study to evaluate the binding of BoNT/A and/or the respective NAPs to cells derived from neuronal and non-neuronal human tissues, and to further explore neuronal cell responses to different components of BoNT/A. BoNT/A alone, the complete BoNT/A complex, and the NAPs alone, all bind to neuronal SH-SY5Y cells. The BoNT/A complex and NAPs additionally bind to RMS13 skeletal muscle cells, TIB-152 lymphoblasts, Detroit 551 fibroblasts besides the SH-SY5Y cells. However, no binding to these non-neuronal cells was observed with pure BoNT/A. Although BoNT/A, both in its purified and complex forms, bind to SH-SY5Y, the intracellular responses of the SH-SY5Y cells to these BoNT/A components are not clearly understood. Examination of inflammatory cytokine released from SH-SY5Y cells revealed that BoNT/A did not increase the release of inflammatory cytokines, whereas exposure to NAPs significantly increased release of IL-6, and MCP-1, and exposure to BoNT/A complex significantly increased release of IL-6, MCP-1, IL-8, TNF-α, and RANTES vs. control, suggesting that different components of BoNT/A complex induce significantly differential host response in human neuronal cells. Results suggest that host response to different

  2. Concord grape pomace polyphenols complexed to soy protein isolate are stable and hypoglycemic in diabetic mice.

    Science.gov (United States)

    Roopchand, Diana E; Kuhn, Peter; Krueger, Christian G; Moskal, Kristin; Lila, Mary Ann; Raskin, Ilya

    2013-11-27

    Polyphenols extracted from Concord grape pomace were stabilized by complexation to soy protein isolate (SPI) to produce grape polyphenol-SPI complex (GP-SPI) containing 5% or 10% grape polyphenols. LC-MS and MALDI-TOF analysis showed that a broad range of phytochemicals were present in the grape pomace extract. Anthocyanins and total polyphenols in the GP-SPI complex were stable after a 16-week incubation at 37 °C but were reduced by up 60% in dried grape pomace extract. Compared to vehicle (236 ± 34 mg/dL), a single dose of 300 mg/kg GP-SPI (184 ± 32 mg/dL) or 500 mg/kg GP-SPI (177 ± 28 mg/dL) having 5% grape polyphenols significantly lowered blood glucose in obese and hyperglycemic C57BL/6 mice 6 h after administration. GP-SPI allows the capture of grape pomace polyphenols in a protein-rich food matrix and may be useful as a functional food ingredient for the management of blood glucose levels.

  3. The structure of a ribosomal protein S8/spc operon mRNA complex.

    Science.gov (United States)

    Merianos, Helen J; Wang, Jimin; Moore, Peter B

    2004-06-01

    In bacteria, translation of all the ribosomal protein cistrons in the spc operon mRNA is repressed by the binding of the product of one of them, S8, to an internal sequence at the 5' end of the L5 cistron. The way in which the first two genes of the spc operon are regulated, retroregulation, is mechanistically distinct from translational repression by S8 of the genes from L5 onward. A 2.8 A resolution crystal structure has been obtained of Escherichia coli S8 bound to this site. Despite sequence differences, the structure of this complex is almost identical to that of the S8/helix 21 complex seen in the small ribosomal subunit, consistent with the hypothesis that autogenous regulation of ribosomal protein synthesis results from conformational similarities between mRNAs and rRNAs. S8 binding must repress the translation of its own mRNA by inhibiting the formation of a ribosomal initiation complex at the start of the L5 cistron.

  4. Protein kinase that phosphorylates light-harvesting complex is autophosphorylated and is associated with photosystem II

    International Nuclear Information System (INIS)

    Coughlan, S.J.; Hind, G.

    1987-01-01

    Thylakoid membranes were phosphorylated with [γ- 32 P]ATP and extracted with octyl glucoside and cholate. Among the radiolabeled phosphoproteins in the extract was a previously characterized protein kinase of 64-kDa apparent mass. The ability of this enzyme to undergo autophosphorylation in situ was used to monitor its distribution in the membrane. Fractionation studies showed that the kinase is confined to granal regions of the thylakoid, where it appears to be associated with the light-harvesting chlorophyll-protein complex of photosystem II. The kinetics of kinase autophosphorylation were investigated both in situ and in extracted, purified enzyme. In the membrane, autophosphorylation saturated within 20-30 min and was reversed with a half-time of 7-8 min upon removal of ATP or oxidative inactivation of the kinase; the accompanying dephosphorylation of light-harvesting complex was slower and kinetically complex. Fluoride (10 mM) inhibited these dephosphorylations. Autophosphorylation of the isolated kinase was independent of enzyme concentration, indicative of an intramolecular mechanism. A maximum of one serine residue per mole of kinase was esterified. Autophosphorylation was more rapid in the presence of histone IIIs, an exogenous substrate. Dephosphorylation of the isolated enzyme was not observed

  5. Elg1, the major subunit of an alternative RFC complex, interacts with SUMO-processing proteins.

    Science.gov (United States)

    Parnas, Oren; Amishay, Rona; Liefshitz, Batia; Zipin-Roitman, Adi; Kupiec, Martin

    2011-09-01

    PCNA is a homotrimeric ring with important roles in DNA replication and repair. PCNA is loaded and unloaded by the RFC complex, which is composed of five subunits (Rfc1-5). Three additional complexes that share with RFC the small subunits (Rfc2-5) and contain alternative large subunits were found in yeast and other eukaryotes. We have recently reported that one of these, the Elg1-RFC complex, interacts with SUMOylated PCNA and may play a role in its unloading during DNA repair. Here we report that a yeast-two-hybrid screen with the N terminus of Elg1(which interacts with SUMOylated PCNA) uncovered interactions with proteins that belong to the SUMO pathway, including Slx5 and Slx8, which form an E3 ubiquitin ligase that ubiquitinates SUMOylated proteins. Mutations in SLX5 result in a genomic instability phenotype similar to that of elg1 mutants. The physical interaction between the N terminus of Elg1 and Slx5 is mediated by poly-SUMO chains but not by PCNA modifications, and requires Siz2, but not Siz1, activity. Thus our results highlight the many important roles played by Elg1, some of which are PCNA-dependent and some PCNA-independent. © 2011 Landes Bioscience

  6. Like-charged protein-polyelectrolyte complexation driven by charge patches

    Science.gov (United States)

    Yigit, Cemil; Heyda, Jan; Ballauff, Matthias; Dzubiella, Joachim

    2015-08-01

    We study the pair complexation of a single, highly charged polyelectrolyte (PE) chain (of 25 or 50 monomers) with like-charged patchy protein models (CPPMs) by means of implicit-solvent, explicit-salt Langevin dynamics computer simulations. Our previously introduced set of CPPMs embraces well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size with mono- and multipole moments comparable to those of globular proteins with similar size. We observe large binding affinities between the CPPM and the like-charged PE in the tens of the thermal energy, kBT, that are favored by decreasing salt concentration and increasing charge of the patch(es). Our systematic analysis shows a clear correlation between the distance-resolved potentials of mean force, the number of ions released from the PE, and CPPM orientation effects. In particular, we find a novel two-site binding behavior for PEs in the case of two-patched CPPMs, where intermediate metastable complex structures are formed. In order to describe the salt-dependence of the binding affinity for mainly dipolar (one-patched) CPPMs, we introduce a combined counterion-release/Debye-Hückel model that quantitatively captures the essential physics of electrostatic complexation in our systems.

  7. Utilizing whey protein isolate and polysaccharide complexes to stabilize aerated dairy gels.

    Science.gov (United States)

    O'Chiu, Emily; Vardhanabhuti, Bongkosh

    2017-05-01

    Heated soluble complexes of whey protein isolate (WPI) with polysaccharides may be used to modify the properties of aerated dairy gels, which could be formulated into novel-textured high-protein desserts. The objective of this study was to determine the effect of polysaccharide charge density and concentration within a WPI-polysaccharide complex on the physical properties of aerated gels. Three polysaccharides having different degrees of charge density were chosen: low-methoxyl pectin, high-methoxyl type D pectin, and guar gum. Heated complexes were prepared by heating the mixed dispersions (8% protein, 0 to 1% polysaccharide) at pH 7. To form aerated gels, 2% glucono-δ-lactone was added to the dispersions of skim milk powder and heated complex and foam was generated by whipping with a handheld frother. The foam set into a gel as the glucono-δ-lactone acidified to a final pH of 4.5. The aerated gels were evaluated for overrun, drainage, gel strength, and viscoelastic properties. Without heated complexes, stable aerated gels could not be formed. Overrun of aerated gel decreased (up to 73%) as polysaccharide concentration increased from 0.105 to 0.315% due to increased viscosity, which limited air incorporation. A negative relationship was found between percent drainage and dispersion viscosity. However, plotting of drainage against dispersion viscosity separated by polysaccharide type revealed that drainage decreased most in samples with high-charge-density, low-methoxyl pectin followed by those with low-charge-density, high-methoxyl type D pectin. Aerated gels with guar gum (no charge) did not show improvement to stability. Rheological results showed no significant difference in gelation time among samples; therefore, stronger interactions between WPI and high-charge-density polysaccharide were likely responsible for increased stability. Stable dairy aerated gels can be created from WPI-polysaccharide complexes. High-charge-density polysaccharides, at

  8. Ligand-induced dynamics of heterotrimeric G protein-coupled receptor-like kinase complexes.

    Directory of Open Access Journals (Sweden)

    Meral Tunc-Ozdemir

    Full Text Available Arabidopsis, 7-transmembrane Regulator of G signaling protein 1 (AtRGS1 modulates canonical G protein signaling by promoting the inactive state of heterotrimeric G protein complex on the plasma membrane. It is known that plant leucine-rich repeat receptor-like kinases (LRR RLKs phosphorylate AtRGS1 in vitro but little is known about the in vivo interaction, molecular dynamics, or the cellular consequences of this interaction.Therefore, a subset of the known RLKs that phosphorylate AtRGS1 were selected for elucidation, namely, BAK1, BIR1, FLS2. Several microscopies for both static and dynamic protein-protein interactions were used to follow in vivo interactions between the RLKs and AtRGS1 after the presentation of the Pathogen-associated Molecular Pattern, Flagellin 22 (Flg22. These microscopies included Förster Resonance Energy Transfer, Bimolecular Fluoresence Complementation, and Cross Number and Brightness Fluorescence Correlation Spectroscopy. In addition, reactive oxygen species and calcium changes in living cells were quantitated using luminometry and R-GECO1 microscopy.The LRR RLKs BAK1 and BIR1, interact with AtRGS1 at the plasma membrane. The RLK ligand flg22 sets BAK1 in motion toward AtRGS1 and BIR1 away, both returning to the baseline orientations by 10 minutes. The C-terminal tail of AtRGS1 is important for the interaction with BAK1 and for the tempo of the AtRGS1/BIR1 dynamics. This window of time corresponds to the flg22-induced transient production of reactive oxygen species and calcium release which are both attenuated in the rgs1 and the bak1 null mutants.A temporal model of these interactions is proposed. flg22 binding induces nearly instantaneous dimerization between FLS2 and BAK1. Phosphorylated BAK1 interacts with and enables AtRGS1 to move away from BIR1 and AtRGS1 becomes phosphorylated leading to its endocytosis thus leading to de-repression by permitting AtGPA1 to exchange GDP for GTP. Finally, the G protein complex

  9. Disruption of a Ciliary B9 Protein Complex Causes Meckel Syndrome

    Science.gov (United States)

    Dowdle, William E.; Robinson, Jon F.; Kneist, Andreas; Sirerol-Piquer, M. Salomé; Frints, Suzanna G.M.; Corbit, Kevin C.; Zaghloul, Norran A.; van Lijnschoten, Gesina; Mulders, Leon; Verver, Dideke E.; Zerres, Klaus; Reed, Randall R.; Attié-Bitach, Tania; Johnson, Colin A.; García-Verdugo, José Manuel; Katsanis, Nicholas; Bergmann, Carsten; Reiter, Jeremy F.

    2011-01-01

    Nearly every ciliated organism possesses three B9 domain-containing proteins: MKS1, B9D1, and B9D2. Mutations in human MKS1 cause Meckel syndrome (MKS), a severe ciliopathy characterized by occipital encephalocele, liver ductal plate malformations, polydactyly, and kidney cysts. Mouse mutations in either Mks1 or B9d2 compromise ciliogenesis and result in phenotypes similar to those of MKS. Given the importance of these two B9 proteins to ciliogenesis, we examined the role of the third B9 protein, B9d1. Mice lacking B9d1 displayed polydactyly, kidney cysts, ductal plate malformations, and abnormal patterning of the neural tube, concomitant with compromised ciliogenesis, ciliary protein localization, and Hedgehog (Hh) signal transduction. These data prompted us to screen MKS patients for mutations in B9D1 and B9D2. We identified a homozygous c.301A>C (p.Ser101Arg) B9D2 mutation that segregates with MKS, affects an evolutionarily conserved residue, and is absent from controls. Unlike wild-type B9D2 mRNA, the p.Ser101Arg mutation failed to rescue zebrafish phenotypes induced by the suppression of b9d2. With coimmunoprecipitation and mass spectrometric analyses, we found that Mks1, B9d1, and B9d2 interact physically, but that the p.Ser101Arg mutation abrogates the ability of B9d2 to interact with Mks1, further suggesting that the mutation compromises B9d2 function. Our data indicate that B9d1 is required for normal Hh signaling, ciliogenesis, and ciliary protein localization and that B9d1 and B9d2 are essential components of a B9 protein complex, disruption of which causes MKS. PMID:21763481

  10. The costa of trichomonads: A complex macromolecular cytoskeleton structure made of uncommon proteins.

    Science.gov (United States)

    de Andrade Rosa, Ivone; Caruso, Marjolly Brigido; de Oliveira Santos, Eidy; Gonzaga, Luiz; Zingali, Russolina Benedeta; de Vasconcelos, Ana Tereza R; de Souza, Wanderley; Benchimol, Marlene

    2017-06-01

    The costa is a prominent striated fibre that is found in protozoa of the Trichomonadidae family that present an undulating membrane. It is composed primarily of proteins that have not yet been explored. In this study, we used cell fractionation to obtain a highly enriched costa fraction whose structure and composition was further analysed by electron microscopy and mass spectrometry. Electron microscopy of negatively stained samples revealed that the costa, which is a periodic structure with alternating electron-dense and electron-lucent bands, displays three distinct regions, named the head, neck and body. Fourier transform analysis showed that the electron-lucent bands present sub-bands with a regular pattern. An analysis of the costa fraction via one- and two-dimensional electrophoresis and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) allowed the identification of 54 hypothetical proteins. Fourteen of those proteins were considered to be major components of the fraction. The costa of T. foetus is a complex and organised cytoskeleton structure made of a large number of proteins which is assembled into filamentous structures. Some of these proteins exhibit uncharacterised domains and no function related according to gene ontology, suggesting that the costa structure may be formed by a new class of proteins that differ from those previously described in other organisms. Seven of these proteins contain prefoldin domains displaying coiled-coil regions. This propriety is shared with proteins of the striated fibres of other protozoan as well as in intermediate filaments. Our observations suggest the presence of a new class of the cytoskeleton filaments in T. foetus. We believe that our data could auxiliate in determining the specific locations of these proteins in the distinct regions that compose the costa, as well as to define the functional roles of each component. Therefore, our study will help in the better understanding of the

  11. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity

    Science.gov (United States)

    Simon, Joseph R.; Carroll, Nick J.; Rubinstein, Michael; Chilkoti, Ashutosh; López, Gabriel P.

    2017-06-01

    Dynamic protein-rich intracellular structures that contain phase-separated intrinsically disordered proteins (IDPs) composed of sequences of low complexity (SLC) have been shown to serve a variety of important cellular functions, which include signalling, compartmentalization and stabilization. However, our understanding of these structures and our ability to synthesize models of them have been limited. We present design rules for IDPs possessing SLCs that phase separate into diverse assemblies within droplet microenvironments. Using theoretical analyses, we interpret the phase behaviour of archetypal IDP sequences and demonstrate the rational design of a vast library of multicomponent protein-rich structures that ranges from uniform nano-, meso- and microscale puncta (distinct protein droplets) to multilayered orthogonally phase-separated granular structures. The ability to predict and program IDP-rich assemblies in this fashion offers new insights into (1) genetic-to-molecular-to-macroscale relationships that encode hierarchical IDP assemblies, (2) design rules of such assemblies in cell biology and (3) molecular-level engineering of self-assembled recombinant IDP-rich materials.

  12. Crystal structure of the β2 adrenergic receptor-Gs protein complex

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Søren G.F.; DeVree, Brian T; Zou, Yaozhong; Kruse, Andrew C; Chung, Ka Young; Kobilka, Tong Sun; Thian, Foon Sun; Chae, Pil Seok; Pardon, Els; Calinski, Diane; Mathiesen, Jesper M; Shah, Syed T.A.; Lyons, Joseph A; Caffrey, Martin; Gellman, Samuel H; Steyaert, Jan; Skiniotis, Georgios; Weis, William I; Sunahara, Roger K; Kobilka, Brian K [Brussels; (Trinity); (Michigan); (Stanford-MED); (Michigan-Med); (UW)

    2011-12-07

    G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The β2 adrenergic receptor (β2AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β2AR and nucleotide-free Gs heterotrimer. The principal interactions between the β2AR and Gs involve the amino- and carboxy-terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the β2AR include a 14Å outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR.

  13. Functional proteomics of light-harvesting complex proteins under varying light-conditions in diatoms.

    Science.gov (United States)

    Büchel, Claudia; Wilhelm, Christian; Wagner, Volker; Mittag, Maria

    2017-10-01

    Comparative proteome analysis of subcellular compartments like thylakoid membranes and their associated supercomplexes can deliver important in-vivo information on the molecular basis of physiological functions which go far beyond to that what can be learnt from transcriptional-based gene expression studies. For instance, the finding that light intensity influences mainly the relative stoichiometry of subunits could be obtained only by high resolution proteome analysis. The high sensitivity of LC-ESI-MS/MS based proteome analysis allows the determination of proteins in very small subfractions along with their non-labeled semi quantitative analysis. This provides insights in the protein-protein interactions of supercomplexes that are the operative units in intact cells. Here, we have focused on functional proteome approaches for the identification of microalgal light-harvesting complex proteins in chloroplasts and the eyespot in general and in detail for those of diatoms that are exposed to varying light conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Dysfunction of Protein Quality Control in Parkinsonism–Dementia Complex of Guam

    Directory of Open Access Journals (Sweden)

    Bert M. Verheijen

    2018-03-01

    Full Text Available Guam parkinsonism–dementia complex (G-PDC is an enigmatic neurodegenerative disease that is endemic to the Pacific island of Guam. G-PDC patients are clinically characterized by progressive cognitive impairment and parkinsonism. Neuropathologically, G-PDC is characterized by abundant neurofibrillary tangles, which are composed of hyperphosphorylated tau, marked deposition of 43-kDa TAR DNA-binding protein, and neuronal loss. Although both genetic and environmental factors have been implicated, the etiology and pathogenesis of G-PDC remain unknown. Recent neuropathological studies have provided new clues about the pathomechanisms involved in G-PDC. For example, deposition of abnormal components of the protein quality control system in brains of G-PDC patients indicates a role for proteostasis imbalance in the disease. This opens up promising avenues for new research on G-PDC and could have important implications for the study of other neurodegenerative disorders.

  15. Strengthening of the DNA-protein complex during stationary phase aging of cell cultures

    International Nuclear Information System (INIS)

    Khokhlov, A.N.; Chirkova, E.Yu.; Gorin, A.I.

    1986-01-01

    The possibility of accumulation of cross-linkages in the DNA-protein complex was studied during stationary phase aging of cells in culture. Chinese hamster cells were used in the experiments, along with human fibroblasts. 3 H-thymidine, 14 C-valine, and 14 C-leucine were added to the medium. The quantity of protein firmly bound with DNA was judged from the value of the coefficient 14 C/ 3 H determined with allowance for penetration of counting from the 14 C-channel into the 3 H-channel. The authors maintain that the results presented in this paper provide further evidence of the value of stationary phase cell cultures for the study of the mechanisms of aging and also of some of the general principles underlying hereditary pathology

  16. Coping with complexity: machine learning optimization of cell-free protein synthesis.

    Science.gov (United States)

    Caschera, Filippo; Bedau, Mark A; Buchanan, Andrew; Cawse, James; de Lucrezia, Davide; Gazzola, Gianluca; Hanczyc, Martin M; Packard, Norman H

    2011-09-01

    Biological systems contain complex metabolic pathways with many nonlinearities and synergies that make them difficult to predict from first principles. Protein synthesis is a canonical example of such a pathway. Here we show how cell-free protein synthesis may be improved through a series of iterated high-throughput experiments guided by a machine-learning algorithm implementing a form of evolutionary design of experiments (Evo-DoE). The algorithm predicts fruitful experiments from statistical models of the previous experimental results, combined with stochastic exploration of the experimental space. The desired experimental response, or evolutionary fitness, was defined as the yield of the target product, and new experimental conditions were discovered to have ∼ 350% greater yield than the standard. An analysis of the best experimental conditions discovered indicates that there are two distinct classes of kinetics, thus showing how our evolutionary design of experiments is capable of significant innovation, as well as gradual improvement. Copyright © 2011 Wiley Periodicals, Inc.

  17. Modelling small-angle scattering data from complex protein-lipid systems

    DEFF Research Database (Denmark)

    Kynde, Søren Andreas Røssell

    the techniques very well suited for the study of the nanodisc system. Chapter 3 explains two different modelling approaches that can be used in the analysis of small-angle scattering data from lipid-protein complexes. These are the continuous approach where the system of interest is modelled as a few regular...... are particularly interesting to study because they are common targets for pharmaceutical drugs. At the same time they are unfortunately unstable in solution which make them challenging to study. Phospholipid nanodiscs are small patches of lipid membrane stabilised by a belt of amphipathic helices. They can act...... as carriers of membrane proteins. Together they form monodisperse soluble aggregates of about 10 nm in size. Chapter 2 introduces the method of small-angle scattering. Small-angle X-ray and neutron scattering are well suited for studying particles in solution on length scales from 1 to 100 nm. This makes...

  18. Robustness, efficiency, and optimality in the Fenna-Matthews-Olson photosynthetic pigment-protein complex

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Lewis A.; Habershon, Scott, E-mail: S.Habershon@warwick.ac.uk [Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-09-14

    Pigment-protein complexes (PPCs) play a central role in facilitating excitation energy transfer (EET) from light-harvesting antenna complexes to reaction centres in photosynthetic systems; understanding molecular organisation in these biological networks is key to developing better artificial light-harvesting systems. In this article, we combine quantum-mechanical simulations and a network-based picture of transport to investigate how chromophore organization and protein environment in PPCs impacts on EET efficiency and robustness. In a prototypical PPC model, the Fenna-Matthews-Olson (FMO) complex, we consider the impact on EET efficiency of both disrupting the chromophore network and changing the influence of (local and global) environmental dephasing. Surprisingly, we find a large degree of resilience to changes in both chromophore network and protein environmental dephasing, the extent of which is greater than previously observed; for example, FMO maintains EET when 50% of the constituent chromophores are removed, or when environmental dephasing fluctuations vary over two orders-of-magnitude relative to the in vivo system. We also highlight the fact that the influence of local dephasing can be strongly dependent on the characteristics of the EET network and the initial excitation; for example, initial excitations resulting in rapid coherent decay are generally insensitive to the environment, whereas the incoherent population decay observed following excitation at weakly coupled chromophores demonstrates a more pronounced dependence on dephasing rate as a result of the greater possibility of local exciton trapping. Finally, we show that the FMO electronic Hamiltonian is not particularly optimised for EET; instead, it is just one of many possible chromophore organisations which demonstrate a good level of EET transport efficiency following excitation at different chromophores. Overall, these robustness and efficiency characteristics are attributed to the highly

  19. MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories

    KAUST Repository

    Abdel-Azeim, Safwat

    2014-05-06

    Background: Molecular Dynamics ( MD) simulations of protein complexes suffer from the lack of specific tools in the analysis step. Analyses of MD trajectories of protein complexes indeed generally rely on classical measures, such as the RMSD, RMSF and gyration radius, conceived and developed for single macromolecules. As a matter of fact, instead, researchers engaged in simulating the dynamics of a protein complex are mainly interested in characterizing the conservation/variation of its biological interface. Results: On these bases, herein we propose a novel approach to the analysis of MD trajectories or other conformational ensembles of protein complexes, MDcons, which uses the conservation of inter-residue contacts at the interface as a measure of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility, we used this novel approach to study two protein-protein complexes with interfaces of comparable size and both dominated by hydrophilic interactions, but having binding affinities at the extremes of the experimental range. MDcons is demonstrated to be extremely useful to analyse the MD trajectories of the investigated complexes, adding important insight into the dynamic behavior of their biological interface. Conclusions: MDcons specifically allows the user to highlight and characterize the dynamics of the interface in protein complexes and can thus be used as a complementary tool for the analysis of MD simulations of both experimental and predicted structures of protein complexes.

  20. Structural analysis of protein complexes with sodium alkyl sulfates by small-angle scattering and polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Ospinal-Jiménez, Mónica; Pozzo, Danilo C

    2011-02-01

    Small-angle X-ray (SAXS) and neutron (SANS) scattering is used to probe the structure of protein-surfactant complexes in solution and to correlate this information with their performance in gel electrophoresis. Proteins with sizes between 6.5 to 116 kDa are denatured with sodium alkyl sulfates (SC(x)S) of variable tail lengths. Several combinations of proteins and surfactants are analyzed to measure micelle radii, the distance between micelles, the extension of the complex, the radius of gyration, and the electrophoretic mobility. The structural characterization shows that most protein-surfactant complexes can be accurately described as pearl-necklace structures with spherical micelles. However, protein complexes with short surfactants (SC(8)S) bind with micelles that deviate significantly from spherical shape. Sodium decyl (SC(10)S) and dodecyl (SC(12)S, more commonly abbreviated as SDS) sulfates result in the best protein separations in standard gel electrophoresis. Particularly, SC(10)S shows higher resolutions for complexes of low molecular weight. The systematic characterization of alkyl sulfate surfactants demonstrates that changes in the chain architecture can significantly affect electrophoretic migration so that protein-surfactant structures could be optimized for high resolution protein separations.

  1. Regulation of amyloid precursor protein processing by the Beclin 1 complex.

    Directory of Open Access Journals (Sweden)

    Philipp A Jaeger

    2010-06-01

    Full Text Available Autophagy is an intracellular degradation pathway that functions in protein and organelle turnover in response to starvation and cellular stress. Autophagy is initiated by the formation of a complex containing Beclin 1 (BECN1 and its binding partner Phosphoinositide-3-kinase, class 3 (PIK3C3. Recently, BECN1 deficiency was shown to enhance the pathology of a mouse model of Alzheimer Disease (AD. However, the mechanism by which BECN1 or autophagy mediate these effects are unknown. Here, we report that the levels of Amyloid precursor protein (APP and its metabolites can be reduced through autophagy activation, indicating that they are a substrate for autophagy. Furthermore, we find that knockdown of Becn1 in cell culture increases the levels of APP and its metabolites. Accumulation of APP and APP C-terminal fragments (APP-CTF are accompanied by impaired autophagosomal clearance. Pharmacological inhibition of autophagosomal-lysosomal degradation causes a comparable accumulation of APP and APP-metabolites in autophagosomes. Becn1 reduction in cell culture leads to lower levels of its binding partner Pik3c3 and increased presence of Microtubule-associated protein 1, light chain 3 (LC3. Overexpression of Becn1, on the other hand, reduces cellular APP levels. In line with these observations, we detected less BECN1 and PIK3C3 but more LC3 protein in brains of AD patients. We conclude that BECN1 regulates APP processing and turnover. BECN1 is involved in autophagy initiation and autophagosome clearance. Accordingly, BECN1 deficiency disrupts cellular autophagy and autophagosomal-lysosomal degradation and alters APP metabolism. Together, our findings suggest that autophagy and the BECN1-PIK3C3 complex regulate APP processing and play an important role in AD pathology.

  2. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus.

    Science.gov (United States)

    Sonntag, Eric; Milbradt, Jens; Svrlanska, Adriana; Strojan, Hanife; Häge, Sigrun; Kraut, Alexandra; Hesse, Anne-Marie; Amin, Bushra; Sonnewald, Uwe; Couté, Yohann; Marschall, Manfred

    2017-10-01

    Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.

  3. Polycomb-like proteins link the PRC2 complex to CpG islands

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haojie; Liefke, Robert; Jiang, Junyi; Kurland, Jesse Vigoda; Tian, Wei; Deng, Pujuan; Zhang, Weidi; He, Qian; Patel, Dinshaw J.; Bulyk, Martha L.; Shi, Yang; Wang, Zhanxin

    2017-09-06

    The Polycomb repressive complex 2 (PRC2) mainly mediates transcriptional repression1,2 and has essential roles in various biological processes including the maintenance of cell identity and proper differentiation. Polycomb-like (PCL) proteins, such as PHF1, MTF2 and PHF19, are PRC2-associated factors that form sub-complexes with PRC2 core components3, and have been proposed to modulate the enzymatic activity of PRC2 or the recruitment of PRC2 to specific genomic loci4,5,6,7,8,9,10,11,12,13. Mammalian PRC2-binding sites are enriched in CG content, which correlates with CpG islands that display a low level of DNA methylation14. However, the mechanism of PRC2 recruitment to CpG islands is not fully understood. Here we solve the crystal structures of the N-terminal domains of PHF1 and MTF2 with bound CpG-containing DNAs in the presence of H3K36me3-containing histone peptides. We show that the extended homologous regions of both proteins fold into a winged-helix structure, which specifically binds to the unmethylated CpG motif but in a completely different manner from the canonical winged-helix DNA recognition motif. We also show that the PCL extended homologous domains are required for efficient recruitment of PRC2 to CpG island-containing promoters in mouse embryonic stem cells. Our research provides the first, to our knowledge, direct evidence to demonstrate that PCL proteins are crucial for PRC2 recruitment to CpG islands, and further clarifies the roles of these proteins in transcriptional regulation in vivo.

  4. Calculation of the Relative Change in Binding Free Energy of a Protein-Inhibitor Complex

    Science.gov (United States)

    Bash, Paul A.; Singh, U. Chandra; Brown, Frank K.; Langridge, Robert; Kollman, Peter A.

    1987-01-01

    By means of a thermodynamic perturbation method implemented with molecular dynamics, the relative free energy of binding was calculated for the enzyme thermolysin complexed with a pair of phosphonamidate and phosphonate ester inhibitors. The calculated difference in free energy of binding was 4.21 ± 0.54 kilocalories per mole. This compares well with the experimental value of 4.1 kilocalories per mole. The method is general and can be used to determine a change or ``mutation'' in any system that can be suitably represented. It is likely to prove useful for protein and drug design.

  5. NUP98-Fusion Proteins Interact With the NSL and MLL1 Complexes To Drive Leukemogenesis

    OpenAIRE

    Xu, Haiming; Valerio, Daria G; Eisold, Meghan E; Sinha, Amit; Koche, Richard P; Hu, Wenhuo; Chen, Chun-Wei; Chu, S Haihua; Brien, Gerard L; Park, Christopher Y.; Hsieh, James J.; Ernst, Patricia; Armstrong, Scott A

    2016-01-01

    The Nucleoporin 98 gene (NUP98) is fused to a variety of partner genes in multiple hematopoietic malignancies. Here we demonstrate that NUP98 fusion proteins, including NUP98-HOXA9 (NHA9), NUP98-HOXD13 (NHD13), NUP98-NSD1, NUP98-PHF23, and NUP98-TOP1 physically interact with mixed lineage leukemia 1 (MLL1) and the non-specific lethal (NSL) histone-modifying complexes. ChIP-seq illustrates that NHA9 and MLL1 co-localize on chromatin and are found associated with Hox gene promoter regions. Furt...

  6. Recovery of Proteins and Chromium Complexes from Chromium – Containing Leather Waste (CCLW

    Directory of Open Access Journals (Sweden)

    B. Gutti

    2010-08-01

    Full Text Available Chromium – Containing Leather Waste (CCLW constitutes an environmental pollution problem to leather industries disposing the waste by landfill. The waste mainly consists of collagen and chromium III complexes. This work is a design of reactors to recover gelatin, polypeptides and chromium from CCLW. The results of the experiment shows that 68% of protein, based on dry weight of leather scraps, could be recovered. Three reactors with a total volume of 18 m3 was designed to handle 10,431 kg of waste generated from the tanning industries.

  7. Native proteomic analysis of protein complexes in murine intestinal brush border membranes

    Czech Academy of Sciences Publication Activity Database

    Babušiak, M.; Man, Petr; Petrák, J.; Vyoral, D.

    2007-01-01

    Roč. 7, č. 1 (2007), s. 121-129 ISSN 1615-9853 R&D Projects: GA ČR(CZ) GD204/03/H066; GA AV ČR KJB500200612; GA MŠk LC545 Grant - others:GA ČR(CZ) GA303/04/0003; GA MZd(CZ) NR8930; GA MŠk(CZ) LC06044; CZ(CZ) 023736; GA MZd(CZ) NR8317 Program:NR Institutional research plan: CEZ:AV0Z50200510 Keywords : blue native electrophoresis * brush border membranes * protein complexes Subject RIV: EE - Microbiology, Virology Impact factor: 5.479, year: 2007

  8. Human major histocompatibility complex contains genes for the major heat shock protein HSP70.

    OpenAIRE

    Sargent, C A; Dunham, I; Trowsdale, J; Campbell, R D

    1989-01-01

    Little is known as to why a large number of human diseases are influenced by the major histocompatibility complex. In some cases, a direct involvement of the products of the polymorphic class I and class II, aas well as the less variable products of the class III, genes has been proposed. During characterization of the class III region for the presence of additional loci, we have located a duplicated locus encoding the major heat shock protein HSP70 between the complement and tumor necrosis f...

  9. Design and Fabrication of Nanostructures Based on DNA Ring-Protein Complex

    Science.gov (United States)

    Furukawa, Hideki; Endo, Tatsuro; Yanagida, Yasuko; Hatsuzawa, Takeshi

    2008-06-01

    In this report, we describe the design and fabrication of DNA nanostructures (“DNA glasses”, “DNA serial rings”, and “DNA chains”) using DNA ring-protein complexes. An experiment was performed to fabricate DNA ring-conjugated biotin using two types of DNA (“vector DNA” and “insert DNA”). The vector DNA was obtained by cutting plasmid DNA with restriction enzymes. The insert DNA (DNA conjugated with biotin) was obtained using a DNA synthesizer. After ligation and the introduction of streptavidin-modified gold nanoparticles, DNA structures were obtained. Subsequently, the DNA structures were observed by atomic force microscopy (AFM).

  10. Crystal structure of the β2 adrenergic receptor-Gs protein complex

    DEFF Research Database (Denmark)

    Rasmussen, Søren Gøgsig Faarup; DeVree, Brian T; Zou, Yaozhong

    2011-01-01

    -occupied receptor. The β(2) adrenergic receptor (β(2)AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β(2)AR and nucleotide-free Gs...... of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling...

  11. Complexes of vesicular stomatitis virus matrix protein with host Rae1 and Nup98 involved in inhibition of host transcription.

    Science.gov (United States)

    Rajani, Karishma R; Pettit Kneller, Elizabeth L; McKenzie, Margie O; Horita, David A; Chou, Jeff W; Lyles, Douglas S

    2012-09-01

    Vesicular stomatitis virus (VSV) suppresses antiviral responses in infected cells by inhibiting host gene expression at multiple levels, including transcription, nuclear cytoplasmic transport, and translation. The inhibition of host gene expression is due to the activity of the viral matrix (M) protein. Previous studies have shown that M protein interacts with host proteins Rae1 and Nup98 that have been implicated in regulating nuclear-cytoplasmic transport. However, Rae1 function is not essential for host mRNA transport, raising the question of how interaction of a viral protein with a host protein that is not essential for gene expression causes a global inhibition at multiple levels. We tested the hypothesis that there may be multiple M protein-Rae1 complexes involved in inhibiting host gene expression at multiple levels. Using size exclusion chromatography and sedimentation velocity analysis, it was determined that Rae1 exists in high, intermediate, and low molecular weight complexes. The intermediate molecular weight complexes containing Nup98 interacted most efficiently with M protein. The low molecular weight form also interacted with M protein in cells that overexpress Rae1 or cells in which Nup98 expression was silenced. Silencing Rae1 expression had little if any effect on nuclear accumulation of host mRNA in VSV-infected cells, nor did it affect VSV's ability to inhibit host translation. Instead, silencing Rae1 expression reduced the ability of VSV to inhibit host transcription. M protein interacted efficiently with Rae1-Nup98 complexes associated with the chromatin fraction of host nuclei, consistent with an effect on host transcription. These results support the idea that M protein-Rae1 complexes serve as platforms to promote the interaction of M protein with other factors involved in host transcription. They also support the idea that Rae1-Nup98 complexes play a previously under-appreciated role in regulation of transcription.

  12. Complexes of vesicular stomatitis virus matrix protein with host Rae1 and Nup98 involved in inhibition of host transcription.

    Directory of Open Access Journals (Sweden)

    Karishma R Rajani

    2012-09-01

    Full Text Available Vesicular stomatitis virus (VSV suppresses antiviral responses in infected cells by inhibiting host gene expression at multiple levels, including transcription, nuclear cytoplasmic transport, and translation. The inhibition of host gene expression is due to the activity of the viral matrix (M protein. Previous studies have shown that M protein interacts with host proteins Rae1 and Nup98 that have been implicated in regulating nuclear-cytoplasmic transport. However, Rae1 function is not essential for host mRNA transport, raising the question of how interaction of a viral protein with a host protein that is not essential for gene expression causes a global inhibition at multiple levels. We tested the hypothesis that there may be multiple M protein-Rae1 complexes involved in inhibiting host gene expression at multiple levels. Using size exclusion chromatography and sedimentation velocity analysis, it was determined that Rae1 exists in high, intermediate, and low molecular weight complexes. The intermediate molecular weight complexes containing Nup98 interacted most efficiently with M protein. The low molecular weight form also interacted with M protein in cells that overexpress Rae1 or cells in which Nup98 expression was silenced. Silencing Rae1 expression had little if any effect on nuclear accumulation of host mRNA in VSV-infected cells, nor did it affect VSV's ability to inhibit host translation. Instead, silencing Rae1 expression reduced the ability of VSV to inhibit host transcription. M protein interacted efficiently with Rae1-Nup98 complexes associated with the chromatin fraction of host nuclei, consistent with an effect on host transcription. These results support the idea that M protein-Rae1 complexes serve as platforms to promote the interaction of M protein with other factors involved in host transcription. They also support the idea that Rae1-Nup98 complexes play a previously under-appreciated role in regulation of transcription.

  13. Structures of Adnectin/Protein Complexes Reveal an Expanded Binding Footprint

    Energy Technology Data Exchange (ETDEWEB)

    Ramamurthy, Vidhyashankar; Krystek, Jr., Stanley R.; Bush, Alexander; Wei, Anzhi; Emanuel, Stuart L.; Gupta, Ruchira Das; Janjua, Ahsen; Cheng, Lin; Murdock, Melissa; Abramczyk, Bozena; Cohen, Daniel; Lin, Zheng; Morin, Paul; Davis, Jonathan H.; Dabritz, Michael; McLaughlin, Douglas C.; Russo, Katie A.; Chao, Ginger; Wright, Martin C.; Jenny, Victoria A.; Engle, Linda J.; Furfine, Eric; Sheriff, Steven (BMS)

    2014-10-02

    Adnectins are targeted biologics derived from the tenth type III domain of human fibronectin ({sup 10}Fn3), a member of the immunoglobulin superfamily. Target-specific binders are selected from libraries generated by diversifying the three {sup 10}Fn3 loops that are analogous to the complementarity determining regions of antibodies. The crystal structures of two Adnectins were determined, each in complex with its therapeutic target, EGFR or IL-23. Both Adnectins bind different epitopes than those bound by known monoclonal antibodies. Molecular modeling suggests that some of these epitopes might not be accessible to antibodies because of the size and concave shape of the antibody combining site. In addition to interactions from the Adnectin diversified loops, residues from the N terminus and/or the {beta} strands interact with the target proteins in both complexes. Alanine-scanning mutagenesis confirmed the calculated binding energies of these {beta} strand interactions, indicating that these nonloop residues can expand the available binding footprint.

  14. Granzyme A Cleaves a Mitochondrial Complex I Protein to Initiate Caspase-Independent Cell Death

    Science.gov (United States)

    Martinvalet, Denis; Dykxhoorn, Derek M.; Ferrini, Roger; Lieberman, Judy

    2010-01-01

    SUMMARY The killer lymphocyte protease granzyme A (GzmA) triggers caspase-independent target cell death with morphological features of apoptosis. We previously showed that GzmA acts directly on mitochondria to generate reactive oxygen species (ROS) and disrupt the transmembrane potential (ΔΨm) but does not permeabilize the mitochondrial outer membrane. Mitochondrial damage is critical to GzmA-induced cell death since cells treated with superoxide scavengers are resistant to GzmA. Here we find that GzmA accesses the mitochondrial matrix to cleave the complex I protein NDUFS3, an iron-sulfur subunit of the NADH:ubiquinone oxidoreductase complex I, after Lys56 to interfere with NADH oxidation and generate superoxide anions. Target cells expressing a cleavage site mutant of NDUFS3 are resistant to GzmA-mediated cell death but remain sensitive to GzmB. PMID:18485875

  15. Low levels of cadmium chloride after the immunoprecipitation of corneal cadherin-complex proteins

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, W.J.; Waddell, D.S.; Sillman, A.J. [California Univ., Davis, CA (United States). Div. of Biological Sciences

    2000-12-01

    The effect of cadmium chloride on the immunoprecipitation of cadherin and the associated adherens junctional proteins, {alpha}- and {beta}-catenin, was examined in isolated bullfrog (Rana catesbeiana) corneas utilizing Western blot and enhanced chemoluminescent techniques. Application of either 1.0 {mu}M or 75.0 {mu}M CdCl{sub 2} to the corneal endothelium for 2 h markedly decreased the immunoprecipitation of cadherins as compared to paired control corneas. Immunoprecipitation of {alpha}-catenin was increased in response to both doses of CdCl{sub 2}, while the immunoprecipitation of {beta}-catenin was little changed by either cadmium dose. There is accumulating evidence that cadmium may increase epithelial paracellular permeability by interfering with cadherin complex activity at intercellular junctions. The present study suggests that inorganic cadmium in low micromolar concentrations may decrease the integrity of the corneal endothelium, at least in part through a similar mechanism involving disruption of junctional cadherin complex function. (orig.)

  16. Robust peptidoglycan growth by dynamic and variable multi-protein complexes.

    Science.gov (United States)

    Pazos, Manuel; Peters, Katharina; Vollmer, Waldemar

    2017-04-01

    In Gram-negative bacteria such as Escherichia coli the peptidoglycan sacculus resides in the periplasm, a compartment that experiences changes in pH value, osmolality, ion strength and other parameters depending on the cell's environment. Hence, the cell needs robust peptidoglycan growth mechanisms to grow and divide under different conditions. Here we propose a model according to which the cell achieves robust peptidoglycan growth by employing dynamic multi-protein complexes, which assemble with variable composition from freely diffusing sets of peptidoglycan synthases, hydrolases and their regulators, whereby the composition of the active complexes depends on the cell cycle state - cell elongation or division - and the periplasmic growth conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Present and future of NMR for RNA-protein complexes: A perspective of integrated structural biology

    Science.gov (United States)

    Carlomagno, Teresa

    2014-04-01

    Nucleic acids are gaining enormous importance as key molecules in almost all biological processes. Most nucleic acids do not act in isolation but are generally associated with proteins to form high-molecular-weight nucleoprotein complexes. In this perspective article I focus on the structural studies of supra-molecular ribonucleoprotein (RNP) assemblies in solution by a combination of state-of-the-art TROSY-based NMR experiments and other structural biology techniques. I discuss ways how to combine sparse NMR data with low-resolution structural information from small-angle scattering, fluorescence and electron paramagnetic resonance spectroscopy to obtain the structure of large RNP particles by an integrated structural biology approach. In the last section I give a perspective for the study of RNP complexes by solid-state NMR.

  18. The alternative complement pathway control protein H binds to immune complexes and serves their detection

    International Nuclear Information System (INIS)

    Nydegger, U.E.; Corvetta, A.; Spaeth, P.J.; Spycher, M.

    1983-01-01

    During solubilization of immune complexes C3b becomes fixed to the immunoglobulin part and serves as a receptor for the alternative complement pathway control protein H. The H-C3b immune complex interaction can be made detectable using 4% polyethyleneglycol to separate free from bound 125 I-H. Tetanus toxoid (Te)/anti-Te complexes kept soluble with fresh serum and containing 125 IU of specific antibody bound 18% of 125 I-H; when fresh serum was chelated with 10 mM EDTA, 125 I-H binding was only 5%. On sucrose density gradients, the H-binding material sedimented in the range of 12 to 30 S. In 36 serum samples from rheumatoid arthritis (RA) patients and in 12 serum samples from patients with systemic lupus erythematosus (SLE), 125 I-H binding was significantly elevated to 9.5 +/- 4.7% (mean +/- 1 SD) and 13.3 +/- 5.6%, respectively, while 125 I-H binding by 36 normal human sera was 4 +/- 2%. RA samples (17/36, 47%) and SLE samples (9/12, 75%) had H-binding values increased by more than 2 SD above the normal mean. The serum samples were also assessed for conglutinin- and C1q-binding activities; a significant correlation between H and C1q binding was observed (P less than 0.001); there was no correlation between H and conglutinin binding. Although binding to immune complexes through its interaction with C3b, H clearly detects a population of complexes other than conglutinin, thus expanding the possibilities of further characterizing pathological complexes

  19. Protein kinase A governs oxidative phosphorylation kinetics and oxidant emitting potential at complex I

    Directory of Open Access Journals (Sweden)

    Daniel Stephen Lark

    2015-11-01

    Full Text Available The mitochondrial electron transport system (ETS is responsible for setting and maintaining both the energy and redox charges throughout the cell. Reversible phosphorylation of mitochondrial proteins, particularly via the soluble adenylyl cyclase (sAC/cyclic AMP (cAMP/Protein kinase A (PKA axis, has recently been revealed as a potential mechanism regulating the ETS. However, the governance of cAMP/PKA signaling and its implications on ETS function are incompletely understood. In contrast to prior reports using exogenous bicarbonate, we provide evidence that endogenous CO2 produced by increased tricarboxylic acid (TCA cycle flux is insufficient to increase mitochondrial cAMP levels, and that exogenous addition of membrane permeant 8Br-cAMP does not enhance mitochondrial respiratory capacity. We also report important non-specific effects of commonly used inhibitors of sAC which preclude their use in studies of mitochondrial function. In isolated liver mitochondria, inhibition of PKA reduces complex I-, but not complex II-supported respiratory capacity. In permeabilized myofibers, inhibition of PKA lowers both the Km and Vmax for complex I-supported respiration as well as succinate-supported H2O2 emitting potential. In summary, the data provided here improve our understanding of how mitochondrial cAMP production is regulated, illustrate a need for better tools to examine the impact of sAC activity on mitochondrial biology, and suggest that cAMP/PKA signaling contributes to the governance of electron flow through complex I of the ETS.

  20. Aluminum complexing enhances amyloid beta protein penetration of blood-brain barrier.

    Science.gov (United States)

    Banks, William A; Niehoff, Michael L; Drago, Denise; Zatta, Paolo

    2006-10-20

    A significant co-morbidity of Alzheimer's disease and cerebrovascular impairment suggests that cerebrovascular dysregulation is an important feature of dementia. Amyloid beta protein (Abeta), a relevant risk factor in Alzheimer's disease, has neurotoxic properties and is thought to play a critical role in the cognitive impairments. Previously, we demonstrated that the 42mer of Abeta (Abeta42) complexed with aluminum (Al-Abeta42) is much more cytotoxic than non-complexed Abeta42. The level of Abeta in the brain is a balance between synthesis, degradation, and fluxes across the blood-brain barrier (BBB). In the present paper, we determined whether complexing with aluminum affected the ability of radioactively iodinated Abeta to cross the in vivo BBB. We found that the rates of uptake of Al-Abeta42 and Abeta42 were similar, but that Al-Abeta42 was sequestered by brain endothelial cells much less than Abeta42 and so more readily entered the parenchymal space of the brain. Al-Abeta42 also had a longer half-life in blood and had increased permeation at the striatum and thalamus. Brain-to-blood transport was similar for Al-Abeta42 and Abeta42. In conclusion, complexing with aluminum affects some aspects of blood-to-brain permeability so that Al-Abeta42 would have more ready access to brain cells than Abeta42.

  1. Visualization of subunit interactions and ternary complexes of protein phosphatase 2A in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Shu-Ting Mo

    Full Text Available Protein phosphatase 2A (PP2A is a ubiquitous phospho-serine/threonine phosphatase that controls many diverse cellular functions. The predominant form of PP2A is a heterotrimeric holoenzyme consisting of a scaffolding A subunit, a variable regulatory B subunit, and a catalytic C subunit. The C subunit also associates with other interacting partners, such as α4, to form non-canonical PP2A complexes. We report visualization of PP2A complexes in mammalian cells. Bimolecular fluorescence complementation (BiFC analysis of PP2A subunit interactions demonstrates that the B subunit plays a key role in directing the subcellular localization of PP2A, and confirms that the A subunit functions as a scaffold in recruiting the B and C subunits to form a heterotrimeric holoenzyme. BiFC analysis also reveals that α4 promotes formation of the AC core dimer. Furthermore, we demonstrate visualization of specific ABC holoenzymes in cells by combining BiFC and fluorescence resonance energy transfer (BiFC-FRET. Our studies not only provide direct imaging data to support previous biochemical observations on PP2A complexes, but also offer a promising approach for studying the spatiotemporal distribution of individual PP2A complexes in cells.

  2. Structure and expression of major histocompatibility complex-binding protein 2, a 275-kDa zinc finger protein that binds to an enhancer of major histocompatibility complex class I genes

    NARCIS (Netherlands)

    Veer, L.J. van 't; Lutz, P.M.; Isselbacher, K.J.; Bernards, R.A.

    1992-01-01

    We have isolated a cDNA encoding a transcription factor that binds to the enhancer of major histocompatibility complex (MHC) class I genes. MHC-binding protein 2 (MBP-2) is a 275-kDa protein, containing two sets of widely separated zinc fingers and a stretch of highly acidic amino acids, a

  3. A sulfhydryl-reactive ruthenium (II complex and its conjugation to protein G as a universal reagent for fluorescent immunoassays.

    Directory of Open Access Journals (Sweden)

    Jing-Tang Lin

    Full Text Available To develop a fluorescent ruthenium complex for biosensing, we synthesized a novel sulfhydryl-reactive compound, 4-bromophenanthroline bis-2,2'-dipyridine Ruthenium bis (hexafluorophosphate. The synthesized Ru(II complex was crosslinked with thiol-modified protein G to form a universal reagent for fluorescent immunoassays. The resulting Ru(II-protein G conjugates were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. The emission peak wavelength of the Ru(II-protein G conjugate was 602 nm at the excitation of 452 nm which is similar to the spectra of the Ru(II complex, indicating that Ru(II-protein G conjugates still remain the same fluorescence after conjugation. To test the usefulness of the conjugate for biosensing, immunoglobulin G (IgG binding assay was conducted. The result showed that Ru(II-protein G conjugates were capable of binding IgG and the more cross-linkers to modify protein G, the higher conjugation efficiency. To demonstrate the feasibility of Ru(II-protein G conjugates for fluorescent immunoassays, the detection of recombinant histidine-tagged protein using the conjugates and anti-histidine antibody was developed. The results showed that the histidine-tagged protein was successfully detected with dose-response, indicating that Ru(II-protein G conjugate is a useful universal fluorescent reagent for quantitative immunoassays.

  4. Modeling of kinetics of the inducible protein complexes of the SOS system in bacteria E. coli which realize TLS process

    International Nuclear Information System (INIS)

    Belov, O.V.

    2008-01-01

    The mathematical model describing kinetics of the inducible genes of the protein complexes, formed during SOS response in bacteria Escherichia coli is developed. Within the bounds of developed approaches the auxiliary mathematical model describing changes in concentrations of the dimers, which are the components of final protein complexes, is developed. The solutions of both models are based on the experimental data concerning expression of the basic genes of the SOS system in bacteria Escherichia coli

  5. Heterotrimeric G protein beta1gamma2 subunits change orientation upon complex formation with G protein-coupled receptor kinase 2 (GRK2) on a model membrane.

    Science.gov (United States)

    Boughton, Andrew P; Yang, Pei; Tesmer, Valerie M; Ding, Bei; Tesmer, John J G; Chen, Zhan

    2011-09-13

    Few experimental techniques can assess the orientation of peripheral membrane proteins in their native environment. Sum Frequency Generation (SFG) vibrational spectroscopy was applied to study the formation of the complex between G protein-coupled receptor (GPCR) kinase 2 (GRK2) and heterotrimeric G protein β(1)γ(2) subunits (Gβγ) at a lipid bilayer, without any exogenous labels. The most likely membrane orientation of the GRK2-Gβγ complex differs from that predicted from the known protein crystal structure, and positions the predicted receptor docking site of GRK2 such that it would more optimally interact with GPCRs. Gβγ also appears to change its orientation after binding to GRK2. The developed methodology is widely applicable for the study of other membrane proteins in situ.

  6. Prediction of TF target sites based on atomistic models of protein-DNA complexes

    Directory of Open Access Journals (Sweden)

    Collado-Vides Julio

    2008-10-01

    Full Text Available Abstract Background The specific recognition of genomic cis-regulatory elements by transcription factors (TFs plays an essential role in the regulation of coordinated gene expression. Studying the mechanisms determining binding specificity in protein-DNA interactions is thus an important goal. Most current approaches for modeling TF specific recognition rely on the knowledge of large sets of cognate target sites and consider only the information contained in their primary sequence. Results Here we describe a structure-based methodology for predicting sequence motifs starting from the coordinates of a TF-DNA complex. Our algorithm combines information regarding the direct and indirect readout of DNA into an atomistic statistical model, which is used to estimate the interaction potential. We first measure the ability of our method to correctly estimate the binding specificities of eight prokaryotic and eukaryotic TFs that belong to different structural superfamilies. Secondly, the method is applied to two homology models, finding that sampling of interface side-chain rotamers remarkably improves the results. Thirdly, the algorithm is compared with a reference structural method based on contact counts, obtaining comparable predictions for the experimental complexes and more accurate sequence motifs for the homology models. Conclusion Our results demonstrate that atomic-detail structural information can be feasibly used to predict TF binding sites. The computational method presented here is universal and might be applied to other systems involving protein-DNA recognition.

  7. Structural studies of RNA-protein complexes: A hybrid approach involving hydrodynamics, scattering, and computational methods.

    Science.gov (United States)

    Patel, Trushar R; Chojnowski, Grzegorz; Astha; Koul, Amit; McKenna, Sean A; Bujnicki, Janusz M

    2017-04-15

    The diverse functional cellular roles played by ribonucleic acids (RNA) have emphasized the need to develop rapid and accurate methodologies to elucidate the relationship between the structure and function of RNA. Structural biology tools such as X-ray crystallography and Nuclear Magnetic Resonance are highly useful methods to obtain atomic-level resolution models of macromolecules. However, both methods have sample, time, and technical limitations that prevent their application to a number of macromolecules of interest. An emerging alternative to high-resolution structural techniques is to employ a hybrid approach that combines low-resolution shape information about macromolecules and their complexes from experimental hydrodynamic (e.g. analytical ultracentrifugation) and solution scattering measurements (e.g., solution X-ray or neutron scattering), with computational modeling to obtain atomic-level models. While promising, scattering methods rely on aggregation-free, monodispersed preparations and therefore the careful development of a quality control pipeline is fundamental to an unbiased and reliable structural determination. This review article describes hydrodynamic techniques that are highly valuable for homogeneity studies, scattering techniques useful to study the low-resolution shape, and strategies for computational modeling to obtain high-resolution 3D structural models of RNAs, proteins, and RNA-protein complexes. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. A Protein Complex Required for Polymerase V Transcripts and RNA- Directed DNA Methylation in Arabidopsis

    KAUST Repository

    Law, Julie A.

    2010-05-01

    DNA methylation is an epigenetic modification associated with gene silencing. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), which is targeted by small interfering RNAs through a pathway termed RNA-directed DNA methylation (RdDM) [1, 2]. Recently, RdDM was shown to require intergenic noncoding (IGN) transcripts that are dependent on the Pol V polymerase. These transcripts are proposed to function as scaffolds for the recruitment of downstream RdDM proteins, including DRM2, to loci that produce both siRNAs and IGN transcripts [3]. However, the mechanism(s) through which Pol V is targeted to specific genomic loci remains largely unknown. Through affinity purification of two known RdDM components, DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1) [4] and DEFECTIVE IN MERISTEM SILENCING 3 (DMS3) [5, 6], we found that they copurify with each other and with a novel protein, RNA-DIRECTED DNA METHYLATION 1 (RDM1), forming a complex we term DDR. We also found that DRD1 copurified with Pol V subunits and that RDM1, like DRD1 [3] and DMS3 [7], is required for the production of Pol V-dependent transcripts. These results suggest that the DDR complex acts in RdDM at a step upstream of the recruitment or activation of Pol V. © 2010 Elsevier Ltd. All rights reserved.

  9. Improving ranking of models for protein complexes with side chain modeling and atomic potentials.

    Science.gov (United States)

    Viswanath, Shruthi; Ravikant, D V S; Elber, Ron

    2013-04-01

    An atomically detailed potential for docking pairs of proteins is derived using mathematical programming. A refinement algorithm that builds atomically detailed models of the complex and combines coarse grained and atomic scoring is introduced. The refinement step consists of remodeling the interface side chains of the top scoring decoys from rigid docking followed by a short energy minimization. The refined models are then re-ranked using a combination of coarse grained and atomic potentials. The docking algorithm including the refinement and re-ranking, is compared favorably to other leading docking packages like ZDOCK, Cluspro, and PATCHDOCK, on the ZLAB 3.0 Benchmark and a test set of 30 novel complexes. A detailed analysis shows that coarse grained potentials perform better than atomic potentials for realistic unbound docking (where the exact structures of the individual bound proteins are unknown), probably because atomic potentials are more sensitive to local errors. Nevertheless, the atomic potential captures a different signal from the residue potential and as a result a combination of the two scores provides a significantly better prediction than each of the approaches alone. Copyright © 2012 Wiley Periodicals, Inc.

  10. Complexes of γ-tubulin with nonreceptor protein tyrosine kinases Src and Fyn in differentiating P19 embryonal carcinoma cells

    International Nuclear Information System (INIS)

    Kukharskyy, Vitaliy; Sulimenko, Vadym; Macurek, Libor; Sulimenko, Tetyana; Draberova, Eduarda; Draber, Pavel

    2004-01-01

    Nonreceptor protein tyrosine kinases of the Src family have been shown to play an important role in signal transduction as well as in regulation of microtubule protein interactions. Here we show that γ-tubulin (γ-Tb) in P19 embryonal carcinoma cells undergoing neuronal differentiation is phosphorylated and forms complexes with protein tyrosine kinases of the Src family, Src and Fyn. Elevated expression of both kinases during differentiation corresponded with increased level of proteins phosphorylated on tyrosine. Immunoprecipitation experiments with antibodies against Src, Fyn, γ-tubulin, and with anti-phosphotyrosine antibody revealed that γ-tubulin appeared in complexes with these kinases. In vitro kinase assays showed tyrosine phosphorylation of proteins in γ-tubulin complexes isolated from differentiated cells. Pretreatment of cells with Src family selective tyrosine kinase inhibitor PP2 reduced the amount of phosphorylated γ-tubulin in the complexes. Binding experiments with recombinant SH2 and SH3 domains of Src and Fyn kinases revealed that protein complexes containing γ-tubulin bound to SH2 domains and that these interactions were of SH2-phosphotyrosine type. The combined data suggest that Src family kinases might have an important role in the regulation of γ-tubulin interaction with tubulin dimers or other proteins during neurogenesis

  11. Crystal structure of a PCP/Sfp complex reveals the structural basis for carrier protein posttranslational modification.

    Science.gov (United States)

    Tufar, Peter; Rahighi, Simin; Kraas, Femke I; Kirchner, Donata K; Löhr, Frank; Henrich, Erik; Köpke, Jürgen; Dikic, Ivan; Güntert, Peter; Marahiel, Mohamed A; Dötsch, Volker

    2014-04-24

    Phosphopantetheine transferases represent a class of enzymes found throughout all forms of life. From a structural point of view, they are subdivided into three groups, with transferases from group II being the most widespread. They are required for the posttranslational modification of carrier proteins involved in diverse metabolic pathways. We determined the crystal structure of the group II phosphopantetheine transferase Sfp from Bacillus in complex with a substrate carrier protein in the presence of coenzyme A and magnesium, and observed two protein-protein interaction sites. Mutational analysis showed that only the hydrophobic contacts between the carrier protein's second helix and the C-terminal domain of Sfp are essential for their productive interaction. Comparison with a similar structure of a complex of human proteins suggests that the mode of interaction is highly conserved in all domains of life. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The 3of5 web application for complex and comprehensive pattern matching in protein sequences

    Directory of Open Access Journals (Sweden)

    Poustka Annemarie

    2006-03-01

    Full Text Available Abstract Background The identification of patterns in biological sequences is a key challenge in genome analysis and in proteomics. Frequently such patterns are complex and highly variable, especially in protein sequences. They are frequently described using terms of regular expressions (RegEx because of the user-friendly terminology. Limitations arise for queries with the increasing complexity of patterns and are accompanied by requirements for enhanced capabilities. This is especially true for patterns containing ambiguous characters and positions and/or length ambiguities. Results We have implemented the 3of5 web application in order to enable complex pattern matching in protein sequences. 3of5 is named after a special use of its main feature, the novel n-of-m pattern type. This feature allows for an extensive specification of variable patterns where the individual elements may vary in their position, order, and content within a defined stretch of sequence. The number of distinct elements can be constrained by operators, and individual characters may be excluded. The n-of-m pattern type can be combined with common regular expression terms and thus also allows for a comprehensive description of complex patterns. 3of5 increases the fidelity of pattern matching and finds ALL possible solutions in protein sequences in cases of length-ambiguous patterns instead of simply reporting the longest or shortest hits. Grouping and combined search for patterns provides a hierarchical arrangement of larger patterns sets. The algorithm is implemented as internet application and freely accessible. The application is available at http://dkfz.de/mga2/3of5/3of5.html. Conclusion The 3of5 application offers an extended vocabulary for the definition of search patterns and thus allows the user to comprehensively specify and identify peptide patterns with variable elements. The n-of-m pattern type offers an improved accuracy for pattern matching in combination with

  13. Crystallization of Mitochondrial Respiratory Complex II fromChicken Heart: A Membrane-Protein Complex Diffracting to 2.0Angstrom

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-shar; Borders, Toni M.; Shen, John T.; Wang, Chung-Jen; Berry, Edward A.

    2004-12-17

    Procedure is presented for preparation of diffraction-quality crystals of a vertebrate mitochondrial respiratory Complex II. The crystals have the potential to diffract to at least 2.0 Angstrom with optimization of post-crystal-growth treatment and cryoprotection. This should allow determination of the structure of this important and medically relevant membrane protein complex at near-atomic resolution and provide great detail of the mode of binding of substrates and inhibitors at the two substrate-binding sites.

  14. Complex structure of type VI peptidoglycan muramidase effector and a cognate immunity protein

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianyu [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ding, Jinjing; Zhang, Ying; Wang, Da-Cheng, E-mail: dcwang@ibp.ac.cn [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Wei, E-mail: dcwang@ibp.ac.cn [The Third Military Medical University, Chongqing 400038 (China); Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2013-10-01

    The structure of the Tse3–Tsi3 complex associated with the bacterial type VI secretion system of P. aeruginosa has been solved and refined at 1.9 Å resolution. The structural basis of the recognition of the muramidase effector and its inactivation by its cognate immunity protein is revealed. The type VI secretion system (T6SS) is a bacterial protein-export machine that is capable of delivering virulence effectors between Gram-negative bacteria. The T6SS of Pseudomonas aeruginosa transports two lytic enzymes, Tse1 and Tse3, to degrade cell-wall peptidoglycan in the periplasm of rival bacteria that are competing for niches via amidase and muramidase activities, respectively. Two cognate immunity proteins, Tsi1 and Tsi3, are produced by the bacterium to inactivate the two antibacterial effectors, thereby protecting its siblings from self-intoxication. Recently, Tse1–Tsi1 has been structurally characterized. Here, the structure of the Tse3–Tsi3 complex is reported at 1.9 Å resolution. The results reveal that Tse3 contains a C-terminal catalytic domain that adopts a soluble lytic transglycosylase (SLT) fold in which three calcium-binding sites were surprisingly observed close to the catalytic Glu residue. The electrostatic properties of the substrate-binding groove are also distinctive from those of known structures with a similar fold. All of these features imply that a unique catalytic mechanism is utilized by Tse3 in cleaving glycosidic bonds. Tsi3 comprises a single domain showing a β-sandwich architecture that is reminiscent of the immunoglobulin fold. Three loops of Tsi3 insert deeply into the groove of Tse3 and completely occlude its active site, which forms the structural basis of Tse3 inactivation. This work is the first crystallographic report describing the three-dimensional structure of the Tse3–Tsi3 effector–immunity pair.

  15. A knowledge-based decision support system in bioinformatics: an application to protein complex extraction

    Directory of Open Access Journals (Sweden)

    Fiannaca Antonino

    2013-01-01

    Full Text Available Abstract Background We introduce a Knowledge-based Decision Support System (KDSS in order to face the Protein Complex Extraction issue. Using a Knowledge Base (KB coding the expertise about the proposed scenario, our KDSS is able to suggest both strategies and tools, according to the features of input dataset. Our system provides a navigable workflow for the current experiment and furthermore it offers support in the configuration and running of every processing component of that workflow. This last feature makes our system a crossover between classical DSS and Workflow Management Systems. Results We briefly present the KDSS' architecture and basic concepts used in the design of the knowledge base and the reasoning component. The system is then tested using a subset of Saccharomyces cerevisiae Protein-Protein interaction dataset. We used this subset because it has been well studied in literature by several research groups in the field of complex extraction: in this way we could easily compare the results obtained through our KDSS with theirs. Our system suggests both a preprocessing and a clustering strategy, and for each of them it proposes and eventually runs suited algorithms. Our system's final results are then composed of a workflow of tasks, that can be reused for other experiments, and the specific numerical results for that particular trial. Conclusions The proposed approach, using the KDSS' knowledge base, provides a novel workflow that gives the best results with regard to the other workflows produced by the system. This workflow and its numeric results have been compared with other approaches about PPI network analysis found in literature, offering similar results.

  16. A detailed, hierarchical study of Giardia lamblia's ventral disc reveals novel microtubule-associated protein complexes.

    Directory of Open Access Journals (Sweden)

    Cindi L Schwartz

    Full Text Available Giardia lamblia is a flagellated, unicellular parasite of mammals infecting over one billion people worldwide. Giardia's two-stage life cycle includes a motile trophozoite stage that colonizes the host small intestine and an infectious cyst form that can persist in the environment. Similar to many eukaryotic cells, Giardia contains several complex microtubule arrays that are involved in motility, chromosome segregation, organelle transport, maintenance of cell shape and transformation between the two life cycle stages. Giardia trophozoites also possess a unique spiral microtubule array, the ventral disc, made of approximately 50 parallel microtubules and associated microribbons, as well as a variety of associated proteins. The ventral disc maintains trophozoite attachment to the host intestinal epithelium. With the help of a combined SEM/microtome based slice and view method called 3View® (Gatan Inc., Pleasanton, CA, we present an entire trophozoite cell reconstruction and describe the arrangement of the major cytoskeletal elements. To aid in future analyses of disc-mediated attachment, we used electron-tomography of freeze-substituted, plastic-embedded trophozoites to explore the detailed architecture of ventral disc microtubules and their associated components. Lastly, we examined the disc microtubule array in three dimensions in unprecedented detail using cryo-electron tomography combined with internal sub-tomogram volume averaging of repetitive domains. We discovered details of protein complexes stabilizing microtubules by attachment to their inner and outer wall. A unique tri-laminar microribbon structure is attached vertically to the disc microtubules and is connected to neighboring microribbons via crossbridges. This work provides novel insight into the structure of the ventral disc microtubules, microribbons and associated proteins. Knowledge of the components comprising these structures and their three-dimensional organization is

  17. Diagnosis of toxoplasmosis in pregnancy. Evaluation of latex-protein complexes by immnunoagglutination.

    Science.gov (United States)

    Peretti, Leandro E; Gonzalez, Verónica D G; Marcipar, Iván S; Gugliotta, Luis M

    2017-07-01

    The aim of this work was to obtain a reagent based on latex particles for ruling out acute toxoplasmosis in pregnant women by immunoagglutination (IA). Latex-protein complexes (LPC) were previously synthesized coupling the recombinant protein of Toxoplasma gondii P22Ag and the homogenate of the parasite to latex particles with different size, chemical functionality and charge density. LPC were tested in IA assays against a panel of 72 pregnant women serum samples. Results were analysed through receiver operating characteristic curves, determining area under the curve (AUC), sensitivity, specificity positive and negative predictive values (PPV and NPV, respectively). It was observed that the antigenicity of proteins was not affected during sensitization by either physical adsorption or covalent coupling. The best results in the sense of maximizing discrimination of low avidity sera from chronic ones were observed for the IA test based on latex particles with carboxyl functionality and the recombinant P22Ag, obtaining an AUC of 0·94, a sensitivity of 100% and a NPV of 100%. In this way, the proposed test could be useful for the toxoplasmosis diagnosis in pregnant women, with the advantages of being cheap, rapid and easy to be implemented.

  18. Ku protein complex is involved in nucleotide excision repair of DNA

    International Nuclear Information System (INIS)

    Calsou, P.; Muller, C.; Frit, P.; Salles, B.

    1996-01-01

    The repair of ultraviolet light (UV-C, 254 nm) DNA lesions by nucleotide excision repair (NER) has been studied in the rodent cell line xrs6 belonging to complementation group 5 of ionising radiation sensitive (IR s ) mutants. xrs6 cell line shows e defect in he DNA-end binding protein complex Ku which is involved in the repair of double-strand breaks (DSB) due to IR. In agreement with IR sensitivity, a bleomycin sensitive phenotype of xrs6 cell line was found as compared to the parental CHO-Kl line (factor> 8 fold). xrs6 exhibited also a slight (factor 2) but reproducible sensitivity to UV-C-light, while a revertant cell line for Ku DNA-end binding activity, xrs6rev, showed a restoration of both IR and UV-C sensitivities to the parental level. The NER activity of these cell lines was measured in vitro in nuclear protein extracts in the presence of plasmid DNA repair substrate damaged with UV-C lesions repaired by NER: xrs6 cell extracts exhibited only 55 % of NER activity as compared to the control CHO-Kl and xrs6rev cell extracts. These indicate that the Ku DSB repair protein in involved also in the NER process. (authors). 31 refs., 1 fig., 1 tab

  19. An unexpected vestigial protein complex reveals the evolutionary origins of an s-triazine catabolic enzyme.

    Science.gov (United States)

    Esquirol, Lygie; Peat, Thomas S; Wilding, Matthew; Liu, Jian-Wei; French, Nigel G; Hartley, Carol J; Onagi, Hideki; Nebl, Thomas; Easton, Christopher J; Newman, Janet; Scott, Colin

    2018-03-09

    Cyanuric acid is a metabolic intermediate of s-triazines, such as atrazine (a common herbicide) and melamine (used in resins and plastics). Cyanuric acid is mineralized to ammonia and carbon dioxide by the soil bacterium Pseudomonas sp. strain ADP via three hydrolytic enzymes (AtzD, AtzE, and AtzF). Here, we report the purification and biochemical and structural characterization of AtzE. Contrary to previous reports, we found that AtzE is not a biuret amidohydrolase, but instead catalyzes the hydrolytic deamination of 1-carboxybiuret. X-ray crystal structures of apo AtzE and AtzE bound with the suicide inhibitor phenyl phosphorodiamidate revealed that the AtzE enzyme complex consists of two independent molecules in the asymmetric unit. We also show that AtzE forms an α2β2 heterotetramer with a hitherto unidentified 68-amino-acid-long protein (AtzG) encoded in the cyanuric acid mineralization operon from Pseudomonas sp. strain ADP. Moreover, we observed that AtzG is essential for the production of soluble, active AtzE and that this obligate interaction is a vestige of their shared evolutionary origin. We propose that AtzEG was likely recruited into the cyanuric acid-mineralizing pathway from an ancestral glutamine transamidosome that required protein-protein interactions to enforce the exclusion of solvent from the transamidation reaction. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Drosophila Protein Kinase CK2: Genetics, Regulatory Complexity and Emerging Roles during Development

    Directory of Open Access Journals (Sweden)

    Mohna Bandyopadhyay

    2016-12-01

    Full Text Available CK2 is a Ser/Thr protein kinase that is highly conserved amongst all eukaryotes. It is a well-known oncogenic kinase that regulates vital cell autonomous functions and animal development. Genetic studies in the fruit fly Drosophila are providing unique insights into the roles of CK2 in cell signaling, embryogenesis, organogenesis, neurogenesis, and the circadian clock, and are revealing hitherto unknown complexities in CK2 functions and regulation. Here, we review Drosophila CK2 with respect to its structure, subunit diversity, potential mechanisms of regulation, developmental abnormalities linked to mutations in the gene encoding CK2 subunits, and emerging roles in multiple aspects of eye development. We examine the Drosophila CK2 “interaction map” and the eye-specific “transcriptome” databases, which raise the prospect that this protein kinase has many additional targets in the developing eye. We discuss the possibility that CK2 functions during early retinal neurogenesis in Drosophila and mammals bear greater similarity than has been recognized, and that this conservation may extend to other developmental programs. Together, these studies underscore the immense power of the Drosophila model organism to provide new insights and avenues to further investigate developmentally relevant targets of this protein kinase.

  1. Combining biophysical methods for the analysis of protein complex stoichiometry and affinity in SEDPHAT

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Huaying, E-mail: zhaoh3@mail.nih.gov; Schuck, Peter, E-mail: zhaoh3@mail.nih.gov [National Institutes of Health, Bethesda, MD 20892 (United States)

    2015-01-01

    Global multi-method analysis for protein interactions (GMMA) can increase the precision and complexity of binding studies for the determination of the stoichiometry, affinity and cooperativity of multi-site interactions. The principles and recent developments of biophysical solution methods implemented for GMMA in the software SEDPHAT are reviewed, their complementarity in GMMA is described and a new GMMA simulation tool set in SEDPHAT is presented. Reversible macromolecular interactions are ubiquitous in signal transduction pathways, often forming dynamic multi-protein complexes with three or more components. Multivalent binding and cooperativity in these complexes are often key motifs of their biological mechanisms. Traditional solution biophysical techniques for characterizing the binding and cooperativity are very limited in the number of states that can be resolved. A global multi-method analysis (GMMA) approach has recently been introduced that can leverage the strengths and the different observables of different techniques to improve the accuracy of the resulting binding parameters and to facilitate the study of multi-component systems and multi-site interactions. Here, GMMA is described in the software SEDPHAT for the analysis of data from isothermal titration calorimetry, surface plasmon resonance or other biosensing, analytical ultracentrifugation, fluorescence anisotropy and various other spectroscopic and thermodynamic techniques. The basic principles of these techniques are reviewed and recent advances in view of their particular strengths in the context of GMMA are described. Furthermore, a new feature in SEDPHAT is introduced for the simulation of multi-method data. In combination with specific statistical tools for GMMA in SEDPHAT, simulations can be a valuable step in the experimental design.

  2. Combining biophysical methods for the analysis of protein complex stoichiometry and affinity in SEDPHAT

    International Nuclear Information System (INIS)

    Zhao, Huaying; Schuck, Peter

    2015-01-01

    Global multi-method analysis for protein interactions (GMMA) can increase the precision and complexity of binding studies for the determination of the stoichiometry, affinity and cooperativity of multi-site interactions. The principles and recent developments of biophysical solution methods implemented for GMMA in the software SEDPHAT are reviewed, their complementarity in GMMA is described and a new GMMA simulation tool set in SEDPHAT is presented. Reversible macromolecular interactions are ubiquitous in signal transduction pathways, often forming dynamic multi-protein complexes with three or more components. Multivalent binding and cooperativity in these complexes are often key motifs of their biological mechanisms. Traditional solution biophysical techniques for characterizing the binding and cooperativity are very limited in the number of states that can be resolved. A global multi-method analysis (GMMA) approach has recently been introduced that can leverage the strengths and the different observables of different techniques to improve the accuracy of the resulting binding parameters and to facilitate the study of multi-component systems and multi-site interactions. Here, GMMA is described in the software SEDPHAT for the analysis of data from isothermal titration calorimetry, surface plasmon resonance or other biosensing, analytical ultracentrifugation, fluorescence anisotropy and various other spectroscopic and thermodynamic techniques. The basic principles of these techniques are reviewed and recent advances in view of their particular strengths in the context of GMMA are described. Furthermore, a new feature in SEDPHAT is introduced for the simulation of multi-method data. In combination with specific statistical tools for GMMA in SEDPHAT, simulations can be a valuable step in the experimental design

  3. Clamp and clamp loader structures of the human checkpoint protein complexes, Rad9-1-1 and Rad17-RFC.

    Science.gov (United States)

    Shiomi, Yasushi; Shinozaki, Ayako; Nakada, Daisuke; Sugimoto, Katsunori; Usukura, Jiro; Obuse, Chikashi; Tsurimoto, Toshiki

    2002-08-01

    We have reported that protein imaging by transmission electron microscope observation based on low-angle platinum shadowing can reproduce characteristic ring structures of the replication clamp, proliferating cell nuclear antigen (PCNA), and the clamp loader protein, replication factor C (RFC). The checkpoint protein complexes, Rad9-Hus1-Rad1 (Rad9-1-1) and Rad17-RFCs2-5 (Rad17-RFC), have been predicted to function as novel clamp and clamp loader proteins, respectively, due to their amino acid sequence similarities with PCNA and RFC. We reconstituted human Rad9-1-1 and Rad17-RFC complexes in insect cells using a baculovirus expression system and showed purified Rad9-1-1 to be composed of equimolar amounts of Rad9, Hus1 and Rad1 proteins, exhibiting a native molecular mass of 100 kDa, in line with a trimeric complex. When Rad17 was co-expressed with the four small subunits of RFC in insect cells, these proteins formed a complex of 240 kDa that displayed DNA binding, ATPase activity and binding to its predicted target protein, Rad9-1-1. Analyses of the molecular architecture of Rad9-1-1 and Rad17-RFC using transmission electron microscopy, in comparison with PCNA and RFC, revealed the Rad9-1-1 complex to have a characteristic ring structure indistinguishable from that of PCNA in shape and size. In addition, the Rad17-RFC complex was found to be oval in structure and 26 x 22 nm in size with a cleft, reminiscent of the structure of RFC. Our direct comparison of images from the two sets of clamp and clamp loader proteins indicated that Rad9-1-1 and Rad17-RFC are, respectively, structural orthologs of PCNA and RFC, with presumed functions as novel clamp and clamp-loader proteins in eukaryotes.

  4. Predicting DNA-binding proteins and binding residues by complex structure prediction and application to human proteome.

    Directory of Open Access Journals (Sweden)

    Huiying Zhao

    Full Text Available As more and more protein sequences are uncovered from increasingly inexpensive sequencing techniques, an urgent task is to find their functions. This work presents a highly reliable computational technique for predicting DNA-binding function at the level of protein-DNA complex structures, rather than low-resolution two-state prediction of DNA-binding as most existing techniques do. The method first predicts protein-DNA complex structure by utilizing the template-based structure prediction technique HHblits, followed by binding affinity prediction based on a knowledge-based energy function (Distance-scaled finite ideal-gas reference state for protein-DNA interactions. A leave-one-out cross validation of the method based on 179 DNA-binding and 3797 non-binding protein domains achieves a Matthews correlation coefficient (MCC of 0.77 with high precision (94% and high sensitivity (65%. We further found 51% sensitivity for 82 newly determined structures of DNA-binding proteins and 56% sensitivity for the human proteome. In addition, the method provides a reasonably accurate prediction of DNA-binding residues in proteins based on predicted DNA-binding complex structures. Its application to human proteome leads to more than 300 novel DNA-binding proteins; some of these predicted structures were validated by known structures of homologous proteins in APO forms. The method [SPOT-Seq (DNA] is available as an on-line server at http://sparks-lab.org.

  5. Single-molecule resolution of G protein-coupled receptor (GPCR) complexes.

    Science.gov (United States)

    Jonas, Kim C; Huhtaniemi, Ilpo; Hanyaloglu, Aylin C

    2016-01-01

    The organization of G protein-coupled receptors (GPCRs) into dimers and higher-order oligomers has provided a potential mechanistic system in defining complex GPCR responses. Despite being studied for nearly 20 years it has, and still is, been an area of controversy. Although technology has developed to quantitatively measure these associations in real time, identify the structural interfaces and even systems to understand the physiological significance of di/oligomerization, key questions remain outstanding including the role of each individual complex from the monomer to the higher-order oligomer, in their native system. Recently, single-molecule microscopy approaches have provided the tools to directly visualize individual GPCRs in dimers and oligomers, though as with any technological development each have their advantages and limitations. This chapter will describe these recent developments in single-molecule fluorescent microscopy, focusing on our recent application of super-resolution imaging of the GPCR for the luteinizing hormone/chorionic gonadotropin to quantify GPCR monomers and formation of protomers in to dimers and distinct oligomeric forms. We present our approach, considerations, strategy, and challenges to visualize this receptor beyond the light diffraction limit via photoactivated localization microscopy with photoactivatable dyes. The addition of super-resolution approaches to the GPCR "nano-tool kit" will pave the way for novel avenues to answer outstanding questions regarding the existence and significance of these complexes to GPCR signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effects of vanadium complexes on cell growth of human leukemia cells and protein-DNA interactions.

    Science.gov (United States)

    Lampronti, Ilaria; Bianchi, Nicoletta; Borgatti, Monica; Fabbri, Enrica; Vizziello, Leonardo; Khan, Mahmud Tareq Hassan; Ather, Arjumand; Brezena, Dan; Tahir, Mohammad Mahroof; Gambari, Roberto

    2005-07-01

    Vanadium complexes are known to possess potent insulin-mimetic effects, high affinity for several enzymes and anticancer activity, which deserve increasing attention for application to biomedical sciences. Different vanadium complexes have been found to be more effective than the simple vanadium-(IV) and -(V) salts in experiments performed both in vitro and in vivo. Application of polyoxometalates as potential drugs against Herpes Simplex Virus and AIDS have also increased the interest to study the association between vanadium containing species and proteins. The aim of our research was to investigate the in vitro antiproliferative activity of a variety of vanadium-containing compounds, and study their ability to interfere with the molecular interactions between GATA-1 and NF-kappaB transcription factors and target DNA elements, employing electrophoretic mobility shift assays. All of the used vanadium compounds were found to exhibit antiproliferative activity, despite with differences in efficacy. Inhibition of K562 cell growth was not associated with differentiation, but with activation of apoptosis. Vanadium complexes with a +5 oxidation state and their discrete anionic units appear essential for the respective effects on K562 cells; a +4 oxidation state appears to be important in inhibiting transcription factors/DNA interactions.

  7. Extremely stable soluble high molecular mass multi-protein complex with DNase activity in human placental tissue.

    Directory of Open Access Journals (Sweden)

    Evgeniya E Burkova

    Full Text Available Human placenta is an organ which protects, feeds, and regulates the grooving of the embryo. Therefore, identification and characterization of placental components including proteins and their multi-protein complexes is an important step to understanding the placenta function. We have obtained and analyzed for the first time an extremely stable multi-protein complex (SPC, ∼ 1000 kDa from the soluble fraction of three human placentas. By gel filtration on Sepharose-4B, the SPC was well separated from other proteins of the placenta extract. Light scattering measurements and gel filtration showed that the SPC is stable in the presence of NaCl, MgCl2, acetonitrile, guanidinium chloride, and Triton in high concentrations, but dissociates efficiently in the presence of 8 M urea, 50 mM EDTA, and 0.5 M NaCl. Such a stable complex is unlikely to be a casual associate of different proteins. According to SDS-PAGE and MALDI mass spectrometry data, this complex contains many major glycosylated proteins with low and moderate molecular masses (MMs 4-14 kDa and several moderately abundant (79.3, 68.5, 52.8, and 27.2 kDa as well as minor proteins with higher MMs. The SPC treatment with dithiothreitol led to a disappearance of some protein bands and revealed proteins with lower MMs. The SPCs from three placentas efficiently hydrolyzed plasmid supercoiled DNA with comparable rates and possess at least two DNA-binding sites with different affinities for a 12-mer oligonucleotide. Progress in study of placental protein complexes can promote understanding of their biological functions.

  8. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1–AMPK complex

    International Nuclear Information System (INIS)

    Nakagawa, Koji; Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie; Asaka, Masahiro; Takeda, Hiroshi; Kobayashi, Masanobu

    2012-01-01

    Highlights: ► The nuclear protein Artemis physically interacts with AMPKα2. ► Artemis co-localizes with AMPKα2 in the nucleus. ► Artemis promotes phosphorylation and activation of AMPK. ► The interaction between AMPKα2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic α subunit and regulatory β and γ subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the α-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPKα2-binding protein. Artemis was found to co-immunoprecipitate with AMPKα2, and the co-localization of Artemis with AMPKα2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPKα2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPKα2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1–AMPK complex.

  9. On docking, scoring and assessing protein-DNA complexes in a rigid-body framework.

    Directory of Open Access Journals (Sweden)

    Marc Parisien

    Full Text Available We consider the identification of interacting protein-nucleic acid partners using the rigid body docking method FTdock, which is systematic and exhaustive in the exploration of docking conformations. The accuracy of rigid body docking methods is tested using known protein-DNA complexes for which the docked and undocked structures are both available. Additional tests with large decoy sets probe the efficacy of two published statistically derived scoring functions that contain a huge number of parameters. In contrast, we demonstrate that state-of-the-art machine learning techniques can enormously reduce the number of parameters required, thereby identifying the relevant docking features using a miniscule fraction of the number of parameters in the prior works. The present machine learning study considers a 300 dimensional vector (dependent on only 15 parameters, termed the Chemical Context Profile (CCP, where each dimension reflects a specific type of protein amino acid-nucleic acid base interaction. The CCP is designed to capture the chemical complementarities of the interface and is well suited for machine learning techniques. Our objective function is the Chemical Context Discrepancy (CCD, which is defined as the angle between the native system's CCP vector and the decoy's vector and which serves as a substitute for the more commonly used root mean squared deviation (RMSD. We demonstrate that the CCP provides a useful scoring function when certain dimensions are properly weighted. Finally, we explore how the amino acids on a protein's surface can help guide DNA binding, first through long-range interactions, followed by direct contacts, according to specific preferences for either the major or minor grooves of the DNA.

  10. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1-AMPK complex

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Koji, E-mail: k_nakagawa@pharm.hokudai.ac.jp [Department of Pathophysiology and Therapeutics, Division of Pharmascience, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie [Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Asaka, Masahiro [Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Takeda, Hiroshi [Department of Pathophysiology and Therapeutics, Division of Pharmascience, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Kobayashi, Masanobu [Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); School of Nursing and Social Services, Health Sciences University of Hokkaido, Ishikari-Toubetsu, Hokkaido 061-0293 (Japan)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer The nuclear protein Artemis physically interacts with AMPK{alpha}2. Black-Right-Pointing-Pointer Artemis co-localizes with AMPK{alpha}2 in the nucleus. Black-Right-Pointing-Pointer Artemis promotes phosphorylation and activation of AMPK. Black-Right-Pointing-Pointer The interaction between AMPK{alpha}2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic {alpha} subunit and regulatory {beta} and {gamma} subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the {alpha}-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPK{alpha}2-binding protein. Artemis was found to co-immunoprecipitate with AMPK{alpha}2, and the co-localization of Artemis with AMPK{alpha}2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPK{alpha}2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPK{alpha}2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1-AMPK complex.

  11. Structure of the Neisseria Adhesin Complex Protein (ACP) and its role as a novel lysozyme inhibitor.

    Science.gov (United States)

    Humbert, María Victoria; Awanye, Amaka Marian; Lian, Lu-Yun; Derrick, Jeremy P; Christodoulides, Myron

    2017-06-01

    Pathogenic and commensal Neisseria species produce an Adhesin Complex Protein, which was first characterised in Neisseria meningitidis (Nm) as a novel surface-exposed adhesin with vaccine potential. In the current study, the crystal structure of a recombinant (r)Nm-ACP Type I protein was determined to 1.4 Å resolution: the fold resembles an eight-stranded β-barrel, stabilized by a disulphide bond between the first (Cys38) and last (Cys121) β-strands. There are few main-chain hydrogen bonds linking β4-β5 and β8-β1, so the structure divides into two four-stranded anti-parallel β-sheets (β1-β4 and β5-β8). The computed surface electrostatic charge distribution showed that the β1-β4 sheet face is predominantly basic, whereas the β5-β8 sheet is apolar, apart from the loop between β4 and β5. Concentrations of rNm-ACP and rNeisseria gonorrhoeae-ACP proteins ≥0.25 μg/ml significantly inhibited by ~80-100% (Plysozyme (HL) over 24 h. Specificity was demonstrated by the ability of murine anti-Neisseria ACP sera to block ACP inhibition and restore HL activity. ACP expression conferred tolerance to HL activity, as demonstrated by significant 3-9 fold reductions (Plysozyme. In addition, wild-type Neisseria lactamica treated with purified ACP-specific rabbit IgG antibodies showed similar fold reductions in bacterial growth, compared with untreated bacteria (Pprotein family of lysozyme inhibitors. However, Neisseria ACP proteins show lysozyme recognition. These observations suggest that Neisseria ACP adopts a different mode of lysozyme inhibition and that the ability of ACP to inhibit lysozyme activity could be important for host colonization by both pathogenic and commensal Neisseria organisms. Thus, ACP represents a dual target for developing Neisseria vaccines and drugs to inhibit host-pathogen interactions.

  12. Differential association of protein subunits with the human RNase MRP and RNase P complexes.

    Science.gov (United States)

    Welting, Tim J M; Kikkert, Bastiaan J; van Venrooij, Walther J; Pruijn, Ger J M

    2006-07-01

    RNase MRP is a eukaryotic endoribonuclease involved in nucleolar and mitochondrial RNA processing events. RNase MRP is a ribonucleoprotein particle, which is structurally related to RNase P, an endoribonuclease involved in pre-tRNA processing. Most of the protein components of RNase MRP have been reported to be associated with RNase P as well. In this study we determined the association of these protein subunits with the human RNase MRP and RNase P particles by glycerol gradient sedimentation and coimmunoprecipitation. In agreement with previous studies, RNase MRP sedimented at 12S and 60-80S. In contrast, only a single major peak was observed for RNase P at 12S. The analysis of individual protein subunits revealed that hPop4 (also known as Rpp29), Rpp21, Rpp20, and Rpp25 only sedimented in 12S fractions, whereas hPop1, Rpp40, Rpp38, and Rpp30 were also found in 60-80S fractions. In agreement with their cosedimentation with RNase P RNA in the 12S peak, coimmunoprecipitation with VSV-epitope-tagged protein subunits revealed that hPop4, Rpp21, and in addition Rpp14 preferentially associate with RNase P. These data show that hPop4, Rpp21, and Rpp14 may not be associated with RNase MRP. Furthermore, Rpp20 and Rpp25 appear to be associated with only a subset of RNase MRP particles, in contrast to hPop1, Rpp40, Rpp38, and Rpp30 (and possibly also hPop5), which are probably associated with all RNase MRP complexes. Our data are consistent with a transient association of Rpp20 and Rpp25 with RNase MRP, which may be inversely correlated to its involvement in pre-rRNA processing.

  13. BIOLUMINISCENCE RESONANCE ENERGY TRANSFER (BRET) METHODS TO STUDY G PROTEIN-COUPLED RECEPTOR - RECEPTOR TYROSINE KINASE HETERORECEPTOR COMPLEXES

    OpenAIRE

    Borroto-Escuela, Dasiel O.; Flajolet, Marc; Agnati, Luigi F.; Greengard, Paul; Fuxe, Kjell

    2013-01-01

    A large body of evidence indicates that G protein-coupled receptors (GPCRs) and Receptor tyrosine kinases (RTKs) can form heteroreceptor complexes. In these complexes, the signalling from each interacting protomer is modulated to produce an integrated and therefore novel response upon agonist(s) activation. In the GPCR-RTK heteroreceptor complexes, GPCRs can activate RTK in the absence of added growth factor through the use of RTK signalling molecules. This integrative phenomenon is reciproca...

  14. Complexes of Usher proteins preassemble at the endoplasmic reticulum and are required for trafficking and ER homeostasis

    Directory of Open Access Journals (Sweden)

    Bernardo Blanco-Sánchez

    2014-05-01

    Full Text Available Usher syndrome (USH, the leading cause of hereditary combined hearing and vision loss, is characterized by sensorineural deafness and progressive retinal degeneration. Mutations in several different genes produce USH, but the proximal cause of sensory cell death remains mysterious. We adapted a proximity ligation assay to analyze associations among three of the USH proteins, Cdh23, Harmonin and Myo7aa, and the microtubule-based transporter Ift88 in zebrafish inner ear mechanosensory hair cells. We found that the proteins are in close enough proximity to form complexes and that these complexes preassemble at the endoplasmic reticulum (ER. Defects in any one of the three USH proteins disrupt formation and trafficking of the complex and result in diminished levels of the other proteins, generalized trafficking defects and ER stress that triggers apoptosis. ER stress, thus, contributes to sensory hair cell loss and provides a new target to explore for protective therapies for USH.

  15. A Polypyrimidine Tract Binding Protein, Pumpkin RBP50, Forms the Basis of a Phloem-Mobile Ribonucleoprotein Complex[W

    Science.gov (United States)

    Ham, Byung-Kook; Brandom, Jeri L.; Xoconostle-Cázares, Beatriz; Ringgold, Vanessa; Lough, Tony J.; Lucas, William J.

    2009-01-01

    RNA binding proteins (RBPs) are integral components of ribonucleoprotein (RNP) complexes and play a central role in RNA processing. In plants, some RBPs function in a non-cell-autonomous manner. The angiosperm phloem translocation stream contains a unique population of RBPs, but little is known regarding the nature of the proteins and mRNA species that constitute phloem-mobile RNP complexes. Here, we identified and characterized a 50-kD pumpkin (Cucurbita maxima cv Big Max) phloem RNA binding protein (RBP50) that is evolutionarily related to animal polypyrimidine tract binding proteins. In situ hybridization studies indicated a high level of RBP50 transcripts in companion cells, while immunolocalization experiments detected RBP50 in both companion cells and sieve elements. A comparison of the levels of RBP50 present in vascular bundles and phloem sap indicated that this protein is highly enriched in the phloem sap. Heterografting experiments confirmed that RBP50 is translocated from source to sink tissues. Collectively, these findings established that RBP50 functions as a non-cell-autonomous RBP. Protein overlay, coimmunoprecipitation, and cross-linking experiments identified the phloem proteins and mRNA species that constitute RBP50-based RNP complexes. Gel mobility-shift assays demonstrated that specificity, with respect to the bound mRNA, is established by the polypyrimidine tract binding motifs within such transcripts. We present a model for RBP50-based RNP complexes within the pumpkin phloem translocation stream. PMID:19122103

  16. Analytical use of multi-protein Fluorescence Resonance Energy Transfer to demonstrate membrane-facilitated interactions within cytokine receptor complexes.

    Science.gov (United States)

    Krause, Christopher D; Izotova, Lara S; Pestka, Sidney

    2013-10-01

    Experiments measuring Fluorescence Resonance Energy Transfer (FRET) between cytokine receptor chains and their associated proteins led to hypotheses describing their organization in intact cells. These interactions occur within a larger protein complex or within a given nano-environment. To illustrate this complexity empirically, we developed a protocol to analyze FRET among more than two fluorescent proteins (multi-FRET). In multi-FRET, we model FRET among more than two fluorophores as the sum of all possible pairwise interactions within the complex. We validated our assumption by demonstrating that FRET among pairs within a fluorescent triplet resembled FRET between each pair measured in the absence of the third fluorophore. FRET between two receptor chains increases with increasing FRET between the ligand-bin